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Abstract

The aim of this thesis is to explore predictable dynamics in the implied volatility surface
of S&P500 index options. I consider three approaches to modelling the surface that can be
distinguished in the literature: (i) dynamic factor model where the latent factors drive the
dynamics of the surface, (ii) models that assume parametric structure of the surface, (iii)
option pricing model consistent with the skew observed for the implied volatilities. I find
that the latent factor model provides the best accuracy in most regions of the surface at
investigated one-day ahead forecasting horizon. This model combines two-step estimation
procedure by means of Principal Component Analysis and VAR model for factor dynamics,
with non-parametric Nadaraya-Watson regression that allows to deal with special design of
implied volatility data. Forecasting accuracy can be further improved by using combination
forecast methods. I implement combining methods based on equal weights, discounted mean
square prediction error, and optimal estimated weights. Combining based on the estimated
optimal weights yields improvement over the individual models in all regions of the surface.
However, neither the individual models nor the combination models are capable of beating
random walk forecast, a simple forecast that assumes that tomorrow’s value of implied

volatility equals its current value.
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Chapter 1
Introduction

Understanding volatility behaviour is essential for the purpose of risk management, option
pricing, hedging of derivatives and supporting portfolio decisions. Much attention in the
past has been paid to the realized historical volatility, but recently studies on the implied
volatility (IV) are gaining popularity. The implied volatility is a measure of volatility that
is obtained from the observed market prices combined with a certain option pricing model
in a way that the volatility parameter ensures the model price equals the market price. This
model is usually Black-Scholes for European or binomial tree model for American options. In
contrast to the volatility estimates recovered from the historical data, IV is believed to be a
forward-looking measure that reflects the current view on market risk and expected volatility.
The seminal model of [Black and Scholes (1973)) assumes that a volatility of an underlying
asset is constant. It implies that all options written on the same underlying should have
the same implied volatility, regardless of the strike price and the time-to-maturity. Implied
volatilities observed in the market exhibit quite a different pattern. The implied volatility
varies systematically with moneyness (most commonly, expressed as the current price of
the underlying asset relative to the strike) and time-to-maturity. This dependence gives
rise to the implied volatility surface (IVS) which is a collection of implied volatilities across
moneyness and time-to-maturity dimensions, and can be formally defined as a function
oy : (m,k) — oy(m, k), where m represents moneyness and s is the remaining time-to-
maturity. There are at least two well-recognized stylized facts regarding the implied volatility
surface. The pronounced wolatility smile or volatility smirk (when the smile is skewed) is a
U-shape pattern observed across different strikes for options’ with the same maturity. The
volatility term structure is a pattern observed across options’ maturity given the strike price
or moneyness. These two stylized facts implied that the surface is nonflat, contrary to what
one would expect in the Black-Scholes world. Figure depicts an actual shape of IVS that
can be observed in the real world. The implied volatility surface on 26/Apr/2014 exhibits
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a downward sloping shape along the moneyness dimension, which is the volatility smirk
commonly observed in the market. The term structure pattern depends on the moneyness
region. It slopes downward when the time-to-maturity increases for the options with high

moneyness, and slopes slightly upward for options with low values of moneyness.

The implied volatility can be obtained by inverting the Black-Scholes-Merton formula

given the option price. The Black-Scholes-Merton formulas for European call and put options

are
C(t, T, S, K,r,0,q) = Sie” " TDd(dy) — Ke T (dy) (1.1a)
P(t,T,S;, K,r,0,q) = Ke " T 0®(—dy) — S;e TP (—dy) (1.1b)
4 — log(3t) + (T —t)(ry — g + 302 (110
o/ (T —1)
g, — log(%) + (T = )(ry —q — 30°) (1.1d)
o/ (T —1t)

where ¢ is the valuation date, T is the expiry date, (1" — t) represents the time-to-maturity,
Sy is the price of the underlying asset, ry is the risk-free rate assumed to be constant, K
is the strike price, o is the underling asset’s volatility, ¢ is the continuously compounded

dividend rate and ®(x) is a standard Normal distribution, that is

@
O(z) = /_OO \/IQ_Weédey. (1.2)
Because the volatility ¢ is the only unknown parameter when the price is observed, it is
easily done via numerical procedure by minimizing the deviation between the theoretical
price implied by the Black-Scholes-Merton model and the observed option price. The implied
volatility is sometimes referred to as "the wrong number to plug into the wrong formula to
get the right price”. It is a standard practice to express a value of an option with its implied
volatility rather than a price because prices of options with different maturity, moneyness or
written on different underlying asset are difficult to compare. Thus, knowing I'Vs means to

known the option prices.

In this thesis, I explore the predictability of IVS using an extensive data set of daily
implied volatilities on S&P500 index options. The market of the S&P500 index options
is one of the most liquid derivative markets with a wide range of strikes and maturities
quoted every day. It makes it very popular in research applications. I examine and asses
the out-of-sample forecasting performance of the three approaches to model IVS that can be

distinguished in a literature. In general, they are based on: (i) latent factors than span IVS,
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CHAPTER 1. INTRODUCTION

Figure 1.1: Implied Volatility Surface
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The figure shows the implied volatility surface from options on S&P500 index on 26/Apr/2013. The black
dots represent observed implied volatilities, whereas the smooth surface is obtained with a nonparametric
kernel regression, see section for details. Moneyness (defined as m = %) is displayed on the left axis and

time to maturity « on the right one (measured in days).

(ii) assumed parametric structure of the surface and (iii) option pricing model.

I estimate the latent factors with Principal Component Analysis (PCA) approach. Here,
I contribute to the existing literature in two ways. Firstly, I propose a method to generate
out-of-sample IVS forecasts of non-constant time-to-maturity index options that can be
evaluated using observed data. The procedure is as follows. I apply Nadaraya-Watson
kernel regression to estimate the whole surface each day and then recover the time-series
on a given grid of moneyness and maturity. Then, I extract principal components (PCs),
model their dynamics and produce the forecasts of PCs with VARX model. Forecasted PCs
lead directly to forecasts of selected smoothed points on the surface. Using the forecasted
points on the given grid, I again apply kernel regression and obtain the forecast of the
whole surface. The second contribution is that I perform PCA on the correlation matrix in
contrast to the previous literature, which also used the nonparametric smoothing to estimate
the surface and extracted PCs from the covariance matrix. This is motivated by the fact

that variance in different regions of the surface (represented by the time-series on the given

grid) is not uniform. In the parametric approach I follow Goncalves and Guidolin (2006)

and assume the parametric structure of the surface proposed in their paper. The parametric
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approach includes two models. The first model simply uses today’s estimated factors to
produce forecasts of tomorrow’s IVs, i.e. this model uses random walk forecasts for estimated
factors. It is used by practitioners (it is often refereed to as Practitioners Black-Scholes) and
is treated as a benchmarking model for this thesis. I use random walk forecasts as an
additional benchmark against all the models. The next parametric model is an extension of
the benchmark that tries to capture the factor dynamics with VARX model. For the option
pricing model I choose NGARCH(1,1) model of Heston and Nandi| (2000). Unlike previously
described models, this model is estimated in option prices space. Once the option prices are
forecasted, I obtain the forecasts of the implied volatilities by inverting the Black-Scholes-
Merton formula. Because the characteristic function of the return in Heston and Nandi
model is known analytically, I make use of an efficient numerical method to value options
in the line with work of |Carr and Madan| (1999). This method is known as the fast Fourier
transform (FFT) and makes it feasible to price large collection of option contracts relatively

fast. This is necessary given the fact that I evaluate over 600,000 forecasts of IVs.

The results I obtain provide several implications. The proposed application of PCA
method works especially well for the medium and the long term contracts and PCA model
outperforms other approaches largely. Forecasting IVs of the short term options is more
challenging. However, PCA model shows its superiority over other investigated approaches
with respect to the short-term put options and some call options that are not too deep out-of-
the-money. For the short term deep out-of-the-money call options, the parametric models of
the surface work best. Inclusion of the factor dynamics in the parametric method sometimes
improves the forecasting accuracy for longer maturities. I find that Heston and Nandi model,
which is the only one estimated in option prices space instead of implied volatility space,
works worst both in terms of in-sample fitting, as well as out-of-sample forecasting of IVS.
However, relative deterioration when turning from the in-sample to the out-of-sample case
is the smallest for this model. For the evaluation purposes, I partition the surface into 21
segments depending on moneyness-maturity characteristics and find that some segments of
the surface are more predictable than others. This leads to the next part of the analysis
which examines whether combination of different models can further improve on forecasting
IVS. Forecasts combination attracted a lot of attention in empirical studies in numerous
areas of economic research such as equity premium forecasting, currency market volatility
and various macroeconomic applications. Many researches proved the usefulness of forecasts
combination to generate more accurate forecasts, sometimes using even the simple model
averaging. I conclude that use of the combining schemes, like the optimal estimated weights
or discounted mean square error, can improve on forecasting the surface in all regions. Still,

the improvement is not large enough to outperform simple random walk forecasts for implied



CHAPTER 1. INTRODUCTION

volatilities in any region of the surface.

The models of IVS I study in this thesis can be related to three approaches to modelling
the implied volatility that can be distinguished in the literature. The factor models of IVS
are inspired by the literature on the term-structure of the interests rates. Because there
is a strong comovement in the different regions of the surface, latent factors approach has
been investigated. There are few studies that examine the dynamics of IVS driven by latent
factors estimated with PCA. Skiadopoulos et al. (1999) study the dynamics of the surface
of S&P500 index options. Their approach is based on grouping the data in three different
maturity buckets. Next, they average IVs which fall into them respectively to options’
moneyness and apply PCA to each bucket’s covariance matrix. An important disadvantage
of this approach is that the common factors can be disturbed both by the within and between
group variation, meaning that this approach fails to distinguish between the common and
specific latent factors driving IVS. This is because the grouping approach neglects the surface
structure of IV data and average the options within the maturity bucket. A more popular
approach to PCA modelling of IVS, also undertaken in this thesis, is described in |Cont
and da Fonseca (2002)), Fengler et al.| (2003) and |Chorro et al.| (2014)) among others. Here,
the whole surface is estimated on a given day with a kernel smoothing procedure, namely
Nadaraya-Watson regression. The time-series on a chosen grid of moneyness and maturity
can be recovered from the estimated smoothed surfaces. The aforementioned studies focus on
extracting and identifying statistical (latent) common factors, while they are not concerned

whether the factors are predictable themselves, what would allow to accurately forecast IVS.

Recently, Van der Wel et al.| (2015) proposed a likelihood-based general dynamic factor
model for the dynamics of the latent factors driving IVS. They estimate the factors and
their dynamics in one-step by means of Kalman filter. The other factor approaches studied
in the context of IVS dynamics include semi-parametric factor model of |[Fengler et al.| (2007))
designed to deal with a special feature of IV data that typically options with only few
maturities (5-8) are traded on each day, or the restricted factor model of |Christoffersen
et al| (2013) where factors represent the level, smile and term structure of IVS. le Roux
(2007) proposes the model of S&P500 IVS that combines the parametric approach with the
application of principal component analysis, designed to capture the long-term dynamics of
IVS.

The other approach popular in the literature on the implied volatility is to assume a linear
parametric structure of the surface. Dumas et al.| (1998) and |Pena et al. (1999) investigate
various parametric forms of IVS that link the cross-section of implied volatilities to options’
maturity and moneyness. Estimated coefficients in these models are treated as factors. The

parametric approach is extended by Goncalves and Guidolin (2006) who introduce VAR
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dynamics to the factors.

A number of option pricing models departure from the Black-Scholes assumption that the
volatility is constant over time and try to reconcile the stylized facts of IVS such as smiles
and the volatility term structure. These models incorporate the stochastic or time-varying
volatility (e.g. Hull and White (1987), |[Heston (1993)) Heston and Nandji| (2000)), jumps
processes (Merton! (1976))), or the jump processes combined with the stochastic volatility
(Bates| (1996), Scott| (1997)). However, it may be that even a decent option valuation model
in terms of pricing performance can deliver inaccurate predictions of IVS. This is because
small errors in option prices can produce large errors in implied volatilities, as investigated
by Hentschel| (2003). Das and Sundaram (1999)) and [Skiadopoulos et al.| (1999) conclude
that none of the aforementioned option pricing models captures the stylized facts of IVS
well. This approach to modelling IVS is sometimes referred to as a no-arbitrage approach
(see (Chalamandaris and Tsekrekos (2010)) because option pricing models do not allow for
the possibility of arbitrage. An unsatisfactory performance of option pricing models resulted
in a development of models that are estimated in implied volatility space, which examples

were given above.

Although much has been said on what determines the shape and dynamics of IVS and
plausible interpretation of the factors has been proposed, the application to out-of-sample
forecasting are relatively rare, especially when it comes to the latent factor models. (Goncalves
and Guidolin| (2006)) and [Bernales and Guidolin| (2014) investigate out-of-sample forecasting
ability of the parametric models. An explicit out-of-sample forecasting approach based on
the latent factors estimated with PCA is taken by Chalamandaris and Tsekrekos (2010) who
study IVS dynamics of over-the-counter (OTC) currency options. In contrast to exchange
traded index options, OTC options have constant time-to-maturity. The constant time-to-
maturity feature elevates the need for constructing the artificial time-series (by smoothing
or grouping procedure) that serve as an input to PCA. [Harvey and Whaley (1992)), Guo
(2000) and Brooks and Oozeer| (2002) examine predictable patterns for IVs of the short-term
at-the-money (ATM) options rather than the whole implied volatility surface. Konstantinidi
et al.| (2008) address the question about predictability of the implied volatility from the per-
spective of European and U.S. implied volatility indices like the well-known CBOE Volatility
Index (VIX). All the studies listed above recognize some statistically predictable patterns.
However, the common conclusion is that they cannot be easily translated into an economic
value, what corroborates the option market efficiency to some extent. The economic value
of IVS predictability is assessed by constructing various trading strategies and investigating

whether IVS forecasts can efficiently support the portfolio decisions.

The structure of the thesis is as follows. Chapter 2| presents the data and explains the
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CHAPTER 1. INTRODUCTION

smoothing procedure that helps to understand and organize the data, and most importantly
results in the input time-series to PCA model. Chapter [3] details the estimation procedure
for each of the forecasting models. Chapter 4] describes combination models. Chapter
presents the in-sample and out-of-sample results. Chapter [6] concludes and outlines possible

recommendations for future research.
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Chapter 2

The implied volatility surface

2.1 The Data

The data set used in this study contains daily data on the S&P500 index options traded on
the Chicago Board Options Exchange (CBOE). The S&P500 options are one of the most
frequently traded options in the world. The data set covers period of almost 15 years,
from January 4, 1999, until August 30, 2013. Options are European style and are retrieved
from OptionMetrics[] The data set consists of 16 variables from which 6 are used in this
study: (i) current date, (ii) time-to-maturity- &, (iii) strike price- K, (iv) implied volatility-
o, (v) price of underlying S&P500 index- S and (vi) moneyness which is defined as m =
K/S. In addition, I use data on LIBOR rates treated as a proxy for the risk-free rates and
continuously compounded dividend yields on S&P500 index. Both variables are provided by
OptionMetrics and are needed to implement the option pricing model of Heston and Nandi
(2000) described in chapter [3|

The data are filtered based on six exclusionary criteria to ensure that the whole surface
under consideration is active. Applied criteria follow the literature on implied volatility and
options pricing. First, all the options with maturity less than 10 days are dismissed due to
noisiness in their prices. Second, options with maturity greater than a year are also excluded.
These two steps are similar to Dumas et al. (1998) and Bernales and Guidolin (2014) who
argue that such options usually contain little information regarding IVS. Third, to avoid
the problem of price discreteness, I omit options with prices less than 3/8% following Bakshi
et al| (1997) and Goncalves and Guidolin/ (2006)). Fourth, similarly to [Van der Wel et al.
(2015) and Barone-Adesi et al.| (2008), observations with missing values for IV and those
with IV greater than 0.7 are discarded. Fifth, following (Cont and da Fonseca (2002)) and
Van der Wel et al| (2015)), I consider only out-of-the-money (OTM) calls and puts because

'T would like to thank prof. dr. Dick van Dijk for making this data set available to me.
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2.2. SMOOTHING THE SURFACE

they are more frequently traded than in-the-money (ITM) options and as such, contain
more information about movements in the implied volatility surface. Focusing on OTM
instead of I'TM options is motivated by the fact, that ITM are illiquid and therefore their
prices contain illiquidity premium. However, the put-call parity implies that taking into
account OTM options is equivalent to studying ITM options. Every OTM call (put) can
be matched to ITM put (call) where the A of the call option is always one plus the A of
the put option and the corresponding put-call pair should have the same implied volatility.
Sixth, I filter out options with moneyness outside the range of m € [0.5, 1.5] which follows
Cont and da Fonseca| (2002)). All applied filters leaves us with 1,170,893 options, what gives

317 contracts on average per day.

2.2 Smoothing the surface

In order to obtain an arbitrary point on the implied volatility surface, one needs to interpolate
or smooth the discrete data. This can be achieved in a non-parametric way. I follow approach
by |Cont and da Fonseca| (2002) and |[Fengler et al.| (2003)) who apply non-parametric Nadaraya-
Watson estimator to IV data. For a partition of explanatry variables (m,x), where m is
moneyness and £ is time-to-maturity, the two-dimensional Nadaraya-Watson estimator of

the implied volatility o is given by

_ Z?:l Kl((m - mi)/hl)K2((’< - Hi)/hQ)Ui
S K (m—my) /b)) Ko (5 — ki) /ha)

a(m, k) (2.1)
where o; is the observed value of IV, Kj(u), Ky(u) are univariate kernel functions, h; and
ho are bandwidths in moneyness and maturity directions respectively, and n denotes the
number of observations. I apply the estimator on the filtered data set. As a kernel function
I use a quartic kernel, i.e.,

K(w) = 12(1—?P1[Jul < 1], (2.
where 1[z] is an indicator function that equals 1 when z is true and 0 otherwise. Usually,
the choice of the kernel function does not influence empirical results (see Silverman| (1986))).
However, in contrast to (Cont and da Fonseca (2002) and Fengler et al. (2003) I conclude
that the use of the quartic kernel is preferred over a Gaussian kernel, especially as the latter
is incapable of producing a smoothed surface that fits accurately high values of IV which
are observed for far out-of-the money put options. This is especially clear when when there
is only a small number of maturities traded. Figure in Appendix [B| presents smoothed

surface fitted to actual data for quartic and Gaussian kernels.

14



CHAPTER 2. THE IMPLIED VOLATILITY SURFACE

The bandwidths h; and hy control the level of smoothness of the estimated surface. Too
low values of hy, hy will make IVS bumpy, whereas too high values will lead to oversmoothing.
As for the optimal bandwidths selection, I follow |[Fengler et al.| (2003) and for each date in

the sample I solve the following optimization problem:
: 2 ==l 171
min  n- g i — Onina(mi, k:))” X B(n hyhy ' K1(0) K (0)), (2.3)
hi,ho

where E(z) = exp(2z) is the Akaike penalizing function. The Akaike correction factor pe-
nalizes bandwidths that are too small (for alternative choices of penalizing functions see
Hardle| (1990)). Next, I average the penalized bandwidths across observations dates. Given
the fact that twice in the whole sample the number of available maturities of S&P500 in-
dex options increases dividing the sample into 3 periods, which happens on 21/Feb/2007
and 31/May/2012, I calculate the average optimal bandwidth separately for each of the
three sub-periods. The selection procedure yields the average optimal bandwidth A = 0.02
in the moneyness dimension for all the three sub-periods. Average optimal bandwidth A}
largely differs between the sub-periods as it equals 22.3, 13.6 and 10.6 days for the obser-
vations before 21/Feb/2007, from 21/Feb/2007 until 31/May/2012 and after 31/May/2012
respectively. The sample standard deviation of penalized bandwidths in maturity dimension
accounts for 8.1, 4.6 and 0.5 respectively. Low standard deviation of optimized bandwidths
indicate that single bandwidth can be used for all estimation dates within abovementioned

sub-periods.

