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Preface 
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1. Introduction 
 

In 2010 the United Nations Framework Convention on Climate Change (UNFCCC) established an 

agreement in Cancun to limit global warming to a maximum of two degrees compared to the pre-

industrial era.1 To avoid temperatures increasing above the target, human-generated greenhouse gas 

emissions should be reduced according to the UNFCCC. To reduce greenhouse gas emissions, 

developed countries should innovate to increase the production of renewables or low carbon 

alternatives, as well as develop technologies for saving and storing energy and increasing energy 

efficiency. In order to keep track of developments in the energy sector and to evaluate whether current 

initiatives are sufficient to prevent the global warming to become irreversible, the International Energy 

Agency (IEA) records data, publishes findings and provides advice for bodies like the UNFCCC. In 2015, 

the IEA published a report on the current developments in clean energy (International Energy Agency, 

2015). The IEA concludes that all countries are currently off-track for reaching UNFCCC’s goal to limit 

global warming to two degrees Celsius above pre-industrial levels. Current actions taken by bodies like 

the UNFCCC and governments clearly do not provide enough stimulant for the private sector to reach 

UNFCCC’s targets. 

Currently, only 11% of the global energy consumption in 2012 was from renewables (only 4% non-

hydropower) (U.S. Energy Information Administration, 2013), while coal accounted for 29% of the total 

energy production and 44% of the  global CO2 emission (International Energy Agency, 2014). Fossil 

fuels altogether account for 99% of global CO2 emission, these numbers stress the importance of 

developments in clean energy.  

Investments in clean energy carry the stereotype of unprofitable, investors prefer higher pay offs in 

the short-run and choose less socially responsible investments for their portfolios. In my thesis, I will 

study the risk-return relationship of investments in clean energy stocks and study how investors can 

limit risks for investments in clean energy stocks. I will study the correlation of oil prices and clean 

energy stock prices assuming clean energy to be a direct substitute for oil as energy source.  

In the scenario of clean energy being a perfect substitute for oil, scarcity of oil and thus higher oil 

prices, should lead to higher clean energy stock prices. The plummet of oil prices in 2014 might make 

investments in clean energy less attractive, considering a positive relationship between oil prices and 

stock prices of clean energy firms (Managi & Okimoto, 2013). Oil price shocks, such as the one in 2014, 

may alter the relationship between clean energy stocks and oil prices because of structural changes in 

                                                           
1 Cancun agreement: http://unfccc.int/key_steps/cancun_agreements/items/6132.php  

http://unfccc.int/key_steps/cancun_agreements/items/6132.php
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the markets. When hedging for oil price risks, investors may want to change their portfolio weights 

following such price shocks. Based on my findings I will answer the following research question: 

How are clean energy stock returns influenced by oil as a risk factor and how can investors account for 

this risk factor in their portfolios? 

I will answer the research question by researching the following hypotheses: 

1. H0: Investments in clean energy do not underperform the market 

2. H0: Oil is a significant risk factor for clean energy stocks 

3. H0: The correlation between clean energy stock prices and oil prices is constant overtime 

4. H0: Oil provides efficient hedge opportunities to limit risks for investments in clean energy 

stocks 

By answering the research question I contribute to the literature by increasing insight into the risk-

return relationship of clean energy stocks and oil as an important risk factor. Increasing the knowledge 

on how to forecast and to hedge for clean energy stocks.  

This thesis is structured as follows. Next I will discuss the theoretical background for this thesis, after 

which I will discuss the data and methods used for my empirical research. After discussing the empirical 

results I will answer the research question in the conclusion. 
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2. Theoretical Framework 

The purpose of my thesis is to narrow the existing gap in the current literature on the understanding 

of the profitability of investments in clean energy companies. By providing more insight into the risk-

return relationship of investments in clean energy and by providing hedge opportunities for 

investments, I hope to increase the attractiveness of investments in clean energy for constitutional 

investors as well as private investors. In this chapter I will discuss previous work of academics regarding 

this subject.  

2.1. General 

Investing in clean energy generally leads to lower returns than conventional investments. This is the 

general view on environmentally friendly investments for the previous decades. I approach this subject 

by using two methods to explain returns and variances in those returns which are academically broadly 

used. 

The first method to focus on finds its origin in the capital asset pricing model (CAPM) from the authors 

Sharpe (1964) and Lintner (1965). This group of literature focuses on explaining returns based on risk 

factors to which the assets are exposed to. This group of literature use extended versions of the CAPM, 

namely either the three-, four- or five-factor model by Fama and French (1993), Carhart (1997) and 

Fama and French (2015) respectively. There is a large volume of academic articles which focus on the 

relationship between environmental and financial performance, researching how environmentally 

friendly assets are exposed differently to conventional risk factors than conventional assets.  

For the second method I will focus on the co-movements of clean energy stock prices and oil prices. 

The method I use comes from a group of literature which starts at the autoregressive conditional 

heteroscedasticity model (ARCH) proposed by Engle (1982). Bollerslev (1986) improved the ARCH 

model and proposed the generalized autoregressive conditional heteroscedasticity model (GARCH). 

After the introduction of the GARCH model, the amount of articles exploded on variations of the 

GARCH model or practical implications of these methods. In my thesis I will focus on the dynamic 

conditional correlation GARCH model of Engle (2002). In this chapter, I will discuss the articles which 

use similar methods and provide practical implications relevant to my thesis. In the next chapter I will 

explain what the methods I use entail. 

2.2. The relationship between environmental and financial performance 

Socially responsible investments caught a lot of attention by academics for the last decades. The 

general view on socially responsible investments is that they tend to perform financially worse than 

conventional investments.  
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Stocks are generally screened for a variety of characteristics in order to pass for socially responsible 

investments (SRI), think of screens  on the production of alcohol, tobacco or weapons, environmental 

screens, screens for human rights and employment equality. A lot of articles have focussed on the 

performance of SRI’s or SRI funds, however, the amount of articles on merely environmentally friendly 

stocks is limited. 

One of the articles in which the performance of SRI funds is studied, is the article of Renneboog et. al. 

(2008).  Renneboog et. al. (2008) use a global database which they examine over the period of 1991 to 

2003. To incorporate multiple risk factors, the authors use the three- and four-factor model of Fama 

and French (1993) and Carhart (1997) respectively. The results show that SRI funds significantly 

underperform their domestic benchmarks. This effect even exacerbates when looking at risk adjusted 

returns, in which case funds underperform up to -6.5% per year compared to the domestic benchmark. 

However, when the authors compare the alpha’s, of both the SRI funds and their conventional 

counterparts, the authors do not find any significant differences. Renneboog et. al. (2008) also 

construct their own risk factor in order to account for the specific risk which investors are exposed to 

when investing in SRI funds. The significant and positive coefficient Renneboog et. al. (2008) find for 

this SRI factor, means that investors are compensated for the risk they face when investing in such 

funds. Renneboog et. al. (2008) show that SRI funds generally tend to underperform domestic 

benchmarks and, if controlled for their ‘SRI factor’, also produce significantly lower alpha’s than 

conventional funds. Without the SRI factor the SRI funds do not perform significantly different from 

conventional funds.  

The combinations of the aforementioned articles reflect my first approach best, but many more 

academics have studied this subject using similar methodology. Ito et. al. (2013) provide a summary of 

thirteen articles which have been published up until 2009 on this subject. As the summary in their 

article shows, most articles using an approach similar to CAPM find that SRI’s perform significantly or 

insignificantly worse than their reference groups. Ito et. al. (2013) themselves find different results 

when using a dynamic mean-variance model. Ito et. al. (2013) find that SRI funds outperformed 

conventional funds in the EU and US from 2000 to 2009 , and green funds performed worse than the 

SRI funds but still equal to or better than conventional funds. Not incorporated in the summary of Ito 

et. al. (2013)  is the articles of Yu (2014). Using the four factor model and monthly data from 1999 up 

to 2009, Yu (2014) finds that SRI funds have significantly higher alpha’s than conventional funds. Thus, 

newer articles seem to find SRI funds outperforming conventional funds more regularly. 

However, these articles have in common that they look at SRI funds in general. Climent and Soriano 

(2011) study the returns of green funds only using the one factor CAPM and the four factor model. For 
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the period of 1987 – 2001 Climent and Soriano (2011) find that green funds significantly underperform 

both SRI funds and conventional funds in the US. For the period of 2001 – 2009 the authors find no 

significant difference in the returns of the different funds. Cai and He (2014) is the only article which 

finds a significant positive relationship between environmental performance and financial 

performance. Cai and He (2014) use KLD’s database to form portfolios based on environmental 

performance and study the returns using the four-factor model. Cai and He (2014) find that good 

environmentally performing firms generally outperform the market. Cai and He (2014) try to prove 

that environmental performance should be incorporated into stock prices, which according to Cai and 

He (2014) is wrongfully not the case. This means clean energy firms should generate abnormal returns. 

Using the CAPM and weekly data on a clean energy index, Henriques and Sadorsky (2008) find that 

clean energy stocks do not show significantly negative alpha’s, showing clean energy stocks deliver 

market competitive returns. Henriques and Sadorsky (2008) incorporate an oil factor in the basic 

CAPM. The expanded CAPM shows oil to be a significant risk factor for clean energy stocks and uses 

this finding to study the dynamic relationship between clean energy stocks and oil. 

2.3. The correlation between clean energy stocks and oil prices 

In this section I will discuss the literature which focuses on the correlation between clean energy stocks 

and oil prices. As an alternative energy source to oil, clean energy companies should benefit from 

higher oil prices. As oil prices rise, the demand for an alternative energy source rises. 

Oil is an important driving factor behind the macroeconomic engine, fluctuations in oil prices influence 

production costs of a large number of industries. Increasing oil prices lowers economic activity because 

of the higher energy input costs. The influence of oil price fluctuations on stock prices is a popular 

subject to write about; on an aggregate level ( (Apergis & Miller, 2009),  (Kilian & Park, 2009),  (Cunado 

& Perez de Garcia, 2014), (Güntner, 2013)) as well as on an industry level ( (Elyasiani, Mansur, & 

Odusami, 2011), (Scholtens & Yurtsever, 2012), (Lee, Yang, & Huang, 2012)).  

Apergis and Miller (2009) prove that oil prices play a significant role in explaining stock market returns. 

