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Abstract

Making correct decisions regarding player trades is important for

NBA teams, in a league where every team is bound by the same salary

restrictions. Therefore player rating tools can be useful for NBA teams

to support these decisions. In this thesis we design a new method

for rating NBA players, called the Detailed Player Rating (DPR).

Our method has the added information over the current player rat-

ing methods, that it not only estimates a player’s skill level, but also

what aspects of basketball are most important for winning and how

each player contributes to these aspects. We have shown that the

DPR method shows comparable results in terms of predictive power,

but provides more useful information and does not overvalue offensive

skills, which most current player rating methods do.

Keywords: NBA, basketball, player ratings, two-stage regression,

hierarchical Bayes, subspace prior regression.
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1 Introduction

In the National Basketball Association all teams are restricted in how much

salary they are allowed to allocate to players on their roster. This maximum

salary amount is equal among teams and is called the NBA salary cap. When

all teams have to operate under these same salary restrictions, it is of course

important for teams to make the right decisions regarding trading players and

salary to keep a competitive edge over their opponents. Statistical methods

can be used by NBA teams to support these decisions, because plenty of

necessary data is recorded during matches and is widely available for usage.

The need for using statistical methods in sports can be seen from an ex-

ample in baseball, another popular U.S. sport. The surge of statistical meth-

ods in baseball is well documented in Michael Lewis’ book Moneyball [1].

In the late 90’s the low-ranking baseball team the Oakland Athletics first

started incorporating statistical methods to supplement their decisions re-

garding player transactions and game strategies. They found that certain

player attributes were terribly overvalued, such as the ability to hit home-

runs. They found that the ability to hit a ball and reaching first base is

far more important than hitting far with a lower percentage. By adjusting

their game plans and transactions to these findings, they unexpectedly be-

came a much better team, outperforming many teams with bigger budgets.

However, after the book Moneyball was published other U.S. baseball teams

became more interested in using statistical methods. With this, the com-

petitive edge the Oakland Athletics had was gone and they were sent back

into mediocrity. Nonetheless, it goes to show how a good use of statistical

methods can impact a teams performance.

Baseball and basketball are very different sports, basketball is a much

more dynamic sport with less breaks and stops where strategies are seemingly

more important for winning. However, the use of statistical methods in

basketball may help a team win more often if these methods are used in the

correct way. In this thesis we will discuss some of the existing statistical

methods NBA teams can use to support their decision making regarding
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player transactions. We will also discuss the limitations of these statistical

methods and propose improvements.

1.1 Literature review

This literature review is divided into three sections. The first section reviews

player rating methods using box-score data. The second section reviews

player rating methods using play-by-play data. We conclude the literature

review with a short summary of what we believe are some shortcomings that

we could improve upon.

1.1.1 Using box-score statistics to rate players

Box-score statistics are used extensively in player rating methods, because

they are widely available and easy to interpret. Box-scores are kept for each

NBA match. They record for each player the minutes played, points scored

and scoring percentage (for three-point shots and free throws as well), assists,

rebounds, steals, blocks and fouls. These box-scores are then made widely

available in newspapers or the internet, such as on www.NBA.com.

These statistics are easy to interpret, as they represent the direct output

a player has on a match in terms of points scored, shooting accuracy, assists,

offensive and defensive rebounds, steals and fouls. However, it is hard to

interpret how much effect some of these stats have on the outcome of a

match. Take for example a defensive rebound, which is the act of catching

the ball after the opponent has missed a shot. Making defensive rebounds is

important, as it will rob the opponent of another immediate opportunity to

score. However, defensive rebounds do not always lead to points scored by

the team making the defensive rebound.

So what is the effect of making a defensive rebound or any of the other

statistics kept by in box-scores on the outcome of a match? We will discuss

several statistics that use regression analysis to measure the effect of box-

score statistics on the outcome of a match.
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Player Efficiency Rating

The Player Efficiency Rating (PER) was invented by former ESPN writer

and current Vice President of Basketball Operations John Hollinger [2]. The

PER stat measures the per-minute performance a player has on average and

can be used to compare player performances across seasons. Hollinger models

player contributions to a game in terms of box-scores and adjusts them for

the pace of each team. This adjustment accounts for the fact that faster

paced teams have more possessions and therefore have more opportunities to

score.

Wins Produced

The Wins Produced statistic measures the amount of wins a player produces

per 40 minutes and was invented by sports economist David Berri [3][4]. It

estimates an individual player’s contribution to a win. The Wins Produced

model first estimates the effect of box-score statistics on two measures of

attack and defense with regression analysis. Those two measures are Offen-

sive Efficiency (points scored per possession) and Defensive Efficiency (points

conceded per possession)[5]. Then an individual player’s contribution to his

teams Offensive and Defensive Efficiency can be measured by looking at his

box score. His contributions are then scaled back to a per-40 minute level.

Berri also accounts for the fact that good or bad teammates can deflate

or inflate a player’s output. For example, if a player has teammates who are

all very good passers, he will be more likely to score than a player with team-

mates who are more selfish. Considering contributions made by teammates,

he found that only defensive rebounds and assists made by teammates have

a significant influence on a player’s performance.

Determining box-score contributions per position

It is generally accepted that players in different positions have different roles

and thus certain skills are more valued for some positions [6][7]. For example,
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committing turnovers is the least desirable for a point guard, the play maker,

as it is his responsibility to run the ball up the court. If he commits a

turnover, it will usually lead to a fast break and easy points for the opponent,

because a point guard usually is the last line of defense.

Page et al. [8] used a Bayesian hierarchical model to estimate how box-

score statistics affect the match outcome as measured in point differentials.

Page et al. found that certain box-score statistics are more valuable for

some positions than others. For example, making steals is more valuable for

centers than for other positions, because their position requires them to be

close to the basket. Although they did not use these results to rate players,

their research can be easily extended to do just that.

1.1.2 Using play-by-play data to rate players

Play-by-play data are essentially box-score statistics kept for each possession

instead of for a whole match. Using play-by-play data instead of box-score

statistics to rate players, can deal with some of the disadvantages box-score

based methods have. Because play-by-play data records which players are

on the floor for each possession, methods using this data account for the

fact that a player’s contribution to a match is affected by the skill-level of

his teammates and opponents. Although Berri’s Wins Produced statistic[4]

makes an effort to measure these effects, he estimates them using box-score

statistics. This will be less accurate, as box-score statistics will have less

sampling variation in terms of on-court interaction between players.

Another advantage of recording on-court presence, is that it is an extra

measure to estimate a player’s defensive skill. Although box-scores do record

steals, blocks and rebounds, they cannot record all defensive efforts. For

example, the ability to guard an opponent properly and forcing him to shoot

less favorable shots is something that can be explained by on-court presence

but is not recorded in the box-score statistics.

Two player rating statistics will be discussed that use play-by-play data

to measure offensive and defensive skill while accounting for the skill of team-
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mates and opponents.

Adjusted Plus-Minus

Dan Rosenbaums Adjusted Plus-Minus statistic[9] is based on the plus-minus

statistic. The plus-minus statistic measures a player’s impact on a game and

is calculated by taking the average point differential for when the player is

on the court.

Rosenbaum notes that although it is interesting to see how point differ-

entials change when a particular player is on the court or not, the plus-minus

statistic may not be accurate in some situations. He gives as example that

very weak starters on strong teams will spend more time on the court with

that strong unit, thus inflating his Plus-Minus rating. Therefore he uses re-

gression analysis to account for the strength of an individuals teammates and

opponents on the court.

Rosenbaum found that simply regressing the point differential on dummy

variables signifying the players on the court, resulted in high standard errors

for his regression coefficients. He extends this so-called ”Pure Adjusted Plus-

Minus” rating (PAPM), with the assumption that a player’s skill level will be

reflected in his box-scores statistics. Therefore he estimates the effect of box-

score statistics on a player’s PAPM rating, by regressing the PAPM rating

on several box-score variables. Rosenbaum uses the results of this model to

form the STAT rating.

