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Abstract

This study is the first to investigate the applicability and usefulness of a recently introduced

patent-level measure of innovation, which relies on stock market reactions to patent grants,

in a large-scale cross-country setting. Based on patent data for firms across 27 countries from

1973 to 2013, our results indicate that the patent-level innovation measure is only moderately

applicable in a cross-country study: we detect patent-related stock price movements only in

10 countries. Furthermore, although patent value estimates for US, German, and Belgian sam-

ples are positively correlated with traditional citation-based measures of quality, we cannot

confirm the measure’s general usefulness across the 10 countries. On a methodological side,

we find that inaccurate isolation of stock market reactions can greatly distort between-country

differences in estimated value of innovation. Therefore, we stress careful selection of the stock

return window used for construction of this type of measure. Finally, we conclude that bet-

ter control for heterogeneity in the type of patent grant can improve both applicability and

usefulness of the measure.

JEL classification: G14; O3; O4; O5

Keywords: Cross-country study; Event study; Economic Growth; Innovation; Patent values;

Stock market reactions; Technological change

1 Introduction

Patent data have long secured their position as the primary source for studies on innovation

and technological change (Moser, Ohmstedt, and Rhode, 2015). Indeed, their advantages are

vast: patent data cover virtually all fields of innovation across most developed countries over

long time periods (Trajtenberg, 1990). Nevertheless, considering the extreme variability in their

scientific and economic importance or value (see, e.g., Hall, Jaffe, and Trajtenberg, 2005), patent

data can only be informative of innovative output if combined with an appropriate index for

patent value. However, here lies the challenge, considering that even the most popular ap-

proach of today, which is based on the number of citations that a patent has received made

by future patents, exhibits an important practical limitation. Namely, because citation counts

are backward-looking, they are inherently incapable of measuring the value of recent innovations.
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Also, patent citations may indicate the scientific importance of the patent rather than its eco-

nomic value, even though these two concepts could be highly diverged for individual patents

(Kogan, Papanikolaou, Seru, and Stoffman, 2015). Hence, concerned with the shortcomings of

citation-based measures, construction of a more appropriate measure of patent value remains

an important area of research.

This thesis contributes to this area of the economic literature by further investigating the ap-

plicability and usefulness of a new measure of innovation, proposed in Kogan et al. (2015), that

overcomes both of the issues encountered with citation data. Specifically, the measure in Kogan

et al. (2015) exploits stock market reactions to patent grants to estimate the value of individual

innovations. Because stock market valuations not only directly measure the economic value of the

patented innovations but are also forward-looking, this type of measure is particularly promising

to serve as an effective indicator of innovative output. Although Kogan et al. (2015) elaborately

illustrate the usefulness of their innovation measure for their sample of US patents granted to

firms listed in the United States, little is known about the applicability or appropriateness of

their approach in a cross-country study. This study is designed to fill this gap.

Using patent data for publicly listed firms across 27 countries from 1973 to 2013, we first

study the general applicability of the empirical approach to identifying the stock market reaction

to patent grants as suggested in Kogan et al. (2015). To do so, we measure the effect of news

of patent grants on second moments of stock returns: a significantly positive effect indicates

presence of patent-related stock price movements. Given the lack of such significant effects for

17 of the 27 countries in this study, our estimation results indicate that the type of measure

in Kogan et al. (2015) is only moderately applicable in a cross-country study. Specifically, our

model is incapable of identifying patent-related stock price movements not only in the smaller

sized sample in terms of patent counts, but also in South Korea and France, which are both

among the largest six countries in terms of patent sample size.

For the 10 remaining countries, we construct our patent-level measures of innovation. Con-

sistent with previous findings in, among others, Harhoff, Scherer, and Vopel (2003b), the distri-

butions of the estimated patent values are highly positively skewed across all countries. To test

the usefulness of our measure, we investigate whether our patent value estimates are supported

by citation-based measures of patent quality and examine the correlation of yearly aggregated

measures of innovation with domestic economic growth. Our findings support the conclusion in

Kogan et al. (2015) that this type of innovation measure produces useful results—as indicated by

significant correlation with both citation-based measures and economic growth—when applied

to a US sample. On the other hand, although hard conclusions require further research, results

do not provide statistical evidence that the usefulness generally applies to other countries.

Another contribution of this thesis is that it proposes a number of relevant alterations to the

empirical approach suggested in Kogan et al. (2015). In particular, instead of using multi-period

returns, we propose to measure stock market reactions based on a set of daily stock returns.

By doing so, we can isolate stock market responses more accurately. Empirical comparison

of both models shows that this feature is highly relevant: limited ability to isolate the market

reaction can severely distort cross-sectional differences in the estimated value of innovation
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across countries. Finally, analysis of sensitivity to various sample restrictions suggests that the

reliability of the patent value estimates could be improved by controlling for heterogeneity in the

type of patent grant events. Potentially, this could help overcome the unsuccessful identification

of the patent-related stock price movements in countries such as South Korea or France.

The remainder of this thesis is organized as follows. Section 2 reviews the literature, pro-

viding an overview of the main approaches to measuring patent values. After summarizing the

merging of patent data with stock market data, Section 3 presents the merged data sets for 27

countries. In Section 4, we formally present our approach to constructing patent-level measures

of innovation. Section 5 discusses the main empirical procedures and presents the distributions

of the patent value estimates. Next, Section 6 examines the correlation of our patent value

estimates with citation-based measures of patent quality and with economic growth. In Sec-

tion 7, we compare our model to the one in Kogan et al. (2015) and discuss the validity of both

approaches. Section 8 concludes this thesis by summarizing the main findings.

2 Literature review

This section reviews the literature that is devoted to the construction and validation of indicators

of innovative output that rely on patent statistics. First, Section 2.1 describes how patent statis-

tics have found their role within economic research. What we learn is that the promise which

naturally lies in patent data—that is, to serve as an objective measure of innovative activity—is

initially hindered by the extremely noisy nature of simple patent counts. Seeking to, never-

theless, fulfill the promise, the existing literature displays a wide interest for the estimation of

the value or quality of patents. We identify three main approaches to measuring patent values,

categorized by type of data that they exploit: patent renewal data, patent citations, and stock

market valuations.1 Section 2.2 evaluates the usefulness and limitations of each type of measure.

Finally, we note that we save the discussion of the existing quantitative results for Section 6 to

allow for direct comparison with our findings.

2.1 Patent statistics: a resourceful but noisy indicator of innovative output

The large-scale use of patent data in the field of economics goes back to works by Scherer (1965)

and Schmookler (1966).2 Constrained by computational and data resources, these studies, and

most related literature that appeared in the pair of decades following, rely exclusively on simple

patent counts.3 Despite the highly valuable contributions that they brought to the literature at

the time, the potential economic relevance of simple patent counts has proven to be rather

limited. On the one hand, findings within this early literature suggest quite clearly that simple

patent counts are related to “inputs” of innovative activity (Trajtenberg, 1990). In particular,

1 This review focuses on sophisticated statistical measures of the value of patents. Particularly, this implies that we
do not cover studies relying on survey data; see, e.g., Scherer and Harhoff (2000) and Giuri et al. (2007).

2 Scherer (1965) relies on the number of patents issued to a sample of firms on the Fortune 500 list as an indicator
of inventive output. In his seminal work, Schmookler (1966) assigns patent count data to industries in an attempt to
demonstrate, among other things, the importance of demand as a determinant of inventive activity.

3 For a survey of the early literature on the use of patent statistics as economic indicators, see Griliches (1990).
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Pakes and Griliches (1984) emphasize the strong relationship between contemporaneous R&D

expenditures and the number of received patents, both across firms and industries; weaker—

though statistically significant—results extend the relationship between R&D and patent counts

in the time-series dimension (Griliches, 1990). On the other hand, attempts to correlate simple

patent counts with value measures of innovative “output”, such as profitability or market value

of innovating firms, are rarely successful (Trajtenberg, 1990).

To understand the weak relationship between patent counts and value indicators, one must

recognize the large variability in the economic value (or scientific significance) of inventions and

the extremely skewed distribution of such invention values (see, e.g., Hall et al., 2005). By ignor-

ing this strong heterogeneity, the simple counting of patents can only render an extremely noisy

indicator of innovative output, regardless of the level of aggregation (see, e.g., Trajtenberg, 1990).

These limitations are particularly unfortunate because patent data provide a source for analysis

of technological progress that is unique in terms of availability, accessibility and granularity

(see, e.g., Griliches, 1990). Therefore, in attempts to improve the simple patent count measure,

the existing literature has invested great effort in designing sophisticated measures of the value

or quality of patents. Ultimately, such measures can provide appropriate weighting schemes to

remove the noise in patent counts. Categorizing the literature by the source of information that

is exploited, one can identify three main branches.4 In a somewhat chronological fashion, the

next section discusses the strengths and weaknesses of the central idea of each branch.

2.2 Measuring the value or quality of patents

Renewal fees

The first branch of the patent literature, initially stimulated by Pakes and Schankerman (1984),

uses patent renewal data to construct patent value indices. In most countries, patent holders

must pay an annual fee to renew the force of their patent, otherwise the patent is permanently

canceled (see, e.g., Lanjouw et al., 1998). Since we may assume that renewal decisions are

based on economic criteria, patents are only renewed if the value of patent protection is higher

than the cost of renewal (Griliches, Pakes, and Hall, 1987). Hence, renewal data are quite

directly informative about the value of patent protection. Several studies successfully exploit this

information by fitting (stochastic) patent return distributions to patent drop-out rates (see, e.g.,

Pakes, 1986; Lanjouw, 1998). Furthermore, Lanjouw et al. (1998), among others, find that patent

weighting schemes based on such estimated distributions of the value of patent protection may

substantially reduce the noise in patent counts.

However, in the context of measuring innovative output, we are interested in the value of the

underlying invention rather than the value of its patent protection. Therefore, we must carefully

bear in mind that the usefulness of renewal-based weighting schemes ultimately relies on the

assumption that these two concepts are closely related. Although many studies advocate this as-

4 Introduced in Putnam (1997), an alternative—and sometimes complementary—approach to reduction of noise in
patent counts utilizes patent application data. This method relies on the size of patent “families” to produce weighted
patent count indices (see also Lanjouw, Pakes, and Putnam, 1998). The patent family refers to the set of patents that
is produced when inventors patent the same invention in multiple countries. Studies exploiting such patent families
include Harhoff, Scherer, and Vopel (2003a) and Squicciarini, Dernis, and Criscuolo (2013).
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sumption (see, e.g., Lanjouw et al., 1998), the discussion in Pakes, Simpson, Judd, and Mansfield

(1989) highlights a clear concern: a very valuable invention that is—due to unfavorable patent

laws—protected by a weak patent, could be close to worthless. Moreover, renewal data are even

limited in their ability to measure the value of patent protection. In particular, renewal data

are incapable not only of identifying inventions that are highly valuable for only a few years,

after which they become obsolete (Pakes et al., 1989), but also of discriminating between patents

that were renewed for the maximum duration of patent protection (Harhoff et al., 2003b).5 A

last disadvantage is that renewal data can disclose the value of patents only long after they are

granted; that is, patent value measures based on renewal data are backward-looking.

Patent citations

Second, a popular approach to estimating the value of a patent relies on the number of “for-

ward citations”, that is, the citations made by future patents to the patent. Patent citations

are included in the patent text to disclose how the invention differs from “prior art” (see, e.g.,

Harhoff, Narin, Scherer, and Vopel, 1999).6 Thus, citation data naturally provide a means for

the researcher to examine the technological significance of patents (see, e.g., Hall et al., 2005).

Although the idea to use patent citations as indicators initially draws from their use within the

field of bibliometrics, the first economic applications are in Lieberman (1987). Today, citation

counts have become the standard measure to control for variation in technological importance

among patents (Moser et al., 2015).7 Moreover, to validate their use as value indicator, the lit-

erature has accumulated a body of evidence that clearly suggests a strong correlation between

citation counts and the economic value of patents (see, e.g., Trajtenberg, 1990; Harhoff et al.,

1999; Hall et al., 2005; Nicholas, 2008; Kogan et al., 2015).8

The shape of the relationship is, however, still subject to debate. While most studies suggest

that patent quality is a monotonically increasing function of citation counts, analyzing licensing

revenue data from non-practicing entities, Abrams, Akcigit, and Popadak (2013) report evi-

dence of an inverted-U-shaped relationship of citations to patent values. Especially, Abrams

et al. (2013) caution researchers using samples that (may) include higher value patents, not to

use citation-based indices for patent value. Another point of concern is that the scientific and

economic value of individual patents could be highly diverged (see, e.g., Kogan et al., 2015),

which is worrisome for micro-level studies. Finally, citation data exhibit a practical limitation:

similar to renewal data, citation counts are backward-looking and can thus never be used to

5 By means of telephone and on-site interviews, Harhoff et al. (2003b) investigate the tail distribution of patent
protection values and reveal extreme value differences among patents that were renewed for the maximum duration.

6 For a technical description of the role citations play in the context of patents, see, e.g., Hall et al. (2005). In addition,
Harhoff et al. (1999), among others, discuss some differences in citation practices across national patent offices.

7 Recent studies argue that applicants have strategic incentives to conceal knowledge of prior inventions and therefore
attempt to withhold citations (Sampat, 2010; Lampe, 2012). This raises concerns that citations may yield a biased
indicator for patent quality. Using field trial reports as an objective measure for scientific importance, Moser et al. (2015)
conclude that citation counts are, nevertheless, robustly correlated with scientific significance of patents.

8 For instance, Hall et al. (2005), Nicholas (2008) and Kogan et al. (2015) report economically and statistically sig-
nificant positive correlations between citations and patenting firms’ stock market valuations. Combining renewal and
survey data to measure the economic value of the patent, Harhoff et al. (1999) corroborate these findings. Moreover,
Trajtenberg (1990) shows that citation-based patent indices are closely associated with the social value of patents as
measured by estimated economic surplus gains from patented improvements in CT scanners.
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evaluate recent innovations (Hall et al., 2005).

Stock market valuations

Our work contributes to the third and last branch of the literature, which exploits stock market

valuations to measure the value of patents. Initiated by Griliches (1981), the first line of research

in this branch relates the stock market value of innovating firms to R&D and patent statistics as

proxies for their “knowlegde capital”. Works of this type include Pakes (1985), Hall et al. (2005)

and Nicholas (2008).9 Apart from insights into the correlation between patent statistics and firm

market values, these studies provide valuable estimates of the average growth in firm market

value associated with patent arrivals, which imply the mean economic value of patents. On the

other hand, the level of granularity in these works is generally not sufficient for construction

of patent-level weighting schemes to reduce the noise in patent counts. In an early attempt

to overcome this issue, Austin (1993) estimates the value of individual patents by means of a

CAPM model that includes patent grant event dummy variables.

Most notable, however, is the study in Kogan et al. (2015). Combining newly collected patent

data from Google Patents with stock market responses to the patent grant events, Kogan et al.

(2015) construct patent-level estimates of the value of US patents granted to public US firms in

the period from 1926 to 2010. The patent-level point estimates then facilitate weighted counting

of patents to construct firm-level and economy-wide measures of innovation. A considerable

effort in validating its usefulness reveals that the measure proposed in Kogan et al. (2015) is

significantly associated with both economic growth and creative destruction, as predicted by

Schumpeterian models of endogenous growth, and contains information about the value of in-

novation that is complementary to what is provided by citation-weighted measures. In addition

to their high information content, measures based on stock market data share one important

practical advantage: asset prices are forward-looking and hence allow for estimation of patent

values based on ex-ante information (Griliches, 1990; Kogan et al., 2015).

Nevertheless, there are also some noteworthy downsides of this type of innovation measure.

Due to the high volatility of stock market data, reliable measurement of the market’s reaction

to patent events is difficult (Griliches, 1990). Moreover, even if correctly identified, to give an

economic interpretation to the estimated stock price reaction, measures such as proposed in

Kogan et al. (2015) require assumptions about the prior beliefs of market participants that are

extremely difficult to test (see also Section 4.3).10

3 Data construction and description

This paper aims to measure innovation in an international setting by relying on stock price

reactions to the news of patent grants. To facilitate this research endeavor, we construct a data

set that merges market-adjusted stock returns of companies primarily listed across 27 countries

9 For a survey of the literature that relates stock market valuations to patent statistics, see Hall (2000).
10 We note that as this paper is built on the work by Kogan et al. (2015), we provide a detailed discussion on this type

of measure in Section 7.
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from around the globe with issue dates of patents granted to these companies. Generally, we

focus on the period from January 1, 1973, to December 31, 2013, but the available sample period

may differ across the countries of primary listings. Table 1 presents an overview of the resulting

data set categorized by the country of primary listing and Figure 1 shows the total number of

patents in our sample over time.

In Section 3.1 we describe the patent data set and briefly summarize the process of merging

the patent data with stock market data—we refer to Appendix A for a technical and detailed

discussion of our merging endeavors. Then, in Section 3.2, we present the merged data set used

for measuring patent values.

3.1 Patent data and merging procedure

The patent data were extracted from the European Patent Office’s (EPO’s) Worldwide Patent

Statistical Database (“Patstat”), which is the most prominent database of its kind, offering bibli-

ographic patent data from more than 100 patent offices, sometimes as early as the 19th century

(de Rassenfosse, Dernis, and Boedt, 2014). Nevertheless, 80% of the patents in our sample were

granted by either the US (50.5%), European (12.2%), Korean (6.0%), German (6.0%), or Tai-

wanese (4.9%) patent office. The extract from EPO’s Patstat was previously merged with public

companies in Compustat’s databases listed across 32 countries.11 After the merging process and

sample restrictions discussed below, 27 countries remain (see also Appendix A.3).

In total, the patent data set contains 2,930,304 successful patent applications, of which

2,623,443 remain after we exclude applications for which the patent grant date cannot be identi-

fied.12 Hence, approximately 10% of the successful patent applications are lost. The distribution

of number of lost patents is reasonably even across countries, but the loss of data ranges from

around 4% for recent years, to around 30% for early years. The remaining 2,623,443 success-

ful patent applications correspond to 2,651,869 patent grant events, as there are occurrences of

“shared patents”, referring to patents which were filed by (and therefore granted to) multi-

ple companies. Since shared patents typically also induce a separate stock price reaction for

each firm, our estimation procedures acknowledge each patent grant event individually. Conse-

quently, estimates based on grant events that correspond to shared patents only partially reflect

the full value of the patent. However, because shared patents make up only a very small part of

our patent sample, the effect on the distribution of patent value estimates is negligible. There-

fore, to simplify linguistics, we hereafter call all of our estimates “patent value estimates”, and

“patent grant events” are referred to as “patents”. Nevertheless, note that full patent value esti-

mates could simply be recovered by summation of all partial value estimates that belong to the

same patent.

We seek to merge the patent data with financial data. However, due to stock reissues and

cross-listings, each company may be linked to multiple stock issues. Therefore, we first con-

struct historical links between patenting companies and their primary stock issues—cross-listed

11 I thank Wing-Wah Tham for kindly sharing the merged extract from EPO’s Patstat database. Moreover, I should
particularly thank Elvira Sojli for the effort of matching the patents to companies in Compustat.

12 We also clean the data of suspicious patents such as those which are supposedly already granted in the future.
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stock issues are excluded from the sample.13 This linking procedure is a rather cumbersome

process and involves overcoming a number of data complications; Appendix A presents the

details. Then, for all of the identified stock issues, we request stock market data from the ear-

liest available date to the end of 2013, the last year that is fully covered by our patent data set.

Specifically, we obtain US stock data from the Center for Research in Security Prices (CRSP),

and request the financial data from Datastream for all other stocks (see also Appendix A.1). We

do not merge the financial series of stocks that belong to the same company. This avoids not

only odd price jumps in our series, but also the need of making the unreasonable assumption

that the change of issue does not affect the return distribution. Consequently, this study treats

each stock each as an individual entity in our empirical analysis. Moreover, to preserve termi-

nological ease, we hereafter simply call stock issues “firm” or “company”. We note that this is

justified since for the purpose of computing patent value estimates, there is no reason to strictly

categorize the data by their unique patenting companies.

Based on the established links between patenting companies and their primary stock issues,

we successfully merge 85% of the patent grant events with the requested stock price series—

that is, 2,261,266 patent grant events remain after the merging process. The sources of the patent

data loss are threefold: (i) not all patenting companies can be linked to (primary) stock price

series; (ii) a small portion of the patents are granted outside the available data ranges offered

by the financial databases; and (iii) the patent sample includes patents granted to companies at

times when they were not publicly traded. Although the overall rate of data loss is tolerable,

we are concerned with varying degrees of data loss through time and across countries for the

sake of comparability within and between aggregated, country-level measures of innovation.

Figure A.1 and Table A.1 in Appendix A.3 display the distribution of the lost patents over time

and across countries, respectively. We conclude that merging success rates are fairly constant

over time from 1973 to 2013 and across the very large majority of the countries. Hence, we

restrict our sample to the period from 1973 from 2013.

3.2 Data description: variables and final data panels

The construction of patent value estimates requires daily observations of three main variables: (i)

stock returns excluding dividends, (ii) market returns excluding dividends, and (iii) market cap-

italization. For US stocks, we use the returns (excluding dividends) on CRSP’s value-weighted

market portfolio as the market returns; for all other stocks, we calculate market returns based

on Datastream’s Global Equity Indices, which cover a minimum of 75% of total market capi-

talization for each market. We request all market capitalization series in US dollars such that

all of our patent value estimates share the same currency and are therefore easily comparable.

Furthermore, we note that a firm’s market capitalization is naturally calculated on security level

and might therefore understate the total value of the firm.

13 Cross-listed stocks are not considered because historical lists of all cross-listed stocks that belong the same company,
correctly adjusting for events such as mergers, acquisitions or reissues of stocks, are very rarely available. Furthermore,
considering cross-listed stocks leads to the inclusion of the same patent grant events in more than one of our panel
models and consequently to multiple value estimates for the same patent, making correct calculation of one single
patent value estimate unclear.
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Table 1: Summary statistics for the 27 country-specific data panels. Panels are ordered by the
number of observed patent grants. The left part reports counts of observed patent grants within
the sample of each panel. The middle part reports the years which contain the 1st and 50th
percentiles of the patent grant dates; for all countries, the 99th percentile is in year 2013. The
right part presents the panel characteristics of the financial data. The maximum sample period
considered is from January 1, 1973, to December 31, 2014.