Killian and Park (2009) find that oil price shocks can explain up to twenty percent of stock market 

returns in the U.S., and shows how different kinds of oil demand and supply shocks influence stock 

prices differently.  Cunado and Perez de Garcia (2014) find a significant negative relationship between 

oil price changes and stock market returns on an aggregate level for most European countries. This 

effect holds especially for price changes caused by supply shocks, as negative price shocks decrease 

energy security. Güntner (2013) studies different kinds of oil demand and supply shocks, concluding 

that unexpected supply shocks do not significantly affect stock returns on an aggregate level.   
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Elyasiani et. al. (2011) conclude that both returns of oil futures and volatility in the return of oil futures 

significantly influence stock returns of different industries. The energy sector is significantly influenced 

by returns of oil futures.  Scholtens and Yurtsever (2012) find that the influence of oil prices on stock 

prices differs among industries, the effect is mostly significant for energy intensive industries. Lee et. 

al. (2012) also finds a significant effect between oil prices and stock prices of various industries. 

However, in contract to Elyasiani et. al (2012) and Scholtens and Yurtsever (2012), Lee et. al. (2012) 

finds no significant influence of oil prices on stock prices in the energy sector.  

These studies all have in common that oil is seen as an important risk factor for stock prices in general. 

The methodology used in these articles differ a lot from one and another, which explains differences 

in results among these articles. Despite the many different methodologies, academics seem to coincide 

that the relationship between oil and stock prices may change throughout time or may depend on 

determinants of oil prices. 

Henriques and Sadorsky (2008) were the first to explicitly study the seemingly natural correlation 

between oil prices and clean energy stocks prices. Using a four-factor vector auto regression, 

Henriques and Sadorsky (2008) study the correlation between clean energy stocks, technology stocks, 

oil prices and interest rates. They find that all three variables; oil prices, technology stock prices and 

interest rates all Granger cause price changes in clean energy stocks. Although all three provide some 

explanatory power, shocks in technology prices seem to have the strongest effect on clean energy 

stock prices. The power of shocks in oil prices is hardly significant. Henriques and Sadorsky (2008) 

conclude that oil price movements may not be as important to clean energy stocks because investors 

may perceive clean energy stocks as technology stocks, especially because clean energy companies 

depend on technological breakthroughs when it comes to finding and developing alternative energy 

sources.  

Three articles use the work of Henriques and Sadorsky (2008) as a baseline to continue the research 

on the dynamic properties of the correlation between clean energy stocks and oil prices. Sadorsky 

(2012) uses a variety of multivariate GARCH models to examine the correlation and volatility spill overs 

between oil prices, clean energy stock prices and technology stock prices. With this information, 

Sadorsky (2012) calculates optimal portfolio weights and how to hedge against risks of clean energy 

stocks. Using a different statistical approach, Sadorsky (2012) again finds that the clean energy stock 

prices are influenced more strongly by technology stocks than oil prices as the dynamic conditional 

correlations are largest between technology stocks and clean energy stocks. However, for hedging the 

risks of clean energy stocks, Sadorsky (2012) concludes that technology stocks are less suitable than 

crude oil futures because of the high positive correlation between clean energy stocks and technology 
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stocks. Sadorsky (2012) also finds, when calculating optimal two-asset-portfolio weights, that crude oil 

futures are more suitable to form a portfolio with than technology stocks as the weights in a portfolio 

with clean energy stocks and technology stocks would lean more heavily towards technology stocks.  

Continuing the work of Henriques and Sadorsky (2008), Kumar et. al. (2012) perform a comparable 

study by using vector auto regression tests and adding more clean energy indices and carbon prices to 

the mix. Assuming that high carbon prices increase the demand for low carbon emission substitutes, 

higher carbon prices should lead to higher clean energy stock prices. Kumar et. al. (2012) find the same 

results as Henriques and Sadorsky (2008), returns of clean energy stocks behave similar to technology 

stocks and prices of clean energy stocks are significantly influenced by oil prices. Kumar et. al. (2012) 

fail to prove that carbon prices significantly influence clean energy stock prices. 

Managi and Okimoto (2013) noticed the change in significance in the relationship between clean 

energy stock prices and oil prices as the data horizon was expanded up until 2008. For this reason, 

Managi and Okimoto (2013) believed correlation between oil prices and clean energy stock prices may 

not be constant over time and structural changes in the relationship between the two variables may 

permanently have shifted the correlation. Managi and Okimoto (2013) study the dynamics of the 

correlation between oil prices and clean energy stock prices. In the data horizon which Managi and 

Okimoto (2013) use, the regime assumption of Managi and Okimoto (2013) holds. However, as the 

economy gradually improves after the downturn of 2008, the markets of oil prices and clean energy 

may change again and so may the correlation between the two variables. Especially when considering 

the new technologies which provide both markets with new possibilities for production (e.g. the 

production of shale-oil, higher efficiency of solar panels, new ways to store energy, etc.). 

3. Methodology & Data 

In this chapter I will discuss the methodology I use in the thesis. I will start by discussing the data I use 

in my empirical research, followed by the methods I use. In my thesis I use the article of Sadorsky 

(2012) as guideline, expanding this article by analysing more indexes and expanding the methodology 

used in the article. 

3.1. Data 

I use a variety of clean energy indexes in my research, each index represents a well-diversified portfolio 

in clean energy stocks with different methods of portfolio formation. Different technologies within the 

clean energy sector may be exposed differently to certain risks, the same may account for the countries 

the firms are listed in. Comparing these indexes, reflecting differences in portfolio selection, may 

explain different views and findings on the performance of clean energy stocks. This is important for 
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my research, one stock may behave differently than another. If clean energy stocks behave differently 

to the same risk factors, investors may want to account for this when investing in clean energy stocks. 

I analyse a total of thirteen different clean energy indexes, all with different selection criteria. Sadorsky 

(2012) concludes that clean energy stock prices can be used to hedge an investment in clean energy 

stocks based on the analysis of one clean energy index. In his article, Sadorsky uses the Wilderhill Clean 

Energy Index to study the dynamic conditional correlation between clean energy stock prices, 

technology stock prices and oil prices.  

The NYSE Euronext (NYSE) and Bloomberg New Energy Finance (BNEF) together launched six clean 

energy indexes; three global indexes focussing on all areas in the value chain of solar energy (Solar), 

wind energy (Wind) and advanced transportation, digital energy, energy storage, fuel cells an energy 

efficiency (EST). The other three indexes from the NYSE Bloomberg series focus on all clean energy 

companies in the value chain incorporated in the Americas (AMG), Asia-Pacific (APG) and Europe, 

Middle East and Africa (EMG).  

Next, I use six different global clean energy indexes to evaluate whether even diversified portfolios 

formed from the same sample of stocks to choose from can still show differences in risk exposure to 

the same risk factors. I choose to use the Wilderhill New Energy Global Innovation Index (NEX) which 

has the goal to track the entire clean energy sector on a global scale as accurately as possible. Next, 

the World Alternative Energy Index (WAEX) tracks the twenty largest companies operating in the clean 

energy sector. The DAX Alternative Energy Index (DAX) tracks the fifteen largest companies operating 

in the clean energy sector. The S&P Global Clean Energy Index tracks thirty companies in the clean 

energy sector. The Credit Suisse Global Alternative Energy Index (CSA) tracks the thirty largest and 

most liquid companies operating in the clean energy sector. The FTSE ET50 index (ET50) tracks the fifty 

largest companies which derive at least 50% of their revenue from the development of 

environmentally friendly technologies. Finally, I incorporated the MSCI World Index and the S&P 500 

Index as control groups for the second part of my analysis. Graphs of the raw data on all index prices 

and oil prices are reported in Appendix A. 

I collect both daily and monthly data on the indexes using the Bloomberg database from 01-01-2000 

onwards, I use the gross total return indexes in order to get the most clean data. Unfortunately, most 

clean energy indexes are relatively new and the first data on most indexes dates from various starting 

points after 01-01-2000. This means the amount of observations differ per index, the amount of 

observations per index are reported in table 1 and table 2 for the daily and monthly data respectively. 

As the sample period is important for results of time series analyses, I take into account that indexes 

with different sample periods are hard to compare. Despite the different sample periods, I choose to 
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include all of the indexes in my thesis as I believe all indexes provide additional information for the 

entire view on the risk-return relationship of investments in clean energy as a whole. The amount of 

observations ranges from 2249 to 4043 for the daily data and 102 to 173 for the monthly data. 

For the daily closing prices, I only used weekday data of Bloomberg. As non-trading weekdays are 

different all over the globe, and because I use indexes from all over the world, I did not omit non-

trading weekdays in order to preserve as much daily data as possible.  

For building the factor models, I downloaded daily and monthly factors from the website for Kenneth 

French2. For the monthly factors, I downloaded factors formed by Kenneth French for global, U.S., Asia-

Pacific (excluding Japan) and European data. The website, unfortunately, has got daily data available 

for the U.S. only. Forming my own daily factors for global, Asia-Pacific and European data is beyond 

the scope of my thesis, I therefore only construct factor models with daily data for the U.S. indexes. 

Few observations were lost when I combined the data of Bloomberg and Kenneth French’s website. 

For the daily data 123 up to 260 observations per index were lost, depending on the inception date of 

the index. For the monthly data no observations were lost.  

The descriptive statistics for the daily total returns of all indexes can be found in Table 1. All of the 

daily returns have a mean and median close to zero and the standard deviation is higher than the mean 

for all return series. All series display a low to moderate skewness and high kurtosis. As we can see in 

the column of the Jarque-Bera test and the probabilities next to the Jarque-Bera coefficients, none of 

the return series are normally distributed.       

                                                           
2 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 1 – Descriptive Statistics Daily Data 

Panel A shows the descriptive statistics of daily total returns of all indexes and the returns calculated from the daily closing prices of WTI crude oil future contracts. Panel B shows the unconditional 
correlation matrix. 

Panel A: descriptive statistics daily returns 

Index Observations Mean Median Maximum Minimum 
Std. 
Dev. 

