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Abstract
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inference techniques. The estimated models are tested empirically by forecasting out-of-sample S&P500

index option prices over the year 2014 and the results are compared with 2 competitive benchmark

models. The results show that the option implied GARCH and the Markov switching GARCH models
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well with the option implied models and generally outperforms these models for medium and long ma-

turities.

Keywords: Bayesian inference, implied calibration, GARCH option pricing, regime switching.

†Graduate student Econometrics and Management Science at the Erasmus School of Economics
. Student number: 402084
. Contact: atl.voormanns@gmail.com
‡Assistant professor of financial econometrics at the Econometric Institute of Erasmus University Rotterdam
§Professor of financial econometrics at the Econometric Institute of Erasmus University Rotterdam



Acknowledgements

A word of gratitude is in place for the supervisor of this thesis, dr. Bart Diris, and the co-reader,

prof. dr. Dick van Dijk. Both provided me with useful insights that improved the quality of this

thesis. I am also grateful to my dear friend Ben for guiding me through the rough patches in

life and keeping me focused when needed. Finally, I am forever grateful to my parents for their

endless motivation, love and support. There is no doubt in my mind that I could not have come

this far without them.

"Je gaat het pas zien als je het door hebt."

- Johan Cruijff

1



Contents

1 Introduction 4

2 Theoretical Framework 8

2.1 Risk Neutralization of a GARCH process . . . . . . . . . . . . . . . . . . . . . . 9

2.2 GJR-GARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Markov Switching GJR-GARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Methodology 14

3.1 Bayesian Estimation of the GJR-GARCH Model . . . . . . . . . . . . . . . . . . 14

3.1.1 Full Conditional Posterior of β . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 Full Conditional Posterior of θ . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Bayesian Estimation of the MS GJR-GARCH Model . . . . . . . . . . . . . . . . 17

3.2.1 Full Conditional Posterior of P′i . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Full Conditional Posterior of S . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.3 Posterior Distributions of θG,j and βj . . . . . . . . . . . . . . . . . . . . 20

3.2.4 Complete Posterior Simulation Scheme MS GJR-GARCH . . . . . . . . . 21

3.3 Prior Specifications and the Label Switching Problem . . . . . . . . . . . . . . . 21

3.4 Pricing the Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Model Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.1 Implied GJR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.2 FHS GJR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Benchmark Models 29

4.1 Ad-hoc Black-Scholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Heston Nandi GARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Data and Empirical Results 31

5.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Bayesian Inference Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.1 Inference Results GJR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.2 Inference Results MS GJR . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.3 Prior Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Calibration Results Option Implied Models . . . . . . . . . . . . . . . . . . . . . 39

2



5.4 Predictive Option Pricing Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4.1 Analysis of Pricing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4.2 Aggregate Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4.3 Performance over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Conclusion and Limitations 60

7 Appendix I: Inference Results Benchmark Models 65

8 Appendix II: Pricing Algorithm Markov Switching GJR 67

9 Appendix III: Laplace Approximation of Bayes Factors 68

10 Appendix IV: Bayesian Estimation of the Ad-hoc BS 70

3



1 Introduction

Financial derivatives are a set of financial instruments that are, as the name suggests, derived

from financial products such as equities, bonds or loans. These derivatives are used in various

ways and combinations to reduce risk and to speculate on market behaviour. The market of

exchange-traded derivatives is enormous and had an estimated daily turnover of more than $4.2

trillion in 20141, which signifies the importance of a proper valuation of these instruments. One

of the most popular types of derivatives are options, which give the holder the right to buy

or sell an underlying asset for a fixed price at a certain point in the future2. In 1973 Black

and Scholes ("BS") introduced their famous formula for pricing European options. The BS

framework assumes that the volatility of the underlying and the risk-free rate are constant and

that the stock price follows a geometric Brownian motion. The power of the BS model lies in

its simplicity, but it also leaves room for improvement. Mainly the modeling of the volatility

parameter can improve pricing performance, as the assumption of constant volatility implies that

heteroskedasticity is ignored.

In this paper the heteroskedasticity is captured by modeling the volatility of the underlying

asset using the model of Glosten, Jaganathan and Runkle (1993) ("GJR"), which is an extension

of the GARCH model introduced by Bollerslev (1986). In the GJR model the conditional variance

is able to react asymmetrically to negative and positive shocks, enabling it to capture a stylized

fact known as the leverage effect3. Other asymmetric GARCH models could also be considered,

such as the Exponential GARCH (Nelson et al., 1991), the Quadratic GARCH (Sentana, 1991)

or the Treshold GARCH (Zakoian, 1991) for example. However, Engle and Ng (1993) present

evidence that the GJR is the best parametric GARCH model and is able to outperform other

asymmetric models, such as the EGARCH for example. Following up on this argument in an

option pricing context are the papers of Bauwens and Lubrano (2002), Duan et al. (2006) and

Barone-Adesi et al. (2008) who document a satisfying pricing performance using the GJR model.

Based on these arguments, the GJR is favored and selected as baseline model for option pricing.

The specific models under consideration are (1) the simple GJR, (2) the Markov Switching GJR

("MS GJR"), (3) the option implied GJR ("Implied GJR") and (4) the option implied GJR using

the Filtered Historical Simulation approach from Barone-Adesi et al. (2008) ("FHS GJR"). The

choice for these models is motivated by the fact that they can substantially capture the stylized
1Source: BIS Triennial Surve
2In this paper European style options are considered, which can be exercised only on one specific date.
3The fact that negative returns have a stronger effect on volatility than positive returns of the same magnitude.
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facts of financial returns. Besides the leverage effect, the GJR is also able to capture volatility

clustering, while the MS GJR also captures leptokurtosis and volatility jumps. The option

implied GJR models are calibrated on observed market option prices and hence capture return

dynamics that are reflected by the market and are hard to capture otherwise4. Furthermore, the

FHS GJR is free of any distributional assumptions and relies only on past historical innovations.

This enables the model to fully capture the structure of the empirical return distribution.

The pricing methodology employed in this paper builds on the work of Duan (1995), who

introduced an option pricing model for the case when returns follow a GARCH(1,1) process with

normal errors. The Duan (1995) framework can easily be extended to accommodate the GJR and

the MS GJR models, provided that the normality assumption is maintained. This approach is

followed by many authors (see for example Hafner and Herwartz, 1999; Heston and Nandi, 2000;

Bauwens and Lubrano, 2002; Christofferson and Jacobs, 2004 and more). A drawback of this

method is that the normality assumption implies that the frequently observed fat tails in return

series cannot be captured when using GARCH models. However, Ang and Timmermann (2011)

show that the individual regimes in the Markov switching model can be described as a mixture of

normals, which enables the model to capture fat tails. Hence, in spite of the normality assumption

the MS GJR is still able to capture high kurtosis to some extent. Alternatively, a leptorkurtic

distribution could be imposed, such as the (skewed) students t-distribution or the generalized

error distribution. However, this complicates the option valuation method of Duan (1995) and

therefore the normality assumption is maintained. The only exception to this assumption is

the FHS GJR, which relies entirely on past innovations, meaning no structure is imposed on

the return distributions. This also means the FHS GJR does not depend on the Duan (1995)

valuation framework.

For model estimation of the GJR and MS GJR a Bayesian Markov Chain Monte Carlo

("MCMC") procedure, introduced by Henneke et al. (2006), is used. The MCMC method allows

the unobserved state variables in the MS GJR model to be simulated along the model parameters

in the Gibbs sampler by using a technique known as data augmentation. The Markov switching

GARCH model used in this paper most resembles the specification used by Henneke et al. (2006)

and Bauwens et al. (2010) who also study the model from a Bayesian perspective. For the option

implied models a Monte Carlo calibration procedure is used in which an error criterion function

is minimized in an attempt to move the model price as close as possible to the market price
4Throughout this paper the term "calibrated" refers to option implied.
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by letting the GARCH parameters vary. The models are re-estimated every 4 weeks and are

used to predict out-of-sample S&P 500 index option prices on weekly basis throughout the year

2014. This means that the models are kept fixed for a period of 4 weeks and the forecast horizon

ranges up to 4 weeks. The results are compared with two benchmark models, the ad-hoc Black

Scholes ("AHBS") from Dumas et al. (1998), and the Heston and Nandi (2000) ("HN") closed

form GARCH option pricing model. Both benchmark models are also estimated using Bayesian

inference to enhance the comparability of the models.

Many papers in option pricing literature are concerned with only a single method of model

estimation, either option implied or inferred from historical asset returns. Since option implied

models have nowadays become the standard in financial industry it is interesting to investigate

whether this is justified. Directly comparing the pricing results of both methods can provide

insights on which method yields better results. This particular topic is not intensively studied

in financial literature, mainly because it is well known that option implied models yield accurate

pricing performance, while GARCH models estimated with historical returns usually do not

perform well in this context (see for example Weber and Prokupczuk (2011)). This study however,

adds two interesting features that makes such GARCH models more competitive; the Bayesian

estimation methodology and a regime switching property. Thus, the main goal of this paper is

to compare and discuss the pricing performance of the option implied GARCH models relative

to the Bayesian GARCH models, and conclude whether one of these methods is superior. The

literature is somewhat limited on this particular topic, although some examples that slightly

overlap are Hsieh and Ritchen (2000) and Christofferson and Jacobs (2004) who both present a

comparison of the pricing performance of different kind of calibrated and non-calibrated GARCH

models. However, these papers do not explicitly address differences due to estimation methods

but focus more on parsimony and updating rules. More closely related is the work of Weber

and Prokopczuk (2011), who employ an implied calibration scheme to infer GARCH parameters

from observed market option prices and compare its pricing performance with a GARCH model

estimated with historical return data. They record an improved pricing performance of the

calibrated model for all moneyness categories and maturities. However, the approach of Weber

and Prokopczuk (2011) differs in their use of American options, which are early exercisable

and therefore more complex to value. Furthermore, Weber and Prokopczuk (2011) use only

frequentist estimation methods.

The application of Markov switching models for options pricing starts with the work of Duan
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et al. (2002), who develop a backward recursion procedure which yields the regime switching

GARCH as limiting case. More recent articles include the work of Chen and Hung (2009), who

develop a lattice algorithm, and Fuh et al. (2012), who use an approximation to arrive at a

closed form solution. The MS GJR model proposed in this paper deviates from most models

used in the literature due to its Bayesian estimation process and its forth flowing option pricing

algorithm. The latter is based on the work of Bauwens and Lubrano (2002) and the MS GJR can

therefore be seen as an extension of their single regime GJR option pricing model. To current

knowledge, the Markov switching GARCH option pricing model has not yet been studied from

a Bayesian perspective and therefore is new in the option pricing literature. The contribution of

this paper can now be stated in twofold as (1) presenting a comparison of the pricing performance

of option implied GARCH models and GARCH models estimated with historical asset returns

and (2) showing how options can be priced using a regime switching GARCH specification from

a Bayesian perspective.

The foundations of the Bayesian GARCH option pricing model were laid by Bauwens and

Lubrano (2002), who priced options using Bayesian inference in combination with asymmetric

GARCH models. Their findings suggest that modeling asymmetry leads to increased pricing

performance for in-the-money options. Moreover, they show that Bayesian inference leads to a

better estimation of the underlying volatility which subsequently improves the pricing perfor-

mance. Duan et al. (2002) and Yoa et al. (2006) use a Markov switching GARCH option pricing

model which is able to switch between different GARCH specifications, providing a high de-

gree of flexibility. Both papers find that the regime switching feature more accurately describes

volatility which subsequently improves pricing performance. Combining the regime switching

property with the asymmetric GJR and the Bayesian estimation method could potentially yield

a model that, from a theoretical perspective, captures all stylized facts and completely accounts

for estimation uncertainty. The option implied models on the other hand, are based more on

empirical results, as indicated by their popularity among practitioners. This study therefore

represents a comparison of a practical method versus a theoretically well founded method.

The pricing results show that the option implied models perform well, both models con-

vincingly outperform the single regime GARCH model, while their mutual performance is quite

similar. The Markov switching GARCH model also convincingly outperforms the GJR and com-

petes quite well with the option implied models. For most samples the MS GJR is actually able

to outperform both of the option implied models. Especially in-the-money options and options

7



with long maturities are priced more accurately by the Markov switching GARCH. However, the

ad-hoc Black Scholes appears to be a tough benchmark and clearly dominates the test models.

2 Theoretical Framework

To price derivatives a measure is required that is free of investors’ risk preferences. This is referred

to as a risk-neutral measure and is necessary because the estimated price would otherwise reflect

the investors’ level of risk aversion, which yields a subjective price that is inconsistent with

the market price5. To price derivatives using GARCH models, the expected payoff has to be

discounted under a martingale measure 6. This martingale measure however, is not unique

because the GARCH framework implies that markets are incomplete, which means there exist

contingent claims that cannot exactly be replicated by a replicating portfolio. This results in an

infinite number of risk-neutral specifications under which the payoff function can be evaluated.

Furthermore, there exists no risk neutral measure that does not change the unconditional variance

or the conditional variance for more than one period ahead for GARCH processes. The choice

for a risk-neutral measure has to be based on economic justifications. Duan (1995) introduced

the Locally Risk Neutral Valuation Relationship ("LRNVR"), which is based on the economic

foundation that agents are utility maximizers and that utility is additive and time-separable.

The LRNVR does not alter the one period ahead conditional variance and ensures the future

expected return equals the riskfree rate. The assumption of normality implies equal conditional

variance under both measures and is of paramount importance in this framework. More recent

studies indicate that the assumption of normality is not realistic as this cannot describe the

frequently observed fat tails in return distributions. Typically a leptokurtic distribution, such

as the student or skewed t-distribution (Fergusson and Platen, 2006) or the Generalized Error

Distribution (Gao et al., 2012), is considered more suitable for modeling financial time series. For

the application at hand however, imposing a distribution other than the normal would imply that

the requirement of equal one period ahead conditional variance under P and Q no longer holds.

Hence, since the Duan (1995) framework is not compatible with leptokuric distributions, the

normality assumption is maintained in this paper. Using the LRNVR, Heston and Nandi (2000)

derived a closed-form GARCH option pricing model that is able to produce good out-of-sample

results when the GARCH parameters are updated every period. Allowing for asymmetry showed
5See Gisiger (2010) for a thorough explanation of risk-neutral pricing
6i.e. a fair measure
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to further improve the pricing performance. Other examples on asymmetric GARCH option

pricing models are Bauwens and Lubrano (2002), Hafner and Herwartz (1999) and Christofferson

(2006), who confirmed these findings as they record a decrease in pricing errors when accounting

for asymmetry. The latter is explained by the fact the asymmetric GARCH models are able to

capture the leverage effect.

For a better understanding of the risk-neutralization principles of a GARCH model, the next

section briefly outlines the seminal work of Duan (1995). Next, the GJR model is discussed and

the LRNVR is used to derive the corresponding risk-neutral specification and subsequently the

MS GJR model and its risk-neutral version are defined.

2.1 Risk Neutralization of a GARCH process

In the Duan (1995) framework the one-period rate of return is assumed to be lognormally dis-

tributed under the real world measure (denoted P) , i.e.

log
( Pt
Pt−1

)
= rf + λσt −

1

2
σ2
t + zt, zt|Ft−1 ∼ N(0, σ2

t ),

σ2
t = γ + αz2t−1 + φσ2

t−1 (1)

in which Pt denotes the stockprice at time t, rf is the continuously compounded risk free rate,

λ can be interpreted as the unit risk premium and Ft−1 the filtration (or information set) up to

time t-1. Furthermore, the risk free rate is assumed to be constant and the stock is assumed to

pay no dividends. Using the LRNVR the return process can be rewritten such that it follows

a martingale and its expected return equals the risk free rate. To achieve this the conditional

mean is replaced by the risk free rate (i.e. rf + λσt is replaced by rf ) and a new risk neutral

innovation term ξt is introduced. The GARCH equation is then altered by replacing zt with

ξt − λσt such that the model under the risk neutral measure (denoted Q) becomes

log
( Pt
Pt−1

)
= rf −

1

2
σ2
t + ξt, ξt|Ft−1 ∼ N(0, σ2

t ), (2)

σ2
t = γ + α(ξt−1 − λσt−1)2 + φσ2

t−1 (3)

As discussed by Duan (1995), this specification is a local risk neutral valuation relationship,

and it implies two important properties: (1) the one period ahead conditional variance remains

unchanged under both measures and (2) the expected one period ahead future return equals the
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riskfree rate rf . More formally,

EQ[Pt/Pt−1|Ft−1] = exp(rf ), (4)

and

V arP(log
( Pt
Pt−1

)
|Ft−1) = V arQ(log

( Pt
Pt−1

)
|Ft−1). (5)

A necessity for these properties to hold is that the innovations in (1) and (3) are assumed to

be normally distributed. These properties are desirable because they imply that the conditional

variance can be observed and estimated under the P measure and the conditional mean can be

replaced by the risk free rate. The resulting model under Q is then a well specified model that is

locally free of risk preferences. This measure is a generalization of the conventional risk neutral

measure and accommodates heteroskedasticity.