However, figure in Appendix [B] shows that surfaces obtained with the optimized
bandwidths are bumpy and discontinuous. It suggests that the optimal bandwidths with
respect to penalizing function are too narrow in both dimensions. This observation is consis-
tent with [Fengler et al.|(2003]), who argue that data points appear like 'pearls in the necklace’
in the three dimensional space of IVS. Moreover, they argue that penalizing approaches, as
other cross-validation procedures, evaluate the quality of estimator right at the observed
data points what results in too small bandwidths when one aims to obtain the estimates
on the grid points deviating from actual observations, as it is the case in this thesis. Thus,
oversmoothing with respect to the penalizing function cannot be avoided. In finally using
bandwidths shown in Table 2,11 I take into account that the number of traded maturities
daily differs between abovementioned sub-periods and also that for shorter maturities ob-
servations are closer to each other than for longer maturities. Such a choice of bandwidths
ensures that the surface can be recovered everywhere on the constant grid. I recover IVS
on a fixed grid of moneyness m; € {0.85,0.90,0.95,0.99,1.01,1.05,1.10,1.12} and maturity
r; € {30,50,65, 80, 120, 160, 240, 320}. The smoothing procedure applied day by day results

15



2.3. SUMMARY STATISTICS

in 64 time-series of smoothed IV d;(m;, ;).

Table 2.1: Bandwidths used to recover the surface

Maturity
Dates range <60 60-180 >180
04/Jan/1999 - 20/Feb /2007  h1=0.08, ho=40 h1=0.08, hy=80 h1=0.08, ho=145
21/Feb /2007 - 30/May /2012 h1=0.08, ho=35 h;=0.08, ha=60 h1=0.08, ha=100
31/May/2012 - 30/Aug/2013 h1=0.08, hs=30 h1=0.08, ha=55  h1=0.08, ho=80

The table presents values of the bandwidths that I use to recover the surface on the constant grid of moneyness
m; € {0.85,0.9,0.95,0.99,1.01, 1.05,1.1,1.12} and maturity x; € {30, 50, 65, 80,120, 160,240, 320}. h4 is the
bandwidth in the moneyness dimension, ks is the bandwidth in the maturity dimension. Differentiating hs
between maturity groups and three date ranges allows to take into account the number of traded maturities
daily and the fact that for shorter maturities observation are closer to each other than for longer term

contracts.

2.3 Summary statistics

Table reports summary statistics for implied volatilities. For the purpose of presenting
summary statistics, I divide the data into 3 maturity and 9 moneyness categories. Grouping
based on the moneyness level corresponds to 8 grid points in the moneyness dimension
selected to recover the surface with the kernel procedure, while maturity categories follow
Bakshi et al.| (1997)), who classify contracts as short term if £ < 60, medium term if 60 <
r < 180 and long term if k > 180.

The mean values of IV form a pronounced volatility smile, i.e. IV first declines and
again inclines when moving from low to high values of m. It is especially visible pattern
for the short maturities, while for the medium and the long maturities IV starts to incline
again only for very high values of m. The term structure, the pattern for given moneyness
across different maturities, is fairly flat, except extreme moneyness groups (m < 0.85 or
m > 1.12) where mean values of IVs are considerably higher for the short maturities than
for the medium and the long maturities. The next observed feature is that for a given
moneyness group IVs are more volatile for the short term than for the medium and the
long term options. Also, contracts that are closer to being at-the-money are less volatile
than those with m further from 1. All moneyness-maturity groups exhibit positive skewness,
which is a well-known characteristic of implied volatility distribution. It is usually the largest
for the short maturities given the moneyness group. The logarithm of IV data exhibits much
lower skewness, however after logarithmic transformation the data are still slightly positively

skewed. The distributions of the moneyness-maturity groups are leptokurtic, with kurtosis
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CHAPTER 2. THE IMPLIED VOLATILITY SURFACE

far above ﬂ Only short-term put options with m < 0.85 and short-term call options with
m > 1.12 have kurtosis below 3.
Figure presents 64 time series obtained from the smoothing procedure. They exhibit

very strong comovement. To analyze a degree of this comovement and its persistence in

Figure 2.1: Time series of smoothed IVs on a given grid

Smoothed Implied Volatility across groups
07 T T T T

2000 2001 2002 2004 2005 2006 2008 2009 2010 2012

IVS is recovered with Nadaraya-Watson estimator (equation (2.1)) on the fixed grid of moneyness m; €
{0.85, 0.90, 0.95, 0.99, 1.01, 1.05, 1.10, 1.12} and maturity x; € {30, 50, 65, 80, 120, 160, 240, 320}. The

figure shows 64 time series of 6¢(m;, k).

the implied volatility surface, tables and in Appendix [C] report cross-correlations
and (partial) autocorrelations for the investigated time series. Table shows the cross-
correlations between number of moneyness categories and two maturity categories: the short-
est of kK = 20 and the longest of Kk = 320. Cross-correlations within the maturity category
are stronger for the long than for the short maturities. All of them are above 0.9. Even
across maturity categories only a few of cross-correlations fall below 0.9. Table reports
(partial) autocorrelations at lags of 1 to 5 days and 1 month, i.e. 22 days, for different
moneyness-maturity points. The autocorrelations are higher for the long maturities at every
lag. At 22 days lag they stay at around 0.9 for the long maturities and 0.8 for the short
maturities. Also partial autocorrelations are higher for the long maturities. However, at the
third lag almost all of them are below 0.1. The OTM put options (m < 1) exhibit larger
drop in partial autocorrelation than OTM calls (m > 1).

2Kurtosis of 3 corresponds to the kurtosis of normal distribution
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2.3. SUMMARY STATISTICS

To further illustrate the dynamics of the surface, I construct measures of the volatility
smile and term structure following |[Van der Wel et al. (2015)). Defined measures correspond
to the grid points of the smoothed surface. The slope of the volatility smile corresponding
to each maturity grid point x; € {30, 50,65, 80,120, 160, 240,320} is defined as the implied
volatility of the furthest OTM put option on the grid for which m = 0.85, minus the implied
volatility of the furthest OTM call option on the grid for which m = 1.12. Similarly, the slope
of the volatility term structure corresponding to each moneyness grid point m; € {0.85, 0.90,
0.95, 0.99, 1.01, 1.05, 1.10, 1.12} is defined as the implied volatility of the longest maturity
on the grid x = 320, minus the implied volatility of the shortest maturity on the grid x = 30.

Figure[2.2|shows that the slope of the smile is positive for all the considered maturity grid
points. On average, it achieves higher levels and is more volatile for the short maturities.
The smile is larger when the volatility of the financial markets is higher, as measured with
VIX index which behaviour is shown in the top panel of Figure 2.3] Figure [2.3] shows time
series of the slope of the term structure separately for the put and the call options.

The term structure can be upward- or downward-sloping for all considered moneyness
grid points. When the overall level of volatility is high, as measured with VIX index, the
term structure tends to be downward-sloping and reach especially low values, hitting the
record low in the crisis of 2008. On the other hand, it is upward-sloping when the volatility
is low. A popular explanation for this phenomenon in the term structure of IVS is the mean-
reverting nature of volatility. Most of the time in the sample the slope of the term structure
is negative for the put options with m € {0.85,0.9,0.95}, while it is positive for the at-the-
money put with m = 0.99 and all the call options. The slope of the term structure vary
across moneyness grid points when m < 1, while it is fairly on the same level across all the
considered points when m > 1. Table in Appendix [C| contains (partial) autocorrelations
for the slope of the smile and term structure. They exhibit similar pattern as the (partial)
autocorrelations of the time series shown in Table [C.2] However, the partial autocorrelation
of the slope of the volatility smile decays slower, accounting for around 0.2 for the long

maturities at the third lag and falling below 0.1 only after the fourth lag.
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CHAPTER 2. THE IMPLIED VOLATILITY SURFACE

Figure 2.2: Slope of Volatility Smile
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The figure shows VIX index and the slope of the volatility smile. The slope of the smile corresponding to
each maturity grid point x; € {30, 50, 65, 80,120, 160, 240,320} is defined as IV of the option with m = 0.85

minus IV of the option with m = 1.12. Smoothed IV values are used.
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Figure 2.3: Slope of Volatility Term Structure

90

VIX index

80

70

60

50

40

30

20

1
2000

1 1 1 1 1 1 1 1 1
2001 2002 2004 2005 2006 2008 2009 2010 2012

Slope of volatility term structure for OTM puts

\\,

‘ W
i '

u u'w
i ‘\\1»
\‘ .] il

——0.85—0.90 —0.95——0.99 |

2000

1 1 1 1 1
2001 2002 2004 2005 2006 2008 2009 2010 2012

Slope of volatility term structure for OTM calls

—1.01

1.05 —1.10 —1.12 i

2000

The figure shows VIX index and the slope of the volatility term structure. The slope of the term structure
corresponding to each moneyness grid point m; € {0.85, 0.9, 0.95, 0.99, 1.01, 1.05, 1.1, 1.12} is defined as
IV of the option with x = 320 minus IV of the option with x = 30. Smoothed IV values are used.

1 1 1 1 1 1
2001 2002 2004 2005 2006 2008 2009 2010 2012

20



Table 2.2: Summary statistics by Moneyness and Maturity

Moneyness Maturity

K/S <60 60-180 >180

<0.85 Mean 0.41 0.36 0.31
Std 0.11 0.09 0.07
Skewness 0.68 0.75 0.67
Skewness log o 0.19 0.14 0.03
Kurtosis 2.72 3.40 3.67

Observations 75645 143008 106754

0.85-0.90 Mean 0.30 0.26 0.25
Std 0.08 0.07 0.06
Skewness 1.54 1.52 1.28
Skewness log o 0.71 0.64 0.45
Kurtosis 6.25 6.78 6.08

Observations 50309 39162 24616

0.90-0.95 Mean 0.25 0.23 0.23
Std 0.08 0.07 0.06
Skewness 1.90 1.59 1.27
Skewness log o 0.75 0.59 0.39
Kurtosis 8.64 7.15 6.14

Observations 66376 44087 25963

0.95-0.99 Mean 0.20 0.21 0.21
Std 0.08 0.07 0.06
Skewness 2.11 1.57 1.17
Skewness log o 0.76 0.48 0.31
Kurtosis 10.02 7.24 5.65

Observations 60547 39797 21328

0.99-1.01 Mean 0.18 0.19 0.20
Std 0.07 0.07 0.06
Skewness 2.15 1.59 1.23
Skewness log o 0.70 0.46 0.34
Kurtosis 10.35 7.36 5.90

Observations 31706 21575 10966

1.01-1.05 Mean 0.16 0.18 0.19
Std 0.07 0.06 0.05
Skewness 2.33 1.57 1.19
Skewness log o 0.74 0.41 0.32
Kurtosis 11.51 7.14 5.56

Observations 59418 41304 21413

1.05-1.10 Mean 0.18 0.17 0.18
Std 0.08 0.06 0.05
Skewness 2.24 1.75 1.22
Skewness log o 0.76 0.52 0.25
Kurtosis 10.12 7.79 5.79

Observations 39185 43797 25183

1.10-1.12 Mean 0.21 0.17 0.18
Std 0.09 0.06 0.05
Skewness 2.06 1.96 1.26
Skewness log o 1.06 0.74 0.27
Kurtosis 7.93 8.50 5.82

Observations 7348 14053 9230

>1.12 Mean 0.30 0.20 0.18
Std 0.12 0.07 0.05
Skewness 0.78 1.27 1.41
Skewness log o 0.20 0.49 0.48
Kurtosis 2.87 4.48 5.52

Observations 17595 56145 74383

The sample covers period from January 4, 1999, until August 30, 2013 for a total of 1,170,893 options after
filtering the data. Six summary statistics of IVs are reported: mean, standard deviation (Std), skewness,

skewness of log data, kurtosis, and the number of observations within each group.






Chapter 3
Forecasting models

In this chapter I describe 4 different set-ups within 3 main approaches that are employed
to forecasts the implied volatility surface. The three approaches are: (i) a model of latent
factors that drive IVS, where the factors are estimated with Principal Component Analysis,
(ii) two models that assume parametric structure of the surface, (iii) option pricing model
for which I choose the model of Heston and Nandi (2000). To preserve consistency, all the
first three models estimated in IV space deal with the log transformation on IV data. It
gives an advantage that the models always produce non-negative values of IV. At the end of
the day, I asses forecasts of IV (without log transformation) such that all four models can be
compared. I use the first 1000 days of the data set as an initial estimation period. All the
models are estimated using the rolling window framework with the window length of 1000
days. It ensures that the forecasts generated by the different models are conditional on the

same information set.
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3.1. PRINCIPAL COMPONENT ANALYSIS

3.1 Principal Component Analysis

The method of Principal Component Analysis (PCA) allows to summarize the main sources
of variation and covariation for a large panel of variables into a small number of underlying
risk factors. Thus, PCA allows to greatly reduce the dimensionality of the problem under
consideration. It may be especially efficient when the investigated time-series are highly
correlated, as is the case in this study. I apply PCA technique to extract common factors

from the panel of 64 time-series obtained with kernel regression of section [2.2]

I calculate the first differences of the log transformed data Alogd;(m;,7;) to ensure
stationarity of the input variables to PCA model, following works of |(Cont and da Fonseca
(2002), Fengler et al.[(2003), Badshah|(2009) and Skiadopoulos et al.| (1999) who also perform
PCA on the first differences of (log) IV dataﬂ The smoothed IV time-series illustrated in
figure [2.1] suggest that they may contain a unit-root. I test unit-root stationarity of the
log time-series with an augmented Dickey-Fuller test. I select a lag order of the test based
on the BIC criterion with the maximum value of 5. To illustrate the results of ADF test,
I report t-statistics and p-values for 12 time series in total in table in Appendix [C}
6 log and 6 differenced log time series. The test is performed on the time-series having
length of 1000 days, what is consistent with the estimation window of PCA model. In each
case the null hypothesis that the time series of loga;(m, k) contain unit root cannot be
rejected at any standard significance level, whereas I reject the null for all Alogad,(m, k)
being tested with p-value less than 0.001. These results support the decision of modelling
the first differences of the smoothed IV time-series. Alternatively, one could work with IV
data in levels when the idiosyncratic noise components €;; in a factor representation equation
are 1(0). This is motivated by the fact that PCA estimators of factors and factor loadings
are consistent as long as €; are I(0), regardless of stationarity of the factors, as pointed out
by Bai and Ng| (2004). For more detailed discussion of this approach in the context of IVS
see |Chalamandaris and Tsekrekos| (2010)).

I consider static factor representation of the log smoothed implied volatilities A log 6 (m;, 7;):

A log 5‘t(mi’ Tj) — )‘ilelt + o+ )\ierrt + €ijt = )‘;JFt + €ij,ts (31)

where F'; is a vector of common factors, A;; is a vector with factor loadings for the first
differences of the log smoothed implied volatility ¢ corresponding to i-th moneyness and

J-th maturity grid point, and €;; is an idiosyncratic noise. The factors and idiosyncratic

'In unreported results, I examined the out-of-sample performance of PCA model estimated in levels. It
yielded slightly poorer results. Moreover, the interpretation of the factors estimated on differenced data is
clearer.
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CHAPTER 3. FORECASTING MODELS

components are assumed to be uncorrelated, E(Fie;;5) = 0 for all i, 7, s, that is they are
uncorrelated at all leads and lags. In the "approximate dynamic factor model”, as introduced
by (Chamberlain and Rothschild (1982)), weak cross-section correlation between idiosyncratic
components is allowed, as long as + S SN | E(ergery) | is bounded.

Let X be N x T matrix of N time-series having length T, Sxx =1T! Zthl XX be
its sample covariance matrix and A N x r matrix with r factors’ loadings. As described
by |Stock and Watson (2006) the estimation of A and F; can be considered as solving the

following non-linear least square problem:

g i T Z —AF,) (X, AF,), (3.2)
subject to normalisation A'A = I,. One possible solution, however not unique, to the

above optimization is <A, F), where A is set to be the first r eigenvectors corresponding

to the r largest eigenvalues of the covariance matrix S xx. The estimator of the factors is
F, = AIX ¢, which is the vector consisting of the first r principal components (PCs) of X,.

The standard practice in the literature on the dynamics of the implied volatility surface
is to perform PCA on the covariance matrix. However, given that variances of IVs vary
across different segments of the surface, as reported in table in Appendix [C] it seems to
be reasonable to perform PCA on the correlation matrix instead of the covariance matrix,
so that the first PC is not attributed to the few moneyness/maturity groups with the largest
variance. When the principal components are extracted from the correlation matrix instead
of the covariance matrix, the data are effectively standardized, i.e. z-scores z; = z”s—:“’ are
used, where p; and s; are the mean and the standard deviation of the variable z;. To find
the forecasts Alogayy1¢(my, ;) in equation (3.9]), I multiply the forecasted z-scores by s;
and add p;, that is I 'unstandardize’ the data. The rest of the procedure is the same as in
the case of non-standardized data. The standardization and 'unstandardization’ steps are
omitted in the equations’ notation for clarity of reading.

Since the primary goal of this study is the out-of-sample forecasting of IVS in contrast
to in-sample fitting, I follow common rule of thumb in choosing the number of static factors
and set it to be 7 = 3. However, there is a vast empirical evidence that 2 to 3 factors drive
the dynamics of IVS of index options (see Skiadopoulos et al.| (1999), [Mixon| (2002) and
Van der Wel et al.| (2015)) or options on futures (Tompkins (2001])). Table reports the
proportion of explained variance in the full-sample for different kinds of input variables. For
the non-stationary panel of log g the first PC explains over 97% of the total variance. The
differences between the differenced log-data and its standardized version are only minor. In

both cases the first 3 principal components explain over 95% of the variance.
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3.1. PRINCIPAL COMPONENT ANALYSIS

Table 3.1: Principal Component Analysis

Explained variance

log & Aloga Z-scores of Aloga
% Cum. % % Cum. % % Cum. %

PC1 |97.18 97.18 84.56 84.56 84.51 84.51
PC 2 1.47 98.66 7.57 92.13 8.53 93.03
PC 3 0.86 99.52 3.12 95.25 2.28 95.32
PC 4 0.16 99.67 1.45 96.70 1.23 96.54
PC5 0.08 99.76 0.80 97.50 0.78 97.32
PC6 0.08 99.83 0.54 98.03 0.42 97.74
PC7 0.03 99.86 0.32 98.35 0.29 98.03
PC 8 0.03 99.89 0.23 98.58 0.24 98.27
PC9 0.02 99.90 0.18 98.77 0.21 98.48
PC 10| 0.01 99.92 0.15 98.92 0.19 98.67

The table presents the results of the Principal Component Analysis performed on the full sample of the panel
of 64 times-series representing IVS on the fixed grid of moneyness m; € {0.85, 0.90, 0.95, 0.99, 1.01, 1.05,
1.10, 1.12} and maturity x; € {30, 50, 65, 80, 120, 160, 240, 320}.

Because further analysis is conducted on the standardized data, I provide possible inter-
pretation of the factors based on the factors’ loadings estimated on the panel of Z-scores of
Aloga. The first principal component corresponds with the overall level of IVS, the ele-
ments of the first factor loading have approximately the same value for all 64 combinations
of moneyness and maturity grid points. The second principal component affects the implied
volatility of the call and the put options with a different sign, while the change of the sign
takes place between moneyness grid points of 0.99 and 1.01 (ATM put and calls), irrespective
of the remaining time-to-maturity. In fact, the effect is almost uniform across the maturity
dimension. Thus, the second principal components is a smile factor, capturing the volatility
smile. Finally, the third principal component corresponds with the volatility term structure,
as it changes the sign of how it impacts IV between the maturity of 80 and 120 days and
the effect is very similar across the moneyness dimension. Figure provides a graphical

illustration of the estimated factors’ loadings.
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Figure 3.1: Graphical illustration of the factors’ loadings of the correlation matrix

Panel A: First factor’s loadings- level factor
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Panel B: Second factor’s loadings- smile factor

Panel C: Third factor’s loadings- term structure factor

The figure shows estimates of the factors’ loadings resulted from PCA performed on the full sample of 64 time-series, recovered
with Nadaraya-Watson regression on the fixed grid of moneyness m; € {0.85, 0.90, 0.95, 0.99, 1.01, 1.05, 1.10, 1.12} and maturity
k; € {30, 50, 65, 80, 120, 160, 240, 320}.



