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Abstract

The aim of this thesis is to explore predictable dynamics in the implied volatility surface

of S&P500 index options. I consider three approaches to modelling the surface that can be

distinguished in the literature: (i) dynamic factor model where the latent factors drive the

dynamics of the surface, (ii) models that assume parametric structure of the surface, (iii)

option pricing model consistent with the skew observed for the implied volatilities. I find

that the latent factor model provides the best accuracy in most regions of the surface at

investigated one-day ahead forecasting horizon. This model combines two-step estimation

procedure by means of Principal Component Analysis and VAR model for factor dynamics,

with non-parametric Nadaraya-Watson regression that allows to deal with special design of

implied volatility data. Forecasting accuracy can be further improved by using combination

forecast methods. I implement combining methods based on equal weights, discounted mean

square prediction error, and optimal estimated weights. Combining based on the estimated

optimal weights yields improvement over the individual models in all regions of the surface.

However, neither the individual models nor the combination models are capable of beating

random walk forecast, a simple forecast that assumes that tomorrow’s value of implied

volatility equals its current value.
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Chapter 1

Introduction

Understanding volatility behaviour is essential for the purpose of risk management, option

pricing, hedging of derivatives and supporting portfolio decisions. Much attention in the

past has been paid to the realized historical volatility, but recently studies on the implied

volatility (IV) are gaining popularity. The implied volatility is a measure of volatility that

is obtained from the observed market prices combined with a certain option pricing model

in a way that the volatility parameter ensures the model price equals the market price. This

model is usually Black-Scholes for European or binomial tree model for American options. In

contrast to the volatility estimates recovered from the historical data, IV is believed to be a

forward-looking measure that reflects the current view on market risk and expected volatility.

The seminal model of Black and Scholes (1973) assumes that a volatility of an underlying

asset is constant. It implies that all options written on the same underlying should have

the same implied volatility, regardless of the strike price and the time-to-maturity. Implied

volatilities observed in the market exhibit quite a different pattern. The implied volatility

varies systematically with moneyness (most commonly, expressed as the current price of

the underlying asset relative to the strike) and time-to-maturity. This dependence gives

rise to the implied volatility surface (IVS) which is a collection of implied volatilities across

moneyness and time-to-maturity dimensions, and can be formally defined as a function

σt : (m,κ) → σt(m,κ), where m represents moneyness and κ is the remaining time-to-

maturity. There are at least two well-recognized stylized facts regarding the implied volatility

surface. The pronounced volatility smile or volatility smirk (when the smile is skewed) is a

U-shape pattern observed across different strikes for options’ with the same maturity. The

volatility term structure is a pattern observed across options’ maturity given the strike price

or moneyness. These two stylized facts implied that the surface is nonflat, contrary to what

one would expect in the Black-Scholes world. Figure 1.1 depicts an actual shape of IVS that

can be observed in the real world. The implied volatility surface on 26/Apr/2014 exhibits
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a downward sloping shape along the moneyness dimension, which is the volatility smirk

commonly observed in the market. The term structure pattern depends on the moneyness

region. It slopes downward when the time-to-maturity increases for the options with high

moneyness, and slopes slightly upward for options with low values of moneyness.

The implied volatility can be obtained by inverting the Black-Scholes-Merton formula

given the option price. The Black-Scholes-Merton formulas for European call and put options

are

C(t, T, St, K, r, σ, q) = Ste
−q(T−t)Φ(d1)−Ke−rf (T−t)Φ(d2) (1.1a)

P (t, T, St, K, r, σ, q) = Ke−rf (T−t)Φ(−d2)− Ste−q(T−t)Φ(−d1) (1.1b)

d1 =
log(St

K
) + (T − t)(rf − q + 1

2
σ2)

σ
√

(T − t)
(1.1c)

d2 =
log(St

K
) + (T − t)(rf − q − 1

2
σ2)

σ
√

(T − t)
(1.1d)

where t is the valuation date, T is the expiry date, (T − t) represents the time-to-maturity,

St is the price of the underlying asset, rf is the risk-free rate assumed to be constant, K

is the strike price, σ is the underling asset’s volatility, q is the continuously compounded

dividend rate and Φ(x) is a standard Normal distribution, that is

Φ(x) =

∫ x

−∞

1√
2π
e−

1
2
y2dy. (1.2)

Because the volatility σ is the only unknown parameter when the price is observed, it is

easily done via numerical procedure by minimizing the deviation between the theoretical

price implied by the Black-Scholes-Merton model and the observed option price. The implied

volatility is sometimes referred to as ”the wrong number to plug into the wrong formula to

get the right price”. It is a standard practice to express a value of an option with its implied

volatility rather than a price because prices of options with different maturity, moneyness or

written on different underlying asset are difficult to compare. Thus, knowing IVs means to

known the option prices.

In this thesis, I explore the predictability of IVS using an extensive data set of daily

implied volatilities on S&P500 index options. The market of the S&P500 index options

is one of the most liquid derivative markets with a wide range of strikes and maturities

quoted every day. It makes it very popular in research applications. I examine and asses

the out-of-sample forecasting performance of the three approaches to model IVS that can be

distinguished in a literature. In general, they are based on: (i) latent factors than span IVS,
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CHAPTER 1. INTRODUCTION

Figure 1.1: Implied Volatility Surface
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The figure shows the implied volatility surface from options on S&P500 index on 26/Apr/2013. The black

dots represent observed implied volatilities, whereas the smooth surface is obtained with a nonparametric

kernel regression, see section 2.2 for details. Moneyness (defined as m = K
S ) is displayed on the left axis and

time to maturity κ on the right one (measured in days).

(ii) assumed parametric structure of the surface and (iii) option pricing model.

I estimate the latent factors with Principal Component Analysis (PCA) approach. Here,

I contribute to the existing literature in two ways. Firstly, I propose a method to generate

out-of-sample IVS forecasts of non-constant time-to-maturity index options that can be

evaluated using observed data. The procedure is as follows. I apply Nadaraya-Watson

kernel regression to estimate the whole surface each day and then recover the time-series

on a given grid of moneyness and maturity. Then, I extract principal components (PCs),

model their dynamics and produce the forecasts of PCs with VARX model. Forecasted PCs

lead directly to forecasts of selected smoothed points on the surface. Using the forecasted

points on the given grid, I again apply kernel regression and obtain the forecast of the

whole surface. The second contribution is that I perform PCA on the correlation matrix in

contrast to the previous literature, which also used the nonparametric smoothing to estimate

the surface and extracted PCs from the covariance matrix. This is motivated by the fact

that variance in different regions of the surface (represented by the time-series on the given

grid) is not uniform. In the parametric approach I follow Goncalves and Guidolin (2006)

and assume the parametric structure of the surface proposed in their paper. The parametric
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approach includes two models. The first model simply uses today’s estimated factors to

produce forecasts of tomorrow’s IVs, i.e. this model uses random walk forecasts for estimated

factors. It is used by practitioners (it is often refereed to as Practitioners Black-Scholes) and

is treated as a benchmarking model for this thesis. I use random walk forecasts as an

additional benchmark against all the models. The next parametric model is an extension of

the benchmark that tries to capture the factor dynamics with VARX model. For the option

pricing model I choose NGARCH(1,1) model of Heston and Nandi (2000). Unlike previously

described models, this model is estimated in option prices space. Once the option prices are

forecasted, I obtain the forecasts of the implied volatilities by inverting the Black-Scholes-

Merton formula. Because the characteristic function of the return in Heston and Nandi

model is known analytically, I make use of an efficient numerical method to value options

in the line with work of Carr and Madan (1999). This method is known as the fast Fourier

transform (FFT) and makes it feasible to price large collection of option contracts relatively

fast. This is necessary given the fact that I evaluate over 600,000 forecasts of IVs.

The results I obtain provide several implications. The proposed application of PCA

method works especially well for the medium and the long term contracts and PCA model

outperforms other approaches largely. Forecasting IVs of the short term options is more

challenging. However, PCA model shows its superiority over other investigated approaches

with respect to the short-term put options and some call options that are not too deep out-of-

the-money. For the short term deep out-of-the-money call options, the parametric models of

the surface work best. Inclusion of the factor dynamics in the parametric method sometimes

improves the forecasting accuracy for longer maturities. I find that Heston and Nandi model,

which is the only one estimated in option prices space instead of implied volatility space,

works worst both in terms of in-sample fitting, as well as out-of-sample forecasting of IVS.

However, relative deterioration when turning from the in-sample to the out-of-sample case

is the smallest for this model. For the evaluation purposes, I partition the surface into 21

segments depending on moneyness-maturity characteristics and find that some segments of

the surface are more predictable than others. This leads to the next part of the analysis

which examines whether combination of different models can further improve on forecasting

IVS. Forecasts combination attracted a lot of attention in empirical studies in numerous

areas of economic research such as equity premium forecasting, currency market volatility

and various macroeconomic applications. Many researches proved the usefulness of forecasts

combination to generate more accurate forecasts, sometimes using even the simple model

averaging. I conclude that use of the combining schemes, like the optimal estimated weights

or discounted mean square error, can improve on forecasting the surface in all regions. Still,

the improvement is not large enough to outperform simple random walk forecasts for implied
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CHAPTER 1. INTRODUCTION

volatilities in any region of the surface.

The models of IVS I study in this thesis can be related to three approaches to modelling

the implied volatility that can be distinguished in the literature. The factor models of IVS

are inspired by the literature on the term-structure of the interests rates. Because there

is a strong comovement in the different regions of the surface, latent factors approach has

been investigated. There are few studies that examine the dynamics of IVS driven by latent

factors estimated with PCA. Skiadopoulos et al. (1999) study the dynamics of the surface

of S&P500 index options. Their approach is based on grouping the data in three different

maturity buckets. Next, they average IVs which fall into them respectively to options’

moneyness and apply PCA to each bucket’s covariance matrix. An important disadvantage

of this approach is that the common factors can be disturbed both by the within and between

group variation, meaning that this approach fails to distinguish between the common and

specific latent factors driving IVS. This is because the grouping approach neglects the surface

structure of IV data and average the options within the maturity bucket. A more popular

approach to PCA modelling of IVS, also undertaken in this thesis, is described in Cont

and da Fonseca (2002), Fengler et al. (2003) and Chorro et al. (2014) among others. Here,

the whole surface is estimated on a given day with a kernel smoothing procedure, namely

Nadaraya-Watson regression. The time-series on a chosen grid of moneyness and maturity

can be recovered from the estimated smoothed surfaces. The aforementioned studies focus on

extracting and identifying statistical (latent) common factors, while they are not concerned

whether the factors are predictable themselves, what would allow to accurately forecast IVS.

Recently, Van der Wel et al. (2015) proposed a likelihood-based general dynamic factor

model for the dynamics of the latent factors driving IVS. They estimate the factors and

their dynamics in one-step by means of Kalman filter. The other factor approaches studied

in the context of IVS dynamics include semi-parametric factor model of Fengler et al. (2007)

designed to deal with a special feature of IV data that typically options with only few

maturities (5-8) are traded on each day, or the restricted factor model of Christoffersen

et al. (2013) where factors represent the level, smile and term structure of IVS. le Roux

(2007) proposes the model of S&P500 IVS that combines the parametric approach with the

application of principal component analysis, designed to capture the long-term dynamics of

IVS.

The other approach popular in the literature on the implied volatility is to assume a linear

parametric structure of the surface. Dumas et al. (1998) and Pena et al. (1999) investigate

various parametric forms of IVS that link the cross-section of implied volatilities to options’

maturity and moneyness. Estimated coefficients in these models are treated as factors. The

parametric approach is extended by Goncalves and Guidolin (2006) who introduce VAR
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dynamics to the factors.

A number of option pricing models departure from the Black-Scholes assumption that the

volatility is constant over time and try to reconcile the stylized facts of IVS such as smiles

and the volatility term structure. These models incorporate the stochastic or time-varying

volatility (e.g. Hull and White (1987), Heston (1993) Heston and Nandi (2000)), jumps

processes (Merton (1976)), or the jump processes combined with the stochastic volatility

(Bates (1996), Scott (1997)). However, it may be that even a decent option valuation model

in terms of pricing performance can deliver inaccurate predictions of IVS. This is because

small errors in option prices can produce large errors in implied volatilities, as investigated

by Hentschel (2003). Das and Sundaram (1999) and Skiadopoulos et al. (1999) conclude

that none of the aforementioned option pricing models captures the stylized facts of IVS

well. This approach to modelling IVS is sometimes referred to as a no-arbitrage approach

(see Chalamandaris and Tsekrekos (2010)) because option pricing models do not allow for

the possibility of arbitrage. An unsatisfactory performance of option pricing models resulted

in a development of models that are estimated in implied volatility space, which examples

were given above.

Although much has been said on what determines the shape and dynamics of IVS and

plausible interpretation of the factors has been proposed, the application to out-of-sample

forecasting are relatively rare, especially when it comes to the latent factor models. Goncalves

and Guidolin (2006) and Bernales and Guidolin (2014) investigate out-of-sample forecasting

ability of the parametric models. An explicit out-of-sample forecasting approach based on

the latent factors estimated with PCA is taken by Chalamandaris and Tsekrekos (2010) who

study IVS dynamics of over-the-counter (OTC) currency options. In contrast to exchange

traded index options, OTC options have constant time-to-maturity. The constant time-to-

maturity feature elevates the need for constructing the artificial time-series (by smoothing

or grouping procedure) that serve as an input to PCA. Harvey and Whaley (1992), Guo

(2000) and Brooks and Oozeer (2002) examine predictable patterns for IVs of the short-term

at-the-money (ATM) options rather than the whole implied volatility surface. Konstantinidi

et al. (2008) address the question about predictability of the implied volatility from the per-

spective of European and U.S. implied volatility indices like the well-known CBOE Volatility

Index (VIX). All the studies listed above recognize some statistically predictable patterns.

However, the common conclusion is that they cannot be easily translated into an economic

value, what corroborates the option market efficiency to some extent. The economic value

of IVS predictability is assessed by constructing various trading strategies and investigating

whether IVS forecasts can efficiently support the portfolio decisions.

The structure of the thesis is as follows. Chapter 2 presents the data and explains the
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CHAPTER 1. INTRODUCTION

smoothing procedure that helps to understand and organize the data, and most importantly

results in the input time-series to PCA model. Chapter 3 details the estimation procedure

for each of the forecasting models. Chapter 4 describes combination models. Chapter 5

presents the in-sample and out-of-sample results. Chapter 6 concludes and outlines possible

recommendations for future research.
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Chapter 2

The implied volatility surface

2.1 The Data

The data set used in this study contains daily data on the S&P500 index options traded on

the Chicago Board Options Exchange (CBOE). The S&P500 options are one of the most

frequently traded options in the world. The data set covers period of almost 15 years,

from January 4, 1999, until August 30, 2013. Options are European style and are retrieved

from OptionMetrics.1 The data set consists of 16 variables from which 6 are used in this

study: (i) current date, (ii) time-to-maturity- κ, (iii) strike price- K, (iv) implied volatility-

σ, (v) price of underlying S&P500 index- S and (vi) moneyness which is defined as m =

K/S. In addition, I use data on LIBOR rates treated as a proxy for the risk-free rates and

continuously compounded dividend yields on S&P500 index. Both variables are provided by

OptionMetrics and are needed to implement the option pricing model of Heston and Nandi

(2000) described in chapter 3.

The data are filtered based on six exclusionary criteria to ensure that the whole surface

under consideration is active. Applied criteria follow the literature on implied volatility and

options pricing. First, all the options with maturity less than 10 days are dismissed due to

noisiness in their prices. Second, options with maturity greater than a year are also excluded.

These two steps are similar to Dumas et al. (1998) and Bernales and Guidolin (2014) who

argue that such options usually contain little information regarding IVS. Third, to avoid

the problem of price discreteness, I omit options with prices less than 3/8$ following Bakshi

et al. (1997) and Goncalves and Guidolin (2006). Fourth, similarly to Van der Wel et al.

(2015) and Barone-Adesi et al. (2008), observations with missing values for IV and those

with IV greater than 0.7 are discarded. Fifth, following Cont and da Fonseca (2002) and

Van der Wel et al. (2015), I consider only out-of-the-money (OTM) calls and puts because

1I would like to thank prof. dr. Dick van Dijk for making this data set available to me.
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2.2. SMOOTHING THE SURFACE

they are more frequently traded than in-the-money (ITM) options and as such, contain

more information about movements in the implied volatility surface. Focusing on OTM

instead of ITM options is motivated by the fact, that ITM are illiquid and therefore their

prices contain illiquidity premium. However, the put-call parity implies that taking into

account OTM options is equivalent to studying ITM options. Every OTM call (put) can

be matched to ITM put (call) where the ∆ of the call option is always one plus the ∆ of

the put option and the corresponding put-call pair should have the same implied volatility.

Sixth, I filter out options with moneyness outside the range of m ∈ [0.5, 1.5] which follows

Cont and da Fonseca (2002). All applied filters leaves us with 1,170,893 options, what gives

317 contracts on average per day.

2.2 Smoothing the surface

In order to obtain an arbitrary point on the implied volatility surface, one needs to interpolate

or smooth the discrete data. This can be achieved in a non-parametric way. I follow approach

by Cont and da Fonseca (2002) and Fengler et al. (2003) who apply non-parametric Nadaraya-

Watson estimator to IV data. For a partition of explanatry variables (m,κ), where m is

moneyness and κ is time-to-maturity, the two-dimensional Nadaraya-Watson estimator of

the implied volatility σ is given by

σ̂(m,κ) =

∑n
i=1 K1

(
(m−mi)/h1

)
K2

(
(κ− κi)/h2

)
σi∑n

i=1K1

(
(m−mi)/h1

)
K2

(
(κ− κi)/h2

) , (2.1)

where σi is the observed value of IV, K1(u), K2(u) are univariate kernel functions, h1 and

h2 are bandwidths in moneyness and maturity directions respectively, and n denotes the

number of observations. I apply the estimator on the filtered data set. As a kernel function

I use a quartic kernel, i.e.,

K(u) =
15

16
(1− u2)21[|u| ≤ 1], (2.2)

where 1[x] is an indicator function that equals 1 when x is true and 0 otherwise. Usually,

the choice of the kernel function does not influence empirical results (see Silverman (1986)).

However, in contrast to Cont and da Fonseca (2002) and Fengler et al. (2003) I conclude

that the use of the quartic kernel is preferred over a Gaussian kernel, especially as the latter

is incapable of producing a smoothed surface that fits accurately high values of IV which

are observed for far out-of-the money put options. This is especially clear when when there

is only a small number of maturities traded. Figure B.1 in Appendix B presents smoothed

surface fitted to actual data for quartic and Gaussian kernels.
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CHAPTER 2. THE IMPLIED VOLATILITY SURFACE

The bandwidths h1 and h2 control the level of smoothness of the estimated surface. Too

low values of h1, h2 will make IVS bumpy, whereas too high values will lead to oversmoothing.

As for the optimal bandwidths selection, I follow Fengler et al. (2003) and for each date in

the sample I solve the following optimization problem:

min
h1,h2

n−1

n∑
i=1

(
σi − σ̂h1,h2(mi, κi)

)2 ×Ξ
(
n−1h−1

1 h−1
2 K1(0)K2(0)

)
, (2.3)

where Ξ(z) = exp(2z) is the Akaike penalizing function. The Akaike correction factor pe-

nalizes bandwidths that are too small (for alternative choices of penalizing functions see

Hardle (1990)). Next, I average the penalized bandwidths across observations dates. Given

the fact that twice in the whole sample the number of available maturities of S&P500 in-

dex options increases dividing the sample into 3 periods, which happens on 21/Feb/2007

and 31/May/2012, I calculate the average optimal bandwidth separately for each of the

three sub-periods. The selection procedure yields the average optimal bandwidth h∗1 = 0.02

in the moneyness dimension for all the three sub-periods. Average optimal bandwidth h∗2

largely differs between the sub-periods as it equals 22.3, 13.6 and 10.6 days for the obser-

vations before 21/Feb/2007, from 21/Feb/2007 until 31/May/2012 and after 31/May/2012

respectively. The sample standard deviation of penalized bandwidths in maturity dimension

accounts for 8.1, 4.6 and 0.5 respectively. Low standard deviation of optimized bandwidths

indicate that single bandwidth can be used for all estimation dates within abovementioned

sub-periods.

