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ABSTRACT 
 

This paper studies different methods to estimate the volatility of index options. These 

volatilities are used as input to predict/forecast option prices with the Black-Scholes model. 

Option price predictions are compared using GARCH (1.1) model versus alternative models, 

namely, Historical volatility, EGARCH and TGARCH. As such I will calculate 4 different 

volatilities. The observations reveal significant results favouring GARCH (1.1) for the AEX 

index and TGARCH outperformed the other models for the S&P 500 index. 
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CHAPTER 1 Introduction 

 

Option pricing has been a challenging task ever since the foundation of the first financial 

options market, the Chicago Board Options Exchange (CBOE), in 1973. It was also in this year 

when Fisher Black and Myron Scholes constructed their famous option pricing formula in “The 

Pricing of Options and Corporate Liabilities” (1973). The insight that the expected return on a 

hedged position should be to equal the risk free rate, made their option pricing formula superior 

to the previously developed work. The Black & Scholes model builds on the work of Thorp and 

Kassouf (1967). They developed a hedged position which was constructed with a combination 

of shares and options on the same share. Black and Scholes made the connection that without 

arbitrage opportunities, in equilibrium; the expected return on such a hedged position should 

equal the return on a riskless asset. This was the missing link which made option pricing 

possible using the expected payoff of the hedged position, constructed by a long position the 

underlying stock and a short position in the option, and discounting it with the risk free rate. 

From that moment onwards, the Black & Scholes model has been the most applied option 

pricing technique (Hull, 2009). 

 

The Black-Scholes differential equation does not involve any variables that are affected by the 

risk preferences of investors. This is a key property, which allows for risk neutral valuation as 

a tool for option pricing. The variables that do appear into the equation are current stock price 

(S0), time (T), the risk free rate (r) and stock price volatility (σ). Of these variables only stock 

price volatility cannot be directly observed (Hull, 2009). Therefore a good estimation of this 

variable is essential for a good estimation of the option prices. This will be the main concern of 

my paper. 

 

The volatility of a stock is a measure of uncertainty about the returns provided by the stock. 

Initially historical volatility was used to estimate this variable for the Black-Scholes option 

pricing formula. In practice, traders started to use implied volatility to estimate stock price 

volatilities. Nowadays more sophisticated approaches to estimating volatility are used involving 

GARCH models. These generalized autoregressive conditional heteroskedasticity (GARCH) 

techniques are the workhorse in volatility modeling. This paper studies the option pricing 

performance of Black & Scholes using GARCH (1,1)  versus Black & Scholes using historical 

volatility and improved GARCH (1,1) models, like exponential GARCH (EGARCH and 
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Threshold GARCH (TGARCH), which captures asymmetric volatility. Further I will compute 

the errors between the model-determined prices and the real prices. In this way I can accurately 

compare these models and show, which one reflects the price in the best way. My data sample 

consists of the past recent years. It would be nice to validate these models with a recent time 

set. 

 

In the following chapter 2 I will discuss the key papers on this topic (Literature review).  

Further, the data and the testing procedure that I will be using will be discussed in chapter 3 

(Methodology and Data). Finally, I will show the results of the tests in chapter 4 (Results) and 

discuss these in chapter 5 (Conclusion).   
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CHAPTER 2 Literature Review 

 

2.1 Introduction 

 

In the past there has been much research about the GARCH (1.1) model and its modifications.  

This chapter will give a glimpse on the models used in the past and the empirical findings of 

papers in the past. Some of these models are still being used with some minor modifications. 

The backbone is the Black-Scholes model. Section 2.2 shows briefly the Black-Scholes model. 

Section 2.3 presents the historical volatility and the relation between implied volatility.  Section 

2.4 shows the history of the ARCH model. In section 2.5 the focus will be on the famous 

GARCH (1.1) model. Section 2.6 will focus on the modifications of the GARCH (1.1) model 

that captures asymmetric volatility and section 2.7 gives a summary of this chapter. 

 

2.2 Black-Scholes 

  

The Black-Scholes valuation method originally assumes stock return variance to be constant, 

meaning constant volatility (Black & Scholes, 1973). Since the derivation of their model, there 

has been speculation on the usefulness for option valuation. Most of the focus has been on the 

constant interest rate and constant volatility assumption. Already in 1973, Merton relaxed the 

interest rate assumption by allowing interest rates to be stochastic. However, it was until 1976 

when Cox and Ross came up with their constant-elasticity-of-variance model, which was less 

counterfactual than the constant volatility assumption. Later models such as those of Bailey and 

Stulz (1989) and Wiggins (1987) allowed variance to be stochastic. Empirical evidence that 

shows that these efforts have indeed improved the Black-Scholes model is found in the paper 

of Lauterbach & Schultz (1990).   

 

Nowadays traders still use the Black-Scholes model, but they allow the volatility used to price 

the option to depend on its maturity and strike price (Hull, 2009). Traders assume the 

probability distribution of an equity price to have a heavier left tail and less heavy right tail than 

the lognormal distribution assumed by Black-Scholes. This is because of significant differences 

in price observations in the market compared to the computed prices by the Black-Scholes 

model. These systematic valuation errors are documented in fact, also known as the smile effect. 
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The volatility smile has the general form illustrated in figure 1. The implied volatility is 

relatively low for at-the-money options. It becomes progressively higher as an option moves 

either into-the-money or out-of-the-money. (Hull, 2009) 

 

 Figure 1: Volatility Smile relationship between the implied volatilities and strike price for 

different option contracts with same underlying asset and maturity. 