Patents Grant date distribution Panel size

Cum. rel. 1st No. of Length
Country Frequency freq. (%) Percentile Median firms in days

United States 853,594 (40.9) 1976 2003 3,406 10,345
Japan 599,021 (69.6) 1979 2005 1,293 10,122
Germany 224,823 (80.3) 1973 2001 368 10,336
South Korea 94,424 (84.9) 1995 2007 374 6,477
Taiwan 78,103 (88.6) 1998 2008 535 6,424
France 69,961 (91.9) 1976 2005 261 10,470
Switzerland 35,661 (93.7) 1974 2004 85 10,338
United Kingdom 26,927 (94.9) 1974 2002 340 10,424
Finland 20,985 (95.9) 1991 2008 69 6,486
Netherlands 20,736 (96.9) 1974 2001 45 10,486
Sweden 14,307 (97.6) 1985 2004 139 8,022
Denmark 12,013 (98.2) 1987 2005 45 10,496
Italy 7,477 (98.6) 1974 2002 94 10,432
Belgium 7,214 (98.9) 1975 2002 34 10,562
Canada 5,512 (99.2) 1973 2003 173 10,347
China 4,068 (99.4) 2003 2009 40 5,475
Norway 3,161 (99.5) 1983 2004 63 8,680
India 2,136 (99.6) 1997 2009 108 5,902
Austria 1,736 (99.7) 1975 2004 39 10,450
Australia 1,647 (99.8) 1980 2008 129 10,419
Singapore 1,530 (99.9) 1998 2011 28 7,901
Israel 1,123 (99.9) 1995 2010 60 5,305
Spain 694 (99.9) 1989 2010 36 6,748
New Zealand 586 (100.0) 1998 2006 12 6,536
Brazil 368 (100.0) 1995 2010 36 4,826
South Africa 202 (100.0) 1974 1993 17 10,323
Hong Kong 136 (100.0) 2003 2009 16 7,200

Total 2,088,145 1976 2004 7,845 10,562

Notes: “country” refers to the country where the patenting company is primarily listed; the number of “firms” factually
represents the number of stock series, each of which we treat individually for our analysis; the number of “patents”
factually represents the number of patent grant events, which means that one patent may be counted multiple times if
also granted to multiple firms; “days” refers to trading days.
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Figure 1: The yearly number of patent grant events for the entire merged data set in the period
1973–2013, highlighting the largest three contributors to the global patent stock.

The availability of the required financial variables further restricts the sample of patents.

Specifically, we restrict our sample to patents for which we have non-missing values for the

market-adjusted stock returns and market capitalizations on the days following the grant day

and for which we can calculate return volatilities. Also, we restrict the sample to stock markets

in which we observe at least 50 patent grant events. After we lose 7.7% of the patents due

to these restrictions, we obtain the final sample of 2,088,145 patents. Hence, in sum, 79% of

2,651,869 identified patent grant events in the extract from EPO’s Patstat remain. The majority

of excluded patents are due to regular data gaps: 5.5% of the merged patents are granted on

weekends or trading holidays.14 In an attempt to overcome this, we experiment with shifting

patents granted on weekends or trading holidays to the next trading day. However, because we

find only weak stock price movements for these shifted grant events and do not want to add

more noise to our model, we exclude all patents granted on non-trading days.

The final data set consists of 27 separate data panels, organized by the country where the

patenting company is primarily listed, to allow for country-specific model selection and esti-

mation. Table 1 provides summary statistics for each country panel. Clearly, the cross-country

14 The topic of regular data gaps requires special attention. Identification of trading holidays is complicated because
historical business calendar series are often not available. Specifically, for US stock data, CRSP does not offer trading day
series. However, the high data quality offers an alternative: we simply deduct the trading day calendar from the missing
observations in the sample. For all other markets, our first attempt is to rely on the “VACS” time series provided by
Datastream, which mark exchange closure days. However, roughly speaking, the VACS series are not available in the
first 10 years of our sample period. Therefore, for the years where the “VACS” series are missing, we attempt to deduce
the trading day calendars from the data. As for US stocks, the general approach is to mark days as trading holidays
when the data are missing for all series. However, for some countries we take an approach more lenient towards
holidays: we consider all days for which more than 95% of our series are missing to be trading holidays. This lenient
approach is designed to generate an annual number of trading holidays that is in line with the market-specific yearly
average of the “VACS” series. We argue that this procedure is sensible because Datastream seems to unsolicitedly fill
some of the (regular) data gaps with the last available observation. Finally, we should note that for early years and/or
countries that suffer from relatively poor stock market coverage, our deductive methods are prone to error due to an
increased number of irregular data gaps.
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sample is strongly concentrated. Distinctly, the United States, Japan, and Germany are the

largest contributors to the global patent stock, making up a little over 80%. Moreover, the

largest 10 countries supply 97% of the total patent stock. The distribution of patent grants over

time varies greatly across countries: for some countries the data set already contains significant

numbers of patent grants in the 1970s, for others not until the 1990s. A common observation is,

however, that around half of the patents were granted in the last three to 12 years within each

country. Consequently, more than 50% of the observed patent grant dates are concentrated in

the last 10 years. The same effect is also illustrated by the stark, upward trend in the overall

yearly count of patent grants in Figure 1: from less than 20,000, the number of observed patents

granted each year has increased to over 100,000 since 2006. The country-specific financial data

panels consist of all firms to which at least one patent is granted on a trading day within our

sample period. As expected, the number of observed patent grants is strongly correlated with

the number of patents. The beginning of the sample period varies between January 1973 and

July 1994; for all country panels, the end of the sample period is December 31, 2013.

We append the data set with monthly consumer price index (CPI) rates obtained from the

Federal Reserve Bank of St. Louis (series name: “CPIAUCNS”, base year: 1982–1984) to make

comparison of patent value estimates possible over time. Furthermore, we download annual

gross domestic product (GDP) per capita series from 1973 to 2014 from the World Bank. Since

the World Bank does not list Taiwan as a separate country for its World Development Indicator,

we download annual the GDP per capita series for Taiwan from EconStats, IMF, World Economic

Outlook. All GDP per capita series are at annual frequency and in constant local currency units.

Finally, we note that the extract from EPO’s Patstat also contains information about the number

of times a patent is cited by other patents within the sample of EPO’s Patstat up to 2013.

4 Model specification

To construct a patent-level measure of innovation, we seek to model stock price movements

related to news of patent grants. This approach is appealing because asset prices record the

value of the expected future cash flows generated by innovation quite immediately in response

to news regarding the firm’s innovative activity (see also Griliches, 1990). Hence, the use of

financial data allows for construction of patent value estimates based on ex-ante information

(Kogan et al., 2015). Moreover, as opposed to patent citation data, stock market valuations are

directly informative about the economic value of patents (see also Section 2.2).

Our approach to estimating the value of patents is built on the innovation measure pro-

posed in Kogan et al. (2015). This choice was strongly inspired by the evidence reported in

Kogan et al. (2015) that indicates the substantial usefulness of their measure in addition to its

high information content. Although the underlying idea of the measure remains the same, we

choose to make some important alterations to the econometric model configurations in Kogan

et al. (2015). For the sake of transparency, this section briefly points out where our model de-

viates. The real discussion is, however, saved for Section 7.1, where we critically examine the

significance and implications of these adaptations.
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In the remainder of this section, we formally present the model that we use to construct

patent value estimates. First, Section 4.1 decomposes stock returns into a patent-related com-

ponent, the stock market responses to patent grants, and a noise component. Based on distri-

butional assumptions, we then derive an expression for the expected value of the patent-related

stock return conditional on observed stock price movements. Second, Section 4.2 specifies the

panel regression model that we estimate independently for each country-specific data panel to

measure the essential signal-to-total-variance ratio. Also, we discuss the estimation of the vari-

ance of the noise component. Third, Section 4.3 explains how to recover patent value estimates

from conditional expectations of the patent-related stock price movements.

4.1 Patent-related stock returns

Stimulated by the main idea presented in Kogan et al. (2015), we exploit information contained

by stock price movements to estimate the economic value of patents. To do so, we study a

narrow event window of the three trading days, [d, d + 2], following patent grant events, referring

to the dates when investors learn that patents are granted. We choose for the three-day event

window because we do not find significant stock price reaction on days later than two days

after the patent was granted. Importantly, however, the rate at which investors process (patent)

information may vary across countries. In fact, we generally only observe significant reactions

in a country-dependent, closed subset of the grant event window. Consequently, we construct

the patent value estimates based on only on the days for which we find (weakly) significant

market responses (see also Section 5.2). To not overly complicate the specification of our model,

the remainder of this section is, nevertheless, built on the “base case scenario”, that is, using a

three-day event window.

We choose to focus on patent grant events because we can consistently observe them across

patenting nations. Moreover, studying patent grant events allows us to capture discrete shocks

to the market’s information set that are all induced by a homogeneous set of events. In con-

trast, other available, distinct patent events may vary greatly in type and thus in impact on the

investors’ set of knowledge about patents. Such information events are, therefore, not eligible

to measure the economic value of a patent in a comparable fashion across countries.15

Hence, we seek to isolate the component of stock price movements that is related to the

discrete change in the market’s set of information about a patent due to its acceptance. However,

even within a narrow window of trading days following patent grant dates, stock returns are

exposed to both market forces and firm-related news items other than the patent issuance; our

model accounts for this explicitly. First, to remove market movements, we use log market-adjusted

returns r, defined as the firm’s log return minus the log market return. Hereafter, we simply say

(stock) returns to refer to log returns. We follow Kogan et al.’s (2015) suggestion to use the

15 In addition to patent grant events, another potential homogeneous set of information events could consist of appli-
cation publications: most national patent offices officially publish patent applications 18 months after filing. However,
before the American Investors Protection Act became effective in November 2000, US patent applications were not of-
ficially published prior to patent grant dates. For this reason, we do not consistently observe application publication
events throughout our sample. Besides, Kogan et al. (2015) examine stock market responses to application publications
and find only weak stock price movements. Another candidate event could be application filing dates; however, patent
offices generally do not officially publish applications at the time they are filed (see also Kogan et al., 2015).
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“market-adjusted-return model” (Campbell, Lo, and MacKinlay, 1997, p. 156).16 By doing so,

we avoid a source of measurement error that could result from estimating each firm’s stock

market beta. However, the drawback of the “market-adjusted-return model” is that it implicitly

assumes that all firms have the same amount of systematic risk. Testing the robustness of

their results to relaxation of this assumption, Kogan et al. (2015) report that their estimates of

the value of US patents are quantitatively similar when using an unrestricted market model

allowing for firm-dependent market betas.

Second, to explicitly account for fluctuations of market-adjusted returns for reasons unre-

lated to the value of the patent, we decompose the daily market-adjusted returns rjl on the lth

day after patent j was granted to a given firm as follows:

rjl = sjl + ε jl , l ∈ {0, 1, 2}, (1)

where sjl denotes the component of the firm’s stock return that is due to the market response to

the grant of patent j, and ε jl denotes the component of the firm’s stock return that is unrelated

to the patent. We note that Kogan et al. (2015) propose a similar decomposition but apply it to

(simple) three-day cumulative returns instead of daily returns. However, by considering each

day in the event window independently, we are able to identify the timing of the stock market

reaction more accurately and thereby better isolate the patent-related component of return.

Moreover, there are some important implications of directly studying multi-period returns for

the estimation of the patent-related stock return. Section 7.1 provides a detailed discussion.

Given the observed stock returns in the event window, rj = ∑2
l=0 rjl , we are interested in

the total stock market reaction to the grant of patent j, sj = ∑2
l=0 sjl . Notice that rj thus de-

notes the three-day cumulative return after grant of patent j. To derive an expression for the

conditional expectation E[sl |rl ], we introduce several distributional assumptions. We allow the

second moments of both sjl and ε jl to be firm- f - and year-t-dependent. Also, the second mo-

ment of the stock market reaction sjl may vary across days l of the patent grant event window.

Hence, E[s2
jl ] = σ2

sl f t and E[ε2
jl ] = σ2

ε f t. Furthermore, we assume that sjl and ε jl are indepen-

dently distributed and are serially uncorrelated.17 Therefore, we can write E[s2
j ] = ∑2

l=0 σ2
sl f t

and E[ε2
j ] = 3σ2

ε f t. Since the market value of a patent is non-negative, we assume that sj follows

a normal distribution truncated at zero, sj ∼ N+(0, ∑2
l=0 σ2

sl f t).
18 Notice that the model thus

allows for stock price corrections as sjl may be negative, given that the sum sj is non-negative.

Lastly, the noise term is normally distributed, ε j ∼ N (0, 3σ2
ε f t). We note that our distributional

assumptions follow the example set in Kogan et al. (2015), extended to the setting of daily

returns.19

16 The use of log returns deviates from Kogan et al. (2015) as their model suggests the use of simple returns. The
model outlined in this paper relies on the characteristic of log returns that multi-period returns are the sum of single-
period returns. Moreover, log returns allow for more reliable inference since they are more consistent with a normal
distribution than simple returns (see Fama, 1976, ch. 1).

17 The assumption of no autocorrelation is in line with the stylized facts of asset returns (see, e.g, Taylor, 2007, ch. 4).
18 We note that the second moment of a mean-zero normal distribution, truncated at zero, is (simply) equal to σ2 as

its mean and variance are equal to σc0 and σ2(1− c2
0), where c0 = φ(0)/Φ(−0).

19 Estimating US patent values, Kogan et al. (2015) experiment with various distribution assumptions for s and ε and
find comparable results for all distributions. In particular, Kogan et al. (2015) experiment with using a non-zero mean
parameter for the truncated normal distribution of s. Because daily return data do not support reliable estimation of

13



Given the distributional assumptions, the expectation of sj conditional on rj equals:

E
[
sj|rj

]
= δ f trj +

√
3δ f tσε f tλ

(√
δ f t

rj√
3σε f t

)
, (2)

where δ f t is the signal-to-total-variance ratio,

δ f t =
∑2

l=0 σ2
sl f t

∑2
l=0 σ2

sl f t + 3σ2
ε f t

, (3)

and λ(z) = φ(z)/Φ(z) is the inverse Mills ratio, with φ and Φ the probability density func-

tion and the cumulative distribution function of the standard normal distribution. Notice that

“signal” refers to the component of rj related to the value of patent j, that is, sj. Appendix B.1

derives the conditional expectation formulated in (2).

Thus, to compute the conditional expectation of sj given rj, we need to estimate the distri-

bution parameters σsl f t and σε f t. However, if we allow both variance parameters to vary freely

across firms and time, the number of parameters becomes too large to estimate (see also Kogan

et al., 2015). To overcome this, σsl f t and σε f t vary in constant proportions for each day l within

the event window.20

This restriction implies that σsl f t can be written as a linear function of σε f t (or vice versa)

and that the signal-to-total-variance ratio is constant across firms and years, that is, δ f t = δ. For

the derivation of these algebraic results, we refer to Appendix B.2. Hence, instead of estimating

σsl f t and σε f t individually, we directly estimate δ.

4.2 Estimating the signal-to-total-variance ratio and the variance of noise

The signal-to-total-variance ratio δ can be derived from the ratio of the sum of second moments

of returns on days unrelated to patent grants, E[ε2
f d] = σ2

ε f t, to the sum of second moments

of three-day returns after patent grants, E[(sl, f d + ε f d)
2] = σ2

sl f t + σ2
ε f t. The subscript “ f d”

replaces the subscript “jl” used in Section 4.1 because we no longer restrict our attention to

days after patent grants, but rather consider any daily market-adjusted return r f d of firm f on

day d. Nevertheless, the subscript l remains for the patent-related component of return, sl, f t, to

discriminate between days within grant event windows. Since the assumption of proportionality

discussed in the previous section implies that σ2
sl f t is a linear function of σ2

ε f t, the effect of the

news of a patent grant on the second moment of returns is multiplicative. In order to estimate

this multiplicative effect and ultimately δ, we regress the log squared daily market-adjusted

a firm- and/or year-dependent mean of s, Kogan et al. (2015) assume an unconditional mean that is constant across
firm-years. As a result, allowing for a non-zero mean parameter of the distribution s mostly has a scaling effect on their
estimates, with correlations over 99% with the estimates based on the zero-mean truncated normal.

20 The drawback of assuming that σsl f t is proportional to σε f t, is that the patent value estimates become an increasing
function of the variance of the noise component of returns. That is, given the same return response, our measure yields a
higher estimate of the value of the patent if granted to a firm with higher volatile returns. This effect occurs because the
mean of a normal distribution truncated at zero is increasing in its variance parameter. The argument that fast-growing
firms have more volatile returns and could produce more valuable inventions, provides some economic justification to
the positive relation between volatility and our patent value estimates. Section 7.1 revisits this issue.

14



returns r f d on a patent grant dummy variable, I f d:

log
(

r2
f d

)
=

2

∑
l=0

γl I f ,d−l +
5

∑
i=1

θiDid + c f t + ζ f d, (4)

where Did for i ∈ {1, . . . , 5} denote day-of-the-week dummy variables, c f t is a firm-year specific

effect for firm f in year t, and ζ f d is an error term that is i.i.d. over f and d. The lagged grant

dummy variables measure the stock market reactions up to second day after the patent grant.

The day-of-the-week dummy variables control for the day-of-the-week effect on stock market

volatility which has been reported in the literature (see, e.g., Kiymaz and Berument, 2003).21

We perform estimation of model (4) independently for each country-specific data panel (see

Section 3.2 for an overview of these panels). Country-specific estimation is desired because

stock return distributions may vary across markets. In particular, stock price reactions to patent

grants may be more prevalent in stock returns in some countries than in others and could

display a different timing. Both of these suspicions advocate country-specific estimation of γl .

Furthermore, we note that model (4) presents an important deviation from the specification in

Kogan et al. (2015, p. 11). Namely, as previously noted in Section 4.1, the approach in Kogan

et al. (2015) relies on studying three-day cumulative returns at once and consequently involves

the regression of three-day cumulative returns on a single patent grant dummy variable. In

Section 7.1 we provide a detailed discussion of this issue.

Using the assumptions on sl, f d and ε f d, the signal-to-total-variance ratio δ can be expressed

as an increasing, convex function of the sum of the regression coefficients γl , l ∈ {0, 1, 2}, in (4):

δ = 1− 3

∑2
l=0 eγl

. (5)

We refer to Appendix B.2 for the derivation of (5). Hence, for our estimate γ̂ we can compute δ̂.

Again, we deviate from Kogan et al. (2015, p. 11), who specify a relation between δ and γ that

suggests a false interpretation of γ (see also Appendix B.2). In Section 7.1 we discuss this issue

in detail and examine its impact on the empirical results.

The last parameter in (2) that we need to estimate for computation of the conditional ex-

pectation of sj given rj, is the variance parameter of the noise component of returns, σε f t. For

this, we take a non-parametric approach by calculating the second sample moment of returns

of firm f in year t. However, since we estimate the second moment over both days related and

unrelated to patent grants, it is a mixture of σ2
sl f t, l ∈ {0, 1, 2}, and σ2

ε f t. Based on our estimates

of γl we recover the σε f t from the second moment of returns:

σ2
ε f t =

E[r2
f d]

1 + ∑2
l=0 dl, f t(eγl − 1)

, (6)

where dl, f t denotes the fraction of trading days that concern a day l in a grant event window

21 Wald tests strongly indicate presence of time-specific effects, with p-values below 0.01 for the large majority of our
panels. Hence, the statistical evidence supports the hypothesis of the day-of-the-week effect on stock market volatility.
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for firm f in year t. In Appendix B.3 we derive the result in (6).22 We estimate the second

sample moment over all days, both patent-related and -unrelated, because in some years, for

some countries, a significant share of the firms experience multiple patent grant days per week.

In such cases, estimation only over days unrelated to patent grants is unreliable, if not infeasible.

An important observation here is that the estimate of σε f t is not conditioned on the day of

the week, even though the day-of-the-week dummy variables in model (4) imply that the second

moments of the market-adjusted stock returns are a function of the day of the week. We take this

approach for two reasons. On the one hand, day-of-the-week dummy variables are necessary

to prevent omitted-variable bias since patent grants are typically not evenly distributed over the

days of the week.23 On the other hand, we pool all days of the week to ensure sample sizes that

allow for reliable estimation of σε f t. Nevertheless, our estimate of δ is valid also when applied

in a setting where the second moments of returns are not allowed to vary across the days the of

the week. The validity is because our estimates of γl for l ∈ {0, 1, 2}, and consequently of δ, are

constant across the days of the week as the effect of the news of a patent grant on the second

moment of returns is multiplicative.

4.3 Recovering patent value estimates

We relate the conditional expectation of the patent-related stock return in the event window,

E[sj|rj], to the market value of patent j. First, we calculate the dollar value of the stock market

response to a patent grant event, ∆Sj using the market capitalization Mj is of the firm that is

granted patent j, on the day prior to grant day (l = 0):

∆Sj =
1
Nj

[
exp

(
E
[
sj|rj

]
+

1
2

Var
[
sj|rj

])
− 1
]

Mj, (7)

where Nj is the number of patents granted to the same firm on the day patent j is granted.

Hence, we account for coinciding patent grants by assigning only a fraction 1/Nj of the patent-

related stock price movement to each patent.24 The term 1
2 Var[sj|rj] corrects for the convexity of

logarithmic functions, and the conditional variance is expressed as,

Var
[
sj|rj

]
= 3δ f tσ

2
ε f t

[
1− κ

(√
δ f t

rj√
3σε f t

)]
, (8)

where κ(z) = λ(z)[λ(z) + z], and (again) λ(z) = φ(z)/Φ(z) is the inverse Mills ratio. We refer

to Appendix B.1 for the derivation of (8). Notice that we can estimate Var[sj|rj] based on our

estimates of δ and σε f t discussed in the previous section.

The second step relates the stock price response ∆Sj to the economic value Vj of patent j.

Since ∆Sj only reflects the uncertainty about the patent application’s success that is resolved

22 Also here we deviate from Kogan et al. (2015, p. 11). Although Kogan et al. (2015) also recover the variance of the
noise component of returns using their estimate of γ, their relation seems to again rely on a false interpretation of the
coefficient γ.