However, figure B.2 in Appendix B shows that surfaces obtained with the optimized

bandwidths are bumpy and discontinuous. It suggests that the optimal bandwidths with

respect to penalizing function are too narrow in both dimensions. This observation is consis-

tent with Fengler et al. (2003), who argue that data points appear like ’pearls in the necklace’

in the three dimensional space of IVS. Moreover, they argue that penalizing approaches, as

other cross-validation procedures, evaluate the quality of estimator right at the observed

data points what results in too small bandwidths when one aims to obtain the estimates

on the grid points deviating from actual observations, as it is the case in this thesis. Thus,

oversmoothing with respect to the penalizing function cannot be avoided. In finally using

bandwidths shown in Table 2.1 I take into account that the number of traded maturities

daily differs between abovementioned sub-periods and also that for shorter maturities ob-

servations are closer to each other than for longer maturities. Such a choice of bandwidths

ensures that the surface can be recovered everywhere on the constant grid. I recover IVS

on a fixed grid of moneyness mi ∈ {0.85, 0.90, 0.95, 0.99, 1.01, 1.05, 1.10, 1.12} and maturity

κj ∈ {30, 50, 65, 80, 120, 160, 240, 320}. The smoothing procedure applied day by day results
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2.3. SUMMARY STATISTICS

in 64 time-series of smoothed IV σ̂t(mi, κj).

Table 2.1: Bandwidths used to recover the surface

Maturity κ
Dates range <60 60-180 >180

04/Jan/1999 - 20/Feb/2007 h1=0.08, h2=40 h1=0.08, h2=80 h1=0.08, h2=145
21/Feb/2007 - 30/May/2012 h1=0.08, h2=35 h1=0.08, h2=60 h1=0.08, h2=100
31/May/2012 - 30/Aug/2013 h1=0.08, h2=30 h1=0.08, h2=55 h1=0.08, h2=80

The table presents values of the bandwidths that I use to recover the surface on the constant grid of moneyness

mi ∈ {0.85, 0.9, 0.95, 0.99, 1.01, 1.05, 1.1, 1.12} and maturity κj ∈ {30, 50, 65, 80, 120, 160, 240, 320}. h1 is the

bandwidth in the moneyness dimension, h2 is the bandwidth in the maturity dimension. Differentiating h2

between maturity groups and three date ranges allows to take into account the number of traded maturities

daily and the fact that for shorter maturities observation are closer to each other than for longer term

contracts.

2.3 Summary statistics

Table 2.2 reports summary statistics for implied volatilities. For the purpose of presenting

summary statistics, I divide the data into 3 maturity and 9 moneyness categories. Grouping

based on the moneyness level corresponds to 8 grid points in the moneyness dimension

selected to recover the surface with the kernel procedure, while maturity categories follow

Bakshi et al. (1997), who classify contracts as short term if κ < 60, medium term if 60 ≤
κ ≤ 180 and long term if κ > 180.

The mean values of IV form a pronounced volatility smile, i.e. IV first declines and

again inclines when moving from low to high values of m. It is especially visible pattern

for the short maturities, while for the medium and the long maturities IV starts to incline

again only for very high values of m. The term structure, the pattern for given moneyness

across different maturities, is fairly flat, except extreme moneyness groups (m < 0.85 or

m > 1.12) where mean values of IVs are considerably higher for the short maturities than

for the medium and the long maturities. The next observed feature is that for a given

moneyness group IVs are more volatile for the short term than for the medium and the

long term options. Also, contracts that are closer to being at-the-money are less volatile

than those with m further from 1. All moneyness-maturity groups exhibit positive skewness,

which is a well-known characteristic of implied volatility distribution. It is usually the largest

for the short maturities given the moneyness group. The logarithm of IV data exhibits much

lower skewness, however after logarithmic transformation the data are still slightly positively

skewed. The distributions of the moneyness-maturity groups are leptokurtic, with kurtosis
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CHAPTER 2. THE IMPLIED VOLATILITY SURFACE

far above 32. Only short-term put options with m < 0.85 and short-term call options with

m > 1.12 have kurtosis below 3.

Figure 2.1 presents 64 time series obtained from the smoothing procedure. They exhibit

very strong comovement. To analyze a degree of this comovement and its persistence in

Figure 2.1: Time series of smoothed IVs on a given grid
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IVS is recovered with Nadaraya-Watson estimator (equation (2.1)) on the fixed grid of moneyness mi ∈
{0.85, 0.90, 0.95, 0.99, 1.01, 1.05, 1.10, 1.12} and maturity κj ∈ {30, 50, 65, 80, 120, 160, 240, 320}. The

figure shows 64 time series of σ̂t(mi, κj).

the implied volatility surface, tables C.1 and C.2 in Appendix C report cross-correlations

and (partial) autocorrelations for the investigated time series. Table C.1 shows the cross-

correlations between number of moneyness categories and two maturity categories: the short-

est of κ = 20 and the longest of κ = 320. Cross-correlations within the maturity category

are stronger for the long than for the short maturities. All of them are above 0.9. Even

across maturity categories only a few of cross-correlations fall below 0.9. Table C.2 reports

(partial) autocorrelations at lags of 1 to 5 days and 1 month, i.e. 22 days, for different

moneyness-maturity points. The autocorrelations are higher for the long maturities at every

lag. At 22 days lag they stay at around 0.9 for the long maturities and 0.8 for the short

maturities. Also partial autocorrelations are higher for the long maturities. However, at the

third lag almost all of them are below 0.1. The OTM put options (m < 1) exhibit larger

drop in partial autocorrelation than OTM calls (m > 1).

2Kurtosis of 3 corresponds to the kurtosis of normal distribution
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To further illustrate the dynamics of the surface, I construct measures of the volatility

smile and term structure following Van der Wel et al. (2015). Defined measures correspond

to the grid points of the smoothed surface. The slope of the volatility smile corresponding

to each maturity grid point κj ∈ {30, 50, 65, 80, 120, 160, 240, 320} is defined as the implied

volatility of the furthest OTM put option on the grid for which m = 0.85, minus the implied

volatility of the furthest OTM call option on the grid for which m = 1.12. Similarly, the slope

of the volatility term structure corresponding to each moneyness grid point mi ∈ {0.85, 0.90,

0.95, 0.99, 1.01, 1.05, 1.10, 1.12} is defined as the implied volatility of the longest maturity

on the grid κ = 320, minus the implied volatility of the shortest maturity on the grid κ = 30.

Figure 2.2 shows that the slope of the smile is positive for all the considered maturity grid

points. On average, it achieves higher levels and is more volatile for the short maturities.

The smile is larger when the volatility of the financial markets is higher, as measured with

VIX index which behaviour is shown in the top panel of Figure 2.3. Figure 2.3 shows time

series of the slope of the term structure separately for the put and the call options.

The term structure can be upward- or downward-sloping for all considered moneyness

grid points. When the overall level of volatility is high, as measured with VIX index, the

term structure tends to be downward-sloping and reach especially low values, hitting the

record low in the crisis of 2008. On the other hand, it is upward-sloping when the volatility

is low. A popular explanation for this phenomenon in the term structure of IVS is the mean-

reverting nature of volatility. Most of the time in the sample the slope of the term structure

is negative for the put options with m ∈ {0.85, 0.9, 0.95}, while it is positive for the at-the-

money put with m = 0.99 and all the call options. The slope of the term structure vary

across moneyness grid points when m < 1, while it is fairly on the same level across all the

considered points when m > 1. Table C.3 in Appendix C contains (partial) autocorrelations

for the slope of the smile and term structure. They exhibit similar pattern as the (partial)

autocorrelations of the time series shown in Table C.2. However, the partial autocorrelation

of the slope of the volatility smile decays slower, accounting for around 0.2 for the long

maturities at the third lag and falling below 0.1 only after the fourth lag.
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CHAPTER 2. THE IMPLIED VOLATILITY SURFACE

Figure 2.2: Slope of Volatility Smile
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The figure shows VIX index and the slope of the volatility smile. The slope of the smile corresponding to

each maturity grid point κj ∈ {30, 50, 65, 80, 120, 160, 240, 320} is defined as IV of the option with m = 0.85

minus IV of the option with m = 1.12. Smoothed IV values are used.
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Figure 2.3: Slope of Volatility Term Structure
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The figure shows VIX index and the slope of the volatility term structure. The slope of the term structure

corresponding to each moneyness grid point mi ∈ {0.85, 0.9, 0.95, 0.99, 1.01, 1.05, 1.1, 1.12} is defined as

IV of the option with κ = 320 minus IV of the option with κ = 30. Smoothed IV values are used.
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Table 2.2: Summary statistics by Moneyness and Maturity

Moneyness Maturity
K/S <60 60-180 >180
<0.85 Mean 0.41 0.36 0.31

Std 0.11 0.09 0.07
Skewness 0.68 0.75 0.67
Skewness log σ 0.19 0.14 0.03
Kurtosis 2.72 3.40 3.67
Observations 75645 143008 106754

0.85-0.90 Mean 0.30 0.26 0.25
Std 0.08 0.07 0.06
Skewness 1.54 1.52 1.28
Skewness log σ 0.71 0.64 0.45
Kurtosis 6.25 6.78 6.08
Observations 50309 39162 24616

0.90-0.95 Mean 0.25 0.23 0.23
Std 0.08 0.07 0.06
Skewness 1.90 1.59 1.27
Skewness log σ 0.75 0.59 0.39
Kurtosis 8.64 7.15 6.14
Observations 66376 44087 25963

0.95-0.99 Mean 0.20 0.21 0.21
Std 0.08 0.07 0.06
Skewness 2.11 1.57 1.17
Skewness log σ 0.76 0.48 0.31
Kurtosis 10.02 7.24 5.65
Observations 60547 39797 21328

0.99-1.01 Mean 0.18 0.19 0.20
Std 0.07 0.07 0.06
Skewness 2.15 1.59 1.23
Skewness log σ 0.70 0.46 0.34
Kurtosis 10.35 7.36 5.90
Observations 31706 21575 10966

1.01-1.05 Mean 0.16 0.18 0.19
Std 0.07 0.06 0.05
Skewness 2.33 1.57 1.19
Skewness log σ 0.74 0.41 0.32
Kurtosis 11.51 7.14 5.56
Observations 59418 41304 21413

1.05-1.10 Mean 0.18 0.17 0.18
Std 0.08 0.06 0.05
Skewness 2.24 1.75 1.22
Skewness log σ 0.76 0.52 0.25
Kurtosis 10.12 7.79 5.79
Observations 39185 43797 25183

1.10-1.12 Mean 0.21 0.17 0.18
Std 0.09 0.06 0.05
Skewness 2.06 1.96 1.26
Skewness log σ 1.06 0.74 0.27
Kurtosis 7.93 8.50 5.82
Observations 7348 14053 9230

>1.12 Mean 0.30 0.20 0.18
Std 0.12 0.07 0.05
Skewness 0.78 1.27 1.41
Skewness log σ 0.20 0.49 0.48
Kurtosis 2.87 4.48 5.52
Observations 17595 56145 74383

The sample covers period from January 4, 1999, until August 30, 2013 for a total of 1,170,893 options after

filtering the data. Six summary statistics of IVs are reported: mean, standard deviation (Std), skewness,

skewness of log data, kurtosis, and the number of observations within each group.





Chapter 3

Forecasting models

In this chapter I describe 4 different set-ups within 3 main approaches that are employed

to forecasts the implied volatility surface. The three approaches are: (i) a model of latent

factors that drive IVS, where the factors are estimated with Principal Component Analysis,

(ii) two models that assume parametric structure of the surface, (iii) option pricing model

for which I choose the model of Heston and Nandi (2000). To preserve consistency, all the

first three models estimated in IV space deal with the log transformation on IV data. It

gives an advantage that the models always produce non-negative values of IV. At the end of

the day, I asses forecasts of IV (without log transformation) such that all four models can be

compared. I use the first 1000 days of the data set as an initial estimation period. All the

models are estimated using the rolling window framework with the window length of 1000

days. It ensures that the forecasts generated by the different models are conditional on the

same information set.
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3.1. PRINCIPAL COMPONENT ANALYSIS

3.1 Principal Component Analysis

The method of Principal Component Analysis (PCA) allows to summarize the main sources

of variation and covariation for a large panel of variables into a small number of underlying

risk factors. Thus, PCA allows to greatly reduce the dimensionality of the problem under

consideration. It may be especially efficient when the investigated time-series are highly

correlated, as is the case in this study. I apply PCA technique to extract common factors

from the panel of 64 time-series obtained with kernel regression of section 2.2.

I calculate the first differences of the log transformed data ∆ log σ̂t(mi, τj) to ensure

stationarity of the input variables to PCA model, following works of Cont and da Fonseca

(2002), Fengler et al. (2003), Badshah (2009) and Skiadopoulos et al. (1999) who also perform

PCA on the first differences of (log) IV data1. The smoothed IV time-series illustrated in

figure 2.1 suggest that they may contain a unit-root. I test unit-root stationarity of the

log time-series with an augmented Dickey-Fuller test. I select a lag order of the test based

on the BIC criterion with the maximum value of 5. To illustrate the results of ADF test,

I report t-statistics and p-values for 12 time series in total in table C.5 in Appendix C:

6 log and 6 differenced log time series. The test is performed on the time-series having

length of 1000 days, what is consistent with the estimation window of PCA model. In each

case the null hypothesis that the time series of log σ̂t(m,κ) contain unit root cannot be

rejected at any standard significance level, whereas I reject the null for all ∆ log σ̂t(m,κ)

being tested with p-value less than 0.001. These results support the decision of modelling

the first differences of the smoothed IV time-series. Alternatively, one could work with IV

data in levels when the idiosyncratic noise components εit in a factor representation equation

are I(0). This is motivated by the fact that PCA estimators of factors and factor loadings

are consistent as long as εit are I(0), regardless of stationarity of the factors, as pointed out

by Bai and Ng (2004). For more detailed discussion of this approach in the context of IVS

see Chalamandaris and Tsekrekos (2010).

I consider static factor representation of the log smoothed implied volatilities ∆ log σ̂t(mi, τj):

∆ log σ̂t(mi, τj) = λij1F1t + · · ·+ λijrFrt + εij,t = λ
′

ijFt + εij,t, (3.1)

where F t is a vector of common factors, λij is a vector with factor loadings for the first

differences of the log smoothed implied volatility σ̂ corresponding to i-th moneyness and

j-th maturity grid point, and εij is an idiosyncratic noise. The factors and idiosyncratic

1In unreported results, I examined the out-of-sample performance of PCA model estimated in levels. It
yielded slightly poorer results. Moreover, the interpretation of the factors estimated on differenced data is
clearer.
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components are assumed to be uncorrelated, E(Ftεij,s) = 0 for all i, j, s, that is they are

uncorrelated at all leads and lags. In the ”approximate dynamic factor model”, as introduced

by Chamberlain and Rothschild (1982), weak cross-section correlation between idiosyncratic

components is allowed, as long as 1
N

∑N
k=1

∑N
l=1 | E(ek,tel,t) | is bounded.

Let X be N × T matrix of N time-series having length T , Σ̂XX = T−1
∑T

t=1X tX
′
t be

its sample covariance matrix and Λ N × r matrix with r factors’ loadings. As described

by Stock and Watson (2006) the estimation of Λ and F t can be considered as solving the

following non-linear least square problem:

min
F1,··· ,FT ,Λ

T−1

T∑
t=1

(
X t −ΛF t

)′
(X t −ΛF t

)
, (3.2)

subject to normalisation Λ
′
Λ = Ir. One possible solution, however not unique, to the

above optimization is
(
Λ̂, F̂

)
, where Λ̂ is set to be the first r eigenvectors corresponding

to the r largest eigenvalues of the covariance matrix Σ̂XX . The estimator of the factors is

F̂ t = Λ̂
′

X t, which is the vector consisting of the first r principal components (PCs) of X t.

The standard practice in the literature on the dynamics of the implied volatility surface

is to perform PCA on the covariance matrix. However, given that variances of IVs vary

across different segments of the surface, as reported in table C.1 in Appendix C, it seems to

be reasonable to perform PCA on the correlation matrix instead of the covariance matrix,

so that the first PC is not attributed to the few moneyness/maturity groups with the largest

variance. When the principal components are extracted from the correlation matrix instead

of the covariance matrix, the data are effectively standardized, i.e. z-scores zit = xit−µi
si

are

used, where µi and si are the mean and the standard deviation of the variable xi. To find

the forecasts ∆ log σ̂t+1|t(mi, τj) in equation (3.5), I multiply the forecasted z-scores by si

and add µi, that is I ’unstandardize’ the data. The rest of the procedure is the same as in

the case of non-standardized data. The standardization and ’unstandardization’ steps are

omitted in the equations’ notation for clarity of reading.

Since the primary goal of this study is the out-of-sample forecasting of IVS in contrast

to in-sample fitting, I follow common rule of thumb in choosing the number of static factors

and set it to be r̂ = 3. However, there is a vast empirical evidence that 2 to 3 factors drive

the dynamics of IVS of index options (see Skiadopoulos et al. (1999), Mixon (2002) and

Van der Wel et al. (2015)) or options on futures (Tompkins (2001)). Table 3.1 reports the

proportion of explained variance in the full-sample for different kinds of input variables. For

the non-stationary panel of log σ̂ the first PC explains over 97% of the total variance. The

differences between the differenced log-data and its standardized version are only minor. In

both cases the first 3 principal components explain over 95% of the variance.
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Table 3.1: Principal Component Analysis

Explained variance
log σ̂ ∆ log σ̂ Z-scores of ∆ log σ̂

% Cum. % % Cum. % % Cum. %
PC 1 97.18 97.18 84.56 84.56 84.51 84.51
PC 2 1.47 98.66 7.57 92.13 8.53 93.03
PC 3 0.86 99.52 3.12 95.25 2.28 95.32
PC 4 0.16 99.67 1.45 96.70 1.23 96.54
PC 5 0.08 99.76 0.80 97.50 0.78 97.32
PC 6 0.08 99.83 0.54 98.03 0.42 97.74
PC 7 0.03 99.86 0.32 98.35 0.29 98.03
PC 8 0.03 99.89 0.23 98.58 0.24 98.27
PC 9 0.02 99.90 0.18 98.77 0.21 98.48
PC 10 0.01 99.92 0.15 98.92 0.19 98.67

The table presents the results of the Principal Component Analysis performed on the full sample of the panel

of 64 times-series representing IVS on the fixed grid of moneyness mi ∈ {0.85, 0.90, 0.95, 0.99, 1.01, 1.05,

1.10, 1.12} and maturity κj ∈ {30, 50, 65, 80, 120, 160, 240, 320}.

Because further analysis is conducted on the standardized data, I provide possible inter-

pretation of the factors based on the factors’ loadings estimated on the panel of Z-scores of

∆ log σ̂. The first principal component corresponds with the overall level of IVS, the ele-

ments of the first factor loading have approximately the same value for all 64 combinations

of moneyness and maturity grid points. The second principal component affects the implied

volatility of the call and the put options with a different sign, while the change of the sign

takes place between moneyness grid points of 0.99 and 1.01 (ATM put and calls), irrespective

of the remaining time-to-maturity. In fact, the effect is almost uniform across the maturity

dimension. Thus, the second principal components is a smile factor, capturing the volatility

smile. Finally, the third principal component corresponds with the volatility term structure,

as it changes the sign of how it impacts IV between the maturity of 80 and 120 days and

the effect is very similar across the moneyness dimension. Figure 3.1 provides a graphical

illustration of the estimated factors’ loadings.
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Figure 3.1: Graphical illustration of the factors’ loadings of the correlation matrix
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The figure shows estimates of the factors’ loadings resulted from PCA performed on the full sample of 64 time-series, recovered

with Nadaraya-Watson regression on the fixed grid of moneyness mi ∈ {0.85, 0.90, 0.95, 0.99, 1.01, 1.05, 1.10, 1.12} and maturity

κj ∈ {30, 50, 65, 80, 120, 160, 240, 320}.



3.1. PRINCIPAL COMPONENT ANALYSIS

In order to capture dynamics of the estimated factors F̂t = (F̂1t, F̂2t, F̂3t)
′, I assume

they follow p-order Vector AutoRegressive process (VAR) given by equation (3.3). VAR

specification can be augmented with exogenous regressors in a form of lagged returns on

S&P 500 index, resulting in VARX model for factor dynamics. Chalamandaris and Tsekrekos

(2009), who model in levels time-series of implied volatilities of options that have a constant

time-to-maturity, show that VAR specification for factor dynamics outperforms both in-

sample and out-of-sample univariate AR and VECM specifications for factors driving IVS

of OTC currency options.