 

 

Volatility smiles are used to allow for non-log normality (Rubinstein, 1994). This volatility 

smile curve can be found when the implied volatility of an option is plotted as a function of its 

strike price. There are multiple models to account for this smile; two branches of volatility 

models are addressed by Derman (2003). A standard stylized fact in volatility theory is that the 

empirically observed ‘smile’ and ‘skew’ shapes in Black-Scholes implied volatilities contradict 

the model assumptions (Alexander 2004). Stochastic volatility models represent the spot 

volatility or variance as a diffusion or jump-diffusion process that is correlated with the 

underlying asset (e.g. Merton 1976, Hull & White 1987). Jump-diffusion contains two parts, a 

jump part and a diffusion part. The diffusion part is determined by a common Brownian motion 

(normal price variations) and the jump is determined by an impulse-function and a distribution 

function. In other words big shocks in stock prices are not incorporated in the basic Black and 

Scholes assumptions. Jump processes can be added as these allow big jumps in stock prices. 

Jump processes can solve the problem of non-normality found in stock returns as they allow 

stock prices to change in such a way found in empirical findings.  The major drawback with the 

jump-diffusion models is that they cannot capture the volatility clustering effects.  
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Local volatility models derive spot and forward volatilities that are consistent with a ‘snap-

shot’ of implied volatilities at a particular time (e.g. Dupire 1994, Derman and Kani 1994). 

Stochastic and local volatility models have thus been regarded as two alternative and competing 

approaches to the same unobservable quantity, the spot volatility of the underlying asset 

(Alexander, 2004). However multiple papers like Implied volatility functions: empirical tests   

(Dumas et al., 1998) indicate that the delta hedging performance of local volatility models is 

worse than the Black-Scholes models. Recall delta hedging is an options strategy that aims to 

reduce the risk associated with price movements in the underlying asset by offsetting long and 

short positions. For this reason the usual conclusion is that the assumption of a deterministic 

spot volatility is too restrictive and that stochastic volatility models are more realistic (Dumas 

et al., 1998). Key is that the stochastic volatility allows for the volatility to change periodically 

(Broadie and Detemple 2004). The next step is that jump processes are to be combined with 

stochastic volatility. Jump processes are the ability for the stock index or stock prices to decline 

or to increase by a magnitude which is very uncommon when the stock returns are normally 

distributed. 

2.3 Historical Volatility 

 

Implied volatility is related to historical volatility, however they are different. Implied volatility 

is set by the option price itself, whereas historical volatility looks at the recent history of the 

underlying stocks’ price movements. The historical volatility is the volatility of a series of 

indices where we look back over the historical price path of the particular index.  Historical 

simulation, and hence its implied volatility is widely used in practice. The main reasons are the 

ease with which it is implemented and its model-free nature (Hull & White, 1987). Firstly, the 

technique clearly is very easy to implement. No parameters have to be estimated by maximum 

likelihood or any other method. Therefore, no numerical optimization has to be performed (Hull 

& White, 1987).  

 

The second advantage is more controversial since the argument is two sided. The technique is 

model-free in the sense that it does not rely on any particular parametric model such as GARCH 

for variance and a normal distribution for the standardized returns (Christoffersen and Diebold, 

2000). Historical volatility lets the past m data points speak fully about the distribution of 

tomorrow’s return without imposing any further assumptions. Hence this has its drawbacks but 

also its advantages such that it doesn’t rely on modeling assumptions which can be biased once 
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the model is poor (Christoffersen and Diebold, 2000).  Nevertheless, the drawbacks of a 

historical volatility model are considerable; the choice of the data sample length, m, is one.  

 

2.4 ARCH Model 

 

Compared with the other types of volatility models, the historical volatility models are the 

easiest to manipulate and construct (Vitiello & Poon, 2008). Studies that find historical 

volatility models forecast better than ARCH models, include Taylor (1987) and Schert & 

Seguin (1990).  

 

The GARCH model family started with the Autoregressive Conditional Heteroscedasticity 

(ARCH) model, which was initially introduced by Engle (1982). The key characteristic of this 

model is that its conditional variance varies over time. It is both logically inconsistent and 

statistically inefficient to use volatility measures that are based on the assumption of constant 

volatility over some period when the resulting series moves through time (Campbell, Lo, and 

MacKinlay 1997, p.481). Hence, the major contribution of the ARCH literature is the finding 

that apparent changes in the volatility of economic time series may be predictable and result 

from a specific type of nonlinear dependence rather than exogenous structural changes in 

variables (Bera and Higgins 1993). Advantages to ARCH models are simple and easy to handle, 

ARCH models take care of clustered errors, ARCH models take care of nonlinearities and 

ARCH models take care of changes in the econometrician’s ability to forecast (Bera and 

Higgins 1993).  

 

The ARCH model was generalized by Bollerslev (1986), who came up with the Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) model as an extension of the ARCH 

model. It is considered to be a financial time series-forecasting model, which enables 

researchers to resolve some of the Black and Scholes model flaws. It assumes that the 

randomness of the variance process varies with the variance and it is able to replicate a 

significant number of the conformed facts found in empirical financial time series. Since then, 

many researchers have tried to expand and use these models in several applications. 
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2.5 GARCH (1.1) Model 

 

Jin-Chuan Duan developed an option-pricing model using GARCH (1.1) asset return process 

in his paper “the GARCH option pricing model” (1995). Moreover, many empirical studies 

concerning the use of GARCH models for option prices have already taken place. For example 

Peter Christoffersen and Kris Jacobs in their paper “which GARCH model for option valuation” 

(2004), compare a number of GARCH models through a divergent dimension, using option 

prices and returns assuming the risk-neutral measure. Furthermore, Lars Stentoft in his paper 

“American Option Pricing using GARCH models and the Normal Inverse Gaussian 

distribution” (2008) used a GARCH (1.1) process to suggest a way of pricing American options 

in a model with time varying volatility and conditional skewness and leptokurtosis. 