23 For example, the USPTO issues patents on Tuesdays except if there is a federal holiday.
24 Based on the full sample, a patenting firm is granted 2.71 patents on each grant day.
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when the patent is granted, the stock market response ∆Sj understates the value of the patent.

Specifically,

∆Sj = (1− πj)Vj, (9)

where πj is the investors’ assessment of the ex-ante probability that the application of patent

j will be accepted. Hence, in anticipation of the grant of patent j, the market value of the

patenting firm already includes πjVj. Accounting for the understatement of ∆Sj and using (7),

we derive the following expression for the economic value Vj of patent j:

Vj =
(
1− πj

)−1 1
Nj

[
exp

(
E
[
sj|rj

]
+

1
2

Var
[
sj|rj

])
− 1
]

Mj. (10)

Thus, the last remaining parameter to construct Vj is the investors’ assessment of the ex-ante

patent acceptance probability πj. In general, we estimate the ex-ante acceptance probability

conditional on time based on observed acceptance rates in our patent sample. Our estimates of

π̂t range from 0.54 to 0.64 over time. However, restricted by data availability, we use π = 0.56

as the unconditional probability of patent acceptance for US patents. We formally address the

computation of π̂t in the next section.

Important to note is that equation (9) implicitly assumes that the market value of patent j,

Vj, is fully known to investors prior to its grant date. We argue that the assumption is rea-

sonable because generally, the patent office officially publishes the full patent application text

18 months after filing. Hence, investors typically have full knowledge about the content of

the patent before its grant date. The one important exception is the United States, where the

18-month-disclosure policy was introduced by the American Investors Protection Act (AIPA)

only in November 2000. Before AIPA, the US Patent and Trademark Office (USPTO) exclusively

disclosed patent applications on the patent grant day. However, as firms often announce new

products and the associated patents themselves, anecdotal evidence suggests that investors are

typically informed about patents before their grant dates, even in absence of their formal pub-

lications. Furthermore, Kogan et al. (2015) empirically assess this claim and conclude that the

information content revealed on the publication date may be only small.25 Thus it appears safe

to assume that investors possess advance knowledge about the patent value.

Nevertheless, publication of a patent grant could include new information about the patent

that affects market beliefs. For example, the patent office may require changes to the content

before they accept the patent (Putnam, 1997). If such changes are related to the economic value

of the patent, investors will update their beliefs Vj. Consequently, the expression of ∆Sj in (9)

would include the additional term πj(Vj − Ṽj), where Ṽj is the belief about the patent value

prior to the grant date (see also Kogan et al., 2015). Based on the reasonable assumption that

25 For their US-only patent sample, Kogan et al. (2015)—who also make the assumption that the value of the patent
is observed before it is granted—investigate whether AIPA’s introduction of patent application publications 18 months
after filing has impact on their estimates of the signal-to-total-variance ratio: Kogan et al. (2015) report an increase of the
estimated signal-to-total-variance ratio for patents filed after AIPA’s effective date but this difference is not significant.
Therefore, Kogan et al. (2015) conclude that the increase in information available to investors prior to patent grant dates
due to official publication of patent applications may be only small.
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(Vj − Ṽj) is uncorrelated with Vj, the decomposition of stock returns as in (1) is still valid. On

the other hand, estimation of the conditional expectation of the patent-related stock return sj—

based on the signal-to-total-variance ratio δ—is no longer reliable as model (4) will also measure

the stock price movements related to πj(Vj − Ṽj). As a result, our estimates of δ would be too

high. Unfortunately, as there is no data available about the prior beliefs of investors, the best

we can do to adjust for the presence of πj(Vj − Ṽj) in the market response ∆Sj is to scale our

estimates of δ down. In fact, given the lack of data, the only sensible choice would be to use

the same scaling factor for all countries. However, by applying equal scaling factors, the relative

cross-sectional differences in value across patents remain approximately unchanged, and we

thus do not affect our results in a statistically meaningful way. Therefore, we choose to not alter

our estimates of the signal-to-total-variance ratio δ.

5 Estimation, selection, and construction of patent values

In this section, we discuss the empirical procedures that are required to measure patent value

and subsequently present the patent value estimates. Specifically, Section 5.1 addresses the

computation of the ex-ante probability of patent acceptance. Next, Section 5.2 deals with the

estimation of model (4) for the 27 country-specific panels in our sample, from which we then

draw two important results. First, the days for which we observe significant stock price reactions

to patent grants define the country-specific grant event windows used for the construction of

patent value estimates. Second, based on the estimated regression coefficients, we construct

country-specific estimates of the signal-to-total-variance ratios using (5). Lastly, Section 5.3

presents the distribution of the constructed patent value estimates across countries.

5.1 Estimation of the ex-ante probability of patent acceptance

Derivation of patent value estimates from the measured market reactions to patent grants re-

quires knowledge about investors’ expectations about the acceptance of the patent. Specifically,

the market’s assessment of the ex-ante patent acceptance probability πj determines the factor

by which the stock price response to a patent grant understates the value of patent j (see Sec-

tion 4.3). Therefore, to account correctly for this understatement, we seek to mimic the patent

market conditions that investors perceive and on which they rely in their assessment of πj. To

do so, we compute patent acceptance rates within our patent sample to estimate πj.

Computation of patent application acceptance rates in our extract from the EPO’s Patstat

database reveals variation both across time and publication authority. Nevertheless, we choose

to construct estimates of the patent acceptance probability conditional on time only, that is,

based on five-year moving averages. This choice is guided by concerns about the reliability of

the patent application data: little is known about the extent to which unaccepted patents our

data set records. We are especially concerned about systematic differences across publication

authorities in the way unaccepted patents appear in our data set: grant rates across different
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Figure 2: Estimates of conditional ex-ante patent acceptance probabilities for non-US patents,
based on the average acceptance rates within five-year time windows centered at the year of
filing of the patent.

patent offices are strongly dispersed with a significant degree of polarization.26 Since it is

unreasonable to assume that the variation can be explained by changes in patent acceptance

policies, we conclude that the dispersion across patent offices rather captures varying degrees

of selection bias than developments in patent climates. Therefore, we choose to condition our

estimates of πj only on time.

In general, we estimate the patent acceptance probability πj based on observed acceptance

rates for all patents filed within a five-year time window centered at the year of patent j’s filing.27

The reason why we take this approach is two-sided. First, when investors receive news about

a patent filing, their beliefs about the probability of success of patent j are based on the current

patent market conditions. These market conditions can be best mimicked by the acceptance

rates of patents filed around the time that patent j was filed. Therefore, we use a five-year

estimation window centered at patent j’s time of filing. Second, we consider filing dates because

only they can be used to compare successful applications with those that are unsuccessful: other

publication dates may be correlated with the patent office’s acceptance decision.

There are, however, three motives to deviate from our general estimation method. First,

since our patent data is truncated in the beginning of 2014, we cannot reliably estimate patent

success rates for recently filed patents. Specifically, considering that 95% of the successful patent

applications are granted within seven and a half years after filing, we conclude that yearly

acceptance rates for patents filed after 2006 are affected by the truncation. Therefore, considering

that our estimates are based on five-year moving averages centered at the year of filing, the last

reliable estimate is for patents filed in 2003. Second, our patent sample exhibits a steep increase

in yearly acceptance rates before 1980. This raises doubts about the reliability of our estimates

26 To test our concerns about differences in the way unaccepted patents are recorded across patent offices, we calculate
office-specific patent acceptance rates for five-year time windows. The results reveal not only large variability, but also
strong polarization: our estimates equal 0 for 12% of the cases and 1 for another 39%. These results give reason to
believe that our estimates are affected by varying sizes of selection bias and are thus unreliable.

27 For approximately 0.5% of the successful patent applications, the filing date is missing. In these cases, we estimate
filing dates based on the average length between filing and granting dates for the relevant publication authority. Note
that there is margin for error here because we are only interested in the year of filing, opposed to the exact date.
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for this period in our patent data set.28 Thus, again accounting for the five-year window, the first

reliable estimate is for patents filed in 1982. Third, before AIPA became effective in November

2000, unsuccessful US patent applications were not published and consequently not observed

(see also Section 4.3). Therefore, we cannot construct a reliable estimate of the number of patents

declined by the USPTO. Instead, based on Carley, Hegde, and Marco (2015), who estimate the

probability of receiving a US patent that was filed in the period from 1996 to 2005 using a

proprietary data set, we use π = 0.56 as the unconditional probability of patent acceptance for

US patents.29

Hence, we construct our time-dependent estimates of the patent acceptance probability for

non-US patents filed in the period from 1982 to 2003 and use the closest available estimate for

patents filed outside this period. Figure 2 presents the results. The estimated conditional prob-

ability of patent acceptances ranges from 0.54 to 0.64. The estimated probability of acceptance

peaks from the late 1980s to the mid 1990s, after which we observe a sharp and steady decline.

Given the lack of academic literature investigating patent acceptance rates with an international

scope, we cannot assess the plausibility of the observed variation.30 However, we do find that

the overall probability of receiving a patent is around the documented 56% in Carley et al. (2015)

for US patents.31

5.2 Window selection and estimation of the signal-to-total-variance ratio

To measure the signal-to-total-variance ratio, we estimate model (4) for each country indepen-

dently. We stress that the regression results are essential for the validation of our approach to

measuring patent values. Specifically, the statistical significance of the estimated coefficients γl

from model (4) serve as evidence that stock price movements contain (measurable) information

about the value of patents. Therefore, we take a prudent estimation approach, which we outline

in detail in this section. First, we discuss the choice of estimation by fixed effects. Second, we

investigate the validity of the error assumptions in model (4) to ensure reliable inference. Third

and finally, we report the estimation results for the 27 countries in our sample and discuss their

implications for the construction of patent value estimates.

28 There could also be concerns about differences in the extent to which we observe unaccepted patents within the
post-1980 period. Although they can be hardly tested based on our patent sample, we note that our estimates do not
give real reason to support such concerns.

29 Equally restricted by the availability of reliable application data, Kogan et al. (2015) also use 56% as an estimate of
the unconditional patent acceptance probability for their study on US patents.

30 Moreover, the causes of the variation in patent acceptance rates are hard to identify based on mere statistical
examination of patent application data. In particular, the question arises whether the variation is driven by changes in
the strategy of either patent applicants or patent offices (Carley et al., 2015).

31 We should note that our estimate of πj is likely to be a source of significant measurement error, which has a
number of implications for the interpretation of our results. First, the absence of control for cross-sectional variation
in the acceptance probabilities across patents hinders reliable comparison of individual patent values. Second, since
firms are more likely to file for patent protection in their domestic market, cross-sectional differences in average or
aggregated innovation measures are troubled by potential variability in patent acceptance rates across patent offices.
Third and finally, the probability of patent acceptance may be correlated with the value of the patent. Given the skewed
distribution of patent values, this implies that aggregated measures of innovation suffer from estimation bias.
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Fixed effects

There are economic reasons to believe that the individual (firm-year) effects in model (4) are

correlated with our patent grant variable. For example, consider firms with particularly active

R&D departments. Based on the belief that such firms receive much attention from specula-

tive investors (having certain expectations about the outcomes of these innovation activities),

one could hypothesize that relatively innovative firms are characterized by higher stock return

volatility.32 Since R&D intensity is likely to be correlated with patent activity, the hypothesis

implies presence of individual effects that are correlated with our patent grant dummy variable,

that is, fixed effects.

To test the suspicion of fixed effects, we use a version of the Hausman (1978) test that is

robust to violations of the i.i.d. assumptions on the error term in model (4). This robust form

makes use of the auxiliary regression approach described in Wooldridge (2002, pp. 290–291).

We extend the approach to the settings of our panel model presented in (4), that is, allowing for

firm-year specific effects and including time dummies.33 Table 2 (below) provides the p-values

of the robust Hausman tests for all countries. Robust Hausman tests strongly reject random

effects for all of the “larger” panels, where size is defined by the number of observed patent

grants. The tests fail to reject random effects for the smaller data panels; however, this behavior

is expected because the low number of observed patent grants is naturally accompanied by

wide confidence intervals and, inherently, insignificant test results. We thus conclude that the

test results generally support our suspicion of fixed effects. Therefore, we decide to estimate

model (4) by fixed effects for all countries.

Violations of error assumptions

For valid inferences about the significance of γl in model (4), we need to be confident that our

standard errors are consistent. However, given both the nature of the data and the specification

of our model, we expect the standard assumptions for the error term ζ f d in model (4) (i.e., i.i.d.

over periods d and across cross-sectional units f ) to be violated for our country-specific panels.

First, errors are likely to be heteroskedastic as our panels include all types of securities, from

32 The hypothesis about a positive relationship between firms’ innovation intensity and stock return volatility is,
among others, tested in Mazzucato and Tancioni (2012): results suggest a positive and significant relationship between
R&D activity and volatility of stock returns.

33 Asymptotically equivalent to the Hausman test for model (4) is to perform a Wald test of φ = 0 in the auxiliary OLS
regression (Wooldridge, 2002, pp. 290–291; Cameron and Trivedi, 2005, pp. 717–718):

y f d − λ̂y f t =
5

∑
i=1

αi(Did − λ̂Dit) +
L

∑
l=0

βl(I f ,d−l − λ̂I f t) + φ(I f d − I f t) + ν f d, (i)

where y f d = log(R2
f d) and x f t denotes the mean of a given variable x for firm f in year t. Furthermore, λ̂ is a consistent

estimate of λ f t = 1− σ̂2
ζ /(σ2

ζ + Tf tσ
2
c ), where c and ζ refer to the firm-year specific effect and the error term in (4). Notice

that we obtain the random effects estimator by OLS estimation of (i) with φ = 0. To the contrary, statistical significance
of additional functions of the regressors, such as (I f d − I f t), suggests fixed effects (Cameron and Trivedi, 2005, p. 718).
Therefore, testing φ = 0 is equivalent to testing whether fixed effects are present. However, prudence is required as tests
strongly indicate presence of heteroskedasticity, serial correlation, and cross-sectional dependence in the error term ζ f d

of model (4). Consequently, the i.i.d assumptions on ν f d = (1− λ̂)c f t + (ζ f d − λ̂ζ f t) are violated. Therefore, to ensure
valid statistical inference, we use the Driscoll-Kraay covariance matrix estimator to produce heteroskedasticity- and
autocorrelation-consistent standard errors that are robust to cross-sectional dependence (see also Hoechle, 2007). The
violations of error assumptions and Driscoll-Kraay standard errors are further discussed below in this section.
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low to high volatility stocks. This concern is confirmed by Greene’s (2000) modified Wald test

for (groupwise) heteroskedasticity in fixed effects models (generalized to allow for unbalanced

panels, see Baum (2001)), which rejects the null hypotheses of homoskedastic errors with p-

values of 0.000 in all panels.

Second, in line with the widely documented observation of “volatility clustering” (see, e.g.,

Taylor, 2007, ch. 4), we expect our dependent variable—the second moment of stock return—to

exhibit persistent autocorrelations. Since our model does not account for this autocorrelation,

we suspect serially correlated error terms. To test our suspicion, we perform Wooldridge (2002)

tests for serial correlation in panel data (see also Drukker, 2003): the null hypothesis of no serial

correlation is rejected with p-values of 0.000 in all panels.

Third, an increasingly dominant conclusion within the panel-data literature is that panel-

data models exhibit cross-sectional dependence due to common shocks and the presence of

unobserved factors (see, e.g., De Hoyos and Sarafidis, 2006). Cross-sectional dependence (CD)

tests are, however, not directly applicable to our panels, as the test statistics can only be com-

puted over observations common to all cross-sectional units (see Baum, 2001; De Hoyos and

Sarafidis, 2006). Because we control for firm-year fixed effects, cross-sectional units (correspond-

ing to firm-years) only share observations when corresponding to the same year. Moreover, even

within the time span of one year, panels may be (highly) unbalanced because of new introduc-

tions or delistings of stocks in that year. For this reason, we run CD tests on filtered panel models,

which are restricted to cover only observations within the same year and exclude securities with

relatively short time spans and/or many data gaps. For most exchange markets, this leaves us

with panels for which T > N, where T is generally around 250 (the typical length of one year

in trading days). In such cases, we may rely on the Lagrange multiplier (LM) test, developed by

Breusch and Pagan (1980). However, Pesaran (2004) shows that Breusch and Pagan’s (1980) LM

test is likely to exhibit substantial size distortions when N is large and T is finite. Therefore,

for cases when N is large, we use Pesaran’s (2004) CD test, which is valid for “large N, small

(or large) T” panels (see De Hoyos and Sarafidis, 2006). The CD tests strongly reject the null

hypothesis of no cross-sectional dependence in the filtered panel models, with p-values of 0.000

in nearly all cases. Hence, we conclude that cross-sectional dependence is present in all of our

complete, country panels.34

To adjust for all of the above-mentioned violations, we use Driscoll and Kraay’s (1998) covari-

ance matrix estimator to produce heteroskedasticity- and autocorrelation-consistent standard

errors that are robust to cross-sectional dependence (see Hoechle, 2007).35 The Driscoll-Kraay

covariance matrix estimator is large-T-consistent, independently of the cross-sectional dimen-

sion N. In our unbalanced panels, for firm f in year t, panel length Tf t is typically around 250

34 Constrained by computational resources, we ran CD tests on filtered panel models for three different years, evenly
divided over the sample period to account for the time dimension: 1980, 1995, and 2010. Because test results very
strongly revealed cross-sectional dependence in each of the three years for virtually every country, we may confidently
generalize these results to the complete country panel.

35 The number of lags used for the estimation of the Driscroll-Kraay covariance matrix is determined using a simple
heuristic proposed in Newey and West (1994):

⌊
4(T/100)2/9⌋. Furthermore, note that conventional clustered standard

errors are not the preferred choice because they cannot adjust for correlations between cluster groups and, consequently,
cross-sectional dependence.
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(as we regard firm-years as “individuals” in our panel), which is sufficiently large, and hence

Driscoll-Kraay standard errors are appropriate. Note that the fixed effects estimator remains

consistent given the reasonable assumption that the cross-sectional dependence is caused by the

presence of unobserved common factors which are uncorrelated with the included regressors

(see, e.g., De Hoyos and Sarafidis, 2006).

Regression results and implications

As followed from the statistical tests discussed above, we estimate model (4) by means of fixed

effects for all countries, and construct the Driscoll-Kraay covariance matrix estimator to produce

consistent standard errors. Table 2 reports the regression results for the 27 countries, ordered by

the number of patent grants in each sample. The most apparent observation from Table 2 is that

we do not find statistical evidence of tock market reactions to patent grants in all countries. More

specifically, mostly for the countries of lower order (in terms of patent counts), we do not find

significant regression coefficients. This finding suggests that for a large share of the countries

in our study, the number of observed patent grant events is too low for reliable estimation

of patent value estimates. In particular, results suggest that our model requires at least 5,000

patents in order to produce significant results. However, since we also do not find evidence

for patent-related stock price movements in South Korea and France, we cannot conclude that

the insignificance of our parameters is merely due to an insufficient number of observations.

Instead, these findings initially suggest that in some countries, on average, patent grants do not

significantly disturb the stock market. We elaborate on the cases of France and South Korea in

Section 7.

Furthermore, the regression results reveal that both the rate and timing by which the market

processes information of patent grants varies across countries. Commonly, the stock prices do

not react to the patent grant until one day after the grant day: only in Japan and Germany we

find a significant estimate of γ0. A possible, straightforward explanation for this observation

could be related to the time of the day when patent offices announce patent grants: if patent

offices disclose the information about patent grants at the end of the day, investors cannot

respond to this news before the day after the grant. However, we leave the testing of this

hypothesis to future work for it requires historical information on the announcement policies

of the patent offices in our sample, which is not readily available to us. Another observation is

that the stock market reaction is typically concentrated on one or two days: only for Japan we

find evidence for a stock market response to patent grants throughout the complete three-day

event window.

Thus, based on the estimation results in Table 2, we select the grant event window for each

country. Specifically, the event window is defined by the set of days for which the estimated

coefficients are significant at the 10% significance level.36 As a logical consequence of the win-

dow selection criterion, the estimation results impose a restriction on our sample: we exclude

36 Since the highest significant estimate equals 0.086, the regression results indicate that the true values of γl , l ∈
{0, 1, 2}, are close to zero. Therefore, we are concerned that our approach to measuring patent values suffers from an
increased probability of type II errors. To partly overcome this problem, we choose to increase the power of the t-test
by using the 10% significance level.
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Table 2: Estimation results of model (4) for the 27 country-specific data panels, ordered by the number of patents in the sample. Robust Hausman
test results indicate whether firm-year fixed effects are present. For all panels, estimation is by means of fixed effects. The days for which the
estimates of γl , l ∈ {0, 1, 2}, are significantly positive at the 10% level define the event window. The last column reports the estimates of the
signal-to-total-variance ratio δ̂ constructed using (5) based on estimated regression coefficients.