Skewness Kurtosis 
Sharpe 

ratio 
Jarque-

Bera 
Probability 

Number of 
constituents 

Region 

Credit Suisse Global Alternative 
Energy Index (CSA) 

3782 0.02 0.05 14.91 -10.42 1.35 -0.09 16.05 0.02 26845.08 0.00 30 Global 

DAXGlobal® Alternative Energy 
(DAX) 

3782 0.02 0.03 11.86 -10.72 1.42 -0.10 10.48 0.02 8815.27 0.00 15 Global 

FTSE ET50 Index (ET50) 4043 0.02 0.06 13.15 -9.67 1.52 0.12 11.76 0.01 12927.18 0.00 50 Global 

S&P Global Clean Energy Index (SPG) 3030 0.01 0.08 19.83 -13.91 1.94 -0.11 16.50 0.01 23025.63 0.00 30 Global 

The WilderHill New Energy Global 
Innovation Index (NEX) 

3783 0.02 0.05 12.83 -9.95 1.48 -0.18 10.03 0.01 7806.13 0.00 105 Global 

World Alternative Energy Index 
(WAEX) 

2249 0.03 0.08 13.70 -9.71 1.62 -0.04 9.35 0.02 5037.46 0.00 20 Global 

NYSE Bloomberg Global Energy 
Smart Technologies Index (EST) 

3002 0.04 0.10 7.45 -7.16 1.25 -0.26 6.59 0.04 1360.34 0.00 247 Global 

NYSE Bloomberg Global Solar Energy 
Index (Solar) 

2480 0.02 0.04 16.41 -11.86 2.11 -0.23 9.99 0.01 5073.55 0.00 119 Global 

NYSE Bloomberg Global Wind Energy 
Index (Wind) 

2480 0.03 0.07 12.96 -13.02 1.55 -0.49 14.04 0.02 12694.83 0.00 77 Global 

NYSE Bloomberg Europe Middle East 
& Africa Clean Energy Index (EMG) 

2480 0.04 0.08 13.82 -12.07 1.75 -0.11 11.37 0.02 7242.86 0.00 110 Europe 

NYSE Bloomberg Asia Pacific Clean 
Energy Index (APG) 

2480 0.02 0.09 5.82 -7.81 1.30 -0.73 6.55 0.02 1524.24 0.00 352 Asia 

NYSE Bloomberg Americas Clean 
Energy Index (AMG) 

2480 0.03 0.09 13.00 -10.49 1.64 -0.19 9.40 0.02 4248.07 0.00 154 U.S. 

Clean Edge® Green Energy Index 
(CEXX) 

2480 0.03 0.05 16.33 -13.40 2.22 -0.22 7.82 0.01 2195.77 0.00 48 U.S. 

S&P 500 Index (SP) 4043 0.02 0.02 11.58 -9.03 1.25 0.01 11.73 0.01 12832.07 0.00 50 U.S. 

MSCI World Index (MWXO) 4043 0.01 0.06 9.52 -7.06 1.04 -0.18 10.75 0.01 10146.36 0.00 1642 Global 

Oil 4043 0.04 0.00 14.26 -15.25 2.24 -0.10 6.62 0.02 2219.89 0.00   
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Panel B: unconditional correlaton matrix 

 Solar Wind EST AMG EMG APG NEX SPG CEXX CSA DAX WAEX ET50 Oil MXWO SP500 

Solar 1                               

Wind 0.716 1                             

EST 0.766 0.73 1                           

AMG 0.769 0.547 0.84 1                         

EMG 0.699 0.856 0.728 0.626 1                       

APG 0.667 0.726 0.684 0.39 0.519 1                     

NEX 0.861 0.819 0.866 0.816 0.848 0.647 1                   

SPG 0.895 0.753 0.775 0.824 0.79 0.566 0.908 1                 

CEXX 0.797 0.506 0.808 0.953 0.572 0.394 0.823 0.822 1               

CSA 0.797 0.782 0.789 0.804 0.868 0.544 0.841 0.877 0.754 1             

DAX 0.76 0.721 0.713 0.733 0.776 0.507 0.753 0.799 0.709 0.829 1           

WAE 0.805 0.77 0.818 0.787 0.815 0.58 0.878 0.855 0.771 0.85 0.781 1         

ET50 0.85 0.806 0.859 0.84 0.859 0.604 0.883 0.906 0.821 0.86 0.779 0.89 1       

Oil 0.344 0.367 0.381 0.374 0.419 0.253 0.291 0.351 0.361 0.368 0.255 0.366 0.261 1     

MXWO 0.701 0.708 0.868 0.844 0.815 0.52 0.838 0.806 0.777 0.84 0.712 0.811 0.779 0.28 1   

SP500 0.607 0.464 0.764 0.89 0.56 0.29 0.694 0.69 0.829 0.699 0.586 0.661 0.642 0.206 0.889 1 
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Table 2 – Descriptive Statistics Monthly Data 
Descriptive statistics of monthly total returns of all indexes and the returns calculated from the closing prices of WTI crude oil future contracts. 

Index Observations Mean Median Maximum Minimum 
Std. 
Dev. 

Skewness Kurtosis 
Sharpe 

ratio 
Jarque-

Bera 
Probability 

Number of 
constituents 

Region 

Credit Suisse Global Alternative 
Energy Index (CSA) 

172 0.56 0.94 22.00 -25.33 6.29 -0.66 5.33 0.09 51.40 0.00 30 Global 

DAXGlobal® Alternative Energy 
(DAX) 

172 0.47 1.07 25.61 -20.26 6.86 -0.15 4.54 0.07 17.65 0.00 15 Global 

FTSE ET50 Index (ET50) 173 0.29 1.22 21.41 -33.58 7.35 -0.94 5.79 0.04 81.41 0.00 50 Global 

S&P Global Clean Energy Index 
(SPG) 

138 0.36 1.79 22.56 -39.94 9.04 -1.18 6.27 0.04 93.33 0.00 30 Global 

The WilderHill New Energy Global 
Innovation Index (NEX) 

173 0.55 1.79 21.63 -35.00 7.84 -0.85 5.34 0.07 60.50 0.00 105 Global 

World Alternative Energy Index 
(WAEX) 

137 0.79 1.45 31.46 -28.53 8.55 -0.20 4.88 0.09 21.12 0.00 20 Global 

NYSE Bloomberg Global Energy 
Smart Technologies Index (EST) 

113 1.10 1.97 20.44 -26.55 6.71 -0.56 4.99 0.16 24.48 0.00 247 Global 

NYSE Bloomberg Global Solar 
Energy Index (Solar) 

113 0.92 1.56 38.29 -39.46 11.71 -0.41 4.42 0.08 12.57 0.00 119 Global 

NYSE Bloomberg Global Wind 
Energy Index (Wind) 

113 0.92 2.06 21.16 -42.46 8.69 -1.21 7.76 0.11 134.38 0.00 77 Global 

NYSE Bloomberg Europe Middle 
East & Africa Clean Energy Index 

(EMG) 
113 0.79 2.02 17.15 -35.34 7.86 -1.12 6.49 0.10 80.95 0.00 110 Europe 

NYSE Bloomberg Asia Pacific Clean 
Energy Index (APG) 

113 0.78 1.47 18.71 -30.08 7.51 -0.71 5.25 0.10 33.22 0.00 352 Asia 

NYSE Bloomberg Americas Clean 
Energy Index (AMG) 

113 0.67 1.67 20.27 -26.62 6.73 -0.82 5.57 0.10 43.61 0.00 154 U.S. 

Clean Edge® Green Energy Index 
(CEXX) 

102 0.50 1.81 20.06 -32.44 9.12 -0.79 4.19 0.06 16.65 0.00 48 U.S. 

S&P 500 Index (SP) 173 0.37 1.00 10.77 -16.94 4.33 -0.68 4.20 0.08 23.70 0.00 50 U.S. 

MSCI World Index (MWXO) 173 0.32 1.02 10.90 -19.04 4.55 -0.75 4.62 0.07 35.38 0.00 1642 Global 

Oil 173 0.48 0.63 28.50 -32.75 9.39 -0.30 3.81 0.05 7.28 0.03   
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 Panel B of table 1 shows the unconditional correlation matrix of all indexes and oil. The correlation 

between oil and all indexes ranges from a low correlation of 0.206 to a moderate correlation of 0.419. 

The correlation among indexes ranges, naturally, from moderate to high.  

 

3.2. Methodology 

In this section I will discuss the methods used in my thesis. I will first address the methods for 

building the multi factor models, followed by building the dynamic conditional correlation GARCH 

models. Lastly, I will explain how I use the DCC GARCH models to calculate time-varying hedge ratios 

and forecast the conditional covariance matrices, dynamic conditional correlations and time varying 

hedge ratios. 

3.2.1. Multi-factor modelling 

In this paragraph, I will discuss the method I use to construct multi-factor models for the different 

indexes. The models are constructed using ordinary least squares (OLS) regressions.  

Multifactor modelling started with the capital asset pricing model (CAPM) of Sharpe (1964) and Lintner 

(1965). Equation (1) shows the equation of the CAPM, in which the market risk premium (𝑅𝑚,𝑡  – 𝑟𝑓,𝑡) 

was the only risk factor incorporated in this model.  

𝑟𝑡– 𝑟𝑓,𝑡  =  𝑎 +  𝑏(𝑅𝑚,𝑡 – 𝑟𝑓,𝑡) +  𝜀𝑡  (1)  

Fama and French (1993) expand the CAPM with two additional risk factors, namely the book-to-market 

ratios (or value factor) (𝐻𝑀𝐿𝑡) and the size factor (𝑆𝑀𝐵𝑡). Equation (2) shows the equation of the 

three-factor model of Fama and French (1993). 

𝑟𝑡– 𝑟𝑓,𝑡  =  𝑎 +  𝑏1(𝑅𝑚,𝑡  – 𝑟𝑓,𝑡) + 𝑏2(𝑆𝑀𝐵𝑡) + 𝑏3(𝐻𝑀𝐿𝑡) + 𝜀𝑡  (2) 

Carhart (1997) goes a step further and suggests that the three-factor model does not explain all of the 

returns. He suggests that positive returns in the preceding period may indicate positive returns in the 

current period. Therefore, Carhart (1997) added his momentum factor (𝑊𝑀𝐿𝑡) to the mix, equation 

(3) shows the four-factor model of Carhart (1997) . 

𝑟𝑡– 𝑟𝑓,𝑡  =  𝑎 + 𝑏1(𝑅𝑚,𝑡  – 𝑟𝑓,𝑡) + 𝑏2(𝑆𝑀𝐵𝑡) + 𝑏3(𝐻𝑀𝐿𝑡) + 𝑏4(𝑊𝑀𝐿𝑡) + 𝜀𝑡  (3) 

The four-factor model is widely accepted and used for explaining returns and determining risk 

exposure of stocks. Fama and French (2012) also accept the four-factor model and study its application 

for various graphical regions. Fama and French (2012) find that the four-factor model outperforms 
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previous models when explaining results and explain how the model can be applied in different 

situations. 

Most recently, Fama and French (2015) came up with their five-factor model. Fama and French (2015) 

added the profitability (𝑅𝑀𝑊𝑡) and investment factor (𝐶𝑀𝐴𝑡) to their three factor model. Equation 

(4) shows the equation for the five-factor model.  