2.2 GJR-GARCH

The popular class of GARCH models, introduced by Bollerslev (1986), were extended by Glosten

Jagannathan and Runkle (1993) to accommodate asymmetry. Empirical studies have shown that

volatility is usually higher after an unexpected negative return than after an unexpected positive

return of the same magnitude. This is one of the stylized facts of return series and is frequently

referred to as the leverage effect. It is explained by observing that when firms use both debt and

equity to finance their business, the debt-equity ratio will increase as the stock price decreases,

which then increases equity return volatility (Lee and Liu, 2014). The GJR model is more suitable

of capturing the leverage effect because it allows for asymmetric responses to the shocks. In this

paper the approach of Bauwens and Lubrano (2002) is followed, who define the returns in discrete

time as rt = Pt−Pt−1

Pt−1
. This simplifies the risk-neutral measure as no lognormal distribution has to

be manipulated when introducing the risk neutral innovation term while the desirable properties

of Duan (1995) still hold.

The basic GJR model under P is given by

rt = µt + zt, zt = σtεt, ε ∼ N(0, 1) (6)

σ2
t = γ + αz2t−1 + φσ2

t−1 + δz2t−1It−1[zt−1 < 0] (7)
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in which µt is the conditional expectation of the returns and It is an indicator function which

takes the value 1 if zt <0, and 0 otherwise. To guarantee a positive variance estimate, the

parameters γ, α, φ and δ are restricted to be strictly positive. Furthermore, the unconditional

variance is given by

E[σ2
t ] =

γ

1− α− φ− 1
2δ

(8)

provided that α+ φ+ 1
2δ < 1. Using the LRNVR, this model can be re-written in a risk-neutral

form by replacing the conditional mean with rf and introducing a new innovation term. The

Duan (1995) framework implies that µt = µ+λσt which implies that the risk neutral innovation

term is given by ξt = zt + µ + λσt - rf . To obtain the risk neutral GJR specification zt can

then be replaced by ξt - µ - λσt + rf in the GJR equation. However, Bauwens and Lubrano

(2002) argue that the Duan (1995) framework generally does not have a good fit and leads to

poor estimates of λ. Instead, they incorporate the lagged return in the return specification.

Hafner and Herwartz (2001) showed that incorporating the lagged return indeed leads to better

likelihood values than incorporating λσt. Consequently, this approach is followed by setting

µt = µ+ ρrt−1 in equation (6) such that the selected model under P is

rt = µ+ ρrt−1 + ut, ut|Ft−1 ∼ N(0, σt) (9)

σ2
t = γ + αu2t−1 + φσ2

t−1 + δu2t−1It−1[ut−1 < 0] (10)

Under the Q measure a new innovation term based on the LRNVR is introduced, given by

vt = ut + µt - rf such that the expected return equals the risk free rate. The GJR specification

is then altered by replacing ut by vt - µt + rf such that the risk neutral specification is then

given by

rt = rf + vt, vt|Ft−1 ∼ N(0, σt) (11)

σ2
t = γ+α(vt−1−µt−1 +rf )2 +φσ2

t−1 +δ(vt−1−µt−1 +rf )2It−1[(vt−1−µt−1 +rf ) < 0]. (12)

Bauwens and Lubrano show that the stationarity condition is given by (α+ 1
2δ)(1 + ρ2) + φ < 1

for the risk-neutral GJR.. The model under P can be used for inference and subsequently the

model under Q can be used to simulate the terminal time stock price evolution required to price
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the option.

2.3 Markov Switching GJR-GARCH

The MS GARCH model proposed is similar to the model introduced by Franc and Zakoian

(2001) and is an extension of Hamilton’s (1989) original Markov Switching model. Franc and

Zakoian (2001) provide an estimation method based on the generalized method of moments, while

Henneke et al. (2006) and Bauwens et al. (2010) study the same model in a Bayesian context.

The setting in this paper is slightly different as the GJR model requires an additional asymmetry

parameter. The Markov switching property enables the conditional variance to switch between

J different set of parameters at each point in time. This yields a more flexible specification of

the conditional variance as this allows to capture more return dynamics as in the single regime

case. In the MS GJR model the conditional variance is governed by a latent (i.e. unobservable)

regime switching variable, denoted St for t = 1,...,T . Using frequentist methods the estimation

of these latent variables is challenging. The reason is that the regime dependence makes the

likelihood intractable analytically when the GARCH components are present. This is due to the

fact that the conditional variance depends on all preceding conditional variances and therefore

on the whole unobserved sequence of regimes. One way to deal with this is by conditioning

on the regime at time t and apply an Expectation - Maximization step to estimate the model

parameters and the regime probabilities 7. Under Bayesian inference a more natural way of

dealing with the latent variables can be applied. Instead of conditioning on the regime, the

parameter space is augmented with the unobservable variable St such that the latent variable

can be simulated together with the model parameters. Following the approach of Rachev et al.

(2008, ch. 11), three regimes are used which can be given the economic interpretation of low

volatility state, normal volatility state and high volatility state8. Although this is an ad-hoc

way of a-priori selecting the number of states, a three state model is sufficient to capture most

dynamics found in financial time series. This argument is supported by Fuh et al. (2012), who

note that empirical work rarely indicates that more than three states are required. It might be

possible two states may also be sufficient, however the three state model encompasses the two

state model and should therefore be able to describe the market dynamics equally well in case two

states are more likely. To establish the number of regimes a simple diagnostic measure is to plot

the return data and check whether the magnitude of volatility differs between different periods.
7See Kole (2010) for more details
8The terms ’state’ and ’regime’ are used interchangeably throughout this paper
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In a Bayesian context a more formal way to determine the appropriate number of states is to use

Bayes factors, which indicate how likely one model is relative to another. In the empirical part

both the return plot and the Bayes factors are used to substantiate the choice for the 3 state

model.

The basic set up is similar as in the single-regime GJR process stated in equation (10), only

now each parameter can take three values at each point in time. The model under P becomes

rt = µ(St) + ρ(St)rt−1 + ut, ut ∼ N(0, σ2
t )

σ2
t = γ(St) + α(St)u

2
t−1 + φ(St)σ

2
t−1 + δ(St)u

2
t−1I[ut−1 < 0] (13)

in which for each period t

(µ(St), ρ(St), γ(St), α(St), φ(St), δ(St)) =


(µ1, ρ1, γ1, α1, φ1, δ1), if St = 1

(µ2, ρ2, γ2, α2, φ2, δ2), if St = 2

(µ3, ρ3, γ3, α3, φ3, δ3), if St = 3

To arrive at the complete risk neutral specification of (13), the Duan (1995) framework is insuf-

ficient as the Markov switching property implies the existence of regime shift risk. Duan (1999)

accounts for this by letting the regime probabilities be time varying functions of the return dis-

tribution. This allows for a shift in the innovation term to obtain the risk neutral probability. In

the Bayesian context this is not as straightforward. In contrast to Duan (1999), the probabilities

are constant over time and are drawn from their posterior distribution such that it is not possible

to model them as functions of the return distribution. For simplicity it is therefore assumed that

regime shift risk is not priced such that the risk neutralization can proceed as described for the

single regime model. This means the transition probabilities under P are maintained and the risk

neutralization is identical as described earlier in equations (11) and (12) only applied to the MS

GJR specification. This assumption is somewhat restrictive, but is imposed by many authors.

For example, Bollen et al. (1999), Yao et al. (2003) and Satoyoshi and Mitsui (2010) show that

pricing performance can still be satisfactory under this assumption.

The regime switching model uses a homogeneous first-order Markov chain with transition

matrix P, whose elements are given by pij = Pr(St+1 = j|St = i,P) in which the probabilities

in each row sum up to 1. Due to the Markov property the volatility state that is visited at time
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t only depends on time t-1, i.e. Pr(St|St−1, St−2, . . . , S1) = Pr(St|St−1). The Markov chain is

assumed to be irreducible and aperiodic, which means that all states communicate and that each

state can be entered directly from any other state. This allows the volatility to jump from the

low state directly to the high state and vice-versa.

3 Methodology

Work that combines Bayesian inference with option pricing theory shows that Bayesian inference

has some advantages over the traditional frequentist approach (see for example Rombouts and

Stentoft 2014; Avellaneda 1999; Darsinos and Satchwell 2001; Vargas Mendoza 2011; Jones 2003;

and more). One advantage is that the parameters are integrated over their entire parameter space

in the Bayesian estimation process, such that all uncertainty is accounted for. An illustrative

example of the latter is given by Rombouts and Stentoft (2014), who find that Bayesian inference

leads to smaller pricing errors in small samples compared to frequentist methods. Furthermore,

Bayesian inference can also be applied when limited data is available because economic theory

and experts’ opinions can be included in the analysis. Alternatively, information from earlier

periods or closely related variables can also be included into the prior-distributions of the model

parameters, allowing one to create an informative prior.

This section describes how Bayesian inference can be performed to estimate the GJR and

the MS GJR models. For a basic introduction on Bayesian econometrics the interested reader

is referred to Greenberg (2013). For applications of Bayesian methods in finance, Rachev, Hsu,

Bagasheva and Fabozzi (2008) provide a good overview of popular techniques and for more

specific literature on the Bayesian estimation of Markov Switching GARCH models see Henneke

et al. (2006) and Bauwens et al. (2010).

3.1 Bayesian Estimation of the GJR-GARCH Model

To estimate the model using Bayesian inference the GARCH parameters are collected in the

vector θ = (γ, α, φ, δ)′, and to make the relation with the GARCH process explicit the volatility

is written as σ2
t = σ2

t (θ). Using the relationships implied by the LRNVR, the model can be

estimated under P. The parameters µ and ρ are collected in the vector β such that the return
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specification can conveniently be written as

rt =

 1

rt−1

′
µ
ρ

 + ut = x′t−1β + ut. (14)

The likelihood function is then obtained by using that p(r|θ, β) =
∏T
t=1 p(rt|rt−1, β, θ) which,

together with independent standard normally distributed innovations, can be written as

p(r|θ) =

T∏
t=1

σ−1t (θ)exp

(
− 1

2

T∑
t=1

(rt − x′tβ)2

σ2
t (θ)

)
(15)

which in matrix form can be rewritten as

p(r|β, θ) ∝ |D|− 1
2 exp

(
− (r−Xβ)′D−1(r−Xβ)/2

)
(16)

in which X is the T × k matrix with the first column a vector of ones and k-1 vectors of

predictor variables and D = diag(σ2
1(θ), . . . , σ2

T (θ)). The priors for β and θ are a-priori chosen

to be independent such that p(β, θ) = p(β)p(θ). For some prior views on β the normal prior

is chosen. For θ, a uniform prior on the space Sθ is chosen to ensure a stationary model is

constructed. Formally this is stated as

p(β) ∼ N(b,B),

p(θ) ∝ I[θ ∈ Sθ],

with S{θ} = {θ ∈ R4 : γ, α, φ, δ > 0, α+φ+ 1
2δ < 1}. The joint posterior distribution is obtained

as product of the likelihood and the prior distributions, i.e.

p(β,θ| r) ∝ |D|−
1
2 exp

(
− (r - Xβ)′D−1(r - Xβ)/2

)

× exp

(
− (β − b)′B−1(β − b)/2

)
I[θ ∈ S(θ)]. (17)

To retrieve the distributional properties the joint posterior can be split up into two conditional

posteriors which can then be used to simulate the parameters separately with a Markov Chain

Monte Carlo posterior simulation method, also known as the Gibbs sampler.
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3.1.1 Full Conditional Posterior of β

Greenberg (2013, ch. 4.3) shows that using some algebraic manipulation9, the kernel of the

conditional posterior of β appears to be multivariate normal;

p(β|r, θ) ∝ |D|− 1
2 exp

(
− (β − β̂)′Σ̂β(β − β̂)/2

)
(18)

with mean and variance given by

β̂ = (X′D−1X + B−1)−1(XD−1r + B−1b), (19)

Σ̂β = (X′D−1X + B−1)−1 (20)

The conditional posterior of β is not exactly multivariate normal as D (indirectly) depends on β.

However, for a proposal distribution this will suffice, such that a Metropolis-Hastings step can

be used to simulate β. The first step is to find the candidate generating distribution with pdf

denoted by g(β|β(m)), in which β(m) is the current draw of β. This distribution can then be used

to draw from the target distribution f(β) = p(β|r, θ(m)). Since the full conditional posterior of

β is multivariate normal, this distribution is the logical choice for the proposal distribution. The

simulation scheme is presented in table 1.

Sampling Scheme for β

1. Simulate proposal value β∗ from N(β̂, Σ̂β)

2. Compute the Metropolis-Hastings acceptance probability as

q(β∗, β(m)) = min( (f(β∗)/g(β∗|β(m)))/ (f(β(m))/g(θ(m)|β∗)),1)

3. set β(m+1) =β∗ with probability q

set β(m+1) =β(m) with probability 1 - q

Table 1: Metropolis-Hastings sampling algorithm for β. A random draw from the uniform (0,1) distribution is
used to decide whether β∗ is accepted or rejected.

9This is also referred to as the decomposition rule
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3.1.2 Full Conditional Posterior of θ

The GARCH parameters θ yield a posterior distribution that is non-standard. To overcome this

issue, the solution suggested by Rachev et al. (2008, ch.5) is used, and simulation is performed

from a distribution centered at the mode θ̂ of the log posterior log(p(θ |r,β)), with a scale matrix

proportional to the negative inverse Hessian matrix of log(p(θ |r, β)) evaluated in θ̂ and denoted

by −H(θ̂)−1. The posterior mode can be obtained by maximizing the log posterior, i.e.

max
θ

−1

2
log(|D|)− 1

2
(r - Xβ)′D−1(r - Xβ) (21)

and the Hessian is obtained by evaluating the matrix of second order derivatives of log(p(θ|r,β))

at θ̂ 10. A convenient choice for the proposal distribution of θ is the multivariate normal, which

is denoted by pdf g and is used to draw from the target distribution f(θ) = p(θ |r, β(m)).

The simulation sequence is outlined in table 2. An accept-reject step is used to deal with the

truncation, which lets the algorithm repeatedly draw a proposal value θ∗ until the parameter

restrictions are satisfied. Furthermore, the scalar c is used to inflate the variance and is set equal

to 1.22, following Geweke (1994).

Sampling Scheme for θ

1. Simulate proposal value θ∗ from N(θ̂, - c ×H(θ̂)−1)× I[θ ∈ S(θ)]

2. Compute the Metropolis-Hastings acceptance probability as

q(θ∗, θ(m)) = min( (f(θ∗)/g(θ∗))/ (f(θ(m))/g(θ(m))),1)

3. set θ(m+1) = θ∗ with probability q

set θ(m+1) = θ(m) with probability 1 - q

Table 2: Metropolis-Hastings sampling algorithm for the GARCH parameters θ. A random draw from the
uniform (0,1) distribution is used to decide whether θ∗ is accepted or rejected. The scalar c can be used to tune
the acceptance rate. In this setting the approach of Geweke (1994) is followed by setting c = 1.22.

3.2 Bayesian Estimation of the MS GJR-GARCH Model

To estimate the Markov switching model data augmentation is applied. This technique uses the

complete data likelihood to form the posterior distribution and samples the latent variables St

alongside the model parameters. To apply data augmentation the latent variables are included
10In this paper Matlab’s Fmincon function is used, which produces the Hessian matrix as byproduct.
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in the parameter vector, i.e. θ ={θG,j ’, β′j ,P′i,S} with θG,j = {γj , αj , φj , δj}, P′i the i-th row of

P for i=1,. . .,J, S = (S1, . . . , ST )’ the regime path for all periods and βj the regime dependent

model parameters. The priors for βj and θG,j are again a priori assumed to be independent.

Furthermore, the transition probabilities in each row of P need to sum to 1 and are elements

of (0,1). A suitable prior for each row Pi therefore is the Dirichlet distribution, while assuming

independence between different rows. To reflect prior beliefs about the effect the regimes have

on the GJR parameters, proper normal priors are imposed on θG,j and for βj . Finally, the

parameter constraints can be imposed through an indicator function as before. More formally,

p(θG,j) ∼ N(µG,j ,ΣG,j)I[θG,j ∈ S{θG,j}]

p(Pi)
ind∼ Dir(ai1, ai2, . . . , aij)

p(βj) ∼ N(bj ,Bj).

where S{θG,j} = {θG,j ∈ R4 : γj , αj , φj , δj > 0, αj + φj + 1
2δj < 1}Jj=1. The joint posterior is

then given by the product of the complete data likelihood and the prior distributions,

J∏
j=1

[
|D|− 1

2 exp

(
− 1

2
(r−Xβj)′D−1(r−Xβj)I[St = j]

)

×exp
(
− 1

2
(βj − β̂j)Σ̂−1βj (βj − β̂j)I[St = j]

)

×exp

(
− 1

2
(θG,j − µG,j)′ΣG,j(θG,j − µG,j)I[St = j]

)]

×
J∏
i=1

J∏
j=1

p
aij+nij−1
ij (22)

where the number of transitions from state i to state j in the sample of S is denoted by nij .