 

An advantage of this model is that tomorrow’s variance is calculated as a weighted average of 

the long-run variance, today’s squared return and today’s variance. In this way, recent variances 

are given more weight. One minor disadvantage of the GARCH (1.1) model is that it does not 

allow for the leverage effect i.e. the conditional volatility goes up when the market goes down. 

More will follow on the leverage effect in section 2.6 

 

2.6 Models that capture asymmetric volatility 

 

Despite the success of the GARCH (1.1) model, it has therefore also been criticized since the 

framework fails to capture asymmetric volatility. Many researchers tried to adjust and improve 

the GARCH (1.1) model. The asymmetric effect or leverage effect occurs when bad news, 

negative shocks increases predictable volatility more than good news or positive shocks of 

similar magnitude (Engle and Ng, 2003). This phenomenon is called the leverage effect, 

because it assumes increased leverage increases volatility. More specifically, a negative return 

on an equity stock implies a lower equity value. When we assume that the debt level stays 

constant then the company becomes more highly levered and therefore more risky, which 

increases volatility (Christoffersen, 2003).  
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2.6.1 EGARCH 

 

To deal with asymmetric effects of news that reflect the correlation between asset return and 

volatility, Nelson (1991) proposed Exponential GARCH (EGARCH). The EGARCH model 

differs on two aspects from the GARCH (1.1) model. First, according to EGARCH good news 

and bad news have a different impact on volatility and second, it allows big shocks to have a 

greater impact on volatility than in the GARCH (1.1) model.  

 

2.6.2 NGARCH 

 

Another asymmetric model that improves the GARCH (1.1) framework is the Non Linear 

GARCH model (NGARCH). The NGARCH model is a generalization of the Bera and Higgins 

(1993) model, a model that only contained ARCH lags. In this NGARCH model, the 

asymmetric effect depends upon the standard deviation (Longmore and Robinson, 2004). 

 

2.6.3 GJR-GARCH 

 

Moreover, another asymmetric model is the GJR-GARCH (GJR model) developed by 

Glosten, Jagannathan and Runkle (1993), which is based on the assumption that bad news has 

a higher impact than good news. This model is also designed to capture the leverage effect 

between asset return and volatility. However, the way this model is applied is not the same as 

EGARCH model. In the EGARCH model, the leverage coefficients are directly applied to the 

actual innovations while the leverage coefficients of the GJR model can connect to the model 

through an indicator variable. In this case the leverage coefficients should be negative for the 

EGARCH model and positive for the GJR model, when the asymmetric effect occurs. 

 

2.6.4 TGARCH 

 

In addition, another model that captures the stylized fact known as leverage effect is the 

Threshold GARCH model (TGARCH). Again, this implies that negative news tends to increase 

volatility by a larger amount than positive news (Francq and Zakoian 2010). Thus this model 

allows for negative asymmetric volatility, due to the extra weight that is given to the most recent 
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negative returns. Zakoian introduced the TGARCH model in 1994. This model can be used as 

an effective tool to estimate the asymmetric relation between past returns and volatility. The 

TGARCH model is also referred to as the ZARCH or the ZGARCH model. The basic idea 

behind this model is closely related to that of the GJR model with the exception that it is the 

conditional standard deviation that is modeled and not the conditional variance (Longmore & 

Robinson, 2004). Due to this high similarity between GJR and TGARCH I will only use 

TGARCH in this paper. The TGARCH model does not draw on the underlying assumption of 

the Black & Scholes model that asset prices follow a geometric Brownian motion. Which states 

that it does not capture the stylized observations that asset returns are lognormal distributed. 

The TGARCH model uses a volatility function that is time varying and also incorporates the 

asymmetrical reaction of volatility on unanticipated returns. 

 

Several empirical studies give an indication that of these EGARCH and TGARCH models, the 

TGARCH model gives the most accurate volatility forecasts. There is strong evidence that the 

modeling of asymmetric components is much more important than specifying the error 

distribution for improving the volatility forecasts of financial returns in the presence of fat-tails, 

leptokurtosis, skewness and the leverage effect. Furthermore, if asymmetric effects are 

neglected, the GARCH (1.1) model with normal distribution is more preferable than those 

models with more sophisticated error distributions. This suggests that when we allow for a 

flexible error distribution, it does not lead to significant improvements in volatility forecasts.

   

2.7 Summary 

 

The backbone of my research is the Black-Scholes model that concentrates on the volatility. 

Further it explains the advantage and disadvantage of the historical volatility model.  The 

ARCH models are easy to use and it deals with nonlinearities, which results in better 

forecasting. In my research I will only use historic volatility, GARCH (1.1), EGARCH and the 

TGARCH forecasting models. 
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CHAPTER 3 Methodology and Data 

 

3.1 Introduction  

 

In this chapter I will study different methods to estimate volatility and use those to predict 

option prices with the Black-Scholes model. The main aim is to compare these option price 

predictions using GARCH (1.1) model versus alternative models, namely, historical volatility, 

EGARCH and TGARCH. This chapter shows the hypothesis, formulas, explains and describes 

the models. 

 

3.2 Hypothesis 

 

H0: My observations show no significant improvements (over GARCH (1.1)) in option 

pricing due to extended models (namely Historical Volatility, EGARCH and TGARCH) 

 

HA:  The additional, more extensive models (over GARCH (1.1) have additional explanatory 

power and hence will be able to approximate prices significantly better.  

 

My goal is to find the best volatility-forecasting model. Therefore I will evaluate the volatility 

forecasting performance through the Black-Scholes (B-S) model. As such, the model that 

predicts option prices most accurately will be regarded as preferable volatility-forecasting 

model.  