𝑟𝑡– 𝑟𝑓,𝑡  =  𝑎 +  𝑏1(𝑅𝑚,𝑡  – 𝑟𝑓,𝑡) + 𝑏2(𝑆𝑀𝐵𝑡) + 𝑏3(𝐻𝑀𝐿𝑡) + 𝑏4(𝑅𝑀𝑊𝑡) + 𝑏5(𝐶𝑀𝐴𝑡) + 𝜀𝑡  (4) 

In addition to the four- and five-factor model, I add an oil factor to incorporate the risk exposure to oil 

for clean energy stocks just like Henriques and Sadorsky (2008). As clean energy can be seen as a direct 

substitute for energy generated from fossil fuels, shocks in oil prices may cause larger shocks in clean 

energy stock prices than the overall market. Thus, the risk exposure may not be fully captured in the 

market risk premium. Using vector auto regressions I determine whether and how many lags should 

be used when constructing the Oil factor. The Akaike Information Criteria (AIC) proves one lag to be 

optimal for both daily and monthly data. I will test the oil factor both without lags and with one lag. 

For U.S.-based indexes, I use daily data and the five-factor model. For non-U.S.-based indexes, I use 

monthly data and the four-factor model. Equation (5) through (8) show the models used with the Oil 

factor. 

Without lags: 

𝑟𝑡– 𝑟𝑓,𝑡  =  𝑎 +  𝑏1(𝑅𝑚,𝑡 – 𝑟𝑓,𝑡) + 𝑏2(𝑆𝑀𝐵𝑡) + 𝑏3(𝐻𝑀𝐿𝑡) + 𝑏4(𝑊𝑀𝐿𝑡) + 𝑏5(𝑂𝐼𝐿𝑡) + 𝜀𝑡  (5) 

𝑟𝑡– 𝑟𝑓,𝑡  =  𝑎 +  𝑏1(𝑅𝑚,𝑡 – 𝑟𝑓,𝑡) + 𝑏2(𝑆𝑀𝐵𝑡) + 𝑏3(𝐻𝑀𝐿𝑡) + 𝑏4(𝑅𝑀𝑊𝑡) + 𝑏5(𝐶𝑀𝐴𝑡) + 𝑏5(𝑂𝐼𝐿𝑡)

+ 𝜀𝑡  (6) 

With one lag: 

𝑟𝑡– 𝑟𝑓,𝑡  =  𝑎 + 𝑏1(𝑅𝑚,𝑡  – 𝑟𝑓,𝑡) + 𝑏2(𝑆𝑀𝐵𝑡) + 𝑏3(𝐻𝑀𝐿𝑡) + 𝑏4(𝑊𝑀𝐿𝑡) + 𝑏5(𝑂𝐼𝐿𝑡−1) + 𝜀𝑡  (7) 

𝑟𝑡– 𝑟𝑓,𝑡  =  𝑎 + 𝑏1(𝑅𝑚,𝑡  – 𝑟𝑓,𝑡) + 𝑏2(𝑆𝑀𝐵𝑡) + 𝑏3(𝐻𝑀𝐿𝑡) + 𝑏4(𝑅𝑀𝑊𝑡) + 𝑏5(𝐶𝑀𝐴𝑡) + 𝑏5(𝑂𝐼𝐿𝑡−1)

+ 𝜀𝑡  (8) 

 

3.1.2. Dynamic Conditional Correlation Generalized Autoregressive Conditional 

Heteroscedasticity Model 

The multi factor models using the ordinary least squares regression methods assumed the relationship 

between variables to be constant overtime. In reality, however, this may not be the case when looking 

at returns of financial assets. The advantage of GARCH models, is that the GARCH models do not 
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assume the volatility of the variables to be constant over time. GARCH models accept that big shocks 

in asset prices cause higher volatility in the period(s) following the shock. Therefore, a shock in the oil 

price because of a sudden increase in oil supply may cause higher volatility in the oil price in the 

period(s) following the supply shock. In financial markets co-movements of assets are important for 

asset pricing models, portfolio selection, hedging and Value-at-Risk forecasts. Multivariate GARCH 

models can model the volatility-spill-over effects between multiple assets while maintaining the ability 

to let the volatility change over time. I will use the DCC-GARCH model in this thesis to capture the 

dynamic conditional correlation between oil prices and clean energy indexes.  

The DCC-GARCH model is a two-step process. First the GARCH parameters are estimated, followed by 

the dynamic conditional correlation. Equation (9), (10) and (11) show the model used. 

𝑟𝑖𝑡 =  𝜇𝑖 +  𝜀𝑖𝑡  , 𝑖 = 1,2 (9) 

𝜀𝑖𝑡 =  𝐻𝑖𝑡
1/2

𝑧𝑖𝑡 (10) 

𝐻𝑡 =  𝐷𝑡𝑅𝑡𝐷𝑡 (11) 

In equation (9), 𝑟𝑖𝑡 stands for the 𝑖 x 1 vector log returns of return series 𝑖 and 𝜀𝑖𝑡 stands for the 𝑖 x 1 

vector of the error term for the returns of asset 𝑖 at time 𝑡. The error matrix  𝜀𝑖𝑡 from equation (10) is 

modelled as a univariate GARCH model, where  𝜀𝑖𝑡 is dependent of the conditional covariance 𝐻𝑡. The 

conditional covariance 𝐻𝑡 is derived from the conditional standard deviation 𝐷𝑡 of 𝜀𝑖𝑡 and the 

conditional correlation 𝑅𝑡. The conditional standard deviation 𝐷𝑡 is the diagonal matrix with standard 

deviations derived from the univariate GARCH models, see equation (12). 

𝐷𝑡 = [
√ℎ1𝑡 0

0 √ℎ2𝑡

] (12) 

Equation (13) shows the conditional covariance in a vector form, which forms  the elements of the 

diagonal for equation (12). 

ℎ𝑖𝑡 =  𝑐𝑖 +  ∑ 𝛼𝑖𝑞𝑎𝑖,𝑡−𝑞
2

𝑞𝑖

𝑞=1

+  ∑ 𝛽𝑖𝑝ℎ𝑖,𝑡−𝑝
2

𝑝𝑖

𝑝=1

 (13) 

 

 

The GARCH model in this thesis will have the order of GARCH(1,1), which means both 𝑞 and 𝑝 are both 

equal to one. The conditional correlation matrix 𝑅𝑡 of the standardized disturbances 𝜖𝑡 is displayed in 

equation (14) and (15).  
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𝜖𝑡 =  𝐷𝑡
−1𝑎𝑡 ~ 𝑁(0, 𝑅𝑡) (14) 

𝑅𝑡 =  [
1 𝜌12,𝑡

𝜌12,𝑡 1
] (15) 

Substituting equation (12) and (15) into equation (11) to get the elements of equation (11), see 

equation (16).  

[𝐻𝑡]𝑖𝑗 =  √ℎ𝑖𝑡ℎ𝑖𝑡𝜌𝑖𝑗 (16)  

The DCC-GARCH model is bound to two restrictions. For one, 𝐻𝑡 has to be positive and definite. Second, 

all of the elements in the conditional correlation matrix 𝑅𝑡 must have a value of one or less. To ensure 

these two restrictions, 𝑅𝑡 is decomposed in equations (17) and (18). 

𝑅𝑡 =  𝑄𝑡
∗−1𝑄𝑡𝑄𝑡

∗−1 (17) 

𝑄𝑡 = (1 − 𝑎 − 𝑏)�̅� + 𝑎𝜖𝑡−1𝜖𝑡−1
𝑇 + 𝑏𝑄𝑡−1 (18) 

Where �̅� is the unconditional covariance matrix of the standardized errors 𝜖𝑡.  �̅� can be estimated 

following equation (19). 𝑄𝑡
∗ is a diagonal matrix with the square root of the diagonal elements of 𝑄𝑡 at 

the diagonal, see equation (20). 

�̅� =
1

𝑇
 ∑ 𝜖𝑡𝜖𝑡

𝑇

𝑇

𝑇=1

 (19) 

 

𝑄𝑡
∗ =  [

√𝑞11𝑡 0

0 √𝑞22𝑡

] (20) 

𝑄𝑡
∗  rescales the elements in 𝑄𝑡 to ensure the second requirement; |𝜌𝑖𝑗| =  |

𝑞𝑖𝑗𝑡

√𝑞𝑖𝑗𝑡𝑞𝑖𝑗𝑡
|  ≤ 1. Next, in 

order to ensure that the conditional covariance matrix 𝐻𝑡 is positive and definite, we can impose 

restrictions on parameters 𝑎 and 𝑏, namely; 𝑎 ≥ 0, 𝑏 ≥ 0 and 𝑎 + 𝑏 ≤ 1. In addition, the starting 

value of 𝑄𝑡 also has to be positive and definite in order for 𝐻𝑡 to be positive and definite.  

3.1.3. Hedging and out-of-sample forecasting 

The next step in my analysis is to define optimal hedge positions between the clean energy indexes 

and oil, to show how to minimize risk exposure to oil. According to Hsu Ku et. al. (2007) the DCC GARCH 

model proves to provide the most accurate time-varying hedge ratios. In the research of Chang et. al.  

(2011) the DCC GARCH model comes in on second place of most effective model to provide time-

varying hedge ratios. Basher and Sadorsky (2016), in contract, argue that a combination of GARCH 
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models is the best way to find the optimal hedge ratios. Additionally, Basher and Sadorsky (2016) find 

oil provides the most effective hedge compared to other options for hedging like gold, CBOE Volatility 

Index (VIX) and bonds.  

Following Sadorsky (2012), I will calculate the time-varying hedge ratios using the method of Kroner 

and Sultan (1993). By using the conditional covariance matrix 𝐻𝑡 and the conditional variance of oil 

which is retrieved from the diagonal matrix 𝐷𝑡 , I will compute the time-varying hedge ratios following 

equation (21). 

𝐵𝑡 =  
𝐻12,𝑡

𝐷22,𝑡
  (21) 

 

GARCH models are effectively ranked by their forecasting ability. Recently, the amount of varieties on 

the GARCH model has exploded. I have used the DCC GARCH model throughout my thesis and will also 

do so for forecasting, generally the DCC GARCH model does a good job on forecasting especially in the 

short-run, though there are newer models that might do slightly better (see for example Boudt et. al. 

(2013)). For out-of-sample forecasting I will use the method proposed by Engle and Sheppard (2001) 

for 𝑛-step ahead forecast for the DCC GARCH models. Engle and Sheppard (2001) propose two 

methods; forecasting the conditional covariance matrix 𝑄𝑡+𝑛 and directly forecasting the conditional 

correlation matrix 𝑅𝑡+𝑛.  Both methods are biased towards their unconditional counterparts, but Engle 

and Sheppard (2001) found that directly forecasting the conditional correlation matrix leads to the 

least biased forecasts and is easier to implement, despite both methods not outperforming one and 

another significantly. I use the method to forecast the conditional covariance matrix 𝑄𝑡+𝑛, using the 

forecasted conditional variance matrix to calculate the forecasted conditional correlation matrix  𝑅𝑡+𝑛. 