3.1. PRINCIPAL COMPONENT ANALYSIS

In order to capture dynamics of the estimated factors F, = (Flt,pgt,ﬁgt)/ , 1 assume
they follow p-order Vector AutoRegressive process (VAR) given by equation (3.3). VAR
specification can be augmented with exogenous regressors in a form of lagged returns on
S&P 500 index, resulting in VARX model for factor dynamics. [Chalamandaris and Tsekrekos
(2009), who model in levels time-series of implied volatilities of options that have a constant
time-to-maturity, show that VAR specification for factor dynamics outperforms both in-
sample and out-of-sample univariate AR and VECM specifications for factors driving IVS

of OTC currency options.

p q
Fi=c+ Z ;F; ; + Z Wyrspx,i—j + Ut vy~ N(0,%5p) (3.3)
k=1

j=1
Equation is estimated with MLS estimator. The order of lags p and ¢ is selected based
on BIC criterion and repeated in every estimation window. I perform the estimation of
VARX process in using the moving window of length 1000 of days. Predictability of
IVS requires that the factors F, are predictable itself. I use VARX(p,q) specification to

produce direct forecasts of Ft—i—l which are constructed as

p q
Fi i =c+ Z D, F,_ 1+ Z Wrspx t—j+is (3.4)
k=1

j=1 =

which allows to calculate forecasts of the differenced smoothed log IVs Alog 6;114(m;, 7;) as
Alog Gyy1pe(ms, 75) = )A\;jl:"tﬂﬁ. (3.5)

Next, forecasts of log 6;41:(m;, 7;) are simply
log 64y1e(mi, 7j) = log 6(my, 7j) + Alog Gy y1pe(mi, ;) (3.6)

Finally, I convert log data to standard implied volatilities. In this step I make use of the
property of log-normal distribution which states that when X ~ LN(a,b?) its expected
value equals exp(a+ %b2). Because it was implicitly assumed that conditional distribution of
log 6441j¢(mi, 7;) is normal (because of distributional assumptions in equations and
it follows that:

. . 1 .
Gt (mi, 7;) = exp (log Oe1pe(ms, 7;) + §Vart(log Ga1(my, Tj))) , (3.7)

where Var,(log 6,41(m;, 7;)) corresponds to the appropriate diagonal element of the variance-

covariance matrix of the log 6,11, which arises from the sum the variance of the factors Xz,
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and the variance of the idiosyncratic components X..:
Var,(log 6111) = AX ;5 A + B (3.8)

Now, the whole IVS has to be recovered from the 64 point forecasts of &y41).(m;, 7;) with
moneyness m; € {0.85, 0.9, 0.95, 0.99, 1.01, 1.05, 1.1, 1.12} and maturity x; € {30, 50, 65, 80,
120, 160, 240, 320}. To obtain forecasts of IVS, I again use the approach presented in section
[2.2] that is the non-parametric Nadaraya-Watson regression to recover the surface in an
arbitrary number of points. Table presents the bandwidth I use to recover the surface on
the grid made of options’ time-to-maturity and predicted moneyness. To calculate predicted
moneyness, | assume that the best forecast of today’s index level is its current value. The
choice of the bandwidths is now less complicated than it was in section [2.2] as the forecasted
data points are regularly spaced in the three dimensional space of the implied volatility

surface.

Table 3.2: Bandwidths used to recover the surface

Maturity «
<60 60-180 >180
hi= 0.05, ho=30 hy= 0.05, hy=40 hy;= 0.05, hy=60
The table presents the bandwidths used to recover the surface from the forecasted points that lie on the
fixed grid of moneyness m; € {0.85, 0.90, 0.95, 0.99, 1.01, 1.05, 1.10, 1.12} and maturity x; € {30, 50, 65, 80,
120, 160, 240, 320}. The surface is recovered on the grid made of options’ time-to-maturity and predicted

moneyness.
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3.2. PARAMETRIC VARX(P, Q)

3.2 Parametric VARX(p, q)

This section describes a deterministic model for IVS, later referred to as parametric VARX
model. It consists of two steps that combine cross-sectional fitting of a parametric function
to IVS observed on a given day, with the application of Vector AutoRegregressive model
with eXogenous regressors (VARX) to the multivariate time-series of estimated in the first
step daily coefficients. The exogenous information I include is in the form of lagged returns
on S&P500 index. The motivation behind this step is that increased volatility often follows
large negative returns in the equity market. The models of this type are commonly called
”deterministic”, as all the explanatory variables are observable and formed of basic option
parameters. I implement the specification successfully applied by |Goncalves and Guidolin
(2006) and Bernales and Guidolin| (2014)). They consider and compare in the context of out-
of-sample forecasting various parametric IVS specifications presented by Dumas et al.| (1998))
and |Pena et al. (1999). Competing specifications which they compare belong to a general
class of polynomials, where the implied volatility is a function of polynomials in moneyness
and time to expiration (or functions thereof). The approach presented in this section is also
similar to Diebold and Li| (2006)) who follow two-stage approach in modelling and forecasting
the yield curve. First, they impose a parametric structure on the yield curve. Next, they
study dynamics of the estimated parameters assuming that they follow VAR(1) process.

In the first step, each day I fit a parametric curve of the following form by ordinary least

squares:

Ti

360

Ti

logo; = Bo + BiM; + B M? + S5 + Ba(M; x ) + i, gi ~ N(0,9), (3.9)

where ¢; is a random error term assumed to be normally distributed with mean 0 and variance

0, 7; is time-to-maturity measured in days and divided by 360 in order to be expressed in
logm;
\/7/360°
measure of moneyness, the more time remains to maturity, the larger the difference should

years, and M; is a time-adjusted moneyness defined as M; = According to this
be between the strike and the spot price in order for it to have the same normalized maturity
as compared to a short term option (see e.g. [Tompkins et al.| (2001))).

Estimating equation for each day in the sample results in the 5-dimensional time
series of Bt = (B()t, Bis, Bgt, Bgt, B4t)’. Figure depicts the time series of daily beta coeffi-
cients (3;. The daily coefficients are highly unstable over time, implying the instability of
IVS in both dimensions. The relative importance in determining the values of IV of each
B factor varies over time. For a better understanding what this time-variation implies an
interpretation of the factors is needed. If the assumption of the Black-Scholes model of a

constant volatility held, the intercept [y in equation ([3.9) would be equal to the common
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for all options log-volatility, while 8; for 7 = 1,...,4 would be equal to 0. The intercept
By corresponds to the overall level of IVS as it tends to increase when the volatility in the
financial markets increases, reaching extraordinary high levels in the financial crisis of 2008.
The slope of the volatility smile can be characterized by i, (o captures the curvature of
the smile, 3 is the factor representing the slope of the implied volatility term structure, and
B4 captures interactions between the two dimensions in which IV is described i.e. time-to-
maturity and moneyness. The evolution of the level factor resembles the time-series of
exhibited in figure [2.3] of chapter [2l The level factor f3y is also highly positively correlated
with ; factor which determines the slope of the volatility smile. In fact, the correlation
coefficient for these two variables amounts to 0.95. This correlation implies that when the
average volatility level is high, the slope of the smile is steeper. On the other hand, the level
factor is negatively correlated with 3 factor that account for the slope of the volatility term
structure. Both results are consistent with the observations made in section on the summary
statistics. The correlation coefficient between [y and S; is 0.84, while between (3 and S3
stands at -0.83. The next pattern that can be noticed is high positive correlation between

the slope and the curvature of the volatility smile.

To capture joint dynamics of the time-series in ,[;’t [ model them with VARX(p, ¢) model,
where p represents the number of lags for the vector of lagged dependent variables, and
q is the number of lags of the exogenous regressor. I decide to model the dynamics of
B, in levels, similarly to works of Goncalves and Guidolin| (2006)), Bernales and Guidolin
(2014)) and Diebold and Li (2006). This choice is purely pragmatic, as in unreported results
I also studied dynamics of Bt with VARX model, where the non-stationary time-series in
Bt were transformed to stationary time-series by differencing operation. This form of the
model yielded poorer out-of-sample performance. I tested the unit-root stationarity of input
variables to VARX model with an augmented Dickey-Fuller (ADF) test for a unit root in a
univariate time-series, which I perform separately for each time-series of the beta coefficients
over estimation windows of 1000 days. The lag order of the test is selected such that it
minimizes Bayesian Information Criterion. According to ADF test, a null hypothesis that
time-series contain the unit root can be rejected only for Bgt, Bgt, B4t- Table in Appendix
[Clreports the results of ADF test for two estimation windows: the first and the last window

in which the individual models are estimated.

I assume the beta coefficients evolve over time according to the following equation:

p q
Bi=p+) @B, ;+> Wirspx,j+e, & ~N0,Qp), (3.10)

j=1 k=1
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where Bt is 5x1 time series of estimated coefficients in equation , p is 5x1 vector of
constant terms, ®; is 5x5 matrix and ¥y, is 5x 1 vector of coefficients for autoregressive terms
and lagged values of S&P500 returns respectively, €; is a vector of error terms assumed to
follow multivariate white noise process. Equation is estimated by multivariate least
square (MLS) estimator, which is equivalent to applying OLS estimator equation by equation.
I select the lags order p and ¢ by minimizing Baysian Information Criterion (BIC), setting
arbitrary maximum values of five lags for p and five lags for q. The restricted version of
equation (3.10)) without inclusion of exogenous regressors is also allowed in the selection
process. The choice of the number of lags is motivated by the analysis of |(Goncalves and
Guidolin| (2006)) and Bernales and Guidolin| (2014)) who show that parsimonious models in
terms of the number of parameters to be estimated work better for the purpose of the
out-of-sample forecasting, when the parametric form of IVS is assumed.

I set up a forecasting exercise for the parametric VARX model as follows. First, I use
VARX(p, ¢) model given in equation to produce one-step ahead, out-of-sample fore-
casts Bt +1ye Of Bt 41, in the framework of the moving estimation window with the window
length of 1000 days. The procedure for selecting the lag orders p, g is repeated for every
estimation window. Second, I obtain forecasts of log ;1 using again equation , by
plugging in the forecasted values of 3. However, parametric VARX(p, q) model does not
deliver prediction of the spot price that is necessary to calculate the predicted value of
moneyness. Following |Goncalves and Guidolin| (2006 and Bernales and Guidolin (2014)), I
assume that the best one-step ahead forecasts of the spot price is its current value. Fi-
nally, predictions of logo;,11; are converted to predictions of o;,41, as the evaluation
of the forecasts is done for o itself. Because conditional distribution of B3, +1¢ and dis-
tribution of error terms e are normal, it can be done by calculating expectation of o; as
Oit41)t = €XP (log Tigti)t + %Vart(log 0i7t+1)), where Vari(logo; ;1) =0 + X;QQBXZ- and X;

vector of characteristics of log o; defined in equation (3.9)).
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Figure 3.2: Time-variation in 8 OLS estimates
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over the period 04/Jan/1999-30/Aug/2013.
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3.3. PRACTITIONER BLACK-SCHOLES

3.3 Practitioner Black-Scholes

Model of Dumas et al.| (1998)) known as ad hoc Black-Scholes, ad hoc Strawman or Practi-
tioner Black-Scholes, henceforth referred to as Practitioner Black-Scholes (PBS), is employed
by numerous authors in different applications and proved to be hard to beat benchmark in
out-of-sample horse races. It is used by |Heston and Nandi (2000) as a benchmark to eval-
uate the performance of their GARCH-type option valuation model, which usefulness for
forecasting movements in IVS is assessed in this paper. It is also used by (Goncalves and
Guidolin| (2006) and Bernales and Guidolin (2014)) in the context of forecasting IVS, and
Christoffersen and Jacobs| (2004) who underlines the importance of the loss function in op-
tion pricing applications. I treat this model as a benchmarking approach to model IVS.
Moreover, I use random walk forecasts (RW) for Vs as an additional benchmark. Random
walk forecasts are obtained by assuming that tomorrow’s value of IV equals its today value.

The Practitioner Black-Scholes model can be seen as a restricted case of the parametric
VARX model described in section [3.2] The parametric form of IVS is fitted in the same way
as in equation . However, dynamics of Bt coefficients estimated in the cross-section of

the implied volatilities follow a random walk process:
/ét = th + & g, ~ N(0,T) (3.11)

where T is a diagonal matrix. Because the error term is assumed to have mean zero, the best
n-step ahead forecasts of the set of B parameters, needed to fit IVS of tomorrow, is today’s
set of parameters, i.e. Et_l(Bt) = Bt,l. As in the parametric VARX model, I assume that

the best one-step ahead forecast of the spot price is its current value.
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3.4 Heston and Nandi GARCH type option valuation

model

This section presents the third approach used in this thesis to forecast IVS. GARCH type
option valuation model of Heston and Nandi| (2000) (HN) is used to forecast option prices.
Next, (forecasted) implied volatilities can be backed out from these prices. [Heston and
Nandi| (2000) introduce a model within a class of affine GARCH models for the purpose
option pricing. They assume that log-returns follow a particular GARCH(1,1) process of the

form:
re="Trs+ Ahy + \/h_tzt (3.12&)
ht =w + ﬂht,1 + 06(th1 - ht,1)2, (312b)

where rs; is the daily risk free rate, z; is a standard normal disturbance, and h; is the
conditional variance of the return which is known at time ¢ — 1. Such specification of
the GARCH(1,1) process, however quite different from the standard GARCH models of
Bollerslev| (1986)) and Duan et al.| (1995), resembles models of Engle and Ng (1993) known
as NGARCH and VGARCH. The unconditional variance implied by the model is given by

W+«

E(h) = T—ay—5

(3.13)
while the first-order process remains stationary if ay?+ 8 < 1. The o parameter determines
the kurtosis of the return distribution. The sign of 7 is expected to be positive, as it enables
the model to capture a well-known stylized fact of the financial markets that a large negative
shock inflates the variance more than a positive shock of the same magnitude. In general,

the relationship of the following form can be proved:
COVt_l (ht+17 10g(St)) = —204’7ht (314)

Given positive values of o and ~, equation implies the leverage effect described by |Black
(1976) and documented by (Christie (1982). The leverage effect requires negative correlation
between the spot price and the variance of the return process. Thus, model of [Heston and
Nandi (2000) is able to produce the same type of volatility behaviour as the continuous
time model of [Heston| (1993). In fact, [Heston and Nandi (2000]) show that the model
contains continuous time stochastic volatility model of Heston, (1993) as a special case (that

is when the time interval between ¢t — 1 and t approaches to zero). The parameters of the
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3.4. HESTON AND NANDI GARCH TYPE OPTION VALUATION MODEL

model (3.12) can be estimated directly by maximum likelihood estimation (MLE), as there
is only a single source of randomness z;, assumed to follow standard normal distribution.
Let 0 = (w, a, 8,7, A) denotes a vector of the model’s parameters. The log-likelihood function

can be written as

lr(ry,...,rr | 0) = Z —% (log(Zﬁ) + log(hy) + (re = rpa = Aht)Q), (3.15)

h
=1 t

where 7' is the sample size. The log-likelihood function has to be maximized with respect
to @ using numerical techniques, as the closed-form solution is not available due to recursive
form of the function. However, the log-likelihood function given in (3.15]) is of a complex
shape with multiple local maxima. Therefore, a careful choice of the starting values for the
optimization is of a great importance. The standard practice is to consider various starting
values. I choose 4 different starting values for the parameters based on the results obtained
by other authors. I initialize hy by setting its value equal to the sample variance of the
returns.

At this point valuing options is impossible because the risk-neutral distribution of the
spot price is still not known. Heston and Nandi| (2000)) prove that the risk neutral version
of the GARCH process given in equations (3.12a)) and (3.12b]) is obtained by replacing A\ by
—1/2 and v by v* = 7+ A+1/2. Such a replacement has two main implications. First, given

that the risk premium parameter A > —1/2, we have v* > 7. Because of the equation ({3.13])
the unconditional variance under the risk neutral distribution is higher than in the historical
case. Moreover, it can be seen from the equation that v drives the leverage effect.
Under the risk-neutral distribution this effect is higher. As noted by Chorro et al.| (2014]), it
is consistent with the skewness premium found in option prices, that the skewness implied
in options is stronger than in equity returns (for more detailed discussion see Bates| (1997)).
Second, in case the risk premium is negative, that is A < —1/2, the skewness premium is
positive and the unconditional variance is lower under the risk-neutral distribution. This is
again consistent with empirical observations: in the bear markets risk premia are negative
and the historical volatility is higher than the volatility implied by the option prices.
A European call in the framework of [Heston and Nandi (2000) is worth

Ct:—St‘l‘ i

1 e—T<T—t>/°°§R K2 (i + 1)
2 T 0 '

o

e (L1 [T Kfiﬁ@} )
Ke Tt<2+WA %{ i do |, (3.16)

where R|[-] denotes the real part of a complex number, f*(i¢) is a risk-neutral version of the
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characteristic function f(i¢) of the logarithm of the spot price. The characteristic function
can be obtained by replacing ¢ by i¢ in the conditional generating function of the asset price

(which in turn is the moment generating function of the log(Sr)) given byP}
flo) = Et[Sé?] _ S?eAt(T7¢)+Bt(T7¢)ht+1, (3.17)
where

AT, ) = AT, 6) + 6rpu+ Bun (T 0)w — log (1~ 20B0a(T,8)  (3.180)

1/2(¢ — 7)?
1—2aB, (T, )

BUT,0) = 60 +7) = 57 + BBuna(T, 6) + (3.15b)

These coefficients can be calculated recursively (but backward) from the terminal con-
ditions: Arp(T,¢) = 0, Br(T,¢) = 0. Put values can be obtained from the put-call parity.
Because the characteristic function is known analytically, it is possible to apply approach
based on the Fast Fourier Transform (FFT) developed by Carr and Madan| (1999) to price
option. This method allows to at once calculate prices of options for variety of strikes and
a given maturity. Thus, numerical computation of the integrals in equation is not
needed. Even though computational cost of such integration is not heavy when only few
prices are to be calculated, it makes calibration of the model infeasible when hundreds of
options are quoted every day and the calibration process is to be repeated for over 2600
days. The FFT method is described in greater detail in Appendix [A]

Forecasting IVS

Heston and Nandi| (2000) finds that their model provides better fit to option prices data
than the Practitioner Black-Scholes model of section both in-sample and out-of-sample.
This subsection explains the procedure how to use the Heston and Nandi model for the
purpose of IVS forecasting. In general, the model produce a collection of forecasted option
prices from which (forecasted) implied volatility values are backed out. First, I describe
how the in-sample fit of IVS is achieved, then I turn to the out-of-sample case. Option
valuation formula and the moment generating function of the logarithm of the asset
price depend on the parameters of the GARCH process . Thus, one could simply
plug the MLE parameter estimates of the GARCH process into the equation to price
the options. However, information used in such approach would be only historical and far

from what market practitioners actually do. If one aims to take into account information

2for the explicit formula of the characteristic function under the risk-neutral distribution see equations

and in Appendix
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embedded in the cross-section of option prices, which reflects the market expectations on
the future evolution of the underlying asset price, then it is more sensible to calibrate the
model, that is to look for a set of the parameter estimates that ensure that the difference
between theoretical prices implied by the model and market prices is as small as possible,
with respect to some penalizing function. For the calibration method I choose non-linear
least square (NLS) technique which minimizes the sum of squared pricing errors (SSE). For
this purpose I use well-known Matlab optimizer [sqnonlin based on the trust-region-reflective
algorithm. However, the optimizer easily get stuck in a local minimum. To obtain ’good’
(or rather acceptable) minima, I initialize calibration process with 4 different sets of starting

points. The objective function at time  is:

N

SSE(t.0) =min  »  (pie — pia(0,hei1))” (3.19)

i=1

where p denotes actual option price assumed to be the midpoint between the best closing
bid and the best closing offer price of the option, and p denotes the price implied by the
model. 0 is, as before, the vector of model parameters. Even though various starting points
are used, the calibrated parameters are highly unstable over time. The mean results of the
calibration process are shown in table [3.3] High instability in a short horizon may suggest
that better minima are possible. To find those one would have to consider bigger number
of starting values for the optimization algorithm. However, it is not really feasible in a
research such as this without for example the use of computation power cloud-computing

could offer. The option value at time ¢ is not only a function of the GARCH process

Table 3.3: Mean estimates of the calibrated parameters

Parameter Mean Standard Deviation
w -6.08E-06 6.23E-06
o 0.57 0.44
15} 8.83E-06 8.44E-06
vy 247.36 152.55

The table reports the mean and standard deviation of the daily parameter estimates from the non-linear
least square estimation over the period of 2688 days, from from 24/Dec/2002 to 30/Aug/2013. |Carr and
Madan| (1999) method based on the Fast Fourier Transform is used to calibrate the model.

parameters (the risk neutral versions of w, a, 3,7, and A), but also depends on the conditional
variance hy ;1. As free parameters in the calibration process I treat only GARCH parameters,
whereas h;; 1 is estimated from the history of the S&P500 returns. This follows Heston and

Nandi (2000) who argue that information included in historical prices of the underlying
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asset provide information about the future that nature is different from the information
embedded in the cross-section of option prices. I estimate GARCH model in the
rolling-window framework with the window length of 1000 days, that is 4 years of daily data.
When estimating the GARCH model and pricing the options, I do not match an option
expiration with the corresponding zero-coupon rate of the same maturity. Instead, I use 30
days risk-free rate linearly interpolated from the data on the zero curve. This is motivated
by the significant computational savings. Above all, when using the single zero-coupon rate
it is enough to calculate the recursion in once for all traded maturities on a given
day. This saving is especially important in the calibration process. Figure illustrates the
annualized daily level of the volatility estimated with the GARCH model, which I calculate

as \/252h; 4.

