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Abstract

This paper studies the predictability of 5-year Credit Default Swaps by constructing multiple forecasting

models that incorporate a wide range of explanatory variables. A model that combines forecasts shows

to be able to outperform benchmark models in terms of multiple forecast evaluation measures. Two

‘simple’ trading strategies based on buy/sell signals of this combination of forecasts model turn out to

be highly profitable. This model combines the forecasts of ten models that incorporate a wide range

of explanatory variables. Six of these models are based on three new variable reduction techniques.

A new proposed factor based on the cross-sectional idiosyncratic risk in Credit Default Swap spreads

shows to be an addition to the most widely used explanatory variable in forecasting credit related

financial instruments. The results show the usefulness of combining forecasts of models based on new

variable reduction techniques that incorporate a wide range of explanatory variables in forecasting

Credit Default Swap spreads.
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1 Introduction

Credit Default Swaps (CDSs) are credit derivative contracts designed to swap the credit exposure of

fixed income products between two or more parties. This paper investigates the predictability of the

CDS spread by means of thirteen different forecasting models over the period January 2002-February

2013. The first model uses an Autoregressive-Moving-Average (ARMA) approach and is the starting

point for all other models. Nine models incorporate a large number of explanatory variables to forecast

the CDS spread. Besides existing techniques to reduce the dimensionality of the explanatory variables,

six of these nine models are based on three new techniques of variable reduction. The last three out

of thirteen models are forecast combinations of the first ten models. One of the forecast combination

models takes equally weights of the forecasts of those models that correctly predicted the direction

of the CDS spread in the last period. This model outperforms the benchmark models in terms of all

considered measures.

The CDS can be seen as an insurance against the default of the party that issued a fixed income

product. Similarly to most insurance contracts, the buyer of the contract makes coupon payments

to the seller until either the contract matures or the fixed income product issuer defaults. In return,

the seller agrees to pay the buyer the premium of the fixed income product in case of a default. The

premium is defined as the notional times one minus the recovery rate (RR). This rate is often equal

to 40%. Figure 1 shows an example of the cash flows of the CDS buyer. In this 5-year contract the

coupon is payed semi-annually until the issuer of the fixed income product defaults in the first half of

2008. The contract runs for another one and a half years, but because of the default the buyer of the

contract stops making the coupon payments. The CDS spread represents the semi-annually coupon

payments. In this example the CDS spread is equal to 2%: the buyer of the CDS contract has to pay

2% of the notional every 6 months to the seller of the CDS contract.

Figure 1: An example of the cash flows (in $) of the buyer of a CDS contract. The blue
bars represent payments from the buyer to the seller and the red bars vice versa. The
notional of the contract is 100$, starting date of the contract is ’04H1 and matures at
’09H1. Coupon payments of 2$ are made semi-annually and the recovery rate (RR) equals
40%. The issuer of the fixed income product is defaulted in ’08H1 resulting in the buyer
receiving a payment of 60$ (= notional × (1-RR)) in ’08H1. No further coupon payments
are made after the default.
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A CDS is one of the most common credit derivatives and can involve many type of fixed income secu-

rities. The use of the swap gained much popularity in the years before the 2008 financial crisis. The

volume of CDS based on notional value was about $6 trillion at the end of 2004 and soared to $58

trillion during the 2008 financial crisis. This volume fell to $42 trillion one year later. The huge drop in

volume indicates that the CDS was not only used to hedge credit risk, but investors did actively trade

on these products with an incentive of making profits. Most CDS contracts are traded over the counter

(OTC), rather than on an exchange. This makes it impossible to know how many CDS contracts a

company has bought or sold. In case of a derivative traded OTC, the seller has to post collateral in case

the default risk rises and in case its own credit rating worsens. One of the main examples during the

financial crisis was American International Group (AIG). This company had sold roughly $500 billion

worth of CDSs OTC. The lack of transparency in the OTC market and default probabilities of the

underlying fixed income product issuers going up made AIG facing a vicious cycle of massive losses, a

potential downgrade of its credit rating and posting more collateral. Eventually, the US government

had to intervene by making an $85 billion loan to AIG to save it from bankruptcy.

After the crisis, there has been a large push by US regulatory and supervisory entities such as the

Federal Reserve, the Securities and Exchange Commission (SEC) and the Commodity Futures Trading

Commission (CFTC) to make the derivative market more transparent. The financial crisis and the

resulting spate of regulations that followed made investors less interested in trading CDS contracts.

The total notional amounts outstanding decreased to $24 trillion by the first half of 2013.

The CDS spread represents a pure form of credit measure: when the probability of default goes up the

seller of the contract wants to be compensated for the higher risk of paying out the premium. Therefore,

the CDS spread increases, which translates in higher coupon payments to be made by the CDS buyer.

The probability of default can be implied by multiple asset classes. Merton (1974) derives the implied

probability of default using data on stock prices and company characteristics. Bharath and Shumway

(2008) use this model to forecast default. Furthermore, another asset class that is often used to derive

the probability of default is the corporate bond spread. This spread is often seen as a credit spread

on top of a risk-free spread. Lin et al. (2015) find predictability of the bond spread by an array of 27

macro-economic, stock and bond predictors.

Most literature on CDS spreads is focused on constructing structural models and less on forecasting.

Bai and Wu (2012) construct a structural model that explains the cross-sectional CDS variation and

comes up with a way to forecast the CDS spread. They regress explanatory variables against the CDS

spread in the cross-section and generate an impressive average R-squared of 77%. Therefore, I construct

a new factor based on this cross-sectional approach and find it to be an addition to the already widely

used explanatory variables in forecasting credit spreads.

Multiple research is based on the contribution of the price discovery of the CDSs and other asset classes.

As mentioned before, the probability of default can be implied from the CDS, stock and bond market.

Peña and Forte (2006) and Forte and Pena (2009) find the stock market is leading the CDS and bond

market. This indicates that new information is incorporated in the stock market before the CDS and
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bond market. Du (2009) finds similar results and argues the CDS market is leading the bond market

as well. Moreover, Fung et al. (2008) find that the lead-lag relationship between the stock market and

CDS market is said to be dependent on the credit quality of the underlying reference entity. Forte and

Lovreta (2009) find that at lower credit quality levels the relationship between the CDS market and

stock market to be stronger.

The literature provides a wide range of explanatory variables that have been shown to be informative

for the company’s credit risk. As mentioned before, the CDS spread represents a form of the company’s

credit risk. Therefore, these explanatory variables should be helpful in forecasting the CDS spread.

This list consists mainly of data on fundamental ratios (Altman (1968), Altman (1989)), stock returns

(Duffie et al. (2007)) and options (Collin-Dufresne et al. (2001), Berndt and Ostrovnaya (2007), Cre-

mers et al. (2008), Berndt and Obreja (2010) and Carr and Wu (2010)).

Incorporating a long list of explanatory often leads to overfitting, because of multicollinearity or non-

identifiably of regression coefficients. Overfitting of the data ends up in great results in-sample, but poor

results out-of-sample. Therefore, variable reduction methods are often used to avoid these problems.

One of the most widely used variable reduction techniques is Principal Component Analysis (PCA),

first proposed by Pearson (1901) and later independently developed and named by Hotelling (1933).

The method uses an orthogonal transformation to convert a set of observations of possible correlated

variables into a set of values of linearly uncorrelated variables. Another way of reducing the dimension-

ality is the use of shrinkage methods. The Least Absolute Shrinkage and Selection Operator (LASSO),

first proposed by Tibshirani (1996), is one of these shrinkage methods. It shrinks the coefficients of the

explanatory variables under a constraint until some of the coefficients hit zero. If the coefficient of an

explanatory variable hits zero, this variable is deleted from the active dataset. Therefore, the LASSO

can be seen as a variable reduction method.

One of the shortcomings of PCA is that it can capture the variance of explanatory variables that do

not have any predictive power. Kelly and Pruitt (2015) propose a new method that incorporates these

shortcomings of the PCA. They construct factors that are driven by the explanatory variables and

exclude information of the explanatory variables that do not have any predictive power. In my paper, I

construct new methods that incorporate the shortcomings of the predictability as well. These method

are based on the contribution to long- and short-term price discovery, first proposed by Hasbrouck

(1995) and Granger (1969), respectively, and can be used to reduce the dimensionality by excluding

the explanatory variables that do not contribute to the price discovery of the CDS spread.

Forecasting models do often not consistently outperform a benchmark, but can outperform a benchmark

in sub-samples, as mentioned by Granger and Ramanathan (1984). Clemen (1989) and later on Arm-

strong (2001) compare multiple methods of combining forecasts. Both papers find that equal weighting

of forecasts often performs pretty well compared to statistical optimal weights. Lawrence et al. (1986)

combines judgemental and statistical forecasts and find that averaging forecasts to be the best approach.
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The literature provides a wide range of forecast evaluation measures. Armstrong and Collopy (1992)

compare multiple measures based on the forecast accuracy and find different outcomes for different mea-

sures. In forecasting financial time-series the directional accuracy of a forecast is often more important

than the actual accuracy, because an investor can base his trading decisions on these outcomes. Pesaran

and Timmermann (1992) are one of the first who constructed a test for the directional accuracy. Ana-

tolyev and Gerko (2005) incorporate the profitability in their test, arguing that a model that forecasts

large deviations more accurate than small deviations is of much more value. Greer (2003) compares

multiple directional tests and finds different outcomes. One of the shortcomings for these tests is that

investors have different utility functions. Some of the investor only buy a financial instrument when

the forecast is larger than a certain threshold. This threshold can differ for different types of investors.

Jordà and Taylor (2011) construct a measure where this problem does not occur. They construct their

measure by comparing trading strategies with different buy/sell thresholds to a trading strategy based

on a coin-flip with the same thresholds.