  

3.3 Black-Scholes (B-S) model 

 

To test my hypothesis, I will use different models to estimate the volatility of the underlying 

indices. I will investigate the market price of different European options on indices and its 

corresponding option prices computed through the B-S model for European call options 

discussed here: 

 

 𝑐 = 𝑆0 𝑁(𝑑1) − 𝐾𝑒−𝑟𝑇𝑁(𝑑2)        (1) 
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 𝑑1 =
ln(

S0
K

)+(𝑟+
𝜎2

2
)𝑇

𝜎√𝑇
         (2) 

 𝑑2 = 𝑑1 − 𝜎√𝑇         (3) 

 

The B-S formula includes the term ‘S’ which is the price of the stock, ‘K’ the strike price op 

the option and ‘T’ the current time to maturity of the option. The terms ‘N (d1)’ and ‘N (d2)’ 

are the cumulative normal distribution functions and the term ‘r’ is the risk free interest rate of 

the option. As a proxy for the risk free rate I used daily one-week LIBOR rates. 

 

3.4 Historical volatility model 

 

The B-S model uses the historical volatility that is calculated by making use of the formula: 

 

 𝜎𝑡
2 = 1/(𝑚 − 1) ∑ (𝑅𝑡−𝑖 − �̅�)2𝑚

𝑖=1        (4) 

 

This formula presents the parameter ‘m’, which is the total number of observations included in 

the approximation and ‘R’ is the corresponding return, or the percentage change in the market 

variable, which can be calculated through:  

 

 𝑅𝑡 = (𝑆𝑡 − 𝑆𝑡−1)/𝑆𝑡−1        (5) 

 

3.5 GARCH (1.1) model  

 

The simplest GARCH model for computing dynamic variance is usually referred to as GARCH 

(1.1) and can be written as follows: 

  

𝜎𝑡+1
2 = 𝜔 + α𝑅𝑡

2 +  𝛽𝜎𝑡
2        (6) 

With,  

  𝛼 + 𝛽 < 1 

  𝜎2 = 𝜔 (1 −  𝛼 −  𝛽) 

 

 



 19 

Where ‘Rt’ stands for the asset return and ‘σ2’ for the long-run average variance, and α  measures 

time-variation in conditional variances and β measures shocks. Certain advantages to this model 

are that tomorrows’ variance is calculated as a weighted average of the long-run variance, 

today’s squared return and today’s variance. In this way, recent variances are given more 

weight. This can be seen from the following: 

   

𝜎𝑡+1
2 = (1 −  𝛼 −  𝛽) 𝜎2 +  𝛼𝑅𝑡 

2 +  𝛽𝜎𝑡
2 =  𝜎2 +  𝛼 (𝑅𝑡

2 −  𝜎2) +  𝛽 (𝜎𝑡
2 −  𝜎2)   (7) 

 

In order to forecast future variance for horizon ‘k’ I applied the following formula: 

 

𝐸𝑡 (𝜎𝑡+𝑘
2 ) −  𝜎2 = (𝛼 +  𝛽) 𝐾1 (𝜎𝑡−1

2 −  𝜎2)      (8) 

 

The persistence of the model is (α+β), and this is an indicator about the time a shock will persist. 

Hence, the closer (α+β) is to zero, the longer a shock will push variance away from its long-

run average.  

 

3.6 EGARCH model 

 

The EGARCH model of Nelson (1991) provides an asymmetric model with the following 

equation:  

 

 Log(𝜎𝑡+1
2 ) = 𝜔 + 𝛼 (∅𝑅𝑡 + 𝛾[|𝑅𝑡| − 𝐸|𝑅𝑡|]) + 𝛽 log(𝜎𝑡

2)    (9) 

 

In the formula, the coefficient ‘γ’ captures the asymmetric impact of news with negative shocks 

having a greater impact than positive shocks of an equal magnitude. When γ < 0, than the 

volatility clustering effect will be captured by a significant ‘α’. Using the log form allows the 

parameters to be negative without conditional variance becoming negative. 
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3.7 TGARCH model 

 

The third asymmetric model we address is the TGARCH with the following formula: 

 

 𝜎𝑡+1
1/2

1 = 𝜔 + 𝛼𝑅𝑡
1/2

+ 𝛾𝑑𝑡𝑅𝑡
1/2

+ 𝛽𝜎𝑡
1/2

      (10) 

 

Where d = 1 if 𝑅𝑡 < 0 and d = 0 if 𝑅𝑡 ≥ 0 

 

As it becomes apparent, the TGARCH formula incorporates a new component ‘𝛾𝑑𝑡𝑅𝑡
1/2

’   with 

a dummy variable ‘d’. Rephrased, this improves the GARCH (1.1) model. The parameter ‘γ’ 

gives extra weight to the most recent returns ‘𝑅𝑡
1/2

 ’, which depends on whether ‘𝑅𝑡
1/2

’ is 

positive or negative. In short, TGARCH model allows for negative asymmetric volatility due 

to the extra weight that is given to the most recent negative returns. 

 

3.8 Performance measure and Diebold Mariano test 

 

Furthermore, I will measure the performance of these GARCH models by evaluating the pricing 

errors of the models used, which can be expressed through: 

 

  𝑃𝑡 = 𝑅𝑡 −  𝑀𝑡         (11) 

 

Where ‘𝑃𝑡’ stands for the pricing error for an option at time ‘𝑡’, ‘𝑅𝑡 ’ is the real market price for 

this option and ‘ 𝑀𝑡’ is the model-determined price. 