F̂ t = c+

p∑
j=1

ΦjF̂ t−j +

q∑
k=1

ΨkrSPX,t−j + vt, vt ∼ N(0,ΣF̂ F̂ ) (3.3)

Equation (3.3) is estimated with MLS estimator. The order of lags p and q is selected based

on BIC criterion and repeated in every estimation window. I perform the estimation of

VARX process in (3.3) using the moving window of length 1000 of days. Predictability of

IVS requires that the factors F̂ t are predictable itself. I use VARX(p,q) specification to

produce direct forecasts of F̂ t+1 which are constructed as

F̂ t+1|t = c+

p∑
j=1

ΦjF̂ t−j+1 +

q∑
k=1

ΨkrSPX,t−j+1, (3.4)

which allows to calculate forecasts of the differenced smoothed log IVs ∆ log σ̂t+1|t(mi, τj) as

∆ log σ̂t+1|t(mi, τj) = λ̂
′

ijF̂ t+1|t. (3.5)

Next, forecasts of log σ̂t+1|t(mi, τj) are simply

log σ̂t+1|t(mi, τj) = log σ̂t(mi, τj) + ∆ log σ̂t+1|t(mi, τj) (3.6)

Finally, I convert log data to standard implied volatilities. In this step I make use of the

property of log-normal distribution which states that when X ∼ LN(a, b2) its expected

value equals exp(a+ 1
2
b2). Because it was implicitly assumed that conditional distribution of

log σ̂t+1|t(mi, τj) is normal (because of distributional assumptions in equations 3.1 and 3.3)

it follows that:

σ̂t+1|t(mi, τj) = exp

(
log σ̂t+1|t(mi, τj) +

1

2
Vart(log σ̂t+1(mi, τj))

)
, (3.7)

where Vart(log σ̂t+1(mi, τj)) corresponds to the appropriate diagonal element of the variance-

covariance matrix of the log σ̂t+1|t which arises from the sum the variance of the factors ΣF̂ F̂ ,
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and the variance of the idiosyncratic components Σεε:

Vart(log σ̂t+1) = ΛΣF̂ F̂Λ′ + Σεε. (3.8)

Now, the whole IVS has to be recovered from the 64 point forecasts of σ̂t+1|t(mi, τj) with

moneyness mi ∈ {0.85, 0.9, 0.95, 0.99, 1.01, 1.05, 1.1, 1.12} and maturity κj ∈ {30, 50, 65, 80,

120, 160, 240, 320}. To obtain forecasts of IVS, I again use the approach presented in section

2.2, that is the non-parametric Nadaraya-Watson regression to recover the surface in an

arbitrary number of points. Table 3.2 presents the bandwidth I use to recover the surface on

the grid made of options’ time-to-maturity and predicted moneyness. To calculate predicted

moneyness, I assume that the best forecast of today’s index level is its current value. The

choice of the bandwidths is now less complicated than it was in section 2.2, as the forecasted

data points are regularly spaced in the three dimensional space of the implied volatility

surface.

Table 3.2: Bandwidths used to recover the surface

Maturity κ
<60 60-180 >180

h1= 0.05, h2=30 h1= 0.05, h2=40 h1= 0.05, h2=60

The table presents the bandwidths used to recover the surface from the forecasted points that lie on the

fixed grid of moneyness mi ∈ {0.85, 0.90, 0.95, 0.99, 1.01, 1.05, 1.10, 1.12} and maturity κj ∈ {30, 50, 65, 80,

120, 160, 240, 320}. The surface is recovered on the grid made of options’ time-to-maturity and predicted

moneyness.
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3.2. PARAMETRIC VARX(P,Q)

3.2 Parametric VARX(p, q)

This section describes a deterministic model for IVS, later referred to as parametric VARX

model. It consists of two steps that combine cross-sectional fitting of a parametric function

to IVS observed on a given day, with the application of Vector AutoRegregressive model

with eXogenous regressors (VARX) to the multivariate time-series of estimated in the first

step daily coefficients. The exogenous information I include is in the form of lagged returns

on S&P500 index. The motivation behind this step is that increased volatility often follows

large negative returns in the equity market. The models of this type are commonly called

”deterministic”, as all the explanatory variables are observable and formed of basic option

parameters. I implement the specification successfully applied by Goncalves and Guidolin

(2006) and Bernales and Guidolin (2014). They consider and compare in the context of out-

of-sample forecasting various parametric IVS specifications presented by Dumas et al. (1998)

and Pena et al. (1999). Competing specifications which they compare belong to a general

class of polynomials, where the implied volatility is a function of polynomials in moneyness

and time to expiration (or functions thereof). The approach presented in this section is also

similar to Diebold and Li (2006) who follow two-stage approach in modelling and forecasting

the yield curve. First, they impose a parametric structure on the yield curve. Next, they

study dynamics of the estimated parameters assuming that they follow VAR(1) process.

In the first step, each day I fit a parametric curve of the following form by ordinary least

squares:

log σi = β0 + β1Mi + β2M
2
i + β3

τi
360

+ β4(Mi ×
τi

360
) + εi, εi ∼ N(0, δ), (3.9)

where εi is a random error term assumed to be normally distributed with mean 0 and variance

δ, τi is time-to-maturity measured in days and divided by 360 in order to be expressed in

years, and Mi is a time-adjusted moneyness defined as Mi ≡ logmi√
τi/360

. According to this

measure of moneyness, the more time remains to maturity, the larger the difference should

be between the strike and the spot price in order for it to have the same normalized maturity

as compared to a short term option (see e.g. Tompkins et al. (2001)).

Estimating equation (3.9) for each day in the sample results in the 5-dimensional time

series of β̂t = (β̂0t, β̂1t, β̂2t, β̂3t, β̂4t)
′. Figure 3.2 depicts the time series of daily beta coeffi-

cients β̂t. The daily coefficients are highly unstable over time, implying the instability of

IVS in both dimensions. The relative importance in determining the values of IV of each

β factor varies over time. For a better understanding what this time-variation implies an

interpretation of the factors is needed. If the assumption of the Black-Scholes model of a

constant volatility held, the intercept β0 in equation (3.9) would be equal to the common
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for all options log-volatility, while βj for j = 1, ..., 4 would be equal to 0. The intercept

β0 corresponds to the overall level of IVS as it tends to increase when the volatility in the

financial markets increases, reaching extraordinary high levels in the financial crisis of 2008.

The slope of the volatility smile can be characterized by β1, β2 captures the curvature of

the smile, β3 is the factor representing the slope of the implied volatility term structure, and

β4 captures interactions between the two dimensions in which IV is described i.e. time-to-

maturity and moneyness. The evolution of the level factor resembles the time-series of 2.3

exhibited in figure 2.3 of chapter 2. The level factor β0 is also highly positively correlated

with β1 factor which determines the slope of the volatility smile. In fact, the correlation

coefficient for these two variables amounts to 0.95. This correlation implies that when the

average volatility level is high, the slope of the smile is steeper. On the other hand, the level

factor is negatively correlated with β3 factor that account for the slope of the volatility term

structure. Both results are consistent with the observations made in section on the summary

statistics. The correlation coefficient between β0 and β1 is 0.84, while between β0 and β3

stands at -0.83. The next pattern that can be noticed is high positive correlation between

the slope and the curvature of the volatility smile.

To capture joint dynamics of the time-series in β̂t I model them with VARX(p, q) model,

where p represents the number of lags for the vector of lagged dependent variables, and

q is the number of lags of the exogenous regressor. I decide to model the dynamics of

β̂t in levels, similarly to works of Goncalves and Guidolin (2006), Bernales and Guidolin

(2014) and Diebold and Li (2006). This choice is purely pragmatic, as in unreported results

I also studied dynamics of β̂t with VARX model, where the non-stationary time-series in

β̂t were transformed to stationary time-series by differencing operation. This form of the

model yielded poorer out-of-sample performance. I tested the unit-root stationarity of input

variables to VARX model with an augmented Dickey-Fuller (ADF) test for a unit root in a

univariate time-series, which I perform separately for each time-series of the beta coefficients

over estimation windows of 1000 days. The lag order of the test is selected such that it

minimizes Bayesian Information Criterion. According to ADF test, a null hypothesis that

time-series contain the unit root can be rejected only for β̂2t, β̂3t, β̂4t. Table C.4 in Appendix

C reports the results of ADF test for two estimation windows: the first and the last window

in which the individual models are estimated.

I assume the beta coefficients evolve over time according to the following equation:

β̂t = µ+

p∑
j=1

Φjβ̂t−j +

q∑
k=1

ΨkrSPX,t−j + εt, εt ∼ N(0,Ωβ̂), (3.10)
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3.2. PARAMETRIC VARX(P,Q)

where β̂t is 5×1 time series of estimated coefficients in equation (3.9), µ is 5×1 vector of

constant terms, Φj is 5×5 matrix and Ψk is 5×1 vector of coefficients for autoregressive terms

and lagged values of S&P500 returns respectively, εt is a vector of error terms assumed to

follow multivariate white noise process. Equation (3.10) is estimated by multivariate least

square (MLS) estimator, which is equivalent to applying OLS estimator equation by equation.

I select the lags order p and q by minimizing Baysian Information Criterion (BIC), setting

arbitrary maximum values of five lags for p and five lags for q. The restricted version of

equation (3.10) without inclusion of exogenous regressors is also allowed in the selection

process. The choice of the number of lags is motivated by the analysis of Goncalves and

Guidolin (2006) and Bernales and Guidolin (2014) who show that parsimonious models in

terms of the number of parameters to be estimated work better for the purpose of the

out-of-sample forecasting, when the parametric form of IVS is assumed.

I set up a forecasting exercise for the parametric VARX model as follows. First, I use

VARX(p, q) model given in equation (3.10) to produce one-step ahead, out-of-sample fore-

casts β̂t+1|t of β̂t+1, in the framework of the moving estimation window with the window

length of 1000 days. The procedure for selecting the lag orders p, q is repeated for every

estimation window. Second, I obtain forecasts of log σi,t+1|t using again equation (3.9), by

plugging in the forecasted values of β̂. However, parametric VARX(p, q) model does not

deliver prediction of the spot price that is necessary to calculate the predicted value of

moneyness. Following Goncalves and Guidolin (2006) and Bernales and Guidolin (2014), I

assume that the best one-step ahead forecasts of the spot price is its current value. Fi-

nally, predictions of log σi,t+1|t are converted to predictions of σi,t+1|t, as the evaluation

of the forecasts is done for σ itself. Because conditional distribution of β̂t+1|t and dis-

tribution of error terms ε are normal, it can be done by calculating expectation of σi as

σi,t+1|t = exp
(
log σi,t+1|t + 1

2
Vart(log σi,t+1)

)
, where Vart(log σi,t+1) = δ +X ′iΩβ̂β̂X i and X i

vector of characteristics of log σi defined in equation (3.9).
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Figure 3.2: Time-variation in β̂ OLS estimates
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Time series of the daily OLS estimates obtained from the cross-sectional fitting of IVS with equation (3.9)

over the period 04/Jan/1999-30/Aug/2013.
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3.3 Practitioner Black-Scholes

Model of Dumas et al. (1998) known as ad hoc Black-Scholes, ad hoc Strawman or Practi-

tioner Black-Scholes, henceforth referred to as Practitioner Black-Scholes (PBS), is employed

by numerous authors in different applications and proved to be hard to beat benchmark in

out-of-sample horse races. It is used by Heston and Nandi (2000) as a benchmark to eval-

uate the performance of their GARCH-type option valuation model, which usefulness for

forecasting movements in IVS is assessed in this paper. It is also used by Goncalves and

Guidolin (2006) and Bernales and Guidolin (2014) in the context of forecasting IVS, and

Christoffersen and Jacobs (2004) who underlines the importance of the loss function in op-

tion pricing applications. I treat this model as a benchmarking approach to model IVS.

Moreover, I use random walk forecasts (RW) for IVs as an additional benchmark. Random

walk forecasts are obtained by assuming that tomorrow’s value of IV equals its today value.

The Practitioner Black-Scholes model can be seen as a restricted case of the parametric

VARX model described in section 3.2. The parametric form of IVS is fitted in the same way

as in equation (3.9). However, dynamics of β̂t coefficients estimated in the cross-section of

the implied volatilities follow a random walk process:

β̂t = β̂t−1 + εt εt ∼ N(0,Υ) (3.11)

where Υ is a diagonal matrix. Because the error term is assumed to have mean zero, the best

n-step ahead forecasts of the set of β̂ parameters, needed to fit IVS of tomorrow, is today’s

set of parameters, i.e. Et−1(β̂t) = β̂t−1. As in the parametric VARX model, I assume that

the best one-step ahead forecast of the spot price is its current value.
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3.4 Heston and Nandi GARCH type option valuation

model

This section presents the third approach used in this thesis to forecast IVS. GARCH type

option valuation model of Heston and Nandi (2000) (HN) is used to forecast option prices.

Next, (forecasted) implied volatilities can be backed out from these prices. Heston and

Nandi (2000) introduce a model within a class of affine GARCH models for the purpose

option pricing. They assume that log-returns follow a particular GARCH(1,1) process of the

form:

rt = rf,t + λht +
√
htzt (3.12a)

ht = ω + βht−1 + α(zt−1 − γ
√
ht−1)2, (3.12b)

where rf,t is the daily risk free rate, zt is a standard normal disturbance, and ht is the

conditional variance of the return which is known at time t − 1. Such specification of

the GARCH(1,1) process, however quite different from the standard GARCH models of

Bollerslev (1986) and Duan et al. (1995), resembles models of Engle and Ng (1993) known

as NGARCH and VGARCH. The unconditional variance implied by the model is given by

E(ht) =
ω + α

1− αγ2 − β
, (3.13)

while the first-order process remains stationary if αγ2 +β < 1. The α parameter determines

the kurtosis of the return distribution. The sign of γ is expected to be positive, as it enables

the model to capture a well-known stylized fact of the financial markets that a large negative

shock inflates the variance more than a positive shock of the same magnitude. In general,

the relationship of the following form can be proved:

Covt−1

(
ht+1, log(St)

)
= −2αγht (3.14)

Given positive values of α and γ, equation (3.14) implies the leverage effect described by Black

(1976) and documented by Christie (1982). The leverage effect requires negative correlation

between the spot price and the variance of the return process. Thus, model of Heston and

Nandi (2000) is able to produce the same type of volatility behaviour as the continuous

time model of Heston (1993). In fact, Heston and Nandi (2000) show that the model (3.12)

contains continuous time stochastic volatility model of Heston (1993) as a special case (that

is when the time interval between t − 1 and t approaches to zero). The parameters of the
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3.4. HESTON AND NANDI GARCH TYPE OPTION VALUATION MODEL

model (3.12) can be estimated directly by maximum likelihood estimation (MLE), as there

is only a single source of randomness zt, assumed to follow standard normal distribution.

Let θ = (ω, α, β, γ, λ) denotes a vector of the model’s parameters. The log-likelihood function

can be written as

lT (r1, . . . , rT | θ) =
T∑
t=1

−1

2

(
log(2π) + log(ht) +

(rt − rf,t − λht)2

ht

)
, (3.15)

where T is the sample size. The log-likelihood function has to be maximized with respect

to θ using numerical techniques, as the closed-form solution is not available due to recursive

form of the function. However, the log-likelihood function given in (3.15) is of a complex

shape with multiple local maxima. Therefore, a careful choice of the starting values for the

optimization is of a great importance. The standard practice is to consider various starting

values. I choose 4 different starting values for the parameters based on the results obtained

by other authors. I initialize h0 by setting its value equal to the sample variance of the

returns.

At this point valuing options is impossible because the risk-neutral distribution of the

spot price is still not known. Heston and Nandi (2000) prove that the risk neutral version

of the GARCH process given in equations (3.12a) and (3.12b) is obtained by replacing λ by

−1/2 and γ by γ∗ = γ+λ+1/2. Such a replacement has two main implications. First, given

that the risk premium parameter λ > −1/2, we have γ∗ > γ. Because of the equation (3.13)

the unconditional variance under the risk neutral distribution is higher than in the historical

case. Moreover, it can be seen from the equation (3.14) that γ drives the leverage effect.

Under the risk-neutral distribution this effect is higher. As noted by Chorro et al. (2014), it

is consistent with the skewness premium found in option prices, that the skewness implied

in options is stronger than in equity returns (for more detailed discussion see Bates (1997)).

Second, in case the risk premium is negative, that is λ < −1/2, the skewness premium is

positive and the unconditional variance is lower under the risk-neutral distribution. This is

again consistent with empirical observations: in the bear markets risk premia are negative

and the historical volatility is higher than the volatility implied by the option prices.

A European call in the framework of Heston and Nandi (2000) is worth

Ct =
1

2
St +

e−r(T−t)

π

∫ ∞
0

<
[
K−iφf ∗(iφ+ 1)

iφ

]
dφ−

Ke−r(T−t)
(

1

2
+

1

π

∫ ∞
0

<
[
K−iφf ∗(iφ)

iφ

]
dφ

)
, (3.16)

where <[·] denotes the real part of a complex number, f ∗(iφ) is a risk-neutral version of the
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characteristic function f(iφ) of the logarithm of the spot price. The characteristic function

can be obtained by replacing φ by iφ in the conditional generating function of the asset price

(which in turn is the moment generating function of the log(ST )) given by2:

f(φ) = Et[S
φ
T ] = Sφt e

At(T,φ)+Bt(T,φ)ht+1 , (3.17)

where

At(T, φ) = At+1(T, φ) + φrf,t +Bt+1(T, φ)ω − 1

2
log (1− 2αBt+1(T, φ)) (3.18a)

Bt(T, φ) = φ(λ+ γ)− 1

2
γ2 + βBt+1(T, φ) +

1/2(φ− γ)2

1− 2αBt+1(T, φ)
. (3.18b)

These coefficients can be calculated recursively (but backward) from the terminal con-

ditions: AT (T, φ) = 0, BT (T, φ) = 0. Put values can be obtained from the put-call parity.

Because the characteristic function is known analytically, it is possible to apply approach

based on the Fast Fourier Transform (FFT) developed by Carr and Madan (1999) to price

option. This method allows to at once calculate prices of options for variety of strikes and

a given maturity. Thus, numerical computation of the integrals in equation (3.16) is not

needed. Even though computational cost of such integration is not heavy when only few

prices are to be calculated, it makes calibration of the model infeasible when hundreds of

options are quoted every day and the calibration process is to be repeated for over 2600

days. The FFT method is described in greater detail in Appendix A.

Forecasting IVS

Heston and Nandi (2000) finds that their model provides better fit to option prices data

than the Practitioner Black-Scholes model of section 3.3, both in-sample and out-of-sample.