This paper is structured as follows. In section 2, I describe my dataset of daily CDS spread data on

USD-denominated contracts of U.S.-based obligors over the period January 2002-February 2013 and

I provide an overview of the used explanatory variables. In section 3, I construct thirteen different

forecasting models, of which six models are based on three new variable reduction techniques. The

last three models use combinations of forecast techniques. In the last part of this section, I describe

the forecast evaluation measures. Section 4 starts with a comparison of the six models based on the

three new variable reduction techniques and the model based on PCA in terms of number of selected

variables and explained variance. Next, I discuss the results of all forecasting models using the forecast

evaluation measures based on the entire sample. In the last part of section 4, I analyse the differences

over time and between companies for one of the measures, after which I conclude in section 5.

2 Data

My dataset comprises daily 5-year CDS spread data on USD-denominated contracts of U.S.-based

obligors from the Markit Database over the period February 2002-February 2013. Only contracts are

included with the modified restructuring (MR) clause, which was the market convention before the

introduction of the CDS Big Bang protocol in April 2009. After the protocol the no-restructuring

(NR) clause has been the market standard. I only look at the MR clause, because I intend to have

one time-series of CDS spreads for every company and during most of the time in my dataset the MR

clause was the market standard.

The 5-year CDS contract is the most traded contract and therefore seen as the most liquid among all

maturities. In financial markets the beginning and the end of a week consists of market noise. This

research focuses on forecasting CDS spreads and to control for as much market noise as possible I only

consider data on 5-year CDS spreads and explanatory variables of Wednesdays. However, multiple

explanatory variables are not directly observable and are estimated according to different methods that

require daily data. Therefore, these variables are constructed using daily data, but only data con-

structed for Wednesdays are taken into consideration for forecasting the one week ahead CDS spread.
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A total of 32 explanatory variables are used to forecast the one week ahead CDS spread. These vari-

ables can be divided into eight blocks: implied probability of default measures, stock data, option data,

fundamentals, rates, indices, idiosyncratic risk and an idiosyncratic risk factor. Five different databases

are used to gather the data: CRSP, Option Metrics, Compustat, Bloomberg and data on the Fama and

French (1993) factors is gathered from the Kenneth R. French Data Library 1. Subsection 2.1 provides

a detailed overview of these explanatory variables.

The data on CDS spreads is gathered from the Markit database, of which all available data is consid-

ered. Missing data on CDS spreads is handled carefully. The main incentive of this paper is to forecast

the CDS spreads. Therefore, missing data on CDSs is only replaced by linear interpolation in case there

is only a short period (no more than one month) of missing data. This data cleaning is based on daily

data instead of weekly data, because by linearly interpolation between days the loss of information is

minimised.

Matching between data on CDS spreads and the CRSP- and Markit Database is based on the tick-

ers and names of companies. Companies that are not listed on any US stock exchange or do not

have traded options are excluded from the dataset. Compared to handling missing data on the CDS

spreads, companies with missing observations on stock- and option data are less easily excluded from

the dataset. This data is solely used for constructing the explanatory variables. Therefore, only when

more than 15% of data on stock and/or option prices are missing, a company is excluded from the

dataset. Otherwise, linearly interpolation is used for the missing observations. Missing data at the

beginning (end) of the period is replaced by the first (last) available observation.

The last matching is done with the Compustat and Bloomberg database. These databases are mainly

used for data on fundamentals. Data from Compustat is preferred to data on Bloomberg. Therefore, the

first matching is done with the Compustat database. Missing data of short periods is again replaced

by linearly interpolation. The resulting missing data on fundamentals is gathered from Bloomberg.

Bloomberg data is only used in case of longer periods of missing data in Compustat or when data on

fundamentals for a specific company is not available in Compustat.

The last requirement of inclusion of a company in a dataset is that there are more than 200 weekly

observations available. In section 3 I describe the use of a rolling window of 150 weekly observations

to construct one period ahead forecasts. Therefore, the requirement results in at least 50 forecasts for

every company in my dataset. Companies that do not have more than 150 weekly observations are

excluded from the dataset.

The final dataset comprises of 278 companies over a period of 583 weeks. The left figure of Figure 2

shows the number of weekly observations for every company. It can be seen that not every company

spans the entire period. However, the number of observation of most companies is larger than 500. This

1See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_factors.html

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_factors.html
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indicates that most of companies span the entire sample. The right figure of Figure 2 shows that the

number of companies increases until the beginning of the financial crisis at 2008 and starts declining

after the start of the financial crisis. This could be expected by the fact that CDS contracts gained

much more popularity in the years before the crisis and started to lose popularity during the crisis.

Besides, I only look at CDS contracts with the MR clause, which was the standard until April 2009.

Therefore, it could be that many companies chose to no longer issue CDS contracts with MR clauses.

On average, every week there are more than 200 companies included in the dataset during the period

Feb 2002 - Feb 2013.

Figure 2: (l) The histogram shows the number of weekly observations per company. (r)
The barchart shows the number of companies that are included in the final dataset over
time.
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2.1 Explanatory variables

This section provides an overview of the explanatory variables used for forecasting CDS spreads. I

consider 32 variables based on multiple asset classes. The literature provides informativeness of these

credit characteristics.

Implied Probability of Default Measures

1. IPD CDS The implied probability of default (IPD) could be a good indicator for forecasting

the actual CDS spread, because it represents a more pure and easier to compare measure of credit

risk than the actual CDS spread. For the derivation of this implied probability of default assume

a CDS contract with a unity notional amount. The protection seller is exposed to an expected

loss L equal to:

L = IPD(1−RR) (1)

where IPD is the implied probability of default and RR the recovery rate. In absence of market

frictions the risk neutral CDS spread should be equal to the present value of the expected loss:

CDS =
IPD(1−RR)

1 + r
(2)

Therefore, the implied probability of default can be calculated as:

IPD =
CDS(1 + r)

1−RR
(3)
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Missing data on the recovery rate (RR) is replaced by 40%. For the risk-free rate (r) there are

multiple choices. A natural choice for r is the Treasury Rate, which are yields on bonds that

have no default risk. Besides, bond yield spreads are usually quoted in the market relative to a

Treasury Bond. However, Hull et al. (2005) states that Treasury Rates tend to be lower than

other rates that have a very low credit risk for a number of reasons:

(a) Treasury bills and Treasury bonds must be purchased by financial institutions to fulfil a

variety of regulatory requirements. This increases demand for these Treasury instruments

driving the price up and yield down.

(b) The amount of capital a bank is required to hold to support an investment in Treasury bills

and bonds is substantially smaller than the capital required to support a similar investment

in other very low-risk instruments.

(c) In the United States, Treasury instruments are given a favourable tax treatment compared

with most other fixed-income investments, because they are not taxed at state level.

This leads many market participants to regard swap rates as a better proxy for the risk-free rate.

Therefore, I use the 5-year swap-rate as a proxy for the risk-free rate.

2. IPD stock The stock market is seen as one of the most liquid asset class markets. In many

cases, company specific news is first processed in the stock price before the price of other financial

instruments is affected. Therefore, the implied probability of default (IPD) of the stock price

could be a good indicator for forecasting CDS spreads. Nowadays, the KMV-merton model is one

of the most widely used models to compute the implied probability of default. The KMV-merton

model is based on Merton (1974), which states that equity can be seen as a call option on the

assets of the company with strike price equal to the value of debt: when the asset value falls below

the debt value a company defaults. This model first calculates the distance to default (DD) which

measures the number of standard deviations the stock price is away from the default point: the

point where the asset value equals the debt value. The probability of default implied by the stock

price of a company is larger if the standard deviation of the stock price is higher, because the

probability of substantial decreases in the stock price increases. To calculate the DD the assets

are assumed to follow a Geometric Brownian Motion. The asset value and asset volatility are not

direct observable. Therefore, two equations have to be solved simultaneously which requires a lot

of computational time. Appendix A shows the full derivation of the KMV-merton model.

Bharath and Shumway (2004) develop a naive predictor which does not have the problem of

simultaneously solving the equations, but is still close to the KMV-merton model with rank

correlation equal to 79%. Therefore, I follow this method to construct the probability of default

implied by the stock price. The value of the assets is assumed to be the sum of equity and debt

and volatility to be the weighted sum of the volatility of equity and debt. The equity value is

direct observable as the product of the number of shares outstanding and the share price. The

implied volatility of at-the-money put options is taken as the volatility of the equity. Li (2002)

highlight that option implied volatility is seen as a more accurate measure of future volatility,
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which is exactly the kind of volatility I desire for this method. Bharath and Shumway (2004)

approximate the market value of debt (D∗) with the face value of debt (F ):

D∗ = F (4)

The face value of debt is equal to the short term liabilities (due in one year) plus half of the long

term liabilities. The volatility of the debt of a company close to the default points is assumed to

be very risky and correlated with the volatility of equity:

σ∗D = 0.05 + 0.25× σE (5)

This results in an easy to compute approximation of the volatility of the assets of the company:

σ∗V =
E

E +D∗
σE +

D∗

E +D∗
σ∗D =

E

E + F
σE +

F

E + F
(0.05 + 0.25× σE) (6)

which does not require simultaneously solving of equations and results in the same equation as

the KMV-merton model where the volatility of the company is replaced by the naive approach of

equation (6):

DD∗ =
ln(E+F

F ) + (ri,t−1 − 0.5σ∗2V )T

σ∗V
√
T

(7)

where ri,t−1 is the expected return of the assets of the company which is set equal to the one-year

stock return. The DD represents the number of standard deviation the stock price is away from

the default point. Therefore, the implied probability of default is given by the normal cumulative

distribution function (CDF) of the negative value of the DD:

IPDStock = N (−DD∗) (8)

Data on the equity price and option implied volatility of the companies are gathered from the

CRSP and Optionmetrics database, respectively, and have a daily frequency. However, data on

the face value of debt is gathered from the Compustat database and is on a quarterly frequency.

Therefore, the face value of debt is linearly interpolated between the quarterly measures of the

face value of debt.

Stock price data

3. Stock price, computed as the midpoint of the closing bid-ask spread. A higher stock price would

indicate that the probability of default decreases, because investors expect the company to be

more profitable. This would lead to a decrease in the CDS spread. As mentioned before, the

stock market is seen as the market which incorporates news the fastest.