He still found some strange outliers (over performers) with the STAT

rating, so he formed a final rating called the Overall Adjusted Plus-Minus

rating (OAPMP). This rating is a weighted average between the APMP and

STAT rating, where the weights were chosen such that the standard errors

for the OAPMP ratings were minimized.

Subspace Prior Regression

Dapo Omidiran’s Subspace Prior Regression (SPR) statistic[10] can largely

be seen as an extension from Dan Rosenbaum’s OAPMP statistic[9]. Om-
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ridan’s criticism on other Plus-Minus statistics, is that they don’t account

enough for the skill disparity between players. Omidiran notes that the NBA

is a competition driven largely by star players and that better players con-

tribute far more to success than lesser players. He therefore penalizes large

player ratings to create more model sparsity and make only the best players

stand out.

Omidiran found that creating model sparsity increases the predictive per-

formance of Adjusted Plus-Minus ratings and is therefore a good model ex-

tension. Furthermore, he adds another penalty term in the regression model,

that penalizes the distance between a player’s rating and his box-score out-

put. This penalty term is included, because a player’s skill level should be

reflected in his box-score stats.

1.1.3 Summary

When looking for player rating methods, using play-by-play data is obviously

better than using box-score data, as it captures a player’s defensive skill

better. However, there are still some shortcomings to the current player

rating methods that use play-by-play data.

The current methods are not able to make a link between a player’s

skill level and what type of player he is. If a team wants to acquire a new

player, not only is it important to know how good that player is, but also

what he specializes in. It is important to know if a player is a good passer,

rebounder, shooter, on- or off-ball defender, etc. Of course, looking at box-

scores can also tell you these things, but they still do not say what a player’s

effective contribution to a team is. For example, a player that scores many

points would probably look like a good addition to most teams in the NBA.

However, if his play style means that the offensive efficiency of his teammates

suffers too much, it might not be a good decision to sign that player.

Another point that the current statistical methods lack, is that they can-

not properly measure what kind of strategies are effective to win games. This

is important for teams to know, so they can decide what types of players they
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should acquire. Page et al. [8] make a start with their model that estimates

how important output is of several box-score statistics for each player po-

sition. However, they use box-score data to estimate these effects. When

using this data, which are basically score summaries per match, their esti-

mates do not correctly use the information that certain players spend more

time playing with and against certain players with different skill levels. In

other words, it does not correctly account for the skill level of opponents and

teammates.

1.2 Thesis contribution

The main goal of this thesis is to find an approach to correctly estimate what

kind of strategies are important for winning games, how skillful a player is

and what type of player he is. Compared to the existing methods, which

are only able to estimate a player’s skill level, we believe this is a great

improvement. This will be done in a 2-stage regression model. The first

stage models the influence of the on-court presence of players on several

production statistics. This stage will be estimated with a Lasso regression,

to penalize the occurrence of many large contributors, as we believe there are

not many star-players. This approach is influenced by Omidiran’s approach

for his SPR method[10]. We replace the dependent variable of Omidiran’s

model, score differentials, with the several production statistics.

In the second stages we model score differentials with the estimated pro-

duction statistics from the first stage as explainable variables. Because we

believe these effects not to be homogenous across different player positions,

yet to be somewhat similar, we estimate this with a Hierarchical Bayes model

(similar to the approach of Page et al. [8].) With the results from the second

stage we can see what production statistics affect score differentials the most

and are the most important for winning. And because we estimate the influ-

ence of the players on score differentials indirectly through the first stage, we

can see which players have the largest effects on score differentials, so which

players are the best and the worst. We call this player rating the Detailed
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Player Rating (DPR).

We will compare the forecast accuracy of our DPR with the best player

rating of the current literature, namely Omidiran’s[10] Subspace Prior Re-

gression (SPR). Lastly we will analyze NBA player salaries, to see if we can

find a good way to correctly determine a player’s salary according to his skill

level.

What this thesis contributes to existing methods, is that current state-

of-the art methods estimate player’s skill levels by simply regressing score

differentials on a player’s on-court presence. So the current methods are only

able to estimate player’s skill levels. Our approach is very different, because

we use a two-stage model that estimates the relation between score differen-

tials and on-court presence of players indirectly through certain production

statistics. This is something that has not been done before and provides a lot

of extra useful information about what strategies are important for winning

and what a player’s strengths and weaknesses are. Furthermore, this thesis

marks the first time where the effect of box-score statistics is estimated on

score differentials using play-by-play data. Lastly, in this thesis we propose

a method that tries to determine a player’s salary by their statistical skill

level, which has also not been done before.

2 Data

In this section we will give a short description and analysis of the data we have

used to estimate player ratings. We have used play-by-play data from the

2009-2010 NBA season in our analysis. This data can be found on http://

www.basketballgeek.com/ and http://www.basketballvalue.com/downloads.

php. Only data from the regular season is used. In the NBA the regular sea-

son is followed by play-offs, a knock-out tournament where teams play a

best-of-seven series each round. Because of this knock-out system, we be-

lieve that the data from the play-offs are much more affected by randomness

and we do not use this data. Continuing with what is included in the dataset,
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every field goal attempt, free throw, rebound, steal, block, foul and substitu-

tion are recorded for 1211 matches between 28 teams. Each match is divided

in sequences of events, such that a new event is formed every time one or

more teams makes a substitution. Note that a match can contain several

events featuring identical line-ups, if these events are separated by events

with different line-ups. The time left in the game was also recorded for each

event. Furthermore, for each event there is information which players were

on the court and at which position they were playing. These positions are:

1. Point guard: The point guard is the playmaker of the team. He

usually starts each attack and directs each play.

2. Shooting guard: The shooting guard position usually requires good

shooting abilities and/or ball-handling abilities to set up his own shot.

3. Small forward: Together with the shooting guard, the small forward

usually plays on the wing (for away from the basket). A good small

forward is both quick and strong, so they can play both far away as

well as close to the basket.

4. Power forward: Power forwards play close to the basket, similar to

the center position. However, good power forwards should also be able

to shoot from further away from the basket.

5. Center: The center is usually the tallest player on each team. His main

skills are rebounding, scoring from under the basket and protecting the

own basket from close range attempts. The center plays the closest to

the basket during offensive and defensive possessions.

Additionally, for each field goal attempt there is information about the dis-

tance of the shot (distance to the basket) and whether it was a successful

attempt. If the shot was made, there is also information about if it the shot

was assisted and who made the assist.

Lastly, we look at some descriptive statistics regarding the score differen-

tials. The score differentials for each event are standardized per 100 posses-

sions. This will account for the fact that not all events have the same time

length. Another option would have been to standardize the score differentials
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by the same unit of time. However, this approach would not account for the

fact that some teams with faster paced tactics will have more possessions

and thus are able to have larger score differentials.

The descriptive statistics for the score differentials can be found in table 1.

A mean of 5.23 signifies that the home team will score on average 5.23 more

points than the away team per 100 possessions. The fact that this mean has

a positive sign can be easily explained by the fact that home teams will have

a moral advantage by playing in front of their home crowd. A skewness 0.06

means that the score differentials are only slightly positively skewed, which

means that the home team will only slightly more frequently win by a large

margin than the away team. A kurtosis of 5.58 means that the distribution

is highly peaked and has fat tails. This can also be seen by looking at the

histogram of the score differentials in figure 1. We see that the distribution

has a high peak around 0, but that there are also many extreme values.