Number of Robust Haus- DK DK DK Joint sig. Event
Country patents man test (p) γ̂0 s.e.(γ̂0) γ̂1 s.e.(γ̂1) γ̂2 s.e.(γ̂2) F-test (p) window δ̂

United States 853,594 0.000∗∗∗ −0.008 0.006 0.022∗∗∗ 0.006 0.011+ 0.007 0.000∗∗∗ {1, 2} 0.017
Japan 599,021 0.000∗∗∗ 0.013+ 0.008 0.020∗ 0.008 0.025∗∗ 0.008 0.003∗∗ {0, 1, 2} 0.019
Germany 224,823 0.000∗∗∗ 0.029∗ 0.012 0.018 0.012 0.015 0.013 0.055+ {0} 0.029
South Korea 94,424 0.000∗∗∗ −0.010 0.023 −0.004 0.021 −0.036 0.024 0.501 - -
Taiwan 78,103 0.055+ 0.023 0.020 0.045∗ 0.019 0.027 0.020 0.085+ {1} 0.044
France 69,961 0.004∗∗ 0.021 0.017 0.005 0.017 0.007 0.017 0.652 - -
Switzerland 35,661 0.000∗∗∗ −0.009 0.023 0.058∗ 0.023 0.012 0.024 0.090+ {1} 0.056
United Kingdom 26,927 0.000∗∗∗ 0.015 0.021 0.056∗∗ 0.020 0.053∗∗ 0.020 0.003∗∗ {1, 2} 0.053
Finland 20,985 0.000∗∗∗ −0.009 0.035 0.065+ 0.036 0.029 0.037 0.276 {1} 0.063
Netherlands 20,736 0.000∗∗∗ 0.019 0.030 0.028 0.030 0.033 0.031 0.564 - -
Sweden 14,307 0.000∗∗∗ 0.021 0.026 −0.020 0.026 −0.009 0.026 0.685 - -
Denmark 12,013 0.000∗∗∗ 0.031 0.032 0.032 0.031 0.053+ 0.032 0.272 {2} 0.051
Italy 7,477 0.874 −0.021 0.037 0.055 0.033 0.022 0.036 0.333 - -
Belgium 7,214 0.201 0.024 0.036 0.020 0.036 0.072∗ 0.036 0.229 {2} 0.069
Canada 5,512 0.489 0.025 0.037 −0.008 0.037 0.086∗ 0.034 0.081+ {2} 0.083
China 4,068 0.000∗∗∗ 0.128 0.093 0.063 0.104 −0.237∗ 0.109 0.056+ - -
Norway 3,161 0.000∗∗∗ −0.023 0.049 0.013 0.046 0.003 0.048 0.951 - -
India 2,136 0.919 0.039 0.055 0.011 0.054 0.051 0.054 0.742 - -
Austria 1,736 0.004∗∗ 0.009 0.065 0.018 0.067 0.080 0.063 0.664 - -
Australia 1,647 0.477 −0.038 0.070 0.061 0.063 0.062 0.068 0.546 - -
Singapore 1,530 0.851 0.047 0.088 0.064 0.089 0.009 0.090 0.872 - -
Israel 1,123 0.354 −0.060 0.078 0.047 0.072 0.111 0.077 0.354 - -
Spain 694 0.386 0.011 0.107 0.039 0.098 −0.061 0.104 0.912 - -
New Zealand 586 0.387 0.066 0.118 0.046 0.107 0.076 0.124 0.869 - -
Brazil 368 0.562 0.102 0.123 0.044 0.127 0.154 0.139 0.621 - -
South Africa 202 0.770 0.065 0.144 −0.176 0.173 −0.330+ 0.192 0.235 - -
Hong Kong 136 0.271 0.006 0.203 0.169 0.193 −0.159 0.209 0.634 - -

Notes: although strongly correlated, the number of patents is not equal to the number of observations for which I f d = 1 in (4) due to multiple grants per day; ∗∗∗, ∗∗, ∗, and + indicate
statistical significance at the 0.1%, 1%, 5%, and 10% levels; Driscoll-Kraay (DK) standard errors are robust to heteroskedasticity, autocorrelation, and cross-sectional dependence.
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all countries for which none of the estimates of γl , l ∈ {0, 1, 2}, are significant. Although this

restriction to our sample is undesired, it is inevitable since estimation results do not provide

another reliable means to selection of the event window. In particular, the day(s) on which the

stock market reacts to the patent grant vary/varies across the countries in our sample. There-

fore, we argue, it is not justified to estimate the value of patent based on rather arbitrarily chosen

stock returns. Moreover, the latter approach also involves the estimation of the signal-to-total-

variance ratio with a high level of uncertainty.

Now, it is important to note that we only use the significantly positive estimates of γl ,

l ∈ {0, 1, 2}, to compute the estimate of the signal-to-total-variance ratio based (5). Further-

more, only the returns in the selected event windows constitute the input for the construction of

the conditional expectation of the patent-related return using (2), and ultimately, for the compu-

tation of patent value estimates using (10). Notice that these restrictions on the event window

imply some obvious alterations to the mathematical expressions for (5), (2), and (10). Table 2

reports the estimates for the signal-to-total-variance ratios based on the significant estimated

regression coefficients of γl using equation (5). The estimates range from 0.017 to 0.083.37 Fur-

thermore, the results suggest a negative correlation between the signal-to-total-variance ratio

and the number of patent grants in each panel. This relation can be explained by the intuitive,

inverse relation between quantity and relative importance of patent grant events. We discuss

the patent value estimates in the following section.

Lastly, we should note that for China and South Africa, the estimates of γ2 are significantly

negative, indicating a decreased return volatility on the second day after a patent grant. The

negative effect is inconsistent with our stock return decomposition introduced in Section 4.1.

Namely, our model is built on the assumption that the patent-related component of stock returns

is independently distributed from the noise term and therefore restricts γl , l ∈ {0, 1, 2}, to be

non-negative. The result could be due to omitted variables: patent grant days may be correlated

to other, unidentified events that have a damping effect on stock return fluctuations. Another

explanation is that the more turbulent days that follow patent grants are typically followed

by a more quiet period, possibly related to decreased attention after patent offices have just

made their announcements. In both cases, our results would be suffering from estimation bias.

Nevertheless, since the estimated coefficients for the more significant countries in our sample

are in line with our expectations, we conclude that our results are only minimally harmed by

the potential bias.

5.3 Patent value estimates: descriptive statistics

We construct our patent value estimates for the reduced sample consisting only of the 10 coun-

tries for which the estimation results of model (4) provide statistical evidence for market re-

sponses to patent grants (see Table 2). First, using (2) and (8), we compute the conditional

expectation and variance of the patent-related stock returns for every patent grant event in our

37 In an early study on the relationship between patents, R&D, and stock market returns using patent data from the
USPTO, Pakes (1985) estimate that approximately 5% of the variance in the stock returns is caused by events that also
affect R&D expenditures or patent applications.
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sample. The calculations are based on the stock returns in the selected event window, the es-

timates of the signal-to-total-variance reported in Table 2, and estimated conditional variance

parameters of the noise component of returns as described in Section 4.2. Table C.1 in Ap-

pendix C reports the distributions of the returns rj in the selected event window following

patent grant j, and the corresponding estimates of E[sj|rj] across all patents j in the sample of

each country. For the majority of the countries, the distribution of rj is slightly skewed to the

right, and on average close to zero. Notice that, as stems from the assumption of non-negativity

of sj, equation (2) implies that negative returns rj are interpreted as small, positive expected

values of the patent-related return component sj. Second, we obtain our patent value estimates

V̂j through equation (10). Table 3 presents the distributions of the estimated patent values across

the remaining 10 countries of primarily listing in the restricted sample, both relative to the mar-

ket capitalizations of the patenting firms and in absolute terms. All patent values are given in

1982 US dollars. We use 1982 price levels to be consistent with the study in Kogan et al. (2015),

which is the most prominent point of comparison. For your reference, one 1982 US dollar has a

value of 2.37 US dollars in 2015 price levels.

Table 3 shows that the distributions of the values of patents, both in relative and absolute

terms, are highly positively skewed for all countries in our sample. This result is consistent with

the findings in, among others, Harhoff et al. (2003b), investigating the tail value distribution of

German patents held by German or US residents, and Kogan et al. (2015), estimating the value

of US patents granted to public US firms in the period from 1926 to 2010.38 The overall median

value of the patents in our sample equals 5.28 million 1982 US dollars, while the average value

of a patent is estimated to be 16.28 million.

Unfortunately, there are little points of comparison within the literature to validate this

number.39 Pakes (1985) studies the relationship between stock market rate of returns and patents

for 120 firms over the period from 1968 to 1975 and finds that, on average, an unexpected arrival

of one patent is associated with an increase in the firm’s market value of 810 thousand 1972

US dollars, which is approximately equal to 1.75 million 1982 US dollars. Furthermore, an

extensive survey study on the value of European patents by Giuri et al. (2007) suggests that

68% of the 7,752 patents in the sample had a value of less than one million euros on the day

of granting. Based on these earlier findings, the average level of our patent value estimates

appears to be high. One explanation is that our sample only covers patents granted to public

firms: because public firms are relatively resourceful, the inventions embodied by these patents

are more likely to become a commercial success, which increases their value (see also Kogan

et al., 2015). However, regardless of whether the average value of patents is overestimated, both

the cross-sectional and time-series variations can be meaningful.

Furthermore, we find that there is substantial variation in both the mean and median patent

value across the 10 countries in our sample: the mean varies from 3.13 million 1982 US dol-

lars in Taiwan to 53.46 million in Switzerland, and the median from 0.83 to 28.44 million. In

addition, the relative patent values show that the variation does not simply reflect differences

38 We note that of all estimated patent values, 58.1% and 6.3% concern US and German patents, respectively.
39 Section 7.1 provides a close comparison with the results in Kogan et al. (2015), based on a similar model.
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Table 3: Distributions of the constructed patent value estimates using equation (10) across 10
countries, ordered by the number of patents in the sample. Left columns present the value of
patents relative to the patenting firm’s market capitalization, given in percentage points; right
columns report patent value estimates given in million US dollars, deflated to 1982 price levels
using the CPI.

United States Japan Germany Taiwan Switzerland

V̂j/Mj V̂j V̂j/Mj V̂j V̂j/Mj V̂j V̂j/Mj V̂j V̂j/Mj V̂j

Mean 0.21 21.85 0.17 10.14 0.10 8.48 0.15 3.13 0.17 53.46
Std. Dev. 0.29 64.41 0.25 22.54 0.16 22.54 0.18 6.87 0.22 69.96

Perc.

1st 0.00 0.24 0.00 0.29 0.00 0.15 0.00 0.03 0.01 0.16
5th 0.01 0.77 0.01 0.70 0.00 0.35 0.00 0.06 0.01 0.57
10th 0.01 1.26 0.01 1.07 0.01 0.57 0.01 0.10 0.02 1.25
25th 0.03 2.85 0.02 2.10 0.01 1.28 0.02 0.24 0.04 7.04
50th 0.09 6.79 0.06 4.44 0.03 3.30 0.07 0.83 0.09 28.84
75th 0.28 17.87 0.23 10.37 0.10 8.04 0.21 3.11 0.22 69.22
90th 0.57 47.02 0.49 22.38 0.30 17.87 0.42 8.15 0.41 140.22
95th 0.80 83.38 0.68 35.98 0.43 29.93 0.52 13.28 0.59 203.77
99th 1.34 246.50 1.04 87.95 0.69 91.47 0.73 31.13 1.04 334.94

N = 853,594 N = 599,021 N = 224,823 N = 78,103 N = 35,661

United
Kingdom Finland Denmark Belgium Canada

V̂j/Mj V̂j V̂j/Mj V̂j V̂j/Mj V̂j V̂j/Mj V̂j V̂j/Mj V̂j

Mean 0.49 31.52 0.14 18.47 0.27 15.25 0.37 9.42 0.77 11.71
Std. Dev. 0.45 63.54 0.23 30.81 0.21 22.51 0.30 14.64 0.54 23.58

Perc.

1st 0.03 0.10 0.01 0.30 0.03 0.35 0.05 0.16 0.11 0.11
5th 0.06 0.44 0.01 1.95 0.05 0.85 0.08 0.58 0.16 0.32
10th 0.08 0.93 0.01 3.58 0.07 1.35 0.11 1.02 0.23 0.52
25th 0.16 4.03 0.02 6.02 0.12 3.10 0.17 2.28 0.42 1.12
50th 0.36 13.60 0.03 10.10 0.23 7.28 0.31 5.00 0.66 3.53
75th 0.67 31.04 0.16 19.64 0.37 16.82 0.49 12.25 1.00 11.32
90th 1.04 68.77 0.46 37.13 0.54 38.20 0.71 21.79 1.41 31.44
95th 1.32 121.29 0.66 58.28 0.67 60.42 0.89 31.19 1.70 50.55
99th 2.10 325.23 1.09 148.02 0.95 120.27 1.50 47.61 2.41 117.00

N = 26,927 N = 20,985 N = 12,013 N = 7,214 N = 5,512

Notes: the construction of patent values are based on stock price movements in country-specific event windows, defined
by the days on which we observe significant stock price reactions to patent grants (see Table 2); for the 17 (out of the 27)
countries in our sample that are not reported in this table, model (4) does not detect significant stock price reactions to
patent grants.
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in average (or median) market capitalization of the patenting firms in each country. For there

are numerous sources of heterogeneity in the underlying patent samples, it is difficult to give

a straightforward interpretation to this variation. An important factor is the distribution of the

patenting firms across technological sectors. For instance, the high average value of patents

granted to firms listed in Switzerland largely arises because over 60% of the Swiss patenting

firms operate within the pharmaceutical sector: the average value of patents granted to firms

in the pharmaceutical industry across all 10 countries is roughly 46.1 million 1982 US dollars.

Another source of variation in the patent sample characteristics stems from differences in patent

regulations, implying a varying degree of commercial protection for the patented inventions.

One could provide a more detailed interpretation of the patent value estimates by means

of historical descriptions and (pairwise) comparisons of the innovative industries in each coun-

try, whereby, among other things, characteristics of the patenting firms and regulatory issues

should be considered. This comprehensive endeavor lies, however, outside the scope of this

thesis. Instead, to validate the usefulness of our measure, we investigate whether our mea-

sure is supported by citation-based measures of patent quality in Section 6.1, and subsequently

examine its correlation with economic growth in Section 6.2.

6 Citation-based patent quality and innovation indices

Here, we examine the usefulness of our patent-level measure of innovation. In particular, we

seek to extend the findings in Kogan et al. (2015)—which clearly indicate the usefulness of

an innovation measure of this type for their US sample—to an international context. First,

Section 6.1 tests whether citation-based measures of patent quality are correlated with our patent

value estimates. Second, Section 6.2 presents a preliminary attempt to relate an aggregated

indices of innovation, based on the yearly sum of all patent value estimates granted to firms

listed in the particular country, to economic growth.

6.1 Patent values and citations

A popular approach to measuring patent quality uses forward patent citations, that is, the

number of times a patent is cited by other patents in the future. Although the shape of the

relationship remains topic for academic debate, earlier findings in the literature clearly suggest a

strong correlation between citation counts and the economic value of patents (see also Section 2).

In particular, Kogan et al. (2015) show that their estimates of the value of US patents are strongly

and positively associated with patent counts. Our study contributes to the literature by studying

this relationship for an international sample of patents, which are granted to firms listed across

10 countries in three continents. Moreover, by using citation counts as a benchmark measure

for patent quality, we seek to externally validate our patent-level measure of innovation and

confirm its initial, underlying assumption that stock price movements contain information about

the value of patents.

Based on the model proposed in Kogan et al. (2015), we regress our patent value estimates,
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Table 4: Estimation results on the relation between patent citations and our patent value esti-
mates. The left part reports the mean and median value of the citation count variable Cj in the
sample of each country. The right part presents the country-specific coefficient estimates for the
log number of patent citations in model (11). Specification (a) includes grant-year and patent-
office fixed effects; (b) includes, in addition, the log of the patenting firm’s market capitalization
prior to the patent grant; and (c) includes, in addition, the log of the second moment of returns
of the patenting firm in the grant year.

Cj Model (11): log(1 + Cj)

Country N Mean Median (a) (b) (c)

United States 853,594 9.4 1 0.066∗∗∗ 0.068∗∗∗ 0.061∗∗∗

Japan 599,021 4.5 0 0.039∗∗∗ 0.004 0.005
Germany 224,823 2.4 0 0.041∗∗∗ 0.048∗∗∗ 0.044∗∗∗

Taiwan 78,103 1.6 0 −0.057+ −0.065∗ −0.065∗

Switzerland 35,661 0.9 0 0.026 0.034 0.032
United Kingdom 26,927 2.9 0 0.048∗ 0.008 0.007
Finland 20,985 1.8 0 0.051 0.040 0.041
Denmark 12,013 1.8 0 0.063 0.003 0.002
Belgium 7,214 1.7 0 0.053+ 0.060∗∗ 0.060∗∗

Canada 5,512 7.7 1 0.026 −0.021 −0.020

Notes: ∗∗∗, ∗∗, ∗, and + indicate statistical significance at the 0.1%, 1%, 5%, and 10% levels; standard errors are clustered
by year; countries are ordered by the number of patents in the sample; for the 17 (out of the 27) countries in our sample
that are not reported in this table, we cannot construct our patent value estimator.
a Constrained by resources, we randomly divided the sample of the United States into four subsamples to ease compu-
tation. The table reports the average estimates across these four subsamples. Differences in parameter estimates across
the four subsamples are all smaller than 0.01 and differences in p-values are negligible.

V̂j, on the number of times patent j is cited by other patents up to year 2013, Cj:

log
(

V̂j

)
= a0 + a1 log

(
1 + Cj

)
+ Z′ja3 + uj. (11)

We estimate (11) for each country independently to test whether our measure succeeds to ex-

ploit information about patents contained by stock returns in each of the countries. To ensure

robustness of our results, we estimate multiple specifications, each characterized by a different

set of fixed effects Zj that control for omitted variables. The first specification includes grant-

year fixed effects to account for the truncation of citations counts after the year 2013, and patent

office fixed effects because differences in patent citation policies can effect the relationship be-

tween citation counts and value. The second specification also include (next to the ones included

by the first specification) the log of the patenting firm’s market capitalization on the day prior

to stock market reaction to the patent grant, log(Mj), to control for the effect of firm size on the

patent technological impact. In addition to variables included by the second model, the third

specification additionally controls for the log of the patenting firm’s second moment of return

in the grant year, log(σf t), because it is an input variable for our patent value estimator (see

equation (2)). We cluster standard errors by grant year to account for potential serial correlation

in the number of citations received by patents granted within the same year.

Table 4 reports the estimation results. Consistent with the findings in Kogan et al. (2015),
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we find a significant relationship between our patent value estimates and the number of patent

citations for the US sample.40 The estimates imply that one additional citation, around the

median value, is related to an increase of 3.5% to 4.0% in the economic value of patents granted

to US firms.41 Also, we find a quantitatively similar result for the patents granted to firms listed

in Germany and in Belgium. Our findings are in line with the study in Harhoff et al. (1999)

on the relation between the number of citations and market value of US and German patents,

which also exposes a significantly positive relationship. For patents granted to Japanese or

British firms, the relationship between citations and our patent-value measure is not robust to

the inclusion of firm-size fixed effects. For the remaining countries, the estimation results do

not indicate a significantly positive relationship between citation counts and our estimates of the

economic value of patents. Since the sample sizes are relatively small for most of these countries,

these findings do not necessarily disqualify our measure. More alarming are, however, the

significantly negative effects of patent citations on the value of patents granted to firms listed in

Taiwan.

Hence, based on the estimation results of (11), we conclude that our patent value estimates

are only coherent with citation-based measures of patent quality for patents granted to the

United States, Germany and Belgium. The implications of this conclusion are, however, am-

biguous. On the one hand, our results imply that the relationship between citations and market

value, which has mainly received attention for US and German patents, does not apply to

patents granted to firms outside these countries. On the other hand, the lack of correlation

between citations and our patent value estimates casts doubts on the reliability of our approach

to measuring the economic value of patents. In particular, it implies that the type of innovation

measure proposed in Kogan et al. (2015) does not seem to be straightforwardly generalizable to

other countries.

The nonexistence of the relationship between the number of citations a patent receives and its

market value could be related to differences in patent citation practices. To test this hypothesis,

we repeat the estimation of model (11), now using only patents granted by the USPTO to the

firms in each sample.42 These patents account for more than 30% of the total patent sample

in each of the countries except Switzerland (13%). Although the positive relationships earlier

exposed for the Belgian and British samples gain in statistical confidence, we again do not find

significant correlations between the number of citations and the estimated economic value of

patents granted to firms outside the United States, Germany, and Belgium. Moreover, the results

even support the significantly negative effect of patent citations in the Taiwanese sample. Hence,

40 The estimates in Kogan et al. (2015) are much more sensitive to the inclusion of fixed effects than our estimation
results indicate. This difference is unexplained and requires closer inspection.

41 The reported percentages in this paper are not directly comparable with the results in Kogan et al. (2015) because
the median value of their citation count variable is equal to five. This difference in the median number of patent citation
exists because our US sample also includes foreign patents granted to US firms: if we restrict our sample to patents
granted by the USPTO, the descriptive statistics are consistent with Kogan et al. (2015).

42 By repeating our analysis using only US patents, we are able to overcome another issue. Namely, due to their
discrete nature, citation counts cannot differentiate in quality for more than half of the patents in each country-specific
sample: the median equals zero for all countries except the United States and Canada (see Table 4). This feature of our
patent samples could possibly hinder significant correlations between citation counts and our patent value estimates.
The median citation US patents receive varies from one to six, depending on the country in which the patenting firm is
listed. Hence, samples of US-only patents suffer less from the discrete nature of patent citation data.
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this robustness check adds to the credibility of the latter implication of our findings: although

our patent value estimates appear valid for the United States and Germany, our measure does

not seem to result in reliable market value estimates of patents granted to firms listed in other

countries.

Nevertheless, considering the lack of academically established relationships between patent

counts and the economic value of patents in many of the countries in this study, it is worthwhile

to further test the usefulness of our measure. Therefore, in the next section, we examine the

correlation of yearly aggregates of our patent-level innovation measure with economic growth.

6.2 Economy-wide indices of innovation

There is little debate over the question whether technological change has made significant con-

tributions to welfare over the past couple of centuries. However, it is difficult to construct an

accurate measure of technological progress that is comparable across time and space. Today, the

most extensive empirical works in the literature rely on patent activity to measure technological

change (Khan, 2014).43 In this section, we aim to contribute to this literature by constructing

an economy-wide index of innovation, and examine its correlation with economic growth.44

We should note, however, that our approach to investigating the relation between innovation

and economic growth is rather preliminary. In particular, we do not test the usefulness of

our measure in a panel design, but instead estimate country-specific time-series specifications,

which are naturally not able to capture the interdependence of national economies. We leave

the work of setting up such a sophisticated panel model, which controls for international trade

and innovation spillover effects, to future research.

Logically, our country-level indices of innovation are based on our patent-level estimates of

innovation. Specifically, we sum the estimated values of all patents granted to the firms in the

sample of country c in year t, scaled by total market capitalization M of all firms in the sample

at the end of year t:

Ψ̂c,t =
∑j∈Pc,t V̂j

∑ f∈Fc,t M f
, (12)

where Pc,t denotes the set of all patents granted to all firms in the sample of country c in year t

43 We note that patent data have some serious limitations as a source for measuring technological change in a cross-
country study. Most fundamentally, by focusing on patent activity, we exclude all innovations that are not patented (see
also Hall et al., 2005). Although it is extremely complicated to determine the extent to which patents are representative
of the wider set of all innovations, this would not present a problem if we could assume that the representativeness
is comparable through time and across space. However, considering the diverse set of patent cultures and market
conditions observed globally—often subject to change over the past decades—this assumption seems hard to justify.

