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Abstract

Contingent capital bonds are introduced to automatically strengthen the cap-

ital structure of a bank when it gets into a state of possible non-viability.

Through coupon cancellation and write-downs the equity increases and capi-

tal ratios are strengthened.

A new pricing model for a perpetual temporary write-down and coupon

cancellation contingent capital bond (CoBo) is constructed, capturing a more

complete set of CoBo characteristics than assessed in existing literature. The

model allows for coupon cancellation, partial write-down, discretionary write-

up and perpetual maturity.

The CoBo suffers a write-down when a trigger process breaches a trigger

level. In addition to existing literature this research uses a double exponen-

tial jump diffusion trigger process. Furthermore, parameters are estimated

through calibration on call option data. Using Monte Carlo the model is able

to price a CoBo without using historical data on the CoBo itself. Due to the

limited availability of historical data on CoBos this model solves the problem

of determining an initial value at issuance.

The performance of the models is evaluated using 220 daily observations

on a contingent capital bond issued by Deutsche Bank.

Key words: Contingent capital bond, double exponentiation jump diffusion,

lognormal jump diffusion.
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1 Introduction

The recent financial crisis exposed some serious flaws in the regulation for banks.

During this financial crisis the collapse of many large banks was prevented through

bail outs by national governments, using taxpayer’s money. These bail outs were

necessary because the banks lacked sufficient capital to account for the liquidity

margin calls for collateral and because these banks were considered ’too big to fail’.

The financial crisis and these bail outs have triggered new regulatory standards by

supervisory authorities around the world. These new requirements mainly focus

on improving the quality and quantity of capital held by banks to lower the risks

of a new financial crisis. In 2008 there were doubts about the solvency among

banks themselves which resulted in a shortage of interbank funds. At the same

time depositors and other lenders of the bank lost their confidence in banks. The

new regulatory capital requirements should improve the confidence in banks. As a

response to the new regulations, banks have developed financial products aimed to

improve capital.

A contingent capital bond is a debt instrument that converts into shares or suffers

a write-down when the issuing bank gets into a state of possible non-viability. They

provide banks with a way of raising funds needed to adhere to the new capital

requirements without directly issuing shares. Contingent capital bonds are hybrid

capital that include a mandatory conversion or write-down when a trigger event

occurs. The trigger mechanism provides an automatic strengthening of the capital

structure of the bank, as debt is converted into equity or written down. A trigger

event generally occurs when a capital ratio of the bank falls below a certain threshold

value.

Research in the field of pricing contingent capital bonds has been growing. How-

ever, due to the wide variety of different features of contingent capital bonds issued

in the past 7 years and given the fact that no consensus has been reached on which

pricing method is best, there is still a great need for more research on different
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pricing models. Furthermore, new regulation has forced banks to adjust some of the

features of contingent capital bonds in order to qualify as capital. There is also a

lot of uncertainty surrounding contingent capital bonds. For example, the contin-

uing change in regulation may prevent banks from using the redemption feature if

the bank would than have to issue new bonds at higher costs (Hale and McCrum,

February 9, 2016). Despite the uncertainty surrounding contingent capital bonds,

the issuance of these bonds by banks has increased significantly in the past few

years.

This research focuses on pricing a contingent capital bond that meets the new

Basel III requirements for capital. This contingent capital bond does not convert

into equity, but instead has the coupon cancellation feature and gets (temporarily)

written down just enough to restore the capital ratio. These features are included

in the debt instrument issued on November 18, 2014 by the German bank Deutsche

Bank AG.

The contribution of this research entails the development of a pricing model

for the perpetual temporary write-down and coupon cancellation contingent capital

bond (hereafter CoBo). Existing literature focuses on some of the features of the

CoBo that are necessary to meet the new Basel III requirements for capital, but

not all together. Features of the CoBo already assessed in the literature are partial

conversion (Glasserman and Nouri, 2012), coupon cancellation (Corcuera, 2014a),

perpetual maturity (De Spiegeleer, 2014a) and a trigger process based on the log-

normal jump diffusion model(Pennacchi, 2010). The pricing model in this research

incorporates all of the above features together. In addition, the pricing model incor-

porates the discretionary write-up and optional redemption features. Furthermore,

in this research a trigger process based on the double exponential jump diffusion

model is developed (Kou, 2002). The literature and the features of the CoBo will

be discussed in detail in Section 2 and 3, respectively.

Existing literature focuses on geometric Brownian motion and lognormal jump
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diffusion model (Merton, 1976) trigger processes. This research develops a double

exponential jump diffusion model (Kou, 2002) trigger process. The double expo-

nential jump diffusion trigger process has not yet been applied to contingent capital

bonds. Jumps in the trigger process are important in order to capture the influen-

tial impact of sudden changes in the capital ratio on the price of the CoBo. The

difference between the double exponential jump diffusion model and the lognormal

jump diffusion model is the distinction between positive and negative jumps. This

feature is interesting to evaluate, as the data shows differences between positive and

negative outliers and positive jumps have a different impact on the CoBo price than

negative jumps. Furthermore, existing literature did not estimate the parameters of

the jump diffusion models. Instead, they assumed values that might be reasonable

benchmark parameters (Glasserman and Nouri, 2012) (Pennacchi, 2010). Parame-

ters for the models in this research are calibrated using share price and call option

premium data.

Data on contingent convertible bonds is scarce, as this kind of products are only

issued recently and contingent convertible bonds issued by different banks differ

in characteristics. To determine a fair price at issuance a method is needed that

does not need historical data on the bond itself. In contrast to existing literature

on contingent capital bonds, the model in this research uses calibration techniques

on call option premium data and share price data to estimate the parameters of

the models. The model thus solves the problem of determining an initial value of

the CoBo at issuance. The performance of the models is evaluated using 220 daily

observations on a contingent capital bond issued by Deutsche Bank.

This research considers a pricing model based on two different processes: a model

with a lognormal jump diffusion trigger process (Model 1) and one with a double

exponential jump diffusion trigger process (Model 2). Model 2 has a MSE of 2.43

compared to a MSE of 5.34 for the Model 1. A Diebold-Mariano test concludes

that Model 2 is more accurate in determining CoBo prices than Model 1. The
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prices of Model 2 have a correlation of 76% with the observed prices, compared to a

correlation of 56% for Model 1. This research concludes that the model constructed

in this research is able to capture important features of the CoBo. Furthermore,

Model 1 and Model 2 are both able to accurately determine CoBo prices when

historical data on the CoBo itself is unavailable, with Model 2 outperforming Model

1.

Regulators have set minimum capital levels that banks need to adhere to. In the

Basel Accords regulators started proposing minimum capital requirements. Under

Basel III, the CET1 ratio has been put forward as a key health indicator of a financial

institution. The higher the ratio, the more common equity a bank has available for

the bank’s risk weighted assets. This ratio is an indication how the bank is able to

deal with any unpleasant surprises in its investments and losses. The new minimum

capital to risk weighted assets (RWA) requirements are a CET1 capital ratio of 4.5%

and a Tier 1 capital ratio of 6.0%. This 1.5% difference between the two is called the

Additional Tier 1 (AT1) capital, and this can be filled in by the contingent capital.

According to the new regulatory Basel III framework, contingent capital bonds can

be categorized as either belonging to the AT1 or Tier 2 capital category, depending

on their specific features. In order to belong to the former category, a contingent

capital bond must have certain features. It must have a coupon cancellation feature

and no fixed maturity is to be imposed to the contract. Instead, the issuer is entitled

to redeem the bond at any of the predetermined call dates.

Based on the trigger event two categories exist: (i) a going concern or high

trigger contingent capital bond, which are intended to prevent an institution from

entering into a recovery or resolution proceeding and (ii) a gone concern contingent

capital bond, which may be triggered either before or during an official recovery

and resolution proceeding. Contingent capital bonds that get written down have

increased in popularity recent years (De Spiegeleer, 2014b). The main reason for

this increased popularity is the growing interest of fixed-income investors, which are
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prohibited from holding shares.

The potential benefit of going concern contingent capital bonds is that when a

bank’s initial equity is depleted, the bank automatically recapitalizes. It enables

raising capital at times when other options are impossible, either because of unfa-

vorable market conditions or because they are unattractive to shareholders (Duffie,

2010). The ’recapitalization gridlock’ reflects the unwillingness of shareholders to

dilute their equity through share issuance or by ’fire sales’ in unfavorable market

conditions (Brunnermeier, 2009) (Adrian and Shin, 2010). From a regulators point

of view this automatic recapitalization is a desirable feature, as it reduced the like-

lihood of financial distress and the need for a government bail out. From the banks

point of view, there are also several advantages. Banks preparing for the upcoming

European Central Bank stress test need to attract more capital in order to meet the

stricter capital requirements. Contingent capital bonds are a relatively cheap way of

raising capital. Since these type of bonds are only senior to the shareholder’s equity,

the costs are generally lower than the costs on equity demanded by the sharehold-

ers. Another advantage for banks is the tax deductibility of the interest paid on

the bonds. In addition, they will count toward the bank’s regulatory capital buffers

and leverage ratios. This will allow the bank to meet its leverage and capital tar-

gets without having to raise Common Equity Tier 1 (CET1) capital, which is most

expensive. At the same time, the higher yields relative to similarly-rated corporate

debt make them attractive to investors.

Some important properties of contingent capital bonds make them somewhat

riskier than typical senior debt issued by the same bank. The most important

difference is that they are converted into shares or written down when the capital

ratio of a bank gets below a certain threshold value. This conversion or write-down is

mandatory, as opposed to a normal convertible bond where the holder has the right

to convert. Another difference is the maturity, as AT1 contingent capital bonds

are perpetual, while typical senior debt has a maturity of 10 years. Contingent
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capital bonds cannot be redeemed by the issuer within the first 5 years and there

can be no incentive for redemption. Coupons are mandatory for senior debt, but

for contingent capital bonds coupons are fully discretionary and noncumulative.

Furthermore, contingent capital bonds are subordinated to all other debt and are

only senior to shareholder’s equity. The valuation boils down to the quantification

of the trigger probability and the expected loss suffered by the investors if such

a trigger event eventually takes place. The three most important value drivers of

contingent capital bonds are the trigger, the write-down or share conversion and the

maturity. These three drivers will be discussed in detail in Section 3.

2 Literature Review

In 2002, Flannery was the first to introduce a type of bond that would convert

into equity when a company’s capital ratio breached some predetermined threshold

(Flannery, 2005). He called this bond a ’Reverse Convertible Debenture’ and it

would act as a buffer during financial distress situations. The crisis of 2008 and

the new regulatory requirements set by supervisors led to the creation of new types

of contingent capital bonds. A vast amount of recent literature focuses on the

appropriate design of contingent capital bonds, whereas other literature propose

new pricing models.