 

I will implement this formula to all daily option prices. Given that the errors could be positive 

or negative, I will make use of the square amount of the pricing errors. The Root Mean Squared 

Error (RMSE) is then the square root of the average of the squared pricing errors of options in 

the whole sample. This is given by the formula: 

 

 𝑅𝑀𝑆𝐸 = √∑ 𝑃𝑖
2𝑇

𝑖=1

𝑇
                   (12) 
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The variable T is the lifetime of the options in our sample. The smaller RMSE gets, the smaller 

pricing errors are which subsequently means a better price forecasting. Looking only at the 

RMSE outcomes shows us only which model is more accurate, however, what I am actually 

interested in is whether there is a significant difference between the errors of the models. This 

will be done by the Diebold Mariano test: 

 

      𝐷𝑡 = 𝑃𝑗 − 𝑃ℎ           (13) 

 

Where ‘𝑃𝑗’ denotes the pricing error of GARCH (1.1), ‘𝑃ℎ’ denotes the other models (Historical, 

EGARCH and TGARCH). ‘𝐷𝑡’ is the difference between the pricing errors of the two models 

that are tested.  

 

The Diebold Mariano null hypothesis states that there is equal predictive accuracy between the 

models, in other words: 

 

      𝐻𝑜: 𝐸⌈𝐷𝑡⌉ = 0                    (14) 

 

Before testing the null hypothesis the average of the differences need to be calculated,  

 

    �̅� =
∑ 𝐷𝑡

𝑇
𝑡=𝑡0

𝑇
           (15) 

 

Than the null hypothesis will be tested with a normal T-test: 

 

    𝑇𝑡𝑒𝑠𝑡 =
�̅�

(
𝑉𝑎𝑟(�̅�)

𝑇
)1/2

                            (16) 

 

This means rejecting the null hypothesis of equal predicative accuracy at the 5% significance 

level if 

 

   |𝑇𝑡𝑒𝑠𝑡| > 1.96 

 

This test is essential and will allow me to validly test my hypothesis. 
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3.9 Data 

 

In order to test my hypothesis and the models I have obtained the data. I will need extensive 

data in order to obtain the parameters in the models used. The first step of the analysis is to use 

real historical data. A logical choice for the data would be active options with transparent data 

prices and which are most liquid. For this reason I have chosen for the AEX index and the S&P 

500 index. By making my choice I concentrated on option on indices instead of on single stock. 

The main reason for this particular choice is that these options will be less influenced by 

company specific information and hence more representative as a market. The data consists of 

daily closing values for a time horizon of 2480 trading days starting from July 1st 2002 to 

December 31st 2012. The reason for selecting this sample size, is the benefit of a more precise 

estimates due to a longer sample. After computing the optimal parameters for the GARCH-

models with the help of the maximum likelihood estimation method, I will be heading to the 

second part of this paper: comparing the actual option prices with the prices calculated with the 

GARCH-models. For this out-of-the-sample test I have collected European call options prices 

on each of the two indices starting from January 1st, 2012 to December 31st, 2012. Call options 

are chosen for our analysis, but put options could have been used to the same extend. Given 

put-call-parity this choice is irrelevant since, for a given strike price and maturity the correct 

volatility for European put or call options should be the same, when used to predict option 

prices with the Black-Scholes model (Hull, 2009). Both the closing values as the option prices 

were obtained from DataStream. The options prices are observed daily and we used options 

maturing at June, July and August 2012. For these 3 maturities we chose 3 different strike 

prices, namely in-the-money (ITM), out-of-the money (OTM) and at-the-money (ATM). 

Similar to Hughen & Clark (2011), I choose options with moneyness between 85% and 115%. 

This is because this will cover the three classes and these are the options that are most traded. 

As such the following strike prices were obtained for the S&P500; 1035 (June), 1085 (July) and 

1110 (August). For the AEX I choose 285 (June), 305 (July) and 320 (August). Following 

Heston & Nandi (2000) and Hughen (2011) we limited the maturities of the options to; greater 

than 10 days and less than 100 days. In total we gather 475 options on the S&P500 and 360 

options on the AEX index. Moreover, we used the daily one week LIBOR rates as a proxy for 

the risk free rate, as is usually done by traders in practice (Hull, 2009).   
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3.10 Summary 

 

This chapter has described the models that are used and explains the variables in the models. 

Further it explains why there is the need to measure the performance through the Diebold 

Mariano test. It also explains why I choose the data sample for both the indices. 
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CHAPTER 4 Results 

 

4.1 Introduction  

 

In this chapter I will discuss the results that I have retrieved from E-views. First we will look 

at the estimated parameters for both indexes.  Furthermore we will talk about the predicted 

volatilities and try to explain it and look at the distributions.  

 

4.2 Estimated Parameters  

 

As explained in the methodology part, we need the parameters for the GARCH models to 

forecast the volatilities. In the tables below, the estimated parameters of our within sample are 

shown for the GARCH models of both stock indices. One important point worth mentioning is 

that omega () is negative for EGARCH. Since EGARCH doesn’t put a restriction on to 

be positive this is possible. Furthermore, the parameter estimations are shown in the tables 1A 

and 1B, and used as input for formulas 6-11.  

 

 

Table 1A. Estimated parameters 

AEX stock index 

Parameters 
GARCH (1.1) EGARCH TGARCH 

a0 0.0986 
0.2108 -0.0169 

b0 0.8945 0.9884 0.9325 

w0 1.62E-06 -0.2636 1.52E-06 

g NA NA 0.1482 

a*g NA NA -0.0025 

Persistence 9.93E-01 - - 

Daily Long-run volatility 0.02% - - 

Annual Long-run volatility 
0.2447 

- - 

Long-run average variance 
0.0037 

- - 
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Table 1B. Estimated parameters 

S&P 500 stock index 

Parameters GARCH (1.1) EGARCH TGARCH 

a0 0.0656 0.1325 
0.0003 

b0 0.9203 0.9875 0.9256 

w0 2.07E-06 -0.2126 2.18E-06 

g NA NA 0.1159 

a*g NA NA 4.441E-05 

Persistence 9.86E-01 - - 

Daily Long-run volatility 0.01% - - 

Annual Long-run volatility 0.1921 - - 

Long-run average variance 0.0023 - - 

 

4.3 Predicted volatilities  

 

The volatilities predicted with these parameters are shown in figures 1A and 1B. In figures 1A 

and 1B the GARCH models: GARCH (1.1), TGARCH and EGARCH follow a similar pattern. 