44 The measure of innovation in this paper, as any patent-based measure, yields direct estimates of technological inno-
vation. However, the literature has also proposed two main approaches to measuring technology shocks indirectly (see
also Kogan et al., 2015). The first approach is to measure technological change through total factor productivity (TFP),
either at the aggregate level or at the firm level. Examples of studies that take this approach include Olley and Pakes
(1996) and Basu, Fernald, and Kimball (2006). However, conclusions based on such residual-based measures need to be
drawn with caution as they could include economic forces unrelated to technology, such as resource misallocation (see,
e.g., Hsieh and Klenow, 2009). The second approach imposes model-based restrictions to measure technology shocks
either through the estimation of vector autoregressive models (VAR) or structural models (see, e.g., Gali, 1999; Smets
and Wouters, 2003). Inherently, the resulting estimated technology series are highly dependent on the identification
assumptions.
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and Fc,t is the set of all firms in the sample of country c. Notice that because both patents and

market capitalizations are in 1982 US dollars, the innovation index Ψ̂c,t is free of currency and

price level. Furthermore, we divide by market capitalization (as opposed to economic output)

to address the potential concern that fluctuations in the sum of patent values simply reflect

fluctuations in the level of stock prices that are not related to innovation (see Kogan et al., 2015).

In Figure 3 (solid lines), we present the economy-wide indices for each of the 10 countries in

our remaining sample. One apparent observation is that in most countries, we observe a peak

around the year 2000, which clearly reveals the wave of technological progress in areas such

as computing and telecommunication (Kogan et al., 2015). However, instead of describing the

technological state over the last 40 years in each country, Figure 3 rather aims to illustrate that

much of the—both low- and high-frequency—fluctuations in the innovation indices are driven

by the mean value of the patent (dashed lines). Taiwan is the most prominent exception to this

observation: the sharp increase of the Taiwanese innovation index in the 1990s is due to the

rapidly growing number of patents in our sample, while the average patent value declines in

the same period. The increasing innovation index in Japan is also driven by an increase in the

quantity of patents, instead of their quality. Nevertheless, Figure 3 illustrates that our innovation

measures adds a great degree of variability that is not observed in simple patent count measures

of innovation.

The innovation index Ψ̂c,t follows the example set in Kogan et al. (2015). Assuming a simple

model of innovation that is based on Atkeson and Burstein (2011), Kogan et al. (2015) show

that, to a first-order approximation, this index of innovation is proportional to the growth rate in

aggregate economic output. Kogan et al. (2015) find empirical support for the derived relation by

regression of US economic output on their US innovation index. We test whether this empirical

results can be generalized to the countries in our sample. Hence, following Kogan et al. (2015),

we estimate the following time-series model:

yc,t+τ − yc,t = b0 + bτ log
(

Ψ̂c,t

)
+

L

∑
l=0

clyc,t−l + ηc,t+τ , τ ∈ {1, 2, 3, 4, 5} (13)

where yc,t is log gross domestic product (GDP) per capita of country c, in year t, given in

constant local currency units. We estimate (13) for horizon τ up to five years. Selection of

lag length L is based on the consistent Schwarz (1978) information criterion (SIC), calculated

using only those observations that are available to all specifications. For all countries, SIC

advocates lag lengths between one and three, where the higher lag length are associated with

the higher horizons.45 We construct Newey and West’s (1987) covariance matrix estimator to

produce heteroskedasticity- and autocorrelation-consistent standard errors, using a conservative

maximum lag length equal to τ + 4.

Figure 4 plots the response of GDP per capita to a shift of (approximately) 1% in the aggre-

gation index for each country. For the United States and a horizon of five years, we find that

45 For most countries, the results are reasonably robust to choice of lag length. The only notable sensitivity concerns
Canada: for higher lag lengths, the Canadian innovation index has a small, but significantly positive effect on economic
output for a horizon of five years.
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Figure 3: Log values of economy-wide innovation indices (solid line, left axis) and log mean
values of patents granted in each year (dashed line, right axis). Innovation indices are the
yearly sum of estimated patent values for the country, scaled by total market capitalization of
all patenting firms at the end of the year. Countries are ordered by total number of patents.
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Figure 4: Estimated responses of GDP per capita in constant local currency to a 1% increase
in the aggregate innovation index using equation (13) for a horizon up to five years. Shaded
regions represent 95% confidence intervals using Newey-West standard errors with maximum
lag length equal to four plus the horizon. Countries are ordered by total number of patents.
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a 1% increase is followed by approximately 4.9% growth in GDP per capita. This finding is in

line with Kogan et al. (2015), who report 5.5% for a similar specification (using aggregate GDP

instead of GDP per capita) for a longer period (from 1926 to 2010).46 The results for Switzerland,

Denmark, and Belgium show similar relationships, although the effect varies in magnitude. For

the other countries in our sample, we do not find evidence for a significant relationship between

our innovation index and economic growth.

Although our results shed some additional light on the relationship between innovative

activity and economic output, conclusions that can be drawn are limited. In particular, it is

unclear whether our findings implicate that a (log–log) relationship between the true value of

the innovation index in (12) and economic growth is nonexistent for a substantial share of the

studied countries, or whether our patent-level estimates of innovation are not able to sufficiently

capture the value of the actual innovative activity. Comparison with the findings in the previous

section is only partly helpful. On the one hand, patent citation data suggest the validity of the

US and Belgian innovation indices, which could explain why these innovation indices are indeed

significantly related to domestic economic growth. On the other hand, Section 6.1 shows that a

citation-based measure of patent quality also supports our estimator for patents granted to firms

in Germany, but nevertheless, the German innovation index is not related to economic growth.

And moreover, even though citation model (11) in Section 6.1 does not provide statistical support

for the Danish and Swiss innovation indices, these are significantly correlated with domestic

economic growth. Therefore, we conclude that further research is required, which provides a

closer examination of the dynamics and input factors of GDP growth in each of the countries,

to test the general usefulness of the economy-wide indices.

As a final note: the effect of innovation need not be constrained by the domestic borders.

Given the economic globalization, innovation that originated in, for instance, the United States—

which accounts for 61% of the total estimated value of innovation in our sample—could increase

wealth also in foreign countries. To test this hypothesis, we estimate an alternative specification

of model (13) that includes the US innovation index as an additional indicator, and we also con-

trol for lagged log US GDP per capita. The estimation results reveal that the US innovation index

has significant predictive power for future economic growth in the United Kingdom. Hence, we

find a first hint that the merits of innovative activity are not restricted to the country where

the patenting firm is listed. We stress, however, that our approach to testing this hypothesis is

rather elementary and that a more sophisticated (panel) model design is required to produce

conclusive findings.

7 Discussion

Aimed at providing perspectives for future work, this section provides a discussion of some

important lessons learned through conducting our research. First, Section 7.1 reviews the alter-

46 We note that Kogan et al. (2015, p. 26) estimate essentially the same regression with their US innovation index, but
interpret to the estimated regression coefficient as the response of economic output to a unit standard deviation shock
(as opposed to a relative change) in the innovation index. This interpretation is confusing (and appears false), as we
regress the log of the innovation index and not its absolute value.
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ations made in this paper to the model proposed in Kogan et al. (2015) and investigates their

impact on the empirical results. Second, Section 7.2 examines the validity of the assumption

that the signal-to-total-variance ratio is constant across all patents and over time by comparing

results for various subsamples of the data set.

7.1 Comparison with the KPSS model

Although this study largely follows the measure of innovation proposed in Kogan et al. (2015),

our model involves two important alterations to specifications of their econometric approach.

The first deviation concerns the use of multi-period cumulative stock returns in Kogan et al.

(2015)—as opposed to the daily returns used in this study—for the measurement of stock mar-

ket reactions to patent grant events. The second difference arises due to the arguably false

calculation of the signal-to-total-variance ratio in Kogan et al. (2015). We first closely replicate

the model in Kogan et al. (2015), in this section referred to as the “KPSS model”, and compare

the results with the ones discussed in Section 5 and Section 6 to determine the impact of the de-

viations. Second, we discuss some theoretical considerations when comparing the KPSS model

and the model used in this study.

Comparison of patent value estimates

As noted in Section 4.2, Kogan et al. (2015) study the multi-period cumulative returns following

patent grants instead of the set of daily returns within the grant event window. Specifically, the

KPSS version of model (4) regresses three-day market-adjusted simple returns R f d (starting on

day d) on a single patent grant dummy I f d:

log
(

R2
f d

)
= γI f d +

5

∑
i=1

θiDid + µ f t + ζ f d, (14)

where all other terms are as defined in Section 4.2. Note that the subscript l is omitted from γ

as (4) does not construct day-l-specific estimates.

We estimate model (14) by fixed effects for all 27 countries in our sample.47 To allow the rate

at which investors process patent information to vary across markets, we also estimate (14) using

two-day and four-day cumulative returns as the dependent variable. Table D.1 in Appendix D

reports the estimates of γ. In line with the results reported in Table 2, estimation of (14) does

not indicate significant stock price reactions to patent grants. However, the results based on

the KPSS model do not agree with the main results in this paper for all countries: model (14)

identifies significant market reactions to patent grants in South Korea, Australia, and South

Africa, but does not in Taiwan and Switzerland, while the opposite is true for model (4). We

discuss some explanations for this result in the next part of this section. Here, we construct

patent value estimates for the 11 countries for which the estimate of γ is significant at the 10%

level (following the rule as in Section 5.2). In general, we use three-day returns for the purpose

47 Also for the KPSS model, robust Hausman tests strongly indicate presence of fixed effects in most country-specific
data panels. Moreover, fixed effects is also in line with the estimation in Kogan et al. (2015).
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of replication and since there is no straightforward alternative selection criterion.48 However, in

case the estimate of γ is insignificant for the three-day returns model, we select, if possible, the

multi-period return for which the estimate of γ is significant.

As mentioned in Section 4.2, Kogan et al. (2015, p. 11) present an alternative relation between

γ and the signal-to-total-variance ratio, δ. Their relation implies that γ measures the increase in

the volatility of stock returns during days following patent grants, instead of their second mo-

ment (see also Appendix B.2). However, because the variance of a truncated normal distribution

does not equal its second moment, this interpretation of γ is false. To examine the impact of this

alternative computation of δ, we construct patent value estimates both for the relation between

δ and γ proposed in this paper and for the one in Kogan et al. (2015).49 To isolate the effect

of the estimate of δ, we closely follow all other steps of the KPSS model for both sets of patent

value estimates.50 Table D.2 in Appendix D reports the results.

Before drawing any conclusions, we must first validate that our replication is sufficiently

close. Table D.2 reports an average patent value of 40.8 million 1982 US dollars for the US

sample based on the replicated model. This number appears high compared to the 17.7 million

1982 US dollars reported in Kogan et al. (2015). Closer inspection reveals, however, that the

difference occurs because the mean value of patents granted to US firms has increased over

time (see Figure 3a) and Kogan et al. (2015) study the period 1926–2010 instead of 1973–2013.

Moreover, we also apply our replicated KPSS model on the data set used in Kogan et al. (2015).51

As a result, we closely replicate the patent value distribution in Kogan et al. (2015): the first and

second sample moments of our estimates are both within 10% of the reported moments in

Kogan et al. (2015).

Now, we (may) consider the impact of the alternative computation of the signal-to-total-

variance ratio δ. We find that the mean patent value is—depending on the country—between

62% and 66% higher when using the expression for δ from Kogan et al. (2015) compared to

the one proposed in this study. Hence, we conclude that the impact on the level of the patent

value estimates is severe. Furthermore, the cross-sectional differences between the estimated

patent values across countries are slightly distorted because the relative “bias” of the estimate

of δ is a convex function of γ. Nevertheless, we should add that because the patent value

estimator is approximately linear in δ, cross-sectional differences in value across patents granted

to firms within the same country remain relatively unaffected by the alternative calculation

of δ. Finally, we note that Kogan, Papanikolaou, Seru, and Stoffman were informed about

48 Kogan et al. (2015) advocate the use of three-day returns based on the finding that share turnover is significantly
higher in the window [d, d + 2], where d is the patent grant day. However, Kiymaz and Berument (2003), among others,
report that high volatility is associated with low trading volume. Such conclusions imply that on days after patent
grants—for which the model in Kogan et al. (2015) states that the news of the patent increases return volatility—share
turnover need not be higher. Therefore, the selection of the window length in Kogan et al. (2015) appears doubtful.

49 Specifically, Kogan et al. (2015, p. 11) use δ = (eγ − 1)(1− 2c2
0 + eγc2

0)
−1. The relation between δ and γ used in this

paper, applied to the setting of single-grant-dummy model (14) is given by: δ = 1− eγ. For your reference, note that
Kogan et al. (2015) name δ the “signal-to-noise” ratio. However, since the denominator in (3) equals the total variance
of return, we believe that “signal-to-total-variance” bears a closer resemblance to its mathematical definition.

50 The estimation in Kogan et al. (2015, p. 11) of the variance of the noise in returns, σε f t, also implicitly assumes that
γ in model (14) measures the increase in volatility of stock returns. Consequently, Kogan et al. (2015) recover σε f t from
an estimate of the daily return volatility as opposed to the second moment. However, the impact is only very small
because the mean of the daily market-adjusted returns is close to zero.

51 Noah Stoffman openly shares the patent data set used in Kogan et al. (2015) at http://kelley.iu.edu/nstoffma/.
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Table 5: Comparison of the patent value estimates based on model (4) and the KPSS model (14)
with L-period returns, across seven countries. The last column reports the ratio of the mean of
V̂KPSS

j to the mean of V̂j. All patent value estimates are given in million US dollars, deflated to
1982 price levels using the CPI.

V̂j, model (4) V̂KPSS
j , model (14)

Number of Event Return
Country patents window Mean period L Mean Ratio

United States 853,594 {1, 2} 21.85 3 24.66 1.13
Japan 599,021 {0, 1, 2} 10.14 3 11.43 1.13
Germany 224,823 {0} 8.48 3 14.98 1.77
United Kingdom 26,927 {1, 2} 31.52 3 35.34 1.12
Finland 20,985 {1} 18.47 3 36.25 1.96
Denmark 12,013 {2} 15.25 4 31.27 2.05
Canada 5,512 {2} 11.71 3 23.44 2.00

Notes: countries are ordered by the number of patents in the sample; for the 20 (out of the 27) countries in our sample
that are not reported in this table, either (4) or (14) does not detect significant stock price reactions to patent grants;
V̂KPSS

j in this table is based on the expression for δ used in this paper, that is, δ = 1− e−γ.

the concerns raised in this paper via e-mail. The authors verified the claim that their results

rely on a false interpretation of γ and announced an updated version of their paper (personal

communication, February, 2016).

Next, we investigate the impact of using multi-period returns instead of daily returns for the

identification of the stock market reaction to patent grants. To do so, we compare the patent

value estimates based on estimation of model (14), V̂KPSS
j , with the patent values V̂j presented

in Section 5.3, which are on based model (4). Table 5 reports the V̂KPSS
j and V̂j for the seven

countries for which both model (4) and (14) detect significant effects of patent grants on stock

price movements. We find that estimation based on (14) results in substantially different patent

value estimates than model (4). Most importantly, the cross-country differences are greatly

affected by the choice of model: while for the United States or Japan the mean patent value

estimates V̂KPSS
j are only 13% higher than the mean of V̂j, for Germany, Denmark, or Canada

the mean of V̂KPSS
j is approximately twice as high as the mean of V̂KPSS

j .

The explanation for this finding involves the selection of the grant event window. As ex-

plained in Section 4 and applied in Section 5.2, model (4) considers each day in the grant event

window separately, and inherently, our patent value estimates rely only on the specific days

for which we detect a significant effect of patent grants on stock price movements. In contrast,

model (14) generally relies on three-day cumulative returns (see also Table D.1). Now, first note

that the length of the return window directly affects the total variance of the noise component

of returns. This noise variance parameter of the noise is an input in equation (2) and as such,

mechanically affects the measure of patent values. Specifically, due to the assumptions that

the patent-related component of returns follows a normal distribution truncated at zero and

that the signal-to-total-variance ratio is constant, the estimates of patent values are an increasing

function of the variance of the noise component of returns. Hence, the large difference in the
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mean estimated patent value for Germany, Finland, Denmark, and Canada, occurs because the

KPSS model also relies, as reported in Table 5, on multi-period returns for these countries, in

contrast with the single-day return windows selected by our model. We conclude that the lim-

ited ability of the KPSS model to identify the timing of the stock market reaction greatly distorts

cross-sectional differences in the estimated value of innovation across countries.

Finally, for the seven countries in Table 5, we also examine the correlation of the estimated

patent values based on the KPSS model with patent citation data and economic growth. All

results are statistically similar to the ones described in Section 6. These findings indicate that

within-country validity of the innovation measure is insensitive to the average level of patent

values. Furthermore, this result implies that the differences in patent value estimates between

the two models are essentially a scaling factor (to which statistical correlations are, of course,

robust). Nevertheless, we reiterate that since these scaling factors vary strongly across the coun-

tries in Table 5, between-country validity of the innovation measure is dependent on reliable

estimation of the average level of patent values.

Model comparisons: theoretical considerations

In this part, we provide a rather theoretical, comparative analysis of the regression model used

in this study, given in (4), and the one proposed in Kogan et al. (2015), given in (14). In particu-

lar, we argue that the empirical approach in Kogan et al. (2015) exhibits undesirable estimation

behavior. This behavior is caused by the use of multi-period returns at a daily frequency in the

KPSS regression model (14), which implies that consecutive realizations of the dependent vari-

able partially incorporate the same shocks.52 Inherently, model (14) produces highly serially

correlated error terms, which makes correct inference on the significance of regression coeffi-

cients problematic. More importantly, however, there are two implications for the estimation of

coefficient γ in model (14).

First, the correct interpretation of γ becomes unclear due to the overlap of the return periods

of consecutive realizations of the multi-period return variable. Specifically, the overlapping

returns imply that realizations of the multi-period returns on the day(s) just prior to the patent

grant day also partially include the patent-related shock to returns. Consequently, the patent

grant dummy variable I f d in (14) does not strictly set apart—although it should—realizations

of the firm’s stock return that do contain patent-related shocks from realizations that do not.

Instead, the multi-period returns on days d for firm f for which I f d = 0 also contain patent-

related shocks. The implication is that γ does not purely measure the effect of the patent grant

on the second moment of stock returns and cannot, therefore, be used to compute an unbiased

estimate of signal-to-total-variance ratio. In particular, as a logical consequence, because the

patent-related shocks are also present in the I f d = 0 group, γ is expected to understate the

average size of the effect of the patent grant day on the stock price movements.

Second, we should consider patents granted on consecutive days to the same company:

52 To illustrate, consider the three-day returns from Monday to Wednesday (A), from Tuesday to Thursday (B), and
from Wednesday to Friday (C), all in the same week. Clearly, return window A shares Tuesday’s realization of the stock
return with window B and Wednesday’s realization with both window B and C, and we could make similar arguments
for window B and C. Hence, the consecutive three-day returns partially incorporate the same shocks.
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roughly 30% of the patent grant days in our sample across all countries are within two days

from at least one other patent grant day. Moreover, the patent grant dummy variable is weakly

serially correlated. The serial correlation implies that γ not only estimates the effect of the

patent granted at the start of the return window, but is also affected by the shocks related to

grant events in the near future. Therefore, γ is logically expected to overestimate the effect of

one single patent grant day and as such, produce a biased estimate of the signal-to-total-variance

ratio.

Because the model proposed in this study measures the stock price movements separately

for each day by using daily returns, it does not suffer from the undesirable estimation behavior

described above. Therefore, the differences between the estimation results of model (4) and

(14) contain information about how the results are affected by the use of multi-period returns.

Nevertheless, it is rather complicated to examine the impact of the implications of multi-period

returns because, as described, the two potential biases have opposite signs. Moreover, the impact

is largely dependent on the characteristics of the patent sample: both the frequency and the

concentration of the patent grant events determine the size of the potential biases. Therefore,

comparison of Table 2 and Table D.2 is not conclusive about the implications of using multi-

period returns for the estimate of the signal-to-total-variance ratio.

However, an observation that does result from comparison of Table 2 and Table D.1 is that

the KPSS model (14) detects a significant disturbance of the stock market associated with patent

grants for South Korea, while model (4), used in this study, does not. Closer inspection of the

South Korea sample reveals that this discrepancy is related to serial correlation. Despite the

assumption—both made in this study and in Kogan et al. (2015)—that returns are serially un-

correlated, the second moment of multi-period returns may still be affected by serial correlation.

In fact, the stock returns in patent grant event windows exhibit relatively strong serial correla-

tion compared to days unrelated to patent grants. Consequently, the second moment of daily

returns is not significantly higher around patent grant days (as measured by model (4)), but

the second moment of two-day compounded returns following patent grants is (as measured

by model (14)). Hence, this finding reveals an advantage of the KPSS model (14) concerning its

ability to account for serial correlation in stock returns.

In contrast, however, the KPSS model (4) does not yield significant estimates of γ for Taiwan

and Switzerland, whereas the model in this study does. This opposing result appears to be

caused by the weaker ability of the KPSS model to isolate the stock market reaction to the patent

grant. Specifically, as reported in Table 2, the market reaction to patent grants is concentrated on

the one day after the patent was granted. The KPSS model naturally includes the return on the

day of the patent grant itself, whereby it adds a certain degree of noise and hinders identification

of the patent-related shock to returns. Hence, comparison of the estimation results in Table 2

and Table D.1 does not unambiguously indicate which model is preferred. However, as argued

by the theoretical discussion in this section, unbiased estimation of the signal-to-total-variance

ratio using model (4) is doubtful. Therefore, we conclude that a model based on daily stock

returns should be the primary choice of prudent researchers. A secondary approach based on

multi-period stock returns could be employed to allow for potential serial correlation in stock

40



returns following patent grants.53

Finally, we should mention that the study in Kogan et al. (2015) only includes US patents,

which are all granted on Tuesdays except if there is a federal holiday. Such patent sample

features imply that one need not worry about consecutive patent grant days. Also, the day-of-

the-week dummy variables in (14) can adjust for the fact that multi-period returns starting on,

for instance, Mondays often include the shock related to patents granted on Tuesdays. As a

result, the US-only patent sample is particularly friendly to the patent-level measure of innova-

tion proposed in Kogan et al. (2015). Put differently, measurement of stock market reactions to

patent grants becomes increasingly complicated once the sample includes patents from different

patent offices: the typical consequence is not only that patent grant days occur on all days of

the week, but also that widely diverse sets of patents can be granted on the same day. Both

of such consequences greatly complicate isolation of the shock specifically related to a single

patent grant.