Pennacchi (2010) developed a structural credit risk model for the pricing of

contingent bank capital (Pennacchi, 2010). Pennacchi models the bank’s assets as a

jump-diffusion process and where the default-free interest rates are stochastic. Using

this process he constructs an accounting trigger as a ratio of the bank’s current

assets-to-deposits. Allowing for jumps in the asset value is more realistic and he

finds that this has implications on the value of contingent capital. Pennacchi also

investigates the bank’s incentive to increase risk when it issues different forms of

contingent capital as well as subordinated debt. He finds that banks that issue
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contingent capital face a moral hazard incentive to increase its assets jump risks.

Increasing the risk of a bank’s assets shifts risk from the original shareholders to

contingent capital investors. Therefore, increasing the asset jump risk leads to a

value transfer from contingent capital investors to the original bank shareholders.

However, the incentive to transfer value from contingent capital investors to the

bank’s shareholders is smaller than when the bank has issued a similar amount of

subordinated debt rather than contingent capital.

Glasserman and Nouri (2012), investigate the pricing of contingent capital using

a capital ratio trigger and partial and ongoing conversion (Glasserman and Nouri,

2012). When the trigger is breached, just enough debt is converted into equity to

meet the capital requirement. They derived closed-form expressions for yield spreads

by adding a consistency requirement that market and book values of debt agree at

issuance and at maturity. This partial and ongoing conversion/write-down feature

is one of the requirements set by supervisors for contingent capital bonds in order

to be categorized as AT1 capital.

De Spiegeleer and Schoutens (2012a) define a few disadvantages of using an

accounting trigger, specifically the Tier 1 Capital ratio (De Spiegeleer, 2012). They

state that investors have to rely on audited balance sheets that do not always provide

enough details. Large US financial institutions that in 2008 failed or had to be

bailed out by the government, were reporting capital ratios above the minimum

requirement (Flannery, 2009). Another disadvantage is that capital ratios are not

forward looking since they are published with delay. The information to determine

the capital ratio is only released on quarterly or semi-annual basis, which leaves a lot

of room for speculation regarding the fact whether the bond will be triggered or not.

The use of a share price trigger also has a few disadvantages. Practitioners fear that

share price could be subject to manipulation if the contingent capital certificates

are close to conversion or write-down (Flannery, 2009).

De Spiegeleer and Schoutens (2012a) provided an in-depth analysis of pricing and
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structuring of contingent convertibles from a credit derivatives and an equity deriva-

tives approach, where the trigger process is based on the share price (De Spiegeleer,

2012). They note that when there is a risk of conversion, investors will start delta

hedging their position. When these investors start building a short position in the

shares, they will push the share price down even further, causing even more delta

hedging. They call this effect death spiral risk. The equity derivative approach in

their paper does not take into account the fat tails and jump features incorporated

in instruments like the contingent convertible bond. Corcuera et al. (2013) improve

this equity derivative approach (Corcuera, 2013). They price contingent convert-

ible bonds where the underlying risky asset dynamics are given by a smile conform

model, more precisely, an exponential Levy process incorporating jumps and heavy

tails. The model they derived better captures the intrinsic nature of contingent

capital.

Corcuera et al. (2014) introduced the coupon cancellable contingent convertible

bond, a type of contingent convertible bond where coupons can be canceled during

the lifetime of the note (Corcuera, 2014a). They show that the death spiral effect can

be significantly reduced by the coupon cancellation feature. Coupons get canceled

when a coupon specific threshold is breached, lowering the debt burden of the bank

and postponing possible conversion.

The same year Corcuera et al. (2014) and Spiegeleer and Schoutens (2014)

wrote a paper about contingent convertible bonds with extension risk, in terms of

a structural and intensity approach, respectively (Corcuera, 2014b) (De Spiegeleer,

2014a). Extension risk is the possibility that the bond issuer does not redeem the

bond at predetermined call dates but extends the maturity. They propose a recursive

method to capture the risk that the maturity of a bond is increased and new coupon

rates are established, a so called step-up. They also make a start for the case of

an infinite horizon. Currently many issued contingent capital bonds have infinite

maturity with predetermined dates upon which the issuer can redeem the bond.
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The most interesting feature of a pricing model for contingent capital is the

trigger process. Hilscher and Raviv (2014) consider a hypothetical bank that finances

its assets through the issue of three types of claims as part of its capital structure: a

single zero-coupon deposit, contingent convertible debt and a residual equity claim

(Hilscher and Raviv, 2014). The pricing of the different liabilities which compose

the capital structure of a bank depends on the assumed stochastic process of the

underlying asset. They assume that the dynamics of the bank’s assets follow a simple

geometric Brownian motion. An advantage of assuming a Geometric Brownian

Motion for the asset process is the availability of easy closed form solutions for

European options. For the parameters of the geometric Brownian motion they

choose base case parameter values and then perform sensitivity analysis around

these values. Glasserman and Nouri (2012) also simulate the asset value process

with a geometric Brownian motion (Glasserman and Nouri, 2012). The parameters

used are not calibrated on any data but are intended to be representative for the

end of 2006, before the financial crisis, based on data for the 20 largest (by assets)

banks in the United States. The volatility and interest rate is taken as a fixed value.

Pennacchi (2010) considers a jump-diffusion formulation for the firm’s underlying

assets, were the trigger is stated as a ratio of assets to deposits (Pennacchi, 2010).

Pennacchi states that a bank’s assets are invested in a portfolio of loans, securities

and off-balance sheet positions whose rate of return follow a mixed jump-diffusion

process. For the parameters of the process he assumes values that might be rea-

sonable benchmark parameters. He suggests to estimate parameters of the bank’s

asset return jump-diffusion process from information on a bank’s stock returns, debt

prices, and/or credit default swap spreads, but leaves this for future research.

In 2014, Pennacchi, Vermaelen and Wolff investigated so called Call Option

Enhanced Reverse Convertibles (COERC) (Pennacchi and Wolff, 2014). In case of

a trigger event, this kind of contingent capital bond gives existing shareholders the

option to purchase the newly issued shares at the bond’s par value. For their capital
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ratio simulation they consider the capital ratio described in (Pennacchi, 2010). In

contrast to Pennacchi(2010), they use data on three large U.S. banks to estimate the

model’s parameters. They assume that the market return on the bank’s total assets

equals the market return of its total liabilities. After obtaining daily return estimates

of the bank’s total liabilities they used this data to determine the jump parameters

of the jump-diffusion process. Parameters of the default free term structure are

choses similar to Duan and Simonato (1999) and the initial short rate is assumed to

equal 2% (Duan and Simonato, 1999).

Wilkens and Bethke (2014) assessed three different approaches for pricing contin-

gent capital bonds (Wilkens, 2014). They assessed the credit derivative approach,

equity derivative approach and the structural approach. They conclude that the

equity derivatives model is the most practical for the pricing and risk management

of contingent capital bonds. Erismann (2015) also conducted a theoretical and em-

pirical analysis on these three pricing approaches (Erismann, 2015). The findings of

his research conclude that future research should focus on the structural approach,

as they provide the natural framework for capital ratio triggered contingent capital.

3 Contingent Capital Bond

In the past couple of years a large amount of different types of contingent capital

bonds were issued by many banks. Contingent capital bonds issued by one bank

can be significantly different from other contingent capital bonds issued by another

bank. Differing characteristics of these bonds over the years are partly caused by

changing regulatory requirements for capital set by supervisors. Different charac-

teristics of these bonds between banks are partly caused by inconsistent national

regulation. Most banks want to issue a contingent capital bond that meets the re-

quirements set by regulators for AT1 capital. In the European Union, Basel III will

be implemented through the Capital Requirements Regulation and Directive (CRD
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IV), which includes the following requirements for AT1 capital.

• The instruments are not secured, or subject to a guarantee that enhances the

seniority of the claims by the institution or its subsidiaries.

• It must be able to be written down or converted to CET1 capital upon the

occurrence of a trigger event.

• The instruments are perpetual.

• The instruments may be called, redeemed or repurchased only where certain

conditions are met, and not before five years after the date of issuance.

• The provisions governing the instruments give the institution full discretion at

all times to cancel the distributions on the instruments for an unlimited period

and on a non-cumulative basis, and the institution may use such canceled

payments without restriction to meet its obligations as they fall due.

A complete list of criteria can be found in Volume 56, Official Journal of the Euro-

pean Union, 27 June 2013. The Bank Recovery and Resolution Directive (BRRD)

contains some additional criteria for AT1 capital. The BRRD sets rules for all 28

Member States of the European Union to put an end to the old paradigm of bank

bail outs. The BRRD provides that for capital to be categorized as AT1 capital in-

struments it must fully absorb losses at the so called point-of-non-viability (PONV)

of the issuing institution. Furthermore, their terms must recognize that resolution

authorities have the power to bail in (write-down or convert into equity) such instru-

ments at the PONV and before any resolution action is taken. For these purposes,

PONV is the point at which the relevant resolution authority determines that the

institution meets the conditions for resolution or the point at which the authority

decides that the institution would cease to be viable if the instruments were not

written down or converted. These criteria make that contingent capital bonds are

designed to work as a buffer that must fully absorb losses in distressed situations.
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The value of a CoBo is mainly determined by the trigger process and the method

of write-down and coupon cancellation. The trigger process determines when write-

down or coupon cancellation occurs. The amount of coupon cancellation and write-

down is such that the capital ratio stays above the minimum required ratio, incorpo-

rating the partial write-down feature. After a write-down occurred, future coupons

are adjusted to a new principal value, called the Prevailing Principal.

The coupon rate is equal to a fixed percentage for the first five or ten years. After

these first five or ten years, and every five years thereafter, a new coupon rate is set

for five years. This new coupon rate is specified in the prospectus as the Reference

Rate + x bps. These coupon rate adjustment dates are called Reset Dates. The

Reference Rate is often coupled to a certain swap curve, such that at Reset Dates

the new coupon rate is adjusted upwards or downwards depending on the current

market situation.

After five or ten years, and every five years thereafter, the issuer can redeem the

CoBo if this is more beneficial than extending the maturity. This redemption feature

will be incorporated in the pricing model. A write-up is also possible, meaning that

the Prevailing Principle amount is (partly) restored to initial principal value, but

only at the sole discretion of the issuer. The dynamics of the CoBos are captured by

incorporating these features in a simulation based pricing model. The price of the

CoBo is determined by discounting the remaining coupons and Prevailing Principal.