3.2.1 Full Conditional Posterior of P′i

Collecting the terms involving pij in (22), the full conditional posterior of the transition proba-

bilities per row Pi is given by

p(P′i|r, θ−P′i) ∝
J∏
j=1

p
aij+nij−1
ij (23)
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for i the row number and with θ−P′i the vector of all parameters except Pi. Equation (23) can be

recognized as the kernel of a Dirichlet distribution with parameters (ai1+ni1, . . . , aiJ+niJ). The

parameters aij are set a-priori while the parameters nij are the number of transitions from state

i to j. Sampling from the Dirichlet distribution is then done by sampling three independents

observations from the Chi-square distribution with degree of freedom equal to 2(aij + nij), and

normalizing the draws. Table (3) describes the sampling algorithm when assuming three regimes.

Sampling Scheme for Pi

1. For each row i sample three independent observations

yi1 ∼χ2
2(ai1+ni1)

yi2 ∼χ2
2(ai2+ni2)

yi1 ∼χ2
2(ai3+ni3)

2. set pi1 = yi1∑J
k=1 yik

pi2 = yi2∑J
k=1 yik

pi3 = yi3∑J
k=1 yik

Table 3: Sampling algorithm for the transition probabilities. A draw from the Dir(ai1 + ni1, . . . , aiJ + niJ )
distribution is obtained by drawing J random observations from the χ2

2(aij+nij)
distribution and dividing each

χ2
j draw by the sum of the χ2 draws.

3.2.2 Full Conditional Posterior of S

The number of regime paths that could generate the terminal regime ST increases with the

amount of regimes imposed. In this application there are 3T possibilities that lead to the terminal

state, which makes it practically impossible to draw from the 1 × T vector S at once. Instead a

T -step procedure is applied in which the elements are drawn one at a time. Using the rules of

conditional probability, Rachev et al. (2008, ch. 11) show that the full conditional posterior of

St is given by

p(St = j, |r, θ−S ,S−t) =
p(r|θ−S ,S−t, St = j)pijpjk∑J
s=1 p(r|θ−S ,S−t, St = s)pispsk

(24)

for j = 1,. . .,J . This probability is computed by conditioning on all states other than time t and

is used to draw a regime path as described in table (4).
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Simulation Scheme for S

1. At t = 1, compute the probability in (24) for j = 1,. . .,J .

2. Divide the interval (0,1) into three sub-intervals with lengths proportional to the computed
probabilities.

3. Draw an observation u from the uniform distribution U(0,1)

4. Depending on which interval u falls into, set S(m)
1 = j.

5. Update S(m) with S(m)
1 .

6. Repeat for t = 2,. . ., T .

Table 4: Sampling algorithm for the latent regime path variables. The procedure is stepwise and becomes
computational more intensive as the sample size T increases.

3.2.3 Posterior Distributions of θG,j and βj

The posterior distribution for θG,j is not available analytically due to the regime dependence

of the conditional variance. However, using the informative prior the kernel of the posterior

distribution is given by

p(θG,j |θ−θG,j , r) ∝
J∏
j=1

[
|D|−1/2exp

(
− 1

2
(r−Xβj)′D−1(r−Xβj)I[St = j]

)

×exp
(
− 1

2
(θG,j − µG,j)′Σ−1θ,j(θG,j − µG,j)I[St = j]

)]
. (25)

Conditional on the regime path S the only difference with the single regime GJR model is the

informative prior of θG,j . For the GARCH parameters, the proposal distribution is again the

multivariate normal and the simulation procedure is similar to the one described for the single-

regime GJR, only now the log of equation (25) is maximized over the regime parameters θG,j .

This optimization procedure is not as straightforward as for the single regime GJR model. First

the regime path S is initialized by selecting a state for each time period with uniform probabilities,

which corresponds to uniform prior beliefs about the transition probabilities. Furthermore, when

maximizing all GARCH-regime parameters at the same time, the algorithm tends to get stuck

such that the solution does not move much from its initial values. To overcome this issue, a

grid of starting values is generated and conditional optimization is applied in which the GJR

parameters are optimized by one regime at a time. The procedure starts by optimizing the

regime 1 parameters while fixing the GJR parameters for regimes 2 and 3 to the current grid

values. Next the GJR parameters for regime 2 are optimized conditional on the solution for the

GJR parameters of regime 1 and fixing the regime 3 GJR parameters to the current grid value.

Then the GJR parameters for regime 3 are optimized conditional on the solutions for regime 1
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and 2. This process is repeated for all simulated grids. Finally, the set of solutions that yield

the highest log likelihood value are selected to simulate from. After running some pre-runs of

the Bayesian algorithm, a representative estimate of S is obtained which can be used to re-do

the optimization procedure. The estimates that this produces will then be used for Bayesian

inference of θG,j . The simulation procedure for βj remains the same, only now the parameters

are drawn for each regime.

3.2.4 Complete Posterior Simulation Scheme MS GJR-GARCH

Combining the above yields the complete simulation scheme, given in table (5). These steps

are repeated a large amount of times until the MCMC algorithm is converged to the stationary

distribution.

Simulation Scheme for the MS GJR

1. For j = 1,. . .,J , draw pij from (23)

2. Draw S(m) from (24)

3. Draw β
(m)
j as in table (1)

4. Draw θ∗G,j from the proposal distribution for j = 1,. . .,J .

5. Repeat the previous step until the parameter restrictions are satisfied

6. Compute the acceptance probability and accept or reject θ∗G,j for j = 1,. . .,J .

Table 5: Bayesian Markov Chain Monte Carlo algorithm. This procedure loops through the sampling schemes
of the full conditional posteriors of the model parameters to draw from the posterior distribution of the Markov
Switching GJR model.

3.3 Prior Specifications and the Label Switching Problem

For the GJR model the informative prior for β is an ordinary least squares estimate from an

earlier period starting in December 2001 and ranging up until the first sample period in January

2006. The prior-sample then rolls on as the estimation window rolls on, such that the prior is

estimated with approximately 1250 observations for all samples. For the parameters βj and θG,j

in the MS GJR model, the informative priors are inferred from sub-samples corresponding to

times with low, normal and high volatility by estimating the single regime GJR model for these

periods. The posterior means are then taken as hyperparameters for the prior means in the MS

GJR model. The posterior standard deviations of β are used to construct Bj , while the prior

variances ΣG,j are taken as scaled identity matrices due to the fact that the posterior variances
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were rather small. The identity matrices are multiplied by 0.01, 0.1 and 1 for the low, medium

and high regimes respectively. This setting reflects a somewhat strong prior intuition, but clearly

defines the different volatility states. For the transition probabilities in P, the Dirichlet prior

is imposed with parameters aij = 1 for i, j = 1, 2, 3 which reflects uniform beliefs about the

transition probabilities pij . These priors are kept fixed for all estimation windows. The sub-

sample periods that correspond to different levels of volatility are presented in figure (1) and an

overview of the obtained priors for the MS GJR model is given in Table (6).

Figure 1: Plot of percentage returns of the pre-sample of the S&P 500 index. The plot shows different periods
of volatility throughout time. The priors used for the MS GJR are determined by estimating the single regime
GJR model for the low volatility period (II), medium volatility period (I) and high volatility period (III). All
subsamples consists of approximately 1000 observations, which corresponds to roughly 3 1

2
years.

In Markov switching models a possible complication may arise from the label switching prob-

lem, which is caused by the likelihood being invariant to permutations of the components’ indices.

This means the model is not identified because the parameter estimates and the regime labels can

simply be switched. Multiple solutions have been suggested to resolve the label switching issue,

with the three most popular methods being identification constraints (Stephens, 1997; McLach-

lan and Peel, 2000; Geweke 2007), relabelling algorithms (Stephens, 2000; Celeux et al., 2000;

Hurn et al., 2003;), and probabilistic approaches (Jasra, 2005; Sperrin, 2009). The simplest of

these approaches are the identification constraints, which can be easily imposed, for example as

µ2 > µ1. Without such identification constraints the sampler can generate bimodal distributions

for the means and variances, which makes the posterior moments meaningless. In this paper the
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Prior Overview for the MS GJR
Low Regime

µ ρ γ α φ δ
b1 0.035 -0.0285 µG.1 0.0325 0.0784 0.8233 0.0773

0.01 0.00 0.00 0.00

B1
0.0042 -0.0001

ΣG.1
0.00 0.01 0.00 0.00

-0.0001 0.0035 0.00 0.00 0.01 0.00
0.00 0.00 0.00 0.01

Medium Regime
µ ρ γ α φ δ

b2 0.0538 -0.0038 µG.2 0.0408 0.002 0.8842 0.1885

0.1 0.0 0.0 0.0

B2
0.0064 0.0002

ΣG.2
0.0 0.1 0.0 0.0

0.0002 0.0035 0.0 0.0 0.1 0.0
0.0 0.0 0.0 0.1

High Regime
µ ρ γ α φ δ

b3 0.071 -0.0628 µG.3 0.1330 0.0164 0.8721 0.1058

1 0 0 0

B3
0.0234 0.0003

ΣG.3
0 1 0 0

0.0003 0.0035 0 0 1 0
0 0 0 1

Table 6: Priors used for the MS GJR model. The hyperparameters of the priors of β and θj are Bayesian estimates
from sub-periods which correspond to low, medium and high volatility periods respectively. The prior-variances
of θj are set ad-hoc and are based on prior beliefs about the effect the regimes will have.

approach of Bauwens et al. (2010) is adopted, who argue that such strict inequalities correspond

to a maximum likelihood set-up and that in a Bayesian context such constraints need not hold

strictly for the different regimes to be sufficiently separated. Instead, the parameter support can

be allowed to overlap, provided that the overlap is not too large, and the identification can be

imposed through uniform priors similar to those used for the stationarity condition. The example

used by Bauwens et al. (2010) states that the support of µ1 can be restricted to (-0.09, +0.03)

while µ2 could then be restricted to (-0.03, +0.09). The regimes must be sufficiently separated

for identification, which means some parameters need to be different amongst regimes. In this

setting it is required that the level of the conditional variance, γj , increases for the ascending

regimes. The remaining parameters can be restricted somewhat looser as there may be a trade-

off between the magnitude of these values between different regimes, as suggested by Rachev et

al. (2008, ch. 11). This approach requires some caution concerning the wideness of the prior

supports. If the interval is too wide the posterior draws will be sampled inefficiently, while if the

interval is too narrow the posterior density may get truncated. The prior supports are therefore

initiated sufficiently wide and are narrowed when possible or widened when needed.
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3.4 Pricing the Option

The theoretical call option price at time t with strike price K and maturity T is given by

C(Pt,K, T ) = e−r(t−T )

∫ ∞
0

max(PT −K, 0)fQ(PT )dPT (26)

in which fQ(PT ) denotes the risk neutral density of the underlying asset price at time T. As

the volatility of the process is assumed to follow a GARCH process there exists no closed-form

solution to (26) such that it has to be approximated through simulation. First the asset returns

have to be sampled from the risk neutral predictive density. Next the sampled returns have to

be aggregated to obtain the predicted price density. Then the expected call price given in (26)

can be approximated by the sample average. For expiration at the next time-step, the predictive

density can be expressed as

f Q(rt+1|r) =
∫
f Q(rt+1|r, θ)p(θ|r)dθ. (27)

An analytical solution to (27) is not available but using the algorithm of Geweke (1989) it can

be approximated by

f̂Q(rt+1|r) =
1

N

N∑
n=1

N(rt+1|rf , σ2(n)
t+1 ) (28)

where N(.) denotes the normal distribution, (n) indicates the n-th draw of the governing

GARCH parameters and N is the total number of draws. This means that when simulating

θ(n) ∼ p(θ|r,r(n)t+1), simultaneously r(n)t+1 ∼ f Q(rt+1|θ(n), r) is simulated. This simulation procedure

was generalized for maturities s periods ahead by Bauwens and Lubrano (2002), who state that

the predictive density of rt+s under Q is given by

fQ(rT+s|r) =

∫
θ

(∫
Rτ−1

fQ(rT |θ, rT−1)fQ(rT−1|θ, rT−2)× . . .

. . .× fQ(rt+1|θ, rt)p(θ|r)drT−1 . . . drt+1

)
dθ. (29)

The unobserved rt+1, . . ., rT−1 have to be simulated sequentially for the integral to be evaluated.

The individual elements in (29) are normal with mean rf and variance σ2
t+s but the resulting

density of the inner integral is not a known distribution. Bauwens and Lubrano (2002) propose
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a simulation scheme that draws from the predictive distribution τ periods ahead which, for the

application at hand, requires minor alterations to suit the regime switching model.

The algorithm starts by initiating a loop running from mc = 1 to MC in which MC denotes

the number of Monte Carlo simulations. This loop represents the integral over θ and as such

the transition probabilities, regime paths and the model parameters β(mc) and θ
(mc)
G,j from the

different regimes are drawn at every iteration. Next, a loop running from n = 1 to N is initiated

which represents the inner integral over the risk neutral return densities. Within the n loop a

vector ε with length τ consisting of standard normally distributed realizations is drawn. Next, a

loop running from t = 1 to τ is initiated, which represents the time to maturity of the option under

consideration. Within the t loop, first the probabilities given by equation (24) are computed for

i = 1, 2, 3. A draw from the uniform (0,1) distribution is then obtained to decide the governing

regime. Then the conditional variance can be constructed and subsequently the future risk

neutral return can be simulated as following

σ2
s,t(Ss,t) = γmc(Ss,t) + αmc(Ss,t)v

∗
s,t−1

2 + φmc(Ss,t)σ
2
s,t−1 + δmc(Ss,t)v

∗
s,t−1

2I[v∗s,t−1 < 0]

rs,t = rf + εn,tσs,t(Ss,t) (30)

in which v∗s,t−1 = rs,t−1 − µmc − ρmcrs,t−2, Ss,t is the governing regime and the subscript s

denotes a simulated value. The algorithm needs to be initiated for t = 1, 2 using the last two

returns of the sample and the estimated GARCH variance on the last day of the sample. Then

the return path until time t + τ can be simulated and the terminal asset price is computed as

PT = Pt

τ∏
t=1

(1 + rs,t/100). (31)

The option price is then computed as the expected discounted payoff;

C
(mc)
t (Pt, T,K) = (1 + rf )−τmax(PT −K, 0). (32)

This process is repeated N times, at which the n loop is exited and the average discounted payoff

corresponding to a single draw of θ is obtained by averaging over N. Then the algorithm draws

new observations of the transition probabilities and the model parameters and repeats the whole

process MC times. The final option price is then computed as the average discounted payoffs of
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all the simulations,

Ĉt(Pt, T,K) ≈ 1

MC

MC∑
mc=1

C
(mc)
t (Pt, T,K) (33)

In case of the single-regime GJR the posterior reduces to p(θ|r, β) and the state variables Ss,t

reduce to 1 such that only parameters from the posterior of the single regime GJR model are

drawn. The algorithm then reduces to the Bauwens and Lubrano (2002) case11. To speed up

the algorithm a variance reduction method known as the method of antithetic variates is applied

by using the standard normal draws twice but with an opposite sign the second time. Other

variance reduction methods may also be implemented 12. Option prices corresponding to a single

draw of θ are then averaged to obtain the price corresponding to draw mc. Geweke (1989) shows

that when MC →∞ the value of N can be set equal to 1 while the results will remain consistent.

Following this argument, the settings used in this application are MC = 30000 and N = 1. Table

(19) in the appendix provides a more detailed pseudo code of the described algorithm.

3.5 Model Calibration

3.5.1 Implied GJR

To estimate the Implied GJR model, the GJR is calibrated on observed market option prices

through minimizing an error criterion function, for which several specifications exist. Popular

choices for the objective function are the root mean squared error, the mean absolute error, and

the mean squared or absolute percentage errors. Although Weber and Prokopczuk (2011) argue

that a percentage error criterion is easier to interpret, a disadvantage of this approach is that the

percentage errors can become substantial when the option prices are close to 0. For this reason

the mean squared error is preferred and the considered objective function is given by

min
θ

MSE =
1

L

L∑
l=1

(Ĉl(t, T,K)− Cl(t, T,K))2 (34)

in which Cl is the observed market price, Ĉl is the price as computed in equation (33), l is the

option under consideration and L is the total number of options in the calibration sample. For

a proper Monte Carlo calibration the options prices have to converge to their limiting value,

meaning a large number of Monte Carlo iterations are required which makes the calibration a
11See table 3 in Bauwens and Lubrano (2002)
12Some examples are the method of control variates and Duan’s (1998) empirical martingale measure
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high dimensional problem. For out-of-sample option pricing, as described in table (19), 30000

Monte Carlo runs are used. This amount is quite burdensome for the calibration process however,

and therefore the settings here are slightly different. The main difference lays in the fact that

the price is computed as a classical maximum likelihood estimate as there is only one model

estimate, such that MC = 1. The value of N can then be set to 30000 to achieve the same

number of iterations, but to relieve the computational burden N is set to 10000 instead. Some

trial runs showed that the differences are negligible while the calibration is up to 5 times faster.