This subsection explains the procedure how to use the Heston and Nandi model for the

purpose of IVS forecasting. In general, the model produce a collection of forecasted option

prices from which (forecasted) implied volatility values are backed out. First, I describe

how the in-sample fit of IVS is achieved, then I turn to the out-of-sample case. Option

valuation formula (3.16) and the moment generating function of the logarithm of the asset

price (3.18) depend on the parameters of the GARCH process (3.12). Thus, one could simply

plug the MLE parameter estimates of the GARCH process into the equation (3.16) to price

the options. However, information used in such approach would be only historical and far

from what market practitioners actually do. If one aims to take into account information

2for the explicit formula of the characteristic function under the risk-neutral distribution see equations
(A.4) and (A.5) in Appendix A
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embedded in the cross-section of option prices, which reflects the market expectations on

the future evolution of the underlying asset price, then it is more sensible to calibrate the

model, that is to look for a set of the parameter estimates that ensure that the difference

between theoretical prices implied by the model and market prices is as small as possible,

with respect to some penalizing function. For the calibration method I choose non-linear

least square (NLS) technique which minimizes the sum of squared pricing errors (SSE). For

this purpose I use well-known Matlab optimizer lsqnonlin based on the trust-region-reflective

algorithm. However, the optimizer easily get stuck in a local minimum. To obtain ’good’

(or rather acceptable) minima, I initialize calibration process with 4 different sets of starting

points. The objective function at time t is:

SSE(t, θ) = min
θ

N∑
i=1

(pi,t − p̂i,t(θ, ht+1))2 , (3.19)

where p denotes actual option price assumed to be the midpoint between the best closing

bid and the best closing offer price of the option, and p̂ denotes the price implied by the

model. θ is, as before, the vector of model parameters. Even though various starting points

are used, the calibrated parameters are highly unstable over time. The mean results of the

calibration process are shown in table 3.3. High instability in a short horizon may suggest

that better minima are possible. To find those one would have to consider bigger number

of starting values for the optimization algorithm. However, it is not really feasible in a

research such as this without for example the use of computation power cloud-computing

could offer. The option value at time t is not only a function of the GARCH process

Table 3.3: Mean estimates of the calibrated parameters

Parameter Mean Standard Deviation
ω -6.08E-06 6.23E-06
α 0.57 0.44
β 8.83E-06 8.44E-06
γ 247.36 152.55

The table reports the mean and standard deviation of the daily parameter estimates from the non-linear

least square estimation over the period of 2688 days, from from 24/Dec/2002 to 30/Aug/2013. Carr and

Madan (1999) method based on the Fast Fourier Transform is used to calibrate the model.

parameters (the risk neutral versions of ω, α, β, γ, and λ), but also depends on the conditional

variance ht+1. As free parameters in the calibration process I treat only GARCH parameters,

whereas ht+1 is estimated from the history of the S&P500 returns. This follows Heston and

Nandi (2000) who argue that information included in historical prices of the underlying
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asset provide information about the future that nature is different from the information

embedded in the cross-section of option prices. I estimate GARCH model (3.12) in the

rolling-window framework with the window length of 1000 days, that is 4 years of daily data.

When estimating the GARCH model and pricing the options, I do not match an option

expiration with the corresponding zero-coupon rate of the same maturity. Instead, I use 30

days risk-free rate linearly interpolated from the data on the zero curve. This is motivated

by the significant computational savings. Above all, when using the single zero-coupon rate

it is enough to calculate the recursion in (3.18) once for all traded maturities on a given

day. This saving is especially important in the calibration process. Figure 3.3 illustrates the

annualized daily level of the volatility estimated with the GARCH model, which I calculate

as
√

252ht+1.

Figure 3.3: Annualized daily level of volatility
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The figure shows the annualized daily level of S&P 500 spot volatility from 24/Dec/2002 to 30/Aug/2013,

as implied by the asymmetric GARCH model given by equation (3.12). It is estimated by means of moving

window with length of 1000 days. Each value of ht+1 presented in the figure is obtained using the last 1000

days up to day t.

Once the model is calibrated and in-sample prices are obtained, I numerically ’invert’ the

prices to obtain implied volatilities in the line with the estimation procedure of OptionMetrics

(2011). I back out the Black-Scholes-Merton implied volatilities by inverting equation (1.1).

The appropriate interest rate is linearly interpolated to match the maturity of each option,

poxing for the risk-free rate. Dividends are assumed to be constant over the remaining period

of the option life and paid continuously. This step ends in-sample fitting of IVS.

This framework is easily extendable for the purpose of the out-of-sample forecasting. I

use today’s calibrated parameters estimates to produce one-day-ahead forecasts of option
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prices. Nevertheless, to price options out-of-sample or to back out thier implied volatilities,

one-day ahead predictions of the index level, interest rate and dividend yield are necessary.

I follow Goncalves and Guidolin (2006) and Bernales and Guidolin (2014) and assume that

the best predictions for the index level, interest rates and dividend yield are their today’s

values, which is in the line with the efficient market hypothesis. Finally, prediction of

tomorrow’s value of the conditional variance ht+1 is also needed. Tomorrow’s value of ht+1 is

simply ht+2 conditional on information available today. Having forecasted the option prices, I

numerically invert the Black-Scholes-Merton formula and produce one-day ahead predictions

of the implied volatilities.
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Chapter 4

Combination forecasts

In order to investigate possible benefits that can arise from combining different models in

the context of IVS forecasting, I introduce and test some popular and easy to implement

combining schemes. As noted by Timmermann (2006) simple combining techniques typically

outperform more sophisticated ones. Thus they may serve as a natural starting point for such

analysis. I employ three combining techniques, wich are: (i) equal-weights which may serve as

a naive (but proved to be hard to beat) benchmark, (ii) Discounted Mean Square Prediction

Error (DMSPE) based weights, (iii) estimated optimal weights. DMSPE technique was

originally developed in the work of Diebold and Pauly (1987). More recently, Stock and

Watson (2004) examine the usefulness of this method in application to forecasting time-

series of macroeconomic variables. As IV data is not in the form of time-series but forms a

highly unbalanced panel, slight adjustment of this method is needed. I obtain DMSPE-based

weights at time t which are used to combine one-step ahead forecasts, by solving:

wk,t+1|t = θ−1
k,t/

K∑
k=1

θ−1
k,t (4.1a)

θk,t =
t∑
s=l

ϕt−s
1

N

N∑
i=1

(σi,s − σ̂ki,s|s−1)2, (4.1b)

where ϕ is a discount factor, K denotes the number of the models to be combined, t− l is a

length of a holdout period, N is the number of IVs in a given moneyness-maturity category on

a day s, σi,s is the observed IV value and σki,s|s−1 is the forecasted IV by model k. The average

of square errors in a given segment of the surface (the sum over i normalized by the number of

N elements) in equation (4.1) is the abovementioned adjustment and allows to preserve the
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essential idea of DMSPE method, that the discount factor weights the daily square errors1.

It allows to preserve consistency with the way I asses the forecasting performance (see how

the performance measures are defined in chapter 5). I consider the discount factor ϕ value

of 0.95. In addition, I examine the discount factor values of 0.9 and 1 as a robustness check.

The choice of these values follows Stock and Watson (2004).

Finally, I aim to estimate the ’optimal’ weights by means of (restricted) regression model.

Granger and Ramanathan (1984) propose three kinds of regressions to estimate the optimal

weights for the variable of interest yt+h:

yt+h = w0h +w
′

hŷt+h|t + εt+h, (4.2a)

yt+h = w
′

hŷt+h|t + εt+h, (4.2b)

yt+h = w
′

hŷt+h|t + εt+h s.t. w
′

hι = 1 (4.2c)

The weights’ estimates in regressions (4.2a) and (4.2b) can be obtained by means of OLS

method. The difference between the two regressions is that an intercept in the former can

adjust for the bias if present in the individual forecasts. The third regression can be estimated

by constrained least squares. Imposing the constraint that the weights should sum up to one

guarantees that the combined forecast is unbiased, in case all of the individual forecasts are

also unbiased. The other justification for weights summing up to one is provided by Diebold

(1988) who argues that without such restriction the error term in the combined forecast

regression will be serially correlated. Furthermore, if the convexity constraint 0 ≤ wi,h ≤ 1

is imposed and intercept is omitted, the combined forecast lies in the range of the individual

forecasts. There are several reasons why estimated optimal weights perform oftentimes worse

than other combining schemes. The one worth to be mentioned, as it can be potentially

influential in this study, is multicollinearty of the individual forecasts. Chapter 5 shows

that bias is an important contributor to MSPE for all the individual models. In order to

adjust the combined forecast for the bias, I estimate optimal weights with regression (4.2a).

Thus, the results reported for the optimal estimated weights in chapter 5 are obtained with

unconstrained regression (4.2a).

An important issue when implementing DMSPE and regression based weighting is the

choice of a track-record period, also known as a holdout period. It determines how many

observations are used to estimate the weights by methods given in equations (4.1) and (4.2).

So far, no statistical procedure has been developed to select optimal length of the period.

Nevertheless, it should balance between two conflicting ideas: on the one hand, a longer

1As Stock and Watson (2004) focus on forecasting time-series, one forecasted observation corresponds to
a single day and a single square prediction error. Their formula for DMSPE is θk,t =

∑t
s=l ϕ

t−s(rs− r̂ks|s−1)2.
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track record gives more observations in the regression, and thus more accurate estimates of

the combination weights. On the other hand, it might be that the optimal weights vary over

time, as some models may be superior to others in some periods but not at other times. I set

the length of the track-record period equal to 44 days (approximately 2 months of trading

days) but consider also 22 and 66 days as a robustness check. Given the fact that the relative

performance of the individual models varies in the different regions of the surface (as shown

in tables 5.2 and 5.4 in chapter 5), I estimate the optimal weights separately for each of

the moneyness-maturity category. I compare this result to an alternative when the weights

depend only on the maturity category and are constant across the moneyness dimension.

When implementing the combination forecasts, I do not assume that tomorrow’s moneyness

category for every IV is known, but instead I assign the proper weight based on the best

guess for its moneyness, which in turn is based on the today’s value of the spot price (recall

that m = K/S). This manner is the same as across all the individual models and it allows

to asses potential benefits of forecasts combination in a fair manner.
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Chapter 5

Empirical results

This chapter is arranged in 3 parts that cover number of topics. First, I define performance

measures. Second, I provide results regarding the in-sample fit. Third, I present out-of-

sample results of the forecasting performance for the individual models. Fourth, I examine

bias in individual forecasts. Fifth, I describe the out-of-sample results for the combination

forecasts. Sixth, the forecasts are formally compared to the benchmarking Practitioner

Black-Scholes model by means of Diebold and Mariano (1995) test.

The out-of-sample forecasts evaluation period covers the time frame from 03/Mar/2002

until 30/Aug/2013 and includes 2644 days1.

5.1 Performance measures

This section presents statistical evaluation of IVs forecasts. Predictability is assessed in

terms of one-step ahead, daily implied volatility forecasts generated by the models presented

in chapters 3 and 4. To asses the out-of-sample forecasting performance of the investigated

approaches and to enable comparison between the models, I calculate the following three

measures for each of them:

1. Root mean square prediction error in implied volatilities (RMSPEV)

RMSPEVk,t =

√√√√ 1

N

N∑
i=1

(
σi,t+1 − σ̂ki,t+1|t

)2

(5.1)

1The data set contains 3688 days in total. The first 1000 days serve as an initial estimation period for
the individual models and the first out-of-sample forecasts are produced on 26/Dec/2002, the 1001st day.
Forecasts generated between 1001st and 1044th serve as a track-record period for the forecasts generated
by combination methods. The first out-of-sample combination forecast day is 03/Mar/2003, the 1045th
day in the sample. For the comparison to be fair, I begin to evaluate all the models (both individual and
combination methods) starting on that day.
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i.e. the square root of the average squared deviation between actual implied volatil-

ities provided by OptionMetrics and the one-step ahead IV forecasts conditional on

information available at time t. Subscript k denotes one of the four individual or the

three combination models used to forecast IVS, N is the number of contracts used to

calculate the measure on day t for model k.

2. Mean absolute prediction error in implied volatilities (MAPEV)

MAPEVk,t =
1

N

N∑
i=1

∣∣σi,t+1 − σ̂ki,t+1|t
∣∣ (5.2)

i.e. the average absolute deviation between the observed implied volatilities and

model’s forecasted implied volatilities.

3. Mean correct prediction of the direction of change in implied volatilities (MCPV)

MCPVk,t =
1

N

N∑
i=1

1
[
sgn (σi,t+1 − σi,t) = sgn (σ̂ki,t+1|t − σi,t)

]
(5.3)

i.e. the percentage of IV for which the model correctly forecasted the direction of

change for the next day. 1[x] is an indicator function that equals 1 when x is true and

0 otherwise, sgn(y) indicates if y has a positive or a negative sign.

Because the number of quoted contracts per day gradually increases over time as illustrated in

figure B.3 in Appendix B, the three abovementioned measures are calculated for each of 2644

days in the out-of-sample period, what corresponds to the subscript t. If the performance

measures were not calculated daily and next averaged over the number of quoted contracts

per day, much of the weight would be assigned to the more recent observations. Calculating

the performance measures daily allows to analyse the time variation in the predictability of

IVS and is a frequently used approach in the literature on the out-of-sample forecasting of

IVS (see e.g. Goncalves and Guidolin (2006) and Chalamandaris and Tsekrekos (2010)).

To ensure comparability between the models, I restrict the evaluation for all the models

to the moneyness interval of m ∈ [0.85, 1.15], what reduces the number of the options in the

out-of-sample period from 1,011,545 to 634,451. The reason for this is that in PCA model the

whole surface is recovered from the 64 points which correspond the fixed grid of moneyness

mi ∈ {0.85, 0.90, 0.95, 0.99, 1.01, 1.05, 1.10, 1.12} (see section 2.2). In order to evaluate IV

forecasts of the options with moneyness outside the mentioned interval, I would have to use

a very large bandwidth to recover the full surface from the forecasted points. This in turn

would lead to an extreme oversmoothing and inaccurate forecasts in the moneyness range of
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interest m ∈ [0.85, 1.15] for the PCA model.

I report the performance statistics with respect to different segments of IVS because of two

related reasons. First, it is likely that a predictive power of the individual models varies across

different regions of the surface, as distinguished by the moneyness-maturity groups. Second,

table 2.2 in section 2.1 shows that the number of quoted contracts is irregularly distributed

over the surface, with more put than call options. Neglecting this fact, the aggregated

result assigns the largest weight to the more numerous put options. The aggregated result

is reported under a category All.

5.2 In-sample fit

Before analysing the forecasting power of the models under consideration, I evaluate how well

they fit to IV data in-sample. In the comparison, I put the factor dynamics of the Parametric

VARX(p,q) and PCA models aside, which means I make use of equations (3.9) and (3.1)

only when fitting IVS in-sample with these two models respectively (in PCA model the same

number of factors is used as in the out-of-sample application which is three). Moreover,

Parametric VARX(p,q) model reduces to Practitioner Black-Scholes model in the in-sample

case. Hence, when evaluating the in-sample fit of the three approaches studied in this thesis

to forecast IVS, I present only three models instead of the four described in chapter 3. I

calculate the in-sample version of the measures given in equations 5.1 and 5.2, Root Mean

Square Error (RMSEV) and Mean Absolute Error (MAEV). The in-sample evaluation is

purely based on the cross-sectional fitting of the models (as explained above), while the idea

behind measure 5.3 is to capture and asses their dynamic aspect. Thus, MCPV measure is

not considered in the in-sample evaluation.

Table 5.1 compares the in-sample fit of the models in terms of RMSEV metric. PCA

model provides the best fit for the medium (60 to 180 days) and the long (over 180 days)

maturities across all the moneyness categories. The aggregated RMSEV across all the mon-

eyness categories accounts for 0.0050 and 0.0028 for the medium and the long maturities

respectively. The aggregated error for PBS accounts for 0.0080 and 0.0072, while for HN

model 0.0173 and 0.0139. PCA also gives the most accurate fit for the short term option

with moneyness greater or equal 0.95. It indicates that the nonparametric smoothing of the

surface with the kernel regression gives a better fit than assumption of the parametric struc-

ture of IVS. The nonparametric regression fits the surface locally, taking into account only

these observations that lie within the predefined bandwidths from the fitted point. On the

other hand, the parametric approach uses all the available data to estimate the factors that

span the surface. This neglects the fact that IVs of the short term options may exhibit quite

different features than IVs of the longer contracts. Practitioner Black-Scholes model, which
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Table 5.1: In-sample fit as measured by RMSEV

Maturity
<60 60-180 >180

Moneyness PBS PCA HN PBS PCA HN PBS PCA HN
0.85-0.90 .0099 .0180 .0397 .0093 .0055 .0209 .0085 .0019 .0093
0.90-0.95 .0090 .0128 .0371 .0073 .0046 .0168 .0074 .0019 .0114
0.95-0.99 .0093 .0072 .0307 .0054 .0043 .0170 .0063 .0026 .0159
0.99-1.01 .0110 .0085 .0257 .0054 .0046 .0167 .0053 .0030 .0198
1.01-1.05 .0105 .0104 .0216 .0060 .0041 .0112 .0052 .0026 .0177
1.05-1.10 .0125 .0086 .0192 .0075 .0041 .0139 .0062 .0023 .0112
1.10-1.15 .0211 .0130 .0202 .0099 .0052 .0169 .0072 .0037 .0094

All .0113 .0128 .0314 .0080 .0050 .0173 .0072 .0028 .0139

The table contains average daily root mean square error in implied volatilities (RMSEV) for the individual

models over the period of 03/Mar/2003 - 30/Aug/2013, which is 2644 days. RMSEV is calculated for

different moneyness-maturity categories on the sample restricted to contracts in the moneyness range of

m ∈ [0.85, 1.15]. PBS is the Practitioner Black-Scholes model, PCA is the PCA model and HN is the Heston

and Nandi GARCH type option pricing model. Emboldened values indicate the best performing model

within each moneyness-maturity category.

is treated as a benchmark, fits the observed implied volatilities better than other models for

the short term OTM put options with m < 0.95. It outperforms the other models in this re-

gion sufficiently to deliver the smallest RMSEV aggregated across all the moneyness groups.

All the three models exhibit better accuracy in fitting IVS as maturity increases. The same

conclusions can be drawn based on the table C.6 in Appendix C which shows the in-sample

mean absolute errors in the implied volatilities. This result is in the line with what could be

expected because when the maturity increases, the surface becomes flatter (see Figure 2.2

in section 2.1 which shows the slope of the volatility smile for different maturities). Figure

5.1 illustrates how the daily RMSEV attributed to the individual models evolve over time

in each maturity group. Most of the time, PCA model has the smallest daily RMSEV. The

in-sample fit sharply deteriorates during the burst of the 2008 crisis. However, for the long

term options the fit of PCA model is hardly affected by the crisis. Figure 2.3 in section

2.1 shows that the slope of the volatility term structure plummeted in the crisis of 2008,

meaning that IV of the short term contracts increased relatively more than IV of the long

term options. As PCA model fits the surface locally, it explains the fact why the fit of the

model deteriorates less in comparison to the other models, which parameters are estimated

using all the available data irrespective of the remaining time to maturity.

Model of Heston and Nandi (2000) is the only one estimated in the option prices space in
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contrast to PBS, VARX and PCA models which are estimated directly in the implied volatil-

ity space. Although the model is of a complex structural type, it gives a poor fit to IVS,

with RMSEV of 0.0314, 0.0173 and 0.0139 for the short, medium and the long maturities

respectively. Table C.7 in Appendix C contains a size of pricing errors that correspond with

the model’s poor performance in providing the in-sample fit of the implied volatility surface.

The average daily RMSE in option prices, as a percentage of the average daily price, accounts

for 29% for the short, 14% for the medium and 12% for the long term contracts. The poor

performance in the implied volatility space in not surprising because even small errors in

option prices can produce large errors in implied volatilities as noted by Hentschel (2003).
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Figure 5.1: In-sample daily RMSEV over time
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The figure illustrates the evolution of daily RMSEV for the three models evaluated in terms of the in-sample

fit over the period 03/Mar/2003-30/Aug/2013. The plot is based on the 5-day moving averages. RMSEV is

calculated for different maturity categories that aggregate all the moneyness groups on the sample restricted

to contracts in the moneyness range of m ∈ [0.85, 1.15]. PBS- Practitioner Black-Scholes, PCA- Principal

Component Analysis model, and HN- Heston and Nandi GARCH model.
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5.3 Out-of-sample forecasting performance

Individual models

Table 5.2 reports the average daily RMSPEV of the four individual models. Again, all the

models provide better accuracy in forecasting IVS for the medium and the long term options

than for the short term contracts. In addition to the reason mentioned in the previous section,

this can be explained by the fact that the variability from day to day of IVs is much smaller

for the long maturities, as shown in Table C.1 in Appendix C. IV forecasts are less accurate

for the put than the call options in the short term category. It can also be explained by the

increasing variance along the moneyness dimension. Similarly to the in-sample case, PCA

model is the best performer for the medium and the long maturities for all the moneyness-

maturity combinations. Its average daily RMSPEV aggregated across all the moneyness

groups accounts for 0.0066 for the medium and 0.0040 for the long maturities. PCA model

delivers the most accurate forecasts for the short term contracts in 4 out of 7 moneyness

categories which are 0.95-0.99, 0.99-1.01, 1.05-1.10 and 1.10-1.15. For the deepest OTM

puts considered in the evaluation, i.e. when m ∈ [0.85, 0.90), Parametric VARX(p,q) model

gives the best result with the average daily RMSPEV of 0.0109. Benchmarking Practitioners

Black-Scholes yields the smallest forecasting error in two remaining moneyness groups, when

m ∈ [0.90, 0.95) and m ∈ [1.01, 1.05). However, even the best performing individual model

in a given region of the surface is not able to beat simple random walk forecasts for the

implied volatilities.