As required by Basel III, the contingent capital bonds also incorporate a regula-

tory trigger. This means the regulator holds the discretion to trigger a write-down

or equity conversion on the bond. This could occur before the minimum regulatory

capital levels are breached. This research does not incorporate a regulatory trigger

in the pricing model as it is uncertain when such a trigger might occur.
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Trigger process

The trigger event is incorporated in the model by simulating a trigger process. An

important feature of the trigger process is that it needs to improve upon coupon can-

cellation and write-down. The process should also be representative for the bank’s

financial health and realistically capture the dynamics of an accounting ratio. Al-

though all issued contingent capital bonds feature some sort of an accounting trigger,

academic literature has focused mainly on share price triggers. The dynamics of an

accounting ratio and asset value are difficult to assess, as they are only reported

(semi-) annually and the definition of different accounting ratios have changed over

time due to changing regulations. Banks can calculate their accounting ratios on a

daily basis and coupon cancellation or write-down can occur on any day, not only on

accounting publication days. Some articles have develop a method to simulate an

accounting trigger by choosing a certain process for the asset value. The bank’s asset

are simulated by geometric Brownian motion (Hilscher and Raviv, 2014) (Glasser-

man and Nouri, 2012) or the lognormal jump diffusion model (Pennacchi, 2010)

(Pennacchi and Wolff, 2014). Parameter values of the asset process are based on

time series data or set equal to values assumed to be representative. Due to the

limited data availability it is not possible to calibrate the asset value process on

bank’s asset value data.

The new Basel III accord splits Tier 1 capital into two components: CET 1

capital and AT 1 capital. Under Basel III, a bank must maintain the following

minimum capital requirements

• a Common Equity Tier 1 capital ratio of 4.5%

• a Tier 1 capital ratio of 6%

The above capital ratios are all expressed as a percentage of the total risk exposure

amount, the risk weighted assets (RWA). See figure 2 in Appendix A for an overview

of capital requirements as proposed by Basel for the coming years. The Tier 1 capital

13



consists of the sum of the CET1 capital and AT 1 capital of the institution. CET1

capital consists mainly of common shares and retained earnings and AT1 capital

consist mainly of preferred shares and contingent capital bonds. These two forms of

capital are meant to absorb losses in the normal course of business. Most contingent

capital bonds have one of these capital ratios as trigger process. The setting in this

research focuses on a trigger process that allows for the possibility of sudden declines

in the CET1 ratio.

A decline of the CET 1 ratio can be caused by decrease in equity or an increase

in RWA. Both the numerator and denominator are sensitive to shocks, as typically

occurs during periods of financial turmoil. In order to estimate parameters using

sufficiently available data the trigger process is simulated by a share price process

using two jump diffusion models; the lognormal jump diffusion model and the double

exponential jump diffusion model. The lognormal jump diffusion model is the most

widely used model when incorporating jumps and often fits the data well. However,

as will be shown in Section 7, the data shows that negative and positive jumps have

a different frequency and magnitude. Since the double exponential jump diffusion

model can differ between negative and positive jumps it could be that this process

better fits the data and could give more accurate CoBo prices. Furthermore, some

empirical tests suggest that the double exponential jump diffusion model fits stock

data better than the normal jump diffusion model (Kou, 2007). Parameters are

estimated by means of calibration using call option premiums for different strikes

and maturities and a closed form solution of the call option value.

Temporary partial write down

The simulated trigger process should improve upon partial write-down or coupon

cancellation. Not all coupons are canceled at once. In case of a trigger event, only

the first upcoming coupon is canceled. If after coupon cancellation the share price

remains below its trigger level, the principal is written down. This write-down is such
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that the share price is restored to its trigger level. After a write-down, future coupon

values are adjusted to the Prevailing Principal. The coupon rate stays constant for

a predetermined period, but coupon values can change due to changing Prevailing

Principal amounts.

The issuer of the CoBo has the full discretion to restore the Prevailing Principle

after a write-down, called the write-up. The issuer has the right to execute this write-

up multiple times, but only under certain conditions. The Prevailing Principle can

not be written up to above its initial principal value and a write-up may not cause

a trigger event. A write-up would not increase the capital buffer. A write-up goes

at the expense of the net profit, such that effectively equity decreases in order to

reinstate the principal amount of the CoBo. Although it does increase AT1 capital,

it does at the cost of equity and thus not improving the total capital of the bank.

It is not specified when such a write-up occurs, but there are several reason for a

bank to execute a write-up. If the Prevailing Principal is written down to a certain

level and the coupons are low, investors may complain about the low coupon when

the bank is already out of trouble. A write-up is a way to show investors that it is

possible to participate in the recovery of distressed banks, which would add value

to the CoBo from the investors point of view. Another reason is to maintain access

to the capital market. If the bank does not restore the principal when the bank is

out of trouble this sends a bad signal to the market. This bad signal could have a

negative impact when the bank wants to issue new contingent capital in the future.

After a write-up, the future coupon values are adjusted to the Prevailing Principal.

Even though a specific capital ratio level is not formally stated in the prospectus,

the issuer would only decide to carry out such a write-up when the bank is clearly out

of trouble. The write-up feature will be incorporated in the model by specifying a

certain high share price trigger level for a write-up. This write-up is not mandatory,

in contrast to the write-down. Therefore, in case of a upper threshold breach, the

write-up will be linked to a parameter indicating the probability of a write-up.
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Maturity

As Basel III requirements impose an infinite horizon feature for a contingent capital

bond in order to qualify as AT1 capital, most issued contingent capital bonds are

perpetual bonds. Issuers may redeem the CoBo, but in order for the CoBo to

qualify as AT1 capital it can not be redeemed before five years after the date of

issuance. Most contingent capital bonds are designed such that after five years the

issuer can redeem the CoBo, on the so called First Call Date. After this First Call

Date the issuer can redeem the CoBo on any fifth anniversary thereafter, on the so

called Call Dates. The issuer can redeem all, but not some, of the CoBo capital.

The redemption price is equal to the Prevailing Principal plus any accrued interest

payment. Furthermore, no coupon step-up is allowed, as incentives for bonds to be

called are not allowed by the Basel III regulations. A step-up means that future

coupon payments are received at a higher, predetermined amount than previous or

current periods.

The model in this research looks at the value of the CoBo on every Call Date

and determines if, from an issuers point of view, it is more beneficial to redeem or

to extend the maturity. This process is repeated until the CoBo is redeemed or

completely written down. Every Call Date is also a Coupon Reset Date. If the

bank decides not to redeem, the maturity is extended another five years and a new

coupon rate is determined. This new coupon rate is set for another five years, with

the new coupon rate denoted as a Reference Rate + x bps. The Reference Rate is

often coupled to a certain swap curve, such that at Reset Dates the new coupon rate

is adjusted upwards or downwards depending on the current market situation. The

pricing model in this research incorporates these redemption and changing coupon

rate features.

In certain situations the issuer has the right to early redeem the CoBo.

• If as a result of a tax law change the tax treatment of the CoBo changes, such

that interest paid on CoBos are no longer deductible, the issuer has the right
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to redeem the CoBo.

• If as a result of a regulatory change the classification of the CoBo changes, such

that it no longer qualifies as AT1 capital, the issuer has the right to redeem

the CoBo.

• The issuer has the right to redeem the CoBo subject to certain conditions.

These conditions mainly entail a consent of the regulator and that, after re-

demption, the capital ratio stays (sufficiently) above the regulatory minimum

level.

The above situations are not incorporated in the model as the occurrences of these

situations are uncertain.

Effect on balance sheet

When the capital ratio of a bank drops below the trigger level a coupon cancellation

and write-down of a CoBo has to restore this capital ratio. Most capital ratio have

equity in the numerator. In order to increase this ratio, either the equity has to

increase or the denominator has to decrease.

The CoBo is constructed such that it increases the equity in case of a trigger

event. At first the upcoming coupon payment will be canceled, thereby lowering the

interest expenses of the bank for that period. By lowering the costs, the retained

earnings increase. Retained earnings are, through the profit and loss account, as-

signed to equity. If, after the coupon cancellation, the capital ratio is still below

the trigger level, the principal of the CoBo is written down. By writing down the

principal, the total debt due decreases. This will result in a positive result on the

profit and loss account through the retained earnings. This again results in an in-

crease in equity for that period. Therefore, both the cancellation of a coupon and

the write-down increase the capital ratio.
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4 Data

Data of call options on Deutsche Bank shares for different strikes and maturities

and Deutsche bank share price data itself are used for the calibration of the jump

diffusion models. For the simulation of CoBo prices the 30 year term structure of

five year semi-annual euro swap curve. Data on the Deutsche Bank CoBo prices is

used to compare the models prices to. The data ranges from November 18, 2014 to

October 9, 2015.

Deutsche Bank daily log returns for the period November 18, 1994 to 21 Decem-

ber, 2015 are used to assess normality of the Deutsche Bank share returns.

All this data is gathered from Bloomberg L.P., an American multinational mass

media corporation, which delivers a vast array of global financial information (e.g.,

data, analytics, news, communications, and charts). Accounting information is gath-

ered from annual and financial reports of Deutsche Bank, which are openly accessible

on the internet.

5 Pricing approaches

Due to the stochasticity of the trigger process, the payoff cannot be perfectly deter-

mined ex-ante and must therefore be approximated. The different pricing methods

of contingent capital bonds can be divided into three approaches

• Credit derivative approach

• Equity derivative approach

• Structural approach

Credit derivative approach

In the credit derivative approach the contingent capital bond is priced from the

viewpoint of a fixed income investor (De Spiegeleer, 2012). In fixed income mathe-
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matics corporate debt is often priced using a reduced form approach, also referred to

as intensity based credit modeling. The intensity approach assumes an exogenously

default event, which must not necessarily be correlated to the asset value of the

company. The contingent capital bond is priced in terms of an extra yield on top

of the risk-free rate to compensate for the possible conversion or write-down. The

credit derivative approach uses the probability of default and the loss given default

to determine the value of a financial product. Since the conversion or write-down

is closely connected to a firms default probability, intensity based credit modeling

lends itself as a pricing methodology. The probability of default and the loss given

default are linked to the credit spread in a formula called the credit triangle

credit spread = λ(1−R), (1)

where λ is the default intensity and R is the recovery rate. In the event of default,

R is the percentage amount of invested money one can expect to get recovered.

Denote S(t) as the cumulative probability of surviving to time t (no default by time

t). Then the probability of default occurring within t and t+ ∆t is equal to

S(t)− S(t+ ∆t) = S(t)λ(t)∆t, (2)

which follows from
dS(t)

S(t)
= −λ(t)dt with S(0) = 1, (3)

when taking the limit ∆t→ 0. This leads to the Q(t) being equal to

Q(t) = 1− S(t) = 1− e−
∫ t
0 λ(u)du, (4)

where Q(t) is the probability of default by time t. The credit derivative approach

is a relatively simple ’rule of thumb’ approach for which relevant pricing parame-

ters are readily available in the market and is based on the standard Black-Scholes

assumptions.