Equation (22) shows the method for forecasting the conditional covariance matrix 𝑄𝑡+𝑛, equation (23) 

shows how the conditional correlation is computed from the conditional covariance matrix.  

𝐸𝑡[𝑄𝑡+𝑛] = ∑(1 − 𝑎 − 𝑏)�̅�(𝑎 + 𝑏)𝑖 + (𝑎 + 𝑏)𝑛−1𝑄𝑡+1

𝑛−2

𝑖=0

 (22) 

𝑅𝑡+𝑛 =  𝑄𝑡+𝑛
∗−1𝑄𝑡+𝑛𝑄𝑡+𝑛

∗−1 (23) 

I use equation (22) to forecast the 365-step-ahead conditional covariance matrix and equation (23) for 

compute the 365-step-ahead conditional correlation matrix. I will not reserve any in-sample data for 

out-of-sample forecasting, which means I will forecast from the end of the data sample up to one year 

after the end of the data sample. The reason why I choose the slightly more biased method is because 

I will use the conditional covariance matrix to compute the future time-varying hedge ratios. As it is 
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not optimal for investors to rebalance their portfolios daily, I will calculate the optimal monthly hedge 

ratios using the daily ones from my analysis. 

4. Results 

In this section I will discuss the empirical results of my analysis. I will start by discussing the results of 

the multi-factor modelling, followed by the results of the DCC GARCH models, the hedge ratios and 

the out of sample forecasts. 

4.1. Multi-factor modelling 

Table 3 panel A through D and table 4 panel A and B show the results of the ordinary least squares 

regressions. Table 3 shows regression results for monthly data, Table 4 for daily data.   

I first consider the different industries within the clean energy sector; Solar, Wind and Technology 

(Table 3 panel A). The Solar index has the highest risk exposure to the market, with Wind coming in on 

second and EST on third with the lowest risk exposure to the market. Solar has the lowest alpha, which 

indicates the Solar index underperforms compared to the other two industries, however, none of the 

alpha’s differ significantly from zero. The size factor is only significant for both the Wind and EST index. 

The Wind index has slightly more risk exposure to the size factor than the EST index. Both the value 

and momentum factors are insignificant for all indexes. When adding a fifth factor to study the risk 

exposure to Oil, I find no significant risk exposure for any of the industries. The adjusted R-squared is 

highest for the EST index without the Oil factor, meaning that the four-factor explains the returns of 

the EST index the best of all three industries. The insignificant alpha’s indicate that all three industries 

do not significantly underperform the market, however, with a risk exposure to the market higher than 

one, an investment in any of the three industries is more risky than in investment in the market. From 

the three industries, the EST index is the least risky with a beta of 1.177 in the four factor model. 

When considering the returns of clean energy for different continents (table 3 panel B), differences 

shrink compared to the differences across the three industries. Note that for modelling the returns of 

the AMG, APG and EMG indexes different datasets to construct the factors are used to fit the region. 

The AMG index shows the lowest alpha, indicating underperformance compared to the other regions, 

however, all of the alphas are insignificant.  The EMG index has the highest risk exposure to the market, 

the APG index has the lowest risk exposure to the market. The size factors are generally lower than 

the size factors for the Solar, Wind and Technology indexes. The exposure to the size factor is the 

highest for the AMG index when considering the three regions. Only the AMG index has significant risk 

exposure to the value factor at a 10% significance level, the momentum factor is again insignificant for 

all indexes. For the AMG, APG and EMG indexes, the Oil factor is also insignificant in all models. 
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Lastly, when we look at the remaining indexes (table 3 panel C and D), we see that for few indexes Oil 

is a significant risk factor. The NEX is the only index for which the Oil factor is significant at the 1% level, 

however, when one lag is used the Oil t-1 factor becomes insignificant. For the WAEX and CSA index, 

the Oil factor without lags is significant at the 5% level and for the CEXX index on the 10% level. 

From all of the indexes, the SPG index is the only index with a significant negative alpha, indicating that 

this index is the only index which underperforms the market. The other indexes provide market 

competitive returns from a risk-return relation point of view.  

 

 

Table 3 – Results Monthly Four Factor Models 
This table shows the results for the four factor models, without the added oil factor, with the oil factor and with the lagged one 
period oil factor. Panel A shows the Results for the industry indexes; Solar, Wind and Technology (EST) for the period of 01-01-2006 
up to 01-07-2015. Panel B shows the results for the AMG, APG and EMG indexes for the period of 01-01-2006 up to 01-07-2015. 
Panel C and D show the global indexes (NEX, SPG, WAEX, CSA and DAX) and the CEXX index. For the NEX, CSA and DAX index the 
results are shown for the period of 01-01-2001 up to 01-07-2015, for the SPG and WAEX from 01-01-2004 up to 01-07-2015 and for 
the CSA from 01-01-2007 up to 01-07-2015. Robust t-values are reported between parentheses, which are corrected for 
autocorrelation and heteroscedasticity using the Newey-West estimator. ***, ** and *, denote the significance level of the 
coefficients on the respectively 1%, 5% and 10% level (two-tailed) 

Panel A: four factor models  for the Solar, Wind and EST indexes 

 Solar Index Wind Index EST Index 

Constant 
-0.244 

(-0.287) 
-0.207 

(-0.233) 
-0.225 

(-0.260) 
0.085 

(0.128) 
0.108 

(0.161) 
0.070 

(0.105) 
0.388 

(1.205) 
0.406 

(1.245) 
0.399 

(1.211) 

Market 
1.785*** 
(12.746) 

1.750*** 
(11.173) 

1.779*** 
(12.870) 

1.403*** 
(9.768) 

1.382*** 
(7.626) 

1.408*** 
(9.370) 

1.177*** 
(22.612) 

1.160*** 
(19.092) 

1.174*** 
(22.150) 

Size 
1.110 

(1.633) 
1.094 

(1.588) 
1.110 

(1.637) 
0.995** 
(2.400) 

0.986** 
(2.277) 

0.994*** 
(2.385) 

0.923*** 
(5.429) 

0.916*** 
(5.362) 

0.923*** 
(5.439) 

Value 
-0.138 

(-0.243) 
-0.123 

(-0.218) 
-0.185 

(-0.318) 
-0.446 

(-0.979) 
-0.437 

(-0.933) 
-0.409 

(-0.953) 
0.019 

(0.107) 
0.026 

(0.149) 
-0.008 

(-0.040) 

Momentum 
0.30 

(1.376) 
0.290 

(1.330) 
0.293 

(1.359) 
-0.047 

(-0.390) 
-0.053 

(-0.462) 
-0.041 

(-0.352) 
-0.041 

(-0.360) 
-0.046 

(-0.402) 
-0.045 

(-0.401) 

Oil   
0.032 

(0.450) 
    

0.019 
(0.247) 

    
0.015 

(0.662) 
  

Oil t-1     
0.033 

(0.468) 
    

-0.026 
(-0.349) 

    
0.018 

(0.5466) 

Adjusted R-
squared 

0.522 0.518 0.518 0.635 0.632 0.633 0.804 0.802 0.802 

Observations 113 113 113 113 113 113 113 113 113 

Region World World World 
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Panel B: four factor models for the AMG, APG and EMG indexes 

  AMG Index APG Index EMG Index 

Constant 
-0.316 

(-0.931) 
-0.228 

(-0.702) 
-0.305 

(-0.898) 
-0.207 

(-0.417) 
-0.268 

(-0.542) 
-0.214 

(-0.437) 
-0.087 

(-0.299) 
-0.072 

(-0.236) 
-0.081 

(-0.276) 

Market 
1.216*** 
(16.470) 

1.134*** 
(13.272) 

1.210*** 
(16.734) 

0.882*** 
(12.915) 

0.927*** 
(11.627) 

0.883*** 
(12.498) 

1.256*** 
(15.872) 

1.244*** 
(10.932) 

1.255*** 
(15.964) 

Size 
0.676*** 
(5.154) 

0.692*** 
(5.306) 

0.677*** 
(5.113) 

0.540*** 
(3.604) 

0.580*** 
(3.650) 

0.546*** 
(3.469) 

0.460*** 
(2.777) 

0.453*** 
(2.623) 

0.459*** 
(2.773) 

Value 
-0.281* 
(-1.724) 

-0.284* 
(-1.784) 

-0.304* 
(-1.781) 

0.203 
(1.075) 

0.156 
(0.835) 

0.187 
(1.008) 

-0.041 
(-0.234) 

-0.031 
(-0.158) 

-0.051 
(-0.305) 

Momentum 
0.032 

(0.309) 
0.001 

(0.010) 
0.024 

(0.243) 
0.042 

(0.323) 
0.052 

(0.406) 
0.038 

(0.295) 
0.097 

(1.397) 
0.094 

(1.410) 
0.011 

(1.435) 

Oil   
0.073* 
(1.803) 

    
-0.066 

(-1.419) 
    

0.011 
(0.226) 

  

Oil t-1     
0.023 

(0.763) 
    

-0.036 
(-1.148) 

    
0.011 

(0.309) 

Adjusted R-
squared 

0.829 0.836 0.832 0.689 0.690 0.688 0.875 0.874 0.874 

Observations 113 113 113 113 113 113 113 113 113 

Region North America Asia-Pacific Europe 

Panel C: four factor models for the NEX, SPG and WAEX indexes 

  NEX Index SPG Index WAEX Index 

Constant 
-0.339 

(-1.000) 
-0.315 

(-0.958) 
-0.328 

(-0.966) 
-0.958* 
(-1.843) 

-0.919* 
(-1.767) 

-0.947* 
(-1.822) 

-0.469 
(-0.970) 

-0.387 
(-0.793) 

-0.466 
(-0.954) 

Market 
1.457*** 
(20.494) 

1.406*** 
(19.804) 

1.452*** 
(20.896) 

1.666*** 
(16.570) 

1.606*** 
(14.562) 

1.654*** 
(17.707) 

1.488*** 
(14.742) 

1.364*** 
(13.492) 

1.485*** 
(14.954) 

Size 
0.812*** 
(5.372) 

0.759*** 
(4.844) 

0.807*** 
(5.365) 

0.622* 
(1.971) 

0.597* 
(1.841) 

0.618* 
(1.976) 

0.842** 
(2.406) 

0.786** 
(2.306) 

0.840** 
(2.388) 

Value 
-0.185 

(-1.344) 
-0.202 

(-1.454) 
-0.222 

(-1.499) 
-0.075 

(-0.212) 
-0.069 
(1.841) 