7.2 Validity of the unconditional signal-to-total-variance ratio

Largely built on the approach proposed in Kogan et al. (2015), our patent value measure assumes

a signal-to-total-variance that is constant across time and space. However, considering not only

the large heterogeneity in the type of patents but also the sample period, the assumption of

homogeneity of the signal-total-variance-ratio may lead to unreliable results. More importantly,

however, the restrictive nature of our model may hinder significant estimation results if the

assumption of homogeneity is invalid. Therefore, we test the validity of this assumption.

First, to examine the validity of the assumption for the time dimension, we divide our 41-

year sample period into four, (almost) evenly divided subsample periods: 1973–1983, 1984–

1993, 1994–2003, and 2004–2013. In these subsample periods, we estimate model (4) for the

15 countries with the largest patent sample size; for the other countries, the number of patent

grants is too low for reliable estimation in four subsamples. Table E.1 in Appendix E reports

the results. We find that the estimation results are sensitive to the selection of sample period:

both the selected event window and the size of our estimate of the signal-to-total-variance ratio

varies over time. One general observation is that the signal-to-total-variance ratio is a decreasing

function of the time. Note that as the number of patent grants increases over time, this result is

line with the finding in Section 5.2 that the signal-to-total-variance ratio is negatively correlated

with patent grant frequency. Based on the results in Table E.1, we conclude that the assumption

of a constant signal-to-total-variance ratio over time is generally not valid. In fact, results in

Table E.1 suggest that due to this assumption, we understate our estimates of the signal-to-total-

variance ratio—and consequently the patent values—in early years, whereas we overstate these

in the recent years. Therefore, we suggest to perform estimation of the signal-to-total-variance

ratio based on a moving estimation window. The length of the estimation window needs to be

53 To allow for serial correlation using daily stock returns appears challenging. For many countries the patent sample
has already proven to be of insufficient size for the estimation of a simple model such as given in (4). A more complicated
model that specifies a dynamic structure for returns following patent grants, will likely suffer even more from the
empirical complications encountered in this study.
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carefully selected, considering that by decreasing the size of the sample, we lower the statistical

confidence of the estimation results.

Second, the validity of the assumption of a constant signal-to-total-variance across patents is

strongly dependent on the degree of heterogeneity in the patent sample. An important feature

of the patent sample that we consider here is the distribution of patent grants across the days of

the week. In particular, if patents grants are observed throughout the week, the assumption that

the signal-to-total-variance ratio is equal across all these patents, raises concerns. Specifically,

for patents granted late in the week, the grant event window is broken by weekend days, which

likely affects the timing of the stock market reaction and also the size of the signal-to-total-

variance ratio. To test the hypothesis, we repeat the estimation of model (4) for all 27 countries,

now only including patents granted on Mondays, Tuesdays, or Wednesdays.

The results in Table E.2 in Appendix E show that model (4) detects significant stock price

reactions for 14 out of the 27 countries when based on the restricted patent sample, as opposed

to the 10 countries in our base case (see Table 2). In particular, we now also obtain significant

results for France. The case of France shows that falsely assuming that the signal-to-total-

variance ratio is constant across all patents may lead to insignificant results, even when the

majority of the patents (71%) are significantly associated with an increase in the second moment

of stock returns. Furthermore, comparison of Table E.2 to Table 2 reveals that the estimates of

the signal-to-total-variance ratio are generally higher when only considering patents granted

on Mondays, Tuesday, or Wednesdays. Moreover, the selected event window is affected by the

sample restriction. Based on these findings, we may again conclude that the assumption of a

constant signal-to-total-variance ratio is generally not valid.54

In sum, empirical results indicate that the assumption of a constant signal-to-total-variance

ratio does not hold over time, or across patents that are granted on different days of the week.

This finding suggests that the type of innovation measure studied in this thesis could be im-

proved by relaxation of the restrictive assumptions on the signal-total-to-variance ratio. How-

ever, there is no straightforward rule for how one should do so because given the characteristics

of each patent sample, a different approach may be preferable. In particular, the size of the

patent sample will be an important constraint for the relaxation of the assumption of a homo-

geneous signal-to-total-variance ratio. Hence, here lie opportunities for future research.

As a final note: an interesting source of heterogeneity in the patent sample is related to patent

offices. Specifically, the local time of the day when the patent grant is officially announced may

be dependent on the geographic location and the policy of the patent office. Consequently, the
54 We also experimented with allowing the signal-to-total-variance ratio to vary by patent type. In particular, we

differentiate between national and international applications. International patents refer to patents that are filed un-
der the international law treaty Patent Coorporation Treaty (PCT), which provides a unified procedure for filing patent
applications internationally. PCT applications are often associated with innovations of high market potential (see van
Zeebroeck and van Pottelsberghe de la Potterie, 2011). Consequently, the signal-to-total-variance ratio related to the
international patent acceptances could be higher. We do not find support for the hypothesis: estimates of γl in model
(4) are generally not significantly different for national and international patents. Furthermore, the direction of the
inequality sign varies seemingly randomly. We note that, nevertheless, the average estimated value of international
patents in our sample is approximately 55% higher than that of national patents, which does confirm that international
patent applications are of higher market potential. Furthermore, Kogan et al. (2015) also experimented with estimation
of γ dependent on firm size: the estimates are statistically similar across firm size quintiles, except for the smallest
firms. Finally, other sources of relevant patent heterogeneity include the granting patent office and the technological
field of the patented invention.
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timing of the shock to returns related to a patent grant, and possibly also its size, is therefore

dependent on the granting patent office. By this line of reasoning it becomes clear that large

differences in the local times of the grant announcements—which is likely the case when study-

ing a cross-country data set as in this study—can hinder significant estimation of homogeneous

coefficients in model (4). However, we leave the testing of this hypothesis to future research.

8 Summary and conclusions

Using patent data for publicly listed firms across 27 countries from 1973 to 2013, this thesis

investigates the applicability and usefulness of the type of innovation measure first introduced

in Kogan et al. (2015), in a cross-country setting. This patent-level measure of innovation seeks

to exploit information contained by stock price movements to estimate the economic value of

patents. Specifically, our model measures the effect of news of patent grants on second mo-

ments of stock returns: a significantly positive effect indicates presence of patent-related stock

price movements. Our model is partially successful in identifying such significant associations

between patent grants and stock price movements: only for 10 countries we find significant

estimates. The main problem concerns sample size: results indicate that a minimum of approxi-

mately 5,000 patent grants are required for reliable estimation, implying that our measure is not

applicable for about half of the countries in this study. More concerning, however, our model

does not detect significant stock price reactions to patents granted to firms in South Korea and

France either, even though these are both among the top six largest countries in terms of patent

sample size. This finding suggests that the stock price movements in these countries are, on

average, not significantly associated with news about patent grants, and can therefore not be

reliably exploited to measure the value of innovation. Hence, the type of measure in Kogan

et al. (2015) seems only moderately applicable in a cross-country study.

For the 10 remaining countries, we construct our patent value estimates based on conditional

expectations of the patent-related components of stock returns in a narrow event window fol-

lowing the patent grant. Consistent with previous findings in the literature, distributions of the

estimated patent values are highly positively skewed. Furthermore, our patent value estimates

display substantial variation, both within and between countries, and thus add a great degree of

variability that is not observed in simple patent count measures. To validate their reliability, we

test whether the patent-level measures of innovation are supported by traditional citation-based

measures of patent quality. Only for United States, Germany, and Belgium, we find robust cor-

relations between the number of citations received by a patent and our estimate of its economic

value. The positive results clearly corroborate previous conclusions in the literature that high

numbers of citations are associated with high market values of US and German patents. The

implications of the negative results are, however, ambiguous. On the one hand, our results im-

ply that the relationship between citations and market value does not generally apply; on the

other hand, the lack of correlation between citations and our patent value estimates casts doubts

on the reliability of our innovation measure.

To test the usefulness of our patent-level measures of innovation, we construct yearly ag-
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gregated, country-specific indices of innovation and examine their correlation with domestic

economic growth. Our results suggest a significantly positive relationship between increases in

the innovation indices and future domestic economic growth in the United States, Switzerland,

Denmark, and Belgium. For the other countries, we do not find statistical evidence supporting

this relationship. We stress, however, that further research is required to draw hard conclu-

sions. In particular, closer, country-specific investigation of economic growth factors should

ultimately decide whether negative results imply that the innovation index’ true value is not

correlated with economic growth, or that our innovation measure does not sufficiently reflect

the true innovative activity. An interesting application of our innovation indices would be to

study spillovers of the economic merits of innovation into foreign countries using a sophisti-

cated panel model design; we leave this to future research. In sum, our findings support the

conclusion in Kogan et al. (2015) that their type of innovation measure produces useful results

when applied to a US sample. On the other hand, results do not provide statistical evidence

that the usefulness generally applies to other countries.

Although our approach to modeling the stock returns after patent grants is largely built

on suggestions in Kogan et al. (2015), this study proposes a number of relevant alterations to

their model. In particular, instead of using multi-period returns, we rely on a set of daily stock

returns, each individually considered, to measure the stock market reactions to patent grants.

Comparing empirical results of both models, we conclude that the inherently limited ability

of the approach in Kogan et al. (2015) to isolate stock market reactions severely distorts cross-

sectional differences in the estimated value of innovation across countries. The model in Kogan

et al. (2015) does, however, exhibit one desirable feature: it implicitly controls for serial corre-

lation in stock returns, which proves to be helpful in identifying the patent-related shocks in

South Korean stock returns. Finally, analysis of sensitivity to various sample restriction suggests

that our innovation measure could be improved by relaxation of the assumption that the effect

of patent grants on stock return volatility is constant across all patents. In fact, better control

for heterogeneity in the patent grant type could help overcome the unsuccessful identification

of the patent-related stock price movements in countries such as France. Hence, these findings

provide opportunities for further research.
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Appendices

A Merging patent data with financial data: technical notes

This appendix provides technical background to Section 3. For the sake of replicability of this

study, we explain in detail how we merge the patent data with the financial data and overcome

issues that arise due to combining different databases.

A.1 Introduction

Our cross-country patent data set is an extract from the EPO Worldwide Patent Statistical

Database (“Patstat”) which offers bibliographic patent data from more than 100 patent offices

and contains event dates for almost three million successful patent applications. The data set

that was provided to us for the purpose of this study was already merged with all publicly

traded companies in the Compustat databases for 32 countries.1 In our data set, patenting

companies are thus identified by Global Company Keys (GVKEY), the unique identifier for each

company in the Compustat database. Furthermore, a country code variable, identifying the

country where the company is primarily listed, was also previously appended to the data set.

To construct our innovation measure, we merge the patent data with stock market data.

Since our patent data set identifies patenting companies by Compustat company codes, Com-

pustat stock data has the advantage of being easily merged. However, Compustat daily security

data are (only) available from 1983 for North American securities and from 1986 for securities

traded outside North America. In comparison, the Center for Research in Security Prices (CRSP)

database offers daily price data starting from 1926 for US securities; Datastream provides the

best availability for non-US securities, providing daily security data starting from 1973 for most

countries. In order to obtain the largest possible sample period, we thus merge patents granted

to companies primarily listed in the United States with the CRSP database and all other patents

with Datastream stock price data. We request data up to the end of 2013, the last year that is

fully covered by our patent data set.

The construction of our innovation measure requires the following daily time series: stock

returns excluding dividends, national market returns excluding dividends,2 and market capi-

talization. From CRSP—for US securities—we can directly request holding period returns ex-

cluding dividends (CRSP code: RETX) and returns excluding dividends on the value-weighted

market portfolio (CRSP code: VWRETX); we construct the market capitalization series by mul-

tiplying stock price (CRSP code: PRC) by shares outstanding (CRSP code: SHROUT). From

Datastream—for all other securities—we derive firm stock returns from (for-capital-actions-

adjusted) stock prices (Datastream code: P) and similarly, we calculate market returns from

Datastream’s total market equity price indices (Datastream series codes: TOTM [+ country
1 I am very thankful to Wing-Wah Tham and Elvira Sojli for the harmonization of company names to match the

patents from Patstat to companies in the Compustat databases, and I particularly thank Wing-Wah Tham for kindly
sharing the data.

2 Following Kogan et al. (2015), we use the ‘market-adjusted-return model’ (Campbell et al., 1997), that is, we compute
the firm’s market-adjusted return defined as the firm’s return minus the market-portfolio’s return. See also Section 4.
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code]; datatype code: PI); the market capitalization series (Datastream code: MV) can be di-

rectly requested from Datastream. We request all market capitalization series in US dollars to

ensure that all of our patent value estimates share one currency.

The remainder of this appendix is structured as follows. Appendix A.2 reports on the histor-

ical linking of patent companies, identified by GVKEY codes, to primary security issues identi-

fied by CRSP- or Datastream-compatible security identifiers. Appendix A.3 presents summary

statistics on the merging of the patent grant events with stock market data.

A.2 Historically linking companies to primary security issues

In total, the patent data set links patents to 11,067 publicly traded companies in the Compustat

Global database. As discussed in the previous section, we merge these patent data with stock

market data from CRSP or Datastream, guided by the available sample period offered. In order

to do so, we need to historically link the patenting companies, identified by Compustat GVKEY

codes, to their primary stock issues, identified by security-level identifiers used by CRSP or

Datastream.3 There are, however, two complications involved in this procedure.

First, GVKEY codes cannot be directly converted into unique identifiers used by CRSP or

Datastream. To overcome this issue, we rely on databases that have established links between

these identifiers. CRSP offers the CRSP/Compustat merged database, which we use to match

the GVKEY codes of companies primarily listed in the United States to PERMNO codes, CRSP’s

unique issue identifier. For companies primarily listed outside the United States, we need

to match the GVKEY variable to Datastream-compatible identifiers. Compustat North Amer-

ica (the United States and Canada) links GVKEY codes to 9-digit CUSIP security identifiers,

which are simply converted to Datastream “local codes” by removing the last digit (effectively,

transforming to 8-digit CUSIP), and placing a “Q” in front. Compustat Global (outside North

America) offers established links between GVKEY codes and SEDOL security identifiers, which

can be directly used to request data from Datastream.

Second, more problematically, established links between unique company-level identifiers

(GVKEY) and unique security-level identifiers are not one-to-one: company-level identifiers of-

tentimes link to multiple security-level identifiers due to reissuing and cross-listing of stocks.

Unfortunately, there is oftentimes no data available that historically identify primary issues, that

is, there is generally only information about which issue is currently primarily listed. To over-

come this, we come up with a number of rules to decide which price series of the available stocks

(likely) concern primary issues. The following sections highlight these rules and decisions.

Dependent on the country in which a company is primarily listed, we make use of different

matching procedures. Specifically, we divide the patent data into three subsets: the United

States, Canada and the rest of the world. Accordingly structured, the following sections provide

a technical overview of the matching procedure and its results. Appendix A.2.1 discusses the

linking of GVKEY codes to primary US stock issues in CRSP. Appendix A.2.2 reports on the

linking of GVKEY codes to primary Canadian stock issues in Datastream by use of Compustat

3 We do not consider cross-listed stocks. See Section 3.
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North America. The linking of GVKEY codes to primary stock issues listed in the rest of the

world by use of Compustat Global is presented in Appendix A.2.3. However, companies could

have been primarily listed in more than one country in our sample period and consequently

be contained by multiple subsets. In fact, 111 companies have been primarily listed within the

geographic domain of two subsets. To prevent overlap of stock price series that belong to the

same company, we need to identify the global primary stock issue. Appendix A.2.4 discusses the

topic in detail.

A.2.1 Companies primarily listed in the United States

We use the “link table” from CRSP/Compustat’s merged database to link the 4,671 GVKEY

codes that concern patenting companies primarily listed in the United States, to PERMNO

codes—CRSP’s issue identifier. In the full sample of the link table, the 4,350 (of the 4,671)

GVKEY codes link to 4,549 primary-issue PERMNO codes.4 For these PERMNO codes, we re-

quest financial stock data including market-portfolio returns (excluding dividends) from CRSP.

To merge the financial data with patent events assigned to GVKEY codes, we need to or-

ganize the financial data such that every GVKEY code uniquely identifies its stock price series.

Usefully, the CRSP/Compustat link table provides historically linked GVKEY and PERMNO

series for time periods that vary per company. We refer to these time periods as link ranges.

However, CRSP oftentimes provides financial data outside the available range of the link table.

To not be constrained by the available link ranges and to thereby prevent loss of patent data, we

extend the ranges provided by the link table. We argue that we may safely do so because each

PERMNO code only links to one PERMCO code—CRSP’s company identifier. That is, we can be

confident that stock price data outside the link range concern the same companies as within the

link range.5 For GVKEY codes that link to only a single PERMNO code, we can simply extend

the GVKEY-PERMNO link ranges in both directions. For GVKEY codes that link to multiple

PERMNO codes, we extend the link range of the first-available GVKEY-PERMNO link back in

time and the link range of the last-available GVKEY-PERMNO forward in time. The resulting

series are uniquely identified by 4,346 GVKEY codes (linking to 4,545 security codes). There are

234 occurrences of a change of (primary) issue within the series of a company.

A.2.2 Companies primarily listed in Canada

We use Compustat North America to link the 262 GVKEY codes that concern patenting compa-

nies primarily listed in Canada, to CUSIP security codes. We request monthly CUSIP series for

the full available sample (beginning in 1962) to obtain all historically available GVKEY-CUSIP

4 There are different types of links between CRSP’s company and issue identifiers PERMCO and PERMNO, and
Compustat’s GVKEY codes. Because we focus on primary issues, we only use the primary link types LC (“Link
research complete[,] [s]tandard connection between databases”), LU (“Unresearched link to issue by CRSP”), and LN
(“Primary link exists but Compustat does not have prices”).

5 Extending the link ranges could possibly lead to including cross-listed stocks in our data. However, this should not
significantly affect the estimates of our patents as the principle of no arbitrage predicts that stock movements are equal
across issues.
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links.6 Within this entire sample, the 259 (of the 262) GVKEY codes link to 322 CUSIP codes.

We filter out observations that (almost) surely belong to cross-listed stocks: if there are multiple

observations per firm-day, we only keep the observation belonging to the “most primary” IID

tag—Compustat’s issue identifying number—giving precedence to Canadian issues over US is-

sues.7 After these restrictions, three CUSIP codes remain that correspond only to US securities.

We drop these three CUSIP codes because considering that all companies within this subset are

primarily listed in Canada, they should concern cross-listed stocks. For the 270 CUSIP codes

that remain, we request stock data from Datastream. However, 25 CUSIP codes return an error

because either the corresponding local code was not recognized or there was no data available.

Hence, we retrieve stock price data for 245 securities from Datastream, and we append Canada’s

total national market index provided by Datastream to the data set.

To merge the financial data with patent events assigned to GVKEY codes, we need to orga-

nize the financial data such that every GVKEY code uniquely identifies its stock price series. We

may use the earlier obtained GVKEY-CUSIP combinations to link CUSIP codes back to GVKEY

codes because every CUSIP security code links to only one GVKEY company code. The 245

CUSIP codes available in Datastream link back to 239 GVKEY code as six pairs of two CUSIP

security codes link to the same GVKEY company code. For four of these six GVKEY codes,

security price series that belong to the same company exhibit overlapping time periods. In these

periods of overlap, we select the security that is currently identified as primarily listed by Com-

pustat. This leads to the elimination of two CUSIP codes because the available data ranges of

these securities lie entirely within the range of other primary securities. The resulting series are

uniquely identified by 239 GVKEY codes (corresponding to 243 security codes). There are four

occurrences of a change of (primary) issue within the series of a company code.

A.2.3 Companies primarily listed outside the United States and Canada

We use Compustat Global to link the 6,245 GVKEY codes that concern patenting companies

primarily listed in Canada, to SEDOL security codes. We request daily SEDOL series for the full,

available sample (beginning in 1985) to obtain all historically available GVKEY-SEDOL links.

Within this entire sample, the 6,245 GVKEY codes link to 7,659 SEDOL codes. Repeating the

methodology previously discussed in Appendix A.2.2, we filter out observations that (almost)

surely belong to cross-listed stocks: if there are multiple observations per firm-day, we only

keep the observation belonging to the “most primary” IID tag—Compustat’s issue identifying

number.8 For the 7,102 SEDOL codes that remain, we request stock data from Datastream.

However, 442 SEDOL codes return an error because either the SEDOL code was not recognized

6 As mentioned in Appendix A.1, daily security data are available from 1983 in Compustat North America. However,
Compustat North America (in contrast to Compustat Global) also offers monthly data from 1962, which are thus
preferred for the purpose of historically linking GVKEY to CUSIP.

7 For the Compustat North America database, the IID variable labels issues by “01”, “02”, “03”, and so forth for US
securities, and “01C”, “02C”, “03C”, and so forth for Canadian securities. The lowest IID tag, where we treat “01” as
“lower” than “01C”, (likely) gives the primary issue because it relates to the stock that was issued first. When securities
are reissued, primary issue IID tag could be higher than “01C”; however, in case of duplicate firm-days, we may assume
that the securities with the “lowest” IID-value concern primary issues.

8 For the Compustat Global database, the IID variable labels issues by “01W”, “02W”, “03W”, and so forth. See
Appendix A.2.2 for the rationale behind this approach.
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or there was no data available. For four other SEDOL codes, the price series was missing entirely.

Hence, we retrieve data for 6,656 securities from Datastream.