Mean: 5.23
Variance: 24759.00
Skewness: 0.06
Kurtosis: 5.58

Table 1: Descriptive statistics score differentials per 100 possessions

3 Methods

In this section we formulate the models and estimation procedures of various

player rating models. In section 3.1 we formulate Omidiran’s[10] SPR method

which will be used as a benchmark model. In section 7 we improve upon this

method and formulate our Detailed Player Rating (DPR). In section 3.3 we

will explain how these methods are compared in terms of forecasting power.
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Figure 1: Histogram score differentials

3.1 Subspace Prior Regression

In this section we formulate the player rating method that has the best fore-

cast accuracy in the current literature, namely Omidiran’s[10] Subspace Prior

Regression (SPR). We will use this method as a benchmark model to com-

pare our DPR method with. The SPR method models score differentials by

using the on-court presence of players as explainable variable. This captures

the effect that player’s have on the performance of their team. Consider a

dataset of N events. Each event contains match information from matches

in the 2009-2010 NBA season and is defined such that when a team makes

a substitution, a new event is formed. Let yi denote the score differential

between the home and away team in event i. Let y be the N × 1 vector con-

taining the elements y for all i ∈ {1, ..., N}. Let M be the amount of players

that are considered in our model. Let Z be an N ×M matrix containing the
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elements zi,m, such that

zi,m =


1 Player m is on the floor for the home team during event i

−1 Player m is on the floor for the away team during event i

0 Player m is not on the floor

for m ∈ {1, ...,M} and i ∈ {1, ..., N}. The relationship between y and Z is

then modeled as

y = α + Zφ+ ε (1)

where εi ∼N(0,σ) . The relationship between y and Z are captured in M ×1

parametervector φ. Values for elements in φ should be interpreted as the

amount of points a team will score more (or less) than the opponent per 100

possessions, when the corresponding player is on the floor.

This model could simply be estimated with Least Squares, but Omidiran

estimates model (1) with a penalized regression to account for two things:

model sparsity and box-score information. Model sparsity basically means

there is a limited amount of star players in the NBA and that the estimation

procedure should account for that.

The model sparsity is accounted for by adding the penalty term λ1||φ||.
This `1-norm of the player ratings φ will ensure that there will not be a large

number of very good players, which seems more realistic.

The estimation procedure should also incorporate the information that

can be found in box-scores, as they argue that good players will have a

good numbers in terms of points scored, assists, rebounds and other box-

score stats. This information is incorporated by adding the penalty term

λ2||φ−γ0−Rγ||22. Here R is the M×S box-score statistics matrix, where S

is the amount of box-score statistics. In parameter vector γ, with dimensions

S × 1, are the weights for each box-score statistic.

The penalized regression procedure also incorporates a weighting scheme,

where each weight wi is the amount of minutes played during event i. The

weights wi are stacked in N × 1 vector W .
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Equation (1) is then estimated by minimizing the loss function

g(α,φ, γ0,γ;λ1, λ2) = ||y − α− Zφ||2W︸ ︷︷ ︸
Weighted Least Squares

+ λ1||φ||︸ ︷︷ ︸
Model Sparsity

+λ2||φ− γ0 −Rγ||22︸ ︷︷ ︸
Box-score information

(2)

This objective function is then minimized with the Cyclical Coordinate De-

scent algorithm which was found to be the fastest among other algorithms

by Omidiran [10]. We refer to his paper for the formulation of this algo-

rithm. The regularization parameters λ1 and λ2 are chosen through 10-fold

cross-validation by Omidiran [10] . The parameters are chosen from the set

Λ := {(2a, 2b)|a, b ∈ F} (3)

where

F := {−10,−9, ..., 9} (4)

We simply choose the parameter values found by Omidiran [10], because

the 10-fold cross-validation would be too computationally expensive. These

parameter were found by analyzing data from the 2010-2009 NBA season, one

season later than our data, but we find no reason to believe that the optimal

parameters would be very different for our data. The optimal parameters

found are λ1 = 2−10 and λ2 = 2−3.

3.2 Detailed Player Rating

In this section we will formulate our Detailed Player Rating (DPR) which

improves upon Omidiran’s[10] SPR method. The DPR method will allow

us to estimate what strategies are important for winning games, estimate

the skill level of players and say what their specialties are. This method is

estimated in two stages. In the first stage we estimate the effect a player’s

on-court presence has on his team’s offensive and defensive output of certain

production statistics. In the second stage we estimate what strategies are

most effective to winning. We do this by regressing score differentials on the
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estimated production statistics from the first stage. We will first formulate

this two-stage model and explain the estimation results of have to be inter-

preted. In sections 3.2.1 and 3.2.2 we will explain the estimation procedures

of the first and second stage of the DPR model respectively. Lastly we will

describe the weighting scheme we used for our data in section 3.2.3.

First we formulate the first stage of the DPR model. Let Z be defined as in

section 3.1. Let xp,i,j be the difference between the j-th production statistics

of the home and away team’s players, who play on the p-th position made

during the i-th event for p ∈ {1, ..., P}, j ∈ {1, ..., K} and i ∈ {1, ..., N}. Let

xp,j be the N × 1 vector containing the elements xp,i,j with i ranging from

1 to N for a given j and p. The P positions are PG, SG, SF, PF and C

and are described in section 2. The K production statistics are: field goals

attempted and percentage made, three-point shots attempted and percentage

made, free throws attempted and percentage made, offensive and defensive

rebounds, steals, blocks, fouls and turnovers. We do not consider points made

from field goals, three-point shots and free throws in our model, as it would

lead to multicollinearity. With regards to the field goal related statistics, we

distinguish between different ranges of shots, because players will probably

shoot less efficient when shooting further away from the basket. Close range

shots usually are lay-ups and dunks, while shots from further are usually

jump shots. We make the distinction between 3 kinds of shots:

• Close range (between 0 ft./0 m and 8 ft./2.44 m)

• Mid range (from 8 ft./2.55 m up until 16 ft./4.88 m)

• Long range (from 16 ft/4.88 m up until the three-point line)

We also incorporate for each shot type the percentage of made shots which

came from an assist. If these percentages are high, it means that these

points were made because of good team play and less so by individual play.

In conclusion, there are 20 production statistics that we use in our model to

estimate a team’s weaknesses and strengths.
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Continuing with the formulation of our DPR model, in equation 5 we

estimate the influence of the player’s on-court presence on the difference

between the output of production statistics of his team and the opponent.

Stage I : xp,j = κ+ Zθp,j + η (5)

Note that large positive values in the estimated parameter vector θ̂p,j

indicate players causing a large output for the j-th production statistic of

players on his team playing the p-th position (this could include himself)

or causing their opponent to have a diminished output for these production

statistics. We assume the error terms ηi to be independently and identically

distributed with the Normal distribution.

We estimate equation (5) in the first stage for all positions p ∈ {1, ..., P}
and production statistics j ∈ {1, ..., K}. Now let Θ̂ be the M × (P × K)

estimated parameter matrix containing the estimated parameter vectors θ̂p,j

for all p ∈ {1, ..., P} and j ∈ {1, ..., K}. Furthermore let X̂ be theN×(P×K)

matrix containing the vectors x̂p,j estimated in the first stage (equation (5))

for all p ∈ {1, ..., P} and j ∈ {1, ..., K}. These results are later needed in the

second stage and when we eventually form the Detailed Player Rating.

We now estimate the influence of all production statistics on score differ-

entials in equation (6). In this second stage of our model we basically esti-

mate which output of production statistics have the largest influence on score

differentials. Or in other words, we estimate which strategies are the most

effective to winning (or losing). These effects are estimated in (P ×K) × 1

parameter vector β. Large positive values in the estimated parameter vector

β̂ indicate that the corresponding production statistics have a larger effect

on winning games per unit. Note that the influence of the on-court presence

of players on winning is measured indirectly through X̂, which is estimated

in the first stage (equation (5).) We will discuss the distribution for the error

terms εi in section 3.2.2.

Stage II : y = α + X̂β + ε (6)
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After the two stages from equations (5) and (6) have been estimated, we

can now form our Detailed Player Rating (DPR). Let ϑ̂m be the m-th row

vector of matrix Θ̂ with dimensions 1 × (P × K). We define the DPR for

player m as

DPRm = θ̂mβ̂ (7)

Values for DPR should be interpreted as the amount of points a team

will score more than the opponent on average when player m is on the floor.

This rating can be broken down to see what the strengths and weaknesses

are for players. We do this in a similar fashion as how the DPR is defined,

with the difference that θ̂m and β̂ are multiplicated entrywise instead of

multiplicated as vectors. This is also known as the Hadamard product. We

define this breakdown as

DPRbreakdownm = θ̂m ◦ β̂T (8)

Values for elements in the 1×(P×K) vectorDPRbreakdownm should

be interpreted the same as values of DPR. This breakdown has the added

information of how the players contribute to their team in terms of certain

production statistics of players playing in a certain position. Note that sum-

mating al the elements of DPRbreakdownm will result in the DPR of

equation (7).