To initiate the calibration, the parameters in θ are set equal to their posterior mean, which is

obtained as inference result for the GJR model. For the calibration process one day of option

data on the last Wednesday of the sample is used. In a proper implied calibration scheme the

calibration sample should consist out of a sample of options with varying time to maturities,

strike prices and moneyness categories. This ensures the calibrated model captures the market

dynamics sufficiently well. The amount of options to be used is a an empirical issue which has

no clear guidelines, although to speed up the calibration it is a good idea to not use an excessive

amount of options. Therefore, the sample size is kept moderate, the minimum amount of options

used for the calibration is 30, while the maximum is 50, depending on the available options on a

particular Wednesday.

3.5.2 FHS GJR

The calibration for the FHS GJR is slightly different than that of the implied GJR as it is

obtained by using filtered historical simulations. This method was introduced by Barone-Adesi

et al. (2008), who state the model as

log(
Pt
Pt−1

) = rt = µ∗t + εt (35)

σ2
t = γ∗ + α∗ε2t−1 + φ∗σ2

t−1 + δ∗ε2t I[εt < 0] (36)

in which µ∗t is such that the expected return equals the risk free rate and εt = σtzt, where zt

is the historical innovation term, i.e. zt ∼ ft(0, 1). The historical innovation terms are drawn

from the empirical distribution which is obtained by dividing the empirical return innovation

by the corresponding estimated conditional volatility, i.e. zt = ε̂t/σ̂t. The risk neutral GARCH

parameters in θ∗ are possibly different than those under P and are obtained by calibration

on observed market option prices. In this risk neutral specification the historical P measure
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innovations are maintained as the calibrated parameters in θ∗ represent the approximate change

of measure from P to Q. The strength of this benchmark model is that it does not assume

a parametric distribution and is able to simulate scenarios that did not occur in the sample

even though it uses only past innovations. For this reason the strength of the filtered historical

simulation is widely recognized in quantitative finance, for example in Value at Risk calculations.

For option pricing the algorithm consists of two steps; (1) a Monte Carlo simulation step

and (2) a calibration step. The algorithm starts by initiating the GJR parameters in θ∗. In this

approach the posterior means of the GJR parameters are used as initial values, unlike Barone-

Adesi et al. (2008), who use maximum likelihood estimates to initiate the model. The historical

innovations are then divided by the corresponding GJR volatilities to obtain a standardized series

of empirical innovations, zt = ε̂t/σ̂t. Then, for every Monte Carlo iteration n, a new vector z∗

is created by randomly drawing from zt with uniform probabilities and with replacement. Now

the GJR variances for time t to time T = t + τ can be simulated as following

σ2
n,t = γ∗ + α∗z∗n,t

2 + φ∗σ2
n,t + δ∗z∗t

2I[z∗n,t < 0]. (37)

At the terminal time T the τ -period simulated return is given by

PT /Pt = exp(τµ∗ +

τ∑
i=1

σn,t+iz
∗
n,t+i) (38)

which can be used to compute the simulated payoff of the option at time T. After repeating this

process N times the price can be computed as the discounted average payoff as

Ĉ(t, T,K) = exp(−rfτ)
1

N

N∑
n=1

max(P
(n)
T −K, 0) (39)

with P (n)
T the simulated asset price and N the total number of simulated sampled paths. The

procedure continues by calibrating the GJR parameters in θ∗ on observed market prices. This

is done by computing the prices as described in step (1) and letting the GJR parameters in

θ∗ vary in order to minimize a mean squared error function identical to equation (34)13. Once

the calibration is finished the calibrated FHS GJR estimates can be used to price options as in

step (1). Just as for the implied GJR, the number of Monte Carlo runs used for the calibration

exercise is 10000, as also for the FHS GJR taking N larger (e.g. 30000) does not change the
13The minimization algorithm applied for both option implied models is the Nelder-Mead algorithm, which

was also used in Barone-Adesi et al. (2008)
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results much but is more time consuming. Unlike Barone-Adesi et al. (2008), who calibrate

the model using only out-of-the-money options, the same set of in-sample-options used for the

Implied GJR is used to estimate the model. This allows for a better in-between comparison of

the two calibrated models.

4 Benchmark Models

4.1 Ad-hoc Black-Scholes

The first benchmark model is the ad-hoc Black Scholes model from Dumas et al. (1998). It works

by smoothing the implied Black Scholes volatilities of the cross section of the selected options

across the strikes and maturities by fitting the following equation

σBS = a0 + a1K + a2K
2 + a3τ + a4τ

2 + a5Kτ + εi (40)

in which σBS is the Black-Scholes implied volatility for an option with strike price K and time

to maturity τ . The parameters are estimated using a set of in-sample options with varying

strike prices, times to maturity and moneyness categories one week prior to the test sample.

Out-of-sample option prices can then be computed by fitting equation (40) and plugging the

fitted implied volatilities into the Black-Scholes formula. Although this method is theoretically

not consistent, ad-hoc Black-Scholes models are widely used in the industry because they incor-

porate information from different implied volatilities in the option pricing process and are easy

to estimate. This makes the ad-hoc Black-Scholes a more challenging benchmark model than

the regular Black Scholes model, which uses only a single volatility estimate. The ad-hoc Black

Scholes is estimated using Bayesian methods to enhance the comparability of the pricing results.

A detailed explanation is provided in the appendix on the Bayesian estimation of the ad-hoc

Black Scholes.

4.2 Heston Nandi GARCH

The second benchmark is the closed form GARCH model from Heston and Nandi (2000). This

model allows for asymmetry by introducing an asymmetry parameter in the GARCH specifi-

cation. Heston and Nandi (2000) show that the model is able to outperform the simple Black

Scholes model and other GARCH models in forecasting option prices out-of-sample. They de-

29



scribe that its dominance is due to the ability of the GARCH model to capture correlation of

volatility and spot returns as well as the path dependence in volatility. The model specifications

under the risk neutral measure Q are given by

log(
Pt
Pt−1

) = rt = rf −
1

2
σ2
t + σtz

∗
t , z∗t ∼ N(0, 1), (41)

σ2
t = ω + αHN (z∗t−1 − γ∗HNσt−1)2 + βHNσ

2
t−1, (42)

where

z∗t = zt + (λ+
1

2
)σt, and γ∗HN = γHN + λ+ 1

2 .

The risk premium is given by λ, the asymmetry parameter is denoted by γHN and γ∗HN is its

risk neutral version. Note that the HN subscript is used to differentiate between parameters

used in the GJR specification. Like the GJR model, the HN model also allows for asymmetric

reaction to shocks. Instead of using an indicator variable, an additional asymmetry parameter

is incorporated in the ARCH component which raises the variance more after a negative shock

than after a positive shock. Decomposing the ARCH term in (41) gives

αHN (z∗t−1 − γ∗HNσt)2 = αHN (z2
∗

t−1 + γ2
∗

HNσ
2
t−1 − 2γ∗HNσt−1z

∗
t−1) (43)

which shows that a negative shock z∗t−1 turns the last term in the parentheses positive and thus

increases the conditional variance estimate. Heston and Nandi (2000) show that the conditional

variance and the stock price are correlated as following

Covt−i(σ
2
t+i, log(Pt)) = −2αγσ2

t (44)

which, given positive estimates of α and γ, postulates a negative correlation between the condi-

tional variance and the log spot price. This implies that the γ parameter describes the asymmetry

in the distribution of the log returns, which means the model accounts for the leverage effect.

Heston and Nandi (2000) derive the call price as

Ct =
1

2
St +

exp(−rτ)

π

(∫ ∞
0

R
[K−iφξ∗(iφ+ 1)

iφ

]
dφ

)
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−e−rτK
(

1

2
+

1

π

∫ ∞
0

R
[K−iφξ∗(iφ)

iφ

]
dφ

)
(45)

where ξ∗(φ) denotes the conditional moment generating function at time t of log(PT ) given by

ξ∗(φ) = EQ[eφlog(PT )|Ft] = Pφt exp(At +Btσ
2
t+1), (46)

and R[.] is the real part of a complex number. The coefficients At and Bt are computed using a

recursion, starting at the terminal time T condition AT = BT = 0. At time t the coefficients are

then given by

At = At+1 + φrf +Bt+1ω −
1

2
log(1− 2αBt+1) (47)

Bt = φ(λ+ γ)− 1

2
γ2 + βBt+1 +

(1/2)(φ− γ)2

1− 2αBt+1
(48)

The HN GARCH parameters are estimated using Bayesian inference in the same way as explained

in section (3.1.2), with the only difference being the GARCH specification. The posterior means

are used to compute the recursions such that the integrals in (46) can be evaluated. In this

paper only the main result is used in order to price options and compare results. For a thorough

discussion of the model the interested reader is referred to Heston and Nandi (2000).

5 Data and Empirical Results

5.1 Data Description

For the empirical analysis the S&P500 index ("SPX") is selected. The options on the SPX are

one of the most actively traded and are frequently used in empirical research. Index prices are

obtained from CRSP and option data is provided by Optionmetrics. The interest rate is assumed

to be fixed at an annual rate of 0.1%, considering the fact that the models are compared based

solely on heteroskedasticity. The returns are daily and are multiplied by 100 to obtain percentage

returns. Option prices are taken as the average of the closing bid-ask spread over all exchanges

corresponding to a particular trading day. To ensure a representative sample is selected the

following data is discarded; option prices smaller than $ 0.05, options with implied volatility

larger than 70%, options with a trading volume lower than 100, and options with times to

maturity smaller than 5 days or larger than 360 days. Furthermore, to reduce possible weekend
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effects only options traded on Wednesdays are selected. As the applied framework assumes

no dividends are paid over the life of the option, the spot prices should be corrected for any

dividend payments. A standard approach, introduced by Harvey and Whaley (1992) is used, in

which cash dividends paid during the lifetime of the option are used as proxy for the expected

dividend payments. The present value can then be calculated and subtracted from the index

level to obtain the dividend corrected index level.

For model estimation a rolling window is used over the period January 1 2006 to December

24 2014 in which the models are re-estimated every third Wednesday of the month in 2014,

yielding 12 series of estimated models. The estimation window consist of 2000 observations (ap-

proximately 8 years of return data) and is chosen sufficiently large such that the communication

between the different states in the MS GJR model is properly captured. The model parameters

are not expected to change much over a period of 4 weeks (corresponding to a shift of approx-

imately 20 observations in the rolling window) such that the model parameters are kept fixed

over a period of 4 weeks. This means each estimated model forecast option prices for horizons

of 1, 2, 3 and 4 weeks ahead 14. This approach yields 52 sets of predictive option prices with the

minimum amount of options on a particular Wednesday being 466, the maximum amount being

2368, while the total amount of options after filtering is 36635. The option sets used for the

calibration processes of the Implied GJR and FHS GJR are identical and have a price date equal

to the last day in the sample and consists of options with varying strike prices, maturities and

moneyness categories. These calibration sets are kept moderately in size to accommodate the

calibration procedure, and consists of a minimum of 30 options and a maximum of 50 options.

The same set of in-sample options is also used to estimate the ad hoc Black Scholes model.

The selected options do not possess any wild card features and are categorized based on short

maturity (≤ 60 days), medium maturity ( (60,160] days) and long maturity ( (160,360] days)

such that performance amongst different times to expiration can be compared. Moneyness is

defined as the strikeprice divided by the spotprice, M$ = K
St
, and is used to define the following

categories: out-of-the-money if M$ ≥ 1.015, at-the-money if 0.985 < M$ < 1.015 and in-the-

money ifM$≤ 0.985. Deep in- and out-of-the money options are typically thinly traded and may

suffer from liquidity issues and are excluded for that reason.

14The parameter estimates indeed hardly changed on a week-to-week basis. This is as expected because the
rolling window only shifts 5 observations each week, relative to an estimation window of 2000 observations.
Imposing fixed parameters for 4 weeks therefore only reduces accuracy to a minor degree while it greatly relieves
the computational burden ((52-12) × 6 = 240 models less to estimate). For the option implied models the
parameter changes are slightly larger but still small enough to keep the models fixed over a period of 4 weeks.
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Descriptive Statistics SPX

Mean 0.031 Max 4.734
Std. Dev. 1.338 Skewness -0.082
Mode -0.0429 Kurtosis 13.37
Median 0.077 J-B pval. 0.0001
Min -9.01 Interq. range 1.042

Table 7: Descriptive statistics for the S&P 500 index percentage returns.

Figure 2: Plot of percentage returns on the S&P 500 index. The total sample used ranges from January 2006
to December 2014 and consists of 2238 observations.

5.2 Bayesian Inference Results

In the Gibbs sampler 35000 iterations are used and, even though the chain appears to converge

rather quickly for both models, the first 5000 iterations are discarded as burn-in values out of pre-

caution. The algorithms generally appear to converge to the stationary distribution well within

the first 5000 iterations. The acceptance rates are high for the conditional mean parameters

in β, with values around 0.95, which is an indication the proposal distribution is close to the

posterior. For the GARCH parameters the acceptance rates vary between 0.6 and 0.7 for both

models. To substantiate whether the number of states used in the MS GJR model is sufficient

the Bayes factors are computed, which are ratios of marginal likelihoods that can be used to

compare two models15. Only in rare cases can Bayes factors be computed analytically, however,

using the Laplace method a decent approximation can be computed relatively easy. When testing

model A versus model B, a-posteriori model A is more likely when BFA|B > 1, assuming a-priori

15Bayes factors can loosely be interpreted as a ’Bayesian likelihood ratio test’.
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model A is equally likely as model B. Higher values of the computed Bayes factor correspond to

stronger evidence in favor of model A. The computed Bayes factors for the MS GJR models with

different number of regimes are as following (with the subscript denoting the number of states);

BF3|1 = 61.58 , BF2|1 = 23.66 and BF3|2 = 2.60. Thus, the Bayes factors suggest that both the

3 and 2 state models are more likely than the 1 state model, while the 3 state model also seems

more likely than the 2 state model. The improvement of BF3|2 over BF3|1 is only marginal,

which suggests that adding more states will not improve performance much more. Therefore

this can be interpreted as a rough indication that three states are indeed sufficient to model the

conditional volatility. More details on the Bayes factors and their approximation are given in

the appendix.

5.2.1 Inference Results GJR

The inference results for the GJR model presented in table (8) show that the return level rep-

resented by µ slightly increases over 2014 while the first order autocorrelation ρ behaves quite

steady around a value of -0.07. The γ parameter can be interpreted as the level of the conditional

variance and has relatively low values, suggesting a low volatility period during the estimation

sample. The effect of the unexpected shocks, measured by α, is quite low relative to the reaction

towards negative unexpected shocks, measured by δ. The values of α are quite low but seem

to decline even further from a value of 0.09 in March to a value of 0.007 in the last sample in

December. In contrast to this, the values of δ vary between 0.15 and 0.23 and appear to con-

tribute quite well to describing the conditional variance. Thus, it appears the leverage effect is

quite pronounced for the given data set. Meanwhile, the dependence on last times’ conditional

variance slightly increases as the estimation window rolls on with estimated values of 0.84 in

January upwards to 0.90 in December. The estimated models appear to be highly persistent,

as is usually the case for GARCH models. Overall, the parameter estimates do not appear to

change too much over time.
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Inference Results GJR
µ ρ γ α φ δ PM

Jan 0.0136 -0.0689 0.0543 0.0083 0.8376 0.2343 0.9630
0.0135 0.0127 0.0045 0.006 0.006 0.0073 0.0052

Feb 0.0135 -0.0682 0.0366 0.0451 0.8428 0.1780 0.9769
0.0125 0.0127 0.0109 0.0241 0.0124 0.0032 0.0105

Mar 0.0138 -0.0727 0.0457 0.0899 0.8117 0.1648 0.9840
0.0127 0.0128 0.0198 0.0732 0.0667 0.0133 0.0038

Apr 0.0139 -0.0713 0.0147 0.0219 0.8932 0.1530 0.9916
0.0122 0.0126 0.0052 0.014 0.0099 0.0219 0.0053

May 0.0137 -0.0732 0.0170 0.0146 0.8987 0.1510 0.9887
0.0118 0.0123 0.0028 0.0109 0.0057 0.0167 0.0047

Jun 0.0157 -0.0711 0.0294 0.0134 0.8753 0.1741 0.9758
0.0123 0.0126 0.0015 0.0045 0.0022 0.0022 0.0061

Jul 0.0156 -0.0719 0.0176 0.0077 0.9004 0.1550 0.9855
0.0120 0.0124 0.0026 0.0065 0.0085 0.0080 0.0034

Aug 0.0172 -0.0723 0.0373 0.0071 0.8785 0.1702 0.9707
0.0126 0.0124 0.0104 0.0056 0.0044 0.0161 0.0085

Sep 0.0175 -0.0733 0.0250 0.0072 0.8838 0.1838 0.9830
0.0120 0.0125 0.0021 0.0057 0.0038 0.0098 0.0048

Oct 0.0175 -0.0740 0.0168 0.0096 0.9015 0.1517 0.9869
0.0120 0.0125 0.0026 0.0075 0.0057 0.0113 0.0043

Nov 0.0196 -0.0739 0.0411 0.0054 0.8632 0.2125 0.9748
0.0125 0.0129 0.0197 0.0044 0.0307 0.0392 0.0085

Dec 0.0194 -0.0731 0.0223 0.0075 0.8972 0.1684 0.9889
0.0122 0.0127 0.0063 0.0060 0.0069 0.0093 0.0043

Table 8: Inference results for the GJR model. Given are the posterior means (in bold) and posterior standard
deviations (in italic) of the posterior parameter distributions. The models are re-estimated every the third
Wednesday of the month during the year 2014. In the Gibbs sampler 35000 iterations are used of which 5000 are
used as burn-in sample. "PM" Denotes the persistence measure and is defined as α+ φ+ δ/2.