The relative out-of-sample performance of PCA model as compared to the in-sample

fit deteriorates the most among all the models. Still, it is capable of producing the most

accurate forecasts of IVS in the most segments of the surface. Interestingly, the worst

performer which is Heston and Nandi model deteriorates the least of-of-sample what makes

it the most stable model. It remains an open question whether with a different (possibly

better) calibration approach it could beat other models in the out-of-sample horse race. In

general, introducing the factors dynamics to Practitioner Black-Scholes model, that assumes

the parametric structure of IVS, improves the forecasting power of the approach only a

little as the Parametric VARX model has its average daily RMSPEV very close to PBS.

Parametric VARX beats PBS in 12 out of 21 segments of the surface.

Figure 5.2 illustrates how daily RMSPEV of the models evolve over time in each of the

maturity groups. Most of the time the blue line of PBS and the red one of the Parametric

VARX model lie very close to each other and therefore are hardly distinguishable. For the

short maturities, parametric models perform systematically better than PCA model during

years 2005-2007 and at the end of the evaluation period. Interestingly, Heston and Nandi
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model yields lower RMSPEV at the beginning of the 2008 crisis in the medium and the

long maturity categories as compared to parametric models. It can be concluded that the

relative models’ performance varies over time. I investigate this issue in greater detail in

the next subsection. Figure B.4 and table C.9 in Appendices B and C evaluate the models

with respect to the mean absolute prediction error in implied volatilities. Even though same

conclusion can be drawn based on RMSPEV and MAPEV, I provide the statistics regarding

the latter measure to illustrate the average size of the absolute prediction error. Finally,

table C.8 in Appendix C provides statistics regarding the size of the pricing errors resulted

from the NLS calibration of Heston and Nandi model.

Even though the primary focus of this study is on the forecasting accuracy as the combin-

ing schemes aim to reduce MSPEV, it is interesting to compare the forecasting performance

from a different perspective. Table 5.3 shows the next performance measure which is the av-

erage daily mean correct prediction of the direction of change in implied volatilities, MCPV.

When the models are evaluated with respect to this measure, similar conclusion can be drawn

when it comes to gains of incorporating the factors’ dynamics to the parametric structure of

IVS represented by PBS model. Parametric VARX model is superior in predicting the sign

change in 19 out of 21 IVS regions, as compared to PBS. Is is also the best performer for the

short maturities. PCA model, which was the best performer in terms of RMSPEV, predicts

the direction of change most accurate for the medium and the long maturities. When PCA

model is investigated in a greater detail, it turns out that when VARX model is employed to

capture factor dynamics, it correctly predicts the direction of change in log smoothed implied

volatilities log σ̂t(mi, κj) 54% of times on average (average value across 64 smoothed times-

series of log σ̂t(mi, κj)). This time Heston and Nandi model turns out not to be the worst

choice for modelling IVS. It happens to predict the direction of change the most accurate

for option with moneyness of 1.05-1.10 in the short and the medium maturity category, and

for the deepest OTM long-term contracts. In contrast to the previous performance metric,

PBS exhibits the best accuracy in none of the moneyness-maturity groups.

To give an intuition whether the average MCPV values of the models are any good, I

compare them to a naive model that assumes parallel shifts of IVS segments. If on a previous

day more than half IVs in a given moneyness-maturity group increase (decrease), the naive

model assumes that all options in this group will increase (decrease) the next day. The naive

model is simplified version of a random walk model that could assume increase (decrease) in

specific IV value based on the change from the previous day. However, the naive model is

easier to apply, as it does not require that an individual option is in the sample for the three

consecutive days (as opposed to the hypothetical random walk model mentioned above). It

is a desirable property of the naive model because many options are filtered out from the
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OptionMetrics data set (see section 2.1). That is, it is likely that a specific option is present

in the data set on day t, excluded from the analysis on day t+ 1, and again returns on day

t + 2. Usually, naive model has MCPV value close to other models. Emboldened figures

in table 5.3, which indicate which models are superior to the naive model, show that sign

predictability is expected to be higher for the medium and the long maturities that the short

term option.

An useful and interesting test of MCPV statistic would be to asses the impact of the sign

predictability in terms of trading strategies, as they often entirely rely on the predicted

direction of change. However, economic evaluation of the models is out of the scope of this

study.
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Figure 5.2: Out-of-sample daily RMSPEV over time
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The figure illustrates the evolution of daily RMSPEV for the four models evaluated in terms of out-of-

sample fit over the period 03/Mar/2003-30/Aug/2013 and the random walk benchmark. The plot is based

on the 5-day moving averages. RMSPEV is calculated for different maturity categories that aggregate

all the moneyness groups on the sample restricted to contracts in the moneyness range of m ∈ [0.85, 1.15].

PBS- Practitioner Black-Scholes model, VARX- Parametric VARX(p,q), PCA-Principal Component Analysis

model, HN- Heston and Nandi GARCH model, RW- Random Walk.



Table 5.2: Out-of-sample fit as measured by RMSPEV

Maturity
<60 60-180 >180

Moneyness PBS VARX PCA HN RW PBS VARX PCA HN RW PBS VARX PCA HN RW
0.85-0.90 .0110 .0109 .0186 .0401 .0089 .0094 .0090 .0068 .0212 .0042 .0080 .0077 .0032 .0096 .0027
0.90-0.95 .0107 .0109 .0151 .0394 .0086 .0078 .0075 .0060 .0175 .0042 .0072 .0070 .0032 .0116 .0028
0.95-0.99 .0110 .0116 .0096 .0345 .0079 .0066 .0066 .0056 .0172 .0043 .0064 .0063 .0035 .0161 .0030
0.99-1.01 .0130 .0135 .0115 .0294 .0089 .0072 .0073 .0063 .0165 .0051 .0059 .0058 .0041 .0197 .0035
1.01-1.05 .0131 .0134 .0131 .0252 .0080 .0081 .0081 .0059 .0124 .0045 .0061 .0061 .0037 .0178 .0030
1.05-1.10 .0144 .0141 .0113 .0212 .0082 .0095 .0092 .0059 .0144 .0045 .0071 .0072 .0034 .0114 .0028
1.10-1.15 .0211 .0210 .0147 .0236 .0108 .0108 .0100 .0067 .0172 .0045 .0079 .0079 .0047 .0094 .0027

All .0133 .0135 .0149 .0344 .0092 .0094 .0091 .0066 .0179 .0048 .0076 .0075 .0040 .0143 .0032

The table contains the average daily Root Mean Square Prediction Error in implied volatilities (RMSPEV) for the individual models over the period 03/Mar/2003-

30/Aug/2013. Forecasting models are estimated on the full sample of the daily S&P500 implied volatilities but RMSPEV is calculated for different moneyness-maturity

categories for the forecasts restricted to contracts in the moneyness range of m ∈ [0.85, 1.15]. PBS is the Practitioner Black-Scholes model, PCA is PCA model, HN

is Heston and Nandi GARCH type option pricing model, and RW is random walk benchmark. Emboldened values indicate the best performing model, excluding RW

benchmark, within each moneyness-maturity category. Underlined values indicate the best overall performer.

Table 5.3: Percentage of correctly predicted direction of change in IVs

Maturity
<60 60-180 >180

Moneyness PBS VARX PCA HN Naive PBS VARX PCA HN Naive PBS VARX PCA HN Naive
0.85-0.9 .5516 .5594 .4427 .5268 .6080 .4834 .4882 .5295 .5179 .4755 .5210 .5266 .5250 .5269 .5123
0.9-0.95 .5668 .5725 .4839 .5121 .5737 .5061 .5118 .5372 .5136 .5047 .5290 .5345 .5471 .5227 .5106
0.95-0.99 .5494 .5526 .5631 .5083 .4796 .5356 .5305 .5503 .5235 .5094 .5348 .5393 .5502 .5092 .4948
0.99-1.01 .5273 .5339 .5285 .5168 .4762 .5328 .5317 .5418 .4873 .4756 .5368 .5404 .5501 .4460 .4976
1.01-1.05 .5079 .5218 .4894 .5189 .5393 .4939 .5052 .5483 .5415 .4648 .5179 .5242 .5648 .4789 .4758
1.05-1.1 .5033 .5230 .5291 .5316 .4766 .4859 .4984 .5455 .5562 .5391 .4916 .4981 .6057 .5147 .4805
1.1-1.15 .4965 .5160 .5262 .4858 .5047 .4891 .4995 .4888 .5294 .5330 .4832 .4884 .4653 .5242 .5220

All .5399 .5498 .5110 .5138 .4938 .5066 .5131 .5392 .5228 .5101 .5245 .5304 .5494 .5119 .5249

The table reports the average values of the daily MCPV. MCPV is a fraction of correctly predicted direction of change in implied volatilities on a given day. Forecast

evaluation period for this measure covers dates from 03/Mar/2003 until 30/Aug/2013 Forecasting models are estimated on the full sample of daily S&P500 implied

volatilities but MCPV is calculated for different moneyness-maturity categories for the forecasts restricted to contracts in the moneyness range of m ∈ [0.85, 1.15]. The

naive model is a version of a random walk model that assumes that all IVs in a given IVS segment increase (decrease) if on a previous day in a given moneyness-maturity

category more than half IVs increase (decrease). Emboldened values indicate the best performing model within each moneyness-maturity category.
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Sub-periods individual models

Given that the out-of-sample period covers 11 years and includes such a remarkable event as

the financial crisis of 2008, I divide the out-of-sample period in three sub-periods to examine

stability of the forecasting performance over time. The sample is divided into three sub-

periods based on the NBER US Business Cycle Expansions and Contractions data, such

that the first sub-period covers the dates before the recession (03/Mar/2003-31/Dec/2007),

the second is the crisis time (01/Jan/2008-30/Jun/2009), and the third represents after the

crisis data (01/Jul/2009-30/Aug/2013).

Table 5.4 shows the forecasting performance measured during the three sub-periods. For

the medium and the long maturities PCA is unbeatable and yields the smallest RMSPEV

at all times. When it comes to the short term options, in the first sub-period which covers

years 2003-2007, PCA exhibits the highest forecasting accuracy in four moneyness categories:

m ∈ [0.95, 0.99), m ∈ [0.99, 1.01), m ∈ [1.05, 1.10) and m ∈ [1.05, 1.15]. Benchmarking PBS

is the most accurate model for the two moneyness categories which m ∈ [0.85, 0.90) and

m ∈ [0.90, 0.95). Parametric VARX wins the out-of-sample horse race in moneyness category

of m ∈ [1.01, 1.05). During the financial crisis, when IVS shifts to extraordinary levels, as

can be observed with VIX behaviour in figure 2.2, PCA captures the out-of-sample dynamics

better than the other models for all but the deep OTM put options with m ∈ [0.85− 0.90),

when PBS and VARX models perform better. The forecasting performance of all the models

deteriorates largely in the recession time, for example PCA yields the average RMSPEV for

the short maturities of 0.0129 before the crisis and 0.0192 during the crisis. In the post-

crisis time, the best performer at the short end of the surface is PCA model winning the

out-of-sample horse race in 5 moneyness categories, when m ≥ 0.95. The short term deep

OTM puts are the most numerous option as compared to other moneyness categories of

the maturity category, what helps to explain why PBS yields the smallest forecasting error

aggregated across the moneyness dimension even though it is the best model only in one

out of 7 groups along this dimension. Finally, it is worth to mention that Heston and Nandi

model is not always the worst performer, as it beats the parametric approaches in the third

sub-period in IVS segment of the deep OTM call options. In the last sub-period RMSPEV

of HN model in the mentioned moneyness-maturity category is 0.0172, while for PBS and

VARX it accounts for 0.0203 and 0.0201 respectively.

To further explore the time variation in the forecasting ability, I report RMSPEV over the

relatively short rolling window. Figure 5.3 shows 126 days (approximately half a year) rolling

RMSPEV with respect to options’ maturity. For the medium and the long maturities PCA

approach outperforms permanently other methods. For the short term options, it begins to
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outperform other models since the outburst and for the duration of the financial crisis. In

between of the end of the crisis and 2013 parametric models and PCA yield similar forecasting

errors. In 2013, which is the last year of out-of-sample period, parametric methods turn out

to be the best performers again.

Figure 5.3: 126 days rolling RMSPE over time
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The figure illustrates the average daily RMSPEV over the moving window of 126 days. RMSPEV is calculated

for the different maturity categories that aggregate all the moneyness groups on the sample restricted to

contracts in the moneyness range of m ∈ [0.85, 1.15]. PBS- Practitioner Black-Scholes, PCA, and HN-

Heston and Nandi GARCH model.
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Table 5.4: Average daily RMSPEV in different sub-periods: individual models

Panel A: before the 2008 crisis

Maturity
<60 60-180 >180

Moneyness PBS VARX PCA HN RW PBS VARX PCA HN RW PBS VARX PCA HN RW
0.85-0.90 .0081 .0082 .0173 .0316 .0071 .0079 .0081 .0056 .0207 .0034 .0059 .0059 .0026 .0075 .0021
0.90-0.95 .0074 .0076 .0140 .0331 .0068 .0063 .0064 .0052 .0162 .0033 .0049 .0049 .0026 .0086 .0022
0.95-0.99 .0080 .0083 .0076 .0312 .0064 .0051 .0052 .0049 .0161 .0035 .0041 .0041 .0030 .0138 .0023
0.99-1.01 .0095 .0098 .0093 .0255 .0075 .0055 .0055 .0052 .0143 .0043 .0046 .0046 .0034 .0173 .0029
1.01-1.05 .0086 .0086 .0112 .0208 .0063 .0056 .0056 .0049 .0108 .0036 .0055 .0055 .0030 .0149 .0025
1.05-1.10 .0106 .0101 .0092 .0170 .0062 .0063 .0059 .0050 .0130 .0035 .0061 .0061 .0028 .0083 .0022
1.10-1.15 .0205 .0201 .0131 .0217 .0089 .0082 .0074 .0053 .0143 .0035 .0063 .0063 .0038 .0074 .0021

All .0095 .0096 .0129 .0290 .0073 .0069 .0068 .0055 .0164 .0039 .0057 .0058 .0032 .0117 .0025

Panel B: during the 2008 crisis

Maturity
<60 60-180 >180

Moneyness PBS VARX PCA HN RW PBS VARX PCA HN RW PBS VARX PCA HN RW
0.85-0.90 .0170 .0172 .0181 .0661 .0127 .0111 .0111 .0100 .0314 .0071 .0117 .0115 .0053 .0128 .0046
0.90-0.95 .0196 .0199 .0167 .0676 .0135 .0118 .0119 .0089 .0317 .0075 .0136 .0134 .0053 .0164 .0048
0.95-0.99 .0187 .0192 .0150 .0558 .0137 .0115 .0115 .0087 .0305 .0079 .0143 .0141 .0062 .0198 .0056
0.99-1.01 .0202 .0210 .0177 .0443 .0154 .0117 .0118 .0107 .0248 .0092 .0114 .0112 .0078 .0231 .0074
1.01-1.05 .0210 .0218 .0184 .0382 .0149 .0120 .0119 .0104 .0178 .0084 .0090 .0087 .0070 .0253 .0056
1.05-1.10 .0230 .0238 .0175 .0380 .0152 .0138 .0134 .0089 .0201 .0082 .0087 .0084 .0052 .0206 .0051
1.10-1.15 .0232 .0236 .0190 .0381 .0155 .0142 .0134 .0102 .0286 .0079 .0085 .0082 .0064 .0152 .0046

All .0225 .0231 .0192 .0553 .0159 .0138 .0136 .0105 .0284 .0089 .0121 .0118 .0069 .0203 .0062

Panel C: after the 2008 crisis

Maturity
<60 60-180 >180

Moneyness PBS VARX PCA HN RW PBS VARX PCA HN RW PBS VARX PCA HN RW
0.85-0.90 .0124 .0120 .0202 .0412 .0098 .0106 .0094 .0072 .0184 .0043 .0093 .0087 .0032 .0109 .0028
0.90-0.95 .0112 .0116 .0158 .0366 .0088 .0081 .0073 .0058 .0139 .0041 .0077 .0072 .0032 .0134 .0028
0.95-0.99 .0118 .0127 .0099 .0306 .0076 .0065 .0063 .0052 .0137 .0041 .0063 .0060 .0032 .0175 .0028
0.99-1.01 .0145 .0152 .0117 .0286 .0081 .0076 .0077 .0058 .0161 .0045 .0056 .0055 .0037 .0213 .0029
1.01-1.05 .0155 .0159 .0136 .0257 .0076 .0097 .0098 .0055 .0124 .0041 .0059 .0060 .0034 .0186 .0027
1.05-1.10 .0155 .0152 .0114 .0198 .0080 .0116 .0114 .0058 .0139 .0043 .0078 .0080 .0034 .0117 .0027
1.10-1.15 .0203 .0201 .0133 .0172 .0094 .0127 .0120 .0072 .0167 .0046 .0095 .0097 .0052 .0099 .0027

All .0144 .0146 .0156 .0332 .0090 .0105 .0100 .0065 .0158 .0045 .0082 .0081 .0039 .0152 .0029

The table reports the average daily RMSPEV in the three sub-periods: 03/Mar/2003-31/Dec/2007, 01/Jan/2008-30/Jun/2009, 01/Jul/2009-30/Aug/2013, and for the

different moneyness-maturity categories. Forecasting models are estimated on the full sample of the daily S&P500 implied volatilities but RMSPEV is calculated for the

forecasts restricted to contracts in the moneyness range of m ∈ [0.85, 1.15]. PBS is the Practitioner Black-Scholes model, VARX is Parametric VARX model, PCA is

PCA model and HN is Heston and Nandi GARCH type option pricing model. Emboldened values indicate the best performing model within each moneyness-maturity

category.



CHAPTER 5. EMPIRICAL RESULTS

Bias in individual forecasts

This subsection provides assessment of how important the bias contribution to the forecasting

errors is. Following Pindyck and Rubinfeld (1998), mean squared prediction error can be

decomposed as follows:

1

N

N∑
i=1

(
σi,t+1 − σ̂i,t+1|t

)2
=

(
(

1

N

N∑
i=1

σ̂i,t+1|t)− σ̄t+1

)2

+(sσ̂t+1|t−sσt+1)
2 +2(1−ρ)sσ̂t+1|tsσt+1 ,

(5.4)

where 1
N

∑N
i=1 σ̂i,t+1|t, σ̄t+1, sσ̂t+1|t , sσt+1 are the means and biased (obtained with denominator

of N) standard deviations of predicted and observed values of IV, denoted by σ̂i,t+1|t and

σt+1 respectively. This decomposition allows to asses the contribution to MSPE of (squared)

bias, variance and covariance, based on the following proportions that sum up to one:

bias contribution:

(
( 1
N

∑N
i=1 σ̂i,t+1|t)− σ̄t+1

)2

1
N

∑N
i=1

(
σi,t+1 − σ̂i,t+1|t

)2 ,

variance contribution:
(sσ̂t+1|t − sσt+1)

2

1
N

∑N
i=1

(
σi,t+1 − σ̂i,t+1|t

)2 ,

covariance contribution:
2(1− ρ)sσ̂t+1|tsσt+1

1
N

∑N
i=1

(
σi,t+1 − σ̂i,t+1|t

)2 .