However, in order to accurately price contingent capital bonds the Black-Scholes

assumptions are no longer feasible. Assumptions like constant and known interest
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rates and log normally distributed returns are not consistent with reality and have a

influence on the valuation of the bond. Furthermore, this approach becomes difficult

if the temporary and partial aspects of the write-down, the possibility of a write-up

and the coupon adjustments need to be incorporated.

Equity derivative approach

The contingent capital bond is priced from the perspective of an equity derivative

specialist, who sees the bond as combination of long and short positions in financial

products (De Spiegeleer, 2012). The payoffs of a complete write-down contingent

capital bond can be replicated by taking a long position in a corporate bond (CB)

of the issuer and short positions in k binary down and in options (BDIi) for each

coupon payment Ci

Contingent capital bond value ≈ CB +
k∑
i=1

BDIi, (5)

with the shares of the issuer as underlying for the option. Before write-down the

contingent capital bond behaves like the long position in the CB with a face value

F and coupon payments Ci. When the trigger event occurs, the contingent capital

bond is completely written down and the holder will not receive the coupon payments

any more. The cancellation of the coupon payments Ci are captured by the BDIi.

The short positions in the BDIi options are equal to the coupon values Ci and

will cancel out these coupon payments after a trigger event occurs. A closed form

solution is possible when all Black-Scholes assumptions are considered. The present

value of the CB is equal to

PVCB = Fe−rT +
T∑
t=1

Cie
−rt. (6)

The present value of the BDIi options is equal to (De Spiegeleer, 2012)

PVBDI =
k∑
i=1

Cie
−rti [φ(−x1i + σ

√
ti) + (S∗/S)2λ−2φ(y1i − σ

√
ti)] (7)
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with

x1i =
log(S/S∗)

σ
√
ti + λσ

√
ti

(8)

y1i =
log(S∗/S)

σ
√
ti + λσ

√
ti

(9)

λ =
r − q + σ2/2

σ2
(10)

where S is the share price, S∗ is the share price barrier, ti is the maturity date of

Ci, σ is the volatility, r is the risk-free continuous interest rate, q is the continuous

dividend yield and φ denotes the standard cumulative normal distribution.

Relevant pricing parameters are readily available in the market, but this is a

highly involved and complex implementation in the case of discontinuous returns.

The jumps in the trigger process, which are an important aspect for determining

contingent capital bond value, cause discontinuity. The BDI options rely on the stan-

dard Black-Scholes assumptions. However, in order to accurately price contingent

capital bonds the Black-Scholes assumptions are no longer feasible. Furthermore, as

for the credit derivative approach, this approach becomes difficult if the temporary

and partial aspects of the write-down, the possibility of a write-up and the coupon

adjustments need to be incorporated.

Structural approach

The structural model was pioneered by Merton in 1974 (Merton, 1974) and provides

a natural pricing framework for capital ratio triggered contingent capital bonds.

Under this approach the assets on the balance sheet are modeled using a stochastic

model. This approach assumes an endogenous default event, as opposed to the

exogenous default event in the credit derivative approach. In the structural approach

the total value of the assets held by the banks is equal to the sum of all the capital

instruments.

To incorporate the dynamics of the CoBo investigated in this research, a sim-

ulation based pricing method like the structural approach is used. A Monte Carlo
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simulation based pricing model is able to capture the contractual specifications of

the CoBo. Through simulation, features like temporary and partial write-down and

coupon adjustments can be incorporated. A trigger process will be simulated, which

simulates possible trigger events. Every simulated path leads to different write-down

and coupon cancellations moments and different write-down amounts. Based on the

simulated path it is also determined if the CoBo is written up or redeemed at certain

points in time.

The pricing approach consists of two stages: a simulation stage in which the

trigger process determines which coupons are canceled and how much of the principal

is written down. This stage ends when the CoBo is redeemed or is completely written

down. In the second stage the value of the CoBo is determined by discounting the

remaining coupons and principal. The price of the CoBo is approximated by taking

the average of the simulations. The approach is described in detail in Section 6.

6 Methodology

This section starts with a motivation for, and a general description of, jump pro-

cesses. Secondly the two jump processes used in this research are discussed. There-

after the calibration technique is described and finally the pricing model is explained

in detail.

Jump diffusion models

For the simulation part the trigger process is described by the share price simulated

through a jump diffusion process. The first reason for choosing a jump diffusion

model is that they capture some important empirical phenomena commonly seen in

share prices. By using a jump-diffusion model for the asset return you can capture

the leptokurtic features and volatility smile that asset return distributions tend to

have (Kou, 2007). In other words, the return distribution differs from a normal
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distribution through the presence of heavier tails and higher peak than those of the

normal distribution. The volatility smile revers to the implied volatility resembling

a so called smile, meaning that it is a convex curve of the strike price. Both the

lognormal jump diffusion model and the double exponential jump diffusion model

capture these leptokurtic features, in contrast to the Black Scholes model.

Secondly, the jumps are important to capture the influential impact of sudden

changes in the capital ratio on the price of the contingent capital bond. When the

capital ratio only gradually declines, as in a geometric Brownian motion setting,

the bank can anticipate by increasing the equity or decreasing the denominator of

the capital ratio. Jumps cause a sudden, unanticipated change in the capital ratio,

which could lead to sudden coupon cancellations and write-downs. The high peak

and heavy tails of the distribution also enables it to not only capture overreactions

by the market (heavy tails) but also under-reaction (high peak).

Another important reason is the existence of closed form solutions for standard

call and put options. This enables calibration of the parameters on call option data.

Finally, jump diffusion models have some economical interpretation. The jumps

resembles the market response, or the markets overreaction, caused by financial

turmoil, released accounting information, default of assets and sudden changes in

asset prices (Fama, 1998). A downside of using jump diffusion models is that these

models are unable to capture volatility clustering, which is also commonly present

in asset returns (Cont, 2005).

The share price under risk-neutral probability measure Q follows the jump dif-

fusion process. Before the process is described in detail, some introduction to jump

models is in order. The jump diffusion model consists of two parts; the diffusion

part and the jump part. The diffusion part is modeled with a Brownian motion and

the jump part with a Poisson process. The Brownian motion is a continuous time

random process. The process W = (Wt : t ≥ 0) is a Q-Brownian motion (Q-BM) if

and only if
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1. Wt is continuous and W0 = 0.

2. The value of Wt is distributed (under Q) as a normal random variable N(0, t).

3. The increment Ws+t −Ws is distributed as normal N(0, t) (under Q) and is

independent of Fs, the history of what the process did up to time s.

The Brownian motion part of the model constructs the continuous path and the

Poisson process accounts for the jumps. Denote a sequence [τi]i≥1 of independent

exponential random variables with parameter λ. The cumulative distribution func-

tion is denoted as P [τi ≥ y] = e−λy. The Poisson process with parameter λ is equal

to

Nt =
∑
n≥1

1t≥Tn , (11)

with Tn =
∑n

i=1 τi. The jumps occur at times Ti and the intervals between jumps are

exponentially distributed. The jump size in this process is equal to 1. The Poisson

process can be generalized to a process with arbitrary jump sizes. This is called the

compound Poisson process, in which interval between jumps is still exponentially

distributed, but jumps sizes can have an arbitrary distribution. Jump diffusion

models are becoming increasingly popular in finance. The most important reason

for this increased popularity for jump models is the presence of jumps observed in

prices. These sudden large price movements can not be captured by the Brownian

motion, unless a unrealistic high value of volatility is used. From the perspective of

a risk manager, incorporating jumps in the model allows the risk manager to take

into account the large price movements in small time intervals (Tankov, 2009).

Lognormal jump diffusion process

The lognormal jump diffusion model has three additional parameters compared to

the traditional Black Scholes model, which only has r and σ. With these three

additional parameters λ, µy and σy the lognormal jump diffusion model tries to

capture the skewness and excess kurtosis. Jumps are lognormally distributed and
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occur following a Poisson process. Assuming λ = 0 and/or µy = σy = 0 results in

the normal Black Scholes model (Merton, 1976).

Given the risk-neutral share price process

St = S0 exp[(r − σ2

2
− λk)t+ σZt +

Nt∑
k=1

Yk] (12)

derived from the following lognormal jump diffusion process for the share price

dSt
St

= (r − λk)dt+ σdZt + (yt − 1)dNt, (13)

where r is the instantaneous expected return on the share, σ is the instantaneous

volatility of the share return conditional on the jumps does not occur, Zt is a stan-

dard Brownian motion process and Nt is an Poisson process with intensity λ

dNt =

1 if jump occurs

0 if no jump occurs

It is assumed that Zt, Nt, and yt are independent. The absolute jump size yt is

a nonnegative random variable drawn from lognormal distribution such that the

relative price jump size, yt − 1, is lognormally distributed with mean E[yt − 1] ≡

k = exp(µy + 1
2
σ2
y)− 1,

(yt − 1) ∼ i.i.d.Lognormal(k, e2µy+σ
2
y(eσ

2
y − 1)). (14)

This is equivalent to saying that the log jump size ln(yt) ≡ Yt is a normal random

variable

Yt = ln(yt) ∼ i.i.d.N (µy, σ
2
y). (15)

Double exponential jump diffusion model

The double exponential jump diffusion model captures two important features of

assets; the asymmetric leptokurtic feature and the volatility smile. The asymmetric

leptokurtic feature captures the feature that return distributions of assets have a
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higher peak and two asymmetric heaver tails than assumed under a normal distri-

bution. The volatility smile captures the feature that the implied volatility is not

constant but resembles a convex curve of the strike price (Kou, 2002). Jump oc-

curs following the same Poisson process as in the lognormal jump diffusion model,

but the jumps follow a double exponential distribution instead of lognormal distri-

bution. The difference with the lognormal jump diffusion model is the distinction

between positive and negative jumps. The lognormal jump diffusion model only

defines a mean of the jump, while the double exponential jump diffusion model

contains parameters for the mean of positive jumps and negative jumps separately

and a parameter for the probability of a positive jump. This feature is interesting

to evaluate, as the data shows differences between positive and negative outliers.

Again, assuming λ = 0 and/or µy = σy = 0 will results in the normal Black Scholes

model.