4. Traded volume, the number of shares trades on a specific day for a specific company. Higher

traded volume indicates more liquidity. When liquidity decreases, investor are less certain about
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the direction of the stock price. Uncertainty often leads to more credit risk and therefore an

increase in CDS spread.

5. Stock Spread, computed as the ask minus bid. Wider spreads indicate low liquidity. The same

mechanism applies as for the Traded volume.

6. SO stock, the daily number of shares outstanding for a specific company. This number can

change for several reasons: stock buyback programs, new issuance and stock splits. Although the

motivation for these reasons can be positive or negative, a change in shares outstanding should

increase the volatility of the stock price.

7. RV stock, the one year realised variance of the stock price. More variance means more uncer-

tainty about the stock price and therefore one could expect an increase in the CDS spread.

8. LT momentum, the long-term momentum, measured as the one-year stock return. Higher stock

returns should indicate more trust in the company. This leads to a decrease in CDS spread.

9. ST momentum, the short-term momentum, measured as the one-week stock return. The same

applies for the ST momentum as for the LT momentum.

Option Data

10. ATM put IV, the implied volatility of an at-the-money put option with one-year maturity.

The forward price is taken as strike price. Option implied volatility is often seen as an efficient

predictor of future realised volatility and hence could be a good predictor for more risk. I look

at the implied volatility for put options, because these capture the downside risk.

11. OTM put IV, the implied volatility of the most out-of-the-money put option with one-year

maturity. Carr and Wu (2011) show the relationship between deep out-of-the-money put options

and CDSs and should therefore be a better indicator for future realised volatility.

12. RV ATM put, the one-year realised volatility of an at-the-money put option. Again the forward

price is taken as strike price and the volatility is computed as the one-year realised variance of the

option price. More price movements in put option prices should indicate more risk for a company.

Fundamentals

13. Leverage Ratio, computed as the ratio of short-term and long-term liabilities. Short-term

liabilities are due within one year. When this ratio is high, an outflow of capital is expected in

the short-term. Therefore, a higher ratio leads to an increase in CDS spread.

14. P/E ratio, computed as the ratio of stock price to earnings. A high P/E ratio indicates investors

expect high earnings growth in the future, which leads to a decrease in CDS spread.

15. Dividend Index Yield, the financial ratio of the amount of dividend a company pays out relative

to its share price. High dividend paying companies are considered to be healthy companies,

because it has excess cash which it can divide under his shareholders. Higher dividends lead to a

decrease in CDS spread.
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16. P/B ratio, computed as the ratio of stock price to book price. The stock price is forward looking,

while the book price is backward looking. Therefore, a high P/B ratio indicates high expected

future earnings, which leads to a decrease in CDS spread.

17. P/S ratio, computed as the ratio of stock price to sales. The same mechanism applies as for the

P/B ratio.

18. EV/EBITDA, computed as the ratio of enterprise value (EV) to earnings before interest, taxes,

depreciation and amortisation (EBITDA). A low ratio indicates an undervalued firm and is there-

fore expected to grow in the future, which makes a credit event less likely. An increase of this

ratio leads to an increase in CDS spread.

19. Size, captured as the market capitalisation. Companies with a higher market capitalisation are

seen as less risky. An increase leads to a decrease in CDS spread.

20. P/C ratio, computed as the ratio of stock price to cash flow. Cash flow is measured as EBITDA.

The same mechanism applies as for the P/B ratio and the P/S ratio.

Rates

21. Swap Rate, the rate of a USD five-year fixed-for-floating swap. As mentioned before, this rate

is often seen as the risk-free rate. An increase leads to an increase in CDS spread.

22. Treasury, the ten-year Treasury rate. Same mechanism as for the swap rate.

23. T-Bill, the three-months T-bill rate. Same mechanism as for the previous two rates.

24. Libor, the USD London-Interbanking-Overnight-Rate (LIBOR). This is the rate used for inter-

banking lending in the money markets. When banks charge eachother more for borrowing/lending,

it often implies more uncertainty in the financial markets. This leads to an increase in the CDS

spread.

25. Slope Treasury, computed as the difference between the ten-year treasury rate and the three-

month T-Bill. A higher slope of the treasury curve indicates an expected period of economic

expansion. In better times, the risk of credit events decreases. Therefore, an increase of the slope

of the treasury curve leads to a decrease in CDS spreads.

Indices

26. Return S&P, daily return on the S&P 500 Index. Higher returns indicate more trust in the

economy, which leads to a decrease in CDS spreads.

27. RV S&P, the realised volatility on the S&P 500 Index. The realised volatility is measured as

the the one-year variance. More volatility indicates more uncertainty, which leads to a increase

in CDS spreads.

28. VIX, represents the CBOE volatility index, which is a measure of the implied volatility of S&P

500 index options. More volatility indicates more risk, which leads to an increase in CDS spread.
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Idiosyncratic Risk The following variables capture the idiosyncratic risk indicated by the stock

price. Research often suggests that idiosyncratic risk often accounts for most of the variation in risk of

an asset. Therefore, an increase in idiosyncratic risk leads to an increase in CDS spreads. Over time,

multiple measures of idiosyncratic risk are developed. All these measures are still used to capture the

idiosyncratic risk.

29. FF3, the idiosyncratic risk of the Fama-French three-factor model, which is the residual (ei,t) of

the following regression:

Ri,t − rt = αi + β1,i(Rm,t − rt) + β2,iSMBt + β3,iHMLt + ei,t (9)

with Ri,t the stock return, rt the risk-free rate, Rm,t the market factor, SMBt the Small-Minus-

Big factor and HMLt the High-Minus-Low factor. The three factors and the risk-free rate are

gathered from the Kenneth R. French Data Library.

30. FF5, the idiosyncratic risk of the Fama-French five-factor model, which is the residual (ei,t) of

the following regression:

Ri,t − rt = αi + β1,i(Rm,t − rt) + β2,iSMBt + β3,iHMLt + β4,iRMWt + β5,iCMAt + ei,t (10)

with RMWt the Robust-Minus-Weak factor, CMAt the Conservative-Minus-Aggressive Factor

and all other factors are the same as in equation (10). Again, the five factors and the risk-free

rate are gathered from the Kenneth R. French Data Library.

31. CAPM, the idiosyncratic risk of the Capital Asset Pricing Model (CAPM), which is the residual

(ei,t) of the following regression:

Ri,t − rt = αi + β1,i(Rm,t − rt) + ei,t (11)

Idiosyncratic Risk Factor

32. CSIR factor, the Cross-Sectional-Idiosyncratic-Risk factor, which is based on Bai and Wu (2012)

and has never been used in forecasting the CDS spread. Bai and Wu (2012) find that modelling the

CDS spread in the cross-section returns high R-squares. By constructing a factor that captures the

idiosyncratic risk in the cross-section, I tend to find an explanatory variable with high predictive

power. In the first step of constructing this factor I follow Bai and Wu (2012) where I regress the

IPD stock of item 2 on the CDS spreads in the cross-section for every week t:

CDSi,t = αt + βtIPDStocki,t + ei,t (12)

This results in a T ×N matrix of residuals ei,t. In the second step I perform PCA on this T ×N
matrix to capture the cross-sectional variance over time. The first factor of the PCA analysis,
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the factor which explains the most variance, is used as the CSIR factor. This one factor explains

64% of the cross-sectional variation of the idiosyncratic risk on average over time.

3 Methods

The first part of this section describes thirteen models to forecast the one week ahead CDS spread

using a rolling window of 150 weekly observations. The explanatory variables are on a daily basis, as

described in section 2. However, the aim of these models is to forecast the one week ahead CDS spread.

Given the presence of the most market noise at the beginning and end of a week, I use end of day

closing data of Wednesdays to forecast the one week ahead CDS spread.

I describe the first ten models, denoted by individual models, in section 3.1. The statistics behind

the first four models have already been used in the literature of forecasting time-series. The last six

individual models use a two stage approach of variable reduction techniques. The first stage makes use

of three new approaches of variable reduction techniques. These three new approaches are based on

existing methods that, originally, were not constructed for the reduction of variables. However, these

methods tend to gain insights in the predictability of explanatory variables. Therefore, these methods

are used in the first stage to determine the best possible selection of explanatory variables to use in

forecasting the CDS spread. In the second stage, I construct forecasts with the subset of explanatory

variables using two different techniques: PCA and equally weighting of forecasts made with individual

explanatory variables.

The last three models are combinations of forecasts of the ten individual models. I make combinations of

forecasts, because it is often seen in the literature that a single model does not outperform benchmarks

for the entire sample, while it does for some sub-samples. In combining forecasts I tend to make

use of the possibility that different models outperform in different sub-samples. The last part of this

section describes eight measures of forecasting performance for the thirteen models. In the forecasting

literature statistical measures of the fit of forecasts are widely used to evaluate the performance of

models. However, more economic measures of directional accuracy and profitably of trading strategies

based on forecasting models are often preferred. Therefore, I use both statistical and economic measures

to evaluate the forecast performance of the thirteen models.

3.1 Individual models

One of the most frequent used approaches in modelling time-series data is to use auto-regressive-moving-

average (ARMA) models, because it is able to capture a wide range of different time-series patterns.

Besides, an ARMA model captures the (if any) autocorrelation of the time-series, which is often not

captured by explanatory variables. Therefore, the first model I use is an ARMA model and is the

starting point for all other models. To determine the number of lags of the ARMA model that fits the

data best, I estimate multiple ARMA models for a small sub-sample of the data to determine the best

fit for the ARMA model. I use the first 150 observations for the first five companies (in alphabetical

order) to estimate the following regressions:
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CDSi,t = αi,t +
P∑
p=0

βp,i,tCDSi,t−p +

Q∑
q=0

θq,i,tεi,t−q + εi,t (13)

with i and t denoting the company and the time, respectively, and P ,Q={0, .., 4} the number of lags.