Figure 3.3: Annualized daily level of volatility
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The figure shows the annualized daily level of S&P 500 spot volatility from 24/Dec/2002 to 30/Aug/2013,
as implied by the asymmetric GARCH model given by equation . It is estimated by means of moving
window with length of 1000 days. Each value of h;;1 presented in the figure is obtained using the last 1000
days up to day t.

Once the model is calibrated and in-sample prices are obtained, I numerically ’invert’ the
prices to obtain implied volatilities in the line with the estimation procedure of OptionMetrics
(2011). I back out the Black-Scholes-Merton implied volatilities by inverting equation ([1.1}).
The appropriate interest rate is linearly interpolated to match the maturity of each option,
poxing for the risk-free rate. Dividends are assumed to be constant over the remaining period
of the option life and paid continuously. This step ends in-sample fitting of IVS.

This framework is easily extendable for the purpose of the out-of-sample forecasting. I

use today’s calibrated parameters estimates to produce one-day-ahead forecasts of option
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prices. Nevertheless, to price options out-of-sample or to back out thier implied volatilities,
one-day ahead predictions of the index level, interest rate and dividend yield are necessary.
I follow |Goncalves and Guidolin| (2006)) and |Bernales and Guidolin (2014) and assume that
the best predictions for the index level, interest rates and dividend yield are their today’s
values, which is in the line with the efficient market hypothesis. Finally, prediction of
tomorrow’s value of the conditional variance h;.; is also needed. Tomorrow’s value of Ay is
simply h; s conditional on information available today. Having forecasted the option prices, I

numerically invert the Black-Scholes-Merton formula and produce one-day ahead predictions
of the implied volatilities.
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Chapter 4
Combination forecasts

In order to investigate possible benefits that can arise from combining different models in
the context of IVS forecasting, I introduce and test some popular and easy to implement
combining schemes. As noted by [Timmermann| (2006]) simple combining techniques typically
outperform more sophisticated ones. Thus they may serve as a natural starting point for such
analysis. I employ three combining techniques, wich are: (i) equal-weights which may serve as
a naive (but proved to be hard to beat) benchmark, (ii) Discounted Mean Square Prediction
Error (DMSPE) based weights, (iii) estimated optimal weights. DMSPE technique was
originally developed in the work of Diebold and Pauly| (1987). More recently, Stock and
Watson| (2004) examine the usefulness of this method in application to forecasting time-
series of macroeconomic variables. As IV data is not in the form of time-series but forms a
highly unbalanced panel, slight adjustment of this method is needed. I obtain DMSPE-based

weights at time ¢ which are used to combine one-step ahead forecasts, by solving:

K
Wht41]t = Qk_tl/z 9;;% (4.1a)
k=1

t

N
—s 1 ~k
Oce = D@ 5 D _(00s = 6Ly 1), (4.1b)
s=l =1
where ¢ is a discount factor, K denotes the number of the models to be combined, ¢t — [ is a
length of a holdout period, N is the number of IVs in a given moneyness-maturity category on
a day s, 0, 5 is the observed IV value and 053\571 is the forecasted IV by model k. The average
of square errors in a given segment of the surface (the sum over ¢ normalized by the number of

N elements) in equation (4.1)) is the abovementioned adjustment and allows to preserve the
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essential idea of DMSPE method, that the discount factor weights the daily square errorﬂ.
It allows to preserve consistency with the way I asses the forecasting performance (see how
the performance measures are defined in chapter . I consider the discount factor ¢ value
of 0.95. In addition, I examine the discount factor values of 0.9 and 1 as a robustness check.
The choice of these values follows [Stock and Watson| (2004)).

Finally, I aim to estimate the optimal’ weights by means of (restricted) regression model.
Granger and Ramanathan| (1984]) propose three kinds of regressions to estimate the optimal

weights for the variable of interest y;5:

Yi+n = Wop + w}lgjt+h‘t + €tth, (4.2&)
Yt+h = wh'gt+h\t + Et4n, (42b)
Yt+h = wlh’gt_;'_h‘t + Et+h s.t. w/hL =1 (42C)

The weights’ estimates in regressions and can be obtained by means of OLS
method. The difference between the two regressions is that an intercept in the former can
adjust for the bias if present in the individual forecasts. The third regression can be estimated
by constrained least squares. Imposing the constraint that the weights should sum up to one
guarantees that the combined forecast is unbiased, in case all of the individual forecasts are
also unbiased. The other justification for weights summing up to one is provided by Diebold
(1988) who argues that without such restriction the error term in the combined forecast
regression will be serially correlated. Furthermore, if the convexity constraint 0 < w;; <1
is imposed and intercept is omitted, the combined forecast lies in the range of the individual
forecasts. There are several reasons why estimated optimal weights perform oftentimes worse
than other combining schemes. The one worth to be mentioned, as it can be potentially
influential in this study, is multicollinearty of the individual forecasts. Chapter [5| shows
that bias is an important contributor to MSPE for all the individual models. In order to
adjust the combined forecast for the bias, I estimate optimal weights with regression .
Thus, the results reported for the optimal estimated weights in chapter 5| are obtained with
unconstrained regression (|4.2al).

An important issue when implementing DMSPE and regression based weighting is the
choice of a track-record period, also known as a holdout period. It determines how many
observations are used to estimate the weights by methods given in equations and .
So far, no statistical procedure has been developed to select optimal length of the period.

Nevertheless, it should balance between two conflicting ideas: on the one hand, a longer

1 As|Stock and Watson| (2004) focus on forecasting time-series, one forecasted observation corresponds to
a single day and a single square prediction error. Their formula for DMSPE is ), ; = Zi:l O 5 (1 _ff\sq)Q-
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track record gives more observations in the regression, and thus more accurate estimates of
the combination weights. On the other hand, it might be that the optimal weights vary over
time, as some models may be superior to others in some periods but not at other times. I set
the length of the track-record period equal to 44 days (approximately 2 months of trading
days) but consider also 22 and 66 days as a robustness check. Given the fact that the relative
performance of the individual models varies in the different regions of the surface (as shown
in tables and in chapter , I estimate the optimal weights separately for each of
the moneyness-maturity category. I compare this result to an alternative when the weights
depend only on the maturity category and are constant across the moneyness dimension.
When implementing the combination forecasts, I do not assume that tomorrow’s moneyness
category for every IV is known, but instead I assign the proper weight based on the best
guess for its moneyness, which in turn is based on the today’s value of the spot price (recall
that m = K/S). This manner is the same as across all the individual models and it allows

to asses potential benefits of forecasts combination in a fair manner.
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Chapter 5
Empirical results

This chapter is arranged in 3 parts that cover number of topics. First, I define performance
measures. Second, I provide results regarding the in-sample fit. Third, I present out-of-
sample results of the forecasting performance for the individual models. Fourth, I examine
bias in individual forecasts. Fifth, I describe the out-of-sample results for the combination
forecasts. Sixth, the forecasts are formally compared to the benchmarking Practitioner
Black-Scholes model by means of |Diebold and Mariano, (1995)) test.

The out-of-sample forecasts evaluation period covers the time frame from 03/Mar/2002
until 30/Aug/2013 and includes 2644 dayd}

5.1 Performance measures

This section presents statistical evaluation of IVs forecasts. Predictability is assessed in
terms of one-step ahead, daily implied volatility forecasts generated by the models presented
in chapters [3|and [4] To asses the out-of-sample forecasting performance of the investigated
approaches and to enable comparison between the models, I calculate the following three

measures for each of them:

1. Root mean square prediction error in implied volatilities (RMSPEV)

1 R 2
RMSPEVi, = | =3 (i1 = % 0y) (5.1)

i=1

!The data set contains 3688 days in total. The first 1000 days serve as an initial estimation period for
the individual models and the first out-of-sample forecasts are produced on 26/Dec/2002, the 1001st day.
Forecasts generated between 1001st and 1044th serve as a track-record period for the forecasts generated
by combination methods. The first out-of-sample combination forecast day is 03/Mar/2003, the 1045th
day in the sample. For the comparison to be fair, I begin to evaluate all the models (both individual and
combination methods) starting on that day.
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i.e. the square root of the average squared deviation between actual implied volatil-
ities provided by OptionMetrics and the one-step ahead IV forecasts conditional on
information available at time ¢. Subscript k& denotes one of the four individual or the
three combination models used to forecast IVS, N is the number of contracts used to

calculate the measure on day t for model k.

2. Mean absolute prediction error in implied volatilities (MAPEV)

1 N
MAPEVy, = + > oiasr — 65 (5.2)
=1

i.e. the average absolute deviation between the observed implied volatilities and

model’s forecasted implied volatilities.

3. Mean correct prediction of the direction of change in implied volatilities (MCPV)

N
1 R
MCPVy, = N Z 1 [Sgn (Cit41 — 0it) = sg0 (aﬁtﬂu — 02-7,5)] (5.3)
i=1

i.e. the percentage of IV for which the model correctly forecasted the direction of
change for the next day. 1[z] is an indicator function that equals 1 when z is true and

0 otherwise, sgn(y) indicates if y has a positive or a negative sign.

Because the number of quoted contracts per day gradually increases over time as illustrated in
figure in Appendix[B], the three abovementioned measures are calculated for each of 2644
days in the out-of-sample period, what corresponds to the subscript ¢. If the performance
measures were not calculated daily and next averaged over the number of quoted contracts
per day, much of the weight would be assigned to the more recent observations. Calculating
the performance measures daily allows to analyse the time variation in the predictability of
IVS and is a frequently used approach in the literature on the out-of-sample forecasting of
IVS (see e.g. (Goncalves and Guidolin| (2006) and (Chalamandaris and Tsekrekos| (2010)).
To ensure comparability between the models, I restrict the evaluation for all the models
to the moneyness interval of m € [0.85,1.15], what reduces the number of the options in the
out-of-sample period from 1,011,545 to 634,451. The reason for this is that in PCA model the
whole surface is recovered from the 64 points which correspond the fixed grid of moneyness
m; € {0.85,0.90,0.95,0.99,1.01,1.05,1.10,1.12} (see section 2.2). In order to evaluate IV
forecasts of the options with moneyness outside the mentioned interval, I would have to use
a very large bandwidth to recover the full surface from the forecasted points. This in turn

would lead to an extreme oversmoothing and inaccurate forecasts in the moneyness range of
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interest m € [0.85,1.15] for the PCA model.

I report the performance statistics with respect to different segments of IVS because of two
related reasons. First, it is likely that a predictive power of the individual models varies across
different regions of the surface, as distinguished by the moneyness-maturity groups. Second,
table [2.2] in section 2.1 shows that the number of quoted contracts is irregularly distributed
over the surface, with more put than call options. Neglecting this fact, the aggregated
result assigns the largest weight to the more numerous put options. The aggregated result

is reported under a category All

5.2 In-sample fit

Before analysing the forecasting power of the models under consideration, I evaluate how well
they fit to IV data in-sample. In the comparison, I put the factor dynamics of the Parametric
VARX(p,q) and PCA models aside, which means I make use of equations and
only when fitting IVS in-sample with these two models respectively (in PCA model the same
number of factors is used as in the out-of-sample application which is three). Moreover,
Parametric VARX(p,q) model reduces to Practitioner Black-Scholes model in the in-sample
case. Hence, when evaluating the in-sample fit of the three approaches studied in this thesis
to forecast IVS, T present only three models instead of the four described in chapter 3] I
calculate the in-sample version of the measures given in equations and [5.2] Root Mean
Square Error (RMSEV) and Mean Absolute Error (MAEV). The in-sample evaluation is
purely based on the cross-sectional fitting of the models (as explained above), while the idea
behind measure is to capture and asses their dynamic aspect. Thus, MCPV measure is
not considered in the in-sample evaluation.

Table compares the in-sample fit of the models in terms of RMSEV metric. PCA
model provides the best fit for the medium (60 to 180 days) and the long (over 180 days)
maturities across all the moneyness categories. The aggregated RMSEV across all the mon-
eyness categories accounts for 0.0050 and 0.0028 for the medium and the long maturities
respectively. The aggregated error for PBS accounts for 0.0080 and 0.0072, while for HN
model 0.0173 and 0.0139. PCA also gives the most accurate fit for the short term option
with moneyness greater or equal 0.95. It indicates that the nonparametric smoothing of the
surface with the kernel regression gives a better fit than assumption of the parametric struc-
ture of IVS. The nonparametric regression fits the surface locally, taking into account only
these observations that lie within the predefined bandwidths from the fitted point. On the
other hand, the parametric approach uses all the available data to estimate the factors that
span the surface. This neglects the fact that IVs of the short term options may exhibit quite

different features than IVs of the longer contracts. Practitioner Black-Scholes model, which
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Table 5.1: In-sample fit as measured by RMSEV

Maturity
<60 60-180 >180
Moneyness PBS PCA HN PBS PCA HN PBS PCA HN
0.85-0.90 .0099 .0180 .0397 .0093 .0055 .0209 .0085 .0019 .0093
0.90-0.95 .0090 .0128 .0371 .0073 .0046 .0168 .0074 .0019 .0114
0.95-0.99 .0093 .0072 .0307 .0054 .0043 .0170 .0063 .0026 .0159
0.99-1.01 .0110 .0085 .0257 .0054 .0046 .0167 .0053 .0030 .0198
1.01-1.05 .0105 .0104 .0216 .0060 .0041 .0112 .0052 .0026 .0177
1.05-1.10 0125 .0086 .0192 .0075 .0041 .0139 .0062 .0023 .0112
1.10-1.15 .0211 .0130 .0202 .0099 .0052 .0169 0072 .0037 .0094

All .0113 .0128 .0314 .0080 .0050 .0173 0072 .0028 .0139
The table contains average daily root mean square error in implied volatilities (RMSEV) for the individual
models over the period of 03/Mar/2003 - 30/Aug/2013, which is 2644 days. RMSEV is calculated for
different moneyness-maturity categories on the sample restricted to contracts in the moneyness range of
m € [0.85,1.15]. PBS is the Practitioner Black-Scholes model, PCA is the PCA model and HN is the Heston
and Nandi GARCH type option pricing model. Emboldened values indicate the best performing model

within each moneyness-maturity category.

is treated as a benchmark, fits the observed implied volatilities better than other models for
the short term OTM put options with m < 0.95. It outperforms the other models in this re-
gion sufficiently to deliver the smallest RMSEV aggregated across all the moneyness groups.
All the three models exhibit better accuracy in fitting IVS as maturity increases. The same
conclusions can be drawn based on the table in Appendix [C] which shows the in-sample
mean absolute errors in the implied volatilities. This result is in the line with what could be
expected because when the maturity increases, the surface becomes flatter (see Figure
in section which shows the slope of the volatility smile for different maturities). Figure
illustrates how the daily RMSEV attributed to the individual models evolve over time
in each maturity group. Most of the time, PCA model has the smallest daily RMSEV. The
in-sample fit sharply deteriorates during the burst of the 2008 crisis. However, for the long
term options the fit of PCA model is hardly affected by the crisis. Figure in section
shows that the slope of the volatility term structure plummeted in the crisis of 2008,
meaning that IV of the short term contracts increased relatively more than IV of the long
term options. As PCA model fits the surface locally, it explains the fact why the fit of the
model deteriorates less in comparison to the other models, which parameters are estimated
using all the available data irrespective of the remaining time to maturity.

Model of Heston and Nandi (2000)) is the only one estimated in the option prices space in
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contrast to PBS, VARX and PCA models which are estimated directly in the implied volatil-
ity space. Although the model is of a complex structural type, it gives a poor fit to IVS,
with RMSEV of 0.0314, 0.0173 and 0.0139 for the short, medium and the long maturities
respectively. Table in Appendix [C| contains a size of pricing errors that correspond with
the model’s poor performance in providing the in-sample fit of the implied volatility surface.
The average daily RMSE in option prices, as a percentage of the average daily price, accounts
for 29% for the short, 14% for the medium and 12% for the long term contracts. The poor
performance in the implied volatility space in not surprising because even small errors in

option prices can produce large errors in implied volatilities as noted by Hentschel (2003).
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Figure 5.1:

In-sample daily RMSEV over time
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The figure illustrates the evolution of daily RMSEV for the three models evaluated in terms of the in-sample
fit over the period 03/Mar/2003-30/Aug/2013. The plot is based on the 5-day moving averages. RMSEV is
calculated for different maturity categories that aggregate all the moneyness groups on the sample restricted
to contracts in the moneyness range of m € [0.85,1.15]. PBS- Practitioner Black-Scholes, PCA- Principal
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5.3 Out-of-sample forecasting performance

Individual models

Table reports the average daily RMSPEV of the four individual models. Again, all the
models provide better accuracy in forecasting IVS for the medium and the long term options
than for the short term contracts. In addition to the reason mentioned in the previous section,
this can be explained by the fact that the variability from day to day of IVs is much smaller
for the long maturities, as shown in Table in Appendix [C] TV forecasts are less accurate
for the put than the call options in the short term category. It can also be explained by the
increasing variance along the moneyness dimension. Similarly to the in-sample case, PCA
model is the best performer for the medium and the long maturities for all the moneyness-
maturity combinations. Its average daily RMSPEV aggregated across all the moneyness
groups accounts for 0.0066 for the medium and 0.0040 for the long maturities. PCA model
delivers the most accurate forecasts for the short term contracts in 4 out of 7 moneyness
categories which are 0.95-0.99, 0.99-1.01, 1.05-1.10 and 1.10-1.15. For the deepest OTM
puts considered in the evaluation, i.e. when m € [0.85,0.90), Parametric VARX(p,q) model
gives the best result with the average daily RMSPEV of 0.0109. Benchmarking Practitioners
Black-Scholes yields the smallest forecasting error in two remaining moneyness groups, when
m € [0.90,0.95) and m € [1.01,1.05). However, even the best performing individual model
in a given region of the surface is not able to beat simple random walk forecasts for the
implied volatilities.

The relative out-of-sample performance of PCA model as compared to the in-sample
fit deteriorates the most among all the models. Still, it is capable of producing the most
accurate forecasts of IVS in the most segments of the surface. Interestingly, the worst
performer which is Heston and Nandi model deteriorates the least of-of-sample what makes
it the most stable model. It remains an open question whether with a different (possibly
better) calibration approach it could beat other models in the out-of-sample horse race. In
general, introducing the factors dynamics to Practitioner Black-Scholes model, that assumes
the parametric structure of IVS, improves the forecasting power of the approach only a
little as the Parametric VARX model has its average daily RMSPEV very close to PBS.
Parametric VARX beats PBS in 12 out of 21 segments of the surface.