The historical volatility has in both figures the highest volatility, for this reason we can say that 

the historical volatility overestimates the volatility in comparison to the other models in our out 

of the sample period, which we expect to give the least accurate prices. Also worth mentioning 

is that the historical volatility in Figure 1A will also result in less accurate prices. In figure 1B 

we will expect only small minor differences in the pricing errors between the models, because 

they have a similar pattern and do not fluctuate far from each other.  
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Figure 2A. Out-of-the-sample forecasted volatilities for AEX index for the period 1/1/2012 to 

31/12/2012 

 
 

 

 

 

Figure 2B. Out-of-the-sample forecasted volatilities for S&P 500 index for the period 1/1/2012 to 

31/12/2012 
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The forecasted volatilities are higher for the AEX index than for the S&P 500 index. One 

possible explanation is that the historical distribution of the returns of AEX index fluctuates 

more than the S&P 500 index, which is shown in figure 2.  

 

 

Figure 3. Within-the-sample returns for the period 01/07/2002 to 31/12/2011 

 
 

 

 

Furthermore, the parameters will help us calculate the option prices according to each model, 

which we then will compare with the real option prices. In the investigation on volatilities 

through different models we have conducted multiple tests as discussed in our methodology. 

From our analysis on the AEX index and S&P 500 index, the results in Tables 2A and 2B were 

obtained. 

 

 

Table 2A. Root Mean Squared Errors for AEX index for all options, OTM, ATM and ITM 

  Historical GARCH (1.1) EGARCH TGARCH 

All options 3.5884 2.2576 5.1854 2.8905 

OTM 2.7786 2.7905 4.5482 3.3313 

ATM  4.7602 2.8207 4.8685 1.8412 

ITM  2.3212 2.2027 4.6767 0.6128 

 

In the table above it is clearly shown that the Root Mean Squared Error (RMSE) is lowest for 

the GARCH (1.1) option prices. Hence, the GARCH (1.1) outperforms the other models.  
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This is also consistent with my hypothesis. However, when dividing the options into different 

classes (OTM, ATM and ITM) I find that GARCH (1.1) only outperforms the others in the 

OTM class. For the classes ATM and ITM the results show that the TGARCH model gives the 

most accurate option prices. Moreover, the GARCH (1.1) and TGARCH included in my 

research always outperform the EGARCH and Historical model. 

 

 

Table 2B. Root Mean Squared Errors for S&P 500 index for all options, OTM, ATM and ITM 

  Historical GARCH (1.1) EGARCH TGARCH 

All options 7.5949 7.5200 8.2672 7.2729 

OTM 7.4644 7.8800 7.2200 6.9842 

ATM  11.056 8.2412 6.2407 10.7914 

ITM  4.1215 5.5900 5.4712 6.2547 

 

 

From my analysis for the S&P 500 index, the results in Table 2B were obtained. In this table 

we can observe that the TGARCH has the lowest RMSE for the option prices. As such, we 

regard TGARCH as the preferable volatility forecaster for the whole index. Once we divide the 

option classes TGARCH competes with Historical volatility and EGARCH for (OTM). For the 

class (ATM) the EGARCH model outperforms the rest of the models. Surprisingly Historical 

volatility outperforms the other models in the (ITM) class. 

 

When comparing Table 2A and 2B, we can see that the RMSE for the S&P 500 index are overall 

higher than the AEX outcome. The reason for this is the bigger change in the pricing error. 

 

In order to test my hypothesis, I performed a T-test. Table 3 below shows us that GARCH (1.1) 

differs significantly from the other volatility prediction models. Comparing the values from 

table 3 with the critical t-value of 1.96 (5% significance level) we could conclude that there is 

a significant difference between the two models. This is because the values are higher than the 

critical value.  Starting with the AEX index, as I observed in the tables above GARCH (1.1) 

had outperformed the other volatility models. From table 3 we can conclude that the difference 

between GARCH (1.1) and the other models is significant. All the t-values are higher than 1.96. 

The same significant outcomes could be observer for the S&P 500 index. However here was 

the GARCH (1.1) model outperformed by TGARCH. 
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Table 3 T-test values calculated from the Diebold Mariano test 

  GARCH (1,1) Historical EGARCH TGARCH 

AEX index T-test 3.2999 6.1221 4.5686 

S&P 500 Index T-test 4.5450 5.2100 5.0561 

 

 

4.4 Summary  

 

This chapter has shown the results obtained from models. The graphs and tables illustrate and 

explains the results. GARCH (1.1) outperformed the other volatility models for the AEX index 

and TGARCH outperformed the other volatility models for the S&P 500 index.  
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CHAPTER 5 Conclusion 

 

The goal of this paper was to find a volatility forecasting model which used in conjunction with 

the Black-Scholes model predicts option prices most accurately. Therefore, four different 

volatility models were chosen for our analysis: Historical volatility, GARCH (1.1), EGARCH 

and TGARCH. Based on our literature review we developed the null hypothesis which stated 

that GARCH (1.1) is the superior volatility model when used for Black-Scholes option pricing. 