To determine the number of lags of the ARMA model that fits the data best, I use the Schwarz et al.

(1978) Bayesian Information Criterion (BIC). On average, P = 1 and Q = 0 gives the smallest BIC

value. Therefore, the first model I use in forecasting the 5-year CDS spread is given by:

CDSi,t = αi,t + βi,tCDSi,t−1 + εi,t (14)

The model described in equation (14) is the starting point for all other models I use to forecast the

5-year CDS spread. These other models incorporate the explanatory variables described in section 2.

A natural choice to incorporate predictors into an ARMA model is to use an Autoregressive-Moving-

Average with exogenous inputs (ARMAX) model. However, I base my approach on Bai and Wu (2012),

who model the estimation errors by means of explanatory variables and find an average R-squared of

77%. Although Bai and Wu (2012) model the CDS spread in the cross-section and therefore did not

use an ARMA model in their first step, this two stage approach shows the possibility of a gain in

performance.

The first step in the two stage approach for the remaining nine individual models is to estimate equation

(14). The second step is to model the errors terms of this equation with the use of the explanatory

variables described in section 2. The second step is therefore given by the following equation:

ei,t = f(Xk,i,t−1) + ηi,t (15)

with f(Xk,i,t−1) defined as a function of the k = 32 explanatory variables Xk. The high dimensionality

of the explanatory variables can lead to multicolliniarity and poor out-of-sample forecasts. Therefore,

all nine models are (a combination of) variable reduction techniques. The one-week-ahead forecast for

these models is given by:

̂CDSi,t+1 = ai,t + bi,tCDSi,t + f(Xk,i,t) (16)

3.1.1 CSIR

The second model models the error term of equation (14) by means of the CSIR-factor described in

section 2, item 32. This factor captures the cross-sectional idiosyncratic risk of the CDS spread. For all

other models this explanatory model is included in the variable reduction methods. However, I base one

model entirely on this explanatory variable, because Bai and Wu (2012) found such impressive results

by modelling the CDS spread in the cross-section. The CSIR factor is not used in the literature before,

but, according to results of Bai and Wu (2012), could be able to capture (most of) the cross-sectional

behaviour of the CDS spreads. Formally, the model for the error term is given by:

ei,t = βi,tCSIRt−1 + ηi,t (17)
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with corresponding forecast:

f(Xk,i,t) = βi,tCSIRt (18)

In this way the CSIR-factor can be seen as an idiosyncratic risk factor of the CDS spreads of the entire

market. It captures the variance of the CDS spreads unexplained by the stock market. The exposure

to this factor should therefore capture the idiosyncratic risk and should lead to better forecasts of the

CDS spread.

3.1.2 Principal Component Analysis

One of the most widely used variable reduction methods is Principal Component Analysis (PCA).

This method was first proposed by Pearson (1901) and later independently developed and named by

Hotelling (1933). The method uses an orthogonal transformation to convert a set of observations of

possible correlated variables into a set of values of linearly uncorrelated variables called principal com-

ponents. By means of an eigenvalue decomposition the procedure starts by finding the first principal

component that explains most of the variance of the dataset. The second step finds the principal that is

orthogonal to the first factor and explains most of the remaining variance. The second step is repeated

until the number of principal components is equal to the number of explanatory variables. This results

in a new dataset of principal components with the same size as the dataset of explanatory variables.

However, the first (last) principal component explains most (least) of the variance of the explanatory

variables. Therefore, a small sub-set of principal components often explain most of the variance of the

explanatory variables.

As explained earlier, I make use of a rolling window. Therefore, every period the model in equation

(14) is estimated results in a new data-series of the 149 residuals ei,t. PCA is performed on the

corresponding 149 observations of the 32 explanatory variables Xk,i,t. I use the first three principal

components to estimate the following regression for the 149 residuals:

ei,t =

3∑
c=1

γc,i,tPCc,i,t + νi,t (19)

Next, to construct f(Xk,i,t), which is equal to the forecast êi,t+1, I assume the principal components

follow an AR(1) process. Forecasts of these factors for period t+ 1 are then given by:

̂PCc,i,t+1 = αc,i,t + βc,i,tPCc,i,t (20)

for c = 1, 2, 3. The function f(Xk,i,t) of equation (16) is then given by:

f(Xi,t) =
3∑
c=1

γc,i,t ̂PCc,i,t+1 (21)
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3.1.3 3PRF

The next variable reduction method uses the Three-Pass Regression Filter (3PRF ) of Kelly and Pruitt

(2015). This 3PRF is a constrained least squares estimator and reduces to partial least squares as

a special case. The idea behind this method is that the data can be described by an approximate

factor model. One of the points of criticism on PCA is that it can capture the variance of explana-

tory variables that do not have any predictive power. The 3PRF is able to both find factors that are

driven by the explanatory variables, for which the number of factors is much smaller than the number

of explanatory variables, and handles the problem of pervasive irrelevant information among predictors.

Kelly and Pruitt (2015) establish an environment for the 3PRF wherein they make use of different

variables. The target variable is wished to forecast with the use of the explanatory variables, the

predictors. Forecasts of the target variable are constructed with use of proxies: factors driven by the

predictors and the target in particular. These proxies are unobservable, but are always available from

the target and predictors. Alternatively, the 3PRF gives the opportunity to supply these proxies if

one has an idea of specific variables driving both the target and predictors. In this paper I use the first

method, where I construct the unobservable proxies using the 3PRF .

To construct the forecast with the desired number of proxies, the 3PRF makes use of a recursive

algorithm of three steps. In this algorithm the proxies, predictors and target are defined by Z, X and

ei,t, respectively. The number of proxies is determined by the user of the algorithm and the first proxy,

zt, is set equal to ei,t. The first step in the 3PRF is to regress all predictors xk on Z over time:

xk,t = φ0,k + z′tφk + εk,t (22)

for k = 1, ..., 32. In the second step the predictors xt are regressed on the slope estimate φ̂i of equation

(22) in the cross-section:

xk,t = φ0,t + φ̂′iFt (23)

The last step regresses the target variable ei,t on the slope estimate F̂t of equation (23) and delivers

forecast êt+1:

ei,t+1 = β0 + F̂ ′tβ + ηt+1 (24)

The next proxy, the second column of Z, is set by the in-sample errors of the forecasts of ei,t:

zt = ei,t − êi,t. This new matrix of proxies Z is then used to go over the three steps described in

equations (22)-(24). This algorithm will recursively go on until the required number of proxies is used

to make an out-of-sample forecast ei,t+1. In this paper the number of proxies is set equal to three.

This procedure assumes the data can be described by an approximate factor model. This factor is

unobservable and is generated through the first two steps of the algorithm. In the first step, the

exposure of the predictors to a small group of proxies over time is calculated. Predictors that do not

have predictive power over time will have smaller exposures to these proxies. In the second and last step
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of constructing the factor, the exposures over time are regressed on the predictors in the cross-section.

The factor used to forecast the target variables consists of the coefficients of this regression. Moreover,

these coefficients capture the explanatory power of the predictors in explaining the exposures over time

in the cross-section. In this way, the factor incorporates the predictive power of the predictors over time

and the explanatory power of the predictors in the cross-section compared to each other. Predictors

that have the most explanatory power over time and in the cross-section will therefore have the most

weight in the factor.

3.1.4 Two stage variable reduction methods

The last six individual models are based on three different methods to reduce the number of predictors.

The motivation of these methods is the same as for Kelly and Pruitt (2015): variable reduction methods

such as PCA do not take into account whether the predictors have any predictive power for the inde-

pendent variable. Moreover, when performing PCA on all predictors, the first principal components

could explain most of the variance of the predictors that do not have predictive power for the 5-year

CDS spread.

The following methods are all based on the same principle, where the first stage is to decide whether

the predictors standalone have sufficient explanatory power for the independent variable ei,t. These

variables, denoted by x∗j,i,t for j = 1, ..., J the number of predictors with sufficient explanatory power,

are then used to construct a forecast for ei,t. In the second step I construct two models with the

variables x∗j,i,t: the first one makes use of PCA and follows the procedure of section 3.1.2 to make

one-step-ahead forecasts. The second method regresses the predictors solely on the error terms ei,t of

equation (14) and constructs one-step-ahead forecasts for all these models:

êj,i,t+1 = δj,i,tx
∗
j,i,t (25)

for j = 1, ..., J . These forecasts are then combined by equally weighting the predictions for the final

one-step-ahead forecasts:

êi,t+1 =
1

J

J∑
j=1

ek,i,t+1 (26)

Price Discovery The first stage for this method is based on Hasbrouck (1995)’s information share.

This method was first composed for a framework where a financial asset is traded in more than one

market, for example the NYSE and the AEX. It assumes there is an unobserved component which

drives the price of the financial asset in both/all markets. The information share represents the relative

contribution of a market to the total variance of the unobserved component in the long-term.

For this method I assume the error term of equation (14) and the predictors described in section 2 are

pure credit measures. Therefore, following Hasbrouck (1995), all these variables should be driven by an

unobservable factor and can be used to measure the contribution of this variable to the price discovery.

The first step in variable reduction is made by excluding predictors for which the contribution to the
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price discovery of the unobserved factor of the error term and the explanatory variable is considerably

low.

Hasbrouck (1995) states that to determine the contribution of price discovery of two price series, the

requirement of cointegration has to be met. This paper relaxes this condition, because it is not often

seen that financial time-series fully cointegrate. For the remaining part of the procedure I follow Has-

brouck (1995), where I first determine the price discovery between the estimation error of equation (14)

ei,t and xk,i,t the k-th explanatory variable. Because I follow the same procedure for every company

and every explanatory variable I define Yt = Yk,i,t from now on.