-0.162 
(-0.463) 

0.172 
(0.514) 

0.184 
(0.561) 

0.150 
(0.427) 

Momentum 
-0.024 

(-0.273) 
-0.047 

(-0.559) 
-0.035 

(-0.417) 
0.144 

(0.954) 
0.125 

(0.849) 
0.129 

(0.886) 
0.291 

(1.489) 
0.251 

(1.381) 
0.288 

(1.494) 

Oil   
0.060*** 
(2.244) 

    
0.060 

(1.419) 
    

0.124** 
(2.202) 

  

Oil t-1     
0.031 

(0.954) 
    

0.058 
(1.411) 

    
0.015 

(0.372) 

Adjusted R-
squared 

0.795 0.798 0.795 0.681 0.682 0.682 0.627 0.640 0.624 

Observations 173 173 173 138 138 138 137 137 137 

Region World World World 
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To test the influence on data frequency, I create a four- and five-factor model with daily data, see table 

4 panel A and B. As daily data on factors is only available for North America on Kenneth Frenchs’ 

website, I only test the AMG and CEXX indexes. Note that the AMG index is mostly but not solely 

comprised out of companies incorporated in North America, 80% of the companies is incorporated in 

the U.S.. For the AMG and CEXX indexes, the Oil factor is significant for both the four- and five-factor 

model either with or without one lag. The models improve only slightly with the use of the Oil factor, 

as the adjusted R-squared only increases by 0.005 and 0.002 for the Americas and Clean Edge index 

respectively. The factor models with daily data show that Oil is a significant risk factor but does not 

add power to the explaining factor of the models.  

 

 

 

 

 

 

 

 

Panel D: four factor models for the CEXX, CSA and DAX indexes 

  CEXX Index CSA Index DAX Index 

Constant 
-0.737 

(-1.312) 
-0.627 

(-1.138) 
-0.729 

(-1.294) 
-0.322 

(-1.059) 
-0.27 

(-0.924) 
-0.325 

(-1.058) 
-0.046 

(-0.110) 
-0.054 

(-0.126) 
-0.035 

(-0.084) 

Market 
1.540*** 
(16.733) 

1.427*** 
(11.724) 

1.533*** 
(16.235) 

1.215*** 
(18.985) 

1.137*** 
(18.055) 

1.216*** 
(19.225) 

0.975*** 
(9.186) 

0.987*** 
(9.033) 

0.969*** 
(9.067) 

Size 
0.853*** 
(4.600) 

0.890*** 
(4.702) 

0.852*** 
(4.554) 

0.251* 
(1.703) 

0.184 
(1.151) 

0.253* 
(1.680) 

0.565*** 
(2.873) 

0.576*** 
(2.850) 

0.556*** 
(2.809) 

Value 
-0.639** 
(-2.546) 

-0.631*** 
(-2.618) 

-0.663** 
(-2.502) 

0.067 
(0.443) 

0.034 
(0.229) 

0.078 
(0.527) 

-0.487** 
(-2.051) 

-0.482** 
(-2.037) 

-0.536** 
(-2.145) 

Momentum 
0.007 

(0.059) 
-0.025 

(-0.237) 
-0.001 

(-0.009) 
0.215*** 
(2.609) 

0.172** 
(2.306) 

0.218*** 
(2.709) 

0.045 
(0.392) 

0.052 
(0.461) 

0.033 
(0.293) 

Oil   
0.097* 
(1.756) 

    
0.088** 
(2.436) 

    
-0.014 

(-0.395) 
  

Oil t-1     
-0.024 
(0.588) 

    
-0.009 

(-0.262) 
    

0.043 
(0.945) 

Adjusted R-
squared 

0.754 0.759 0.752 0.718 0.731 0.716 0.457 0.454 0.457 

Observations 102 102 102 172 172 172 172 172 172 

Region North America World World 
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Table 4 - Results Daily Four and Five Factor Models 

This table shows the results for the four and five factor models with daily returns data, without the added oil factor, with the 
oil factor and with the lagged one period oil factor. Panel A shows the results for the four factor models and Panel B for the 
five factor models. Only data indexes with a majority of U.S. listed firms in their portfolio have been used, as there is only 
U.S. data available for the daily factors. The sample period for the AMG index is 01-01-2006 up to 01-07-2015, for the CEXX 
index the sample period is 01-01-2007 up to 01-07-2015. Robust t-values are reported between parentheses, which are 
corrected for autocorrelation and heteroscedasticity using the Newey-West estimator. ***, ** and *, denote the 
significance level of the coefficients on the respectively 1%, 5% and 10% level (two-tailed) 

Panel A: four factor models with daily data 

 AMG Index CEXX Index 

Constant 
-0.012 

(-0.878) 
-0.010 

(-0.763) 
-0.012 

(-0.880) 
-0.025 

(-1.026) 
-0.023 

(-0.971) 
-0.025 

(-1.034) 

Market 
1.148*** 
(56.945) 

1.113*** 
(57.288) 

1.152*** 
(56.390) 

1.378*** 
(38.111) 

1.333*** 
(36.099) 

1.381*** 
(37.807) 

Size 
0.273*** 
(6.509) 

0.286*** 
(7.314) 

0.271*** 
(6.547) 

0.664*** 
(8.963) 

0.680*** 
(9.618) 

0.662*** 
(8.997) 

Value 
-0.183*** 
(-3.976) 

-0.189*** 
(-4.472) 

-0.187*** 
(-4.115) 

-0.341*** 
(-4.847) 

-0.341*** 
(-5.094) 

-0.344*** 
(-4.931) 

Momentum 
0.001 

(0.022) 
0.001 

(0.105) 
-0.001 

(-0.026) 
-0.105** 
(-2.011) 

-0.098** 
(-2.036) 

-0.107** 
(-2.053) 

Oil   
0.060*** 
(7.224) 

    
0.075*** 
(5.128) 

  

Oil T-1    
-0.023*** 

(2.894) 
  

0.022* 
(1.889) 

Observations 2350 2350 2350 2126 2126 2126 

Adjusted R-
squared 

0.827 0.832 0.827 0.754 0.759 0.754  

Region North America North America 

Panel B: five factor models with daily data 

 AMG Index CEXX Index 

Constant 
-0.004 

(-0.290) 
-0.003 

(-0.221) 
-0.004 

(-0.291) 
-0.009 

(-0.385) 
-0.008 

(-0.360) 
-0.009 

(-0.391) 

Market 
1.097*** 
(53.787) 

1.073*** 
(54.108) 

1.102*** 
(53.302) 

1.277*** 
(34.614) 

1.252*** 
(33.178) 

1.281*** 
(34.323) 

Size 
0.239*** 
(5.920) 

0.249*** 
(6.536) 

0.239*** 
(5.945) 

0.590*** 
(10.108) 

0.601*** 
(10.532) 

0.59*** 
(10.142) 

Value 
-0.231*** 
(-5.164) 

-0.247*** 
(-6.014) 

-0.230*** 
(-5.189) 

-0.359*** 
(-5.308) 

-0.370*** 
(-5.768) 

-0.359*** 
(-5.281) 

Profit 
-0.381*** 
(-5.035) 

-0.372*** 
(-5.122) 

-0.370*** 
(-4.963) 

-0.845*** 
(-7.768) 

-0.831*** 
(-7.698) 

-0.837*** 
(-7.722) 

Investment 
-0.452*** 
(-5.769) 

-0.383*** 
(-5.025) 

-0.453*** 
(-5.845) 

-1.016*** 
(-8.709) 

-0.953*** 
(-8.342) 

-1.017*** 
(-8.768) 

Oil   
0.049*** 
(6.345) 

    
0.049*** 
(3.848) 

  

Oil T-1    
0.020*** 
(2.870) 

  
0.016 

(1.440) 

Observations 2350 2350 2350 2126 2126 2126 

Adjusted R-
squared 

0.836 0.84 0.837 0.781 0.783 0.781 

Region North America North America 
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4.2. DCC-GARCH 

In this paragraph I will discuss the results from the DCC-GARCH models. The table 5 panel A and B show 

the parameters resulting from the DCC-GARCH models for all indexes.  

The mean variable 𝜇𝑖  represents the dependence of current returns on their one period lag returns. 

As we can see from the tables, all indexes are significantly dependent on their one period lag return. 

For the Oil returns this is only the case for the models with the longest data horizon (NEX, CSA, ET50, 

MXWO, SP), and even for those models only on the 10% level.  

The term 𝑐𝑖 stands for the constant term of conditional variance function (equation (13)). The terms 

𝛼𝑖 and 𝛽𝑖 stand for the ARCH and GARCH terms respectively and are important for explaining the 

conditional variance. The ARCH term reflects short term persistence, whereas the GARCH term 

represents long term persistence. All of the terms across the different indexes are highly significant 

and the coefficients are similar. The GARCH terms are close to one, whereas the ARCH terms are much 

smaller, meaning that the long-term persistence is higher for all returns series than the short-term 

persistence. 

Terms 𝑎𝑖  and 𝑏𝑖 represent the conditional correlation terms from equation (18), all of the terms are 

significant at the one percent level. For all models the coefficients of the conditional correlation terms 

sum up to a value of slightly less than one, meaning that the values in the conditional covariance matrix 

are positive and finite. The sum of the terms close to one, means that the conditional correlation 

between all indexes and oil is very dynamic.  
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Table 5 – DCC-GARCH Parameters 

Table 5 shows the parameters of the univariate GARH models, followed by the parameters for the dynamic conditional correlation (𝑎 and 𝑏). The mean variables (𝜇1 

and 𝜇2) stand for the effect of last period returns on current returns. The ARCH terms (𝛼11 and 𝛼21) measure the short-term persistence, the GARCH terms (𝛽11 and 

𝛽21) measure the long-term persistence. The t-values are reported between parentheses. ***, ** and *, denote the significance level of the coefficients on the 

respectively 1%, 5% and 10% level (two-tailed) 

Panel A: DCC-GARCH parameters 

 NEX Solar Wind EST AMG EMG APG 

Mean_Index (𝜇1) 
0.087*** 
(4.763) 

0.081** 
(2.174) 

0.097*** 
(3.888) 

0.099*** 
(4.697) 

0.076*** 
(3.237) 

0.109*** 
(4.240) 

0.077*** 
(3.680) 

Mean_Oil (𝜇2) 
0.051* 
(1.710) 

0.019 
(0.579) 

0.019 
(0.577) 

0.019 
(0.576) 

0.019 
(0.577) 

0.019 
(0.577) 

0.019 
(0.577) 

Constant_Index (𝑐1) 
0.020*** 
(3.470) 