5.2.2 Inference Results MS GJR

The posterior inference results of the regime parameters are given in table (9). The different

regimes are properly identified in both the conditional mean and the GARCH parameters. More-

over, no bimodalities are observed in the posterior histograms (not reported here), indicating the

model does not suffer from the label switching problem. Considering the conditional mean, it

holds that µ3 > µ2 > µ1, indicating a slightly higher return level during the different regimes.

The differences however, are only of small magnitude. The auto-correlation parameter is roughly

the same for all regimes, although it is slightly less negative in the medium volatility regime.

The level of the conditional variance is clearly identified among the different regimes as γ3 >

γ2 > γ1. Noteworthy is the fact that γ1 in the MS GJR in general is higher than the γ val-

ues observed in the GJR model, suggesting a possible downward bias in the description of the

level of the conditional variance in the GJR model. For the ascending regimes the effects of the

unexpected shocks, αj , and the asymmetry effect, δj , increases. For instance, the effect of the
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unexpected shocks in the medium regime is up to 10 times as high as for the low regime, while

the high regime has α values up to twice as large as the medium regime. The δ values are quite

substantial in all regimes, although they increase for more volatile regimes. The dependence

on last periods’ conditional variance diminishes for more volatile regimes, which coincides with

larger unexpected shocks in more volatile periods which are being captured by higher values of

αj and δj . Thus, the results roughly comply with the prior intuition about the interpretation

of the regimes describing low, medium and high volatility periods. In comparison to the single

regime GJR model, the GARCH estimates in the MS GJR are less persistent, which mainly

stems from their lower dependence on the previous conditional variances. Bauwens et al. (2010)

point out that standard GARCH models generally suffer from an upward bias in the persistence

parameter, which may be why the estimated GJR models are close to being integrated.

The posterior transition probability matrices are given in table (10) and indicate a high

probability to remain in a given state once it is entered. From an economic perspective this

can be explained as different periods of volatility lasting for a certain amount of time, which is

typically the case in, for example, expansion or recession. Indeed, the return plot in figure (2)

suggests transitions between states do not occur continuously but typically persist for quite some

time. A plot of the estimated probabilities of being in state i over time is given in figure (3).

Figure 3: Posterior regime probabilities for the total estimation window. The top figure (P1) shows the posterior
probability of being in state 1, the second figure (P2) shows the posterior probability of being in state 2, the third
figure (P3) shows the posterior probability of being in state 3 and the bottom figure displays the fitted MS GJR
conditional variance.
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Inference Results Markov Switching GJR
Regime 1 Regime 2 Regime 3

µ ρ γ α φ δ PM µ ρ γ α φ δ PM µ ρ γ α φ δ PM

Jan
0.037 -0.068 0.061 0.027 0.691 0.253 0.845 0.045 -0.057 0.164 0.200 0.487 0.291 0.833 0.049 -0.072 0.465 0.235 0.413 0.369 0.833
0.016 0.022 0.017 0.020 0.046 0.182 0.053 0.014 0.022 0.026 0.041 0.044 0.055 0.039 0.014 0.025 0.084 0.120 0.036 0.038 0.104

Feb
0.037 -0.065 0.099 0.132 0.609 0.154 0.818 0.043 -0.051 0.164 0.199 0.489 0.291 0.834 0.048 -0.068 0.502 0.225 0.272 0.307 0.650
0.017 0.024 0.026 0.086 0.063 0.074 0.015 0.014 0.025 0.032 0.028 0.037 0.070 0.048 0.013 0.029 0.100 0.121 0.059 0.069 0.207

Mar
0.027 -0.068 0.071 0.035 0.671 0.248 0.830 0.034 -0.059 0.175 0.193 0.484 0.265 0.810 0.038 -0.070 0.403 0.224 0.315 0.234 0.655
0.016 0.022 0.016 0.025 0.045 0.044 0.044 0.013 0.022 0.046 0.046 0.042 0.149 0.109 0.012 0.025 0.046 0.120 0.036 0.108 0.203

Apr
0.041 -0.063 0.069 0.043 0.678 0.255 0.848 0.047 -0.051 0.165 0.201 0.485 0.292 0.832 0.051 -0.070 0.500 0.302 0.246 0.387 0.741
0.016 0.025 0.014 0.028 0.030 0.035 0.038 0.013 0.025 0.035 0.056 0.071 0.155 0.084 0.013 0.029 0.114 0.092 0.088 0.025 0.181

May
0.043 -0.066 0.067 0.033 0.676 0.260 0.839 0.049 -0.051 0.164 0.199 0.489 0.291 0.833 0.054 -0.072 0.461 0.398 0.294 0.274 0.829
0.017 0.024 0.008 0.023 0.025 0.036 0.019 0.014 0.025 0.018 0.016 0.007 0.034 0.032 0.013 0.028 0.088 0.030 0.055 0.104 0.121

Jun
0.036 -0.054 0.069 0.021 0.664 0.251 0.810 0.044 -0.042 0.164 0.200 0.489 0.291 0.834 0.048 -0.058 0.460 0.235 0.349 0.237 0.702
0.017 0.024 0.012 0.013 0.023 0.019 0.020 0.014 0.024 0.020 0.040 0.029 0.030 0.027 0.013 0.028 0.078 0.121 0.023 0.111 0.185

Jul
0.047 -0.072 0.078 0.039 0.623 0.231 0.777 0.053 -0.058 0.164 0.200 0.488 0.290 0.833 0.058 -0.078 0.348 0.339 0.374 0.304 0.865
0.017 0.026 0.016 0.026 0.043 0.030 0.044 0.015 0.025 0.020 0.020 0.013 0.026 0.028 0.014 0.029 0.027 0.070 0.021 0.086 0.102

Aug
0.033 -0.038 0.074 0.059 0.513 0.301 0.723 0.039 -0.029 0.166 0.197 0.496 0.282 0.834 0.042 -0.043 0.253 0.357 0.418 0.309 0.930
0.015 0.022 0.051 0.040 0.105 0.057 0.039 0.012 0.022 0.010 0.032 0.083 0.128 0.026 0.011 0.024 0.089 0.054 0.061 0.083 0.049

Sep
0.045 -0.064 0.076 0.028 0.666 0.208 0.798 0.051 -0.052 0.164 0.200 0.489 0.291 0.834 0.055 -0.071 0.254 0.223 0.448 0.258 0.799
0.016 0.024 0.012 0.017 0.122 0.119 0.078 0.014 0.023 0.039 0.019 0.018 0.068 0.038 0.013 0.027 0.073 0.123 0.065 0.098 0.121

Oct
0.018 -0.070 0.069 0.057 0.657 0.232 0.830 0.027 -0.058 0.166 0.202 0.486 0.288 0.832 0.032 -0.070 0.392 0.279 0.465 0.209 0.848
0.017 0.024 0.007 0.019 0.014 0.009 0.009 0.013 0.024 0.037 0.058 0.055 0.068 0.041 0.012 0.028 0.032 0.092 0.065 0.123 0.090

Nov
0.051 -0.088 0.069 0.067 0.652 0.237 0.837 0.057 -0.073 0.164 0.200 0.490 0.290 0.835 0.062 -0.095 0.408 0.385 0.182 0.367 0.751
0.018 0.025 0.019 0.011 0.019 0.003 0.030 0.015 0.025 0.030 0.018 0.064 0.044 0.058 0.015 0.030 0.040 0.033 0.105 0.036 0.141

Dec
0.032 -0.073 0.068 0.063 0.660 0.252 0.849 0.039 -0.063 0.165 0.200 0.488 0.291 0.834 0.043 -0.076 0.322 0.279 0.401 0.212 0.786
0.017 0.023 0.028 0.025 0.029 0.029 0.018 0.013 0.023 0.027 0.024 0.040 0.038 0.046 0.012 0.025 0.050 0.098 0.035 0.102 0.172

Table 9: Inference results for the Markov Switching GJR model. Given are the posterior means (in bold) and the posterior standard deviations (in italic) of the parameters.
The models are estimated monthly on the third Wednesday of the month during the year 2014 using 8 years of return data, corresponding to approximately 2000 observations.
The persistence measure is denote by "PM" and is defined as α + φ + δ/2.
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Posterior Transition Probabilities MS GJR model
Jan Feb Mar

pj.1 pj.2 pj.3 pj.1 pj.2 pj.3 pj.1 pj.2 pj.3

p1.k
0.99 0.00 0.01 p1.k

0.92 0.01 0.08 p1.k
0.97 0.00 0.03

4E-04 9E-07 4E-04 0.007 0.001 0.006 0.002 7E-04 0.001

p2.k
0.00 0.96 0.03 p2.k

0.17 0.81 0.02 p2.k
0.19 0.77 0.05

0.003 0.021 0.021 0.016 0.019 0.002 0.016 0.02 0.004

p3.k
0.02 0.00 0.98 p3.k

0.02 0.00 0.98 p3.k
0.02 0.00 0.98

0.006 5E-05 0.006 0.004 1E-04 0.005 0.005 7E-05 0.005

Apr May Jun
pj.1 pj.2 pj.3 pj.1 pj.2 pj.3 pj.1 pj.2 pj.3

p1.k
0.96 0.00 0.04 p1.k

0.91 0.04 0.05 p1.k
0.98 0.00 0.02

0.003 9E-06 0.003 0.005 0.004 0.001 7E-04 8E-05 6E-04

p2.k
0.02 0.94 0.03 p2.k

0.14 0.85 0.01 p2.k
0.02 0.93 0.05

0.009 0.023 0.025 0.006 0.008 6E-04 0.001 0.006 0.006

p3.k
0.03 0.00 0.97 p3.k

0.02 0.00 0.97 p3.k
0.02 0.01 0.97

0.006 3E-06 0.006 0.005 7E-04 0.006 0.006 0.001 0.007

Jul Aug Sep
pj.1 pj.2 pj.3 pj.1 pj.2 pj.3 pj.1 pj.2 pj.3

p1.k
0.94 0.00 0.06 p1.k

0.96 0.00 0.04 p1.k
0.85 0.02 0.13

9E-04 1E-06 0.001 0.001 1E-04 0.002 0.004 0.001 0.003

p2.k
0.00 0.98 0.01 p2.k

0.13 0.80 0.08 p2.k
0.12 0.80 0.08

0.003 0.010 0.01 0.010 0.010 0.003 0.002 0.006 0.010

p3.k
0.04 0.00 0.96 p3.k

0.02 0.01 0.97 p3.k
0.03 0.00 0.97

0.008 5E-07 0.008 0.005 0.001 0.007 0.004 1E-04 4E-03

Oct Nov Dec
pj.1 pj.2 pj.3 pj.1 pj.2 pj.3 pj.1 pj.2 pj.3

p1.k
0.98 0.00 0.02 p1.k

0.90 0.00 0.10 p1.k
0.98 0.00 0.02

8E-04 3E-06 0.001 0.003 6E-04 0.003 0.003 1E-06 0.003

p2.k
0.02 0.87 0.11 p2.k

0.09 0.82 0.09 p2.k
0.01 0.98 0.01

0.01 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01

p3.k
0.02 0.00 0.98 p3.k

0.01 0.00 0.99 p3.k
0.02 0.00 0.98

0.006 3E-05 0.006 0.002 7E-05 0.001 0.001 1E-06 0.001

Table 10: Posterior transition probability matrices for the estimated Markov Switching GJR models. Given
are the posterior means (in bold) and the posterior standard deviations (in italic) of the estimated transition
probabilities. The matrices correspond to the estimated regime parameters displayed in table (9).

5.2.3 Prior Sensitivity

As a robustness check the prior sensitivity of the MS GJR model is considered. Since the model

employs informative priors some caution has to be taken concerning the prior influence. If the

priors dominate the posterior distribution the inference results may become too subjective and

may not be useful. To assess the influence of the informative priors on the GARCH parameters,

the MS GJR model of the first sample in January is re-estimated using flat priors. The inference

results are compared with the results of the MS GJR model for January that uses the informa-

tive prior. For the large estimation window used the prior influence is expected to be negligible,

meaning the parameters should not deviate much from those observed in table (13). Large differ-

ences between the estimated parameters may indicate a possible misspecification of the model.

The resulting estimates of the MS GJR with flat priors are presented in table (11). Some minor

differences in the parameters of the non-informative model are observed. For example, the pa-
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rameters of the conditional mean are slightly larger in magnitude, whereas the γ parameters are

slightly lower for regimes 1 and 2 and slightly higher for regime 3. The differences however, are

very marginal and not larger than 0.025. The other parameters in regimes 1 and 2 also do not

show any notable differences. In the high volatility regime the differences are more pronounced;

α is approximately 0.1 higher and δ is approximately 0.14 lower in the non-informative model.

Hence, there appears to be a difference in the trade-off between the reaction towards shocks in

general and towards negative shocks, which may be related to the informative prior. Overall,

the informative prior seems to have only a small influence on the posterior distribution, which is

mainly limited to the parameters in the high volatility regime. The posterior transition proba-

bilities are also very similar, and also indicate the states are very persistent.

Estimated MS GJR Model January using Non-Informative Priors
Posterior Transition Probabilities

µ ρ γ α φ δ PM pj.1 pj.2 pj.3
Regime 1 p1.k 0.926 0.032 0.041
0.0359 -0.0694 0.0347 0.0215 0.8508 0.0798 0.9122 0.004 0.001 0.004
0.0175 0.0227 0.0082 0.0166 0.0186 0.0349 0.0200 p2.k 0.038 0.958 0.004

0.005 0.006 0.001
Regime 2 p3.k 0.033 0.005 0.962
0.0439 -0.0575 0.1390 0.0484 0.6618 0.2882 0.8542 0.007 0.001 0.008
0.0148 0.0233 0.0375 0.0342 0.0415 0.1757 0.0752

Regime 3
0.0482 -0.0713 0.3794 0.2286 0.5659 0.2285 0.9087
0.0136 0.0269 0.1843 0.0790 0.0105 0.1265 0.0697

Table 11: Inference results for the MS GJR model in January using flat priors. Given are the posterior means
(in bold) and the posterior standard deviations (in italic). In the Gibbs sampler 35000 iterations are used of
which 5000 serve as burn-in values.

5.3 Calibration Results Option Implied Models

Table (13) presents the calibration results of the Implied GJR and the FHS GJR. The models

are re-calibrated every month on the same set of options one week prior to the options under

consideration. Giving a clear interpretation to the calibrated parameters is difficult as these are

obtained as possibly sub-optimal solutions to a highly dimensional problem. Furthermore, since

the parameters are estimated from option data they reflect the risk-neutral structure, which is

different from the real world measure. This makes it even harder to give an interpretation to the

parameter estimates. Nonetheless, a cautious attempt can be done to describe any differences
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and similarities. The γ parameter is quite low for both models and is similar to values observed

in the GJR model. Both models have a relatively high φ parameter, although in the FHS model

this parameter is slightly higher and more steady over time. The α parameter is quite low,

especially in the FHS model where values close to 0 are observed. The values of δ show some

large fluctuations in between months in both the FHS and Implied GJR models, which seem to

be part of a trade-off between φ and δ. High values of δ are compensated by lower values of φ

and vice-versa. Hence, the models mainly capture the return dynamics through φ and δ, while

the α and γ parameters are typically very low.