Given the risk-neutral share price process

St = S0 exp[(r − σ2

2
− λξ)t+ σZt]

Nt∏
i=1

Vi (16)

derived from the following Double Exponential Jump diffusion process for the share

price

dSt
St

= (r − λξ)dt+ σdZt + d(
Nt∑
i=1

(Vi − 1)), (17)

where r is the instantaneous expected return on the share, σ is the instantaneous

volatility of the share return conditional on the jumps not occurring, Zt is a standard

Brownian motion process and ξ = E(V ). Furthermore, Nt is an Poisson process

with intensity λ, with λ the average number of jumps in one period and Nt the total

amount of jumps in period t. Vi is a sequence of independent identically distributed

nonnegative random variables such that Y = log(V ) has an asymmetric double

exponential distribution with density

fY (y) = pη1e
−η1yIy≥0 + qη2e

η2yIy<0, (18)
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under the restrictions η1 > 1, η2 > 0 and where p, q ≥ 0, p + q = 1 represent

the probabilities of an upward or downward jump, respectively, and IA denotes an

indicator function equal to 1 if A is true. The requirement η1 > 1 ensures that

ξ < ∞ and E(St) < ∞, which essentially means that the upward jump cannot

exceed 100%. This is a reasonable assumption, as this is not observed in the stock

market. It is assumed that Zt, Nt, and Y are independent. η1 represents the upward

jump size with jump magnitude equal to 1
η1−1 ∗100% and η2 represents the downward

jump size with jump magnitude equal to −1
η2+1
∗ 100%.

Denote ξ+ and ξ− as exponential random variables with means 1/η1 and 1/η2,

respectively. Then

log(V ) = Y ∼

ξ
+, with probability p

ξ−, with probability q,

with ξ = E(V ) = q η2
η2+1

+ p η1
η1−1 .

Calibration

The goal of calibration is to estimate the set of parameters θ1 = (r, σ, λ, µy, σy)

for the lognormal jump diffusion model and to estimate the set of parameters

θ2 = (r, σ, λ, p, η1, η2) for the double exponential jump diffusion model. The pa-

rameters are estimated by configuring the model to European call option premiums

for multiple maturities and strike prices.

There are multiple choices for calibration methodologies but, since this research

works under the risk-neutral measure, consistency with current market prices is pre-

ferred. A so called inverse problem for calibration is employed. Through calibration

parameters are estimated that fit observed market European call option premiums.

The optimization problem is ill-posed, meaning that several parameter sets may be

equally consistent with market prices. The calibration problem becomes an opti-

mization problem with the aim to minimize the difference between market prices
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and the model prices. For the optimization problem a least squares approach is

used. Taking M different observed call option premiums, the formulation of the

optimization problem is given by

min
θi

M∑
j=1

(
Callmarketj − Callmodelj (θi)

)2

, for i = 1, 2. (19)

where Callmarketj represents market observed call option premiums and Callmodelj (θi)

represent call option premiums from Model i. Model 1 represents the model with

the lognormal jump diffusion process for the share price and Model 2 the model with

the double exponential jump diffusion process for the share price. The derivation of

the formula for the closed-form call options price for Model 1 and Model 2 are given

in Appendix F and G, respectively.

A problem with the optimization problem in Equation 19 is that it is a non-

convex function with no particular structure. This means that most gradient-based

optimization techniques can guarantee a local minimum, but unfortunately not a

global one. The optimization techniques require an initial set of parameters to start

the optimization. If this initial set of parameters is close enough to the global min-

imum the optimization will result in convergence towards the global minimum. For

this reason the global optimization technique called Genetic Algorithm is used to

find an initial parameter set close to the global minimum (Scrucca, 2013). The Ge-

netic Algorithm technique takes an arbitrary population of candidate solutions of

the optimization problem and evolve them towards better solutions. Statistically it

guarantees an optimal solution. A drawback of this technique is the slow computa-

tional speed. When a good initial parameter set is found a local minimum is found

using the Nelder-Mead optimization algorithm (Kelly, 1999). There may still be

several, or non, solutions to the optimization problem. There have been proposed

so called regularization methods to make the problem well-defined by introducing

additional information. However, this is outside the scope of this research.

Another issue is the infinite sum in the call option formula for the lognormal
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jump diffusion model in Equation 42 and for the double exponential jump diffusion

model in Equation 46. In order to calibrate the model on the call option premiums

an estimation of this infinite sum is needed. To approximate the infinite sum with

a finite sum a cut-off value is determined. By looking at the value of the Poisson

loading ( e
−λT (λT )i

i!
) and determining when this value becomes negligible, a cut-off

value can be determined.

Pricing model

Here the features of the CoBo described in Section 3 are incorporated in the pricing

model.

The Prevailing Principal amount at time t is denoted as CoBot and is denoted

in EUR million. CoBot changes over time due to write-downs and write-ups.

One of the requirements for the CoBo to count towards AT1 capital is that

there can be no incentive to redeem. This means there can be no step-up of the

coupon. Therefore, the new coupon rate determined on Reset Date is described in

the prospectus as the Reference Rate plus a fixed amount of x bps. The Reference

Rate part of the coupon rate makes sure that the new coupon rate is adjusted

upwards or downwards depending on the market situation. After five or ten years,

and every five years thereafter, a new coupon rate is set for five years. These coupon

rate adjustment dates are called Reset Dates, when t = RD. The Reference Rate

and the fixed part are denoted as csCoBo and crRD, respectively. The CoBo coupon

rate, denoted as vRD, is constant between the Reset Dates and the coupons are paid

annually. On each Reset Date the coupon rate is thus set equal to crRD plus some

spread csCoBo

vRD = crRD + csCoBo. (20)

The coupon payments, denoted by Ct, are also denoted in EUR million and can

change during the period up to Reset Date (and in between Reset Dates) as CoBot
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changes over time such that the annual coupon at time t equals

Ct = vRD CoBot. (21)

In this research the trigger process is simulated by the share price described

by Equation 12 or Equation 16. In order to simulate trigger events, a trigger level

needs to be estimated. Therefore, a share price level that corresponds with the CET1

capital ratio trigger level is needed. This trigger level is denoted in the prospectus.

At each point in time the share price is evaluated. If the share price is below the

trigger level, the CoBo takes action. A coupon cancellation or principal write-down

increases equity, as described in Section 3. The coupon cancellation increases the

equity with Ct and thus increases the share price with Ct / Ċ. If this does not

increase the share price to above the trigger level, the principal is written down.

This write-down value equals the amount necessary to increase the share price to its

trigger level, with the Prevailing Principal amount as maximum write-down value.

write-down value = min

[(
Ṡ − (St +

Ct

Ċ
)

)
Ċ, CoBot

]
, (22)

with Ṡ the trigger level of the share price. After a write-down, the share price

increases with min

[(
Ṡ − (St + Ct

Ċ
)

)
, CoBot

Ċ

]
. In case of a write-down, the future

coupon payment Ct are adjusted to account for the new Prevailing Principal amount.

When the process reaches the First Call Date, which is after five or ten years, the

redemption option of the issuer is evaluated. On this First Call Date the issuer has

the option to redeem the entire Prevailing Principle. The issuer will want to redeem

the CoBo when the CoBo is expensive relative to the current market situation.

Simultaneously with the First Call Date is the Reset Date. The fixed part csCoBo of

the new coupon definition determines for a large part the coupon value. The level

of this fixed part is determined at issuance. The safer the bank is at issuance, the

lower the risk, the lower the demand for return and the lower csCoBo. When the

capital ratio is high with respect to the capital ratio at issuance, the probability of

a trigger event has decreased. When this probability decreases, the bank can lower
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csCoBo. If the gain from a lower coupon exceeds the costs of issuing new (contingent)

capital, the bank executes its option to redeem.

Another reason for a bank to redeem the CoBo when the capital ratio is high

with respect to the capital ratio at issuance is because in this situation the bank has

enough common equity. When the capital ratio is high, the bank must have a lot

of common equity and therefore does not need the AT1 capital in order to maintain

a sufficient capital ratio. In this situation, it would be better for the bank to issue

normal bonds, as these are cheaper. The bank could redeem the CoBo in order to

lower the cost of debt.

Therefore, the issuer will execute his redemption right when the capital ratio is

high with respect to the capital ratio at issuance. This corresponds with the issuer

redeeming when the share price is high with respect to the share price at issuance in

this research. In the model it is assumed the bank redeems the CoBo when the share

price has increased above a certain upper level relating to an increase in capital ratio

of more than 4%.

When the bank redeems the CoBo, equity decreases with an amount equal to the

Prevailing Principal amount. This causes the capital ratio to decrease. One of the

requirements for a redemption is that the capital ratio stays above the trigger level

with a certain margin. Before the redemption can occur, the model checks if the

share price stays above a certain upper level after the redemption, which corresponds

with the target CET1 ratio denoted in the annual report. If this requirement is not

met the CoBo is not redeemed. This redemption option is thus evaluated on the

First Call Date and every five years thereafter, on the Call Dates. This extension

of the maturity on Call Dates is evaluated until around 99% of all simulated CoBos

are redeemed or completely written down and further extension of the maturity has

a negligible effect on the value of the CoBo.

The bank has the option to write-up the Prevailing Principle. A write-up can

only occur after a write-down and the write-up value is limited to the Current write-
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down amount. The Current write-down amount is the results of all write-downs and

write-ups up to time t. There is no predetermined event after which a write-up

occurs, in contrast to trigger level for the write-down. The issuer has full discretion

to reinstate any portion of the Current write-down amount. The issuer will only

decide to write-up the Prevailing Principle when the capital ratio has been restored

well above the trigger level. The model assumes the issuer writes up when the share

price breaches an upper level corresponding to the 10% target CET1 ratio.

An important requirement for a write-up to occur is that it will not cause a

trigger event. A write-up goes at the expense of the equity capital, such that the

capital ratio will decrease after a write-up. Therefore, the write-up value is limited

to an amount such that the share price after write-up stays above an upper level

corresponding again to the target CET1 ratio.

Furthermore, the model assumes this write-up occurs with a certain probability,

as a write-up is uncertain. There is no way of determining the likelihood of a write-

up occurring. The probability of a write-up, given that the above conditions are

met, is set on 50%. The write-up value itself is also uncertain. Therefore, the value

of the write-up is equal to a standard uniformly distributed variable b ∼ U(0, 1)

times the Current write-down amount

Write-up value = b ∗ Current write-down amount . (23)

This way the model incorporates the uncertainty around the write-up occurrence

and the write-up value. A write-up will not only increase the Prevailing Principle,

but will also increase the coupon. After the write-up, future coupons will be equal

to the coupon rate times the Prevailing Principal.

The second part of the simulation consist of determining the value of the CoBo

given a certain share price path. In the first part of the simulation it is determined

which coupons get canceled, how much of the principal is written down and written

up and when the CoBo is redeemed or completely written down. The remaining

coupons and principal are discounted to the issue date using rft, the point on the
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five year semi-annual euro swap curve at time t, which represents the risk-free rate.

Discounting the future cash flows with the risk-free rate would not be correct,

as the CoBo is not a risk-free investment. Therefore, the discount factor needs to

include some extra spread incorporating the risk of the CoBo and the credit risk of

the issuer. In practice it is common to use the so called asset-swap (ASW ) spread.