A desirable property of the forecasts is that much weight should be concentrated on the co-

variance proportion, which accounts for unsystematic forecasting errors. Investigating how

much the bias contributes to the forecasting errors can not only provide better understanding

of the roots of the errors, but also can help to decide whether optimal weights obtained by

means of regression model should be estimated with or without an intercept. Inclusion of

the intercept can adjust for the bias if present in the individual forecasts. Table 5.5 reports

average daily bias proportion with respect to different-moneyness maturity, as well as dis-

tinguished sub-periods. From the table it can be seen, that bias is an important contributor

to the forecasting errors for each of the individual models, especially when assessed in the

individual moneyness-maturity bins. On average the bias propotion in the MSPE is around

60-70%. Parametric models, which are PBS and VARX, exhibit on average the largest bias

proportion for medium maturities. Contrary to that, PCA model has the largest bias pro-

portion for the options that fall into long maturity category, while the same it true for Heston

and Nandi model. Parametric models have smaller bias proportion in the short maturity

category for the put options than the call options relatively to other models. Usually, all

the models exhibit smaller bias proportion for the call options as compared with the put
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options. It is especially the case for the short maturities, where the curvature of the smile

is the most significant. In general, patterns across different moneyness-maturity categories

are not the same in different sub-periods.
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Table 5.5: Bias proportion in forecasting errors

Panel A: before the 2008 crisis

Maturity
<60 60-180 >180

Moneyness PBS VARX PCA HN PBS VARX PCA HN PBS VARX PCA HN
0.85-0.90 63% 64% 69% 38% 82% 84% 53% 43% 72% 75% 59% 44%
0.90-0.95 53% 53% 58% 33% 74% 74% 45% 41% 62% 65% 58% 63%
0.95-0.99 69% 70% 53% 42% 65% 66% 67% 59% 55% 59% 76% 88%
0.99-1.01 63% 63% 57% 54% 63% 63% 56% 55% 59% 62% 75% 84%
1.01-1.05 53% 54% 81% 59% 77% 77% 70% 47% 67% 68% 71% 78%
1.05-1.10 55% 53% 66% 67% 64% 62% 68% 76% 73% 74% 56% 43%
1.10-1.15 62% 61% 66% 82% 66% 63% 70% 86% 73% 75% 60% 54%

All 27% 27% 16% 26% 34% 33% 30% 30% 20% 21% 28% 6%

Panel B: during the 2008 crisis

Maturity
<60 60-180 >180

Moneyness PBS VARX PCA HN PBS VARX PCA HN PBS VARX PCA HN
0.85-0.90 63% 63% 51% 65% 78% 78% 67% 70% 80% 81% 74% 73%
0.90-0.95 65% 66% 57% 74% 81% 82% 67% 84% 81% 83% 73% 85%
0.95-0.99 68% 68% 67% 77% 82% 81% 73% 86% 82% 84% 78% 85%
0.99-1.01 58% 60% 56% 72% 64% 64% 60% 64% 71% 71% 79% 83%
1.01-1.05 73% 72% 78% 73% 81% 81% 76% 57% 66% 65% 82% 84%
1.05-1.10 64% 63% 71% 71% 84% 82% 64% 65% 64% 63% 66% 80%
1.10-1.15 63% 63% 70% 78% 85% 85% 68% 81% 66% 64% 71% 57%

All 41% 42% 40% 57% 37% 35% 48% 55% 39% 40% 42% 11%

Panel C: after the 2008 crisis

Maturity
<60 60-180 >180

Moneyness PBS VARX PCA HN PBS VARX PCA HN PBS VARX PCA HN
0.85-0.90 56% 53% 39% 30% 83% 80% 55% 35% 71% 71% 62% 67%
0.90-0.95 51% 52% 41% 32% 72% 67% 47% 35% 60% 60% 59% 85%
0.95-0.99 63% 67% 51% 43% 59% 57% 67% 47% 56% 57% 70% 91%
0.99-1.01 69% 70% 58% 58% 63% 64% 58% 46% 57% 60% 73% 85%
1.01-1.05 65% 66% 76% 61% 72% 74% 64% 45% 60% 65% 67% 87%
1.05-1.10 46% 45% 60% 59% 73% 75% 60% 63% 72% 76% 50% 63%
1.10-1.15 62% 61% 62% 72% 66% 64% 59% 76% 78% 81% 62% 43%

All 28% 31% 24% 27% 29% 28% 37% 25% 24% 25% 39% 9%

The table reports the average daily proportion of bias contribution to forecasting errors in the three sub-periods: 03/Mar/2003-31/Dec/2007, 01/Jan/2008-30/Jun/2009,

01/Jul/2009-30/Aug/2013, and for the different moneyness-maturity categories. PBS is the Practitioner Black-Scholes model, VARX is Parametric VARX model, PCA is

PCA model and HN is Heston and Nandi GARCH type option pricing model. Emboldened values indicate the model with the smallest bias proportion in its forecasting

errors within each moneyness-maturity category.
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Forecast combination

Table 5.6 shows that using forecasts combination can improve on forecasting the implied

volatility surface as compared to the individual models- although the improvement is not

large enough to beat RW forecasts. However, combination forecasts based on the equal

weights obtained by combining all the four models often produce poor results. It has been

documented in the literature on the model combination that trimming of the worst per-

forming models often improves performance. Winkler and Makridakis (1983) and Stock and

Watson (2004) find out that combining schemes like the equal weighting perform better

when the worst performing model is excluded from the combination. The same is true with

respect to forecasting IVS. DMSPE model yields mix results when Heston and Nandi model

is excluded from the combination. In general, trimmed version of DMSPE yields smaller

errors for the put options, while it does not improve forecasting IVs of the call options. It

may be explained by the fact that Heston and Nandi model is relatively more accurate in

forecasting IVS for options with larger moneyness. I find that trimming is not effective when

the regression method is employed. I report the evaluation results for the trimmed version

of the equal weighting. DMSPE and regression based weights are calculated using all the

four models.
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Table 5.6: Out-of-sample performance of combining methods

Maturity
<60 60-180 >180

Moneyness RW Ind EW Disc Opt RW Ind EW Disc Opt RW Ind EW Disc Opt
0.85-0.90 .0089 .0109 .0121 .0112 .0104 .0042 .0068 .0066 .0066 .0052 .0027 .0032 .0054 .0037 .0031
0.90-0.95 .0086 .0107 .0109 .0105 .0100 .0042 .0060 .0061 .0060 .0052 .0028 .0032 .0051 .0039 .0032
0.95-0.99 .0079 .0096 .0098 .0096 .0091 .0043 .0056 .0057 .0058 .0051 .0030 .0035 .0049 .0043 .0033
0.99-1.01 .0089 .0115 .0123 .0118 .0099 .0051 .0063 .0064 .0064 .0057 .0035 .0041 .0048 .0046 .0039
1.01-1.05 .0080 .0131 .0126 .0119 .0095 .0045 .0059 .0070 .0062 .0053 .0030 .0037 .0048 .0044 .0034
1.05-1.10 .0082 .0113 .0123 .0114 .0102 .0045 .0059 .0075 .0064 .0054 .0028 .0034 .0051 .0039 .0032
1.10-1.15 .0108 .0147 .0181 .0156 .0148 .0045 .0067 .0084 .0070 .0058 .0027 .0047 .0063 .0049 .0036

All .0092 .0133 .0128 .0121 .0107 .0048 .0066 .0074 .0069 .0058 .0032 .0040 .0057 .0046 .0037

The table shows the average daily RMSPEV for the different combining schemes. EW denotes trimmed equal weights, where Heston and Nandi model

is not included, Disc is Discounted Mean Square Prediction Error (DMSPE) method that follows Stock and Watson (2004) and Opt are the estimated

optimal weights with unrestricted regression with inclusion of the intercept (equation (4.2a)). Indv denotes the best performing individual model in

a given moneyness-maturity category which implies that different individual models are included in columns under this heading. The hold-out period

for DMSPE and regression methods is set to 44 days. Therefore, the evaluation period covers 2642 days, from 03/Mar/2003 until 30/Aug/2013. The

emboldened values indicate the combining schemes that improve on the best individual forecast in a given moneyness-maturity category.
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Forecasting based on the estimated optimal weights (with unrestricted regression (4.2a))

yields the best results, superior not only to other combining schemes, but also to the best

performing individual model in a given IVS segment. On the other hand, forecasts based

on the equal weights (but trimmed) usually result in larger RMSPEV as compared to the

best individual model. The equal weighting beats the best individual model only for the

short term calls with m ∈ [1.01− 1.05), and ATM put options with moneyness in the range

of 0.99-1.01 for the medium term options. DMSPE-based weighting improves on the best

individual model for two moneyness categories within the short maturities: 0.90-0.95 and

1.01-1.15. For the medium maturities, it yields better results for the deep OTM puts with

m ∈ [0.85 − 0.90). For the long maturities, only the regression-based weighting results in

smaller RMSPEV in all the moneyness categories but one, yielding the largest improvement

for the deep OTM calls with m ∈ [1.10 − 1.15]. For the medium term options, the most

significant improvement can be observed for the deep OTM puts and the deep OTM calls. In

these two categories RMSPEV reduces from 0.0068 for the best individual model to 0.0052,

and from 0.0067 to 0.0058 respectively when regression-based weights are employed. The

most notable reduction in forecasting errors with respect to the short maturities is observed

for the contracts with m ∈ [1.01 − 1.05), when RMSPEV drops from 0.0131 to 0.0095.

Table 5.2 shows that the aggregated pricing errors in the short term maturity category

are the largest, which implies that the forecasting the short end of the surface is the most

challenging task. All the combining schemes produce smaller average RMSPEV aggregated

across the moneyness dimension than the best performing individual model. In general,

implementation of the forecasts combination is partly successful, as the estimated optimal

weights are able to generate more accurate forecasts for almost all the moneyness-maturity

categories than the individual, yet they do not beat random walk forecasts.

Based on the evolution of RMSPEV of the individual models presented in figure 5.2,

it can be presumed that the relative importance each of the individual models plays in

the combination forecasts varies over time. Figures 5.4 and 5.5 illustrate what weights are

assigned to the individual models by DMPSE and the regression methods respectively. They

are aggregated across the moneyness categories and plotted with respect to options’ maturity.

At all times, the regression method assigns weights with the opposite sign to the parametric

models’ (PBS and VARX) forecasts, meaning they partly cancel out. This is due to the fact

that they lie very close to each other and are highly collinear. Thus, I plot the sum of the

weights for PBS and VARX models represented by the red line in Figure 5.4. Figure B.5

in Appendix B illustrate the weights separately. Averaged regression-based weights have a

lower variance than the weights obtained with DMSPE method, which is indicated by the

fact that they lie close to their 1-month moving average (MA), represented by emboldened
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lines in the figures. On the other hand, DMSPE weights are more unstable from day to

day, fluctuating around 1-month MA. In figure 5.6, I provide an example how the optimal

estimated weights vary in the given moneyness-maturity category.

Because the relative forecasting performance of the individual models vary across different

regions of the surface, I find that the weights depended on the moneyness-maturity category

are more effective than the weights assigned irrespective to the options’ moneyness. Table 5.7

compares RMSPEV resulted from the combination weights estimated with respect to every

moneyness-maturity categories with the weights estimated irrespective of the moneyness

dimension. In every maturity category the moneyness dependent weighting gives smaller

error. The most notable difference in RMSPEV can be seen for the short maturity category.

The estimated optimal weights with respect to every moneyness-maturity category yield the

average overall square error of 0.0107 in comparison to 0.0116 of the m independent optimal

weights.

Table 5.7: RMSPEV comparison of moneyness dependent and independent weights

Maturity
<60 60-180 >180

Disc Opt Disc Opt Disc Opt
m independent .0125 .0116 .0069 .0062 .0047 .0039
m dependent .0121 .0107 .0069 .0058 .0046 .0037

The table compares RMSPEV resulted from the combination weights estimated with respect to every
moneyness-maturity category with the weights estimated irrespective of the moneyness category and de-
pendent only on the maturity. Disc- DMSPE method and Opt- optimal estimated weights with unrestricted
regression. The performance measure is calculated for the whole evaluation period covering dates from
03/Mar/2003 until 30/Aug/2013.

Sub-periods combination forecasts

IV combination forecasts are also unstable over time. Table 5.8 reports the forecasting

accuracy of the combination forecasts measured with RMSPEV for the three sub-periods.

In the period before the recession of 2008, combination forecasts are more effective. Simple

equal weighting method is able to outperform the most accurate individual model in a given

moneyness-maturity category in 1 out of 7 moneyness groups for the short term contracts

and 3 for the medium term options. Using this weighting scheme does not result in any

improvement for the long term contracts in any of the three sub-periods. During the crisis

time it beats the best individual model for the deep OTM puts for the short term as well as

the medium term maturities, reducing RMSPEV from 0.0170 to 0.0158, and from 0.0100 to

0.0087 respectively. In the last sub-period, using equal weighting slightly reduces RMSPEV

for the medium-term OTM put options. I observe quite similar behaviour for DMSPE
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method. It is unable to systematically deliver a reduction in RMSPEV for the long term

options in any of the three sub-periods. For the short maturities, it outperforms the best

individual model in 4 out of 7 moneyness categories in the first sub-period, just the deep OTM

puts during the crisis, and none in the most recent sub-period. For the medium maturities, it

starts with smaller RMSPEV than the best individual model in all the moneyness categories,

during the crisis it reduces the forecasting error in moneyness categories of [0.99− 1.01) and

[1.01−1.05), in the last sub-period it is effective only for the deep OTM puts. The regression

based weights yield the most stable forecasting performance in the sense that at almost all

occasions they are able to beat the best performing individual model in a given segment

of IVS. In the first sub-period the estimated optimal weights do not yield improvement in

reducing RMSPEV only for the short term deep OTM calls. In the times of the crisis, there

are 3 moneyness categories for which the regression weights are inferior to the best individual

model: m ∈ [0.90− 0.95), m ∈ [0.95− 0.99) and m ∈ [1.10− 1.15] for the short maturities.

It reduces forecasting error for moneyness categories of m ∈ [0.99− 1.01), m ∈ [1.01− 1.05)

and m ∈ [1.10−1.15] for the long maturities. In the third sub-period, it reduce RMSPEV for

all the short and medium term moneyness categories. For the long term options, it delivers

forecasting improvement in the same categories as in the crisis time.
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Table 5.8: Average daily RMSPEV in different sub-periods: combination forecasts

Panel A: before the 2008 crisis

Maturity
<60 60-180 >180

Moneyness RW Ind EW Disc Opt RW Ind EW Disc Opt RW Ind EW Disc Opt
0.85-0.90 .0071 .0081 .0098 .0082 .0075 .0034 .0056 .0057 .0055 .0041 .0021 .0026 .0042 .0029 .0024
0.90-0.95 .0068 .0074 .0082 .0075 .0073 .0033 .0052 .0050 .0051 .0040 .0022 .0026 .0036 .0029 .0023
0.95-0.99 .0064 .0076 .0070 .0069 .0067 .0035 .0049 .0047 .0048 .0041 .0023 .0030 .0033 .0032 .0024
0.99-1.01 .0075 .0093 .0093 .0088 .0073 .0043 .0052 .0051 .0050 .0046 .0029 .0034 .0038 .0037 .0030
1.01-1.05 .0063 .0086 .0087 .0082 .0069 .0036 .0049 .0050 .0046 .0040 .0025 .0030 .0044 .0037 .0026
1.05-1.10 .0062 .0092 .0086 .0083 .0079 .0035 .0050 .0050 .0047 .0041 .0022 .0028 .0043 .0030 .0024
1.10-1.15 .0089 .0131 .0175 .0150 .0143 .0035 .0053 .0060 .0052 .0044 .0021 .0038 .0050 .0035 .0027

All .0073 .0095 .0095 .0088 .0078 .0039 .0055 .0056 .0054 .0045 .0025 .0032 .0044 .0035 .0027

Panel B: during the 2008 crisis

Maturity
<60 60-180 >180

Moneyness RW Ind EW Disc Opt RW Ind EW Disc Opt RW Ind EW Disc Opt
0.85-0.90 .0127 .0170 .0158 .0161 .0168 .0071 .0100 .0087 .0094 .0079 .0046 .0053 .0077 .0061 .0054
0.90-0.95 .0135 .0167 .0174 .0177 .0169 .0075 .0089 .0094 .0095 .0087 .0048 .0053 .0094 .0069 .0058
0.95-0.99 .0137 .0150 .0166 .0169 .0156 .0079 .0087 .0098 .0099 .0090 .0056 .0062 .0107 .0086 .0063
0.99-1.01 .0154 .0177 .0188 .0187 .0171 .0092 .0107 .0107 .0106 .0100 .0074 .0078 .0092 .0089 .0077
1.01-1.05 .0149 .0184 .0194 .0186 .0165 .0084 .0104 .0107 .0099 .0093 .0056 .0070 .0070 .0070 .0064
1.05-1.10 .0152 .0175 .0203 .0193 .0172 .0082 .0089 .0113 .0100 .0093 .0051 .0052 .0066 .0061 .0055
1.10-1.15 .0155 .0190 .0206 .0199 .0198 .0079 .0102 .0116 .0106 .0094 .0046 .0064 .0070 .0068 .0055

All .0159 .0192 .0202 .0200 .0188 .0089 .0105 .0114 .0110 .0101 .0062 .0069 .0090 .0079 .0069

Panel C: after the 2008 crisis

Maturity
<60 60-180 >180

Moneyness RW Ind EW Disc Opt RW Ind EW Disc Opt RW Ind EW Disc Opt
0.85-0.90 .0098 .0120 .0135 .0129 .0116 .0043 .0072 .0071 .0069 .0055 .0028 .0032 .0062 .0040 .0033
0.90-0.95 .0088 .0112 .0117 .0114 .0108 .0041 .0058 .0061 .0059 .0053 .0028 .0032 .0053 .0039 .0034
0.95-0.99 .0076 .0099 .0108 .0102 .0096 .0041 .0052 .0055 .0054 .0049 .0028 .0032 .0048 .0041 .0033
0.99-1.01 .0081 .0117 .0135 .0128 .0103 .0045 .0058 .0065 .0064 .0055 .0029 .0037 .0045 .0043 .0035
1.01-1.05 .0076 .0136 .0147 .0139 .0102 .0041 .0055 .0079 .0067 .0053 .0027 .0034 .0046 .0041 .0033
1.05-1.10 .0080 .0114 .0135 .0120 .0103 .0043 .0058 .0091 .0070 .0057 .0027 .0034 .0056 .0041 .0034
1.10-1.15 .0094 .0133 .0172 .0137 .0127 .0046 .0072 .0100 .0080 .0063 .0027 .0052 .0076 .0059 .0040

All .0090 .0144 .0139 .0132 .0113 .0045 .0065 .0081 .0071 .0058 .0029 .0039 .0061 .0047 .0037

The table reports the average daily RMSPEV in the three sub-periods: 03/Mar/2003-31/Dec/2007, 01/Jan/2008-30/Jun/2009, 01/Jul/2009-30/Aug/2013, and for the

different moneyness-maturity categories. RMSPEV is calculated for the forecasts restricted to contracts in the moneyness range of m ∈ [0.85, 1.15]. EW denotes trimmed

equal weights, where Heston and Nandi model is not included, Disc is Discounted Mean Square Prediction Error (DMSPE) method that follows Stock and Watson

(2004) and Opt are the estimated optimal weights with unrestricted regression with inclusion of intercept. Indv denotes the best performing individual model in a given

moneyness-maturity category. The hold-out period for DMSPE and regression methods is set to 44 days. The emboldened values indicate the combining schemes that

improve on the best individual forecast in a given moneyness-maturity category.
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At the end of this subsection I provide two robustness checks regarding the combination

forecasts methodology. First, I examine sensitivity of the out-of-sample results to the choice

of the track-record period required to implement DMSPE and the regression based weighting.

I consider the track-record periods of 22 and 66 days (approximately 1 and 3 month) as

compared to the base period of 44 days. Second, I consider the discount factor values for

DMSPE method of 0.9 and 1, as compared to the base value of 0.95. Table C.10 in Appendix

C indicates that there is a little difference in RMSPEV if the models are estimated using a

longer track record period of 66 or a shorter of 22 days. Also the value of the discount factor

does not play an important role and the results are almost the same irrespective whether ϕ

equals 0.9, 0.95 or 1.
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Figure 5.4: Regression-based weights over time
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The figure illustrates the time variation of the estimated optimal weights from the unrestricted regression. The length of the

track-record of the past forecasts is 44 days. Weights corresponding to PBS and VARX are added, as the models yield similar

forecasts and their weights partly cancel out. PBS- Practitioner Black-Scholes model, VARX- Parametric VARX(p,q), PCA,

and HN- Heston and Nandi GARCH model. For visual reasons the weights are normalized such that they sum up to one.

Figure 5.5: DMSPE-based weights over time
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The figure illustrates the time variation of DMSPE-based weights. The combining method assigns greater weight to a model

that exhibit relatively smaller MSPEV in the recent period. The length of the track-record of the past forecasts is 44 days. The

discount factor is set to 0.95. PBS- Practitioner Black-Scholes model, VARX- Parametric VARX(p,q), PCA is the PCA model

and HN is Heston and Nandi model.
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Figure 5.6: Regression based weights for ATM options over time
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The figure illustrates the time variation of the estimated optimal weights for ATM option with m ∈ [0.99−
1.01). The length of the track-record of the past forecasts is 44 days. Weights corresponding to PBS and

VARX are added, as the models yield similar forecasts and their weights partly cancel out. PBS- Practitioner

Black-Scholes model, VARX- Parametric VARX(p,q), PCA, and HN- Heston and Nandi GARCH model.