Estimation Results Option Implied Models
Implied GJR FHS GJR
γ α φ δ PM γ α φ δ PM

Jan
0.072 0.011 0.631 0.371 0.828 0.028 1E-04 0.902 4E-04 0.902
0.006 0.001 0.017 0.033 0.024 0.003 0.002 0.003 0.005 0.004

Feb
0.019 0.000 0.909 0.013 0.916 0.064 0.057 0.779 0.328 0.999
0.006 0.001 0.021 0.002 0.021 0.007 0.012 0.032 0.029 0.037

Mar
0.000 0.027 0.805 0.085 0.874 0.028 1E-04 0.902 4E-04 0.902
0.000 0.002 0.002 0.001 0.003 3E-04 0.007 0.003 5E-04 0.008

Apr
0.020 0.018 0.770 0.269 0.922 0.030 1E-04 0.944 0.113 0.999
0.002 0.002 0.009 0.002 0.010 0.007 0.006 0.092 0.006 0.093

May
0.000 0.103 0.850 0.020 0.963 0.031 0.020 0.760 0.302 0.931
0.003 0.001 0.005 0.006 0.006 4E-04 0.017 0.022 0.006 0.023

Jun
0.000 0.015 0.625 0.324 0.803 0.032 1E-04 0.874 3E-04 0.873
0.000 0.003 0.028 0.010 0.029 0.0135 0.0026 0.003 0.01 0.006

Jul
0.001 0.000 0.902 0.053 0.928 0.014 1E-05 0.983 0.007 0.986
0.000 0.000 0.005 0.002 0.005 0.0011 4E-04 0.002 0.002 0.002

Aug
0.065 0.004 0.538 0.324 0.704 0.020 1E-04 0.729 0.094 0.776
0.002 0.010 0.001 0.030 0.018 0.0011 0.007 0.001 0.005 0.007

Sep
0.021 0.002 0.905 0.000 0.908 0.031 0.008 0.811 0.231 0.935
0.002 0.017 0.003 0.001 0.017 0.0023 0.001 0.008 0.005 0.008

Oct
0.027 0.002 0.919 0.000 0.921 0.017 1E-05 0.967 8E-04 0.966
0.047 0.014 0.032 0.010 0.036 8E-04 2E-04 6E-04 1E-05 7E-04

Nov
0.026 0.004 0.685 0.530 0.954 0.005 1E-05 0.973 1E-04 0.973
0.026 0.004 0.0001 0.001 0.004 0.001 3E-04 9E-04 1E-04 0.001

Dec
0.037 0.009 0.739 0.417 0.957 1E-04 1E-05 0.924 0.068 0.955
0.002 0.001 0.006 0.018 0.011 1E-04 1E-04 0.004 0.003 0.004

Table 13: Estimates of the calibrated GJR and FHS-GJR models. Given are the calibration results of weekly
re-calibrating both models using 10000 Monte Carlo runs and one day of option data. Note that PM is the
persistence measure, which is defined as α+ φ+ δ/2.
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5.4 Predictive Option Pricing Results

Option prices for the GJR and MS GJR are computed using the algorithm described in section

3.4. The outer integral in equation (29) over θ is approximated by MC = 30000 Monte Carlo

iterations. This number appears large enough to obtain consistent results such that the inner

integral over the risk neutral densities can be approximated by setting N = 1. For the Implied

GJR and the FHS GJR the settings are MC = 1 and N = 30000 which coincides with a classical

maximum likelihood scheme. The computed option prices are then compared based on the Mean

Absolute Percentage Error ("MAPE"),

MAPE =
1

N

N∑
n=1

|Cn(t, T,K)− Ĉn(t, T,K)|
Cn(t, T,K)

, (49)

the Mean Mispricing Error ("MME"),

MME =
1

N

N∑
n=1

Cn(t, T,K)− Ĉn(t, T,K)

Cn(t, T,K)
(50)

and the Root Mean Squared Error ("RMSE"),

RMSE =

√√√√ 1

N

N∑
n=1

(Cn(t, T,K)− Ĉn(t, T,K))2. (51)

These evaluation metrics are chosen to compare the results on different criteria. The MAPE

measures the magnitude of the pricing errors and represent a measure of accuracy, the MME

indicates the direction of the pricing error (i.e. over- or underpricing) and describes the bias,

while the RMSE describes a combination of bias and volatility of the pricing errors.

5.4.1 Analysis of Pricing Errors

As initial analysis the box and whisker plots of the pricing errors, given in figure (4), are inspected

for any systematic bias patterns. If the models are correctly specified the pricing errors should

be centered approximately around 0 across moneyness categories and time to expiration. For

the GJR model, the plot reveals that this is not the case. Only for short and medium maturity

in-the-money options the pricing errors are centered somewhat around 0. However, even for these

categories the GJR produces substantial negative pricing errors. When options move away
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Figure 4: This figure shows the box and whiskers plots of aggregate pricing errors ("PEs"). The box and whiskers plot provide a visual interpration of the spread of the data
and consists of the minimum, the first quartile, the median (red line), the third quartile and the maximum of the data set. The x-axis display the models; GJR, Implied GJR
(IGJR), FHS GJR (FHS), MS GJR, HN and Ad-Hoc BS (AHBS), while the y-axis displays the pricing error in U.S. $ currency.
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from in-the-money pricing performance of the GJR deteriorates in a rapid fashion. For at-the-

money and out-of-the-money options the pricing errors are centered far below 0, suggesting the

GJR is possibly misspecified. In addition to this, negative pricing errors are realised more often

and are of much larger magnitude than positive errors, indicating a negative skewness in the

pricing errors. This indicates that the GJR has a systematic upward bias, meaning it has a

general tendency to overprice options. The plot also reveals a pattern for the pricing errors of

both the option implied models. In- and out-of-the-money residuals are centered approximately

around zero, while at-the-money options are centered above zero for both the Implied GJR and

FHS GJR. This means at-the-money options are more subject to underpricing by the option

implied models, which becomes more pronounced as maturity increases. The pricing errors of

the FHS GJR reveal a symmetric pattern, suggesting overpricing happens in equal proportion

to underpricing for the categories of which the residuals are centered around 0. In contrary, the

pricing errors of the Implied GJR appear to be more asymmetric and indicate an underpricing

behaviour. The pricing errors corresponding to MS GJR are centered relatively closer around 0

across moneyness categories in comparison with the GJR, Implied GJR and FHS GJR, which

suggests a more consistent pricing performance. However, the median value appears to shift

slightly below 0 as options move towards out-of-the-money and some asymmetries are observed

for the long maturity pricing errors. Similar to the GJR, the MS GJR tends to overprice options

as maturity increases, although the overpricing appears to be less severe.

The plot suggests that the Implied GJR, FHS GJR and MS GJR remove a large portion of

the systematic bias observed in the GJR model, which is especially pronounced for medium and

long maturities and at- and out-of-the-money options. However, unlike the MS GJR, the option

implied models have a downwards bias for at-the-money options, meaning they have a tendency

to underprice options in this category. This pattern amplifies for longer maturities, where the

pricing errors of both option implied models are centered substantially above 0. Furthermore,

the minimum and maximum pricing errors of the MS GJR are substantially lower than those of

the GJR, Implied GJR, and FHS GJR for most categories. A closer look into the data revealed

that relatively large pricing also errors appear to occur less frequent for the MS GJR.

When considering the benchmark models, the HN and ad-hoc BS, it appears these are per-

forming quite well and prove hard to beat. The HN pricing errors have a relatively small spread

and are centered closely around 0 for in-the-money options and medium and long maturity at-

the-money options. The remaining categories suffer from a slight upward pricing bias as the
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pricing errors are concentrated slightly below 0. The pricing errors of the ad-hoc BS are also

centered closely around 0 and show a very tight spread in case of at-the-money and out-of-the-

money options. In-the-money options are priced less accurate by the ad-hoc BS as the spread

of the pricing errors is relatively large, while also some relatively large negative pricing errors

are observed in this category. The magnitude of the pricing errors of the ad-hoc BS seems to

decrease as options move more towards out-of-the-money.

Overall the box and whiskers plots suggest the following; (1) the simple GJR model produces

heavily biased pricing forecasts, (2) incorporating past option data in the model removes a

large portion of this bias and (3) incorporating a regime switching property reduces this bias

even further. These observations can be attributed to the fact that the option implied models

capture more dynamics from the risk-neutral distribution than the simple GJR (recall that in

a GARCH setting there are an infinite amount of risk-neutral measures) while the performance

of the MS GJR can be ascribed to its the ability to capture the well discussed stylized facts

such as leptokurtosis and volatility jumps. The improvement is most profound for out-of and

at-the-money options, where the GJR appears to be completely misspecified in comparison to

the MS GJR, Implied GJR and FHS GJR. Furthermore, the MS GJR appears to perform slightly

better than the option implied models in terms of bias and accuracy as these pricing errors are

centered closer around 0 and show a slightly smaller spread.

5.4.2 Aggregate Results

The aggregate results of the MME, MAPE and RMSE over 2014, displayed in table (14), show

a clear pattern; a relative good pricing performance of in-the-money options which decreases as

time to maturity increases and a relatively bad pricing performance of at- and out-of-the-money

options, which improves as time to maturity increases. Furthermore the RMSEs of the pricing

errors increase as time to maturity increases, which is as expected as the volatility of the simu-

lated asset price increases along the maturity horizon. This pattern seems to hold for all models,

although there are some differences in performance between different categories among the mod-

els. Overpricing is quite substantial for the GJR model given the negative MMEs observed across

all maturity and moneyness categories. For out-of-the-money options the GJR performs worst of

all, it overprices short maturity options in this category by 600% on average. The performance

of the GJR in this moneyness bucket seems to improve slightly as time to maturity increases.

When comparing the RMSEs, the GJR is again outperformed by the other models, which in-
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dicates a relatively high bias and/or volatility of the pricing errors. The severe overpricing, as

observed for the GJR model, is less pronounced for the remaining models. The MS GJR mostly

overprices out-of-the-money options, although the extent of overpricing reduces as time to ma-

turity increases. Like the GJR, the MS GJR is able to price in-the-money options fairly accurate

while at- and out-of-the-money options are priced less good in terms of accuracy and volatility.

The performance in these categories however, is still strikingly better than that of the GJR model.

Aggregate Option Pricing Results

Days to Expiration

≤ 60 (60,160] > 160

Model M $ MME MAPE RMSE MME MAPE RMSE MME MAPE RMSE

ITM -0.073 0.081 9.199 -0.119 0.128 18.393 -0.199 0.211 39.511
GJR ATM -0.991 0.993 19.222 -0.566 0.566 29.311 -0.469 0.482 47.979

OTM -6.086 6.086 18.414 -4.554 4.554 29.577 -1.557 1.558 51.930

ITM 0.013 0.024 4.170 0.027 0.039 8.768 0.054 0.070 20.847
Implied GJR ATM -0.216 0.358 7.929 0.140 0.285 16.254 0.356 0.391 37.489

OTM -1.629 1.777 7.513 -0.719 1.216 11.774 0.185 0.757 19.199

ITM 0.021 0.034 6.143 0.032 0.052 12.310 0.049 0.079 27.773
FHS GJR ATM 0.057 0.266 8.992 0.139 0.295 16.579 0.233 0.320 31.216

OTM -0.648 1.108 6.875 -0.570 1.176 11.134 -0.194 0.911 19.130

ITM 0.007 0.031 4.247 0.020 0.046 7.215 -0.042 0.092 20.300
MS GJR ATM -0.343 0.392 6.761 -0.069 0.141 8.594 -0.078 0.166 21.501

OTM -1.625 1.679 5.553 -1.075 1.128 9.389 -0.431 0.513 24.374

ITM -0.005 0.020 3.336 -0.004 0.020 5.339 -0.013 0.024 11.965
HN ATM -0.489 0.508 9.380 -0.231 0.244 11.575 -0.143 0.151 13.342

OTM -2.866 2.879 8.880 -2.323 2.327 12.391 -1.770 1.772 16.336

ITM 0.011 0.018 3.506 -0.003 0.025 9.163 -0.031 0.041 25.775
AHBS ATM 0.115 0.136 4.648 0.113 0.119 6.826 0.066 0.073 7.279

OTM 0.394 0.448 2.660 0.497 0.511 4.746 0.294 0.362 6.417

Table 14: Predictive option pricing results for the aggregate categorized sample over 2014. This table displays
the Mean Mispricing Errors (in %), the Mean Absolute Percentage Errors (in %) and the Root Mean Squared
Errors (in U.S. $ currency). The results are categorized based on moneyness (in-the-money (ITM), at-the-money
(ATM), out-of-the-money (OTM)) and days to expiration (≤ 60 days, (60,160] days, > 160 days).

Overall, the MS GJR shows a substantial improvement over the single regime GJR. It outper-

forms the GJR across all maturities and moneyness categories and thus seems to remove a large

portion of the bias of the GJR model, which was also suggested by the box and whiskers plot.

The option implied models show a similar improvement over the GJR model. Both the FHS and

Implied GJR outperform the GJR for all categories, especially at- and out-of-the-money options

are priced more accurately by the FHS and Implied GJR. This performance tends to increase as

time to expiration increases, which is also the case for the MS GJR model. When considering

45



only the test models the GJR clearly performs worst while the MS GJR model competes quite

well with the calibrated models. Based on accuracy the FHS and Implied GJR perform similar

to the MS GJR for short maturities but are caught up by the MS GJR as time to maturity

increases, while in terms of volatility and bias the MS GJR scores better in almost all categories.

The plots in figure (5) and (6) provide a visual interpretation of the absolute mispricing across

moneyness buckets, categorized by time to expiration.

None of the test models is able to systematically outperform the benchmark models. Consid-

ering the pricing accuracy, the MS GJR outperforms the HN model for at- and out-of-the-money

options, and performs similar for in-the-money options compared to both the HN and ad-hoc BS.

The HN shows a low pricing accuracy for out-of-the-money options and is outperformed by all

models in this category, except for the GJR. The best performing model is the ad-hoc BS. This

may seem surprising as this model is theoretically inconsistent, whereas the GARCH models are

well founded from a theoretical perspective. However, as noted by Heston and Nandi (2000),

the ad-hoc BS is designed such that it fits the term structure of implied volatilities as well as

the volatility smile over strike prices. This gives the ad-hoc BS more flexibility compared to the

GARCH models. Hence, the ad-hoc BS is a challenging benchmark which is hard to beat, as

was also postulated by Dumas et al. (1998), who note that its performance is as good as that

of sophisticated models that allow the volatility to be a deterministic function of asset price and

time. Indeed, the ad-hoc BS outperforms the theoretical consistent GARCH models, even when

these models are inferred from option data or include a regime switching property. These find-

ings are consistent with the work of Duan et al. (2002), who find that the ad-hoc BS performs

equally well, or even better, as their Markov switching GARCH model. Nonetheless, the MS

GJR still performs quite well even though the normality assumption is maintained and regime

shift risk is assumed to be absent. Its outperformance of the GJR model is readily observed, but

the performance of the MS GJR is generally also better than that of the option implied models.

This suggests that calibrated models are relatively less capable of inferring market dynamics

from option data as opposed to a regime switching model estimated with historical returns. A

big difference between regime switching models and calibrated models is that the latter cannot

account for volatility jumps. Also, the option implied models incorporate mainly information

from the previous time-step, which means they mostly reflect the market momentum. This pos-

sibly leads to a lower accuracy when simulating the volatility evolution for medium and long

maturities. The regime switching model does not suffer from this momentum bias as it incor-
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porates information from a long sample period. This could potentially contribute to a more

accurate simulation of the underlying asset price over longer maturity horizons, which leads to

an increased pricing performance of medium and long maturity options.

(a)

(b)

Figure 5: Performance over moneyness categories. This figure shows the Mean Absolute Percentage Errors
across the moneyness spectrum for short maturity options (figure a) and medium maturity options (figure b).
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Figure 6: Performance over moneyness categories. This figure shows the Mean Absolute Percentage Errors
across the moneyness spectrum for long maturity options.

5.4.3 Performance over Time

The pricing performance over time is considered by inspecting the MAPEs of the aggregate

weekly option samples over time, plotted in figure (7a). The figure does not differentiate between

different maturity and moneyness categories and therefore some caution needs to be taken when

interpreting the plot. Nonetheless, the plot can indicate how pricing performance generally

behaves over time. Furthermore, the plot can indicate whether there are any notable differences

between the different forecast horizons within each 4 week subsample that corresponds to a

specific estimated model.