3.2.1 Estimating Stage I

In this section we will explain the estimation procedure we used to estimate

the first stage of our DPR model. Equation (5) is estimated in a similar fash-

ion as the SPR algorithm in section 3.1. We choose this algorithm, because

it has proven to be effective in modeling matchdata with on-court presence

of players as explainable variable. This is also done in equation (5), but

with different types of match data as dependent variables, namely produc-

tion statistics instead of score differentials. We remove the penalty term that

incorporates box-score information, because we believe that a player’s skill-
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level of a production statistic xp,j is not reflected in the rest of his box-score

stats.

g(κ,θp,j ;λ) = ||xp,j − κ− Zθp,j||2W + λ||θp,j|| (9)

for all p ∈ {1, ..., P} and j ∈ {1, ..., K}.
This objective function is minimized with the Cyclical Coordinate De-

scent algorithm. We use the same value for regularization parameter λ found

by Omidiran [10], because using 10-fold cross-validation would be infeasible

due to computational limitations, so we use the value λ = 2−10.

3.2.2 Estimating Stage II

In this section we will explain the estimation procedure we used to estimate

the second stage of our DPR model. The parameters estimated in equation

(6) are interpreted as the influence that several production statistics have on

score differentials.

We have included a variable in the model for each production statistics

for each of the 5 possible different positions a basketball player could play.

We believe these parameters are not equal over all positions, because differ-

ent production statistics will not have the same effect on score differentials

for the same position. However, there will be some similarity between these

statistics, because they estimate the effect of the same production statistics.

For these reasons we believe that a Hierarchical Bayes approach is appropri-

ate to estimate equation (6).

To explain why Hierarchical Bayes estimation is so appropriate, we will

formulate the priors and posteriors. First we consider a specification where

the likelihood of the data follows a Normal distribution. This allows us to

use conjugate priors on our parameters, which in turn will lead to a relatively

easy estimation procedure for this complicated model, in the form of Gibbs

sampling.

Later we provide a model specification where the likelihood of the data

follows the Laplace distribution. The reason for this is that we have found

in section 2 that the score differential data contain many extreme values.
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These extreme values may influence the estimated parameters too much, so

a more robust approach may be needed. When we assume the residuals

to be Laplacian distributed, we basically minimize the absolute residuals,

compared to minimizing the squared residuals when a Normal distribution

is assumed. This method is more robust for large outliers and shares the

same philosophy behind the non-Bayesian Least Absolute Deviations (LAD)

regression [11].

Lastly we provide a model specification for a simplified model, which may

be more parsimonious.

Normal likelihood

First we describe our model specification where the likelihood of the data fol-

lows a Normal distribution. We followed the approach from Paap [12], where

the full derivation can be found for a hierarchical model where the likelihood

of the data follows a Normal distribution. We will consider this procedure,

as it is an Hierarchical Bayes method that fits our model specification and is

relatively easy to implement.

Before we show the prior specification, note that equation (6) can also be

written as

yi = α +
P∑
p=1

K∑
j=1

x̂p,j,iβp,j + εi (10)

where εi ∼ N(0, σ2
ε) with i ∈ {1, ..., N}, p ∈ {1, ..., P} and j ∈ {1, ..., K}.

We impose a hierarchical prior on βp,j such that the parameters are grouped

per production statistic, so

βp,j = µj + ζjp (11)

where ζjp ∼ N(0, σ2
ζj

). Note that, given a production statistic j, the param-

eters βp,j for all positions p share the same prior mean hyperparameter µj.

By using this specification, we acknowledge the fact that these parameters

are different, yet some come from the same group. The prior specification is
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given by

p(βp,j) ∝ N(µj, σ
2
ζj

)

p(µ, α) ∝ 1

p(σ2
ε) ∝ σ−2ε

p(σ2
ζj

) ∝ σ−2ζj

(12)

We use Gibbs sampling to compute the posterior distributions for all param-

eters. The Gibbs sampling scheme is given by

• Sample α given {{βp,j}Pp=1}Kj=1, {µj}Kj=1, σ
2
ε , {σ2

ζj
}Pp=1,y

• Sample σ2
ε given {{βp,j}Pp=1}Kj=1, α, {µj}Kj=1, {σ2

ζj
}Pp=1,y

• Sample {µj}Kj=1 given {{βp,j}Pp=1}Kj=1, α, σ
2
ε , {σ2

ζj
}Pp=1,y

• Sample {σ2
ζj
}Pp=1 given {{βp,j}Pp=1}Kj=1, α, {µj}Kj=1, σ

2
ε ,y

• Sample {{βp,j}Pp=1}Kj=1 given α, {µj}Kj=1, σ
2
ε , {σ2

ζj
}Pp=1,y

(13)

Before we specify these posterior distributions, consider the parameter vec-

tor θ = (α, {{βp,j}Pp=1}Kj=1, {µj}Kj=1, σ
2
ε , {σ2

ζj
}Pp=1). Then θ−q stands for all

parameters within θ except for q. The posterior distributions are given by

p(α|θ−α,y) ∝ N(
N∑
i=1

(yi −
P∑
p=1

K∑
j=1

x̂p,j,iβp,j)/N, σ
2
ε/N)

p(σ2
ε |θ−σ

2
ε ,y) ∝ Inv-Gamma-2(

N∑
i=1

(yi − α−
P∑
p=1

K∑
j=1

x̂p,j,iβp,j)
2, N)

p(µj|θ−µj ,y) ∝ N(
P∑
p=1

(βp,j)/P, σ
2
ζj
/P )

p(σ2
ζj
|θ−σ

2
ζj ,y) ∝ Inv-Gamma-2(

P∑
p=1

(βp,j − µj)2, P )

p(βp,j|θ−βp,j ,y) ∝ N(β̃, σ2
ε(X̂

′
jX̂j + σ2

ε/σ
2
ζj

)−1, N)

(14)

where β̃ = (X̂ ′jX̂j + σ2
ε/σ

2
ζj

)−1(X̂ ′jy
∗ + µjσ

2
ε/σ

2
ζj

). Here X̂j is defined by the

N × P matrix consisting of the columns of X̂ which correspond with the
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j-th production statistic. Define X̂−j as all columns of X̂ except for X̂j.

To define y∗, we first define βj as the 1 × P parameter vector consisting of

parameters of β which correspond with the j-th production statistic. Then

β−j is defined as the parametervector β without the elements of βj . Then

y∗ = y − X̂−jβ−j .

Laplace likelihood

In this section we describe our model specification where the likelihood of

the data follows a Laplace distribution. We consider this method because we

hope it is robust, given the extreme values found in the data in section 2.

Using a Laplace likelihood gives us some complications, as we were unable

to find good conjugate priors. This makes it impossible to use a Gibbs

sampling scheme such as in equations (13) and (14). To explain how we

worked around this issue, we will explain the model specification step by

step. We start with the same hierarchical model specification as in equations

(10) and (11), with the difference that εi ∼ Laplace(0, b). We use roughly

the same prior specification as in equation (12). So

p(βp,j) ∝ N(µj, σ
2
ζj

)

p(µ, α, b) ∝ 1

p(σ2
ζj

) ∝ σ−2ζj

(15)

Let θ = (α, {{βp,j}Pp=1}Kj=1, {µj}Kj=1, b, {σ2
ζj
}Pp=1), then the likelihood of the

data is then defined as

p(y|θ) =
N∏
i=1

( P∑
p=1

K∑
j=1

(2b)−1exp(−(|yi − α− x̂p,j,iβp,j|)/b)
)

(16)

Let θ−k be the collection of parameters in θ except for a given parameter κ.

Then the marginal posterior distribution for parameter κ is given by

p(κ|θ−κ,y) =

∫
θ−κ

(
p(y|θ)p(θ)

)
dθ−κ (17)
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Combining the definition of posterior distributions (17) with the definition of

our likelihood function (16), we can see that using a Laplace likelihood does

not affect the posterior distributions for the parameters in the second level µj

and σ2
ζj

as they are given in equation (14). The other parameters however do

not have a closed-form posterior distribution. These posterior distributions

will therefore be computed through random walk sampling (Paap [12]). So,

we will use a Metropolis-within-Gibbs sampler to draw from all posterior

distributions. In appendix A we will formulate this Metropolis-within-Gibbs

sampler with greater detail.