This ASW spread is determined by looking at bonds issued by the bank. Looking

at the difference in bond value when the bonds cash flows are discounted with the

risk-free rate and the issue price, the ASW spread can be determined. The discount

factor at which the CoBo coupons and CoBo principal are discounted is thus equal

to

Pt,T = rft e
−ASW (T−t). (24)

The discounted cash flows result in a value for the CoBo. Looking at the average

CoBo value over the simulated paths, a value for the CoBo is determined. In total

m share price paths should be simulated such that the CoBo price is converged.

7 Results Deutsche Bank CoBo

This section applies the methodology of Section 6 to the contingent capital bond

issued by Deutsche Bank Aktiengesellschaft on November 18, 2014 that satisfies the

requirements for AT1 capital. The CoBo issued by Deutsche Bank is called the

Undated Non-cumulative Fixed to Reset Rate Additional Tier 1 Notes and has the

following features.

• CET 1 Capital ratio trigger of 5.125%

• Partial write-down

• Coupon cancellation

• Discretionary write-up
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• Optional redemption

• Regulatory redemption

• Perpetual

Deutsche Bank issued a going concern CoBo, as their CET 1 trigger level is at

5.125%, while the minimum CET 1 capital ratio set by Basel equals 4.5%.

This section starts with a motivation for the jump processes for the Deutsche

Bank CoBo. Secondly, the calibration results for the two jump processes are dis-

cussed together with an interpretation of the parameters. Thereafter the pricing

model is applied to the Deutsche Bank CoBo and finally the results are discussed.

Motivation jump processes

Figure 3 in Appendix B shows the histogram of the Deutsche Bank daily log returns

for the period November 18, 1994 to 21 December, 2015. Summary statistics for the

data are given in Table 4 in Appendix B. The figure shows clear signs of heavy tails

and peakedness which confirm that a normal distribution does not fit the data. A

formal Jarque Bera for normality is denoted as

JB =
n

6

(
Sk2 +

Ku2

4

)
∼ χ2

ν=2, (25)

with n = 4804 the number of observations, Sk = 0.03 the skewness, Ku = 9.00

the kurtosis and χ2
ν=2 a Chi-squared distribution wit ν degrees of freedom. With a

JB value of 16,206 normality is rejected and therefore the Black Scholes model does

not fit. It is hard to see in Figure 3, but the amount and magnitude of the positive

outliers is somewhat higher compared to the negative outliers. This indicates that

there are more and larger positive jumps than negative jumps in the data.

34



Calibration results

The goal of calibration is to estimate the set of parameters θ1 = (r, σ, λ, µy, σy) for

the lognormal jump diffusion model and to estimate the set of parameters (θ2 =

r, σ, λ, p, η1, η2) for the double exponential jump diffusion model. The parameters

are estimated by configuring the model to Deutsche Bank European call option

premiums for multiple maturities and strike prices given in Figure 4 in Appendix C.

As denoted in Section 6, first the issue of the infinite sum in the call option

formula needs to be resolved. Table 5 in Appendix D shows the value of the Poisson

loading ( e
−λT (λT )i

i!
) for λ = 3 and T = 4.5. The values first increases and then

decreases to a negligible value. The speed of decay depends on the values for λ and

T . The initial increase is caused by λ and T values being larger than 1 for most

estimations. Therefore, the infinite sum is approximated with a finite sum to the

50th item. The calibration resulted in the following values for the parameters of the

lognormal jump diffusion model at 18 November, 2014.

Parameters r σ λ µy σy

Values -0.065 0.230 3.128 0.059 0.013

Table 1: Lognormal jump diffusion model parameters

The value of the optimization problem of Equation 19 for Model 1 is equal to

1.117. The instantaneous expected return on the share r includes the dividend

paid and is large negative. This is due to the low interest environment in the

last few years, while still paying dividend. The implied volatility σ is equal to

23.0%, taking into account the high volatility period. The model estimates that on

average λ = 3.128 jumps occur per year. These jumps have an relative jump size

of k ≡ EQ[Yq − 1] = eµy+
1
2
σ2
y − 1 = 6.086%. The volatility of the jumps is equal to

e2µy+σ
2
y(eσ

2
y−1) = 0.019%. Jumps in the prices are thus large positive, compensating

partly for the large negative r.

35



An infinite sum for the Poisson loadings is also present in the call option formula

for the double exponential jump diffusion model. To approximate the infinite sum

with a finite sum a cut-off value is again determined. Due to λ being close to 1 for

the double exponential jump diffusion model, the cut-off value is lower than for the

lognormal jump diffusion model. Table 6 in Appendix D shows that the value of

the Poisson loading first increases and then decreases to a negligible value for the

35th item. Therefore, the infinite sum is approximated with a finite sum to the

35th item. Due to the complexity of the closed form solution the computation time

for the double exponential jump diffusion model is significantly larger than for the

lognormal jump diffusion model. To lower the computation time only the call option

premiums for the maturities 1M, 6M, 1Y, 2Y, 3Y, 4Y, 4.5Y and strikes ¤25 to ¤31

are used.

The calibration resulted in the following values for the parameters of double

exponential jump diffusion model at 18 November, 2014.

Parameters r σ λ p η1 η2

Values -0.010 0.160 1.873 0.658 13.055 39.745

Table 2: Double exponential jump diffusion model parameters

The value of the optimization problem of Equation 19 for Model 2 is equal to

0.260. The instantaneous expected return on the share r includes the dividend

paid and is again negative. The implied volatility σ is equal to 16.0%. The model

estimates that on average λ = 1.873 jumps occur per year. It is more likely that a

jump is positive, as the probability of an upward jump is 65.8%. Furthermore, the

expected magnitude of an upward jump is 1
η1−1 ∗ 100% = 8.295%, which is higher

than the expected magnitude of −1
η2+1
∗100% = −2.454% of downward jump. Positive

jumps are estimated to occur more often and have a larger magnitude than negative

jumps, which is also indicated by the data.

The double exponential jump diffusion model parameters estimate less negative
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return r and lower implied volatility compared to the lognormal jump diffusion

model. The double exponential jump diffusion model also expects less jumps than

the lognormal jump diffusion model. However, the expected magnitude of (negative)

positive jumps in the double exponential jump diffusion model is (lower) higher than

the expected magnitude of jumps in the lognormal jump diffusion model.

Pricing model for Deutsche Bank CoBo

The values for the different variables of the pricing model for the Deutsche Bank

CoBo and how they are determined are described next.

The starting value CoBo0 is equal to the initial principal amount of ¤1200

million, as denoted in the prospectus. CoBot changes over time due to write-downs

and write-ups caused by trigger events.

The new coupon rate determined on Reset Date is described in the prospectus

as the Reference Rate plus a fixed amount of x bps. After ten years, and every five

years thereafter, a new coupon rate is set for five years. The Reference Rate crRD is

equal to the five year semi-annual mid-swap rate for euro swap transactions at Reset

Date. The fixed part csCoBo is equal to 500.3 bps. As described in the prospectus,

vRD is equal to 750 bps for the first ten years.

The trigger process described in the prospected is equal to the CET1 ratio, which

is the CET1 capital divided by RWA. In this research the trigger process is simulated

by the share price described by Equation 12 or Equation 16. In order to simulate

trigger events, a trigger level needs to be estimated. Therefore, a share price level

that corresponds with the 5.125% CET1 capital ratio trigger level is needed. Looking

at the Deutsche Bank 3Q2014 interim report the CET1 capital was equal to ¤46.0

billion and the fully loaded CET1 ratio was 11.5% at the end of the third quarter

of 2014. The share price at end 3Q2014 equaled ¤27.78. It is therefore assumed

that ¤1.00 in share price corresponds with ¤1655.87 million in CET1 capital. Let

Ċ denote this ¤1655.87 million in CET1 capital. Taking RWA constant over time,
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a 1 percent point change in the CET1 capital ratio corresponds with a ¤4000.00

million change in CET1 capital. Hence, it is assumed that a 1 percent point change

in the CET1 capital ratio corresponds with a ¤2.416 change in share price. The

trigger level is thus equal to a share price of ¤12.38.

When the process reaches the First Call Date, which is after ten years, the

redemption option of the issuer is evaluated. The issuer will execute his redemption

right when when the share price is high with respect to the share price at issuance.

In the model it is assumed the bank redeems the CoBo when the share price has

increased more than ¤9.66 with respect to share price at issuance. This relates to

an increase in capital ratio of more than 4%.

After redemption equity decreases with an amount equal to the Prevailing Prin-

cipal amount. To assure that the share price stays above the trigger level the model

checks if the share price stays above ¤24.16 after the redemption, which corresponds

with the 10% target CET1 ratio denoted in the 3Q2014 report. If this requirement is

not met the CoBo is not redeemed. This redemption option is thus evaluated on the

First Call Date and every five years thereafter, on the Call Dates. This extension of

the maturity on Call Dates is evaluated until the fourth Call Date. The model thus

assumes that all CoBos not yet redeemed or completely written down are redeemed

after 25 years. The reason for choosing 25 years is that the model has shown that

around 99% of all simulated CoBos are redeemed or completely written down after

25 years and further extension of the maturity has a negligible effect on the value

of the CoBo.

The issuer will only consider to write-up the Prevailing Principle when the share

price has been restored well above the trigger level. The model assumes the issuer

writes up when the share price breaches an upper level of ¤24.16, which corresponds

with the 10% target CET1 ratio. The write-up value is limited to an amount such

that the share price after write-up stays above ¤24.16, corresponding again to the

target CET1 ratio of 10%. The model assumes this write-up occurs with a certain
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probability as described in Section 6.

The second part of the simulation consists of determining the value of the

CoBo given a certain share price path. Looking up the CoBo of Deutsche Bank

in Bloomberg the ASW spread is equal to 491 bps. The discount factor at which

the CoBo coupons and CoBo principal are discounted is thus equal to

Pt,T = frt e
−(491/10000)(T−t), (26)

with rft, the point on the five year semi-annual euro swap curve at time t.

In total there are m = 10, 000 share price paths simulated. The discounted cash

flows result in a value for the CoBo. Looking at the average CoBo value over the

simulated paths, a value for the CoBo is determined. As can be seen in Figures 5

and 6 in Appendix E the CoBo price is converged after m = 10, 000 simulations.

Computation time is approximately 4 minutes for Model 1 and approximately 5

minutes for Model 2. Furthermore, to assess the performance of the model over

time the model is used to price the CoBo using almost one year of data. The results

of the simulations are presented in the next section.