It is desirable that pricing performance remains consistent over time because this implies the

models sufficiently capture the changing market conditions. The plot shows that only the ad-hoc

BS and the FHS GJR perform consistent throughout the given time-span. The MS GJR and

the Implied GJR perform less stable and appear to have a sudden jump in the percentage errors

in the second quarter of 2014, which then recovers halfway through 2014. The performance then

remains more consistent for the remainder of 2014. The HN and GJR appear to perform very

inconsistent, especially in the first half of 2014 large jumps over 4 week periods are observed. In

the figure a sharktooth-pattern can be recognized for the HN and GJR models, which indicates
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(a)

(b)

Figure 7: Figure (a) displays the aggregate performance over time. The plot shows the aggregate MAPE values
across moneyness categories and maturities over the year 2014 and indicates the overall consistency of the pricing
performance of the models throughout time. Figure (b) shows a plot of the S&P500 index percentage returns
over 2014, with the x-axis indicating the corresponding quarter
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relative large jumps from one sample to another. For the HN model this pattern diminishes in

the second half of 2014, while the GJR is subject to this bias throughout the entire year. This

inconsistent performance is likely caused by the severe mispricing of out-of-the-money options

by both the HN and GJR.

When considering the performance of the models within each 4 week sub-sample that corre-

sponds to a specific estimated model, there appears not to be any systematic patterns for the

Implied GJR, FHS GJR, MS GJR and ad-hoc BS. Although there is some discrepancy in the

results of the MS GJR and the Implied GJR in the second quarter of 2014, this does not appear

to be a repetitive trend. Thus, for the aforementioned models the MAPE values do not appear

to change much in between the 4 week periods. This is an indication that there is no systematic

bias related to the increasing forecast horizon within the 4 week subsamples for these models.

Contrary to this is the performance of the HN and GJR models, which display the readily ob-

served sharktooth-pattern. This indicates the models perform inconsistent within some of the 4

week subsamples and possibly suffer from a bias related to the expanding forecast horizon.

The plot in figure (7a) suggests there are some differences in the performance over the year.

For example, the absolute mispricing in the second quarter is of larger magnitude than in the

remainder of the year. Especially after week 28 the HN, GJR, Implied GJR and MS GJR

models perform substantially better. Therefore, as a final analysis the quarterly results are

considered. Tables (15) and (16) present the quarterly results, while figures (8) to (13) show the

mean absolute percentage errors across moneyness buckets for the different maturities for each

quarter. The quarterly results indeed reveal some differences. From quarter 1 to quarter 2 an

increase in the bias and the volatility of the pricing errors is observed for the models that are

estimated using historical asset returns (GJR, MS GJR, HN). Surprisingly, the option implied

GARCH models and the ad-hoc BS appear to perform relatively more constant from quarter 1

to quarter 2. This is unexpected because the parameters in these models were less stable over

time compared to the GJR, MS GJR and HN models. Possibly the models estimated with the

historical returns do not sufficiently capture market events around this point in time. The plot

in figure (7b) indeed shows some large negative returns at the beginning of the second quarter.

In the second quarter the magnitude of the pricing errors seems to be substantially larger for at-

and out-of-the-money options than for in-the-money-options. However, as maturity increases the

differences between the first and second quarter appear to diminish. From quarter 2 to quarter 3

the results appear to improve. For short maturity options the performance increases in quarter
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3 in both terms of bias and accuracy, for the medium maturity options this improvement is less

pronounced and for long maturity options pricing performance is slightly less good as in the

second quarter. The option implied models again perform relatively more constant compared to

the other models. In quarter 4 the FHS GJR shows a large decrease in pricing accuracy which

is caused by the severe mispricing of out-of-the-money options between weeks 40 and 44. The

other models also appear to misprice out-of-the-money options during this period, although to a

lesser extent, while short and medium maturity in- and at-the-money options are priced similarly

in quarter 3 and quarter 4. The mispricing of out-of-the-money options is possibly caused by

the increased volatile behaviour of the S&P500 at the start of the fourth quartile. This is also

reflected by the fact that out-of-the-money options are mispriced to a larger extent for short

maturities than for long maturities in the fourth quarter. This pattern makes sense because long

maturity options have more time to end up in-the-money and therefore are more traded, which

reduces inconsistencies in the market price.

The models show some inconsistencies over time. For example, the option implied models

outperform the MS GJR for short maturities in the second and third quarter, while in the

first and fourth quarter the MS GJR outperforms the option implied model for this category.

Nevertheless, the quarterly results show some support the main findings implied by the aggregate

results. In all quarters it holds that the GJR performs bad and is substantially outperformed

by the option implied models and the MS GJR. Throughout the different quarters the mutual

performance of the option implied models is similar, while the performance relative to the MS

GJR is also comparable. Although there is no clear winner among the test models, the MS

GJR appears to perform slightly better across moneyness categories and maturities. Finally, the

ad-hoc BS dominates all samples and is only occasionally outperformed.
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Results Aggregated per quarter: Q1 - Q2
Days to Expiration

≤ 60 (60,160] > 160

Model M$ MME MAPE RMSE MME MAPE RMSE MME MAPE RMSE

Quarter 1
ITM -0.031 0.038 3.790 -0.029 0.046 5.847 -0.081 0.124 20.306

GJR ATM -0.544 0.544 10.518 -0.272 0.272 12.764 -0.254 0.278 27.973
OTM -3.676 3.676 10.522 -2.471 2.471 14.624 -0.874 0.876 33.043

ITM 0.040 0.041 4.597 0.096 0.096 12.180 0.139 0.139 26.985
Implied GJR ATM 0.011 0.174 4.664 0.292 0.293 15.517 0.424 0.424 41.128

OTM -0.314 0.490 2.053 0.302 0.438 6.375 0.447 0.492 18.797

ITM 0.045 0.045 4.907 0.085 0.085 10.916 0.120 0.120 22.698
FHS GJR ATM 0.220 0.226 6.332 0.216 0.216 11.093 0.269 0.269 24.072

OTM 0.119 0.299 2.336 0.105 0.255 4.372 0.227 0.284 10.934

ITM 0.007 0.024 2.811 0.046 0.046 6.117 0.100 0.100 15.733
MS GJR ATM -0.199 0.250 4.632 0.037 0.073 4.811 0.137 0.137 13.376

OTM -1.025 1.124 3.556 -0.385 0.490 3.584 0.082 0.141 8.296

ITM -0.014 0.026 2.683 -0.017 0.030 4.030 -0.012 0.025 5.193
HN ATM -0.381 0.389 7.874 -0.251 0.254 11.202 -0.139 0.145 12.646

OTM -2.456 2.456 7.666 -2.361 2.361 12.250 -1.831 1.832 16.401

ITM 0.024 0.025 2.826 0.015 0.025 3.855 -0.058 0.068 23.223
AHBS ATM 0.065 0.109 3.416 0.083 0.086 5.165 0.057 0.060 5.949

OTM 0.120 0.306 1.604 0.181 0.280 3.131 0.175 0.312 6.507

Quarter 2
ITM -0.134 0.134 12.215 -0.131 0.144 19.044 -0.210 0.249 42.227

GJR ATM -1.451 1.451 21.099 -0.674 0.675 30.312 -0.560 0.585 51.932
OTM -7.792 7.792 19.269 -5.325 5.325 27.840 -2.088 2.092 52.205

ITM 0.013 0.046 4.084 0.095 0.095 11.580 0.156 0.156 27.558
Implied GJR ATM -0.356 0.515 7.601 0.339 0.347 17.686 0.534 0.534 43.976

OTM -1.688 1.935 5.507 0.169 0.655 7.073 0.645 0.689 20.939

ITM 0.042 0.043 4.141 0.095 0.095 11.259 0.139 0.139 24.041
FHS GJR ATM 0.086 0.141 3.791 0.234 0.234 10.972 0.323 0.323 25.620

OTM -0.052 0.297 1.313 0.166 0.253 4.022 0.457 0.457 12.431

ITM -0.059 0.059 4.438 -0.018 0.032 4.045 0.016 0.036 5.943
MS GJR ATM -0.718 0.718 8.987 -0.165 0.170 7.287 -0.011 0.065 6.320

OTM -3.239 3.239 7.788 -1.580 1.580 8.387 -0.276 0.285 9.279

ITM -0.066 0.066 5.220 -0.064 0.064 7.105 -0.048 0.049 8.467
HN ATM -0.856 0.856 12.060 -0.429 0.429 16.544 -0.243 0.243 18.112

OTM -4.872 4.872 11.810 -3.675 3.675 16.916 -2.425 2.425 20.617

ITM 0.023 0.023 2.048 0.021 0.025 3.193 -0.007 0.037 9.546
AHBS ATM 0.106 0.122 2.740 0.116 0.116 5.098 0.077 0.079 6.684

OTM 0.328 0.362 1.313 0.417 0.417 3.067 0.271 0.278 4.355

Table 15: Predictive option pricing results for the aggregate categorized samples of the first and second quarter
in 2014. This table displays the Mean Mispricing Errors (in %), the Mean Absolute Percentage Errors (in %)
and the Root Mean Squared Errors (in U.S. $ currency). The results are categorized based on moneyness (in-
the-money (ITM), at-the-money (ATM), out-of-the-money (OTM)) and days to expiration (≤ 60 days, (60,160]
days, > 160 days).
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Results Aggregated per quarter: Q3 - Q4
Days to Expiration

≤ 60 (60,160] > 160

Model M$ MME MAPE RMSE MME MAPE RMSE MME MAPE RMSE

Quarter 3
ITM -0.088 0.096 10.559 -0.187 0.188 24.952 -0.282 0.282 49.858

GJR ATM -1.134 1.143 22.526 -0.789 0.789 39.090 -0.653 0.653 62.352
OTM -7.721 7.721 21.852 -6.609 6.609 39.383 -2.083 2.083 67.486

ITM 0.014 0.019 4.090 0.029 0.037 9.101 0.036 0.058 20.735
Implied GJR ATM -0.175 0.307 7.011 0.238 0.243 15.289 0.395 0.395 38.800

OTM -1.355 1.467 5.004 0.131 0.453 6.803 0.620 0.622 19.922

ITM 0.014 0.017 3.618 0.020 0.024 6.429 0.023 0.032 12.368
FHS GJR ATM 0.020 0.192 6.402 0.073 0.196 10.972 0.124 0.195 20.666

OTM -0.608 0.956 4.496 -0.712 1.107 7.432 -0.789 1.183 12.810

ITM 0.014 0.031 4.910 0.052 0.054 9.038 -0.022 0.056 10.731
MS GJR ATM -0.253 0.339 6.779 0.027 0.123 8.250 -0.109 0.148 14.800

OTM -1.479 1.577 5.072 -0.667 0.789 5.879 -0.502 0.533 18.692

ITM 0.000 0.015 3.295 -0.002 0.018 5.681 -0.011 0.022 13.629
HN ATM -0.411 0.457 9.032 -0.197 0.231 11.100 -0.093 0.119 10.767

OTM -2.839 2.890 8.662 -2.385 2.396 11.784 -1.668 1.674 13.456

ITM 0.007 0.014 3.087 -0.011 0.024 11.434 -0.043 0.050 36.588
AHBS ATM 0.158 0.159 4.943 0.140 0.140 6.959 0.095 0.095 9.227

OTM 0.511 0.511 3.160 0.576 0.576 5.344 0.320 0.443 7.449

Quarter 4
ITM -0.059 0.070 8.261 -0.071 0.087 11.751 -0.149 0.155 30.555

GJR ATM -0.778 0.778 19.282 -0.439 0.439 23.207 -0.377 0.378 41.043
OTM -5.695 5.695 19.564 -3.414 3.414 24.957 -1.194 1.194 48.403

ITM 0.005 0.020 4.136 0.008 0.027 7.462 0.012 0.033 15.561
Implied GJR ATM -0.299 0.403 10.573 -0.092 0.287 16.570 0.056 0.192 21.390

OTM -2.735 2.836 11.427 -2.092 2.309 16.735 -0.903 1.199 17.074

ITM 0.015 0.043 8.106 0.027 0.065 15.803 0.023 0.094 38.956
FHS GJR ATM -0.062 0.479 14.499 0.121 0.435 23.029 0.195 0.471 46.541

OTM -1.541 2.227 11.004 -0.981 1.911 16.016 -0.593 1.639 31.398

ITM 0.013 0.029 3.914 -0.005 0.040 5.836 -0.125 0.144 29.616
MS GJR ATM -0.191 0.251 5.641 -0.141 0.168 10.347 -0.310 0.323 37.569

OTM -1.303 1.322 5.632 -1.458 1.459 12.822 -0.982 1.047 42.254

ITM 0.005 0.015 3.049 0.004 0.016 4.905 -0.003 0.019 12.671
HN ATM -0.306 0.324 7.801 -0.158 0.163 8.914 -0.073 0.077 8.514

OTM -2.116 2.116 7.990 -1.756 1.756 10.809 -1.219 1.219 14.327

ITM 0.008 0.018 4.155 -0.003 0.025 7.968 -0.018 0.027 15.277
AHBS ATM 0.123 0.149 6.296 0.102 0.115 7.886 0.034 0.055 6.972

OTM 0.537 0.550 3.314 0.580 0.580 5.229 0.401 0.404 6.800

Table 16: Predictive option pricing results for the aggregate categorized samples of the third and fourth quarter
in 2014. This table displays the Mean Mispricing Errors (in %), the Mean Absolute Percentage Errors (in %)
and the Root Mean Squared Errors (in U.S. $ currency). The results are categorized based on moneyness (in-
the-money (ITM), at-the-money (ATM), out-of-the-money (OTM)) and days to expiration (≤ 60 days, (60,160]
days, > 160 days).

53



(a)

(b)

Figure 8: Mean Absolute Percentage Errors across moneyness categories for short maturities in the first quarter
(figure a) and second quarter (figure b) of 2014.
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(a)

(b)

Figure 9: Mean Absolute Percentage Errors across moneyness categories for short maturities in the third quarter
(figure a) and fourth quarter (figure b) of 2014.
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(a)

(b)

Figure 10: Mean Absolute Percentage Errors across moneyness categories for medium maturities in the first
quarter (figure a) and second quarter (figure b) of 2014.
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(a)

(b)

Figure 11: Mean Absolute Percentage Errors across moneyness categories for medium maturities in the third
quarter (figure a) and fourth quarter (figure b) of 2014.
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(a)

Figure 12: Mean Absolute Percentage Errors across moneyness categories for long maturities in the first quarter
(figure a) and second quarter (figure b) of 2014.
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(a)

(b)

Figure 13: Mean Absolute Percentage Errors across moneyness categories for long maturities in the third quarter
(figure a) and fourth quarter (figure b) of 2014.
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6 Conclusion and Limitations

This paper compares the option pricing performance of calibrated and non-calibrated GARCH

models. The main objective is to investigate whether the Bayesian GARCH option pricing

model, and in particular the Bayesian Markov switching GARCH, is able to outperform the

option implied GARCH models in terms of forecasting option prices. This comparison results

in a horse-race between a class of practical models and a class of theoretically founded models.

Especially the MS GJR seems promising as it accounts for most of the stylized facts of asset

returns. Furthermore, its application to derivative pricing is fairly new and has not been studied

yet from a Bayesian perspective. To this end the Bauwens and Lubrano (2002) pricing algorithm

is extended to the case of a regime switching GARCH. This results in a Bayesian algorithm that

is generally compatible with all types of regime switching GARCH specifications with only minor

alterations. It was argued that the Markov switching property allows the model to capture more

market dynamics, such as volatility jumps and leptokurtosis. This statement seems to have some

justification, as the inference results show the MS GJR parameters for the different regimes clearly

resemble different levels of volatility. The pricing results show a satisfactory performance of the

MS GJR and indicate it is superior over the single regime GJR, while it is also able to compete

quite well with the option implied models. The MS GJR outperforms the Implied GJR and FHS

GJR for most categories, although its performance seems not to be overwhelmingly better. The

pricing performance of the MS GJR is most profound for in-the-money options, although at-the-

money and out-of-the-money options are also priced accurately for longer maturities, compared

to the benchmark models. The option implied models show a similar performance, although for

long maturities their performance is less pronounced than that of the MS GJR. The test models

are unable to beat the benchmark models in a systematic manner. Only for out-of-the-money

options the HN is outperformed by the option implied models and the MS GJR, while for at-

the-money options only the MS GJR performs slightly better than the HN model. None of the

models is able to consistently beat the ad-hoc BS model. The MS GJR is able to outperform

the ad-hoc BS across moneyness categories occasionally but generally performs less accurate.

For long maturity options the performance becomes more similar. Overall it can be concluded

that the regime switching GARCH model yields satisfactory pricing performance and competes

quite well with the popular class of the option implied GARCH models. It therefore seems that

GARCH models estimated with historical returns do not necessarily always perform less good

compared to option implied GARCH models, as was argued by Weber and Prokupczuk (2011).
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It should be noted however, that such comparison is slightly unfair when one of the models has

a regime switching feauture. Nevertheless, this result is promising because the Bayesian Markov

switching GARCH option pricing model introduced in this paper has room for improvement.

Some final remarks can be made considering limitations and suggestions for future research.