The differential of Yt is defined as the error correction term, i.e., zt = β′Yt = y1,t − y2,t. Therefore, the

cointegration vector β = (1,−1)′. Hasbrouck (1995) starts with the estimation of the following Vector

Error Correction Model (VECM):

∆Yt = αβ′Yt−1 +
k∑
j=1

Aj∆Yt−j + ςt (27)

where α is the error correction vector and ς is a zero-mean vector of serially uncorrelated innovations

with covariance matrix Ω. The VECM has two portions: the first portion, αβ′Yt−1, represents the long-

run or equilibrium dynamics between the price series, and the second portion,
∑
Aj∆Yt−j , represents

the short-run dynamics induced by market imperfections.

Hasbrouck (1995) transforms equation (27) into a Vector Moving Average (VMA):

∆Yt = Ψ(L)ςt (28)

and its integrated form:

Yt = Ψ(1)

t∑
s=1

ςs + Ψ∗(L)ςt (29)

where Ψ(L) and Ψ∗(L) are matrix polynomials in the lag operator L. The impact matrix, Ψ(1), is the

sum of the moving average coefficients, with Ψ(1)ςt being the long-run impact of an innovation on each

of the prices. If the rows of the impact matrix are identical, the long-run impact is the same for all

prices. If I denote ψ = (ψ1, ψ2) as the common row vector in Ψ(L), equation (29) becomes:

Yt = ιψ(

t∑
s=1

ςs) + Ψ∗(L)ςt (30)

where ι = (1, 1)′ is a column vector of ones. Hasbrouck (1995) states that the increment ψςt in equa-

tion (30) is the component of the price change that is permanently impounded into the price and is

presumably due to new information.

Hasbrouck (1995) argues that if the covariance matrix of the innovations Ω is diagonal then ψΩψ
′

will

consist of two terms, the first (second) represents the contribution to the common factor innovation



3 METHODS 18

from the first (second) market. The information share of market j is then defined as

Sj =
ψ2
jσ

2
j

ψΩψ′
(31)

with σj the j-th diagonal element of Ω.

Equation (30) is a difficult equation to estimate and requires a lot of computational time. Baillie et al.

(2002) argue the estimation of the VMA is not necessary to construct the information share. They

state the VECM of equation (27) is sufficient by proving the following:

ψ1

ψ2
=
γ1
γ2

(32)

with α⊥ = (γ1, γ2)
′ the orthogonal of α of equation (27). This leaves a much easier model to estimate

and speeds up computational time. Substituting equation (32) into equation (31) yields:

Sj =
γ2j σ

2
j

γ21σ
2
1 + γ22σ

2
2

(33)

However, if the price innovations are significantly correlated across markets, equation (33) does not

hold. In this case, Hasbrouck (1995) uses Brezinski (2005)’s Cholesky factorisation of Ω = MM
′

to

eliminate the contemporaneous correlation, where M is a lower triangular matrix. The information

share is then given by:

Sj =
([ψM ]j)

2

ψΩψ′
(34)

where [ψM ]j is the jth element of the row of matrix ψM and M denoted by:

M =

(
m11 0

m12 m12

)
=

(
σ1 0

ρσ2 σ2(1− ρ2)1/2

)
(35)

I construct the contributions to the information share relative to 150 estimation errors ei,t of equation

(14) for every time t and explanatory variable k. Only the predictors for which the information share

is larger than 50% are taken for the next and finale stage. As mentioned in section 3.1.4, in the second

and final stage two methods are used to construct a forecast for ei,t+1: PCA and equal weighting of

forecast made with individual explanatory variables. I denote these models by PD PCA and PD EW

whereby PCA and equal weighting of individual forecasts is used in the second stage, respectively.

Granger-Causality Another way of describing predictive power of an explanatory variable in fore-

casting ei,t is to find whether causality exists between ei,t and the predictors. In the first step of this

method I test whether a causal relation exists between this residual and individual predictors and if

this causation is in the right direction. The test I use is the Granger-Causality-test first proposed in

Granger (1969). This method is comparable to the price discovery measure, because they both look at

which market is leading and which market is lagging. However, the biggest difference between the two

methods, is that the Granger-Causality-test looks at the short-term dynamics of the price development,

while Hasbrouck (1995) looks at the long-term dynamics. The results of which market drives the other
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will therefore differ between the two methods. In particular, the outcomes of the Granger-Causality-test

will differ much more over time than the Hasbrouck (1995)’s information share will.

The definition of causality used in Granger (1969) is based entirely on the predictability of the residual

of equation (14). If an explanatory variable Xi,t contains information in past terms that helps in the

prediction of the residual and if this information is contained in no other series used in the explanatory

variable, then the explanatory variable is said to cause the residual ei,t. Explanatory variables that do

not cause the residual are eliminated. The causal model is then given by:

e∗i,t =

P∑
p=1

ape
∗
i,t−p +

Q∑
q=1

bqX
∗
i,t−q + εi,t (36)

The definition of causality given above implies that if X∗i,t is causing e∗i,t some bq are not zero. To test

for all bq equal to zero I use a F-test with a 95% significance level. The input for an F-test requires two

models. The first one is defined in equation (36). The second model excludes the Q lagged values of

the explanatory variables X∗i,t of equation (36). The number of lags P and Q are determined using the

BIC. As described in section 3.1.4, the explanatory variables that survived this first step are taken to

the next stage where a forecast is made for ei,t using PCA and equal weighting of individual forecasts.

I denote these models by GC PCA and GC EW whereby PCA and equal weighting of individual

forecasts is used in the second stage, respectively.

LASSO The last method is based on the Least Absolute Shrinkage and Selection Operator (LASSO)

first proposed by Tibshirani (1996). This method shrinks the regression coefficients by imposing a

penalty on their size. The LASSO coefficients minimise a penalised residual sum of square:

β̂LASSOi,t = argmin
β

P∑
p=0

(
e∗i,t−p − β0,i,t −

K∑
k=1

x∗k,i,t−pβk,i,t

)2
subject to

K∑
k=1

|βk,i,t| ≤ d

(37)

which can be written in the equivalent Lagrangian form:

β̂LASSOi,t = argmin
β

{1

2

P∑
p=0

(
e∗i,t−p − β0,i,t −

K∑
k=1

x∗k,i,t−pβk,i,t
)2

+ λ
K∑
k=1

|βk,i,t|
}

(38)

The constraint
∑K

k=1 |βk,i,t| ≤ d makes the solution non-linear in e∗i,t. Therefore, there is no closed

form solution and a quadratic programming algorithm is required to come up with a solution. This

quadratic programming algorithm consists of five steps:

1. Set all coefficients βk,i,t equal to zero.

2. Find the explanatory variable x∗k1,i,t most correlated with e∗i,t.

3. Increase the coefficient βk,i,t in the direction of the sign of its correlation with e∗i,t until another

explanatory variable x∗k2,i,t has as much correlation with the residual, rt = e∗i,t − ê∗i,t, as x∗k1,i,t.
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4. Increase (x∗k1,i,t, x
∗
k2,i,t) in their joint least squares direction until another explanatory x∗k3,i has as

much correlation with the residual rt.

5. Continue until all explanatory variables are in the model.

Because of the nature of the constraint, making d sufficiently small will cause some of the coefficients

to be exactly zero. When a coefficient hits zero during any step of the algorithm, this explanatory

variable is removed from the active set of explanatory variables. Therefore, the LASSO indirectly

does a continuous subset selection. If d is chosen larger than the sum of the least squares estimate

coefficients, then the LASSO coefficients are exactly equal to these least squares estimates.

In this paper, d is not chosen upfront. I run the algorithm for decreasing values of d until there are

fifteen (out of 32) explanatory variables with non-zero coefficients. This approach is new compared to

the traditional way of using LASSO, because I do not use the coefficients constructed by the LASSO

technique and only take the fifteen explanatory variables that have a coefficient not equal to zero to

the next stage. In the second stage I construct the models using the fifteen explanatory variables based

on PCA and equal weighting of individual forecasts described in section 3.1.4 to forecast ei,t. I denote

these models by LASSO PCA and LASSO EW whereby PCA and equal weighting of individual

forecasts is used in the second stage, respectively.

3.1.5 Stationarity, correlation and multicollinearity

One of the possible influential factors in time-series econometrics is that the time-series data is non-

stationary. The statistical proportions of stationary processes do not change over time. In this research,

especially explanatory variables that contain a trend, i.e. size, stock price, show time-dependent sta-

tistical proportions. Modelling non-stationary time-series can result in infinite persistence of shocks,

spurious regressions, where a high R-squared can be obtained while the time-series are totally unre-

lated, and standard assumptions for asymptotic analyses are not valid. As mentioned before, multiple

explanatory variables contain a trend which results in non-stationarity. The most obvious choice is to

run test for a trend in the time-series, by for example a unit-root test, and then adjust for this possibly

non-stationarity before constructing forecasts. However, this is not done in this research. Therefore,

there is a possibility that the forecasting models base their forecasts on non-stationary processes.

Another issue that could arise in this research is the high correlation between some of the explana-

tory variables, i.e. stock price and size. Including explanatory variables that are highly correlated in

a regression can lead to multicollinearity: one explanatory variable influences the other resulting in

disturbance of the data and the statistical inferences made are not reliable. In this research multi-

collinearity is not an issue: none of the forecasting models includes two explanatory variables at the

same time in a regression. However, almost all models make use of either PCA or an equal weighting of

forecasts. PCA constructs factors that explain most of the variance of the dataset. Therefore, includ-

ing explanatory variables that are highly correlated results in an over-presence of the same information

in the first factors of the PCA. Fortunately, I take more than one principal component to construct

forecasts. Therefore, not only the variance of highly correlated explanatory variables is used to forecast
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the CDS spread. For the equal weighting of forecasts the same mechanism applies. The forecast will

contain more weight of the same information of the highly correlated explanatory variables.

3.2 Forecast Combination

The motivation behind combining forecasts is that models with the same predictive power often do not

consistently outperform a benchmark over time, but can outperform these benchmarks in sub-samples.

Therefore, it is often difficult to identify one single best model. However, by combining forecasts one

can diversify the gains of the predictive power of different models for different sub-samples, resulting

in a model structurally outperforming the benchmarks.

One of the most widely and perhaps simplest form of combining forecasts is to use equal weighting.