0.073*** 
(2.891) 

0.057*** 
(3.656) 

0.027*** 
(3.144) 

0.034*** 
(3.624) 

0.038*** 
(3.493) 

0.029*** 
(3.329) 

Constant_Oil (𝑐2) 
0.026** 
(2.314) 

0.024** 
(2.181) 

0.024** 
(2.185) 

0.024** 
(2.187) 

0.024** 
(2.183) 

0.024** 
(2.184) 

0.024** 
(2.186) 

ARCH_Index (𝛼11) 
0.079*** 
(7.285) 

0.076*** 
(4.844) 

0.089*** 
(5.926) 

0.085*** 
(6.413) 

0.088*** 
(7.149) 

0.096*** 
(7.078) 

0.094*** 
(7.479) 

ARCH_Oil (𝛼21) 
0.051*** 
(5.047) 

0.058*** 
(5.374) 

0.058*** 
(5.379) 

0.058*** 
(5.385) 

0.058*** 
(5.363) 

0.058*** 
(5.376) 

0.058*** 
(5.374) 

GARCH_Index (𝛽11) 
0.911*** 
(75.150) 

0.905*** 
(45.941) 

0.882*** 
(47.799) 

0.896*** 
(54.425) 

0.896*** 
(65.803) 

0.890*** 
(62.511) 

0.889*** 
(61.278) 

GARCH_Oil (𝛽21) 
0.945*** 
(90.759) 

0.938*** 
(82.427) 

0.938*** 
(82.495) 

0.938*** 
(82.475) 

0.938*** 
(82.382) 

0.938*** 
(82.390) 

0.938*** 
(82.398) 

DCC1 (𝑎) 
0.020** 
(3.209) 

0.014** 
(2.208) 

0.012*** 
(3.827) 

0.026*** 
(3.490) 

0.024*** 
(3.501) 

0.017*** 
(3.211) 

0.006** 
(2.521) 

DCC2 (𝑏) 
0.976*** 
(116.638) 

0.984 
(116.896) 

0.986*** 
(249.504) 

0.969*** 
(98.093) 

0.972*** 
(108.537) 

0.979*** 
(137.885) 

0.992*** 
(254.911) 

        

𝑎 + 𝑏 0.997 0.998 0.998 0.995 0.996 0.997 0.998 

Log L -13853 -9898 -9083 -8579 -9052 -9225 -8826 

AIC 7.330 7.991 7.334 6.928 7.310 7.449 7.127 

Observations 3783 2480 2480 2480 2480 2480 2480 
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Panel B: DCC-GARCH parameters continued 

 CEXX SPG CSA DAX WAEX ET50 MXWO SP500 

Mean_Index (𝜇1) 
0.078** 
(2.181) 

0.079*** 
(3.273) 

0.082*** 
(5.095) 

0.067*** 
(3.656) 

0.080*** 
(3.493) 

0.076*** 
(4.364) 

0.048*** 
(4.051) 

0.049*** 
(3.726) 

Mean_Oil (𝜇2) 
0.032 

(0.908) 
0.038 

(1.200) 
0.052* 
(1.737) 

0.048 
(1.629) 

0.038 
(1.202) 

0.056* 
(1.938) 

0.056* 
(1.936) 

0.056* 
(1.935) 

Constant_Index (𝑐1) 
0.066*** 
(3.030) 

0.033*** 
(3.285) 

0.017*** 
(2.828) 

0.027*** 
(2.699) 

0.031*** 
(2.930) 

0.021*** 
(3.339) 

0.009*** 
(3.556) 

0.015*** 
(3.499) 

Constant_Oil (𝑐2) 
0.023** 
(2.181) 

0.023** 
(2.316) 

0.024** 
(2.489) 

0.026** 
(2.269) 

0.023** 
(2.317) 

0.025** 
(2.289) 

0.025** 
(2.291) 

0.025** 
(2.288) 

ARCH_Index (𝛼11) 
0.083*** 
(6.090) 

0.085*** 
(6.590) 

0.078*** 
(5.633) 

0.088*** 
(5.331) 

0.081*** 
(5.638) 

0.090*** 
(6.189) 

0.084*** 
(7.698) 

0.085*** 
(7.974) 

ARCH_Oil (𝛼21) 
0.058*** 
(5.430) 

0.053*** 
(6.276) 

0.049*** 
(7.203) 

0.052*** 
(4.928) 

0.053*** 
(6.266) 

0.050*** 
(5.094) 

0.05*** 
(5.108) 

0.050*** 
(5.098) 

GARCH_Index (𝛽11) 
0.901*** 
(56.285) 

0.903*** 
(63.346) 

0.911*** 
(57.472) 

0.898*** 
(44.538) 

0.905*** 
(52.679) 

0.900*** 
(58.167) 

0.907*** 
(78.863) 

0.903*** 
(79.258) 

GARCH_Oil (𝛽21) 
0.938*** 
(85.387) 

0.943*** 
(106.373) 

0.946*** 
(130.621) 

0.944*** 
(86.914) 

0.943*** 
(106.136) 

0.946*** 
(92.992) 

0.946*** 
(93.120) 

0.946*** 
(93.089) 

DCC1 (𝑎) 
0.023*** 
(3.702) 

0.017*** 
(3.295) 

0.014*** 
(3.492) 

0.019** 
(2.206) 

0.018*** 
(3.762) 

0.017** 
(2.551) 

0.023*** 
(3.631) 

0.022*** 
(3.132) 

DCC2 (𝑏) 
0.970*** 
(110.462) 

0.978*** 
(128.893) 

0.983*** 
(187.528) 

0.975*** 
(67.674) 

0.978*** 
(153.223) 

0.981*** 
(116.053) 

0.974*** 
(124.452) 

0.975*** 
(110.787) 

         

𝑎 + 𝑏 0.993 0.996 0.998 0.994 0.996 0.998 0.997 0.997 

Log L -8949 -11432 -12282 -13764 -11149 -14882 -13355 -14054 

AIC 8.072 7.621 6.977 7.325 7.435 7.368 6.612 6.958 

Observations 2220 3003 3524 3761 3002 4043 4043 4043 
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Using the results from the DCC GARCH models, I plotted the covariance matrices needed for calculating 

the conditional correlation, hedge ratios and for forecasting. The plots for the conditional covariance 

matrices can be found in Appendix B, a summary of the conditional covariance’s can be found in 

Appendix C. For all of the indexes the conditional covariance does not part a lot from the unconditional 

covariance, with the financial crisis as major exception. The financial crisis brought along a major spike 

in the conditional covariance for all indexes, after 2012 the conditional covariance seems have restored 

to pre-financial crisis levels.  

In Appendix D graph 3 we can see the dynamic correlation between the indexes and oil. The mean of 

the dynamic correlations differs from 0.218 to 0.395, the pattern in the conditional correlation is very 

similar across the different indexes with the APG index as exception. For most indexes we can observe 

a volatile period with a constant mean up until the start of the financial crisis in 2008. During 2008 the 

conditional correlations drop significantly before jumping to record high levels after which the 

conditional correlation keeps climbing until it plummets again in 2011. After the even most dramatic 

plummet in 2011, the conditional correlation forms one final peak until declining towards pre-credit-

crisis levels. For the dynamic conditional correlation between the NEX index and oil, the correlation 

ranges from -0.241 to 0.693 with a mean and median of 0.227 and 0.184 respectively.  

4.3. Hedging 

Appendix E shows the graphs of the time-varying hedge ratios. As we can see from the graphs, just like 

the conditional correlations, the dynamic hedge ratios are very volatile, showing exactly why 

computing dynamic hedge ratios are important. Portfolios constructed based on time-invariant hedge 

ratios would be inefficient for investors most of the time.  

As we can see from in the graphs, the hedge ratios appear lower than the mean in the pre-crisis years. 

During the financial crisis the hedge ratios follow a similar trend as the conditional covariance, 

gradually decreasing towards the pre-crisis levels after the initial shock. In the upwards shocks during 

and after the financial crisis, hedge ratios reach up to 2 to 3 for all indexes, meaning a 1 dollar 

investment in the index should be hedged with a short position of 2 to 3 dollars.  

Table 6 shows the summary of the time-varying hedge ratios for all indexes. Investments in clean 

energy stocks can be hedged with short positions in oil with averages ranging from 45 cents for the 

DAX index up to 75 cents for the EMG index.  
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Table 6 – Summary Time-Varying Hedge Ratios 
This table shows the summary of the time-varying hedge ratios for all 
indexes. 

 Average Minimum Maximum Standard deviation 

NEX 0.491 -0.795 2.982 0.569 

Solar 0.582 -0.094 3.855 0.472 

Wind 0.650 -0.003 2.794 0.522 

EST 0.653 -0.459 3.056 0.602 

AMG 0.681 -0.448 2.788 0.561 

EMG 0.750 -0.024 3.117 0.568 

APG 0.467 0.022 2.199 0.374 

SPG 0.580 -0.244 2.768 0.505 

CEXX 0.684 -0.368 2.799 0.533 

WAEX 0.639 -0.139 2.833 0.511 

CSA 0.704 -0.579 3.138 0.548 

DAX 0.447 -1.004 2.853 0.511 

ET50 0.478 -0.716 2.889 0.553 

MXWO 0.453 -1.143 2.962 0.621 

SP 0.324 -1.035 2.329 0.583 

 

From the different industries, Solar provides the cheapest hedge with a ratio of 0.582 and has the least 

volatile dynamic hedge ratio. Wind and EST have almost equal hedge ratios but EST is more volatile. 

From the industries the Solar index provides the best hedge, it is the on average the cheapest hedge 

and needs the least rebalancing.  

From the AMG, APG and EMG indexes, the APG provides the cheapest hedge on average. A one dollar 

investment in the APG index can be hedged with a short position in oil of 46,7 cents. The APG has also 

got the least volatile dynamic hedge ratio.  

When considering the six global indexes (NEX, SPG, WAEX, CSA, DAX, ET50), the DAX index provides 

cheapest hedge and the SPG has the least volatile dynamic hedge ratio. Interestingly, although all six 

indexes globally track clean energy stocks and attempt to provide a well-diversified portfolios, the 

different ways for constructing the portfolios obviously cause dissimilarities between the hedge ratios 

of the indexes. This stresses the importance to analyse the specific investment investors are interested 

in, to form an optimal portfolio for that specific investment.  

4.4. Out-of-sample forecasting 

Appendix F shows the graphs of the one year ahead forecasts of the covariance matrices. As we 

remember from the previous chapter, using the n-ahead forecast of Engle (2001) leads to biased 

forecasts towards their unconditional counterpart especially for longer forecasts. The patterns in the 
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graphs show how the method of Engle (2001) puts more weight on more recent data than on older 

data, but eventually the covariance will grow to the mean conditional covariance.  