We use total national market indices provided by Datastream to calculate abnormal returns

(see Section 3). To append the relevant total market indices to our data set, we need to identify

securities’ national markets. For this, Datastream only provides an indirect way: we first request

the local index names and subsequently link these to the country of their local market. For 6,634

of the 6,656 SEDOL codes, Datastream provides local index names and we can thus utilize this

two-step method to merge security-level data with the relevant total market index.9 For the

remaining 22 securities, we manually identify their national market. Most total market indices

are available from 1973, but for some countries, the availability is more limited, with sample start

dates ranging up to 1992. Although total market index data cannot, therefore, be appended to

all observed firm stock prices, data loss is minor: on average the sample period is shortened by

rougly one year, and overall only 0.5% of our daily stock price quotes are lost.10 However, since

there is no total market index available for Iceland, we lose all four Icelandic securities; thus,

6,652 unique securities remain.

To merge the financial data with patent events assigned to GVKEY codes, we need to or-

ganize the financial data such that every GVKEY code uniquely identifies its stock price series.

We may use the earlier obtained GVKEY-SEDOL combinations to link SEDOL codes back to

GVKEY codes because every SEDOL security code links to only one GVKEY company code.

The remaining 6,652 SEDOL codes link back to 6,060 GVKEY codes; around 8% of the GVKEY

company codes link to multiple (typically two) SEDOL security codes. For 462 GVKEY codes,

the security price series that belong to the same company exhibit overlapping time periods. In

these periods of overlap, we select the security that is currently identified as primary by Com-

pustat. However, not in all of these overlapping periods the current primary issue (already)

exists and consequently, for 17 GVKEY codes, periods of overlapping security data remain. We

resolve the remaining periods of overlap by only keeping the security for which its time series

is the longest relative to the other securities in its overlapping period. For two companies this

rule is not decisive and we manually eliminate series based on the comparison of stock price

quotes at the end of the period overlap and the beginning of the subsequent non-overlapping

period. The resulting series are uniquely identified by 6,064 GVKEY codes (corresponding to

6,192 SEDOL security codes). There are 134 occurrences of a change of (primary) issue within

the series of a company code.

A.2.4 Merging all financial data: global primary issues

Our approach to linking companies to their primary stock issues has one important limitation:

even though we select issues that are “most primary” within the geographic domain of each sub-

9 There are two Chinese market indices available: one for the A-share market (Datastream code: TOTMKCA) and
one for the H- and B-share market (Datastream code: TOTMKCH). A-shares are generally only available for purchase
by mainland citizens; H- and B-shares are available to both domestic and foreigner investors. As all of our securities
concern A-shares, we append TOTMKCA price index data to the price series of the Chinese securities.

10 Lost data mostly corresponds to Brazilian stocks (for which security data are available from 1990, but total market
index from 1994) and South Korean securities (for which security data are available from 1984, but total market index
from 1987).
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set (the United States, Canada, and the rest of the world), when companies have been primarily

listed in different countries, these issues need not be the global primary issues. To illustrate, our

data gathering and filtering approach may yield stock price series of both a Canadian and a US

“primary” issue, both belonging to the same company.

To reveal the periods in which stock price series belonging to the same company overlap,

we collect the 103 companies for which we retrieved data in more than one subset; in fact, each

company appears in precisely two subsets. We merge the price series of the 214 corresponding

stock issues. Clearly, within each period of overlap, only one of two issues, each from a differ-

ent subset, can be the globally primarily listed stock. However, precisely because the data are

sourced from different databases, there is no overall variable discriminating between the pri-

mary status of issues from different databases. Therefore, we apply the following rule to decide

between overlapping issues: for every overlapping period in which a company is listed in the

geographic domain of more than one subset, we only keep the issue that belongs to the subset

that geographically contains the country where this company is incorporated.11 The motivation

for the decisive rule is that we typically observe that non-US companies, next to being traded

on their local exchange, are cross-listed in the United States.

A.3 Merging patent data with stock market data: summary statistics

The complete set of all requested financial data consists of the primary stock price series of

10,542 unique companies, listed across 30 different countries. Notice that Appendix A.1 states

that the original patent data set identifies 32 countries. However, Ireland and Iceland are lost

in the merging process. The linking procedure outlined in Appendix A.2 matches all allegedly-

Irish companies to stocks traded on the London Stock Exchange. Consequently, all these com-

panies are from then on regarded as British companies. And, as mentioned in Appendix A.2.3,

we lose the four Icelandic companies because there is no Icelandic total market index available.

Furthermore, we note that the data set in the main text includes 27 countries because we exclude

countries for which we observe less than 50 patent grant events. Specifically, Greece, Hungary,

and Malaysia are excluded from the empirical analysis in the main text.

Our patent data set—the extract from the Patstat database—contains 2,930,304 successful

patent applications. However, for approximately 10% of the granted patents in our data set,

we cannot identify the patent grant date; thus, 2,623,443 successful patent applications remain.

Because some patents are filed by (and thus granted to) multiple companies, the 2,623,443 ap-

plications correspond to 2,651,869 grant events, each uniquely identified by the combination of

a patenting company and a patent application number.

Because both financial and patent data are now uniquely identified by Compustat’s GVKEY

company code, we can easily merge the stock data with the patent grant events. We merge

the patent events with the financial data based on the grant date and the GVKEY code of the

patenting company; there may be multiple patents granted to the same company on the same
11 Before we considered the periods of overlap, we eliminated all stock price series of issues that are not available at

times that patents are granted to the corresponding company. This way we minimize loss of patent data. We note that
this is only important for a small number of companies as for the majority of the cases, both series of the same company
are available during times of patent activity.
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Figure A.1: Success rates on the merging of patent grant events with stock market data in the
period 1950–2013. The dashed line plots the total number of patents granted per year in the full,
initial patent sample.

date. We successfully merge 85% of all patent grant events in our patent data set with financial

data—that is, 2,261,266 patent grant events remain after the merging process. There are three

sources of data loss: (i) not all patenting companies can be linked to (primary) stock price series;

(ii) a small portion of the patents are granted outside the available data ranges offered by the

financial databases; and (iii) the patent sample includes patents granted to companies at times

when they were not publicly traded. The remainder of this section investigates the merging

success rates over time and across countries.

First, we examine the merging performance over time. Figure A.1 displays the percentages of

patent grant events that we can successfully merge with stock data series for all patents granted

in the years from 1950 to 2013.12 We observe a sharp increase in the merging success rate in

1973, which marks the first year of available daily security data in Datastream—the database

we use for all stocks listed outside the United States. From 1973, merging success rates remain

fairly constant over time, in between 80% and 90%. Hence, we expect that yearly-aggregated

measures of innovation in the post-1973 period do not suffer from substantial bias due to patent

data loss.

Second, we assess the success rates of our merging endeavors across the countries where

the patenting companies are primarily listed. This is important for the purpose of measuring

innovation in a cross-country setting because varying degrees of data loss per country could

12 The sample period shown in Figure A.1 is truncated. Prior to 1950, numbers of successfully merged patent grant
events are negligible: we merge 136 out of the 27,949 (0.5%) grant events dated before 1950. Furthermore, the sample
period studied in this paper ends in 2013, the last year that is fully covered by the patent data set. As a consequence,
none of the 8,999 patents granted in 2014 can be merged and Figure A.1 inherently excludes the year 2014.
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Table A.1: Performance statistics on the merging of patent data with stock market data across
countries. Part I gives the number of patent grant events in the full sample of our patent data
set. Part II gives the number of patents granted within data ranges generally available for the
requested financial series. The ratio of II to I thus makes explicit the loss of patent data due
to the limited ranges of daily security data. Part III presents merging success rates: its second
column compares the number of successful merges with the number of grant events within the
data ranges, that is, III relative to II; its last column presents cumulative success rates, that is,
III relative to I. To display performance of our merging procedures (and not the quality of the
financial data), this table considers patent grant events merged with gaps in the financial data.

I: Full II: Within available III:
patent sample range of financial data Successfully merged

Number of Number of II/I Number of III/II III/I
Country grants grants (in %) grants (in %) (in %)

Australia 2,449 2,424 99.0 2,086 86.1 85.2
Austria 5,028 4,830 96.1 2,226 46.1 44.3
Belgium 11,707 11,025 94.2 7,910 71.7 67.6
Brazil 611 560 91.7 480 85.7 78.6
Canada 9,049 8,967 99.1 5,948 66.3 65.7
China 4,798 4,784 99.7 4,471 93.5 93.2
Denmark 14,872 14,603 98.2 13,489 92.4 90.7
Finland 27,094 25,610 94.5 22,637 88.4 83.5
France 95,289 92,695 97.3 76,397 82.4 80.2
Germany 312,015 266,907 85.5 243,034 91.1 77.9
Greecea 46 46 100.0 39 84.8 84.8
Hong Kong 173 172 99.4 151 87.8 87.3
Hungarya 14 12 85.7 4 33.3 28.6
Icelandb 452 0 0.0 0 - 0.0
India 2,477 2,447 98.8 2,362 96.5 95.4
Israel 1,652 1,550 93.8 1,359 87.7 82.3
Italy 14,062 12,652 90.0 8,448 66.8 60.1
Japan 685,161 681,404 99.5 660,304 96.9 96.4
Malaysiaa 31 31 100.0 29 93.5 93.5
Netherlands 25,139 24,527 97.6 22,639 92.3 90.1
New Zealand 982 919 93.6 639 69.5 65.1
Norway 4,315 4,196 97.2 3,679 87.7 85.3
Singapore 1,802 1,780 98.8 1,745 98.0 96.8
South Africa 354 349 98.6 313 89.7 88.4
South Korea 124,087 123,674 99.7 102,411 82.8 82.5
Spain 1,172 872 74.4 803 92.1 68.5
Sweden 22,026 18,513 84.1 15,625 84.4 70.9
Switzerland 55,268 43,772 79.2 40,224 91.9 72.8
Taiwan 109,242 108,885 99.7 100,715 92.5 92.2
United Kingdom 39,062 36,987 94.7 30,895 83.5 79.1
United States 1,081,440 1,069,814 98.9 890,204 83.2 82.3

Total 2,651,869 2,565,007 96.7 2,261,266 88.2 85.3

Notes: “country” refers to the country where the patenting company is primarily listed; the 2,651,869 patent grants
events presented in the table correspond to 2,623,443 patent applications because patent applications may correspond
to multiple grant events when granted to multiple companies.
a Countries for which we observe less than 50 patent grant events are excluded from the data set in the main text.
b The required financial data is unavailable for Iceland as Datastream offers no Icelandic total market index.
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lead to skewed images of the relative economic values of national innovation. Table A.1 reports

performance statistics on the merging of patent data with stock market data for 31 countries—

we include Iceland for completeness. Table A.1 aims to display the performance of the matching

procedures outlined in this appendix, in contrast to the quality of the financial data. Therefore,

Part II in Table A.1 makes explicit the number of patent grant events lost in the merging process

due to the limited data ranges offered by the employed financial databases for the market-

adjusted stock return and market capitalization series. Subsequently, Part III in Table A.1 reports

the number of patent grant events we fail to merge with financial data within the available

data ranges.13 Furthermore, to prevent that perfect success rates are infeasible by construction,

Table A.1 also considers patent grant events merged with (regular or irregular) gaps in the

financial data series to be successful. However, because the required financial data are not

available for the data gaps, the number of successfully-merged patent grant events cannot be

interpreted as the number of patents of which we estimate the economic value.

Based on the statistics given in columns of I and II in Table A.1, we find that the loss of

patent data due to the available data ranges offered by the financial data sources is minor. A

critical eye could nonetheless be drawn to Spain and/or Switzerland: the relatively high loss

of data for Spain results from the unavailability of daily data for Spanish stocks prior to 1987;

we lose about 20% of the Swiss patents because these were granted before 1973 (the first year

generally available in Datastream). Furthermore, the merging success rates presented by the

second column of Part III in Table A.1 show that for the large majority of countries, we lose less

than 20% of the patents within the available financial data range. Moreover, only for patents

assigned to companies primarily listed in Austria or Hungary, our merging endeavors result in

success for less than 50% of the cases. For both countries, the low success rates can be explained

by the public status of the patenting companies: although all patents in the patent data set

are granted to companies that are publicly listed today, these companies were not yet public

when the majority of the patents were granted to them.14 The last column in Table A.1 presents

cumulative success rates.15 We conclude that the cumulative success rates are sufficiently high

and constant across a very large majority of the countries.

13 Ideally, we would also account for the period in which each company is publicly listed. However, precisely for
the reason that our matching procedure does not link all of the patenting companies in the patent data set to security
data from CRSP or Datastream, historical information on the public status of all companies is not readily available to
us. Consequently, we cannot make explicit the number of patent grant events lost in the merging process because the
patenting company was not public at the time.

14 A good illustrative example concerns Voestalpine AG: 25% of all patents in our patent data set that are granted
to companies primarily listed in Austria, are granted to Voestalpine AG. However, 90% of these patents were granted
before 1995, while Voestalpine AG is listed on the Vienna Stock Exchange since 1995.

15 The success rates presented in Figure A.1 also concern cumulative success rates.
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B Analytical derivation of model equations

In this appendix, we derive the statistical results from Section 4 that constitute essential building

blocks for the construction of patent value estimates.16 First, Appendix B.1 derives the expecta-

tion and variance of the patent-related component of stock returns conditional on the observed

market-adjusted stock return. Second, Appendix B.2 shows the relationship between the regres-

sion coefficient of model (4) and the signal-to-total-variance ratio. Third, Appendix B.3 proposes

a method of estimating the variance of the noise component of stock returns. For the sake of

this appendix’s independence, we restate some of the necessary model and variable definitions.

B.1 Conditional expectation and variance of patent-related stock returns

The expectation and variance of the component of stock returns that is related to the value of

the patent conditional on the observed stock return, as formulated in (2) and (8), follows from

the distributional assumptions made in Section 4. In this appendix, we derive these results in

detail.

We decompose the daily market-adjusted returns rjl on the lth day after patent j was granted

to a given firm as follows:

rjl = sjl + ε jl , l ∈ {0, 1, 2}, (B.1)

where sjl denotes the component of the firm’s stock return that is due to the market response

to the grant of patent j (the “signal” component), and ε jl denotes the component of the firm’s

stock return that is unrelated to the patent (the “noise” component). We denote the three-

day cumulative (components of) returns after the grant of patent j by rj, sj and ε j. We make

the following assumptions about the distributions of sjl and ε jl . Second moments of both sjl

and ε jl to be firm- f - and year-t-dependent, and the second moment of sjl may vary across

days l, for l ∈ {0, 1, 2}. Hence, E[s2
jl ] = σ2

sl f t and E[ε2
jl ] = σ2

ε f t. Furthermore, sjl and ε jl are

independently distributed and are serially uncorrelated. Therefore, E[(s+j )
2] = ∑2

l=0 σ2
sl f t and

E[ε2
j ] = 3σ2

ε f t, where s+j and ε j denote the total market reaction and noise terms in the event

window, respectively.17 Since the market value of patent j is always positive, s+j follows a

normal distribution truncated at zero, sj ∼ N+(0, ∑2
l=0 σ2

sl f t), and the noise term is normally

distributed, ε j ∼ N (0, 3σ2
ε f t).

18

We are interested in the expectation of s+j conditional on the observed rj: E[s+j |rj]. To derive

this conditional expectation, we first note that the truncated distribution of s+j is a conditional

distribution. That is, if x ∼ N (µx, σ2
x), then the density (denoted by f (·)) of its normal distribu-

16 In line with the rest of this paper, the notation in this appendix follows upon the conventions in the field of
econometrics, as opposed to the standard notation in statistics. In particular, we simply write lower case letters for both
random variables and particular realizations of these random variables.

17 While we simply write sj in the paper, we write s+j in this section for the sake of notational convenience.
18 We note that the second moment of a mean-zero normal distribution, truncated at zero, is (simply) equal to σ2 as

its mean and variance are equal to σc0 and σ2(1− c2
0), where c0 = φ(0)/Φ(−0).
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tion that is left-truncated at some constant a is given by (see, e.g., Greene, 2012, p. 834):

f (x|x > a) =
f (x)

Pr[x > a]
=

1
σx

φ
(

x−µx
σx

)
1−Φ

(
a−x
σx

) , (B.2)

where φ(·) is the standard normal probability density function (pdf) and Φ(·) the standard

normal cumulative distribution function (cdf). Hence, we may write:

f (s+j |rj) = f (sj|rj, sj > 0) =
f (sj|rj)

Pr[sj|rj > 0]
, (B.3)

where sj ∼ N (0, σ2
sl f t). This implies that the distribution of s+j |rj simply behaves as the dis-

tribution of sj|rj scaled by the probability that sj|rj is positive. Since we know that f (x, y) =

f (x|y) f (y), the same is true for the joint distributions f (sj, rj) and f (s+j , rj).

The joint distribution of sj and rj follows from (B.1): because rj and sj can be written as linear

functions of sj and ε j, which are both normally distributed, sj and rj have a bivariate normal

distribution and the correlation coefficient ρsjrj is given by:

ρsjrj =
Cov[sj, rj]√
Var[sj]Var[rj]

=
Cov[sj, sj + ε j]√
Var[sj]Var[sj + ε j]

=

√
∑2

l=0 σ2
sl f t√

∑2
l=0 σ2

sl f t + 3σ2
ε f t

. (B.4)

To derive the distribution of sj conditional on rj, we use the following results from statistics. If

y1 and y2 are jointly normally distributed with y1 ∼ N (µ1, σ1), y2 ∼ N (µ2, σ2), and correlation

coefficient ρ12, we know that the conditional distribution of y1 on y2 is given by (see, e.g., Miller

and Miller, 2004, p. 221):

y1|y2 ∼ N
(

µ1 +
σ1

σ2
ρ12(y2 − µ2), σ2

1

(
1− ρ2

12

))
. (B.5)

Hence, by filling the distribution parameters of sj and rj = sj + ε j, we derive:

µsj |rj
=

(
∑2

l=0 σ2
sl f t

∑2
l=0 σ2

sl f t + 3σ2
ε f t

)
rj = δ f trj, (B.6)

as SD[sj]/SD[rj] equals ρsjrj , and,

σ2
sj |rj

=

(
2

∑
l=0

σ2
sl f t

)(
1−

∑2
l=0 σ2

sl f t

∑2
l=0 σ2

sl f t + 3σ2
ε f t

)
=

(
∑2

l=0 σ2
sl f t

∑2
l=0 σ2

sl f t + 3σ2
ε f t

)(
3σ2

ε f t

)
= 3δ f tσ

2
ε f t, (B.7)

where δ f t denotes the signal-to-total-variance ratio defined as,

δ f t =
∑2

l=0 σ2
sl f t

∑2
l=0 σ2

sl f t + 3σ2
ε f t

=
E[s2

j ]

E
[
(sj + ε j)2

] . (B.8)
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Hence, we find that sj|rj ∼ N (δ f trj, δ f t3σ2
ε f t).

Finally, using (B.3) and the properties of a truncated normal distribution (see, e.g., Greene,

2012, p. 876), we obtain statistical results (2) and (8) given in the paper:

E
[
s+j |rj

]
= µsj |rj

+ σsj |rj
λ

(
µsj |rj

σsj |rj

)
= δ f trj +

√
3δ f tσε f tλ

(√
δ f t

rj√
3σε f t

)
, (B.9)

and,

Var
[
s+j |rj

]
= σ2

sj |rj

[
1− κ

(
µsj |rj

σsj |rj

)]
= 3δ f tσ

2
ε f t

[
1− κ

(√
δ f t

rj√
3σε f t

)]
, (B.10)

where λ(z) = φ(z)/Φ(z) is the inverse Mills ratio (see, e.g., Cameron and Trivedi, 2005, p. 541),

and κ(z) = λ(z)[λ(z) + z].

B.2 Recovering the signal-to-total-variance ratio

The mathematical relation between signal-to-total-variance ratio δ and the regression coefficients

γl , l ∈ {0, 1, 2}, as formulated in (5), follows from the specification of panel-model (4). This

section derives the relation in detail.

As discussed in Section 4, we assume that σ2
sl f t and σ2

ε f t vary in constant proportions, for

each l. That is, we can write σ2
sl f t as a linear function of σ2

ε f t: σ2
sl f t = αlσ

2
ε f t. This implies that the

signal-to-total-variance ratio is constant across firms and years:

δ f t =
∑2

l=0 αlσ
2
ε f t

∑2
l=0 αlσ

2
ε f t + 3σ2

ε f t

=
∑2

l=0 αl

∑2
l=0 αl + 3

. (B.11)

To derive δ, we first consider the implication of the decomposition of stock returns as given in

(B.1): for every day d for firm f unrelated to a patent grant, r f d = ε f d, and for day l after a patent

grant, r f d = sl, f d + ε f d.19 Then, since sl, f d and ε f d are independently distributed, E[s2
l, f d] = σ2

sl f t,

and E[ε2
f d] = σ2

ε f t, the second moment of returns on days unrelated to patent grants is given by:

E[ε2
f d] = σ2

ε f t, (B.12)

and the second moment of returns on day l after a patent grant:

E[(sl, f d + ε f d)
2] = σ2

sl f t + σ2
ε f t = (1 + αl)σ

2
ε f t. (B.13)

It can now be easily seen that δ is directly related to the ratio of a sum of (B.12) over three days

to the sum (B.13) over l for l ∈ {0, 1, 2}. Hence, δ can be derived from the multiplicative effects

of the news of a patent grant, (1 + αl) for l ∈ {0, 1, 2}, on the second moments of returns on

19 The subscript “ f d” replaces the subscript “jl” previously used in Appendix B.1 because we no longer restrict our
attention to days after patent grants, but rather consider any daily market-adjusted return r f d of firm f on day d.
Nevertheless, the subscript l remains for the patent-related component of return, sl, f t, to discriminate between days
within grant event windows.
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days in the grant event window. In order to measure the multiplicative effects, we regress the

log squared daily market-adjusted returns r f d of firm f on day d on a patent grant dummy

variable, I f d:

log
(

r2
f d

)
=

2

∑
l=0

γl I f ,d−l + z′f dc + ζ f d, (B.14)

where z f d is short-hand notation for the day-of-the-week and firm-year specific effects, and ζ f d

is an error term that is i.i.d. over f and d.