To accommodate the Duan (1995) risk-neutralization principle, the returns are assumed to be

normally distributed. However, from empirical research it is known that returns exhibit fat tails

and therefore the student’s t-distribution would be more appropriate. This would require a differ-

ent risk neutral measure, of which two examples are the extended Girsanov principle, introduced

by Elliot and Madan (1998), and the Escher transform method, pioneered by Bühlmann et al.

(1996). For the risk neutralization of the MS GJR the regime shift risk was ignored for simplicity,

which means a possible bias in the pricing results of the regime switching model may be present.

This issue can be overcome by deriving the risk neutral transition probabilities, which can be

done by, for example, inferring them from observed option data as suggested by Duan et al.

(2002). However, applying this in a Bayesian context is not so straightforward and requires more

in depth research. Furthermore, it would be interesting to inspect whether Bayesian methods can

be employed in the calibration process. This could decrease parameter uncertainty and would

enhance the comparability with the other models. Martin et al. (2003) introduce a method

to perform implicit Bayesian inference from option prices which possibly could be used in the

calibration process. Finally, it would be interesting to see whether it is possible to estimate the

MS GARCH model from option data. This would yield a model that has the flexibility of the

regime switching model and at the same time captures the risk-neutral structure directly from

option prices.
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7 Appendix I: Inference Results Benchmark Models

Inference results ad-hoc Black Scholes
C K K2 τ τ2 K × τ

Jan 2.286 -2.28E-03 5.92E-07 1.21E-03 5.71E-07 -7E-07
0.348 3.45E-04 8.51E-08 2.96E-04 3.08E-07 1.7E-07

Feb 1.309 -1.11E-03 2.44E-07 -2.25E-04 -3.4E-07 2.25E-07
0.140 1.52E-04 4.12E-08 9.46E-05 4.57E-08 5.23E-08

Mar 2.467 -2.32E-03 5.64E-07 3.00E-04 -1.2E-07 -1E-07
0.676 7.16E-04 1.89E-07 3.43E-04 1.2E-07 1.82E-07

Apr 1.395 -1.14E-03 2.39E-07 -4.11E-04 -4.4E-07 3.49E-07
0.372 3.87E-04 1.01E-07 1.94E-04 5.74E-08 1.06E-07

May 2.103 -1.89E-03 4.33E-07 -5.39E-05 -7.7E-07 2.11E-07
0.204 2.10E-04 5.39E-08 1.62E-04 6.96E-08 8.38E-08

Jun 0.565 -2.32E-04 -1.1E-08 -1.48E-03 -8.2E-07 9.39E-07
0.146 1.47E-04 3.7E-08 1.39E-04 5.48E-08 7.27E-08

Jul 0.820 -5.12E-04 6.8E-08 -6.59E-04 -6.5E-07 5.06E-07
0.249 2.41E-04 5.85E-08 1.37E-04 6.07E-08 7.03E-08

Aug 2.174 -1.87E-03 4.1E-07 -7.62E-05 -6.1E-07 2.08E-07
0.436 4.30E-04 1.06E-07 2.09E-04 5.22E-08 1.04E-07

Sep 2.337 -1.76E-03 3.16E-07 -3.04E-03 -2.1E-07 1.62E-06
0.271 2.47E-04 5.62E-08 2.67E-04 2.76E-08 1.33E-07

Oct 0.086 4.39E-04 -2.1E-07 -1.91E-03 -2.8E-07 1.06E-06
0.333 3.42E-04 8.83E-08 1.67E-04 7.98E-08 8.26E-08

Nov 0.649 -3.50E-04 3.5E-08 -4.46E-04 -1.1E-06 4.59E-07
0.781 7.43E-04 1.78E-07 6.78E-04 3.31E-07 3.54E-07

Dec 1.091 -3.60E-04 -5.2E-08 -3.40E-03 -3.4E-07 1.73E-06
0.385 3.82E-04 9.62E-08 4.49E-04 2.15E-07 2.26E-07

Table 17: Bayesian inference results of the ad-hoc Black Scholes model. Given are the posterior means (in bold)
and the posterior standard deviations (in italic). In the Gibbs sampler 35000 iterations are run, of which the first
5000 are used as burn-in sample.
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Inference results Heston - Nandi GARCH
ω βHN αHN λHN γHN PM

Jan 6.3E-08 0.699 2.70E-06 3.06E-04 315.427 0.968
6.1E-08 0.005 5.13E-08 2.41E-04 8.16E-05 0.001

Feb 4.8E-07 0.719 3.69E-06 2.10E-03 253.749 0.956
3.7E-07 0.021 2.41E-07 9.14E-04 3.33E-05 0.005

Mar 1.2E-07 0.741 3.11E-06 6.40E-04 267.851 0.964
1.1E-07 0.002 2.52E-08 9.12E-06 9.25E-06 0.001

Apr 1.8E-07 0.718 3.58E-06 4.37E-04 259.983 0.960
1.7E-07 0.018 2.21E-07 1.91E-04 1.32E-04 0.003

May 1.0E-07 0.700 2.16E-06 2.40E-04 354.554 0.971
8.9E-08 0.010 7.62E-08 6.50E-05 1.03E-04 0.001

Jun 3.3E-07 0.672 2.08E-06 4.30E-02 379.033 0.971
2.7E-07 0.007 4.33E-08 7.36E-05 8.76E-05 0.003

Jul 5.3E-07 0.698 2.34E-06 2.41E-02 336.117 0.963
4.8E-07 0.039 2.57E-07 8.34E-04 0.001 0.010

Aug 5.3E-07 0.698 2.34E-06 2.41E-02 336.117 0.963
4.8E-07 0.039 2.57E-07 8.34E-04 0.001 0.010

Sep 1.4E-09 0.593 2.38E-06 1.21E-02 399.474 0.973
1.6E-22 0.000 9.95E-20 1.60E-16 3.79E-04 0.000

Oct 2.2E-07 0.671 3.52E-06 2.05E-03 287.316 0.962
1.9E-07 0.004 4.16E-08 1.88E-05 2.22E-05 0.002

Nov 2.2E-07 0.601 3.35E-06 2.23E-03 328.710 0.963
1.8E-07 0.014 1.05E-07 1.12E-04 1.42E-04 0.003

Dec 8.8E-08 0.660 2.08E-06 4.29E-04 390.390 0.978
9.5E-08 0.013 8.43E-08 3.69E-04 5.37E-04 0.001

Table 18: Bayesian inference results of the Heston Nandi GARCH model. Given are the posterior means (in
bold) and the posterior standard deviations (in italic). "PM" denotes the persistence measure and is defined as
βHN + αHNγ

2
HN . In the Gibbs sampler 35000 iterations are run, of which the first 5000 are used as burn-in

sample.
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8 Appendix II: Pricing Algorithm Markov Switching GJR

Pricing Algorithm MS GJR
let mc = 1 . . . MC

Draw βmc from p(β|r,θ−β)

Draw Pmc from p(P|r,θ−P)

Draw θmc,G,i,j from p(θG,j |r, θ−θG,j ) for j = 1,. . .,J

let n = 1 . . . N

Draw ε ∼ Nτ(0, Iτ)

let t = 1

Compute the probabilities in (24) for i = 1,2,3

Draw a uniform random variable from (0,1) and determine the governing regime Ss,1

Compute v∗0 = rTn - µmc - ρmcrTn−1

Construct σ2
s,1(Ss,1) = γmc(Ss,1) + αmc(Ss,1)v∗0

2 + φmc(Ss,1)σ2
s,Tn + δmc(Ss,1)v∗0

2I[v∗0 < 0]

Construct rs,1 = rf+εn,1σs,1(Ss,1)

let t = 2

Compute the probabilities in (24) for i = 1,2,3

Draw a uniform random variable from (0,1) and determine the governing regime Ss,2

Compute v∗1 = rs,1 - µmc - ρmcrTn

Construct σ2
s,2(Ss,2) = γmc(Ss,2) + αmc(Ss,2)v∗s,1

2 + φmc(Ss,2)σ2
s,1 + δmc(Ss,2)v∗s,1

2I[v∗s,1 < 0]

Construct rs,2 = rf+εn,2σs,2(Ss,2)

let t = 3 . . .τ

Compute the probabilities in (24) for i = 1,2,3

Draw a uniform random variable from (0,1) and determine the governing regime Ss,t

Compute v∗t−1 = rs,t−1 - µmc - ρmcrs,t−2

Construct σ2
s,t(Ss,t) = γmc(Ss,t) + αmc(Ss,t)v∗s,t−1

2 + φmc(Ss,t)σ2
s,t−1 + δmc(Ss,t)v∗s,t−1

2I[v∗s,t−1 < 0]

Construct rs,t = rf+εn,1σs,t(Ss,t)

set t = t +1

Construct PT = Pt
∏τ
t=1(1 + rs,t/100)

Compute C(mc)
t (Pt, T,K) = (1 + rf )−τmax(PT −K, 0)

set n = n + 1

set mc = mc + 1

Compute the final price as

Ĉt(Pt, T,K) ≈
1

MC

MC∑
mc=1

C
(mc)
t (Pt, T,K)

.

Table 19: Monte carlo simulation procedure for pricing European call options using a Markov switching GJR
model. For the single regime GJR model the drawing of the transition probabilities is omitted such that the state
variables reduce to 1 and only the posterior parameters from the single regime model are drawn. The remainder
of the algorithm is the same. Note that Tn denotes the last date of the return sample.
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9 Appendix III: Laplace Approximation of Bayes Factors

Bayes factors can be used to compare two or more nested or non-nested models. When comparing

model A with model B the ratio of the marginal likelihoods is considered,

BFA|B =
pA(r)

pB(r)
=

∫
θA
pA(θA)pA(r|θA)dθA∫

θB
pB(θB)pB(r|θB)dθB

. (52)

A-posteriori model A is more likely than model B when BFA|B is larger than 1 when assuming

a-priori both models are equally likely. To compute the marginal likelihoods the integrals in (52)

have to be evaluated, which typically cannot be done analytically. The marginal likelihoods can

be estimated using Monte Carlo techniques, however a more convenient method is to approximate

the integrals using Laplace’s method. The following is a short description of Laplace’s method.

Consider an integral of the following form

I =

∫ b

a

e−λg(θ)dy.

with g(θ) a smooth vector function with a local minimum at θ̂ in the interval (a,b) and λ a large

scalar. Expanding a Taylor series of the function g around θ̂ gives

g(θ) ≈ g(θ̂) + g′(θ̂)(θ − θ̂) + (θ − θ̂)′g′′(θ̂)(θ − θ̂)/2.

Note that θ̂ is a local minimum which means that g′(θ̂) = 0 (the null vector) and that g′′(θ̂) (the

inverse Hessian matrix) is semi-positive definite such that

g(θ) ≈ g(θ̂) + (θ − θ̂)′g′′(θ̂)(θ − θ̂)/2.

Substituting this in the integral this becomes

I ≈
∫ b

a

e−λ(g(θ̂)+(θ−θ̂)′g′′(θ̂)(θ−θ̂)/2)dy

= e−λg(θ̂)
∫ b

a

e−λ(θ−θ̂)
′g′′(θ̂)(θ−θ̂)/2dy

which can be recognized as the integral over the kernel of a multivariate normal pdf , with mean θ̂

and variance matrix g′′(θ̂)−1, multiplied by a constant. Scaling the integral properly and taking
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a = -∞ and b = ∞ the integral integrates nicely over the normal pdf ,

= e−λg(θ̂)(2π)k/2
1√
|λg′′(θ̂)|

∫ ∞
−∞

(2π)−k/2
√
|λg′′(θ̂)|e−λ(θ−θ̂)

′g′′(θ̂)(θ−θ̂)/2dy

= e−λg(θ̂)(2πλ)k/2
1√
|g′′(θ̂)|

λ−k/2 × 1 (53)

in which k denotes the number of model parameters. An approximation can be obtained by

taking θ̂ as the posterior mode and letting the function g denote the negative log posterior, i.e.

g(θ̂) = −1
N ln(p(r|θ̂)) - 1

N ln(p(θ̂)) and λ = N. The variance-covariance matrix is then given by

the inverse Hessian of the negative log posterior, Σ(θ̂) = g′′(θ̂)−1. Substituting this in (53), the

marginal likelihood is approximated by

MLA ≈ p(r|θ̂A)p(θ̂A)(2π)kA/2|Σ(θ̂A)|1/2N−kA/2 (54)

This approximation can then be used to compute the Bayes factors of the MS GJR model

with 1, 2 and 3 regimes. Additionally, the Bayesian Information Criterion ("BIC"), given by

-2ln(p(r|θ̂A)p(θ̂A)) +k ln(N), is also computed . Table (20) shows the computed Bayes factors

for the MS GJR model.

Log Like. Marg. Like. BIC Bayes Factors
1 State -1184.00 -8.82E-26 2414.27 BF3|1 61.58
2 States -1111.25 -1.33E-25 2299.64 BF3|2 2.60
3 States -1040.72 -4.89E-25 2189.43 BF2|1 23.66

Table 20: The table displays the log likelihood value, the approximated marginal likelihood value, the Bayesian
information criterion and the Bayes factors.

Following the scale of Jeffreys (1961), given in table (21), the computed Bayes factors indicate

that 3 regimes are more likely than 1 and 2 regimes and that 2 regimes are more likely than 1

regime. It also appears that the strength of the evidence in favor of 3 regimes versus 2 regimes

is relatively weaker as opposed to 3 regimes versus 1 regime. Hence, the Bayes factors suggest

that out of the considered number of regimes, 3 regimes are most likely.
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Scale for interpreting the Bayes factor
BFA|B Ln BFA|B Evidence for MA

<1 <0 Negative
1-3 0-2.2 Not worth more than a bare mention
3-20 2.2-6 Positive
20-150 6-10 Strong
>150 >10 Very strong

Table 21: Scale for interpreting the Bayes factors.

10 Appendix IV: Bayesian Estimation of the Ad-hoc BS

Equation (40) is a simple linear regression model and, assuming standard normal residuals εi, the

model can be estimated using Bayesian inference. Collecting the covariates in the n×k matrix

X, in which the first column is a vector of ones, and the parameters in βAH , this model can be

written as

σBS = XβAH + ε (55)

where ε ∼ N(0, INσ
2) such that the likelihood function is given by

p(σBS |βAH , σ2) =

(
1

σ
√

2π

)N
exp

(
− 1

2σ2
(σBS −XβAH)′(σBS −XβAH)

)
. (56)

Since no prior beliefs about the parameters exists the priors imposed for βAH and σ are uninfor-

mative and given by

p(βAH) ∝ 1 and p(σ2) ∝ σ−2.

Multiplying the priors with the likelihood function yields the posterior distribution, which is

proportional to

(
1

σ

)N+2

exp

(
− 1

2σ2
(σBS −XβAH)′(σBS −XβAH

)
. (57)

To sample the model parameters, the full conditional posteriors of βAH and σ need to be de-

termined. Using the decomposition rule, as explained in Greenberg (2013, ch. 4.3), the full
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conditional posterior of βAH can be written as

p(βAH , σ|σBS) ∝
(

1

σ

)N+2

exp

(
− 1

2σ2
((σBS−Xβ̂AH)′(σBS−Xβ̂AH)+(βAH−β̂AH)′X ′X(βAH−β̂AH))

)

∝ exp
(
− 1

2σ2
(βAH − β̂AH)′X ′X(βAH − β̂AH)

)
(58)

which is the kernel of a multivariate normal distribution with mean β̂ (the ordinary least squares

estimator) and covariance matrix σ2(X ′X)−1. Collecting the terms with σ in equation (57), the

full conditional posterior of σ2 is given by

p(σ2|βAH , σBS) ∝
(

1

σ

)N+2

exp

(
− 1

2σ2
(σBS −XβAH)′(σBS −XβAH)

)
(59)

which is the kernel of an inverted Gamma-2 distribution with parameter (σBS −XβAH)′(σBS −

XβAH) and N degrees of freedom. The full conditional posteriors can then be used to construct

the Gibbs sampler as given in table (22).

Sampling Scheme for βAH and σ

1. Set m = 0 and initialize the Gibbs sampler by setting β(0)
AH = β̂AH .

2. Draw a random value from the Chi-square distribution with N degrees of freedom,

y ∼ χ2(N).

3. Divide the inverted Gamma-2 parameter by the simulated Chi-square value to obtain a draw of

σ2(m+1)

from the inverted Gamma-2 distribution,

σ2(m+1)

∼ (σBS −Xβ(m)
AH )′(σBS −Xβ(m)

AH )/y.

4. Simulate β(m+1)
AH from the multivariate normal distribution,

βAH
(m+1)∼ N(β̂AH ,σ2(m+1)

(X ′X)−1).

5. set m = m + 1 and go back to step 2.

Table 22: Gibbs sampling routine for the Ad Hoc Black Scholes model. A draw from the inverted Gamma-2
distribution is obtained by using that (σBS −XβAH)′(σBS −XβAH)/σ2 ∼ χ2(N).
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