As Clemen (1989) points out, equal weighting of forecasts often outperforms other weighting schemes.

Equal weighting often underperforms in-sample, but outperforms out-of-sample. As Elliott and Tim-

mermann (2013) point out, when all models are based on similar data and when they all perform

roughly the same then equal weighting is optimal, because individual forecasts have identical variance

and identical pair-wise correlation. Based on these theories, equal weighting could be a good addition

to the individual models. Therefore, the first combination of forecasts is equal weighting (EW) and is

defined by:

ĈDS
EW

i,t+1 =
1

M

M∑
m=1

ĈDS
m

i,t+1 (39)

with M = 1, ..., 10 denoting forecasts of the individual models.

As described before, it is often difficult to identify one best model over the entire sample. However,

there are often models that outperform the benchmark in sub-samples. The last two combinations

of forecasts are based on this phenomenon, where I only take an equal weighting of forecasts of the

individual models that have been able to construct a ‘good’ forecast for the past week. I look at two

measures to decide ‘good’ performance of a model for the past week: the Mean Square Prediction Error

(MSPE) and the Correctly Predicted Sign (CPS). I denote these two models with Lag MSPE EW

and Lag Sign EW . The former selects the models that outperformed the benchmark model in the last

period in terms of MSPE and constructs an equally weighted forecasts of these models for the next

period. In case non of the models outperformed the benchmark in the past weeks, it selects a single

model that had the lowest MSPE in the last week. Lag Sign EW constructs an equally weighted

forecast as well, but selects the models that correctly predicted the sign in the last period. In case none

of the models was able to correctly predict the sign, the model with the forecast of the model with the

lowest MSPE in the last period is selected.

3.3 Forecast evaluations

There is still a lot of discussion going on how to measure the performance of forecasting models. As ex-

plained in the last part of the previous section, there is a difference between the statistical and economic

relevance of forecasts. In forecasting financial time series, forecasts based on a Random Walk (RW) or
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a coing-flip are often taken as benchmarks and are often seen as hard to beat. Therefore, I compare

the performance of the thirteen models with forecasts based on these benchmarks for six statistical and

economic measures and two ‘simple’ trading strategies. The benchmark is defined differently for all

these measures and I describe them separately for all measures.

The first measure is based on the most widely used statistical measure: the Mean Squared Prediction

Error (MSPE). This measure describes the goodness-of-fit of model m and is defined by the following:

MSPEmi =
1

T i

T i∑
t=1

(
E
[
ĈDS

m

i,t

]
− CDSi,t+1

)2
(40)

with T i the number of forecasts for company i. The benchmark is composed by setting the forecast for

the next period equal to the value of today.

The second measure is the Diebold and Mariano (2012) test. This test defines the null hypothesis of no

difference of two forecasting model. I compare the thirteen forecasting models a benchmark model that

is composed by setting the forecast for the next period equal to the value of today. The test is based on

the difference of squared errors made by both models (d = (CDSi,t− ĈDS
RW

i,t )2− (CDSi,t− ĈDS
m

i,t)
2).

The errors are assumed to be normally distributed. The statistic is then given by:

DM =
mean(d)√

var(d)
T i

∼ N
(
0, 1
)

(41)

A DM statistic larger than the on sided 95% critical value of 1.65 indicates that the model outperforms

the benchmark model.

The following measures have more economic meaning than the first two measures described above. The

first measure of economic forecast evaluation is the ‘rather simple’ Percentage Correctly Predicted Sign

(PCDS). This measure counts the number of times a model has correctly predicted the sign of the

weekly change for a specific company and is given by:

PCPSmi =
1

T i

T i∑
t=1

I
(
(ĈDS

m

i,t − CDSi,t−1)× (CDSi,t − CDSi,t−1)
)

(42)

with I(·) an indicator function which takes a value equal to one if the condition is true and zero other-

wise. The benchmark for this measure is the coin flip scenario, where I assume the chance of predicting

a positive change is equal to 50%. Therefore, outperforming the benchmark indicates a PCPS higher

than 50%.
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The next measure is the distribution-free Pesaran and Timmermann (1992) test. This test focuses on

the directional accuracy (DA) of the forecasts. The method compares the number of times model m

predicts the right sign compared to the fraction of the number of positives and negatives of model m and

the considered variable. Moreover, the test takes into account whether there are more weekly positive

or negative changes in the time-series. Therefore, the difference between the DA of the benchmark and

of the expected DA is a Hausman (1978) type statistic. For this measure I define PPm (PNm) and

PP (PN) the fraction of positive (negative) changes for model m. The test then compares the PCPS

of equation (42) with the estimator of the expectation of the PCPS under the null. The estimator of

the expectation of the PCPS for a company is then given by:

P̂m∗ = PPm × PP + PNm × PN (43)

the variances of the PCDS and P̂∗ are defined as follows:

V̂ (PCDS) =
P̂∗ × (1− P̂∗)

T
(44)

V̂ (P̂∗) =
(2PP − 1)2PPm(PPm − 1)

T
+

(2PPm − 1)2PP (1− PP )

T
+

4× PP × PPm × PN × PNm

T 2

(45)

The test-statistic is then given equation (46) and follows a standard normal distribution:

PT =
PCDS − P̂∗√

V̂ (PCDS)− V̂ (P̂∗)
∼ N

(
0, 1
)

(46)

where the 95% critical value of 1.65 indicates the model outperforms the benchmark model.

The next measure is based on Anatolyev and Gerko (2005). This market timing test is tied to a

simple trading strategy where a virtual investor buys (sells) the CDS when a model predicts a positive

(negative) change for the next period. This excess profitability (EP ) takes the actual profit into

consideration. The virtual investor invests a monetary unit value every period and unwinds it at the

end of the period. The weekly return of this strategy based on buy/sell signals of model m for company

i is then given by:

rmi,t = I(ĈDS
m

i,t)CDSi,t (47)

The average weekly return is then compared to a random walk trading strategy with the probability

of a buy (sell) signal equal to the proportion of positive (negative) changes. Anatolyev and Gerko

(2005) state that under the null hypothesis of conditional mean independence the forecasts ĈDSi,t are

independent of CDSi,t for all lags and leads. Under this null hypothesis the estimators of the two

trading strategies based on model m and the RW benchmark model are given by:

Ami,T =
1

T

T∑
t=1

rmt,i (48)
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and

BRW
i,T =

( 1

T

T∑
t=1

I(ĈDS
m

i,t)
)( 1

T

T∑
t=1

CDSi,t
)

(49)

When a model has predictive power, the average return of the simple trading strategy Ami,T will be

higher than the average return of the random walk BRW
i,T . Anatolyev and Gerko (2005) argue the most

straightforward way to estimate the variance of the difference of average returns Ami,tT and BRW
i,T is by:

V̂ m
i,EP =

4

T 2
p̂
ĈDS

(1− p̂
ĈDS

)

T∑
t=1

(CDSi,t − ĈDS
m

i,t)
2 (50)

where

p̂
ĈDS

=
1

2

(
1 +

1

T

T∑
t=1

I(ĈDS
m

i,t)
)

(51)

is the consistent estimator of the probability of a positive predicted sign. Moreover, the EP test is one

sided with a normally distributed test statistic and given by:

EPi =
Ai,T −Bi,T√

V̂i,EP

∼ N
(
0, 1
)

(52)

As Anatolyev and Gerko (2005) mention, the EP test takes fuller advantage of possibly predictability

than the Pesaran and Timmermann (1992) test, because the latter takes no profitability into account.

Moreover, Christoffersen and Diebold (2006) show that absence of mean predictability dependency in

the volatility can result in sign predictability. Therefore, the EP statistic is preferred to the PT statis-

tic in terms of mean predictability considerations.

As described before, evaluation forecasts based on goodness of fit measures is maybe not the best way of

measurement. Moreover, the first difficulty is to identify the right loss-function. Different loss-functions

can give different results. Besides, an investor is often more interested weather he can base an actual

trading strategy on the forecasts. Measures based on the sign an profitability like the PT and EP

measures could therefore illustrate a more ideal picture of the performance of forecasting models. How-

ever, these type of measures are often constructed for one type of investor, because not every investor

has the same signal of going long/short. Jordà and Taylor (2011) introduced a new statistical method

which takes these points of criticism into account. The method assesses the correct classification (CC)

ability of investment strategies.

Jordà and Taylor (2011) define the actual direction of the CDS spread as di,t and an investor is long

(short) when his forecast of the direction δi,t is larger (smaller) than a threshold parameter c. This

results in the following classification rates for the binary decision problem a trader faces for a trading

strategy:



3 METHODS 25

Prediction

Negative/Short Positive/Long

Outcome
Negative/Short TN(c) = P (δ̂i,t < c|di,t = −1) FP (c) = P (δ̂i,t > c|di,t = −1)

Positive/Long FN(c) = P (δ̂i,t < c|di,t = +1) TP (c) = P (δ̂i,t > c|di,t = +1)

where TN(c) (FN(c)) and TP (c) (FP (c)) represent the true (false) classification of negatives and

positives, respectively. The curve that summarises all possible combinations TN(c), TP (c) is called

the correct classification frontier or CC frontier. This frontier summarises a production possibilities

frontier for the classifier δ̂i,t ∀c. Moreover, the points on the frontier represent the maximum percentage

of true positives achievable for a given value of true negatives. As can be seen from the definitions of

the classification rates, when c → ∞ then TP (c) → 1 and TN(c) → 0, and vice versa if c → −∞.

Therefore, the CC frontier takes value in the unit square.