Results pricing model

Here the results of the simulation described in Section 7 are discussed using data

from November 18, 2014 to October 9, 2015. At each point in time share price and

call option premium data is used to determine parameter values for that same point

in time. Given the parameters, share price paths are simulated with the two jump

diffusion models. Finally, the methodology described in Section 6 leads to CoBo

prices for the Deutsche Bank CoBo for every moment in time. Figure 1 shows the

models CoBo prices together with the observed CoBo price. The prices are given as

a percentage of par value. Model 1 again represents the model with the lognormal

jump diffusion process for the share price and Model 2 the model with the double

exponential jump diffusion process for the share price.
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Figure 1: Model CoBo prices and observed CoBo prices for the period November

18, 2014 to October 9, 2015 (220 daily observations).

Denote Pt as the observed CoBo price at time t and P̂t|Ft the model price for

time t, with Ft the information on share price and call option premiums up to time

t. Ft does not contain Pt, as the model tries to determine a price without using

information on the price of the CoBo itself. The pricing model thus determines a

price of a CoBo on a certain day using information that is available on that same

day. Pricing errors are computed as et|Ft = Pt− P̂t|Ft . The accuracy of the models is

evaluated by the mean squared error (MSE) and mean absolute error (MAE), which

should be as small as possible. Given a set of N + 1 determined CoBo prices for

t = T, ..., T +N the MSE is computed as

MSE =
1

N + 1

t=T+N∑
t=T

e2t|Ft (27)

and the MAE is denoted as

MAE =
1

N + 1

t=T+N∑
t=T

|et|Ft|. (28)

Table 3 gives accuracy properties of Model 1 and Model 2.
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Model 1 Model 2

MSE 5.34 2.43

MAE 1.89 1.25

Table 3: Accuracy statistics

Model 1 has higher MSE and MAE compared to Model 2. To formally com-

pare the MSE the Diebold-Mariano test is used. Denote the difference between the

squared pricing errors between Model 1 and Model 2 as dt = e2t|Ft,1 − e2t|Ft,2. To

test the null hypothesis of equal pricing accuracy, E[dt] = 0, the Diebold-Mariano

statistic (DM) is used to test if the sample mean of dt is not significantly different

from zero.

DM =
d̄√

V̂ (dt)/N

a∼ N (0, 1), (29)

with d̄ the sample mean of dt and V̂ (dt) an estimate of the variance of dt computed

as

V̂ (dt) =
1

N − 1

t=T+N−1∑
t=T

(dt − d̄)2. (30)

The DM statistic is equal to 6.06 and therefore Model 2 is more accurate based on

a 99% critical value of 2.33.

The volatility of Model 1 is equal to 2.48%, compared to 1.90% for Model 2.

Model 1 (Model 2) is somewhat more (less) volatile than the observed CoBo prices,

which has a volatility equal to 2.15%. As can be seen in the figure 1, Model 1

is capable of following the upward and downward movements of the CoBo. The

correlation between Model 1 prices and observed CoBo prices is equal to 56%. Model

2 is more capable of following the trend as the correlation between Model 2 prices

and observed CoBo prices is equal to 76%.

Looking at the the accuracy and correlation between model prices and observed

price the model using a double exponential jump diffusion share price process can

better determine the price of a CoBo than the model with a lognormal jump diffusion
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share price process. Both models are able to accurately determine CoBo prices when

data on the CoBo itself is unavailable.

8 Conclusion

In this research a method is developed for pricing a perpetual temporary write-

down and coupon cancellation contingent capital bond without the availability of

historical data on the bond itself. This particular contingent capital bond is designed

to adhere to the new Basel III requirements for AT1 capital. Specific features are

an accounting trigger, coupon cancellation, partial write-down, discretionary write-

up, optional redemption and perpetual maturity. The pricing method is based

on a structural approach using Monte Carlo simulation. An important aspect of

the pricing method is the simulation of the trigger process. The trigger process is

simulated by a share price process using jump diffusion models. The results show

that a model with the double exponential jump diffusion process for the share price

is more accurate in determining CoBo prices than a model with the lognormal jump

diffusion process for the share price. The prices of the double exponential jump

diffusion trigger process based model also has a significant higher correlation with

the observed prices compared to the lognormal jump diffusion trigger process based

model.

The purpose of contingent capital is to provide an automatic strengthening of the

capital structure of the bank to prevent an institution from entering into a possible

recovery or resolution proceeding. The CoBo described in this research is capable

of increasing equity when the banks equity is low. The effect of the CoBo depends

on the amount of CoBo capital issued relative to an issuer’s total assets.

Currently, cost on equity is higher than the cost on CoBos, as CoBos are formally

classified senior to equity. Nevertheless, CoBos get hit before (and are subordinated

to) equity through coupon cancellations and write-downs. In case of a bankruptcy,
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CoBo holders would rank before equity holders and would get paid before equity

holders. Nevertheless, going concern CoBos would already be completely written

down before bankruptcy occurs. Furthermore, under CRD IV, bank management

could legally turn off CoBo coupon payments but continue to pay common share

dividends. This makes the seniority classification of CoBos with respect to equity a

bit ambiguous.

Following the words of Donald Rumsfeld

”Reports that say that something hasn’t happened are always interesting to me, be-

cause as we know, there are known knowns; there are things we know we know. We

also know there are known unknowns; that is to say we know there are some things

we do not know. But there are also unknown unknowns; the ones we do not know

we do not know. And if one looks throughout the history of our country and other

free countries, it is the latter category that tend to be the difficult ones.”

and applying these to the CoBo, it can be stated that there are known knowns. The

known knows are for example the trigger level. There are also some know unknowns

driving the price of the CoBo. These are mainly the shocks to the capital ratio, the

triggering of the capital ratio by regulatory authority and some other discretionary

rights the issuer has on the write-up and the redemption of the CoBo. Aside from

the know unknowns there are still some unknown unknowns surrounding the CoBo,

as no trigger event has taken place so far and it is therefore unknown how the market

would truly react to a trigger event. This make the CoBo a difficult financial prod-

uct to price and investors should invest with caution. From a bank’s perspective the

CoBo is a product suitable for restoring the capital ratio during financially difficult

times. From a regulator’s point of view the CoBo could decrease the possibility of a

bank bail out using tax payer’s money. The issuance of contingent capital bonds are

expected to grow significantly the coming years and different types of the contin-

gent capital bonds are expected to enter the market. When time passes, and trigger

events have occurred, future research could look at the effects and the impact of the
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current unknown unknowns.

Even though this research incorporates most features of the CoBo, there are still

some aspects not taken into account in this research. An example hereof is the

discretion held by the regulator to trigger a write-down of the CoBo. The EU Bank

Recovery and Resolution Directive (BRRD) establishes a comprehensive recovery

and resolution regime. The BRRD measures give authorities power to bail in (write

off or convert into equity) AT1 and Tier 2 instruments and is effective since January

2016. This could occur before the minimum regulatory capital levels are breached.

Incorporating this feature in the pricing of the CoBo would lower the value from

an investors perspective, as the possible loss increases. Future research could focus

on implementing this regulatory trigger in a pricing model. It is difficult to model

a trigger based on actions by a regulatory authority, since there is no predefined

scenario which determines when a regulator would force a write-down. This could

be included in the model by modeling a dual trigger, where the regulators power to

convert/write-down is modeled by systematic risk of the banking sector as a whole.

See Pennacchi (2010) for info on dual pricing trigger with financial index as extra

trigger (Pennacchi, 2010). Furthermore, when more data on the CoBo prices comes

available the validity of the pricing models in this research can be evaluated more

thoroughly.
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Appendices

A Capital requirements

Figure 2: Capital requirements set by Basel III for 2012 to 2019
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B Summary Statistic Deutsche Bank Stock

Figure 3: Histogram of daily log returns on Deutsche Bank shares for 18 November,

1994 to 21 December, 2015.

Deutsche Bank shares

Nr. of obs. 4804

Mean -0.0001

Std. dev. 0.0271

Skewness 0.0300

Kurtosis 8.9976

Jarque Bera 16206

Table 4: Summary statistics for daily log returns on Deutsche Bank shares for 18

November, 1994 to 21 December, 2015.
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C Call option premiums

Figure 4: Deutsche Bank call option premiums for 10 different maturities and 10

different strikes on 18 November, 2014.
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D Poisson Loading

i
Poisson

Loading
i

Poisson

Loading
i

Poisson

Loading
i

Poisson

Loading
i

Poisson

Loading

1 1,85E-05 11 9,32E-02 21 1,46E-02 31 1,83E-05 41 9,04E-10

2 1,25E-04 12 1,05E-01 22 8,99E-03 32 7,72E-06 42 2,91E-10

3 5,62E-04 13 1,09E-01 23 5,27E-03 33 3,16E-06 43 9,12E-11

4 1,90E-03 14 1,05E-01 24 2,97E-03 34 1,25E-06 44 2,80E-11

5 5,12E-03 15 9,45E-02 25 1,60E-03 35 4,84E-07 45 8,40E-12

6 1,15E-02 16 7,98E-02 26 8,32E-04 36 1,81E-07 46 2,46E-12

7 2,22E-02 17 6,33E-02 27 4,16E-04 37 6,62E-08 47 7,08E-13

8 3,75E-02 18 4,75E-02 28 2,01E-04 38 2,35E-08 48 1,99E-13

9 5,63E-02 19 3,37E-02 29 9,34E-05 39 8,14E-09 49 5,49E-14

10 7,60E-02 20 2,28E-02 30 4,20E-05 40 2,75E-09 50 1,48E-14

Table 5: Poisson loadings of the lognormal jump diffusion model with λ = 3 and

T = 4.5.
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i
Poisson

Loading
i

Poisson

Loading
i

Poisson

Loading
i

Poisson

Loading
i

Poisson

Loading

1 7,90E-03 11 3,89E-02 21 5,96E-06 31 7,28E-12 41 3,51E-19

2 2,67E-02 12 2,19E-02 22 1,83E-06 32 1,53E-12 42 5,64E-20

3 6,00E-02 13 1,14E-02 23 5,37E-07 33 3,14E-13 43 8,86E-21

4 1,01E-01 14 5,47E-03 24 1,51E-07 34 6,23E-14 44 1,36E-21

5 1,37E-01 15 2,46E-03 25 4,08E-08 35 1,20E-14 45 2,04E-22

6 1,54E-01 16 1,04E-03 26 1,06E-08 36 2,25E-15 46 2,99E-23

7 1,48E-01 17 4,13E-04 27 2,65E-09 37 4,11E-16 47 4,30E-24

8 1,25E-01 18 1,55E-04 28 6,38E-10 38 7,30E-17 48 6,04E-25

9 9,39E-02 19 5,50E-05 29 1,49E-10 39 1,26E-17 49 8,32E-26

10 6,34E-02 20 1,86E-05 30 3,34E-11 40 2,13E-18 50 1,12E-26

Table 6: Poisson loadings of the double exponential jump diffusion model with

λ = 1.5 and T = 4.5.
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E Price Conversion

Figure 5: Conversion of the CoBo price after m=10,000 simulations for model with

lognormal jump diffusion process for the share price.