Figure illustrates how daily RMSPEV of the models evolve over time in each of the
maturity groups. Most of the time the blue line of PBS and the red one of the Parametric
VARX model lie very close to each other and therefore are hardly distinguishable. For the
short maturities, parametric models perform systematically better than PCA model during

years 2005-2007 and at the end of the evaluation period. Interestingly, Heston and Nandi
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model yields lower RMSPEV at the beginning of the 2008 crisis in the medium and the
long maturity categories as compared to parametric models. It can be concluded that the
relative models’ performance varies over time. I investigate this issue in greater detail in
the next subsection. Figure and table in Appendices [B] and [C] evaluate the models
with respect to the mean absolute prediction error in implied volatilities. Even though same
conclusion can be drawn based on RMSPEV and MAPEV| I provide the statistics regarding
the latter measure to illustrate the average size of the absolute prediction error. Finally,
table in Appendix [C] provides statistics regarding the size of the pricing errors resulted
from the NLS calibration of Heston and Nandi model.

Even though the primary focus of this study is on the forecasting accuracy as the combin-
ing schemes aim to reduce MSPEV | it is interesting to compare the forecasting performance
from a different perspective. Table shows the next performance measure which is the av-
erage daily mean correct prediction of the direction of change in implied volatilities, MCPV.
When the models are evaluated with respect to this measure, similar conclusion can be drawn
when it comes to gains of incorporating the factors’ dynamics to the parametric structure of
IVS represented by PBS model. Parametric VARX model is superior in predicting the sign
change in 19 out of 21 IVS regions, as compared to PBS. Is is also the best performer for the
short maturities. PCA model, which was the best performer in terms of RMSPEV, predicts
the direction of change most accurate for the medium and the long maturities. When PCA
model is investigated in a greater detail, it turns out that when VARX model is employed to
capture factor dynamics, it correctly predicts the direction of change in log smoothed implied
volatilities log 6¢(m;, k;) 54% of times on average (average value across 64 smoothed times-
series of log 6,(m;, x;)). This time Heston and Nandi model turns out not to be the worst
choice for modelling IVS. It happens to predict the direction of change the most accurate
for option with moneyness of 1.05-1.10 in the short and the medium maturity category, and
for the deepest OTM long-term contracts. In contrast to the previous performance metric,

PBS exhibits the best accuracy in none of the moneyness-maturity groups.

To give an intuition whether the average MCPV values of the models are any good, I
compare them to a naive model that assumes parallel shifts of IVS segments. If on a previous
day more than half IVs in a given moneyness-maturity group increase (decrease), the naive
model assumes that all options in this group will increase (decrease) the next day. The naive
model is simplified version of a random walk model that could assume increase (decrease) in
specific IV value based on the change from the previous day. However, the naive model is
easier to apply, as it does not require that an individual option is in the sample for the three
consecutive days (as opposed to the hypothetical random walk model mentioned above). It

is a desirable property of the naive model because many options are filtered out from the
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OptionMetrics data set (see section . That is, it is likely that a specific option is present
in the data set on day t, excluded from the analysis on day ¢ + 1, and again returns on day
t + 2. Usually, naive model has MCPV value close to other models. Emboldened figures
in table |5.3] which indicate which models are superior to the naive model, show that sign
predictability is expected to be higher for the medium and the long maturities that the short
term option.

An useful and interesting test of MCPV statistic would be to asses the impact of the sign
predictability in terms of trading strategies, as they often entirely rely on the predicted
direction of change. However, economic evaluation of the models is out of the scope of this

study.
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Figure 5.2: Out-of-sample daily RMSPEV over time
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The figure illustrates the evolution of daily RMSPEV for the four models evaluated in terms of out-of-
sample fit over the period 03/Mar/2003-30/Aug/2013 and the random walk benchmark. The plot is based
on the 5-day moving averages. RMSPEV is calculated for different maturity categories that aggregate
all the moneyness groups on the sample restricted to contracts in the moneyness range of m € [0.85,1.15].
PBS- Practitioner Black-Scholes model, VARX- Parametric VARX (p,q), PCA-Principal Component Analysis
model, HN- Heston and Nandi GARCH model, RW- Random Walk.



Table 5.2: Out-of-sample fit as measured by RMSPEV

Maturity
<60 60-180 >180

Moneyness PBS VARX PCA HN RW PBS VARX PCA HN RW PBS VARX PCA HN RW
0.85-0.90 .0110 .0109 .0186 .0401  .0089 .0094 .0090 .0068 .0212 .0042 .0080 .0077 .0032 .0096 .0027
0.90-0.95 .0107 .0109 .0151 .0394 .0086 .0078 .0075 .0060 .0175 .0042 .0072 .0070 .0032 .0116 .0028
0.95-0.99 .0110 .0116 .0096 .0345 .0079 .0066 .0066 .0056 .0172 .0043 .0064 .0063 .0035 .0161 .0030
0.99-1.01 .0130 .0135 .0115 .0294 .0089 .0072 .0073 .0063 .0165 .0051 .0059 .0058 .0041 .0197 .0035
1.01-1.05 .0131 .0134 .0131  .0252  .0080 .0081 .0081 .0059 .0124 .0045 .0061 .0061 .0037 .0178  .0030
1.05-1.10 .0144 .0141 .0113 .0212 .0082 .0095 .0092 .0059 .0144 .0045 .0071 .0072 .0034 .0114 .0028
1.10-1.15 .0211 .0210 .0147 .0236 .0108 .0108 .0100 .0067 .0172 .0045 .0079 .0079 .0047 .0094 .0027
All .0133 .0135 .0149 .0344 .0092 .0094 .0091 .0066 .0179 .0048 .0076 .0075 .0040 .0143 .0032

The table contains the average daily Root Mean Square Prediction Error in implied volatilities (RMSPEV) for the individual models over the period 03/Mar/2003-
30/Aug/2013. Forecasting models are estimated on the full sample of the daily S&P500 implied volatilities but RMSPEV is calculated for different moneyness-maturity
categories for the forecasts restricted to contracts in the moneyness range of m € [0.85,1.15]. PBS is the Practitioner Black-Scholes model, PCA is PCA model, HN
is Heston and Nandi GARCH type option pricing model, and RW is random walk benchmark. Emboldened values indicate the best performing model, excluding RW

benchmark, within each moneyness-maturity category. Underlined values indicate the best overall performer.

Table 5.3: Percentage of correctly predicted direction of change in IVs

Maturity
<60 60-180 >180

Moneyness PBS VARX PCA HN Naive PBS VARX PCA HN Naive PBS VARX PCA HN Naive
0.85-0.9 .5516 .5594 4427 .5268 .6080 .4834 .4882 .5295 .5179 4755 .5210 .5266 .5250 .5269 .5123
0.9-0.95 .5668 .5725 .4839 5121 5737 .5061 .5118 .5372 .5136 .5047 .5290 5345 5471 .5227 .5106
0.95-0.99 .5494 .5526 .5631 .5083 4796 .5356 .5305 .5503 .5235 .5094 .5348 5393 .5502 .5092 14948
0.99-1.01 5273 .5339 .5285 .5168 4762 .5328 5317 .5418 .4873 4756 .5368 .5404 .5501 .4460 4976
1.01-1.05 .5079 .5218 .4894 .5189 .5393 .4939 .5052 .5483 .5415 .4648 .5179 .5242 .5648 .4789 4758
1.05-1.1 .5033 .5230 .5291 .5316 4766 .4859 4984  .5455 .5562 5391 4916 4981 .6057 .5147 .4805
1.1-1.15 .4965 .5160 .5262 .4858 .5047 .4891 .4995 .4888 .5294 .5330 .4832 .4884 4653  .5242 .5220
All .5399 .5498 .5110 .5138 .4938 .5066 .5131 .5392 .5228 .5101 .5245 .5304 .5494 5119 .5249

The table reports the average values of the daily MCPV. MCPYV is a fraction of correctly predicted direction of change in implied volatilities on a given day. Forecast
evaluation period for this measure covers dates from 03/Mar/2003 until 30/Aug/2013 Forecasting models are estimated on the full sample of daily S&P500 implied
volatilities but MCPV is calculated for different moneyness-maturity categories for the forecasts restricted to contracts in the moneyness range of m € [0.85,1.15]. The

naive model is a version of a random walk model that assumes that all IVs in a given IVS segment increase (decrease) if on a previous day in a given moneyness-maturity

category more than half IVs increase (decrease). Emboldened values indicate the best performing model within each moneyness-maturity category.
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Sub-periods individual models

Given that the out-of-sample period covers 11 years and includes such a remarkable event as
the financial crisis of 2008, I divide the out-of-sample period in three sub-periods to examine
stability of the forecasting performance over time. The sample is divided into three sub-
periods based on the NBER US Business Cycle Expansions and Contractions data, such
that the first sub-period covers the dates before the recession (03/Mar/2003-31/Dec/2007),
the second is the crisis time (01/Jan/2008-30/Jun/2009), and the third represents after the
crisis data (01/Jul/2009-30/Aug/2013).

Table shows the forecasting performance measured during the three sub-periods. For
the medium and the long maturities PCA is unbeatable and yields the smallest RMSPEV
at all times. When it comes to the short term options, in the first sub-period which covers
years 2003-2007, PCA exhibits the highest forecasting accuracy in four moneyness categories:
m € [0.95,0.99), m € [0.99,1.01), m € [1.05,1.10) and m € [1.05,1.15]. Benchmarking PBS
is the most accurate model for the two moneyness categories which m € [0.85,0.90) and
m € [0.90,0.95). Parametric VARX wins the out-of-sample horse race in moneyness category
of m € [1.01,1.05). During the financial crisis, when IVS shifts to extraordinary levels, as
can be observed with VIX behaviour in figure 2.2 PCA captures the out-of-sample dynamics
better than the other models for all but the deep OTM put options with m € [0.85 — 0.90),
when PBS and VARX models perform better. The forecasting performance of all the models
deteriorates largely in the recession time, for example PCA yields the average RMSPEV for
the short maturities of 0.0129 before the crisis and 0.0192 during the crisis. In the post-
crisis time, the best performer at the short end of the surface is PCA model winning the
out-of-sample horse race in 5 moneyness categories, when m > 0.95. The short term deep
OTM puts are the most numerous option as compared to other moneyness categories of
the maturity category, what helps to explain why PBS yields the smallest forecasting error
aggregated across the moneyness dimension even though it is the best model only in one
out of 7 groups along this dimension. Finally, it is worth to mention that Heston and Nandi
model is not always the worst performer, as it beats the parametric approaches in the third
sub-period in IVS segment of the deep OTM call options. In the last sub-period RMSPEV
of HN model in the mentioned moneyness-maturity category is 0.0172, while for PBS and
VARX it accounts for 0.0203 and 0.0201 respectively.

To further explore the time variation in the forecasting ability, I report RMSPEV over the
relatively short rolling window. Figure[5.3|shows 126 days (approximately half a year) rolling
RMSPEV with respect to options’ maturity. For the medium and the long maturities PCA

approach outperforms permanently other methods. For the short term options, it begins to

56



CHAPTER 5. EMPIRICAL RESULTS

outperform other models since the outburst and for the duration of the financial crisis. In
between of the end of the crisis and 2013 parametric models and PCA yield similar forecasting
errors. In 2013, which is the last year of out-of-sample period, parametric methods turn out

to be the best performers again.

Figure 5.3: 126 days rolling RMSPE over time
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The figure illustrates the average daily RMSPEV over the moving window of 126 days. RMSPEV is calculated
for the different maturity categories that aggregate all the moneyness groups on the sample restricted to
contracts in the moneyness range of m € [0.85,1.15]. PBS- Practitioner Black-Scholes, PCA, and HN-
Heston and Nandi GARCH model.
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Table 5.4: Average daily RMSPEV in different sub-periods:

Panel A: before the 2008 crisis

individual models

Maturity
<60 60-180 >180
Moneyness PBS VARX PCA HN RW PBS VARX PCA HN RW PBS VARX PCA HN RW
0.85-0.90  .0081 0082  .0173 .0316 .0071 0079 0081 .0056 .0207 .0034 .0059 0059 .0026 .0075 .0021
0.90-0.95  .0074 0076 .0140 .0331  .0068 .0063 0064 .0052 .0162 .0033 .0049 0049 .0026 .0086  .0022
0.95-0.99 .0080 0083 .0076 .0312 .0064 .0051 0052 .0049 .0161 .0035 .0041 0041 .0030 .0138 .0023
0.99-1.01 .0095 0098 .0093 .0255 .0075 .0055 0055 .0052 .0143  .0043 .0046 0046 .0034 .0173  .0029
1.01-1.05 0086  .0086  .0112 .0208 .0063 .0056 0056 .0049 .0108 .0036 .0055 0055 .0030 .0149 .0025
1.05-1.10 .0106 0101  .0092 .0170  .0062 .0063 0059 .0050 .0130 .0035 .0061 0061 .0028 .0083 .0022
1.10-1.15 .0205 0201  .0131 .0217 .0089 .0082 0074 .0053 .0143  .0035 .0063 0063 .0038 .0074 .0021
All .0095 0096 .0129 .0290 .0073 .0069 0068 .0055 .0164 .0039 .0057 0058 .0032 .0117  .0025
Panel B: during the 2008 crisis
Maturity
<60 60-180 >180
Moneyness PBS VARX PCA HN RW PBS VARX PCA HN RW PBS VARX PCA HN RW
0.85-0.90 _ .0170 0172 0181 0661 .0127 0111 0111 .0100 0314 .0071 0117 0115 .0053 0128 .0046
0.90-0.95 .0196 0199 .0167 .0676 .0135 0118 0119 .0089 .0317 .0075 0136 0134 .0053 .0164 .0048
0.95-0.99 0187 0192 .0150 .0558 .0137 0115 0115 .0087 .0305 .0079 0143 0141 .0062 .0198 .0056
0.99-1.01 .0202 0210 .0177 .0443 0154 0117 0118 .0107 .0248 .0092 0114 0112 .0078 .0231 .0074
1.01-1.05 .0210 0218 .0184 .0382 .0149 .0120 0119 .0104 .0178 .0084 .0090 0087 .0070 .0253 .0056
1.05-1.10 .0230 0238 .0175 .0380 .0152 0138 0134 .0089 .0201 .0082 .0087 0084 .0052 .0206 .0051
1.10-1.15 .0232 0236 .0190 .0381 .0155 .0142 0134 .0102 .0286 .0079 .0085 0082 .0064 .0152 .0046
All .0225 0231 .0192 .0553  .0159 .0138 0136 .0105 .0284 .0089 0121 0118 .0069 .0203 .0062
Panel C: after the 2008 crisis
Maturity
<60 60-180 >180
Moneyness PBS VARX PCA HN RW PBS VARX PCA HN RW PBS VARX PCA HN RW
0.85-0.90 0124 .0120 .0202 0412 .0098 0106 0094 .0072 0184 .0043 .0093 0087 .0032 0109 .0028
0.90-0.95  .0112 0116  .0158 .0366 .0088 .0081 0073 .0058 0139 0041 0077 0072 .0032 0134 0028
0.95-0.99 0118 0127 .0099 .0306 .0076 .0065 0063 .0052 .0137 .0041 .0063 0060 .0032 .0175 .0028
0.99-1.01 0145 0152 .0117 .0286 .0081 .0076 0077 .0058 .0161 .0045 .0056 0055 .0037 .0213  .0029
1.01-1.05 0155 0159 .0136 .0257 .0076 .0097 0098 .0055 .0124 .0041 .0059 0060 .0034 .0186  .0027
1.05-1.10 0155 0152 .0114 .0198 .0080 0116 0114 .0058 .0139 .0043 .0078 0080 .0034 .0117 .0027
1.10-1.15 .0203 0201 .0133 .0172 .0094 0127 0120 .0072 .0167 .0046 .0095 0097 .0052 .0099 .0027
All .0144 0146  .0156 .0332  .0090 0105 0100 .0065 .0158 .0045 .0082 0081 .0039 .0152 .0029

The table reports the average daily RMSPEV in the three sub-periods: 03/Mar/2003-31/Dec/2007, 01/Jan/2008-30/Jun/2009, 01/Jul/2009-30/Aug/2013, and for the
different moneyness-maturity categories. Forecasting models are estimated on the full sample of the daily S&P500 implied volatilities but RMSPEYV is calculated for the
forecasts restricted to contracts in the moneyness range of m € [0.85,1.15]. PBS is the Practitioner Black-Scholes model, VARX is Parametric VARX model, PCA is
PCA model and HN is Heston and Nandi GARCH type option pricing model. Emboldened values indicate the best performing model within each moneyness-maturity

category.
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Bias in individual forecasts

This subsection provides assessment of how important the bias contribution to the forecasting
errors is. Following |Pindyck and Rubinfeld| (1998), mean squared prediction error can be

decomposed as follows:

N N 2
1 ) 2 1 . _
N Z (Ui,t+1 - Ui,t+1|t) = <(N Z Uz‘,t+1\t) - Ut+1> + (S&mn - Sat+1)2 +2(1 _p)86t+1|t80't+17

i=1 i=1

(5.4)

where % Zfil Git41]t) Ot+1s So,41,0 Sovys are the means and biased (obtained with denominator
of N) standard deviations of predicted and observed values of IV, denoted by &; 41 and
041 respectively. This decomposition allows to asses the contribution to MSPE of (squared)

bias, variance and covariance, based on the following proportions that sum up to one:

1 N 4 _ 2
((N Dict Tigri)t) — Ut+1>
. 2
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1 N - 2"
N Z¢:1 (Ui,t+1 - Uz‘,t+1\t)

bias contribution:

variance contribution:

covariance contribution:

A desirable property of the forecasts is that much weight should be concentrated on the co-
variance proportion, which accounts for unsystematic forecasting errors. Investigating how
much the bias contributes to the forecasting errors can not only provide better understanding
of the roots of the errors, but also can help to decide whether optimal weights obtained by
means of regression model should be estimated with or without an intercept. Inclusion of
the intercept can adjust for the bias if present in the individual forecasts. Table reports
average daily bias proportion with respect to different-moneyness maturity, as well as dis-
tinguished sub-periods. From the table it can be seen, that bias is an important contributor
to the forecasting errors for each of the individual models, especially when assessed in the
individual moneyness-maturity bins. On average the bias propotion in the MSPE is around
60-70%. Parametric models, which are PBS and VARX, exhibit on average the largest bias
proportion for medium maturities. Contrary to that, PCA model has the largest bias pro-
portion for the options that fall into long maturity category, while the same it true for Heston
and Nandi model. Parametric models have smaller bias proportion in the short maturity
category for the put options than the call options relatively to other models. Usually, all

the models exhibit smaller bias proportion for the call options as compared with the put
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options. It is especially the case for the short maturities, where the curvature of the smile
is the most significant. In general, patterns across different moneyness-maturity categories

are not the same in different sub-periods.
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Table 5.5: Bias proportion in forecasting errors

Panel A: before the 2008 crisis

Maturity
<60 60-180 >180

Moneyness PBS VARX PCA HN PBS VARX PCA HN PBS VARX PCA HN
0.85-0.90 63% 64% 69% 38% 82% 84% 53% 43% 72% 75% 59% 44%
0.90-0.95 53% 53% 58% 33% 74% 74% 45% 41% 62% 65% 58%  63%
0.95-0.99 69% 70% 53% 42% 65% 66% 67% 59% 55% 59% 76%  88%
0.99-1.01 63% 63% 57%  54% 63% 63% 56% 55% 59% 62% %  84%
1.01-1.05 53% 54% 81% 59% % 7% 0% 4T% 67% 68% 1% 8%
1.05-1.10 55% 53% 66%  67% 64% 62% 68% 76% 73% 74% 56% 43%
1.10-1.15 62% 61% 66%  82% 66% 63% 70% 86% 73% 5% 60% 54%
All 27% 27% 16% 26% 34% 33% 30% 30% 20% 21% 28% 6%