The test compares the area under the CC frontier of the forecasts made and that of a coin-toss. The

area under the CC frontier of a coin-toss is equal to 0.5: in this case TP (c) = 1 − TN(c) ∀c which

translates into a diagonal line from [0, 1] to [1, 0] as the CC frontier. The area under the curve (AUC)

for a model is then the integral of the CC frontier:

AUC =

∫ 1

0
CC(r)dr (53)

Following Hsieh et al. (1996), the test statistic of the AUC larger than 0.5 (the AUC of a coin-toss) is

given by:

JTi,m =
AUC − 0.5

σ
∼ N

(
0, 1
)

(54)

Following Hanley and McNeil (1982) and Obuchowski (1994) the approximation of the variance of AUC

is given by:

σ2 = AUC(1−AUC) + (TP − 1)(Q1 −AUC2) + (TN − 1)(Q2 −AUC2) (55)

where

Q1 =
AUC

2−AUC
, Q2 =

2AUC2

1 +AUC
(56)

The last two measures of the forecast performance of the models are the most practical. These measures

are trading strategies based on the virtual possibility of trading the underlying price of the 5-year CDS

contract. Both trading strategies are long (short) the CDS spread when a model forecasts a positive

(negative) change in the CDS spread. The first trading strategy invests one dollar every week and

unwinds his position the week after in every company. In other words, this measure represents the

cumulative sum of weekly returns and is closely related to the EP test. Instead of testing whether

this type of trading strategy is better than a coin-flip, it shows the actual profits that could have been

obtained in the sample period. The second trading strategy invests one dollar at the beginning of the

sample in every company according to the buy/sell signal of a model. Instead of unwinding his positions

every week, it reinvests the full realised profit according to these buy/sell signals. This trading strategy
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is a measure of cumulative compounding of weekly returns.

The difference in results of the first trading strategy are more easy to interpret between different models:

more profits are obtained if the model predicts the direction of large changes in the CDS spread more

accurate. The second trading strategy is a more realistic scenario of an investor who invests according

to buy/sell signals of the forecasting models. The initial investment of one dollar is kept in the trading

strategy until the end of the sample period. Transactions costs are not taken into account for both

trading strategies and there are not limitations on short selling. This means that when a model predicts

a negative change (the investor goes short), but the price of the CDS spread more than doubles in value,

the investor can lose more than his initial investment. Note again, these trading strategies trade in the

underlying price of the 5-year CDS spread and are therefore not buying/selling the CDS contract itself.

An overview of the characteristics of the forecasting evaluation measures is given in Appendix B. The

first two measures show similar characteristics: they both take the forecasting fit into consideration

and their benchmark are both the random walk model where the forecast is set to the value of today.

Key difference between the two measures is that the DM measure tests the difference in forecasting

fit, while the MSPE does not involve statistical testing. The next four measures, PCPS, PT , EP and

JT , all incorporate the correctly predicted sign of the weekly change in CDS spread. PCPS is the

most basic measure, which does not involve statistical testing, does not incorporate profitability and

the actual fraction of positive and negative weekly changes in CDS spread. The PT and EP measures

do involve statistical testing and incorporate the actual fraction of positive and negative weekly changes

in CDS spread. Besides, the EP test takes profitability into account. The JT measure does have the

same characteristics as the previous three measures. Furthermore, it is the only measure that looks

at different type of investors: buy/sell signals can differ between different type of investors. The JT

measure incorporates the entire space of buy/sell signals. The last two measures are the most practical

and look at the profits/losses that would have been obtained if an investor would invest according to

simple buy/sell signals of the different models.

4 Results

In this section I analyse the results of the thirteen forecasting models. First, I focus on the two stages of

the three new methods (PD, GC, and LASSO). I highlight the differences between performing PCA

on the sub-samples of explanatory variables of these three methods and on the full sample. Next, I

present empirical results, including the confirmation of the motivation of the use of forecast combination

and out of sample forecast evaluations using the measures described in section 3.3. Finally, I analyse

one of the trading strategies over time and for the 278 companies.

4.1 Two stage variable reduction methods: Variable Selection and Explained Vari-

ance

The three new two stage variable reduction methods require more attention than the other more widely

used methods. Note that in the first stage, these three methods select a sub-sample of explanatory
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variables that have sufficient predictive power. In the second stage, the selected sub-sample of ex-

planatory variables is used to either construct forecasts by equally weighting forecasts made with these

explanatory variables individually or by using PCA. Especially the number of selected variables and

the PCA of the second stage reveal more interesting information on which variables are selected and if

these variables show the same behaviour.

The left graph of Figure 3 shows the average percentage of number of selected explanatory variables

of the companies over time. Note that PCA always includes all 32 explanatory for constructing the

components which results in a horizontal line at 100$. The number of selected variables for the PD

method stays stable over time, which indicates that the contribution to the long-run price discovery of

the explanatory variables is stable over time. Moreover, a variable is only selected if the contribution to

the price discovery is above the threshold value of 50%. This implies that there are only a couple of vari-

ables for which the contribution is around 50% and the volatility of these contributions is high enough

to move around the threshold. On average, the PD method selects around 70% of the explanatory

variables, which indicates on average 10 variables do no contribute more than 50% to the price discovery.

The right graph of Figure 3 shows much more variation in the average number of selected variables

for the GC model compared to the other models. Especially the large differences between PD and

GC should be mentioned. Both methods select explanatory variables based on the contribution to the

information share. This difference is pointed out by Rittler (2012), who argues the information share

proposed by Hasbrouck (1995) reveals the long-run price discovery while the information share pro-

posed by Granger (1969) reveals the price discovery dynamics in the short-term. Therefore, the average

number of selected variables differs between the PD and GC method. Although both methods use the

same rolling window with the same sample period, price discovery in the long run is apparently more

stable than in the short run. Moreover, the PD method always selects on average more explanatory

variables than GC.

LASSO shrinks the coefficients of the explanatory variables until at least seventeen of them are shrunk

to zero. Therefore, one would expect a horizontal line at 46%(≈ 15
32). However, this is not the case,

which indicates that for multiple companies the explanatory variables are highly correlated resulting

in shrinking two variables to zero at the same time.

The right graph of Figure 3 shows the fraction of variance explained by the first three principal com-

ponents and the total variance of the explanatory variables. Note that the total variance is different

for all methods, because PCA is performed on different sub-samples for all methods. Therefore, the

more unstable explained variance of GC is explained by the large variation in selected variables (see

the left graph of Figure 3). The variance explained by PCA, PD and LASSO show the same patterns

over time. The increase in variance explained starting at the beginning of 2008 indicates that the ex-

planatory variables that did have predictive power showed an increase in correlation when the financial

credit crisis started.
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The PD method shows most of the variance explained over time. This is remarkable, considering

the selected number of explanatory variables is the largest after PCA. Only three factors explained

on average between 85% and 90%, indicating the explanatory variables selected by PD have a high

correlation. The difference in explained variance by PCA, GC and LASSO looks more intuitive,

because the method with the largest number of selected variables explains the least variance and vice

versa. This relation occurs for the GC method as well: the explained variance increases (decreases) in

periods of a decrease (increase) in the average number of selected variables.

Figure 3: (l) The left figure displays the average percentage of selected explanatory vari-
ables of the companies over time. Note that PCA always includes all 32 explanatory
for constructing the components which results in a horizontal line at 100%. (r) The
right figure shows the average fraction of explained variance of the first three principal
components per method over time.

Jan05 Jan06 Jan07 Jan08 Jan09 Jan10 Jan11 Jan12 Jan13
0

20

40

60

80

100 PCA
PD
GC
LASSO

Jan05 Jan06 Jan07 Jan08 Jan09 Jan10 Jan11 Jan12 Jan13
50

60

70

80

90

100
PCA
PD
GC
LASSO

Table 1 shows the average number of times a variable is selected and the corresponding average loading

to the first three principal components. There is a big difference in the average number of times a

variable is selected between the four methods. The third column shows that the PD method almost

always selects the same explanatory variables. On average, PD selects around 24 variables (≈ 32×74%)

and the number of explanatory variables that are selected more than 84% of the time is equal to 24.

All other variables are selected in less than 20% of the time. This result confirms the results shown in

Figure 3, which show little variation in selected variables by the PD method.

The differences between the average number of times the explanatory variables are selected for the GC

and LASSO are less extreme. The average maximum (minimum) an explanatory variable is selected by

GC is 47.4610% (19.4700%). For the LASSO method the range is somewhat wider with 97.6676% and

14.9000%. However, for both methods the differences in percentages between the explanatory variables

is much smaller than for the PD method.

The PD method selects especially the explanatory variables that are measured over a longer period:

the long term variance, yearly returns, rates and fundamentals. As mentioned, the PD method reveals

the long-run price discovery. Therefore, selecting these type of explanatory variables is not a surprise.

On the other side, the GC method reveals the short-run price discovery, but seems to select explana-

tory variables that both are measured on the short- and long-term. Furthermore, LASSO often selects

explanatory variables that are not selected by the PD method or vice versa, e.q. 11 & 27.

The CSIR factor (32) and both the IPD measures (1-2) have a substantial large loading to the first

three principal components for all four methods. These variables, with especially the CSIR factor,
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seem to be the explanatory variables that most drive the four models. The Slope Treasury (25) shows

a high selection rate and loading compared to the other ‘rates’ variables (21-24). This explanatory

variable, which is often seen as a measure of economic expansion/contraction, seems to be a leading

indicator for the CDS spreads. The explanatory variables on stock data, option data, fundamentals,

rates and indices are on average many times selected and have large loadings to the first three principal

components. These explanatory variables tend to influence the performance of all models.

Table 1: The table shows the average number of times an explanatory variable is selected
and the corresponding average loading to the first three principal components. Note that
for PCA all explanatory variables are always selected resulting in all values of the first
column equal to 100%. For the other three methods PCA is one of the two methods
in the second stage. For these last three methods, the loading is set equal to zero in
case an explanatory variable is not selected. The average is taken including these zero
loadings. The last row represents the average percentage of selected variables and average
percentage of variance explained by the first three principal components.