Sampling and variable selection

In this section we will provide some further information regarding the sam-

pling procedure for the Hierarchical Bayes methods used to estimate the

second stage of our DPR model in section 3.2.2. We will also describe how

we have selected the variables that have to be included in the second stage

of our model.

With regards to the sampling procedure, the parameters βp,j’s from equa-

tion (6) are estimated by sampling a large amount of times from their respec-

tive posterior distributions. We have done this 300000 times with a thinning

factor of 100 and a burn-in period of 100000.

Afterwards the 90%-confidence interval for all parameters is checked. If a

confidence interval contains a zero, there cannot be said with some certainty

that that parameter is not equal to zero and that variable should therefore be

removed from the model. Afterwards, we estimate equation (6) once more

without the removed variables. We chose this variable selection method,

because it is easy to execute and adds relatively little computational time to

an already computationally expensive method.

To make further inference about our estimated models, parameters have

to be chosen from the posterior distributions. We do this by choosing the

sample mean from all marginal posterior distributions. These parameters

can be used to make residuals or forecasts.
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Simplifying the model

In this section we will provide a simplification of the second stage of our DPR

model. The model in equation (10) might suffer from a drawback, namely

that it might be overcomplicated. This model needs (P ×K)+1 variables to

be estimated. In our model specifically are included 101 variables. Using too

many variables may cause overfitting, which will lead to a poor predictive

performance of our method. Therefore we also consider a model where we

choose our variables differently.

First we pool all variables with respect to the position. So, we assume

that the variables have the same effect for all positions. This decreases the

amount of variables with a factor P . Lastly, we pool all variables involving

close range, mid range and long range shots, since they are all two point

shots. The resulting variables are two point shots attempted, two point

shots percentage and two points shot percentage made from assists. The

simplified model now becomes

yi = α +
K∑
j=1

x̂∗j,iβj + εi (18)

The variables x̂∗j,i are estimated by estimating all variables x̂p,j,i in equation

(5) and then pooling them over positions p and pooling all two point shot

related variables. Because all variables are pooled over positions p, we no

longer use the hierarchical structure used in equations (10) and (11). Without

this hierarchical structure, we lose the main reason for using a Bayesian

method to estimate equation (18). To account for the extreme values in our

data, we will use Least Absolute Deviations (LAD) regression to estimate

equation (18). This LAD regression is robust for large model outliers. The

LAD regression is done by finding the correct parameters β that minimize

the objective function

g(α, β) =

∣∣∣∣∣
N∑
i=1

(
yi − α−

K∑
j=1

x̂∗j,iβj

)∣∣∣∣∣ (19)
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The parameters are estimated with a Maximum Likelihood algorithm pro-

posed by Li and Arce. [11]. The LAD-estimator is the Maximum Likelihood

estimator when a Laplace distribution is assumed for the error terms. There-

fore we assume the error terms εi in equation (18) to be Laplacian distributed.

To perform variable selection on this model, we have several options.

Dielman [13] proposes three options to perform variable selections on mod-

els estimated with Least Absolute Deviations. These are an LM-test, LR-

test and Wald-test. Only the Wald-test does not require multiple model

re-estimations for parameter testing. Considering how computationally ex-

pensive our estimation procedure is, we will choose the Wald-test to test for

parameter significance.

3.2.3 Weighting Scheme

Not all observations in our data have the same importance, or are even

relevant at all. We give different weights to events to account for ’garbage

time’ and ’crunch time’. ’Garbage time’ occurs during a match when one

team is clearly ahead and the other team has given up or is not working as

hard. These events do not reflect the true skills of a team, so they should be

weighted less. ’Crunch time’ denotes the situation when a match is almost

over and two teams are very close in score. Because many matches are

usually decided in the final moments, a teams true skill comes forward during

’crunch time’. Therefore, these events should be weighted more heavily. The

weighting scheme we use, was first used by Rosenbaum’s[9].

Here follows an explanation of the weighting scheme. During the first

three quarters, full weight is given to events where the score differential is

less than 10 points, and no weight is given to events with a score differential

of more than 20 points. In between the weights are phased from full to zero

weight. At the start of the fourth quarter this approach is the same. However,

the score differential boundaries gradually phase from 10 (20) points at the

start of the fourth quarter to 3 (6) in the last minute of the fourth quarter.

Finally, the weights are rescaled such that events in the fourth quarter on
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average have the same weight as events in the first three quarters combined.

To account for this weighting scheme, the data has to be transformed

for the Bayesian methods in section 3.2.2. Let ω be an (N × 1) vector

containing all weights ωi during each observation i. For the model in equation

(10), where a Normal distribution is assumed for the residuals, the data is

transformed as

y∗i =
√
ωi ∗ yi

x̂∗p,j,i =
√
ωi ∗ x̂p,j,i

(20)

When a Laplace distribution is assumed for the residuals, the data is

transformed as

y∗i = ωi ∗ yi
x̂∗p,j,i = ωi ∗ x̂p,j,i

(21)

The data for equation (5) does not have to be transformed, because the

Cyclical Coordinate Descent Algorithm we use, can account for a weighting

scheme. This can be found in Omidiran’s [10] paper.

3.3 Model validation and comparison

We will compare the performance of our DPR statistic to the SPR statistic.

We compare statistical performances by using the first 800 matches as train-

ing data to forecast the y of the last 411 matches. We compare the Root

Mean Squared Prediction Error (RMSPE) and Mean Absolute Prediction Er-

ror(MAPE). Lastly we look at the fraction of games guessed right in terms

of wins/losses. We can compare between our different Bayesian approaches

of the second stage of our DPR approach (section 3.2.2) by comparing the

Watanabe Akaike Information Criterion. When Gelman et al. [14] compared

several predictive information criteria, they found this to be the best method

to compare the predictive power of Bayesian methods, when cross-validation

methods were infeasible to implement. The WAIC is equal to the log point-
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wise posterior predictive density, which is then corrected for the effective

number of parameters to adjust for overfitting. So

WAIC = −2(lppd− effective number of parameters)

= −2(log
n∏
i=1

ppost(yi)−
n∑
i=1

varpost(log p(yi)θ
s)))

(22)

Considering S simulation runs have been done to obtain the posterior pa-

rameter distributions, the first term in equation (22) can be computed as

computed log
n∏
i=1

ppost(yi) =
N∑
i=1

log

(
1

S

S∑
s=1

p(yi|θs)

)
(23)

Among Bayesian methods, the model with the lowest WAIC is preferred.

4 Comparing the DPR and SPR methods

In this section we will compare the predictive accuracy and player ranking

results of our DPR method with Omidiran’s[10] SPR method. Match data is

used from the 2009-2010 NBA season. For the DPR method we consider the

two approaches where equation (6) is estimated while the data is either as-

sumed to be Normal or Laplacian distributed. We will refer to these methods

as DPR-N (Normal) and DPR-L (Laplace). Lastly, we consider the simplified

model to estimate player ratings, which is given in equations (18) and (19).

We will refer to this model as DPR-S (Simplified).

First we look at the residuals of all models to see if they follow a Laplacian

distribution. In the qq-plots of figure 2 the quantiles of the residuals of all

models are compared to theoretical quantiles of a Laplace distribution. For all

models, except the DPR-S model, we can assume that the residuals follow a

Laplace distributions, as the quantiles are plotted quite nicely on the straight

line. Even though the DPR-S model is estimated with a Maximum Likelihood

that assumes the residuals to be Laplacian distributed, the residuals of this

model are not Laplacian distributed. This may be evidence that this model
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is incorrectly specified.

(a) QQ-plot SPR residuals (b) QQ-plot DPR-N residuals

(c) QQ-plot DPR-L residuals (d) QQ-plot DPR-S residuals

Figure 2: QQ-plots residuals against Theoretical Laplace Distribution

In table 2 are some descriptive statistics of the residuals of all models.