To test this hypothesis European call options on the AEX index and S&P 500 index were 

chosen. As a timeframe, I choose daily closing values for a time horizon of 2480 trading days 

starting from July 1st 2002 to December 31st 2012. The within-the-sample period ranged from 

July 1st 2002 to December 31st 2011. The observed daily fluctuations in this period were used 

to find the necessary parameters of our GARCH models.  

 

The analysis of AEX index options showed that the null hypothesis could not be rejected. The 

whole sample for the AEX index showed that the RMSE was the lowest for GARCH (1.1) 

model. The T-test results showed that GARCH (1.1) volatility forecast differed significantly 

from the other volatility models. Thus this implies that GARCH (1.1) model gives indeed the 

most accurate option prices when used in conjunction with the Black-Scholes model. However 

when options were divided into classes as ATM, ITM and OTM, there were some minor 

changes. GARCH (1.1) still performed as one of the best for the class OTM. The TGARCH 

was a slight better for the class ATM and much better for the class ITM. The better performance 

of the GARCH (1.1) model could be evidence that the returns were more symmetrical 

distributed. 

 

The results found for the S&P 500 Index differed from those of the AEX index. Most 

importantly, I found the RMSE was lowest for the TGARCH once we aggregated all squared 

errors from different models. This finding indicates the null hypothesis should be rejected. This 

is completely the opposite of mine finding for the AEX index. The fact that the TGARCH 

volatilities resulted in the most accurate option prices for the S&P 500 index could indicate that 

the leverage effect is more pronounced for options on this index. As described in the literature 

review, this means that negative shocks increases predictable volatility more than good news 

or positive shocks of similar magnitude.  
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The EGARCH should have an advantage over TGARCH, that it has more flexibility. It does 

not impose any constraint on the coefficients in order for the variance to be positive. EGARCH 

formulates the conditional variance equation in terms of the log of the variance rather than the 

variance itself. Looking at my results TGARCH performed better than EGARCH. 

 

In comparison to other authors like Awartani & Corradi (2005) who did a similar research for 

the S&P 500 index their findings were the same. They had a dataset from January 1990 to 

September 2001. According to their results the asymmetric models outperformed the GARCH 

(1.1) model. This is also the case in my research. Such a finding is rather robust to the choice 

of the forecast horizon. Several empirical studies give an indication that of these EGARCH and 

TGARCH models, the TGARCH model gives the most accurate volatility forecasts. There is 

strong evidence that the modeling of asymmetric components is much more important than 

specifying the error distribution for improving the volatility forecasts of financial returns in the 

presence of fat-tails, leptokurtosis, skewness and the leverage effect. 

 

According the research of Kou (2002) the double exponential jump-diffusion model and the 

GARCH (1.1) should be the best model. However, this is not the case for my research. For the 

AEX index the GARCH (1.1) model is clearly the best performer compared to the other 

volatility models. For the S&P 500 index the inconsistency may be caused by poor volatility 

forecasting performance from the GARCH (1.1) model. The double exponential jump-diffusion 

could be better in forecasting.  This is because, my dataset consists the global financial crisis of 

October 2008. There were indeed upward and downward jumps observed in the stock market 

for the S&P 500 index. These jumps are ignored by the Black-Scholes model. 

 

To conclude, I only reject the null hypothesis for the S&P 500 index, it seems that this index 

has more exposure to the leverage effect. The TGARCH performed better for this index. The 

TGARCH model uses a volatility function that is time varying and also incorporates the 

asymmetrical reaction of volatility on unanticipated returns. Nevertheless, the null hypothesis 

was supported by the AEX index, where I found that the GARCH (1.1) had performed better 

than the other volatility models. This could be evidence that the returns are more symmetrical 

for this stock index, in other words positive and negative news are treated similar.  
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Furthermore for future research, it would be interesting to take a shorter time horizon. My 

sample size includes the financial crisis. Moreover, out-of-the-sample forecasts were predicted 

in a stable volatility period, the actual volatility did not fluctuate that much. Therefore it might 

be interesting to do a similar research with data without a financial crisis. For instance one could 

assume that the leverage effect might be less pronounced, when there is no financial crisis in 

the within-the-sample period. It would be interesting to do the same research with the double 

exponential jump-diffusion model of Kou. In this way we could validate the performance of 

this model during a crisis period with upward and downward jumps. 
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APPENDIX A S&P 500 EGARCH 
 

Dependent Variable: RSP500 egarch   

Method: ML - ARCH (Marquardt) - Normal distribution 

Date: 02/10/15   Time: 19:00   

Sample: 2 2480    

Included observations: 2479   

Convergence achieved after 19 iterations  

Presample variance: backcast (parameter = 0.7) 

LOG(GARCH) = C(1) + C(2)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(3) 

        *LOG(GARCH(-1))   
     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
      Variance Equation   
     
     C(1) -0.212616 0.025004 -8.503310 0.0000 

C(2) 0.132501 0.009102 14.55711 0.0000 

C(3) 0.987500 0.002151 458.9997 0.0000 
     
     R-squared -0.000000     Mean dependent var -5.09E-06 

Adjusted R-squared 0.000403     S.D. dependent var 0.014519 

S.E. of regression 0.014516     Akaike info criterion -6.025278 

Sum squared resid 0.522357     Schwarz criterion -6.018240 

Log likelihood 7471.332     Hannan-Quinn criter. -6.022722 

Durbin-Watson stat 2.308650    
     
     

 

APPENDIX B S&P 500 GARCH (1.1) 

 

 

 

 

 

 

 

 

 

 

 

 