Panel B: during the 2008 crisis

Maturity
<60 60-180 >180

Moneyness PBS VARX PCA HN PBS VARX PCA HN PBS VARX PCA HN
0.85-0.90 63% 63% 51% 65% 78% 78% 67% 70% 80% 81% 4%  73%
0.90-0.95 65% 66% 57% 4% 81% 82% 67% 84% 81% 83% 73%  85%
0.95-0.99 68% 68% 67% TT% 82% 81% 73% 86% 82% 84% 78%  85%
0.99-1.01 58% 60% 56% 2% 64% 64% 60% 64% 1% 1% 9%  83%
1.01-1.05 73% 72% 8% 3% 81% 81% 6% 57% 66% 65% 82%  84%
1.05-1.10 64% 63% 1% 1% 84% 82% 64% 65% 64% 63% 66%  80%
1.10-1.15 63% 63% 0% 8% 85% 85% 68% 81% 66% 64% 1% 57%
All 41% 42% 40% 5% 37% 35% 48%  55% 39% 40% 2% 11%

Panel C: after the 2008 crisis

Maturity
<60 60-180 >180

Moneyness PBS VARX PCA HN PBS VARX PCA HN PBS VARX PCA HN
0.85-0.90 56% 53% 39% 30% 83% 80% 55% 35% 1% 1% 62% 67%
0.90-0.95 51% 52% 141% 32% 2% 67% 4%  35% 60% 60% 59% 85%
0.95-0.99 63% 67% 51% 43% 59% 57% 67% 47% 56% 57% 0%  91%
0.99-1.01 69% 70% 58%  58% 63% 64% 58% 46% 57% 60% 73%  85%
1.01-1.05 65% 66% 6% 61% 2% 74% 64% 45% 60% 65% 67% 8%
1.05-1.10 46% 45% 60%  59% 73% 75% 60% 63% 72% 76% 50% 63%
1.10-1.15 62% 61% 62% 2% 66% 64% 59% 76% 78% 81% 62% 43%
All 28% 31% 24% 2% 29% 28% 3%  25% 24% 25% 39% 9%

The table reports the average daily proportion of bias contribution to forecasting errors in the three sub-periods: 03/Mar/2003-31/Dec/2007, 01/Jan/2008-30/Jun,/2009,
01/Jul/2009-30/Aug/2013, and for the different moneyness-maturity categories. PBS is the Practitioner Black-Scholes model, VARX is Parametric VARX model, PCA is
PCA model and HN is Heston and Nandi GARCH type option pricing model. Emboldened values indicate the model with the smallest bias proportion in its forecasting
errors within each moneyness-maturity category.
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Forecast combination

Table [5.6| shows that using forecasts combination can improve on forecasting the implied
volatility surface as compared to the individual models- although the improvement is not
large enough to beat RW forecasts. However, combination forecasts based on the equal
weights obtained by combining all the four models often produce poor results. It has been
documented in the literature on the model combination that trimming of the worst per-
forming models often improves performance. Winkler and Makridakis (1983)) and |Stock and
Watson (2004) find out that combining schemes like the equal weighting perform better
when the worst performing model is excluded from the combination. The same is true with
respect to forecasting IVS. DMSPE model yields mix results when Heston and Nandi model
is excluded from the combination. In general, trimmed version of DMSPE yields smaller
errors for the put options, while it does not improve forecasting IVs of the call options. It
may be explained by the fact that Heston and Nandi model is relatively more accurate in
forecasting IVS for options with larger moneyness. I find that trimming is not effective when
the regression method is employed. I report the evaluation results for the trimmed version
of the equal weighting. DMSPE and regression based weights are calculated using all the

four models.
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Table 5.6: Out-of-sample performance of combining methods

Maturity
<60 60-180 >180

Moneyness RW Ind EW Disc Opt RW Ind EW Disc Opt RW Ind EW Disc Opt
0.85-0.90 .0089 .0109 .0121 .0112 .0104 .0042 .0068 .0066 .0066 .0052 .0027 .0032 .0054 .0037 .0031
0.90-0.95 .0086 .0107 .0109 .0105 .0100 .0042  .0060 .0061 .0060 .0052 .0028 .0032 .0051 .0039 .0032
0.95-0.99 .0079  .0096 .0098 .0096 .0091 .0043  .0056 .0057 .0058 .0051 .0030 .0035 .0049 .0043 .0033
0.99-1.01 .0089 .0115 .0123 .0118 .0099 .0051  .0063 .0064 .0064 .0057 .0035 .0041 .0048 .0046 .0039
1.01-1.05 .0080 .0131 .0126 .0119 .0095 .0045 .0059 .0070 .0062 .0053 .0030 .0037 .0048 .0044 .0034
1.05-1.10 .0082 .0113 .0123 .0114 .0102 .0045 .0059 .0075 .0064 .0054 .0028 .0034 .0051 .0039 .0032
1.10-1.15 .0108 .0147 .0181 .0156 .0148 .0045 .0067 .0084 .0070 .0058 .0027 .0047 .0063 .0049 .0036
All .0092 .0133 .0128 .0121 .0107 .0048  .0066 .0074 .0069 .0058 .0032 .0040 .0057 .0046 .0037

The table shows the average daily RMSPEV for the different combining schemes. EW denotes trimmed equal weights, where Heston and Nandi model
is not included, Disc is Discounted Mean Square Prediction Error (DMSPE) method that follows [Stock and Watson|(2004) and Opt are the estimated
optimal weights with unrestricted regression with inclusion of the intercept (equation ) Indv denotes the best performing individual model in
a given moneyness-maturity category which implies that different individual models are included in columns under this heading. The hold-out period
for DMSPE and regression methods is set to 44 days. Therefore, the evaluation period covers 2642 days, from 03/Mar/2003 until 30/Aug/2013. The

emboldened values indicate the combining schemes that improve on the best individual forecast in a given moneyness-maturity category.



5.3. OUT-OF-SAMPLE FORECASTING PERFORMANCE

Forecasting based on the estimated optimal weights (with unrestricted regression (4.2al))
yields the best results, superior not only to other combining schemes, but also to the best
performing individual model in a given IVS segment. On the other hand, forecasts based
on the equal weights (but trimmed) usually result in larger RMSPEV as compared to the
best individual model. The equal weighting beats the best individual model only for the
short term calls with m € [1.01 — 1.05), and ATM put options with moneyness in the range
of 0.99-1.01 for the medium term options. DMSPE-based weighting improves on the best
individual model for two moneyness categories within the short maturities: 0.90-0.95 and
1.01-1.15. For the medium maturities, it yields better results for the deep OTM puts with
m € [0.85 — 0.90). For the long maturities, only the regression-based weighting results in
smaller RMSPEV in all the moneyness categories but one, yielding the largest improvement
for the deep OTM calls with m € [1.10 — 1.15]. For the medium term options, the most
significant improvement can be observed for the deep OTM puts and the deep OTM calls. In
these two categories RMSPEV reduces from 0.0068 for the best individual model to 0.0052,
and from 0.0067 to 0.0058 respectively when regression-based weights are employed. The
most notable reduction in forecasting errors with respect to the short maturities is observed
for the contracts with m € [1.01 — 1.05), when RMSPEV drops from 0.0131 to 0.0095.
Table 5.2 shows that the aggregated pricing errors in the short term maturity category
are the largest, which implies that the forecasting the short end of the surface is the most
challenging task. All the combining schemes produce smaller average RMSPEV aggregated
across the moneyness dimension than the best performing individual model. In general,
implementation of the forecasts combination is partly successful, as the estimated optimal
weights are able to generate more accurate forecasts for almost all the moneyness-maturity

categories than the individual, yet they do not beat random walk forecasts.

Based on the evolution of RMSPEV of the individual models presented in figure [5.2]
it can be presumed that the relative importance each of the individual models plays in
the combination forecasts varies over time. Figures [5.4] and [5.5] illustrate what weights are
assigned to the individual models by DMPSE and the regression methods respectively. They
are aggregated across the moneyness categories and plotted with respect to options’ maturity.
At all times, the regression method assigns weights with the opposite sign to the parametric
models’ (PBS and VARX) forecasts, meaning they partly cancel out. This is due to the fact
that they lie very close to each other and are highly collinear. Thus, I plot the sum of the
weights for PBS and VARX models represented by the red line in Figure 5.4l Figure B.5
in Appendix [B| illustrate the weights separately. Averaged regression-based weights have a
lower variance than the weights obtained with DMSPE method, which is indicated by the
fact that they lie close to their 1-month moving average (MA), represented by emboldened
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lines in the figures. On the other hand, DMSPE weights are more unstable from day to
day, fluctuating around 1-month MA. In figure [5.6], I provide an example how the optimal
estimated weights vary in the given moneyness-maturity category.

Because the relative forecasting performance of the individual models vary across different
regions of the surface, I find that the weights depended on the moneyness-maturity category
are more effective than the weights assigned irrespective to the options’ moneyness. Table
compares RMSPEV resulted from the combination weights estimated with respect to every
moneyness-maturity categories with the weights estimated irrespective of the moneyness
dimension. In every maturity category the moneyness dependent weighting gives smaller
error. The most notable difference in RMSPEV can be seen for the short maturity category.
The estimated optimal weights with respect to every moneyness-maturity category yield the
average overall square error of 0.0107 in comparison to 0.0116 of the m independent optimal

weights.

Table 5.7: RMSPEV comparison of moneyness dependent and independent weights

Maturity
<60 60-180 >180
Disc Opt Disc Opt Disc Opt

m independent .0125 .0116 .0069 .0062 .0047 .0039
m dependent  .0121 .0107 .0069 .0058 .0046 .0037

The table compares RMSPEV resulted from the combination weights estimated with respect to every
moneyness-maturity category with the weights estimated irrespective of the moneyness category and de-
pendent only on the maturity. Disc- DMSPE method and Opt- optimal estimated weights with unrestricted
regression. The performance measure is calculated for the whole evaluation period covering dates from
03/Mar /2003 until 30/Aug/2013.

Sub-periods combination forecasts

IV combination forecasts are also unstable over time. Table reports the forecasting
accuracy of the combination forecasts measured with RMSPEV for the three sub-periods.
In the period before the recession of 2008, combination forecasts are more effective. Simple
equal weighting method is able to outperform the most accurate individual model in a given
moneyness-maturity category in 1 out of 7 moneyness groups for the short term contracts
and 3 for the medium term options. Using this weighting scheme does not result in any
improvement for the long term contracts in any of the three sub-periods. During the crisis
time it beats the best individual model for the deep OTM puts for the short term as well as
the medium term maturities, reducing RMSPEV from 0.0170 to 0.0158, and from 0.0100 to
0.0087 respectively. In the last sub-period, using equal weighting slightly reduces RMSPEV
for the medium-term OTM put options. I observe quite similar behaviour for DMSPE
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method. It is unable to systematically deliver a reduction in RMSPEV for the long term
options in any of the three sub-periods. For the short maturities, it outperforms the best
individual model in 4 out of 7 moneyness categories in the first sub-period, just the deep OTM
puts during the crisis, and none in the most recent sub-period. For the medium maturities, it
starts with smaller RMSPEV than the best individual model in all the moneyness categories,
during the crisis it reduces the forecasting error in moneyness categories of [0.99 — 1.01) and
[1.01—1.05), in the last sub-period it is effective only for the deep OTM puts. The regression
based weights yield the most stable forecasting performance in the sense that at almost all
occasions they are able to beat the best performing individual model in a given segment
of IVS. In the first sub-period the estimated optimal weights do not yield improvement in
reducing RMSPEV only for the short term deep OTM calls. In the times of the crisis, there
are 3 moneyness categories for which the regression weights are inferior to the best individual
model: m € [0.90 — 0.95), m € [0.95 — 0.99) and m € [1.10 — 1.15] for the short maturities.
It reduces forecasting error for moneyness categories of m € [0.99 — 1.01), m € [1.01 — 1.05)
and m € [1.10—1.15] for the long maturities. In the third sub-period, it reduce RMSPEV for
all the short and medium term moneyness categories. For the long term options, it delivers

forecasting improvement in the same categories as in the crisis time.
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Table 5.8: Average daily RMSPEV in different sub-periods: combination forecasts

Panel A: before the 2008 crisis

Maturity
<60 60-180 >180
Moneyness RW Ind EW Disc Opt RW Ind EW Disc Opt RW Ind EW Disc Opt
0.85-0.90 .0071  .0081 .0098 .0082 .0075 .0034 .0056 .0057 .0055 .0041 .0021  .0026  .0042 .0029 .0024
0.90-0.95 .0068 .0074 .0082 .0075 .0073 .0033 .0052 .0050 .0051 .0040 .0022  .0026 .0036 .0029 .0023
0.95-0.99 .0064 .0076 .0070 .0069 .0067 .0035 .0049 .0047 .0048 .0041 .0023 .0030 .0033 .0032 .0024
0.99-1.01 .0075  .0093 .0093 .0088 .0073 .0043 .0052 .0051 .0050 .0046 .0029 .0034 .0038 .0037 .0030
1.01-1.05 .0063  .0086 .0087 .0082 .0069 .0036  .0049 .0050 .0046 .0040 .0025 .0030 .0044 .0037 .0026
1.05-1.10 .0062 .0092 .0086 .0083 .0079 .0035 .0050 .0050 .0047 .0041 .0022 .0028 .0043 .0030 .0024
1.10-1.15 .0089 .0131 .0175 .0150 .0143 .0035 .0053 .0060 .0052 .0044 .0021  .0038 .0050 .0035 .0027
All .0073  .0095 .0095 .0088 .0078 .0039  .0055 .0056 .0054 .0045 .0025 .0032 .0044 .0035 .0027
Panel B: during the 2008 crisis
Maturity
<60 60-180 >180
Moneyness RW Ind EW Disc Opt RW Ind EW Disc Opt RW Ind EW Disc Opt
0.85-0.90 .0127 .0170 .0158 .0161 .0168 .0071 .0100 .0087 .0094 .0079 .0046  .0053 .0077 .0061 .0054
0.90-0.95 .0135 .0167 .0174 .0177 .0169 .0075 .0089 .0094 .0095 .0087 .0048 .0053  .0094 .0069 .0058
0.95-0.99 .0137  .0150 .0166 .0169 .0156 .0079  .0087 .0098 .0099 .0090 .0056 .0062 .0107 .0086 .0063
0.99-1.01 .0154  .0177 .0188 .0187 .0171 .0092 .0107 .0107 .0106 .0100 .0074 .0078  .0092 .0089 .0077
1.01-1.05 .0149 .0184 .0194 .0186 .0165 .0084 .0104 .0107 .0099 .0093 .0056 .0070 .0070 .0070 .0064
1.05-1.10 .0152  .0175 .0203 .0193 .0172 .0082  .0089 .0113 .0100 .0093 .0051  .0052 .0066 .0061 .0055
1.10-1.15 0155  .0190 .0206 .0199 .0198 .0079  .0102 .0116 .0106 .0094 .0046 .0064 .0070 .0068 .0055
All 0159  .0192 .0202 .0200 .0188 .0089  .0105 .0114 .0110 .o0101 .0062 .0069  .0090 .0079 .0069
Panel C: after the 2008 crisis
Maturity
<60 60-180 >180
Moneyness RW Ind EW  Disc Opt RW Ind EW Disc Opt RW Ind EW  Disc Opt
0.85-0.90 .0098 .0120 .0135 .0129 .0116 .0043 .0072 .0071 .0069 .0055 .0028  .0032 .0062  .0040 .0033
0.90-0.95 .0088 .0112 .0117 .0114 .0108 .0041  .0058 .0061 .0059 .0053 .0028 .0032 .0053 .0039 .0034
0.95-0.99 .0076 .0099 .0108 .0102 .0096 .0041 .0052 .0055 .0054 .0049 .0028 .0032 .0048 .0041 .0033
0.99-1.01 .0081 .0117 .0135 .0128 .0103 .0045 .0058 .0065 .0064 .0055 .0029 .0037 .0045 .0043 .0035
1.01-1.05 .0076 .0136 .0147 .0139 .0102 .0041 .0055 .0079 .0067 .0053 .0027 .0034 .0046 .0041 .0033
1.05-1.10 .0080 .0114 .0135 .0120 .0103 .0043  .0058 .0091 .0070 .0057 .0027 .0034 .0056 .0041 .0034
1.10-1.15 .0094 .0133 .0172 .0137 .0127 .0046 .0072 .0100 .0080 .0063 .0027 .0052 .0076 .0059 .0040
All .0090 .0144 .0139 .0132 .0113 .0045 .0065 .0081 .0071 .0058 .0029 .0039 .0061 .0047 .0037

The table reports the average daily RMSPEV in the three sub-periods:

(2004) and Opt are the estimated optimal weights with unrestricted regression with inclusion of intercept. Indv denotes the best performing individual model in a given
moneyness-maturity category. The hold-out period for DMSPE and regression methods is set to 44 days. The emboldened values indicate the combining schemes that

03/Mar/2003-31/Dec/2007, 01/Jan/2008-30/Jun/2009, 01/Jul/2009-30/Aug/2013, and for the
different moneyness-maturity categories. RMSPEYV is calculated for the forecasts restricted to contracts in the moneyness range of m € [0.85,1.15]. EW denotes trimmed
equal weights, where Heston and Nandi model is not included, Disc is Discounted Mean Square Prediction Error (DMSPE) method that follows Stock and Watson

improve on the best individual forecast in a given moneyness-maturity category.
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At the end of this subsection I provide two robustness checks regarding the combination
forecasts methodology. First, I examine sensitivity of the out-of-sample results to the choice
of the track-record period required to implement DMSPE and the regression based weighting.
I consider the track-record periods of 22 and 66 days (approximately 1 and 3 month) as
compared to the base period of 44 days. Second, I consider the discount factor values for
DMSPE method of 0.9 and 1, as compared to the base value of 0.95. Table in Appendix
[C] indicates that there is a little difference in RMSPEV if the models are estimated using a
longer track record period of 66 or a shorter of 22 days. Also the value of the discount factor
does not play an important role and the results are almost the same irrespective whether
equals 0.9, 0.95 or 1.
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Figure 5.4: Regression-based weights over time

Short maturities
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The figure illustrates the time variation of the estimated optimal weights from the unrestricted regression. The length of the

track-record of the past forecasts is 44 days. Weights corresponding to PBS and VARX are added, as the models yield similar
forecasts and their weights partly cancel out. PBS- Practitioner Black-Scholes model, VARX- Parametric VARX(p,q), PCA,

and HN- Heston and Nandi GARCH model. For visual reasons the weights are normalized such that they sum up to one.
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Figure 5.5: DMSPE-based weights over time
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The figure illustrates the time variation of DMSPE-based weights. The combining method assigns greater weight to a model
that exhibit relatively smaller MSPEV in the recent period. The length of the track-record of the past forecasts is 44 days. The
discount factor is set to 0.95. PBS- Practitioner Black-Scholes model, VARX- Parametric VARX(p,q), PCA is the PCA model
and HN is Heston and Nandi model.
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Figure 5.6: Regression based weights for ATM options over time
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The figure illustrates the time variation of the estimated optimal weights for ATM option with m € [0.99 —
1.01). The length of the track-record of the past forecasts is 44 days. Weights corresponding to PBS and
VARX are added, as the models yield similar forecasts and their weights partly cancel out. PBS- Practitioner
Black-Scholes model, VARX- Parametric VARX(p,q), PCA, and HN- Heston and Nandi GARCH model.

For visual reasons the weights are normalized such that they sum up to one.