What is noticeable, is that DPR-L residuals have near zero median, but not a

near zero mean. The opposite holds for the SPR and DPR-N residuals. This

can be explained by the fact that the SPR and DPR-N methods assume the

residuals to be Normally distributed, which aims to be unbiased in the mean.

While the DPR-L method assumes a Laplace residual distribution, which

aims to be unbiased in the median. Because of the assumed distributions for

all models, it is not surprising that the residuals for the DPR-L method has

the smallest Mean Absolute Deviation. The DPR-S residuals have by far the

largest MAD and variance, which gives us more evidence that this model is

incorrectly specified.
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SPR DPR-N DPR-L DPR-S
Mean 0.02 -0.14 2.19 6.14

Median -2.32 -1.16 -0.03 -1.31E-8
Mean Absolute Deviaton 110.04 110.50 108.55 189.27

Variance 24518.81 23811.09 23946.51 84158.16
Skewness 0.06 0.09 0.09 -0.57
Kurtosis 5.59 5.45 5.66 25.70

Table 2: Residual Analysis

Now we look at the predictive accuracy of all methods. In table 3 are the

Mean Absolute Prediction Error (MAPE), Mean Squared Prediction Error

(MSPE), percentage of matches correctly predicted and Watanabe-Akaike

Information Criterion (WAIC) of all methods.

First we compare the Bayesian methods DPR-N and DPR-L through the

WAIC. The DPR-L has the smaller WAIC of 286727.91 against 294593.56.

We conclude from this that the DPR-L method has a better predictive accu-

racy than the DPR-N method. In the end, the positives of the computational

tractability of the DPR-N method did not outweigh the negatives of assuming

the wrong distribution.

Now we compare all models. The DPR-L method outperforms the SPR

method slighly in terms of MAPE and MSPE (as they are smaller). However,

the SPR method has predicted a slightly higher percentage of matches. It

has predicted 65.9% of the matches correctly, compared to the 64.7% of

the DPR-L method. The DPR-S method has the same percentage matches

correctly predicted 64.7% as the DPR-L method. However, the MAPE and

MSPE are far worse for the DPR-S methods than all other methods.

We place more value on the MAPE and MSPE results than the correct

percentage of matches predicted. This is because the MAPE and MSPE

compare forecasts with realized observations for each event, instead of for

each match, even though all methods, SPR and DPR, are estimated with

data sampled per event, instead of per match.
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SPR DPR-N DPR-L DPR-S
MAPE 109.84 114.86 109.23 193.55
MSPE 24602.77 25609.64 24473.15 88556.80

Corr.predicted matches % 0.659 0.620 0.647 0.647
WAIC - 294593.56 286727.91 -

Table 3: Predictive accuracy

Finally we compare the 10 best players estimated by each method with the

top 10 players according to the NBA 2009-2010 Most Valuable Player (MVP)

awards. The MVP award winner is determined by the votes of several highly

esteemed sports journalists and broadcasters. This data can be found on

http://www.basketball-reference.com/awards/awards_2010.html. We

do not consider the DPR-S method, since we have concluded from the previ-

ous results that it is incorrectly specified and we do not want to place much

value in its player rankings.

In table 4 we can see that the top 10 players lists according to the MVP

awards and SPR method share 7 players, although they are ranked at dif-

ferent positions. The MVP award top 10 list shares only 3 common players

with the top 10 list according to the DPR-L method. The DPR-N list shares

only 2 players with the MVP list.

From this we can conclude that the SPR ratings closely follow the judg-

ment from journalists and sports broadcasters. This can be explained by

looking at the way the SPR rating method is estimated in equation (2). The

player ratings φ are penalized if they are too distant fromRγ. In other words

the regression of the player ratings φ on box-scores R is also given weight.

However, doing this will cause defensive skills of players to be underrated,

because box-scores are unable to correctly estimate defensive skill.

It is not surprising that the top 10 players according to MVP awards is

similar to the top 10 players according to the SPR method, because broad-

casters and journalists will mostly base their opinion on what they see. Be-

cause offensive efforts stand out more than defensive efforts, they will also

undervalue the defensive skills of players. Because our DPR methods do
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not use box-score data, but only play-by-play data, we are able to correctly

capture both the offensive as well as defensive skill of all players. For these

reasons, we prefer the DPR method over the SPR method.

Rank MVP Awards SPR DPR-N DPR-L
1 LeBron James LeBron James Kevin Durant Anderson Varejao
2 Kevin Durant Kobe Bryant Anderson Varejao Kevin Durant
3 Kobe Bryant Dwyane Wade Chris Andersen LeBron James
4 Dwight Howard Chris Bosh Sean May Kevin Love
5 Dwyane Wade Carmelo Anthony LeBron James Matt Bonner
6 Carmelo Anthony Dwight Howard Matt Bonner Chris Andersen
7 Dirk Nowitzki Amare Stoudemire David Andersen Rudy Gay
8 Steve Nash Tim Duncan Caron Butler Andrew Bogut
9 Deron Williams Kevin Durant Andrew Bogut David Andersen

10 Amar’e Stoudemire Andrew Bogut Anthony Johnson Tim Duncan

Table 4: Top 10 players according to the annual NBA MVP Awards and the
SPR, DPR and DPR-L player rankings

5 Analyzing the DPR results

In the previous section (4) we have made several arguments for the DPR

method to be favorable to the SPR method. More specifically, the DPR

method where the error terms are assumed be Laplacian distributed is more

favorable than the SPR method. In this section we will look at some results

of our DPR method applied to the 2009-2010 NBA dataset. We will show

what strategies are the most effective for teams to win and how to interpret

the results for player’s strengths and weaknesses.

5.1 Best strategies

From the βp,j’s of equation (6) can be seen which strategies are most effective.

These are given in table 5. Only the variables that are significant have been

included in this table, as they are relevant.
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The percentage of made shots that came from assists were only found to

be significant for long range shots. This parameter is negative for shots made

by players from all 5 positions. This can be explained by the fact, that this

parameter is a measure for teamplay. If a team sets up an elaborate attack

and they still have to settle for a long range shot, something might be wrong

with that team.

The variables Steals, Fouls and Turnovers were found to be not signifi-

cant for any position. Apparently, producing a unit more or less than your

opponent of one of these variables will have an insignificant effect on score

differentials. An explanation for this could be that the effect that fouls have

on score differentials is probably already mostly captured in the attempted

free throws and free throw percentage variables. Furthermore, steals and

turnovers probably happen so rarely in our dataset, that their effect was

unable to be estimated by our method.

We can also see that parameters for scoring percentages are smaller for

shots further away from the basket. This can be explained by the fact that

when teams have to settle for a long-range shot, the defending team has to

do less effort defending the shot. This saves them some energy, which they

can use in their counterattack.

The parameters for Three-Point shooting percentage are the largest among

all shooting percentage variables, because a three-point shot is obviously

worth more than a two-point shot.

There are some counterintuitive results, namely that having more Offen-

sive Rebounds than the opponent would be detrimental to a team. This

might be explained by the fact that when teams make an offensive rebound,

it inherently means they missed a shot. If a team makes more offensive re-

bounds, this means they have missed more shots and that they have to work

harder for a point.

0CR=Close Range shots, MR=Mid Range shots, LR=Long Range shots, 3P=3-Point
shots, A=Attempted, %=Percentage, FT= Free Throws, ORB=Offensive Rebounds,
DRB=Defensive Rebounds
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CR A CR % MR A MR % LR A LR % LR %A 3P A 3P %
PG 0.27 46.30 0.28 30.14 0.32 27.72 -3.63 0.41 50.35
SG 0.28 46.30 0.28 30.38 0.33 27.72 -3.15 0.41 49.29
SF 0.28 46.30 0.28 30.30 0.31 27.72 -2.82 0.40 50.14
PF 0.28 46.30 0.27 30.30 0.34 27.72 -2.27 0.41 48.37

C 0.27 46.30 0.27 30.01 0.31 27.72 -3.52 0.41 49.47
FT A FT % ORB DRB Block

PG 0.13 35.55 -0.36 0.45 0.16
SG 0.12 37.33 -0.37 0.45 0.10
SF 0.13 36.03 -0.37 0.45 0.15
PF 0.12 36.34 -0.39 0.45 0.18

C 0.12 32.50 -0.36 0.45 0.12

Table 5: βp,j’s of equation (6) for each position j and production statistic j

5.2 Best players

In table 7 are the 5 best and worst players in the 2009-2010 NBA season

according to the DPR-L ranking. Anderson Varejao was found to be the

best player, which is rather surprising, since he is widely considered to be a

role-player on the Cleveland Cavaliers. This team is thought to be lead by

superstar Lebron James, who is the third best player on our list.