The forecasts of the dynamic conditional correlation are shown in appendix G. In the forecast, all 

correlations are rising except for the correlation between the SP index and oil. For the forecast of the 

conditional correlation also holds the convergence towards the unconditional correlation in the long-

run.  

Appendix H shows the graphs of the calculated time-varying hedge ratios from July 2015 until July 

2016. As we can see, the hedge ratios are very volatile and overall lower than the mean of the sample 

period. In July 2015 investors can hedge investments in the clean energy indexes ranging from short 

positions in oil of 12 for the DAX index up to 35 cents for the CEXX index. In July 2016 this is 17,5 cents 

of the APG index up to 64 cents for the CEXX index. Judging from these hedge ratios, hedging clean 

energy indexes with oil provides efficient hedge opportunities, however as we see highly dynamic 

ratios it is important to rebalance the investors’ portfolios regularly. Of course, when considering 

transaction costs rebalancing portfolios daily is not efficient.  

Table 7 shows the average monthly hedge ratios from the one-year ahead forecast. Just like the graphs 

in Appendix H, the table shows that the all forecasted hedge ratios are lower than the average hedge 

ratios of the sample period. As we can see from the table, the EST and APG index need the least 

rebalancing from all clean energy indexes. Also note that the control group, the MSCI world index and 

the S&P500 index, are cheaper to hedge than twelve out of thirteen clean energy indexes. 
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Table 7 – Monthly One-Year ahead Forecasted Hedge Ratios 
This table shows 

 NEX Solar Wind EST EMG APG AMG SPG CEXX WAEX CSA DAX ET50 MXWO SP 

1-7-2015 0.184 0.340 0.225 0.335 0.228 0.177 0.278 0.234 0.405 0.228 0.309 0.133 0.171 0.161 0.151 

1-8-2015 0.203 0.335 0.227 0.324 0.278 0.164 0.330 0.274 0.484 0.264 0.328 0.160 0.200 0.173 0.168 

1-9-2015 0.219 0.336 0.235 0.318 0.321 0.154 0.365 0.308 0.538 0.293 0.342 0.184 0.223 0.183 0.179 

1-10-2015 0.233 0.342 0.245 0.318 0.355 0.148 0.389 0.334 0.572 0.316 0.353 0.202 0.239 0.190 0.186 

1-11-2015 0.244 0.351 0.255 0.320 0.384 0.145 0.405 0.354 0.595 0.334 0.362 0.218 0.252 0.196 0.190 

1-12-2015 0.254 0.361 0.265 0.325 0.407 0.146 0.417 0.370 0.610 0.349 0.368 0.230 0.261 0.200 0.192 

1-1-2016 0.262 0.373 0.275 0.329 0.428 0.148 0.426 0.384 0.621 0.362 0.374 0.240 0.269 0.204 0.192 

1-2-2016 0.269 0.384 0.284 0.334 0.445 0.152 0.433 0.394 0.629 0.372 0.378 0.248 0.275 0.206 0.193 

1-3-2016 0.275 0.395 0.293 0.338 0.460 0.156 0.438 0.403 0.634 0.381 0.381 0.254 0.280 0.209 0.192 

1-4-2016 0.280 0.406 0.301 0.342 0.473 0.161 0.443 0.411 0.638 0.389 0.384 0.259 0.284 0.210 0.192 

1-5-2016 0.284 0.416 0.309 0.346 0.485 0.166 0.447 0.417 0.641 0.396 0.386 0.264 0.287 0.212 0.191 

1-6-2016 0.288 0.425 0.316 0.349 0.495 0.170 0.450 0.422 0.644 0.402 0.389 0.267 0.290 0.213 0.190 

1-7-2016 0.290 0.431 0.320 0.350 0.501 0.173 0.451 0.425 0.645 0.405 0.390 0.269 0.292 0.213 0.190 

Mean real 
data 

0.491 0.582 0.650 0.653 0.750 0.467 0.681 0.580 0.684 0.639 0.704 0.447 0.478 0.453 0.324 
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5. Conclusion 

In 2012 only 11% of the global energy consumption was from low-carbon alternatives. In order to keep 

global warming within two degrees Celsius compared to the pre-industrial era, the transition to clean 

energy needs to speed up. My thesis focussed on providing more insight into the risk-return 

relationship of investments in clean energy companies and showing how investors can limit risk when 

investing in such relatively risky investments. 

 Factor modelling thirteen different clean energy indexes showed that twelve out of thirteen indexes 

did not significantly underperform the market. I therefore accept my first hypothesis, investments in 

clean energy stocks do not underperform the market. Though, investments in clean energy stocks are 

riskier than investments in the market. Twelve out of thirteen indexes have a risk exposure to the 

market larger than one, which shows the importance of research on the risk dynamics of investments 

in clean energy. These findings are consistent with a lot of articles (see Ito. et. al. (2013) and Henriques 

and Sadorsky (2008)) 

The factor models showed different results for monthly and daily data. For monthly data oil turned out 

not to be a significant risk factor for the majority of the clean energy indexes, only five out of the 

thirteen indexes were significantly exposed to the oil factor. The oil factor was significant in all cases 

for the factor models built with daily data, though the factor hardly added any explanatory power to 

the models. Oil is a significant risk factor for a part of the models I have shown in my thesis and oil 

turned out to be efficient for hedging purposes. Therefore, oil cannot be ignored as a risk factor for 

investments in clean energy companies, making this commodity a significant risk factor for clean 

energy stocks. However, for factor modelling the oil factor does not add power to the existing capital 

asset pricing models for explaining returns. 

 The results of the dynamic conditional correlation GARCH models showed conditional correlation 

estimators to be significant and added up very close to one for all clean energy indexes. This means 

the conditional correlation between the indexes and oil is very volatile, which is also clearly visible in 

the graphs of the conditional correlation. I therefore reject the hypothesis of the correlation between 

clean energy stocks and oil to be constant overtime. This means that the risk exposure of clean energy 

stocks to oil is dynamic, which investors may want to account for.  

Consistent with Sadorsky (2012), I find that oil can be an efficient hedge for investments in clean energy 

stocks. On average, investors can hedge a one dollar investment in clean energy stocks with a short 

position between 45 and 75 cents. As we have seen though, the time-varying hedge ratios are very 
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dynamic just like the dynamic conditional correlation. Investors’ portfolios would have to be 

rebalanced regularly in order to maintain an optimal hedge. 

Forecasts of the conditional covariance, conditional correlation and time-varying hedge ratios show 

how investors can use the analysis of my thesis to limit risk exposure of their investments in clean 

energy stocks. The forecasts are all mean reverting, which means the future hedge ratios will also be 

dynamic and thus portfolios may need to be rebalanced regularly for an optimal hedge. Considering 

transaction costs, I show how investors can adjust their short positions in oil on a monthly basis for 

each index. From July 2015 up to July 2016 investors can hedge their investments in clean energy stocks 

with short positions ranging from 12 to 64 cents a dollar.  

Though, limitations in my thesis should be recognized before making use of my forecasted hedge 

ratios. As most indexes are relatively new, the sample period in my research differs for several indexes 

making it hard to compare results among the different indexes. Further, multivariate GARCH modelling 

with the factor models may offer more information than the OLS regressions which I have used. For 

multivariate GARCH factor modelling, daily factors have to be constructed in order to match data from 

outside the U.S.. 

From the introduction of the GARCH model by Bollerslev (1986) the amount of varieties on GARCH 

models has exploded and there is discussion among econometricians about which models are best to 

use. In the end, the quality of GARCH models is measured by its ability to forecast. The method I used 

from Engle and Sheppard (2001) is biased towards the unconditional counterparts. The question 

remains whether the DCC GARCH model is the best model to use for forecasting and if so, better 

methods to forecast are available like rolling forecasts. Rolling forecasts are harder to implement but 

are certainly worth for future research.  
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Appendix A – Time Series plots 
Figure 1 – Time Series plots 

Figure 1 shows all plots for the raw gross total return index prices and oil prices. The blue dotted line represents the mean, the red dotted lines the mean plus and minus 

the standard deviation. 
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Appendix B – Conditional Covariance plots 
Figure 2 – Conditional Covariance plots 

Figure 2 shows the plots of the conditional covariance for all indexes. The blue dotted line represents the mean, the red dotted lines the mean plus and minus the standard 

deviation. 
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Appendix C – Summary Conditional Covariance 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 – Summary Conditional Covariance 
This table shows the summary statistics of the conditional covariance 
for all indexes.  

 Average Minimum Maximum Standard deviation 

NEX 0.853 -0.860 14.983 1.670 

Solar 1.463 -0.117 19.870 2.227 

Wind 1.099 -0.03 15.901 1.705 

EST 0.949 -0.5572 10.207 1.406 

AMG 1.238 -0.548 14.878 1.867 

EMG 1.488 -0.027 19.535 2.262 

APG 0.667 0.021 7.795 0.938 

SPG 1.344 -0.201 23.189 2.549 

CEXX 1.694 -0.658 18.226 2.341 

WAEX 1.180 -0.143 14.217 1.793 

CSA 1.086 -0.570 17.255 1.890 

DAX 0.726 -2.200 14.251 1.508 

ET50 0.819 -2.396 15.567 1.644 

MXWO 0.587 -1.614 11.056 1.252 

SP 0.486 -1.696 10.234 1.154 
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Appendix D – Dynamic Conditional Correlation plots 
 

Figure 3 – Dynamic Conditional Correlation plots 

Figure 3 shows the dynamic conditional correlation for all indexes. The blue dotted line represents the mean, the red dotted lines the mean plus and minus the standard 

deviation. 
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Appendix E – Time-Varying Hedge Ratio plots 
 

Figure 4 – Time-Varying Hedge Ratio plots 

Figure 4 shows the time-varying hedge ratios for all indexes. The blue dotted line represents the mean, the red dotted lines the mean plus and minus the standard 

deviation. 
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Appendix F – Forecasted Covariance plots 
 

Figure 5 – Forecasted Covariance plots 

Figure 5 shows the plotted one-year ahead forecasts of the covariance matrices for all indexes. 
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Appendix G – Forecasted DCC plots 
 

Figure 6 – Forecasted DCC plots 

Figure 6 shows the plotted one-year ahead forecasts for the dynamic conditional correlation for all indexes. 
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Appendix H – Forecasted Hedge Ratio plots 
 

Figure 7 – Forecasted Hedge Ratio plots 

Figure 7 shows the plots of the one-year ahead forecasts of the time-varying hedge ratios for all indexes. 
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