For visual reasons the weights are normalized such that they sum up to one.

Statistical significance of forecasts accuracy

To formally compare a statistical significance of the differences in the forecasting performance

of the benchmarking PBS model relative to VARX, PCA, HN and combination models, I

employ the equal forecasting ability test developed by Diebold and Mariano (1995). The

test uses mean squared prediction error in implied volatilities (MSPEV) as a relevant loss

function. I test the null hypothesis of equal forecasts accuracy, against the alternative

hypothesis that the benchmark model performs worse than a given competitor. DM statistic

has an asymptotic standard normal distribution under the null hypothesis, however this

result is valid only for nonnested models. Clark and McCracken (2001) and McCracken

(2007) show that DM statistic has a nonstandard distribution when forecasting accuracy of

nested models is assessed. In order to compare forecasts from PBS and VARX models (PBS is

nested in VARX) a solution might be to use adjusted version of DM test introduced by Clark

and West (2007) that provides asymptotically valid inferences for nested linear models. The

adjusted-DM statistic is conveniently obtained by first defining the adjusted-MSPE statistic
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ft+1 for one-step ahead forecasts as:

ft+1 = (yt+1 − ŷ1,t+1|t)
2 − [(yt+1 − ŷ2,t+1|t)

2 − (ŷ1,t+1|t − ŷ2,t+1|t)
2], (5.6)

where yt+1 is an observed variable of interest, ŷ1,t+1|t and ŷ2,t+1|t are one-step ahead forecasts

from two competing models. Next, {fs+1}Ss=1, where S denotes the length of the evaluation

period, is regressed on a constant and a t-statistic corresponding to the coefficient is ob-

tained. P-value for the test is obtained with the standard normal distribution function. This

procedure can be seen as testing whether the estimated mean of ft+1 differs significantly

from zero, because regression on a constant is equivalent to taking the average of the depen-

dent variable. Similarly to DMSPE-based combination forecasts, I adjust ft+1 such that it

takes into account the fact that performance measures focus on the average daily MSPEV.

Hence, the first and the second term are replaced by the MSPEV measure, while the squared

forecasts difference is replaced with 1
N

∑N
i=1

(
σ̂PBSi,t+1|t − σ̂V ARXi,t+1|t

)2

.

The last term in equation 5.6, (ŷ1,t+1|t − ŷ2,t+1|t)
2, adjusts MSPE of a larger model for the

upward bias in MSPE produced by estimation of parameters that are zero under the nested

model. The idea behind the adjusted-DM test is to solve the problem that the DM test

statistic can be heavily undersized when comparing forecasts from the nested models, lead-

ing to tests with low power. For example Rapach and Wohar (2006) find stronger evidence

for the out-of-sample predictability of stock returns when using tests with appropriate size

and power. The risk of using adjusted-DM test is that it indicates the VARX is significantly

better than the nested benchmark even if the difference is MSPEV is very small. Ultimately,

I take more conservative approach in the sense that VARX’s statistic may be undersized

and report standard DM test results for all the models, testing the null of equal forecasting

ability, against the alternative that the PBS model has larger MSPEV.

Table 5.9 shows the results of Diebold Mariano test with respect the three distinguished

sub-periods. The negative values of the test statistic indicate than the benchmark PBS model

performs better. To start with VARX model, it improves its relative forecasting accuracy for

the short maturities over time. In the before the crisis sub-period, it beats PBS significantly

only in the moneyness category of m ∈ [1.05, 1.10) at the p = 0.001 significance level. In the

after-the-crisis sub-period it significantly outperforms the benchmark additionally for options

with m ∈ [0.85, 0.90). For the medium maturities, there is a noticeable switch, as VARX

outperforms PBS for all the OTM calls, ATM options and none puts in the first sub-period,

while in the last sub-period it remains to be significantly better for the deep OTM calls

and calls with m ∈ [1.05, 1.10) and turns out to be significantly better for all the OTM put

options. For the long maturities VARX exhibits significant improvement over the benchmark
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for the deep OTM calls in the first sub-period at 5% level. I reject the null in favour of the

alternative that VARX model yields more accurate forecasts than the benchmark for all the

OTM puts and ATM options in the last sub-period. During the financial turmoil it can

be regarded as a more accurate model for predicting IV of the long term options in all the

moneyness categories, as well as irrespectively of the moneyness category. When it comes to

the option pricing approach based on Heston and Nandi (2000) the null hypothesis of equal

forecasting ability can be rejected only in the last sub-period for the deep OTM calls in the

short maturity category, at the 5% significance level.

PCA model outperforms PBS significantly in all regions of the surface for the medium

and the long term options usually at the highest significance level, even during the financial

crisis. The exception are the deep OTM put options in the medium term category in the

crisis period. For the short term contracts, it outperforms the benchmark for two maturity

categories when m ∈ [1.05−1.15] in the first sub-period and all the OTM calls together with

ATM options and put with m ∈ [0.95 − 0.99] in the last sub-period. During the crisis it is

significantly better for all the moneyness categories excluding the deep OTM puts.

For combination forecasts based on DMSPE and the estimated optimal weights methods

the null cannot be rejected only at the rare occasions in the short maturity category. For

the regression-based weights it happens for the puts with m ∈ [0.85− 0.90) in the first sub-

period, m ∈ [0.85− 0.95) in the last sub-period. In the crisis time- regression-based weights

do not significantly improve over PBS for the three categories of the short term OTM put

options. When considering forecasts with DMSPE-based weights, the null cannot be rejected

for the short term put options in the moneyness range of [0.85-0.95) for the first sub-period,

as well as the last one.
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Table 5.9: Diebold-Mariano test of equal forecasting ability- individual and combination forecasts

Maturity
<60 60-180 >180

Moneyness VARX PCA HN Disc Opt VARX PCA HN Disc Opt VARX PCA HN Disc Opt
0.85-0.90 -2.5 -23.35 -24.04 -3.63 3.02** -1.8 10.55*** -22.88 20.97*** 22.07*** 0.01 24.7*** -10.82 28.89*** 25.41***
0.90-0.95 -4.51 -19.3 -25.65 -4.69 0.28 -3.59 8.53*** -23.21 17.23*** 16.03*** -2.61 21.02*** -24.33 24.74*** 17.22***
0.95-0.99 -7.04 -0.76 -24.6 6.63*** 6.3*** -1.43 3.4*** -24.48 5.5*** 8.96*** -3.16 12.98*** -44.4 15.56*** 15.72***
0.99-1.01 -4.8 1.37 -19.95 8.58*** 10.04*** 2.06* 4.61*** -22.05 8.04*** 7.44*** -2 11.43*** -42.58 14.79*** 13.43***
1.01-1.05 1.52 -11.14 -15.66 3.96*** 7.55*** 4.15*** 8.5*** -14.31 11.7*** 10.65*** -2.92 23.89*** -31.13 25.5*** 23.33***
1.05-1.10 4.53*** 6.9*** -10.47 10.29*** 7.6*** 6.56*** 8.62*** -15.92 10.74*** 10.87*** -0.23 28.54*** -10.46 30.16*** 29.58***
1.10-1.15 -0.16 6.78*** -0.73 5.67*** 4.14*** 7.38*** 11.85*** -14.13 14.41*** 11.16*** 2.17* 21.28*** -7.28 28.83*** 29***

All -1.48 -18.89 -26.74 7.18*** 10.36*** 4.76*** 14.37*** -26.42 19.11*** 18.61*** -1.38 35.54*** -35.4 40.17*** 35.05***

Panel B: during the 2008 crisis

Maturity
<60 60-180 >180

Moneyness VARX PCA HN Disc Opt VARX PCA HN Disc Opt VARX PCA HN Disc Opt
0.85-0.90 -1.06 -0.07 -17.46 2.12* 0.24 -0.22 0.05 -12.91 3.54*** 3.02** 2.23* 9.65*** -0.79 11.06*** 10.39***
0.90-0.95 -1.77 4*** -17.39 2.89** 1.08 -0.04 2.39** -12.65 5.23*** 2.16* 2.69** 11.59*** -1.95 11.82*** 10.92***
0.95-0.99 -1.7 4.7*** -14.61 3.39*** 1.27 0.21 2.8** -12.45 4.38*** 1.77* 2.61** 10.88*** -4.37 10.41*** 10.12***
0.99-1.01 -2.81 4.39*** -11.44 3.54*** 1.97* -0.15 1.68* -8.89 3.34*** 1.78* 1.93* 5.7*** -11.43 5.92*** 5.05***
1.01-1.05 -3.28 4.58*** -8.36 4.89*** 2.58** -0.14 2.25* -4.8 4.9*** 3.31*** 3.04** 4.6*** -22.44 6.47*** 4.5***
1.05-1.10 -2.19 6.94*** -7.94 5.85*** 3.87*** 0.71 6.39*** -4.74 7.53*** 5.08*** 2.02* 7.59*** -16.17 7.49*** 4.85***
1.10-1.15 -1.79 6.21*** -7.27 3.02** 3.78*** 2.37** 7.17*** -11.24 8.01*** 7.12*** 2.05* 5.28*** -7.48 6.21*** 6.3***

All -2.47 5.33*** -15.81 4.16*** 2.04* 0.74 3.66*** -12.61 6.56*** 4.44*** 2.69** 10.3*** -11.47 10.62*** 9.8***

Panel C: after the 2008 crisis

Maturity
<60 60-180 >180

Moneyness VARX PCA HN Disc Opt VARX PCA HN Disc Opt VARX PCA HN Disc Opt
0.85-0.90 2.26* -16.44 -29.01 -4.12 1.23 12.44*** 10.42*** -19.69 17.47*** 14.47*** 14.21*** 25.6*** -6.87 27.15*** 22.47***
0.90-0.95 -4.04 -13.31 -29.75 -3.44 0.01 7.13*** 9.86*** -15.46 14.33*** 8.61*** 12.1*** 19.65*** -22.7 20.38*** 16.12***
0.95-0.99 -8.83 2.19* -22.87 8.97*** 2.08* 2.28* 5.97*** -21.79 6.48*** 4.9*** 7.43*** 15.84*** -47.2 15.49*** 10.03***
0.99-1.01 -6.93 9*** -18.52 9.31*** 5.07*** 0.83 6.46*** -21.26 6.26*** 7.84*** 2.2* 11.53*** -59.65 12.65*** 8.84***
1.01-1.05 -0.75 8.09*** -14.68 9.28*** 7.86*** 1.26 12.09*** -4.27 11.62*** 14.53*** -3.84 17.42*** -50.15 17.77*** 12.17***
1.05-1.10 4.43*** 13.03*** -6.6 11.57*** 7.02*** 4.17*** 15.36*** -2.41 15.88*** 16.84*** -6.43 25.36*** -14.91 25.75*** 17.94***
1.10-1.15 0.8 11.74*** 1.99* 8.83*** 8.27*** 8.21*** 16.98*** -7.2 18.15*** 17.74*** -4.59 21.27*** -1.52 21.54*** 23.07***

All -1.21 -5.74 -33.39 9.11*** 4.37*** 6.04*** 15.77*** -14.08 16.99*** 18.3*** 7*** 31.06*** -47.31 31.5*** 20.61***

The table contains the results of Diebold and Mariano (1995) test for equal predictive ability in the three sub-periods: 03/Mar/2003-31/Dec/2007, 01/Jan/2008-

30/Jun/2009, 01/Jul/2009-30/Aug/2013, and for the different moneyness-maturity categories. It reports the DM statistic which is calculated to test the null hypothesis

of the equal forecasting against the benchmark Practitioner Black-Scholes model. The loss function is MSPEV. Under the null DM statistic is assumed to be standard

normally distributed. *** denotes the significance at 0.1% level, ** 1%, *5%, ’ 10%. VARX, PCA, HN are the individual models, Disc is DMSPE combination model,

Opt is the combination model with regression based weights.





Chapter 6

Conclusion

In this thesis I investigate predictable dynamics of the implied volatility surface. In assess-

ing predictability, I concentrate on short-horizon, one-step ahead forecasts of IVS. I evaluate

forecasting performance of the three approaches, which are as follows. In the first approach,

I model dynamics of the factors and produce their forecasts by means of VAR-type model.

The second approach tries to identify persistent latent factors that drive dynamics of IVS.

I estimate the (latent) factor model with PCA and find that the first three principal com-

ponents can be interpreted as the level, smile and term-structure factors. To capture the

factor dynamics, I again use the parametric VAR-type model. Because IV data has a three-

dimensional surface structure (IV can be seen as a function of moneyness and maturity)

rather than form of time-series, PCA cannot be directly applied. In the smoothing pro-

cedure with the nonparametric kernel regression, I recover time series on a given grid of

moneyness and maturity. To enable application of PCA model for the purpose of out-of-

sample forecasting, I again apply smoothing procedure to the forecasted points on the grid

which delivers forecasts of IVs for all the options. The second approach is treated as a

benchmark and can be characterized as a practitioners’ framework which relies on a linear

regression model that links cross-section of IVs to polynomials in options’ moneyness and

maturity. Estimated daily regression coefficients are interpreted as factors and exhibit con-

siderable time-variation. The extension of this approach includes factor dynamics, which

follows Goncalves and Guidolin (2006). Here, the procedure consists of two steps. First, I

estimate regression model on each day and obtain multivariate time-series of factors. The

third approach relies on the option pricing model estimated in the prices space, for which

I choose NGARCH(1,1) option valuation model of Heston and Nandi (2000). The pricing

formula depends on the one-step ahead forecast of the variance and 5 parameters driving

NGARCH(1,1) process. The model is estimated such that it exploits the combined informa-

tion in the history of S&P500 prices and the cross-section of options. The variance parameter
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is estimated from the history of the prices, while remaining parameters are obtained in cal-

ibration process by means of the non-linear least squares procedure. These parameters are

used to predict tomorrow’s prices. Once the forecasted prices are obtained, I invert the

Black-Scholes-Merton formula and back-out the (forecasted) implied volatilities from the

forecasts of the prices.

I evaluate forecasting performance in statistical terms with respect to different regions of

IVS by partitioning it in 21 moneyness-maturity categories. I find that PCA model consid-

erably outperforms other approaches for the medium and the long term options irrespective

of moneyness bin. The most challenging task is forecasting IVs of the short term contracts.

Here, the best performers are PCA and parametric approaches interchangeably. PCA shows

the overall improvement in this region of the surface over time and outperforms parametric

approaches in 6 out of 7 moneyness categories during years 2009-2013. Forecasting accuracy

can be further improved when model combination is used. I find that the combining method

based on the estimated optimal weights yields more accurate forecasts in nearly every seg-

ment of IVS consistently over time. However, none of the approaches is accurate enough

to beat the random walk forecasts, that assume that IVs do not change in the forecasting

horizon of one day.

This thesis addressed the predictability of IVS in one-day horizon. Considered models

were not able to beat random walk forecasts. However, some statistical patterns were identi-

fied. The direct extension of the presented analysis would be to examine IVS predictability

with a focus on the forecasting horizon of a different length, for example one week. More-

over, the analysis conducted in this thesis can be further extended in various directions in

future research. First, the usefulness of option pricing approach to modelling IVS based on a

selected model, not necessarily the GARCH-type option valuation model considered in this

research, can be further investigated by using different calibration settings. Perhaps the most

interesting question is whether the model could improve its forecasting accuracy of IVS if it

was calibrated directly in the IVS space. Christoffersen and Jacobs (2004) argue that when

comparing models the estimation loss function should be the same for all of them, otherwise

comparison is inappropriate. Moreover, the loss functions used in the estimation and eval-

uation of a given model should be aligned, otherwise the estimated set of parameters may

be suboptimal. This problem was not addressed in this thesis because of numerical reasons.

The calibration process repeated on every of 2644 days to price and forecast over 1 million

of options in total took fairly long time, while the calibration in the implied volatility space

would even lengthen that time, making the model infeasible to apply on such a large data

set. Finally, it could be investigated how the model performance depends on the specific loss

function used in the calibration process. I used squared deviation as a relevant loss function,
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but alternatives include (weighted) relative squared or absolute deviation. In order to ob-

tain better minima more starting values for the numerical optimization could be considered.

When it comes to PCA model, there is also room for improvement, especially in the kernel

smoothing part of the model as some choices I made were of ad-hoc character. First, the

formal procedure for bandwidth selection should be proposed that takes into account design

of IV data. Second, one could investigate how forecasting accuracy depends on a number of

chosen grid points where the surface is recovered. Third, an alternative estimation procedure

for latent factors could be used, which is Kalman filter approach as presented in Van der Wel

et al. (2015). One may focus on improving the forecasting performance of the parametric

models of IVS. Given the fact that slopes of the volatility smile and term structure differ

across different regions of the surface, it may be sensible to make the parameters region de-

pendent. To further investigate benefits of model combination, the economic significance of

the results could be tested. This can be done by analyzing whether one can design profitable

trading strategies based on the combined forecasts.
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Appendix A

Fast Fourier Transform (FFT)

Carr and Madan (1999) introduce a method based on the Fast Fourier Transform (FFT) to

price option contracts that can be exploited when the characteristic function of the return is

known analytically. Roughly speaking, FFT is an efficient algorithm to calculate the sums

w1, . . . , wN where

wk =
N∑
j=1

exp

(
−i2π

N
(j − 1)(k − 1)

)
x(j). (A.1)

For a more detailed description on what FFT is, see Walker (1996). Carr and Madan

derive two formulas depending whether an option has an intrinsic value or not, that is they

distinguish between in-the-money (including at-the-money) and out-of-the-money contracts.

The in-the-money call is worth

CT (ku) ≈
e−αku

π

N∑
j=1

e−i
2π
N

(j−1)(u−1) eibvjψ(vj)
η

3
(3 + (−1)j − δj−1)︸ ︷︷ ︸

?

, (A.2)

where

b =
π

η

η = 0.25

N = 212

η = 0.25

vj = η(j − 1)

ku = −b+
2b

N
(u− 1), for u = 1, 2, . . . , N + 1

α = 1.5
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and ψ(·) is a characteristic function of the logarithm of the spot price under the risk neutral

distribution. In the model of Heston and Nandi (2000) it can be obtained by replacing

φ by iφ in the moment generating function of the log(ST ), which is expressed under the

risk-neutral distribution as

f ∗(φ) = Sφt e
At(T,φ)+Bt(T,φ)ht+1 , (A.4)

where

At(T, φ) = At+1(T, φ) + φrf,t + ωBt+1(T, φ)− 1

2
log (1− 2αBt+1(T, φ)) (A.5a)

Bt(T, φ) = −1

2
φ+ βBt+1(T, φ) +

φ2

2
− 2αγ∗Bt+1(T, φ)φ+ αBt+1(T, φ)(γ∗)2

1− 2αBt+1(T, φ)
, (A.5b)

with terminal conditions AT (T, φ) = BT (T, φ) = 0. In choosing parameters values in equa-

tion (A.2) I follow Carr and Madan (1999). The authors argue that such values of the

parameters deliver speedup of FFT without compromising the accuracy that other methods

can provide. In order to calculate the output of equation (A.2), one needs to plug the part

of (A.2) represented by ”?” into the Matlab function fft(X).

The out-of-the-money call in the framework of Carr and Madan (1999) is worth

CT (ku) ≈
1

π sinh(αku)

N∑
j=1

e−i
2π
N

(j−1)(u−1)eibvjγT (vj)
η

3
(3 + (−1)j − δj−1), (A.6)

where

γT (vj) =
ςT (vj − iα)− ςT (vj + iα))

2
(A.7a)

ςT (vj) = e−rfT
[

1

1 + ivj
− erfT

ivj
− ψ(vj − i)

v2
j − ivj

]
. (A.7b)

Similarly to Moodley (2005), who applies FFT approach in the context of the Heston (1993)

model, I find very little difference between prices obtained with equations (A.2) and (A.6).

Thus, following Chorro et al. (2014) and Moodley (2005) I price the options using equation

(A.2) regardless of the moneyness of the option. This allows for significant savings in the

computation time during the calibration process, as the characteristic function (A.4) has to

be calculated only once in each iteration of the calibration, instead of being calculated twice

if equation (A.6) was used.