Anderson Varejao has a DPR of 45.55. This number can be interpreted

as the amount of points his team will outscore other team on average per 100

possessions if all the other players on the court would have a rating of 0.

Best 5 Players Worst 5 Players
Player DPR Player DPR

Anderson Varejao 45.55 Quinton Ross -38.58
Kevin Durant 41.16 Michael Redd -35.73
LeBron James 40.14 Josh McRoberts -34.11

Kevin Love 34.46 Solomon Jones -32.76
Matt Bonner 32.27 Jeff Pendergraph -30.93

Table 6: 5 best and worst players

We take a look at what Anderson Varejao’s strengths and weaknesses are

in table 7, where his DPR is broken down according to equation (8). Note
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that Anderson Varejao himself is a Power Forward, so all numbers for the

variables corresponding with the PF position are the result of combination of

his own output and his defensive skill on his direct opponent. The numbers

for the variables corresponding with the other positions are the result of how

he improves or diminish certain aspects of his teammates or how his on-

court presence affects his non-direct opponents. Note again, that adding all

elements in this breakdown will result in his original DPR.

Varejao has the largest positive elements for three-point shooting percent-

age for Centers and free throw percentage for Power Forwards and Shooting

Guards. From this we can conclude that he either greatly influences his team,

such that his teammate in the Center position will have a largely improved

three-point shooting percentage, or that his opponent in the Center position

will have a lowered percentage. Varejao is probably very good in shooting free

throws and is able to defend his opponents without fouling them, preventing

them to shoot free throws.

He has a large negative value for the variable for shooting percentage of

mid-range shots. This means that he either has to stop shooting these kind of

shots, because of his innefficiency, and/or because he lets his direct opponent

score these points too easily.

As can be seen, a drawback of the DPR method is that we are unable

tell what the mix of offensive and defensive efforts is that result in a player’s

contributions. It is therefore important to discuss this result with scouts and

other experts to correctly identify a player’s contributions.

0CR=Close Range shots, MR=Mid Range shots, LR=Long Range shots, 3P=3-Point
shots, A=Attempted, %=Percentage, FT= Free Throws, ORB=Offensive Rebounds,
DRB=Defensive Rebounds
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CR A CR % MR A MR % LR A LR % LR %A 3P A 3P %
PG -0.31 -2.07 0.09 1.80 - -1.11 - 0.87 0.29
SG -0.71 - 0.41 5.63 0.06 2.11 -0.13 -0.49 2.45
SF 1.17 3.20 - - 1.41 0.22 - -1.22 -0.18
PF -1.95 -0.67 -0.83 -4.99 -0.90 - -0.03 -2.53 -

C -0.17 1.77 -0.17 - -0.56 1.03 -0.18 - 14.80
FT A FT % ORB DRB Block

PG 0.34 -0.62 0.18 0.45 -
SG 0.75 8.49 -0.06 1.02 0.12
SF 1.11 1.40 -0.08 3.27 -0.07
PF 0.48 6.32 0.09 0.33 0.01

C - 2.50 0.42 0.97 -

Table 7: Breakdown of Anderson Varejao’s DPR

6 Salary Analysis

Now that we know which players are the best, there still remains the question

how much salary they deserve. It is very important to put an accurate

estimate a player’s value in terms of salary because of the salary cap. This

salary cap is the amount of salaries each team may use to sign players and

this is equal for every team. In other words, every team has the same budget.

To gain a competitive edge over opponents, teams have to make sure they do

not overpay the wrong players. In this section we will try to find a method

which rewards each player a fair salary. Afterwards we will analyze which

players are the most over- and underpaid.

In figure 3 we have ranked the salaries from all NBA players from the

2009-2010 season. This data was taken from http://www.insidehoops.

com/nbasalaries.shtml.
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Figure 3: Ordered salaries

We believe this ranking more or less corresponds with how the teams think

how much salary players deserve and how they should be ranked according

to skill. As can be seen, teams do not reward players proportionally to their

rank. The salary seems to scale exponentially with the rank of players. This

corresponds with the thought that the league is driven by star players. So, a

select few players dominate the rest of the league and their salary is awarded

accordingly.

To correctly estimate a player’s market value, our salary pricing method

should have the same curve as the current salary market. If the player’s

salaries are ordered by DPR ranking, that curve should follow the same

salary curve.

The observed salaries in figure 3 do not follow a completely smooth curve,

because some players are still slightly over-or underpaid. These deviations

from a smooth curve can be accredited to various factors, such as salary

negotiating skills or image in the media. We would like to find a player’s

salary, without accounting for these factors. Therefore we fit a curve through

this data. We will call this curve the market salary curve. We use MATLAB’s

curve fitting tool to easily find a correct specification for the curve. The

market salary curve found was of the form

f(x) = a exp(bx) + c exp(dx) (24)
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where f(x) are the salaries and x correspond with the players ranks. The

a exp(bx) part of the equation corresponds with the salary growth curve of

the whole league, while c exp(dx) corresponds with an extra salary growth

for star players. The estimated parameters are a= 1689209.42, b= −0.01,

c= 7632304.83 and d= −0.10. The fitted curve can be found in figure 4

Figure 4: Fitting the market salary curve

If the players are ranked correctly according to skill, their salaries should

follow this market curve. Therefore we have ranked all players according to

their DPR skill level. In figure 5 we have plotted the salaries corresponding to

DPR skill ranking against the market salary curve. We can see that players

are generally not paid according to their skill level, because the salaries sorted

by the DPR skill ranking does not follow the market curve. There does seem

to be a slight declining trend in salary as the players get less skillful, as we

would expect, but most players are either very over- or underpaid.
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Figure 5: DPR ranked salaries vs. Market salary curve

In table 8 we listed the top 5 over- and underpaid players according to the

DPR skill ranking. The most underpaid player is Kevin Durant, who should

earn almost 18, 000, 000 more. The reason for this is that in the 2009-2010

season, Kevin Durant was still on his rookie contract, while he was already a

top 10 player. Rookie contracts can only pay a maximum amount of salary.

The rest of the top 5 underpaid players consist of players who the DPR

method had ranked as top-10 players, but not according to the NBA MVP

awards and SPR method.

The most overpaid player was Shaquille O’Neal, who although he was

already considered by many to be on the decline this late in his career, had

a massive contract. His season was not successful, partly because of injuries.

The other notable overpaid players are Kobe Bryant, Kevin Garnett and

Paul Pierce. These players are considered by experts among the top players.

However, the experts could be wrong in these cases, because they might

overvalue their offensive efforts.
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Top 5 underpaid players Top 5 overpaid players
Player Amount Player Amount

Kevin Durant $17,988,299.37 Shaquille ONeal $19,201,201.61
Kevin Love $17,923,235.92 Kobe Bryant $18,574,479.81

Matt Bonner $17,441,230.66 Michael Redd $16,415,989.62
Anderson Varejao $17,316,323.42 Kevin Garnett $15,377,454.73

Chris Andersen $16,439,923.50 Paul Pierce $15,296,309.41

Table 8: Top 5 over- and underpaid players according to the DPR skill
ranking

7 Conclusion

In this thesis we have proposed a new method to rate NBA players. This

method deals with some of the limitations of existing player rating methods.

The existing methods overvalue offensive skills. This is because they use

box-scores in some way or capacity, which are unable to correctly capture

a players defensive skill. Furthermore, the current methods are too one-

dimensional. By this we mean that they only tell you how good a player is,

but not what his strengths and weaknesses are.