Statistical significance of forecasts accuracy

To formally compare a statistical significance of the differences in the forecasting performance
of the benchmarking PBS model relative to VARX, PCA, HN and combination models, I
employ the equal forecasting ability test developed by |Diebold and Mariano (1995). The
test uses mean squared prediction error in implied volatilities (MSPEV) as a relevant loss
function. I test the null hypothesis of equal forecasts accuracy, against the alternative
hypothesis that the benchmark model performs worse than a given competitor. DM statistic
has an asymptotic standard normal distribution under the null hypothesis, however this
result is valid only for nonnested models. |Clark and McCracken (2001) and McCracken
(2007) show that DM statistic has a nonstandard distribution when forecasting accuracy of
nested models is assessed. In order to compare forecasts from PBS and VARX models (PBS is
nested in VARX) a solution might be to use adjusted version of DM test introduced by (Clark
and West| (2007) that provides asymptotically valid inferences for nested linear models. The
adjusted-DM statistic is conveniently obtained by first defining the adjusted-MSPE statistic
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fi11 for one-step ahead forecasts as:

fre1 = (Yes1 — ?Jl,t+1|t)2 — (Y41 — ?32,t+1\t)2 - (@1,t+1|t - ?Jz,t+1|t)2]; (5.6)

where 7,41 is an observed variable of interest, 91 ;11); and 5,11, are one-step ahead forecasts
s

o 1, where S denotes the length of the evaluation

from two competing models. Next, {fsi1}
period, is regressed on a constant and a t-statistic corresponding to the coefficient is ob-
tained. P-value for the test is obtained with the standard normal distribution function. This
procedure can be seen as testing whether the estimated mean of f;,; differs significantly
from zero, because regression on a constant is equivalent to taking the average of the depen-
dent variable. Similarly to DMSPE-based combination forecasts, I adjust f;;; such that it
takes into account the fact that performance measures focus on the average daily MSPEV.
Hence, the first and the second term are replaced by the MSPEV measure, while the squared
forecasts difference is replaced with Zfil (&fﬁfl .~ &Xti]fﬁ( )2.

The last term in equation , (U1e+1)t — 'g27t+1|t)2, adjusts MSPE of a larger model for the
upward bias in MSPE produced by estimation of parameters that are zero under the nested
model. The idea behind the adjusted-DM test is to solve the problem that the DM test
statistic can be heavily undersized when comparing forecasts from the nested models, lead-
ing to tests with low power. For example Rapach and Wohar (2006) find stronger evidence
for the out-of-sample predictability of stock returns when using tests with appropriate size
and power. The risk of using adjusted-DM test is that it indicates the VARX is significantly
better than the nested benchmark even if the difference is MSPEV is very small. Ultimately,
I take more conservative approach in the sense that VARX’s statistic may be undersized
and report standard DM test results for all the models, testing the null of equal forecasting

ability, against the alternative that the PBS model has larger MSPEV.

Table [5.9| shows the results of Diebold Mariano test with respect the three distinguished
sub-periods. The negative values of the test statistic indicate than the benchmark PBS model
performs better. To start with VARX model, it improves its relative forecasting accuracy for
the short maturities over time. In the before the crisis sub-period, it beats PBS significantly
only in the moneyness category of m € [1.05,1.10) at the p = 0.001 significance level. In the
after-the-crisis sub-period it significantly outperforms the benchmark additionally for options
with m € [0.85,0.90). For the medium maturities, there is a noticeable switch, as VARX
outperforms PBS for all the OTM calls, ATM options and none puts in the first sub-period,
while in the last sub-period it remains to be significantly better for the deep OTM -calls
and calls with m € [1.05,1.10) and turns out to be significantly better for all the OTM put

options. For the long maturities VARX exhibits significant improvement over the benchmark
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for the deep OTM calls in the first sub-period at 5% level. I reject the null in favour of the
alternative that VARX model yields more accurate forecasts than the benchmark for all the
OTM puts and ATM options in the last sub-period. During the financial turmoil it can
be regarded as a more accurate model for predicting IV of the long term options in all the
moneyness categories, as well as irrespectively of the moneyness category. When it comes to
the option pricing approach based on |Heston and Nandi (2000) the null hypothesis of equal
forecasting ability can be rejected only in the last sub-period for the deep OTM calls in the
short maturity category, at the 5% significance level.

PCA model outperforms PBS significantly in all regions of the surface for the medium
and the long term options usually at the highest significance level, even during the financial
crisis. The exception are the deep OTM put options in the medium term category in the
crisis period. For the short term contracts, it outperforms the benchmark for two maturity
categories when m € [1.05—1.15] in the first sub-period and all the OTM calls together with
ATM options and put with m € [0.95 — 0.99] in the last sub-period. During the crisis it is
significantly better for all the moneyness categories excluding the deep OTM puts.

For combination forecasts based on DMSPE and the estimated optimal weights methods
the null cannot be rejected only at the rare occasions in the short maturity category. For
the regression-based weights it happens for the puts with m € [0.85 — 0.90) in the first sub-
period, m € [0.85 — 0.95) in the last sub-period. In the crisis time- regression-based weights
do not significantly improve over PBS for the three categories of the short term OTM put
options. When considering forecasts with DMSPE-based weights, the null cannot be rejected
for the short term put options in the moneyness range of [0.85-0.95) for the first sub-period,

as well as the last one.
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Table 5.9: Diebold-Mariano test of equal forecasting ability- individual and combination forecasts

Maturity
<60 60-180 >180
Moneyness VARX PCA HN Disc Opt VARX PCA HN Disc Opt VARX PCA HN Disc Opt

0.85-0.90 -2.5 -23.35  -24.04 -3.63 3.02%* -1.8  10.55%F*  _22.88  20.97FF*  22.07F** 0.01 24.7FF%  _10.82  28.89*F¥* 25 41%F*
0.90-0.95 -4.51 -19.3  -25.65 -4.69 0.28 -3.59 8.53%F* 2321  17.23%F*  16.03*** -2.61  21.02%%* 2433 24.74%¥¥  17.22%%*
0.95-0.99 -7.04 -0.76 -24.6 6.63%** 6.3%%* -1.43 3.4%F% 2448 5.5¥k* 8.96%** -3.16  12.98%** -44.4  15.56%** 15 72%%*
0.99-1.01 -4.8 1.37  -19.95 8.58***  10.04%** 2.06* 4.61%**  -22.05 8.04%** T.44%%% -2 11.43%FF 4258  14.79%FF  13.43%**
1.01-1.05 1.52 -11.14  -15.66 3.96%** 7.55%Hk 4.15%** 8.5%F*  _14.31 11.7%*%  10.65%** -2.92  23.89%F*  _31.13 25.5%%%  23.33%**
1.05-1.10 4.53%** 6.9%F* 1047  10.29%** T.6%F* 6.56%** 8.62%F*  _1592  10.74%**  10.87*** -0.23  28.54***  -10.46  30.16***  29.58%**
1.10-1.15 -0.16  6.78%%* -0.73 5.67%** 4.14%%* 7.38%FF  11.85%FF 14,13 14.41FFF  11.16%** 2.17%  21.28%** -7.28  28.83%** 29%**

All -1.48 -18.89  -26.74 7.18%FF  10.36%** 4.76%¥*  14.37FFF 2642 19.11%F*  18.61%** -1.38  35.54%** -35.4  40.17***  35.05%**

Panel B: during the 2008 crisis

Maturity
<60 60-180 >180
Moneyness VARX PCA HN Disc Opt VARX PCA HN Disc Opt VARX PCA HN Disc Opt

0.85-0.90 -1.06 -0.07  -17.46 2.12% 0.24 -0.22 0.05 -12.91  3.54%*** 3.02%* 2.23% 9.65%** -0.79  11.06%**  10.39%**
0.90-0.95 -1.77 4¥FFk - 17.39 2.89** 1.08 -0.04 2.39%% 12,65  5.23%%* 2.16* 2.69%%  11.59*** -1.95  11.82%**  10.92%**
0.95-0.99 -1.7 4.7FFF _14.61  3.39%** 1.27 0.21 2.8%F 1245  4.38%%* 1.77% 2.61%%  10.88*** -4.37  10.41%%*  10.12%%*
0.99-1.01 -2.81 4.39%FF 1144  3.54%F* 1.97* -0.15 1.68* -8.89  3.34%%* 1.78* 1.93%* 5.7 -11.43 5.92%** 5.05%**
1.01-1.05 -3.28  4.58*** -8.36  4.89%** 2.58%* -0.14 2.25% -4.8 4.9%FF  3.31%xx 3.04** 4.6%** 2244 6.47F** 4.5%%*
1.05-1.10 -2.19  6.94%%* -7.94  5.85%Fk 3. gTH¥X 0.71  6.39%** -4.74  T.53FFE 58X 2.02% 7.59%FKk 116.17 7.49%%* 4.85%**
1.10-1.15 -1.79  6.21%%* -7.27 3.02%*  3.78**x* 2.37FF  TATHRE _11.24  8.01¥¥*  7.12%F* 2.05% 5.28%%* -7.48 6.21%** 6.3%**

All -2.47  5.33%¥FF 1581  4.16%** 2.04%* 0.74  3.66%**  _12.61  6.56%** 4 44%** 2.69** 10.3%¥**%  -11.47  10.62%** 9.8%**

Panel C: after the 2008 crisis

Maturity
<60 60-180 >180
Moneyness VARX PCA HN Disc Opt VARX PCA HN Disc Opt VARX PCA HN Disc Opt

0.85-0.90 2.26% -16.44  -29.01 -4.12 1.23 12.44%%% 10.42%%%  _19.69  17.47FFF  14.47FF* 14.21%%* 25.6%F% -6.87  27.15FFF 22 4TF¥*
0.90-0.95 -4.04 -13.31  -29.75 -3.44 0.01 7.13%%* 9.86%**  _15.46  14.33*** 8.61%** 12.1%*%*  19.65%** =227 20.38%**  16.12%**
0.95-0.99 -8.83 2.19%  -22.87 8.97H** 2.08* 2.28%* 5.97%k*  _21.79 6.48%** 4.9%%* T.A3FFK - 15.84%%* -47.2  15.49%F*  10.03%**
0.99-1.01 -6.93 gF** - _18.52 9.31%¥* 5 QT*** 0.83 6.46%**  -21.26 6.26%** 7.84%K* 2.2%  11.53*¥**  _59.65  12.65%*** 8.84%**
1.01-1.05 -0.75 8.09%**  _14.68 9.28%** 7 RG¥** 1.26  12.09*** -4.27  11.62%%¥*% 14 53*%** -3.84  17.42¥*%%  _50.15  17.77F**  12.17F**
1.05-1.10 4.43%¥*  13.03%** -6.6  11.57%FFF  7.02%** 4.17F**  15.36%F* -2.41  15.88%FF  16.84%** -6.43  25.36%FF 1491  25.75%F*  17.94%%*
1.10-1.15 0.8  11.74%%* 1.99* 8.83%** R oTH¥* 8.21%** 16.98*** S7.2 0 18.15¥¥F 17.74%x* -4.59  21.27%** -1.52  21.54%¥*% 23 Q7***

All -1.21 -5.74  -33.39 9.11%¥* 4. 37%** 6.047%** 15.77%**%  _14.08  16.99*** 18.3%** THREE O 31.06%F*  -47.31 31.5%**%  20.61%**

The table contains the results of Diebold and Mariano| (1995) test for equal predictive ability in the three sub-periods: 03/Mar/2003-31/Dec/2007, 01/Jan/2008-
30/Jun/2009, 01/Jul/2009-30/Aug/2013, and for the different moneyness-maturity categories. It reports the DM statistic which is calculated to test the null hypothesis
of the equal forecasting against the benchmark Practitioner Black-Scholes model. The loss function is MSPEV. Under the null DM statistic is assumed to be standard
normally distributed. *** denotes the significance at 0.1% level, ** 1%, *5%, > 10%. VARX, PCA, HN are the individual models, Disc is DMSPE combination model,
Opt is the combination model with regression based weights.






Chapter 6
Conclusion

In this thesis I investigate predictable dynamics of the implied volatility surface. In assess-
ing predictability, I concentrate on short-horizon, one-step ahead forecasts of IVS. I evaluate
forecasting performance of the three approaches, which are as follows. In the first approach,
I model dynamics of the factors and produce their forecasts by means of VAR-type model.
The second approach tries to identify persistent latent factors that drive dynamics of IVS.
I estimate the (latent) factor model with PCA and find that the first three principal com-
ponents can be interpreted as the level, smile and term-structure factors. To capture the
factor dynamics, I again use the parametric VAR-type model. Because IV data has a three-
dimensional surface structure (IV can be seen as a function of moneyness and maturity)
rather than form of time-series, PCA cannot be directly applied. In the smoothing pro-
cedure with the nonparametric kernel regression, I recover time series on a given grid of
moneyness and maturity. To enable application of PCA model for the purpose of out-of-
sample forecasting, I again apply smoothing procedure to the forecasted points on the grid
which delivers forecasts of IVs for all the options. The second approach is treated as a
benchmark and can be characterized as a practitioners’ framework which relies on a linear
regression model that links cross-section of IVs to polynomials in options’ moneyness and
maturity. Estimated daily regression coeflicients are interpreted as factors and exhibit con-
siderable time-variation. The extension of this approach includes factor dynamics, which
follows |Goncalves and Guidolin| (2006). Here, the procedure consists of two steps. First, I
estimate regression model on each day and obtain multivariate time-series of factors. The
third approach relies on the option pricing model estimated in the prices space, for which
I choose NGARCH(1,1) option valuation model of Heston and Nandji| (2000)). The pricing
formula depends on the one-step ahead forecast of the variance and 5 parameters driving
NGARCH(1,1) process. The model is estimated such that it exploits the combined informa-

tion in the history of S&P500 prices and the cross-section of options. The variance parameter

5



is estimated from the history of the prices, while remaining parameters are obtained in cal-
ibration process by means of the non-linear least squares procedure. These parameters are
used to predict tomorrow’s prices. Once the forecasted prices are obtained, I invert the
Black-Scholes-Merton formula and back-out the (forecasted) implied volatilities from the

forecasts of the prices.

I evaluate forecasting performance in statistical terms with respect to different regions of
IVS by partitioning it in 21 moneyness-maturity categories. I find that PCA model consid-
erably outperforms other approaches for the medium and the long term options irrespective
of moneyness bin. The most challenging task is forecasting IVs of the short term contracts.
Here, the best performers are PCA and parametric approaches interchangeably. PCA shows
the overall improvement in this region of the surface over time and outperforms parametric
approaches in 6 out of 7 moneyness categories during years 2009-2013. Forecasting accuracy
can be further improved when model combination is used. I find that the combining method
based on the estimated optimal weights yields more accurate forecasts in nearly every seg-
ment of IVS consistently over time. However, none of the approaches is accurate enough
to beat the random walk forecasts, that assume that IVs do not change in the forecasting

horizon of one day.

This thesis addressed the predictability of IVS in one-day horizon. Considered models
were not able to beat random walk forecasts. However, some statistical patterns were identi-
fied. The direct extension of the presented analysis would be to examine IVS predictability
with a focus on the forecasting horizon of a different length, for example one week. More-
over, the analysis conducted in this thesis can be further extended in various directions in
future research. First, the usefulness of option pricing approach to modelling IVS based on a
selected model, not necessarily the GARCH-type option valuation model considered in this
research, can be further investigated by using different calibration settings. Perhaps the most
interesting question is whether the model could improve its forecasting accuracy of IVS if it
was calibrated directly in the IVS space. |Christoffersen and Jacobs| (2004)) argue that when
comparing models the estimation loss function should be the same for all of them, otherwise
comparison is inappropriate. Moreover, the loss functions used in the estimation and eval-
uation of a given model should be aligned, otherwise the estimated set of parameters may
be suboptimal. This problem was not addressed in this thesis because of numerical reasons.
The calibration process repeated on every of 2644 days to price and forecast over 1 million
of options in total took fairly long time, while the calibration in the implied volatility space
would even lengthen that time, making the model infeasible to apply on such a large data
set. Finally, it could be investigated how the model performance depends on the specific loss

function used in the calibration process. I used squared deviation as a relevant loss function,
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CHAPTER 6. CONCLUSION

but alternatives include (weighted) relative squared or absolute deviation. In order to ob-
tain better minima more starting values for the numerical optimization could be considered.
When it comes to PCA model, there is also room for improvement, especially in the kernel
smoothing part of the model as some choices I made were of ad-hoc character. First, the
formal procedure for bandwidth selection should be proposed that takes into account design
of IV data. Second, one could investigate how forecasting accuracy depends on a number of
chosen grid points where the surface is recovered. Third, an alternative estimation procedure
for latent factors could be used, which is Kalman filter approach as presented in [Van der Wel
et al| (2015). One may focus on improving the forecasting performance of the parametric
models of IVS. Given the fact that slopes of the volatility smile and term structure differ
across different regions of the surface, it may be sensible to make the parameters region de-
pendent. To further investigate benefits of model combination, the economic significance of
the results could be tested. This can be done by analyzing whether one can design profitable

trading strategies based on the combined forecasts.
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Appendix A

Fast Fourier Transform (FFT)

Carr and Madan| (1999) introduce a method based on the Fast Fourier Transform (FFT) to
price option contracts that can be exploited when the characteristic function of the return is
known analytically. Roughly speaking, FFT is an efficient algorithm to calculate the sums

wy, ..., wy Where

=Y exp (<576 = Dk = 1)) ), (A1)

For a more detailed description on what FFT is, see |Walker (1996). Carr and Madan
derive two formulas depending whether an option has an intrinsic value or not, that is they
distinguish between in-the-money (including at-the-money) and out-of-the-money contracts.

The in-the-money call is worth

—ak N
e uw 2w o I T] .
Cr(k,) ~ iR (=D (u—1) giby; N34 (=1) =65, A9
R CUp)3E+ (1Y~ ), (A
where
b=
n
n=0.25
N =24
n=0.25
v =n(j—1)
2b

k:u:—b—l—ﬁ(u—l), for w=1,2,...,N+1
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and 1(+) is a characteristic function of the logarithm of the spot price under the risk neutral
distribution. In the model of Heston and Nandi (2000) it can be obtained by replacing

¢ by i¢ in the moment generating function of the log(Sr), which is expressed under the

risk-neutral distribution as
(@) = Sf’eAt(Tﬁ)-f-Bt(T@)htH’ (A.4)
where

AT, 9) = Api (T, ¢) + ¢rpy + wBia (T, ¢) — %log (1 —2aB 1 (T, ¢)) (A.5a)

1 ¢_2 -9 *Bt T, Bt T, *\ 2
BT, 6) = —50 + BBu(T,0) + £—— 1+1_< 20%?:( o ¢)+1( )0

(A.5b)

with terminal conditions A (T, ¢) = Br(T, ) = 0. In choosing parameters values in equa-
tion (A.2) I follow Carr and Madan| (1999). The authors argue that such values of the

parameters deliver speedup of FFT without compromising the accuracy that other methods

can provide. In order to calculate the output of equation (A.2)), one needs to plug the part
of (A.2]) represented by ”%” into the Matlab function fft(X).
The out-of-the-money call in the framework of |Carr and Madan| (1999) is worth

Cr(k,) = m ie—i%’<j—1><u—1>eibw<vj)g(3 + (=1 —48;4),  (A6)
p
where
o(y) = ST =) ;gT(Uj * i) (A.7a)

Similarly to Moodley| (2005), who applies FFT approach in the context of the (1993))
model, I find very little difference between prices obtained with equations (A.2)) and (A.6]).
Thus, following |Chorro et al. (2014]) and Moodley]| (2005) I price the options using equation

(A.2) regardless of the moneyness of the option. This allows for significant savings in the
computation time during the calibration process, as the characteristic function (A.4)) has to
be calculated only once in each iteration of the calibration, instead of being calculated twice

if equation (A.6) was used.

A more elaborate discussion on the implementation of the method of |Carr and Madan|
(1999) can be found in|Chorro et al. (2014)), Mikhailov and Nogel (2004) and Moodley! (2005)).
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Appendix B

Figures

Figure B.1: Kernel smoothing of IVS

Implied Volatility Surface on 21/0ct/2003

IVS obtained with quartic kernel (top panel) and Gaussian kernel (bottom panel) on 21/Oct/2002. Gaussian

kernel fits clearly worse to actual data.
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Figure B.2: Smoothed IVS with optimal bandwidths

Implied Volatility Surface on 13/Dec/2006

025~

IVS obtained on 13/Dec/2006 with optimal bandwidths with respect to penalizing function given by equation

(2.3). Clearly the bandwidths are to narrow in both dimensions, causing the smoothed surface bumpy and
discontinuous.