A more elaborate discussion on the implementation of the method of Carr and Madan

(1999) can be found in Chorro et al. (2014), Mikhailov and Nögel (2004) and Moodley (2005).
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Appendix B

Figures

Figure B.1: Kernel smoothing of IVS

IVS obtained with quartic kernel (top panel) and Gaussian kernel (bottom panel) on 21/Oct/2002. Gaussian

kernel fits clearly worse to actual data.

87



Figure B.2: Smoothed IVS with optimal bandwidths

IVS obtained on 13/Dec/2006 with optimal bandwidths with respect to penalizing function given by equation

(2.3). Clearly the bandwidths are to narrow in both dimensions, causing the smoothed surface bumpy and

discontinuous.

Figure B.3: Number of quoted contracts per day over time
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The figure illustrates a number of quoted contracts per day in the data set used in this study. It takes

into account only the contracts that are left after the filters of section 2.1 are applied, i.e. those which are

effectively used in to estimate or calibrate forecasting models.
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Figure B.4: Out-of-sample daily MAPEV over time
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The figure illustrates the evolution of daily MAPEV for the four models evaluated in terms of out-of-sample

fit: PBS- Practitioner Black-Scholes, VARX- Parametric VARX(p,q), PCA, and HN- Heston and Nandi

GARCH model.
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Figure B.5: Regression-based weights over time
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The figure illustrates the time variation of the estimated optimal weights from the unrestricted regression.

The length of the track-record of the past forecasts is 44 days. PBS- Practitioner Black-Scholes model,

VARX- Parametric VARX(p,q), PCA, and HN- Heston and Nandi GARCH model.
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Table C.1: Cross-correlations of IV

20 320
Maturity Moneyness 0.85 0.90 0.95 0.99 1.01 1.05 1.10 1.12 0.85 0.90 0.95 0.99 1.01 1.05 1.10 1.12

20

0.85 0.007 0.992 0.977 0.965 0.957 0.942 0.934 0.926 0.909 0.914 0.916 0.915 0.913 0.909 0.909 0.909
0.90 0.007 0.994 0.983 0.977 0.963 0.955 0.944 0.907 0.913 0.917 0.917 0.915 0.911 0.911 0.911
0.95 0.007 0.995 0.990 0.978 0.971 0.960 0.904 0.912 0.918 0.918 0.916 0.912 0.912 0.914
0.99 0.007 0.999 0.992 0.986 0.975 0.900 0.910 0.917 0.920 0.919 0.918 0.920 0.923
1.01 0.007 0.997 0.992 0.982 0.895 0.905 0.913 0.917 0.917 0.917 0.920 0.924
1.05 0.006 0.999 0.990 0.880 0.891 0.901 0.906 0.908 0.911 0.915 0.920
1.10 0.005 0.995 0.871 0.883 0.893 0.900 0.901 0.905 0.910 0.916
1.12 0.005 0.863 0.874 0.885 0.891 0.893 0.897 0.902 0.909

320

0.85 0.003 0.999 0.997 0.993 0.990 0.984 0.981 0.977
0.90 0.003 0.999 0.996 0.994 0.988 0.985 0.982
0.95 0.003 0.998 0.996 0.991 0.989 0.987
0.99 0.003 0.999 0.996 0.995 0.993
1.01 0.003 0.999 0.997 0.995
1.05 0.003 1.000 0.998
1.10 0.003 0.999
1.12 0.003

The table contains cross-correlations (upper triangle) and variances (diagonal) of the implied volatilities. Time series used to calculate the statistics

are obtained with Nadaraya-Watson estimator given by equation (2.1).
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Table C.2: (Partial) autocorrelations of IV

ACF PACF
κ m 1 2 3 4 5 22 1 2 3 4 5 22

20

0.85 0.979 0.963 0.949 0.937 0.927 0.803 0.979 0.094 0.080 0.043 0.057 -0.030
0.90 0.978 0.962 0.949 0.938 0.929 0.800 0.978 0.101 0.101 0.072 0.049 -0.022
0.95 0.979 0.964 0.952 0.943 0.934 0.805 0.979 0.137 0.098 0.085 0.030 -0.006
0.99 0.980 0.966 0.956 0.947 0.938 0.815 0.980 0.165 0.102 0.057 0.036 -0.014
1.01 0.978 0.966 0.956 0.946 0.938 0.817 0.979 0.192 0.109 0.051 0.045 -0.022
1.05 0.975 0.962 0.952 0.942 0.934 0.817 0.975 0.235 0.119 0.051 0.063 -0.030
1.10 0.974 0.961 0.951 0.942 0.934 0.818 0.974 0.238 0.122 0.048 0.068 -0.026
1.15 0.969 0.956 0.947 0.937 0.929 0.811 0.969 0.274 0.146 0.060 0.060 -0.014

320

0.85 0.994 0.988 0.983 0.978 0.974 0.898 0.994 0.063 0.042 0.000 0.044 -0.002
0.90 0.994 0.988 0.983 0.978 0.974 0.899 0.994 0.067 0.049 0.001 0.049 -0.002
0.95 0.994 0.988 0.983 0.978 0.974 0.900 0.994 0.083 0.043 -0.006 0.043 -0.005
0.99 0.994 0.988 0.984 0.979 0.974 0.906 0.994 0.094 0.046 -0.010 0.040 -0.010
1.010 0.993 0.988 0.984 0.979 0.975 0.909 0.993 0.128 0.052 -0.001 0.029 -0.012
1.05 0.992 0.987 0.983 0.978 0.974 0.912 0.992 0.192 0.071 0.015 0.021 -0.016
1.10 0.992 0.987 0.983 0.978 0.974 0.913 0.992 0.191 0.072 0.016 0.022 -0.021
1.15 0.992 0.987 0.983 0.979 0.975 0.915 0.992 0.178 0.071 0.015 0.023 -0.021

The table contains (partial) autocorrelations for each considered in the paper moneyness category across two

selected maturities: the shortest 20 days and the longest 320 days. (Partial) autocorrelations are reported

for 1,2,3,4,5 and 22 lags. Times series underlying the statistics are obtained with equation (2.1).

Table C.3: (Partial) autocorrelations of the slope of the volatility smile and term structure

Panel A: Volatility smile

ACF PACF
κ 1 2 3 4 5 22 1 2 3 4 5 22
30 0.904 0.857 0.812 0.770 0.739 0.566 0.904 0.221 0.051 0.017 0.055 -0.009
50 0.937 0.904 0.878 0.852 0.831 0.618 0.937 0.207 0.107 0.029 0.048 -0.023
65 0.938 0.906 0.879 0.854 0.834 0.613 0.938 0.213 0.094 0.031 0.057 -0.035
80 0.942 0.913 0.890 0.869 0.851 0.620 0.942 0.231 0.105 0.052 0.052 -0.033
120 0.946 0.929 0.914 0.896 0.884 0.685 0.946 0.330 0.136 0.037 0.055 0.008
160 0.949 0.937 0.926 0.912 0.900 0.704 0.949 0.373 0.175 0.044 0.034 -0.003
240 0.944 0.934 0.927 0.918 0.910 0.768 0.944 0.402 0.226 0.120 0.068 -0.005
320 0.940 0.930 0.920 0.912 0.903 0.744 0.940 0.403 0.207 0.124 0.070 -0.010

Panel B: Volatility Term Scrutcure

ACF PACF
m 1 2 3 4 5 22 1 2 3 4 5 22

0.85 0.946 0.906 0.873 0.843 0.818 0.585 0.946 0.102 0.061 0.034 0.048 -0.043
0.90 0.947 0.906 0.876 0.853 0.832 0.590 0.947 0.093 0.098 0.086 0.034 -0.039
0.95 0.948 0.913 0.889 0.873 0.854 0.610 0.948 0.141 0.110 0.118 0.010 -0.014
0.99 0.952 0.924 0.904 0.887 0.871 0.639 0.952 0.186 0.117 0.083 0.029 -0.021
1.01 0.952 0.925 0.905 0.889 0.873 0.644 0.952 0.206 0.119 0.070 0.040 -0.030
1.05 0.947 0.921 0.900 0.882 0.867 0.639 0.947 0.231 0.115 0.059 0.064 -0.034
1.10 0.944 0.916 0.896 0.876 0.861 0.630 0.944 0.235 0.117 0.054 0.067 -0.022
1.12 0.912 0.882 0.860 0.839 0.821 0.579 0.912 0.297 0.159 0.078 0.049 -0.009

The table contains (partial) autocorrelations for the slope of the volatility smile and the slope of the

volatility term structure. The slope of the smile corresponding to each maturity grid point κj ∈
{30, 50, 65, 80, 120, 160, 240, 320} is defined as IV of the furthest put option on the grid for which m = 0.85,

minus IV of the furthest call option on the grid for which m = 1.12. Similarly, the slope of the volatility

term structure corresponding to each moneyness grid point mi ∈ {0.85, 0.90, 0.95, 0.99, 1.01, 1.05, 1.10,

1.12} is defined as IV of the longest maturity on the grid κ = 320, minus IV of the shortest maturity on the

grid κ = 30.
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Table C.4: Augmented Dickey-Fuller for the input time-series to VARX model

β̂0t β̂1t β̂2t β̂3t β̂4t
Period t.stat p-value t.stat p-value t.stat p-value t.stat p-value t.stat p-value

04/Jan/99-24/Dec/02 -0.61 0.43 -1.42 0.15 -3.15 <0.001 -4.37 0.002 -4.03 <0.001
09/Sep/09-30/Aug/13 -0.39 0.51 -0.86 0.34 -3.74 <0.001 -3.93 <0.001 -5.37 <0.001

The table illustrates the results of an augmented Dickey-Fuller test for a unit root in the logarithm of the
input time-series to VARX model. The time-series being tested are of the length 1000 days what corresponds
to the moving estimation window of VARX model. The test is performed on 10 time-series in total. I select
two time periods- the first and the last estimation window.

Table C.5: Augmented Dickey-Fuller for the input time-series to PCA model

Maturity κ
30 days 120 days 240 days

Period t.stat p-value t.stat p-value t.stat p-value

log σ̂t(0.99, κi)
04/Jan/99-24/Dec/02 -0.65 0.41 -0.36 0.52 -0.26 0.56
09/Sep/09-30/Aug/13 -0.58 0.44 -0.12 0.61 0.09 0.68

∆ log σ̂t(0.99, κi)
04/Jan/99-24/Dec/02 -34.71 <0.001 -31.45 <0.001 -31.86 <0.001
09/Sep/09-30/Aug/13 -36.25 <0.001 -33.87 <0.001 -33.39 <0.001

The table illustrates the results of an augmented Dickey-Fuller test for a unit root in the logarithm of the
input time-series to PCA model. The time-series being tested are of the length 1000 days what corresponds
to the moving estimation window of PCA model. The test is performed on 12 time-series in total. I select two
time periods- the first and the last estimation window. In each period there are six time-series: log σ̂t(m,κ)
and ∆ log σ̂t(m,κ) corresponding to the short, medium and the long term ATM put options with m = 0.99
and κ ∈ {30, 120, 240}.

Table C.6: In-sample fit as measured by MAEV

Maturity
<60 60-180 >180

Moneyness PBS PCA HN PBS PCA HN PBS PCA HN
0.85-0.90 .0086 .0141 .0340 .0090 .0046 .0178 .0080 .0017 .0083
0.90-0.95 .0076 .0100 .0315 .0069 .0038 .0146 .0069 .0016 .0106
0.95-0.99 .0082 .0058 .0264 .0049 .0038 .0156 .0058 .0023 .0154
0.99-1.01 .0097 .0071 .0228 .0049 .0040 .0149 .0049 .0029 .0194
1.01-1.05 .0094 .0096 .0197 .0056 .0037 .0097 .0047 .0023 .0167
1.05-1.10 .0106 .0076 .0177 .0069 .0035 .0126 .0056 .0019 .0100
1.10-1.15 .0186 .0113 .0188 .0090 .0045 .0159 .0065 .0032 .0082

All .0090 .0092 .0253 .0068 .0039 .0143 .0062 .0022 .0119

The table contains average daily mean absolute error in implied volatilities (MAEV) for different models over

the period 03/Mar/2003-30/Aug/2013. PBS is Practitioner Black-Scholes model, PCA is PCA model and

HN is Heston and Nandi GARCH type option pricing model. MAEV is calculated for different moneyness-

maturity categories on the sample restricted to contracts in the moneyness range of m ∈ [0.85, 1.15]. Em-

boldened values indicate the best performing model within each moneyness-maturity category.
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Table C.7: In-sample pricing errors of Heston and Nandi model

Maturity
<60 60-180 >180

Moneyness RMSE Avg. price RMSE Avg. price Avg. RMSE Avg. price
0.85-0.90 1.69 3.40 2.39 13.07 2.67 36.02
0.90-0.95 2.33 6.66 2.74 21.47 3.89 49.71
0.95-0.99 2.90 14.10 3.55 33.77 6.02 65.99
0.99-1.01 3.14 22.07 3.98 43.04 8.31 76.98
1.01-1.05 2.16 10.65 2.44 28.55 7.74 61.54
1.05-1.10 1.00 3.22 1.83 12.53 4.65 38.61
1.10-1.15 0.60 1.78 1.37 5.04 2.80 21.42

All 2.33 8.74 2.81 21.56 5.41 47.35

The table presents in-sample pricing errors of Heston and Nandi model resulted from the NLS estimation

over the period 03/Mar/2003-30/Aug/2013. Reported are average daily RMSE for different moneyness-

maturity groups, expressed in $. For the sake of comparison column Avg. price reports the average of the

mean daily prices in a given group. Emboldened values indicate the best performing model within each

moneyness-maturity category.

Table C.8: Out-of-sample pricing errors of Heston and Nandi model

Maturity
<60 60-180 >180

Moneyness RMSPE Avg. Price RMSPE Avg. Price RMSPE Avg. Price
0.85-0.90 2.01 3.42 3.10 13.11 3.70 36.12
0.90-0.95 3.13 6.66 3.93 21.48 4.88 49.72
0.95-0.99 4.57 14.10 5.04 33.78 6.96 65.99
0.99-1.01 5.47 22.07 6.39 43.05 10.72 76.99
1.01-1.05 3.63 10.65 4.54 28.56 8.33 61.55
1.05-1.10 1.54 3.21 2.93 12.51 5.84 38.58
1.10-1.15 0.87 1.77 1.72 5.03 3.81 21.54

All 3.65 8.70 4.34 21.46 6.75 47.22

The table presents out-of-sample pricing errors of Heston and Nandi model resulted from the NLS estimation

over the period 03/Mar/2003-30/Aug/2013. Reported are average daily RMSPE for different moneyness-

maturity groups, expressed in $. For the sake of comparison column Avg. price reports the average of

the mean daily prices in a given group. Emboldened values indicate the best performing model within

each moneyness-maturity category. Emboldened values indicate the best performing model within each

moneyness-maturity category.
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Table C.9: Out-of-sample fit as measured by MAPEV

Maturity
<60 60-180 >180

Moneyness PBS VARX PCA HN RW PBS VARX PCA HN RW PBS VARX PCA HN RW
0.85-0.90 .0098 .0097 .0153 .0346 .0079 .0090 .0087 .0061 .0182 .0040 .0075 .0073 .0030 .0087 .0026
0.90-0.95 .0094 .0097 .0124 .0336 .0076 .0074 .0071 .0053 .0152 .0040 .0067 .0065 .0030 .0108 .0027
0.95-0.99 .0101 .0107 .0083 .0297 .0073 .0061 .0061 .0052 .0157 .0041 .0059 .0058 .0033 .0156 .0029
0.99-1.01 .0118 .0123 .0101 .0263 .0078 .0067 .0067 .0057 .0150 .0046 .0054 .0054 .0039 .0193 .0034
1.01-1.05 .0120 .0123 .0124 .0230 .0074 .0078 .0078 .0055 .0109 .0043 .0056 .0057 .0035 .0169 .0029
1.05-1.10 .0129 .0125 .0105 .0195 .0076 .0090 .0086 .0053 .0131 .0042 .0066 .0067 .0030 .0102 .0027
1.10-1.15 .0193 .0190 .0135 .0223 .0102 .0101 .0093 .0062 .0162 .0043 .0073 .0074 .0043 .0083 .0026

All .0111 .0112 .0116 .0281 .0078 .0080 .0077 .0056 .0148 .0043 .0065 .0065 .0034 .0122 .0028

The table contains average daily mean absolute prediction error in implied volatilities (MAPEV) for different models over the period 03/Mar/2003-

30/Aug/2013. PBS is Practitioner Black-Scholes model, PCA is PCA model and HN is Heston and Nandi GARCH type option pricing model.

MAPEV is calculated for different moneyness-maturity categories for the forecasts restricted to contracts in the moneyness range of m ∈ [0.85, 1.15].

Emboldened values indicate the best performing model within each moneyness-maturity category.
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Table C.10: Robustness checks of the combination forecasts- RMSPEV comparison

Panel A: Sensitivity to the track record period length for the regression method

Maturity
<60 60-180 >180

22 44 66 22 44 66 22 44 66
0.85-0.9 .0105 .0104 .0104 .0052 .0052 .0052 .0032 .0031 .0031
0.9-0.95 .0101 .0100 .0100 .0052 .0052 .0052 .0033 .0032 .0032
0.95-0.99 .0094 .0091 .0090 .0052 .0051 .0050 .0033 .0033 .0032
0.99-1.01 .0103 .0099 .0098 .0059 .0057 .0056 .0039 .0039 .0038
1.01-1.05 .0100 .0095 .0095 .0055 .0053 .0052 .0035 .0034 .0034
1.05-1.1 .0106 .0102 .0100 .0056 .0054 .0053 .0033 .0032 .0032
1.1-1.15 .0155 .0148 .0146 .0060 .0058 .0058 .0036 .0036 .0036

All .0111 .0107 .0106 .0059 .0058 .0057 .0037 .0037 .0037

Panel B: Sensitivity to the track record period length for the DMSPE method

Maturity
<60 60-180 >180

22 44 66 22 44 66 22 44 66
0.85-0.9 .0112 .0112 .0110 .0064 .0066 .0064 .0037 .0037 .0037
0.9-0.95 .0106 .0105 .0104 .0060 .0060 .0059 .0038 .0039 .0038
0.95-0.99 .0096 .0096 .0096 .0059 .0058 .0057 .0043 .0043 .0043
0.99-1.01 .0118 .0118 .0118 .0064 .0064 .0063 .0046 .0046 .0046
1.01-1.05 .0119 .0119 .0119 .0062 .0062 .0061 .0043 .0044 .0043
1.05-1.1 .0112 .0114 .0112 .0064 .0064 .0063 .0038 .0039 .0039
1.1-1.15 .0152 .0156 .0157 .0072 .0070 .0070 .0048 .0049 .0049

All .0121 .0121 .0120 .0069 .0069 .0068 .0046 .0046 .0046

Panel C: Sensitivity to the discount factor value for DMSPE method

Maturity
<60 60-180 >180

0.9 0.95 1 0.9 0.95 1 0.9 0.95 1
0.85-0.9 .0112 .0112 .0111 .0066 .0066 .0065 .0038 .0037 .0037
0.9-0.95 .0106 .0105 .0105 .0061 .0060 .0060 .0039 .0039 .0039
0.95-0.99 .0097 .0096 .0096 .0058 .0058 .0058 .0043 .0043 .0043
0.99-1.01 .0118 .0118 .0118 .0064 .0064 .0063 .0046 .0046 .0046
1.01-1.05 .0120 .0119 .0119 .0062 .0062 .0062 .0044 .0044 .0044
1.05-1.1 .0114 .0114 .0114 .0064 .0064 .0064 .0039 .0039 .0039
1.1-1.15 .0155 .0156 .0156 .0071 .0070 .0070 .0049 .0049 .0049

All .0122 .0121 .0121 .0069 .0069 .0069 .0046 .0046 .0046

The table reports RMSPEV sensitivity for different setups of the combination methods. Panel A and Panel
B report RMSPEV for different choices of the track record period for the regression and DMSPE based
weighting respectively. Panel C reports RMSPEV sensitivity to a value of the discount factor in DMSPE
method, when the base track record period of 44 days is used. Value of 1 indicate no discounting. The
evaluation period for all the three panels is 03/Mar/2003-30/Aug/2013.
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