Our Detailed Player Rating (DPR) improves upon these methods by also

estimating what strategies are effective for winning and what the strengths

and weaknesses are of each player. Furthermore, we use play-by-play data

to estimate our models, so we fully capture player’s defensive capabilities.

The DPR method consists of a two-stage regression. The second stage

is a regression of score differentials on several production statistics such as

shot percentages, rebounds and blocks. For these production statistics, the

difference between the production output of these statistics of the home and

away team are taken. The distinction is made for all production statistics,

what position the player plays that has output in the corresponding produc-

tion statistic. We write this stage as a Hierarchical Bayes model with two

levels, because we believe the production statistics to have different effects

for different positions, yet also be very similar.

The first stage is a regression of these production statistics on the on-court
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presence of players. This stage is estimated with a penalized regression, to

account for model sparsity. So we indirectly estimate the influence of players

on score differentials through the first stage. The results of the regression in

the second stage allows us to say which tactics are effective to win.

We used play-by-play match data from the 2009-2010 NBA season to

compare our DPR method with Omidiran’s[10] SPR method in terms of

forecasting accuracy. The DPR performed slightly better in terms of Mean

Absolute Prediction Error and Mean Squared Prediction Error. Among our

several DPR methods, we found that the model that uses a Laplacian likeli-

hood for the data in the second stage, outperforms a simplified model and a

model that uses a Normal likelihood for the data in the second stage.

We have compared player rankings of both methods with the Most Valu-

able Player Award (MVP) rankings, which are awarded by highly esteemed

journalists. We noticed that the SPR method ranked many of the same

players as the experts did for the MVP rankings. We subsequently showed

through the definition of the SPR, that this method will overvalue players

with good box-score numbers and offensive skills. These offensive skills will

also stand out more to the experts than defensive skills. Another shortcoming

of the SPR method is that it assumes a Normal error distribution.

We have used the DPR method to analyze what strategies are effective for

winning. Teams should focus on either shooting very close to the basket or

shooting from 3 point range. They also should not place too much value on

offensive rebounding, because having a lot of offensive rebounds inherently

means that they miss a lot of shots. Therefore, they should focus more on

their shooting percentage.

We have analyzed the strengths and weaknesses of the best player of the

2009− 2010 NBA season, according to the DPR method, namely Anderson

Varejao. We found that he is an excellent free throw shooter, but should

focus more on his mid-range shooting and defense of mid-range shots.

Finally, we looked at which players were over- and underpaid according

to the DPR method. This was done by first ranking all salaries from high to
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low and subsequently fitting a curve through this data. This market salary

curve should correspond with how NBA teams think the players should be

paid according to their skill ranking. The salaries of the players ranked by

DPR (from high to low) should follow this salary curve. We found that NBA

teams do not pay their players proportionally to skill, but the salaries scales

exponentially with the players rank. We also found that NBA teams severely

over- and underpay some their players. We believe this is again a result from

a poor judgment of offensive and defensive skill.

Overall we have found that our DPR method is good addition to the cur-

rent literature. It improves upon some flaws that the current methods have,

namely that they overvalue offensive skills and undervalue defensive skills.

Furthermore, the DPR method provides more useful information besides a

mere player rating. In terms of predictive power the DPR method has proven

to be at least on par with the current best methods.
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A Metropolis-within-Gibbs sampler

In this section we will derive the Metropolis-within-Gibbs sampler mentioned

in section 3.2.2. We will use this sampler to estimate the following equation

yi = α +
P∑
p=1

K∑
j=1

x̂p,j,iβp,j + εi (25)

with εi ∼ Laplace(0, b). We choose the following prior distributions for our

parameters

p(βp,j) ∝ N(µj, σ
2
ζj

)

p(µ, α, b) ∝ 1

p(σ2
ζj

) ∝ σ−2ζj

(26)

We will use the following sampling scheme to obtain posterior distributions

for all parameters:

• Sample α given {{βp,j}Pp=1}Kj=1, {µj}Kj=1, b, {σ2
ζj
}Pp=1,y

• Sample b given {{βp,j}Pp=1}Kj=1, α, {µj}Kj=1, {σ2
ζj
}Pp=1,y

• Sample {µj}Kj=1 given {{βp,j}Pp=1}Kj=1, α, b, {σ2
ζj
}Pp=1,y

• Sample {σ2
ζj
}Pp=1 given {{βp,j}Pp=1}Kj=1, α, {µj}Kj=1, b,y

• Sample {{βp,j}Pp=1}Kj=1 given α, {µj}Kj=1, b, {σ2
ζj
}Pp=1,y

(27)

Now we will derive from which distributions we can draw. First, we define

the joint posterior density function, which looks like

p(β,µ, α, b, σ2
ζ |y) =(2b)−Nexp(−(|y − α− X̂β|)/b)

σ
−(N+2)
ζ exp(−(β − µ)/(2σ2

ζ ))
(28)
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Now we will try to find the marginal posterior density functions. We will

start with the marginal posterior density function for µ, which is

p(µ|y, β, α, b, σ2
ζ ) =

∫
β

∫
α

∫
b

∫
σ2
ζ

(
(2b)−Nexp(−(|y − α− X̂β|)/b)

σ
−(N+2)
ζ exp(−(β − µ)/(2σ2

ζ ))

)
dβ dα db dσ2

ζ

∝
∫
σ2
ζ

σ
−(N+2)
ζ exp(−(β − µ)/(2σ2

ζ ))σ
2
ζ

(29)

So, for a given production statistic j, the posterior density function for µj is

normally distributed with mean
∑P

p=1(βp,j)/P and variance σ2
ζj
/P (see Paap

[12]).

The posterior distribution for σ2
ζ is

p(σ2
ζ |y, β,µ, α, b) =

∫
β

∫
µ

∫
α

∫
b

(
(2b)−Nexp(−(|y − α− X̂β|)/b)

σ
−(N+2)
ζ exp(−(β − µ)/(2σ2

ζ ))

)
dβ dµ dα db

∝
∫
µ

σ
−(N+2)
ζ exp(−(β − µ)/(2σ2

ζ )) dµ

(30)

So for a given production statistic j, the posterior distribution for σ2
ζj

is an

Inverse-Gamma distribution with location parameter
∑P

p=1(βp,j − µj)2 and

P degrees if freedom (see Paap [12]).

For parameters α, β and b we were unable to find a conditional distribu-

tion of a known kind. Therefore we will use a random-walk sampler to draw

these parameters. The sampling procedure is as follows. Consider the case

when we are in the (m+ 1)th iteration of the random walk sampler where we

try to find a posterior distribution of parameter theta. We will first propose

a candidate value for θm+1, namely θ∗ which is defined as

θ∗ = θm + cε (31)
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where the random variable ε ∼ N(0, 1). Here c is a tuning parameter which

we will explain later in this section. The acceptance probability α for candi-

date value θ∗ is then defined as

α = min(fθ(θ
∗)/fθ(θ

m), 1) (32)

If α < u, we set θm+1 = θ∗, but if α < u we set θm+1 = θm. Here u is

a random uniform variable distributed between 0 and 1. The probability

functions fθ for parameters β, α and b are

fβ(β|µ, α, b, σ2
ζ ,y) =exp(−(|y − α− X̂β|)/b)exp(−(β − µ)/(2σ2

ζ ))

fα(α|β,µ, b, σ2
ζ ,y) =exp(−(|y − α− X̂β|)/b)

fb(b|β,µ, α, σ2
ζ ,y) =(2b)−Nexp(−(|y − α− X̂β|)/b)

(33)

These function were chosen by taking all relevant terms from joint pos-

terior density in equation (28).

We will perform a simulation of 200000 iterations, with a burn-in sample

of 100000 iterations and a thinning factor of 100. We initialize the parame-

ters θ0 as the Least Absolute Deviations estimate of equation (25). Tuning

parameter c in equation (31) is initialized with value 1. During the burn-in

period we tune c such that the acceptance rate of the random walk sampler

is between 0.2 and 0.3, which Sherlock and Roberts. [15] found to be the

optimal acceptance rate for multivariate problems. We do this by decreasing

c with 10% when the acceptance rate drops below 0.2, and increasing c with

10% when the acceptance rate goes above 0.3 during the burn-in period.
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