Figure B.3: Number of quoted contracts per day over time

1000
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The figure illustrates a number of quoted contracts per day in the data set used in this study. It takes
into account only the contracts that are left after the filters of section [2.1| are applied, i.e. those which are

effectively used in to estimate or calibrate forecasting models.
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Figure B.4: Out-of-sample daily MAPEV over time

Short maturities
T

2 T T T
——PBS ——VARX — PCA ——HN —RW]

012~

Ul | w :
002 "MM“‘.”u’“”‘*’".‘“ﬂ“f”’ﬁ”’w Hy W"‘MWM .m(w ' H“HWIMMM& “'W"(“T“MW;

Medium maturities
T

\‘ | -
i

1 h
MWWWWWMMW%'MWM)

2009

Long maturities
T

o2l ) M | g
vawthwwqu* WMHW m ’m! " ﬂ‘ M’”M‘M \,MM&WM

'IU "

l vl om‘

The figure illustrates the evolution of daily MAPEYV for the four models evaluated in terms of out-of-sample
fit: PBS- Practitioner Black-Scholes, VARX- Parametric VARX(p,q), PCA, and HN- Heston and Nandi
GARCH model.

89



Figure B.5: Regression-based weights over time
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The figure illustrates the time variation of the estimated optimal weights from the unrestricted regression.
The length of the track-record of the past forecasts is 44 days. PBS- Practitioner Black-Scholes model,
VARX- Parametric VARX(p,q), PCA, and HN- Heston and Nandi GARCH model.
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Table C.1: Cross-correlations of IV

20 320

Maturity Moneyness 0.85 0.90 0.95 0.99 1.01 1.05 1.10 1.12 0.85 0.90 0.95 0.99 1.01 1.05 1.10 1.12
0.85 0.007 0.992 0977 0.965 0.957 0.942 0.934 0.926 0.909 0914 0916 0915 0913 0.909 0.909 0.909

0.90 0.007 0.994 0.983 0.977 0.963 0.955 0.944 0.907 0913 0917 0917 0915 0911 0911 0.911

0.95 0.007 0.995 0.990 0.978 0.971 0.960 0.904 0912 0918 0918 0916 0912 0912 0914

20 0.99 0.007 0.999 0.992 0.986 0.975 0.900 0910 0917 0920 0919 0918 0.920 0.923
1.01 0.007  0.997 0.992 0.982 0.895 0.905 0913 0917 0917 0917 0.920 0.924

1.05 0.006  0.999  0.990 0.880 0.891 0.901 0.906 0.908 0.911 0915 0.920

1.10 0.005 0.995 0.871 0.883 0.893 0.900 0.901 0.905 0.910 0.916

1.12 0.005 0.863 0.874 0.885 0.891 0.893 0.897 0.902 0.909

0.85 0.003 0.999 0.997 0.993 0.990 0.984 0.981 0.977

0.90 0.003 0.999 0.996 0.994 0.988 0.985 0.982

320 0.95 0.003 0.998 0.996 0.991 0.989 0.987
0.99 0.003 0.999 0.996 0.995 0.993

1.01 0.003 0.999 0.997 0.995

1.05 0.003 1.000 0.998

1.10 0.003  0.999

1.12 0.003

The table contains cross-correlations (upper triangle) and variances (diagonal) of the implied volatilities. Time series used to calculate the statistics
are obtained with Nadaraya-Watson estimator given by equation (2.1).
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Table C.2: (Partial) autocorrelations of IV

ACF PACF
K m 1 2 3 4 5 22 1 2 3 4 5 22
0.85 0.979 0.963 0.949 0.937 0.927 0.803 0.979 0.094 0.080 0.043  0.057 -0.030
0.90 0.978 0.962 0.949 0.938 0.929 0.800 0.978 0.101 0.101 0.072 0.049 -0.022
0.95 0.979 0964 0.952 0943 0.934 0.805 0.979 0.137  0.098 0.085 0.030 -0.006
20 0.99 0.980 0.966 0.956 0.947 0.938 0.815 0.980 0.165 0.102 0.057 0.036 -0.014
1.01 0.978 0.966 0.956 0.946 0.938 0.817 0.979 0.192 0.109 0.051 0.045 -0.022
1.05 0.975 0.962 0.952 0.942 0.934 0.817 0.975 0.235 0.119 0.051 0.063 -0.030
1.10 0.974 0961 0.951 0942 0.934 0.818 0.974 0.238 0.122 0.048 0.068 -0.026
1.15 0.969 0.956 0.947 0.937 0.929 0.811 0.969 0.274 0.146 0.060 0.060 -0.014
0.85 0.994 0.988 0.983 0978 0.974 0.898 0.994 0.063 0.042 0.000 0.044 -0.002
0.90 0.994 0.988 0.983 0.978 0.974 0.899 0.994 0.067 0.049 0.001  0.049 -0.002
0.95 0.994 0.988 0.983 0.978 0.974 0.900 0.994 0.083 0.043 -0.006 0.043 -0.005
320 0.99 0.994 0988 0984 0979 0.974 0.906 0.994 0.094 0.046 -0.010 0.040 -0.010
1.010 0.993 0.988 0.984 0.979 0.975 0.909 0.993 0.128 0.052 -0.001 0.029 -0.012
1.05 0.992 0987 0.983 0978 0.974 0.912 0.992 0.192 0.071 0.015 0.021 -0.016
1.10 0.992 0.987 0.983 0.978 0.974 0.913 0.992 0.191 0.072 0.016 0.022 -0.021
1.15 0.992 0987 0.983 0.979 0.975 0.915 0.992 0.178 0.071 0.015 0.023 -0.021

The table contains (partial) autocorrelations for each considered in the paper moneyness category across two
selected maturities: the shortest 20 days and the longest 320 days. (Partial) autocorrelations are reported
for 1,2,3,4,5 and 22 lags. Times series underlying the statistics are obtained with equation (2.1)).

Table C.3: (Partial) autocorrelations of the slope of the volatility smile and term structure

Panel A: Volatility smile

ACF PACF
K 1 2 3 4 5 22 1 2 3 4 5 22
30 0.904 0.857 0.812 0.770 0.739  0.566 0.904 0.221 0.051 0.017 0.055 -0.009
50 0.937 0904 0.878 0.852 0.831 0.618 0.937 0.207 0.107 0.029 0.048 -0.023
65 0.938 0.906 0.879 0.854 0.834 0.613 0.938 0.213 0.094 0.031 0.057 -0.035
80 0.942 0913 0.890 0.869 0.851 0.620 0.942 0.231 0.105 0.052 0.052 -0.033
120 0946 0.929 0.914 0.896 0.884 0.685 0.946 0.330 0.136 0.037 0.055 0.008
160 0.949 0.937 0.926 0.912 0.900 0.704 0.949 0.373 0.175 0.044 0.034 -0.003
240 0.944 0934 0927 0918 0.910 0.768 0.944 0.402 0.226 0.120 0.068 -0.005
320 0.940 0.930 0.920 0912 0.903 0.744 0.940 0.403 0.207 0.124 0.070 -0.010

Panel B: Volatility Term Scrutcure

ACF PACF
m 1 2 3 4 5 22 1 2 3 4 5 22
0.85 0946 0.906 0.873 0.843 0.818 0.585 0.946 0.102 0.061 0.034 0.048 -0.043
0.90 0.947 0906 0.876 0.853 0.832 0.590 0.947 0.093 0.098 0.086 0.034 -0.039
0.95 0948 0913 0.889 0.873 0.854 0.610 0.948 0.141 0.110 0.118 0.010 -0.014
0.99 0952 0924 0904 0.887 0.871 0.639 0.952 0.186 0.117 0.083 0.029 -0.021
1.01 0952 0925 0905 0.889 0.873 0.644 0.952 0.206 0.119 0.070 0.040 -0.030
1.05 0.947 0.921 0.900 0.882 0.867 0.639 0.947 0.231 0.115 0.059 0.064 -0.034
1.10 0944 0916 0896 0876 0.861 0.630 0.944 0.235 0.117 0.054 0.067 -0.022
1.12 0912 0.882 0860 0.839 0.821 0.579 0.912 0.297 0.159 0.078 0.049 -0.009

The table contains (partial) autocorrelations for the slope of the volatility smile and the slope of the
volatility term structure. The slope of the smile corresponding to each maturity grid point x; €
{30, 50, 65, 80, 120, 160, 240, 320} is defined as IV of the furthest put option on the grid for which m = 0.85,
minus IV of the furthest call option on the grid for which m = 1.12. Similarly, the slope of the volatility
term structure corresponding to each moneyness grid point m; € {0.85, 0.90, 0.95, 0.99, 1.01, 1.05, 1.10,
1.12} is defined as IV of the longest maturity on the grid £ = 320, minus IV of the shortest maturity on the
grid x = 30.
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Table C.4: Augmented Dickey-Fuller for the input time-series to VARX model

Bot Bt Bat Bst Bat
Period t.stat  p-value t.stat  p-value t.stat  p-value t.stat  p-value t.stat  p-value
04/Jan/99-24/Dec/02  -0.61 0.43 -1.42 0.15 -3.15  <0.001 -4.37 0.002 -4.03  <0.001
09/Sep/09-30/Aug/13  -0.39 0.51 -0.86 0.34 -3.74  <0.001 -3.93  <0.001 -5.37  <0.001

The table illustrates the results of an augmented Dickey-Fuller test for a unit root in the logarithm of the
input time-series to VARX model. The time-series being tested are of the length 1000 days what corresponds
to the moving estimation window of VARX model. The test is performed on 10 time-series in total. I select
two time periods- the first and the last estimation window.

Table C.5: Augmented Dickey-Fuller for the input time-series to PCA model

Maturity <
30 days 120 days 240 days
Period t.stat  p-value t.stat  p-value t.stat  p-value
log 61(0.99, 1) 04/Jan/99-24/Dec/02 -0.65 0.41 -0.36 0.52 -0.26 0.56
DA 09/Sep/09-30/Aug/13 -0.58 0.44 -0.12 0.61 0.09 0.68
Alog 6:(0.99, r;) 04/Jan/99-24/Dec/02 -34.71  <0.001 -31.45  <0.001 -31.86 <0.001
DA 09/Sep/09-30/Aug/13 -36.25  <0.001 -33.87  <0.001 -33.39  <0.001

The table illustrates the results of an augmented Dickey-Fuller test for a unit root in the logarithm of the
input time-series to PCA model. The time-series being tested are of the length 1000 days what corresponds
to the moving estimation window of PCA model. The test is performed on 12 time-series in total. I select two
time periods- the first and the last estimation window. In each period there are six time-series: log &¢(m, k)
and Alogdi(m, k) corresponding to the short, medium and the long term ATM put options with m = 0.99
and « € {30, 120, 240}.

Table C.6: In-sample fit as measured by MAEV

Maturity
<60 60-180 >180

Moneyness PBS PCA HN PBS PCA HN PBS PCA HN
0.85-0.90 .0086 .0141  .0340 .0090 .0046 .0178 .0080 .0017 .0083
0.90-0.95 .0076 .0100 .0315 .0069 .0038 .0146 .0069 .0016 .0106
0.95-0.99 .0082 .0058 .0264 .0049 .0038 .0156 .0058 .0023 .0154
0.99-1.01 .0097 .0071 .0228 .0049 .0040 .0149 .0049 .0029 .0194
1.01-1.05 .0094 .0096  .0197 .0056 .0037  .0097 .0047 .0023 .0167
1.05-1.10 .0106 .0076 .0177 .0069 .0035 .0126 .0056 .0019 .0100
1.10-1.15 .0186 .0113 .0188 .0090 .0045 .0159 .0065 .0032 .0082
All .0090 .0092 .0253 .0068 .0039 .0143 .0062 .0022 .0119

The table contains average daily mean absolute error in implied volatilities (MAEV) for different models over
the period 03/Mar/2003-30/Aug/2013. PBS is Practitioner Black-Scholes model, PCA is PCA model and
HN is Heston and Nandi GARCH type option pricing model. MAEV is calculated for different moneyness-
maturity categories on the sample restricted to contracts in the moneyness range of m € [0.85,1.15]. Em-

boldened values indicate the best performing model within each moneyness-maturity category.
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Table C.7: In-sample pricing errors of Heston and Nandi model

Maturity
<60 60-180 >180

Moneyness RMSE Avg. price RMSE Avg. price Avg. RMSE Avg. price
0.85-0.90 1.69 3.40 2.39 13.07 2.67 36.02
0.90-0.95 2.33 6.66 2.74 21.47 3.89 49.71
0.95-0.99 2.90 14.10 3.55 33.77 6.02 65.99
0.99-1.01 3.14 22.07 3.98 43.04 8.31 76.98
1.01-1.05 2.16 10.65 2.44 28.55 7.74 61.54
1.05-1.10 1.00 3.22 1.83 12.53 4.65 38.61
1.10-1.15 0.60 1.78 1.37 5.04 2.80 21.42

All 2.33 8.74 2.81 21.56 5.41 47.35

The table presents in-sample pricing errors of Heston and Nandi model resulted from the NLS estimation
over the period 03/Mar/2003-30/Aug/2013. Reported are average daily RMSE for different moneyness-
maturity groups, expressed in $. For the sake of comparison column Avg. price reports the average of the
mean daily prices in a given group. Emboldened values indicate the best performing model within each

moneyness-maturity category.

Table C.8: Out-of-sample pricing errors of Heston and Nandi model

Maturity
<60 60-180 >180

Moneyness RMSPE Avg. Price RMSPE Avg. Price RMSPE Avg. Price
0.85-0.90 2.01 3.42 3.10 13.11 3.70 36.12
0.90-0.95 3.13 6.66 3.93 21.48 4.88 49.72
0.95-0.99 4.57 14.10 5.04 33.78 6.96 65.99
0.99-1.01 5.47 22.07 6.39 43.05 10.72 76.99
1.01-1.05 3.63 10.65 4.54 28.56 8.33 61.55
1.05-1.10 1.54 3.21 2.93 12.51 5.84 38.58
1.10-1.15 0.87 1.77 1.72 5.03 3.81 21.54

All 3.65 8.70 4.34 21.46 6.75 47.22

The table presents out-of-sample pricing errors of Heston and Nandi model resulted from the NLS estimation
over the period 03/Mar/2003-30/Aug/2013. Reported are average daily RMSPE for different moneyness-
maturity groups, expressed in $§. For the sake of comparison column Avg. price reports the average of
the mean daily prices in a given group. Emboldened values indicate the best performing model within
each moneyness-maturity category. Emboldened values indicate the best performing model within each

moneyness-maturity category.
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Table C.9: Out-of-sample fit as measured by MAPEV

Maturity
<60 60-180 >180

Moneyness PBS VARX PCA HN RW PBS VARX PCA HN RW PBS VARX PCA HN RW
0.85-0.90 .0098 .0097 .0153 .0346 .0079 .0090 .0087 .0061 .0182  .0040 .0075 .0073 .0030 .0087  .0026
0.90-0.95 .0094 .0097 .0124 .0336 .0076 .0074 .0071 .0053 .0152 .0040 .0067 .0065 .0030 .0108 .0027
0.95-0.99 .0101 .0107 .0083 .0297 .0073 .0061 .0061 .0052 .0157 .0041 .0059 .0058 .0033 .0156 .0029
0.99-1.01 .0118 .0123 .0101 .0263 .0078 .0067 .0067 .0057 .0150 .0046 .0054 .0054 .0039 .0193 .0034
1.01-1.05 .0120 .0123 .0124 .0230 .0074 .0078 .0078 .0055 .0109 .0043 .0056 .0057 .0035 .0169 .0029
1.05-1.10 .0129 .0125 .0105 .0195 .0076 .0090 .0086 .0053 .0131 .0042 .0066 .0067 .0030 .0102 .0027
1.10-1.15 .0193 .0190 .0135 .0223 .0102 .0101 .0093 .0062 .0162 .0043 .0073 .0074 .0043 .0083 .0026
All .0111 .0112 .0116  .0281 .0078 .0080 .0077 .0056 .0148 .0043 .0065 .0065 .0034 .0122 .0028

The table contains average daily mean absolute prediction error in implied volatilities (MAPEV) for different models over the period 03/Mar/2003-
30/Aug/2013. PBS is Practitioner Black-Scholes model, PCA is PCA model and HN is Heston and Nandi GARCH type option pricing model.
MAPEYV is calculated for different moneyness-maturity categories for the forecasts restricted to contracts in the moneyness range of m € [0.85,1.15].

Emboldened values indicate the best performing model within each moneyness-maturity category.
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Table C.10: Robustness checks of the combination forecasts- RMSPEV comparison

Panel A: Sensitivity to the track record period length for the regression method

Maturity
<60 60-180 >180
22 44 66 22 44 66 22 44 66

0.85-0.9 .0105 .0104 .0104 .0052 .0052 .0052 .0032 .0031 .0031
0.9-0.95 .0101  .0100 .0100 .0052 .0052 .0052 .0033 .0032 .0032
0.95-0.99 .0094 .0091 .0090 .0052 .0051 .0050 .0033 .0033 .0032
0.99-1.01 .0103 .0099 .0098 .0059 .0057 .0056 .0039 .0039 .0038
1.01-1.05 .0100 .0095 .0095 .0055 .0053 .0052 .0035 .0034 .0034
1.05-1.1 .0106 .0102 .0100 .0056 .0054 .0053 .0033 .0032 .0032
1.1-1.15 .0155 .0148 .0146 .0060 .0058 .0058 .0036 .0036 .0036
All .0111 .0107 .0106 .0059 .0058 .0057 .0037 .0037 .0037

Panel B: Sensitivity to the track record period length for the DMSPE method

Maturity
<60 60-180 >180
22 44 66 22 44 66 22 44 66
0.85-0.9 .0112 .0112 .0110 .0064 .0066 .0064 .0037  .0037 .0037
0.9-0.95 .0106 .0105 .0104 .0060 .0060 .0059 .0038 .0039 .0038
0.95-0.99 .0096 .0096 .0096 .0059 .0058 .0057 .0043 .0043 .0043
0.99-1.01 .0118 .0118 .0118 .0064 .0064 .0063 .0046  .0046  .0046
1.01-1.05 .0119 .0119 .0119 .0062 .0062 .0061 .0043  .0044 .0043
1.05-1.1 .0112 .0114 .0112 .0064 .0064 .0063 .0038 .0039 .0039
1.1-1.15 .0152  .0156  .0157 .0072  .0070  .0070 .0048 .0049  .0049
All .0121  .0121 .0120 .0069 .0069 .0068 .0046  .0046  .0046

Panel C: Sensitivity to the discount factor value for DMSPE method

Maturity
<60 60-180 >180
0.9 0.95 1 0.9 0.95 1 0.9 0.95 1
0.85-0.9 .0112 .0112 .0111 .0066 .0066 .0065 .0038 .0037 .0037
0.9-0.95 .0106 .0105 .0105 .0061  .0060 .0060 .0039 .0039 .0039
0.95-0.99 .0097 .0096 .0096 .0058  .0058  .0058 .0043  .0043 .0043
0.99-1.01 .0118 .0118 .0118 .0064 .0064 .0063 .0046 .0046  .0046
1.01-1.05 .0120 .0119 .0119 .0062 .0062 .0062 .0044 .0044 .0044
1.05-1.1 .0114 .0114 .0114 .0064 .0064 .0064 .0039 .0039 .0039
1.1-1.15 .0155 .0156 .0156 .0071  .0070 .0070 .0049 .0049 .0049
All .0122 .0121 .0121 .0069 .0069 .0069 .0046  .0046 .0046

The table reports RMSPEV sensitivity for different setups of the combination methods. Panel A and Panel
B report RMSPEV for different choices of the track record period for the regression and DMSPE based
weighting respectively. Panel C reports RMSPEV sensitivity to a value of the discount factor in DMSPE
method, when the base track record period of 44 days is used. Value of 1 indicate no discounting. The
evaluation period for all the three panels is 03/Mar/2003-30/Aug/2013.
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