Dependent Variable: RSP5001.1 garch   

Method: ML - ARCH   

Date: 02/10/15   Time: 18:52   

Sample: 2 2480    

Included observations: 2479   

Convergence achieved after 11 iterations  

Presample variance: backcast (parameter = 0.7) 

GARCH = C(1) + C(2)*RESID(-1)^2 + C(3)*GARCH(-1) 
     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
      Variance Equation   
     
     C 2.07E-06 3.11E-07 6.647496 0.0000 

RESID(-1)^2 0.065614 0.006185 10.60864 0.0000 

GARCH(-1) 0.920366 0.007559 121.7575 0.0000 
     
     R-squared -0.000000     Mean dependent var -5.09E-06 

Adjusted R-squared 0.000403     S.D. dependent var 0.014519 

S.E. of regression 0.014516     Akaike info criterion -6.044035 

Sum squared resid 0.522357     Schwarz criterion -6.036997 

Log likelihood 7494.581     Hannan-Quinn criter. -6.041479 

Durbin-Watson stat 2.308650    
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APPENDIX C S&P 500 TGARCH  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX D AEX EGARCH  

 

Dependent Variable: RAEX egarch   

Method: ML - ARCH (Marquardt) - Normal distribution 

Date: 02/10/15   Time: 18:49   

Sample: 2 2480    

Included observations: 2479   

Convergence achieved after 8 iterations  

Presample variance: backcast (parameter = 0.7) 

LOG(GARCH) = C(1) + C(2)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(3) 

        *LOG(GARCH(-1))   
     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
      Variance Equation   
     
     C(1) -0.263634 0.024645 -10.69715 0.0000 

C(2) 0.210894 0.012730 16.56676 0.0000 

C(3) 0.988456 0.002362 418.4693 0.0000 
     
     R-squared -0.000071     Mean dependent var -0.000137 

Adjusted R-squared 0.000332     S.D. dependent var 0.016278 

S.E. of regression 0.016276     Akaike info criterion -5.964279 

Sum squared resid 0.656684     Schwarz criterion -5.957241 

Log likelihood 7395.724     Hannan-Quinn criter. -5.961723 

Durbin-Watson stat 2.024699    
     
     

Dependent Variable: RSP500 tgarch   

Method: ML - ARCH   

Date: 02/10/15   Time: 18:50   

Sample: 2 2480    

Included observations: 2479   

Convergence achieved after 12 iterations  

Presample variance: backcast (parameter = 0.7) 

GARCH = C(1) + C(2)*RESID(-1)^2 + C(3)*RESID(-1)^2*(RESID(-1)<0) + 

        C(4)*GARCH(-1)   
     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
      Variance Equation   
     
     C 2.18E-06 3.30E-07 6.608772 0.0000 

RESID(-1)^2 0.000383 0.006839 0.056054 0.9553 

RESID(-1)^2*(RESID(-1)<0) 0.115953 0.012613 9.193190 0.0000 

GARCH(-1) 0.925673 0.008439 109.6909 0.0000 
     
     R-squared -0.000000     Mean dependent var -5.09E-06 

Adjusted R-squared 0.000403     S.D. dependent var 0.014519 

S.E. of regression 0.014516     Akaike info criterion -6.068122 

Sum squared resid 0.522357     Schwarz criterion -6.058738 

Log likelihood 7525.437     Hannan-Quinn criter. -6.064714 

Durbin-Watson stat 2.308650    
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APPENDIX E AEX GARCH (1.1) 

 

Dependent Variable: RAEX 1,1 garch   

Method: ML - ARCH   

Date: 02/10/15   Time: 18:51   

Sample: 2 2480    

Included observations: 2479   

Convergence achieved after 10 iterations  

Presample variance: backcast (parameter = 0.7) 

GARCH = C(1) + C(2)*RESID(-1)^2 + C(3)*GARCH(-1) 
     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
      Variance Equation   
     
     C 1.62E-06 3.43E-07 4.734468 0.0000 

RESID(-1)^2 0.098647 0.007843 12.57717 0.0000 

GARCH(-1) 0.894594 0.007774 115.0713 0.0000 
     
     R-squared -0.000071     Mean dependent var -0.000137 

Adjusted R-squared 0.000332     S.D. dependent var 0.016278 

S.E. of regression 0.016276     Akaike info criterion -5.969403 

Sum squared resid 0.656684     Schwarz criterion -5.962365 

Log likelihood 7402.075     Hannan-Quinn criter. -5.966847 

Durbin-Watson stat 2.024699    
     
     

 

APPENDIX F AEX TGARCH 

 

Dependent Variable: RAEX t garch   

Method: ML - ARCH   

Date: 02/10/15   Time: 18:51   

Sample: 2 2480    

Included observations: 2479   

Convergence achieved after 11 iterations  

Presample variance: backcast (parameter = 0.7) 

GARCH = C(1) + C(2)*RESID(-1)^2 + C(3)*RESID(-1)^2*(RESID(-1)<0) + 

        C(4)*GARCH(-1)   
     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
      Variance Equation   
     
     C 1.52E-06 2.06E-07 7.369355 0.0000 

RESID(-1)^2 -0.016990 0.007788 -2.181516 0.0291 

RESID(-1)^2*(RESID(-1)<0) 0.148283 0.012075 12.27987 0.0000 

GARCH(-1) 0.932565 0.006436 144.8958 0.0000 
     
     R-squared -0.000071     Mean dependent var -0.000137 

Adjusted R-squared 0.000332     S.D. dependent var 0.016278 

S.E. of regression 0.016276     Akaike info criterion -6.017020 

Sum squared resid 0.656684     Schwarz criterion -6.007636 

Log likelihood 7462.097     Hannan-Quinn criter. -6.013612 

Durbin-Watson stat 2.024699    
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APPENDIX G Volatility smiles 

 

 