Figure 6: Conversion of the CoBo price after m=10,000 simulations for model with

double exponential jump diffusion process for the share price.
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F Closed form call option formula lognormal jump

diffusion model

This appendix shows the derivation of the closed form formula for call option pre-

miums with a lognormal jump diffusion share process. The European call option

premium is equal to

Cj = e−rTEQ[(ST −K)+] (31)

with ST described by the lognormal jump diffusion model as in Section 6

ST = S0 exp

[
(r − σ2

2
− λk)T + σZT +

NT∑
k=1

Yk

]
(32)

with Poisson counter NT = 0, 1, 2, ..., i and
∑i

k=1 Yk ∼ N (iµy, iσ
2
y). Therefore

Cj = e−rT
∞∑
i=0

e−λT (λT )i

i!
EQ[(ST −K)+|NT = i] (33)

which is roughly said the expected call pay-off split to the possible number of jumps.

The part inside the exponential in Equation 32 is normally distributed

(r − σ2

2
− λk)T + σZT +

i∑
k=1

Yk ∼ N [(r − σ2

2
− λk)T + iµy, σ

2T + iσ2
y] (34)

since ZT ∼ N (0, T ) =⇒ σZT ∼ N (0, Tσ2) and Yk ∼ N (µy, σ
2
y) =⇒

∑i
k=1 Yk ∼

N (iµy, iσ
2
y). Rewrite (r − σ2

2
− λk)T + σZT +

∑i
k=1 Yk

(r− σ
2

2
−λk)T + iµy +

√
σ2T + iσ2

y

T
BT ∼ N [(r− σ

2

2
−λk)T + iµy, σ

2T + iσ2
y ], (35)

with BT a standard Brownian motion process. This is convenient because the sum-

mation term is gone. Equation 33 can thus be rewritten as

Cj = e−rT
∞∑
i=0

e−λT (λT )i

i!
EQ

[(
S0 exp

(
(r−σ

2

2
−λk)T+iµy+

√
σ2T + iσ2

y

T
BT

)
−K

)+

|NT = i

]
(36)

because a normal distribution is uniquely determined by its mean and variance.

Now add
iσ2
y

2
− iσ2

y

2
= 0 inside the exponential of Equation 36.
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Cj = e−rT
∞∑
i=0

e−λT (λT )i

i!

EQ

[(
S0 exp

(
(r − σ2

2
− λk +

iσ2
y

2T
−
iσ2
y

2T
)T + iµy +

√
σ2T + iσ2

y

T
BT

)
−K

)+

|NT = i

]

= e−rT
∞∑
i=0

e−λT (λT )i

i!

EQ

[(
S0 exp

(
(r −

σ2 +
iσ2
y

T

2
− λk −

iσ2
y

2T
)T + iµy +

√
σ2T + iσ2

y

T
BT

)
−K

)+

|NT = i

]
(37)

Take σjumpi =

√
σ2 +

iσ2
y

T
. Then Equation 37 becomes

Cj = e−rT
∞∑
i=0

e−λT (λT )i

i!

EQ

[(
S0 exp

(
(r − (σjumpi )2

2
− λk −

iσ2
y

2T
)T + iµy + σjumpi BT

)
−K

)+

|NT = i

]

= e−rT
∞∑
i=0

e−λT (λT )i

i!

EQ

[(
S0 exp

(
(r − λk +

iµy + iσ2
y/2

T
− 1

2
(σjumpi )2)T + σjumpi BT

)
−K

)+

|NT = i

]
.

(38)

Take

rjump = r − λk +
iµy + iσ2

y/2

T

= r − λk +
i(µy + σ2

y/2)

T

= r − λk +
i ln(eµy+iσ

2
y/2 − 1 + 1)

T

= r − λk +
i ln(1 + k)

T
(39)
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Then Equation 38 becomes

Cj = e−rT
∞∑
i=0

e−λT (λT )i

i!

EQ

[(
S0 exp

(
(rjump − (σjumpi )2

2
)T + σjumpi BT

)
−K

)+

|NT = i

]
. (40)

The Black Scholes call option formula is

CBS(S0, r, σ,K, T ) = e−rTEQ

[(
S0 exp

(
(r − σ2

2
)T + σBT

)
−K

)+
]
. (41)

Using Equation 39 it can be derived that e−rT = e−r
jumpT−λkT+i ln(1+k) = e−r

jumpT e−λkT (1+

k)i. Equation 40 can therefore be written as

Cj =
∞∑
i=0

e−λkT (1 + k)i
e−λT (λT )i

i!

e−r
jumpTEQ

[(
S0 exp

(
(rjump − (σjumpi )2

2
)T + σjumpi BT

)
−K

)+

|NT = i

]

=
∞∑
i=0

e−λ
jumpT (λjumpT )i

i!
CBS(S0, r

jump, σjumpi , K, T ) (42)

with λjump = λ(1 + k), rjump = r − λk + i ln(1+k)
T

, σjumpi =

√
σ2 +

iσ2
y

T
.

R code

The code that is used for the closed form call option formula in the calibration

is given below. The correctness of the code is checked with the example given in

the Financial Derivatives course of Michel van der Wel at the Erasmus University

Rotterdam. Taking S0=K=20, r=2%, σ = 20%, λ = 1, k=5%, σy=25% and T=1

as parameter values the outcome is equal to the expected outcome of ¤2.65.
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G Closed form call option formula double expo-

nential jump model

This appendix shows the closed form formula for call option premiums with a double

exponential jump diffusion share process. For the complete derivation and proof see

(Kou, 2002).

The European call option premium is equal to

Cdejd = e−rTEQ[(ST −K)+] (43)

with ST described by the double exponential jump diffusion model as in Section 6

ST = S0 exp

[
(r − σ2

2
− λξ)T + σZT

] NT∏
i=1

Vi. (44)

Following the proof in (Kou, 2002) it can be shown that the price of a call option

is given by

Cdejd = S0Υ(r +
σ2

2
− λξ, σ, λ∗, p∗, η∗1, η∗2; log(K/S0), T )

+Ke−rTΥ(r − σ2

2
− λξ, σ, λ, p, η1, η2; log(K/S0), T ) (45)

with K the strike price, λ∗ = λ(1 + ξ), p∗ = p
1+ξ

η1
η1−1 , η

∗
1 = η1 − 1, η∗2 = η2 + 1 and

ξ = q η2
η2+1

+ p η1
η1−1 − 1. The function Υ is given by

Υ(µ, σ, λ, p, η1, η2; a, T ) =
e(ση1)

2T/2

σ
√

2πT

∞∑
n=1

πn

n∑
k=1

Pn,k(σ
√
Tη1)

k

∗ Ik−1
(
a− µT ;−η1,−

1

σ
√
T
,−ση1

√
T
)

+
e(ση2)

2T/2

σ
√

2πT

∞∑
n=1

πn

n∑
k=1

Qn,k(σ
√
Tη2)

k

∗ Ik−1
(
a− µT ; η2,

1

σ
√
T
,−ση2

√
T
)

+ π0Φ(− a− µT
σ
√
T

), (46)
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with πn = P (NT = n) = e−λT (λT )n/n!, function In as defined in Equation 51 and

the functions Pn,k and Qn,k as defined in Equation 58 and 59, respectively.

The proof in (Kou, 2002) makes use of a special function, the so-called Hh

function:

For every n ≥ 0, the Hh function is a non-increasing function defined by

Hhn(x) =

∫ ∞
x

Hhn−1(y)dy =
1

n!

∫ ∞
x

(t− x)ne−t
2/2dt ≥ 0, for n = 0, 1, 2, ... (47)

Hh−1(x) = e−
x2

2 =
√

2πφ(x) (48)

Hh0(x) =
√

2πΦ(−x) (49)

The Hh function can be seen as a generalization of the cumulative normal dis-

tribution function. To compute Hh functions the following recursive relation can be

used

nHhn(x) = Hhn−2(x)− xHhn−1(x), for n ≥ 1, (50)

using the normal density function and the normal distribution function in Equation

48 and Equation 49 to determine Hh1. For more details, see page 971 (Abramowitz

and Stegun, 1972)

The Hh function is used to evaluate the following integral

In(c;α, β, δ) =

∫ +∞

c

eαxHhn(βc− δ)dx, ∀ n ≥ −1. (51)

For ∀ n ≥ −1 the integral in Equation 51 is equal to:

In(c;α, β, δ) = −e
αc

α

n∑
i=0

(
β

α
)n−iHhi(βc− δ) (52)

+ (
β

α
)n+1

√
2π

β
e
αδ
β
+ α2

2β2 Φ(− βc+ δ +
α

β
) (53)
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if β > 0 and α 6= 0 and equal to

In(c;α, β, δ) = −e
αc

α

n∑
i=0

(
β

α
)n−iHhi(βc− δ) (54)

− (
β

α
)n+1

√
2π

β
e
αδ
β
+ α2

2β2 Φ(βc− δ − α

β
) (55)

if β < 0 and α < 0.

Proof of this statement can be found on page 1099 of (Kou, 2002).

The memoryless property of exponential random variables yields to the conclu-

sion that

ξ+ − ξ− ∼

ξ+, with probability η2/(η1 + η2)

−ξ−, with probability η1/(η1 + η2)
(56)

because the probabilities of the events ξ+ > ξ− and ξ+ < ξ− are η2/(η1 + η2) and

η1/(η1 + η2), respectively. This extends to the following equation

n∑
i=1

Yi ∼


∑k

i=1 ξ
+
i , with probability Pn,k, k = 1, 2, ..., n

−
∑k

i=1 ξ
−
i , with probability Qn,k, k = 1, 2, ..., n

(57)

with Pn,k and Qn,k given by

Pn,k =
n−1∑
i=k

(
n− k − 1

i− k

)(
n

i

)
(

η1
η1 + η2

)i−k(
η2

η1 + η2
)n−ipiqn−i (58)

and Pn,n = pn.

Qn,k =
n−1∑
i=k

(
n− k − 1

i− k

)(
n

i

)
(

η1
η1 + η2

)n−i(
η2

η1 + η2
)i−kpn−iqi (59)

and Qn,n = qn.

R code

The code that is used for the closed form call option formula in the calibration is

given below. The correctness of the code is checked with the example given in the pa-

per by Kou (Kou, 2002). Taking η1=10, η2=5, λ=1, p=0.4, σ=16%, r=5%, S0=100,

K=98 and T=0.5 the outcome is equal to the expected outcome of ¤9.14732.
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