All other things held constant, model (B.14) measures the relative increase in the second

moment of returns caused by the stock market reaction to a patent grant event that occurred l

days in the past. Specifically, model equation (B.14) implies that:

E
[
r2

f d|I f ,d−l = 1, x f d = x∗f d

]
E
[
r2

f d|I f ,d−l = 0, x f d = x∗f d

] =
exp

(
γl + (x∗f d)

′β f d +
1
2 σ2

ζ

)
exp

(
(x∗f d)

′β f d +
1
2 σ2

ζ

) = eγl , l ∈ {0, 1, 2}, (B.15)

where x f d denotes the vector of all explanatory variables in (B.14) apart from I f ,d−l and β f d

denotes the vector of all regression coefficients in (B.14) apart from γl . Also, (B.15) uses that

E[X] = exp(µ + 1
2 σ2) for lognormally distributed variable X with parameters µ and σ. Hence,

the news of a patent grant has a multiplicative effect on the second moment of returns that is

constant across all days and all firms.

In order to derive an expression for δ, we must carefully examine how the multiplicative

effect eγl relates to the return decomposition made in (B.1). We first note that the effects of all

other explanatory factors in model (B.14) are also multiplicative. Moreover, other explanatory

variables do not alter the specific multiplicative effect of the news of patent grant l days in

the past since there are no interaction effects. Thus, given the proportionality of σsl f t to σε f t,

we could postulate that all other effects on the second moments of returns are represented by

fluctuations in σε f t. Put differently, the noise component ε l from (B.1) contains all information

that affects the second moment of returns except what is specifically related to the patent that

was granted l days in the past—which would be contained by sl . In particular, ε l also contains

the stock price movements related to grant events other than l days in the past. This is relevant

because grant event windows may intersect. To illustrate, we consider the example that firm f

is granted patent P0 on day d and patent P1 on the day before, d− 1. Now, on day d, the stock

market reaction s0 relates to patent P0 and the corresponding noise component ε0 contains the

stock price movements related to P1. Similarly, s1 refers to the stock market reaction to patent

P1, which thus implies that ε1 contains the stock price movements related to P0.

Hence, the noise component ε l in (B.1) should be interpreted to also include—apart from

all other noise—stock price movements related to patents granted on days other than day d− l.

This implies that regardless of the values of I f ,d−k for k 6= l, we can write r f d = sl, f d + ε f d for
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I f ,d−l = 1, and r f d = e f d for I f ,d−l = 0. Thus, we have for l ∈ {0, 1, 2}:

E
[
(sl, f d + ε f d)

2|x f d = x∗f d

]
E
[
ε2

f d|x f d = x∗f d

] = eγl =⇒ eγl E
[
ε2

f d

]
= E

[
(sl, f d + ε f d)

2
]
. (B.16)

Then, filling in the distribution parameters of sl, f d and ε f d, we derive:

eγl σ2
ε f t = σ2

sl f t + σ2
ε f t ⇐⇒ eγl =

σ2
sl f t + σ2

ε f t

σ2
ε f t

. (B.17)

Summing over l and taking the inverse:

2

∑
l=0

eγl =
∑2

l=0 σ2
sl f t + 3σ2

ε f t

σ2
ε f t

⇐⇒ 1

∑2
l=0 eγl

=
σ2

ε f t

∑2
l=0 σ2

sl f t + 3σ2
ε f t

. (B.18)

Next, multiplying the result in (B.18) by three and using definition of δ given in (B.11) gives:

3

∑2
l=0 eγl

=
3σ2

ε f t

∑2
l=0 σ2

sl f t + 3σ2
ε f t

= 1−
∑2

l=0 σ2
sl f t

∑2
l=0 σ2

sl f t + 3σ2
ε f t

= 1− δ. (B.19)

Finally, we obtain the expression for δ as given in (5) in the paper:

δ = 1− 3

∑2
l=0 eγl

. (B.20)

One final point

Kogan et al. (2015) present a relation between γ and δ that is different from (B.20).20 Namely,

δ = (eγ − 1)(1− 2c2
0 + eγc2

0)
−1, where c0 = φ(0)/Φ(−0), for standard normal pdf φ(·) and cdf

Φ(·). The explanation for this deviation is suggested by the note made in (Kogan et al., 2015,

p. 11): “This formula adjusts for the fact that the variance of a mean-zero normal, truncated at

zero, is equal to σ2(1− c2
0).” This quote explains the presence of the term c0 in their alternative

relation between δ and γ. More importantly, however, it also implies that the relation is based

on the interpretation that γl measures the increase in the variance of stock returns during days

following patent grants, instead of their second moment. However, because the variance of

a truncated normal distribution does not equal its second moment, this interpretation of γ is

false.21

B.3 Estimating the variance of the noise component of stock returns

This section presents the derivation of the relation between the second moment of stock returns

and the variance of the noise component as given in (6).
20 Note that Kogan et al. (2015) do not construct day-l-specific estimates of γ, and therefore the subscript l is omitted.
21 Kogan, Papanikolaou, Seru, and Stoffman were informed about the concerns raised in this paper via e-mail. The

authors verified the claim that their results rely on a false interpretation of γ and announced an updated version of their
paper (personal communication, February, 2016).
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In any year t, the stock returns r f d of firm f contain noise components ε f d, and may contain

patent-related components sl, f d, l ∈ {0, 1, 2} (see the return decomposition in (B.1)). Conse-

quently, the second moment of r f d is a mixture of σ2
sl f t, l ∈ {0, 1, 2}, and σ2

ε f t, that is a function

of the fraction of trading days dl, f t that concern a day l in a grant event window. Specifically,

since sl, f d and ε f d are independently distributed, E[s2
l, f d] = σ2

sl f t, and E[ε2
f d] = σ2

ε f t, the second

moments can we written as:

E
[
r2

f d

]
= σ2

ε f t +
2

∑
l=0

dl, f tσ
2
sl f t. (B.21)

As discussed in the previous section, we can write eγl σ2
ε f t = σ2

sl f t + σ2
ε f t, l ∈ {0, 1, 2}. Therefore,

we can derive:

E
[
r2

f d

]
=

(
1−

2

∑
l=0

dl, f t

)
σ2

ε f t +
2

∑
l=0

dl, f t

(
σ2

sl f t + σ2
ε f t

)
(B.22)

=

(
1−

2

∑
l=0

dl, f t

)
σ2

ε f t +
2

∑
l=0

dl, f teγl σ2
ε f t (B.23)

=

(
1 +

2

∑
l=0

dl, f t(eγl − 1)

)
σ2

ε f t. (B.24)

Thus, we obtain the result from (6) in Section 4.2:

σ2
ε f t =

E[r2
f d]

1 + ∑2
l=0 dl, f t(eγl − 1)

. (B.25)
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C Construction of patent value estimates: intermediate results

The table in this appendix corresponds to Section 5.3.

Table C.1: Distributions of intermediate results used for the construction of patent value esti-
mates using equation (10) across 10 countries, ordered by the number of patents in the sample.
Left columns report log market-adjusted returns in the selected event windows following patent
grants. Right columns present the expected values of the patent-related components of returns
conditional on the observed stock returns calculated by (2).

United States Japan Germany Taiwan Switzerland

rj E[sj|rj] rj E[sj|rj] rj E[sj|rj] rj E[sj|rj] rj E[sj|rj]

Mean 0.0002 0.0031 −0.0001 0.0035 0.0001 0.0020 −0.0002 0.0037 −0.0001 0.0021
Std. Dev. 0.0353 0.0019 0.0352 0.0015 0.0180 0.0014 0.0223 0.0011 0.0139 0.0013

Perc.

1st −0.0983 0.0011 −0.0872 0.0017 −0.0492 0.0006 −0.0610 0.0016 −0.0367 0.0008
5th −0.0469 0.0013 −0.0506 0.0021 −0.0234 0.0007 −0.0350 0.0020 −0.0179 0.0010
10th −0.0311 0.0015 −0.0364 0.0022 −0.0153 0.0008 −0.0246 0.0024 −0.0120 0.0011
25th −0.0138 0.0019 −0.0182 0.0026 −0.0063 0.0011 −0.0122 0.0030 −0.0054 0.0014
50th −0.0003 0.0026 −0.0011 0.0033 −0.0001 0.0016 −0.0013 0.0036 −0.0002 0.0018
75th 0.0138 0.0037 0.0168 0.0042 0.0061 0.0025 0.0110 0.0043 0.0050 0.0024
90th 0.0328 0.0055 0.0378 0.0050 0.0156 0.0035 0.0261 0.0052 0.0122 0.0033
95th 0.0496 0.0068 0.0543 0.0056 0.0245 0.0043 0.0393 0.0058 0.0181 0.0043
99th 0.1027 0.0099 0.0975 0.0073 0.0510 0.0073 0.0621 0.0070 0.0369 0.0073

N = 853,594 N = 599,021 N = 224,823 N = 78,103 N = 35,661

United
Kingdom Finland Denmark Belgium Canada

rj E[sj|rj] rj E[sj|rj] rj E[sj|rj] rj E[sj|rj] rj E[sj|rj]

Mean 0.0001 0.0045 −0.0004 0.0033 −0.0003 0.0033 0.0001 0.0037 −0.0006 0.0066
Std. Dev. 0.0299 0.0029 0.0190 0.0016 0.0218 0.0018 0.0189 0.0014 0.0336 0.0036

Perc.

1st −0.0777 0.0017 −0.0669 0.0012 −0.0552 0.0012 −0.0494 0.0015 −0.0933 0.0020
5th −0.0369 0.0020 −0.0274 0.0014 −0.0282 0.0013 −0.0269 0.0019 −0.0436 0.0025
10th −0.0255 0.0022 −0.0178 0.0016 −0.0190 0.0016 −0.0187 0.0021 −0.0299 0.0029
25th −0.0115 0.0028 −0.0075 0.0021 −0.0087 0.0022 −0.0087 0.0027 −0.0134 0.0041
50th −0.0004 0.0038 0.0000 0.0030 0.0000 0.0029 −0.0002 0.0035 −0.0008 0.0059
75th 0.0111 0.0052 0.0078 0.0041 0.0085 0.0040 0.0086 0.0042 0.0110 0.0082
90th 0.0265 0.0072 0.0173 0.0056 0.0192 0.0054 0.0193 0.0053 0.0298 0.0111
95th 0.0398 0.0092 0.0272 0.0067 0.0285 0.0066 0.0289 0.0064 0.0451 0.0126
99th 0.0835 0.0167 0.0505 0.0082 0.0533 0.0102 0.0563 0.0088 0.0952 0.0176

N = 26,927 N = 20,985 N = 12,013 N = 7,214 N = 5,512

Notes: distributions are across patents, which implies duplicate values when multiple patents are granted on the same
day to the same firm; rj and E[sj|rj] concern the sum of log returns in the country-specific event windows, defined by
the days on which we observe significant stock price reactions to patent grants (see Table 2); the table does not report
Var
[
sj|rj

]
because of the extremely low order of magnitude (between ×10−7 and ×10−4); the 17 (out of the 27) countries

in our sample that are not reported in this table, we do not find any significant stock price reactions to patent grants.

64



D KPSS model

The tables in this appendix corresponds to Section 7.1.

Table D.1: Fixed effects estimation results of model (14) for the 27 country-specific data panels,
ordered by the number of patent grants in the sample. The table reports the estimated regression
coefficients using L-period stock returns as dependent variable, for L ∈ {2, 3, 4}.

Estimates of γ in (14) based on L-period returns

Number of
Country patents L = 2 L = 3 L = 4

United States 853,594 0.004 0.014∗∗ 0.011∗

Japan 599,021 0.030∗∗∗ 0.024∗∗∗ 0.019∗∗

Germany 224,823 0.027∗ 0.031∗ 0.027∗

South Korea 94,424 0.049∗ 0.017 0.023
Taiwan 78,103 0.019 0.022 0.018
France 69,961 0.004 0.006 0.012
Switzerland 35,661 0.024 0.018 0.009
United Kingdom 26,927 0.061∗∗ 0.046∗ 0.027
Finland 20,985 0.099∗∗ 0.096∗∗ 0.036
Netherlands 20,736 0.048+ −0.013 −0.022
Sweden 14,307 0.013 0.000 0.031
Denmark 12,013 0.044 0.046 0.059+

Italy 7,477 −0.016 0.019 −0.025
Belgium 7,214 −0.013 −0.036 0.004
Canada 5,512 0.061+ 0.118∗∗∗ 0.042
China 4,068 0.084 −0.037 −0.112
Norway 3,161 −0.010 0.022 −0.020
India 2,136 −0.030 0.030 −0.051
Austria 1,736 0.004 −0.046 −0.021
Australia 1,647 0.058 0.152∗∗ 0.100+

Singapore 1,530 0.058 0.022 0.076
Israel 1,123 −0.025 −0.040 0.003
Spain 694 −0.001 0.066 −0.063
New Zealand 586 0.111 −0.110 0.036
Brazil 368 0.021 −0.016 −0.193
South Africa 202 0.023 0.274+ 0.235
Hong Kong 136 −0.113 0.139 0.079

Notes: although strongly correlated, the number of patents is not equal to the number of observations for which I f d = 1
in (14) due to multiple grants per day; ∗∗∗, ∗∗, ∗, and + indicate statistical significance at the 0.1%, 1%, 5%, and 10% levels;
Driscoll-Kraay (DK) standard errors are robust to heteroskedasticity, autocorrelation, and cross-sectional dependence.
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Table D.2: Effect of alternative relation between the signal-to-total-variance ratio δ and regres-
sion coefficient γ on the patent value estimates V̂KPSS

j . Estimation of γ, and ultimately the

construction of V̂KPSS
j , is based on the KPSS model as in equation (14), using L-period returns.

Relation (a) is used in this paper and derived in Appendix B.2; (b) is given in Kogan et al.
(2015) and relies on a false interpretation of γ. The last column presents the difference between
the mean patent value based on (a) and (b), relative to (a). Patent value estimates are given in
million US dollars, deflated to 1982 price levels using the CPI.

(a) δ = 1− e−γ (b) δ =
eγ − 1

1− 2c2
0 + eγc2

0

Country N L δ̂ Mean V̂KPSS
j δ̂ Mean V̂KPSS

j % ∆

United States 853,594 3 0.014 24.66 0.039 40.82 65.6
Japan 599,021 3 0.024 11.43 0.064 18.90 65.4
Germany 224,823 3 0.031 14.98 0.083 24.75 65.2
South Korea 94,424 2 0.048 6.81 0.128 11.23 65.0
United Kingdom 26,927 3 0.045 35.34 0.120 58.30 65.0
Finland 20,985 3 0.092 36.25 0.236 59.44 64.0
Netherlands 20,736 2 0.047 31.47 0.125 51.83 64.7
Denmark 12,013 4 0.057 31.27 0.151 51.55 64.9
Canada 5,512 3 0.111 23.44 0.282 38.24 63.2
Australia 1,647 3 0.141 25.51 0.351 41.35 62.1
South Africa 202 3 0.240 29.06 0.559 47.45 63.3

Notes: selection of return period L is based on the significance of model (14) using L-period returns, L ∈ {2, 3, 4} (see
Table D.1); c0 = φ(0)/Φ(−0), for standard normal pdf φ(·) and cdf Φ(·); countries are ordered by the number of patents
in the sample; for the 16 (out of the 27) countries in our sample that are not reported in this table, model (14) does not
detect a significant market reaction to patent grants.
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E Sensitivity analysis

The tables in this appendix corresponds to Section 7.2.

Table E.1: Fixed effects estimation results of model (4) for the 15 country-specific data panels, based on four subsample periods, ordered by the
total number of patent grants in the sample. The left part presents the distribution of the patent grants across the four subsamples. The middle
part reports the selected event windows based on the days for which the estimates of γl , l ∈ {0, 1, 2}, in (4) are significantly positive at the 10%
level. The right part presents the estimates of the signal-to-total-variance ratio δ̂ constructed using (5).

Share of total patent count (%) Selected event window δ̂

Total no.
Country of patents ’73–’83 ’84–’93 ’94–’03 ’04–’13 ’73–’83 ’84–’93 ’94–’03 ’04–’13 ’73–’83 ’84–’93 ’94–’03 ’04–’13

United States 853,594 8.3 13.7 30.7 47.4 {2} {1} {1} - 0.034 0.030 0.032 -
Japan 599,021 2.5 11.2 31.2 55.2 {1} - {2} {1} 0.126 - 0.032 0.024
Germany 224,823 13.6 17.1 30.2 39.1 {1} {2} - - 0.076 0.062 - -
South Korea 94,424 0.0 0.4 19.1 80.4 - - - - - - - -
Taiwan 78,103 0.0 0.1 18.3 81.6 - - {1} - - - 0.095 -
France 69,961 4.3 9.8 29.4 56.6 {0} - {1} - 0.105 - 0.058 -
Switzerland 35,661 9.9 11.2 26.3 52.6 {1, 2} - - {1} 0.109 - - 0.081
United Kingdom 26,927 8.3 16.3 30.8 44.6 - - - {1, 2} - - - 0.079
Finland 20,985 0.0 2.0 12.7 85.3 - - - {1} - - - 0.077
Netherlands 20,736 9.1 14.9 35.5 40.5 {1} {2} - - 0.143 0.141 - -
Sweden 14,307 0.6 6.4 41.3 51.8 {0} - - - 0.425 - - -
Denmark 12,013 0.1 5.9 35.2 58.8 - - - {2} - - - 0.100
Italy 7,477 17.3 12.6 26.4 43.8 {1} - {2} - 0.226 - 0.118 -
Belgium 7,214 4.8 10.1 41.2 43.9 {2} {2} - - 0.253 0.162 - -
Canada 5,512 5.0 11.3 35.6 48.1 {0, 1} - - {2} 0.285 - - 0.082

Notes: although strongly correlated, the number of patents is not equal to the number of observations for which I f d = 1 in (4) due to multiple grants per day; for the 12 (out of the
27) countries in our sample that are not reported in this table, the number of patent grants is too low for reliable estimation in four subsamples.

67



Table E.2: Fixed effects estimation results of model (4) for the 27 country-specific data panels, only including patents granted on Mondays,
Tuesdays, or Wednesdays. In line with the rest of the paper, the countries are ordered by the total number of patent grants in the sample.

Total no. Granted on DK DK DK Joint sig. Event
Country of patents Mo–We γ̂0 s.e.(γ̂0) γ̂1 s.e.(γ̂1) γ̂2 s.e.(γ̂2) F-test (p) window δ̂

United States 853,594 780,570 (91%) −0.011 0.009 0.025∗∗∗ 0.007 0.013+ 0.007 0.000∗∗∗ {1, 2} 0.019
Japan 599,021 523,923 (87%) 0.010 0.008 0.016+ 0.008 0.037∗∗∗ 0.009 0.003∗∗ {1, 2} 0.026
Germany 224,823 161,574 (72%) 0.020 0.015 0.018 0.014 0.034∗ 0.015 0.055+ {2} 0.034
South Korea 94,424 67,232 (71%) −0.015 0.026 0.000 0.025 0.012 0.027 0.501 - -
Taiwan 78,103 62,486 (80%) 0.025 0.022 0.048∗ 0.021 0.029 0.021 0.085+ {1} 0.047
France 69,961 49,333 (71%) 0.029 0.019 0.021 0.018 0.055∗∗ 0.020 0.652 {2} 0.054
Switzerland 35,661 26,374 (74%) −0.015 0.026 0.043+ 0.025 0.012 0.027 0.090+ {1} 0.042
United Kingdom 26,927 23,027 (86%) −0.004 0.023 0.054∗ 0.022 0.058∗∗ 0.022 0.003∗∗ {1, 2} 0.055
Finland 20,985 17,325 (83%) −0.013 0.038 0.059 0.040 0.011 0.039 0.276 - -
Netherlands 20,736 14,491 (70%) −0.015 0.033 0.085∗∗ 0.033 0.086∗ 0.034 0.564 {1, 2} 0.082
Sweden 14,307 11,513 (80%) 0.006 0.029 −0.011 0.028 0.010 0.029 0.685 - -
Denmark 12,013 9,319 (78%) 0.037 0.034 0.053 0.034 0.072∗ 0.035 0.272 {2} 0.070
Italy 7,477 6,135 (82%) −0.049 0.040 0.059+ 0.036 0.059 0.040 0.333 {1} 0.057
Belgium 7,214 5,591 (78%) 0.002 0.039 0.042 0.040 0.100∗ 0.040 0.229 {2} 0.095
Canada 5,512 5,097 (92%) 0.011 0.038 0.001 0.038 0.094∗∗ 0.035 0.081+ {2} 0.090
China 4,068 3,994 (98%) 0.048 0.096 0.022 0.110 −0.361∗∗ 0.112 0.056+ - -
Norway 3,161 2,641 (84%) −0.008 0.054 0.021 0.049 0.009 0.053 0.951 - -
India 2,136 1,778 (83%) −0.004 0.060 −0.023 0.060 0.058 0.057 0.742 - -
Austria 1,736 1,326 (76%) 0.021 0.072 −0.007 0.075 0.129+ 0.068 0.664 {2} 0.121
Australia 1,647 1,428 (87%) −0.035 0.075 0.113+ 0.067 0.072 0.071 0.546 {1} 0.107
Singapore 1,530 1,452 (95%) 0.042 0.093 0.094 0.091 0.058 0.093 0.872 - -
Israel 1,123 1,028 (92%) −0.078 0.084 0.095 0.076 0.121 0.080 0.354 - -
Spain 694 515 (74%) 0.015 0.125 −0.064 0.112 0.019 0.112 0.912 - -
New Zealand 586 521 (89%) 0.042 0.121 0.046 0.114 0.068 0.131 0.869 - -
Brazil 368 298 (81%) 0.150 0.143 0.003 0.145 0.125 0.149 0.621 - -
South Africa 202 171 (85%) 0.016 0.164 −0.239 0.190 −0.425+ 0.219 0.235 - -
Hong Kong 136 130 (96%) 0.032 0.205 0.219 0.201 −0.166 0.220 0.634 - -

Notes: although strongly correlated, the number of patents is not equal to the number of observations for which I f d = 1 in (4) due to multiple grants per day; ∗∗∗, ∗∗, ∗, and + indicate
statistical significance at the 0.1%, 1%, 5%, and 10% levels; Driscoll-Kraay (DK) standard errors are robust to heteroskedasticity, autocorrelation, and cross-sectional dependence.
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