PCA PD GC LASSO

% Selected Loading % Selected Loading % Selected Loading % Selected Loading

1.IPD CDS 100.0000 7.9157 99.7290 8.4904 42.5195 12.5653 94.6676 11.2884

2.IPD stock 100.0000 6.4064 84.3208 11.8828 47.4610 13.8528 58.9263 8.9837

3.Stock price 100.0000 9.9287 99.9797 12.1557 24.5580 5.0343 35.5813 6.3637

4.Traded volume 100.0000 4.0204 10.2226 1.4007 26.1343 8.1198 68.5719 15.7067

5.Stock spread 100.0000 2.4743 2.7723 0.8896 43.6232 15.0727 72.2127 15.0820

6.SO stock 100.0000 9.3006 99.4676 7.7419 19.4700 6.4689 46.8336 4.1966

7.RV stock 100.0000 9.3708 99.9992 10.8005 42.3296 10.9118 43.9894 7.0739

8.LT momentum 100.0000 9.3379 99.9727 21.3332 20.9822 6.5363 46.0176 12.2934

9.ST momentum 100.0000 18.8456 0.0009 0.0003 33.5120 11.0428 49.4256 21.0027

10.ATM put IV 100.0000 8.1648 97.2002 10.1611 35.2542 8.9285 55.8189 8.4727

11.OTM put IV 100.0000 2.1062 19.7340 6.0181 20.9271 8.4738 63.2273 24.6282

12.RV ATM put 100.0000 9.3530 99.9188 10.7293 33.3979 8.0621 28.6435 4.3126

13.Leverage ratio 100.0000 6.7982 99.3328 15.0140 17.5603 6.3962 58.9191 9.3771

14.P/E ratio 100.0000 8.3906 93.0350 14.2974 21.8913 5.6818 35.7571 8.1907

15.Div Ind Yld 100.0000 7.4779 84.9873 9.1244 32.6205 7.9570 36.0808 5.4764

16.P/B ratio 100.0000 8.5273 93.5888 11.1858 24.3494 5.6010 30.9526 5.0542

17.P/S ratio 100.0000 9.1099 94.3205 9.8333 22.7306 4.6429 15.4164 2.3788

18.EV/EBITDA 100.0000 8.1838 88.9609 12.9418 19.8412 5.2159 29.9719 6.3409

19.Size 100.0000 9.9199 99.6380 10.2073 23.9926 4.7253 14.9000 2.0451

20.P/C ratio 100.0000 7.4015 93.9297 18.3294 18.0571 5.0048 40.6922 9.5784

21.Swap rate 100.0000 9.0740 99.9990 6.5974 35.9174 9.5548 32.5131 2.9335

22.Treasury 100.0000 7.9140 99.9990 8.3798 34.5344 10.0879 44.1630 3.7828

23.T-Bill 100.0000 9.0320 99.9612 9.9895 36.1881 9.6751 27.8094 2.9820

24.Libor 100.0000 9.8357 99.9990 9.2880 45.6823 12.6779 34.1691 2.9109

25.Slope Treasury 100.0000 9.4934 100.0000 14.3279 34.8137 9.1360 35.8759 7.2926

26.Return S&P 100.0000 3.1657 0.0067 0.0032 32.4608 12.3579 62.4432 22.2189

27.RV S&P 100.0000 8.7214 99.9961 10.7606 51.8666 13.9101 38.3267 6.1909

28.VIX 100.0000 7.6722 99.9161 13.3385 35.2983 9.1032 67.7338 11.3075

29.FF3 100.0000 22.2883 0.0000 0.0000 33.5237 10.3842 28.1745 11.2938

30.FF5 100.0000 21.9544 0.0000 0.0000 33.5753 10.4142 29.9382 11.9061

31.CAPM 100.0000 22.3765 0.0000 0.0000 34.3050 10.7931 27.2025 10.2973

32.CSIR factor 100.0000 5.4388 99.8912 24.7543 39.6102 13.9646 68.9842 19.0377

Average 100.0000 67.7484 73.7775 86.7903 31.8434 82.9662 44.4981 74.7066



4 RESULTS 30

4.2 Confirmation of forecast combination motivation and forecast performance

Table 2 shows the average number of times the weekly forecasts of the specific model have the lowest

squared error. This percentage is constructed by counting the number of weeks that a model has the

lowest squared error and dividing this by the total number of weeks. The values in the table repre-

sent the averages taken over all companies. Models (3-5) and models (6,8,10), the two stage variable

reduction methods with PCA as the second stage, outperform in more weeks than the AR(1) model

by means of squared errors. This indicates that modelling the error term of the AR(1) by means of

various methods does improve the forecast performance.

The two stage methods that equally weight the forecasts of individual explanatory variables (7,9,11)

seem not to be an improvement to the AR(1) model. However, when PCA is performed on the same

sub-sample of explanatory variables there seems to be an improvement. The first three factors seem to

be able to capture the most important correlation of the selected explanatory variables in terms of fore-

casting performance. The best performing model based on the results of Table 2 is the 3PRF . Similar

to the results in Kelly and Pruitt (2015), the 3PRF demonstrates strong forecasting performance and

is superior to the alternative methods.

Although multiple models are an improvement to the AR(1) model, none of these models outperform the

RW in terms of number of weeks of lowest squared error. As mentioned previously, this was expected,

because single models do often not structurally outperform the benchmark model. However, the RW

only has the lowest squared error for 21.2785% on average of the time. This means that in 78.7215%

of the time at least one of the models is outperforming the RW by means of the fit of the predictions.

This confirms the motivation of using combinations of forecasts in this research. The second and

the third column show the motivation behind the short training period for computing the forecasting

combinations based on the MSPE and Sign. The table shows that the individual models outperform

for an average period of around two weeks. The forecasting combination models include forecasts based

on the performance of last week and given that the individual models show good performance in the

week after, the choice of only looking at the past period seems to be the right one.

Table 2: The second column shows the average number of times the forecasts of the specific
model have the lowest weekly squared error. The benchmark model RW is constructed by
setting the forecast for next week equal to the value of today. The second and the third
column show the average number of weeks a model outperforms given that it outperforms
in a certain week.

Model % Lowest Squared Error Length Outper MSPE Length Outper Sign

1. RW 21.2785 - -

2. AR(1) 4.9783 2.0125 2.2533

3. CSIR 7.8728 1.9686 2.2519

4. PCA 9.2055 1.8299 2.1890

5. 3PRF 15.424 1.7390 2.1725

6. PD PCA 10.8945 1.9147 2.2568

7. PD EW 2.3964 2.0108 2.2529

8. GC PCA 10.4752 1.8037 2.1478

9. GC EW 3.6113 1.9767 2.2369

10. LASSO PCA 10.9781 1.8272 2.1937

11. LASSO EW 2.8854 1.9958 2.2522
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Table 3 shows the forecast evaluations of the thirteen models by means of the measures described in

section 3.3. The first column indicates that none of the individual models outperforms the benchmark

model in terms of MSPE averaged over the companies. Furthermore, the second column, which shows

the percentage of companies a model has outperformed the benchmark model in terms of the MSPE,

shows that the best performing model only outperforms the benchmark for 5% of the companies. These

findings of poor forecast performance in terms of fit of the individual models are confirmed by the DM

statistic. The average Z-scores are negative indicating the benchmark model is on average better in

forecasting the CDS spread than the individual models.

Table 2 showed that the 3PRF and the two stage models with PCA were outperforming the bench-

mark in 10%-15% of the time. However, these models perform poorly when looking at both measures

of MSPE. The large MSPE value of 3PRF in combination with the results of Table 2 indicate the

3PRF is often able to construct good forecasts, but often makes large errors as well. In terms of aver-

age MSPE the two stage models with PCA outperform the two stage models with equal weighting of

forecasts. However, the latter outperforms the benchmark for more companies than the former. This

indicates that the two stage models with equal weighting are more often making large forecasting errors

compared to the two stage models with PCA.

The individual models show better results for the more economic relevant measures, although the av-

erages of the PCPS, PT , EP and JT do not seem promising. The directional accuracy tested by

PCPS and PT show similar results. None of the individual models outperforms the benchmark on

average. However, the performance of the models is much better in terms of direction than in terms of

fit. The EP test and the JT test incorporate the profitability of the buy/sell signals of the models by

putting more weight on forecasts if there is big change in the CDS spread. The EP test considers a buy

(sell) signal if the model predicts a positive (negative) change. This trading strategy is in line with the

last two columns of Table 3. Therefore, these two measures show similar results: models with higher

values in the two columns of the EP test are more profitable. Furthermore, if an investor would follow

the second trading strategy (last column) by reinvesting his total capital every week it can outperform

the benchmark strategy of Alwayslong. However, the JT test incorporates trading strategies with all

different possibilities of buy/sell signals. This test shows that the models outperform the benchmark

for more companies than the EP test. This indicates that an investor could make more money by

adjusting the threshold for the buy/sell signals from zero to another value.

The results of the forecast combinations confirm the motivation of the use of them. Forecast combina-

tions based on equal weighting (EW) outperforms the other models in terms of PCPS, EP and the

first trading strategy. However, Table 2 shows that there should exist a combination of forecasts that

could substantially improve the performance. Model 13 selects the models that outperformed in the last

period in terms of MSPE and constructs an equally weighted forecast combination with these models.

This type of combining improves the results substantially in terms of most of the measures. Especially

the EP test, JT test and the trading strategies indicate a big improvement. Even the number of

companies for which it has a smaller MSPE or DM statistic higher than 1.65 increases substantial.

This confirms the motivation of the use of combining forecasts. The improvement indicates that there
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are some periods of subsequent weeks where some of the models outperform the benchmark. How-

ever, model 14 shows outstanding results indicating that it outperforms the benchmark model. This

model selects the models that correctly predicted the direction of the CDS spread in the last period

and constructs an equally weighted forecast of these models. The outstanding results indicate that the

individual models correctly predict the sign in subsequent weeks. Not even in terms of the last six

measures, which mainly focus on the directional accuracy, but even for the measures of fit the model

shows huge improvements. Except for the DM-test, the percentage of companies for which model 14

outperforms the benchmark is higher than 75% for all other measures. The profits that could have been

made of the two trading strategies confirms that model 14 significantly outperforms all other models.
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4.3 Trading Strategies: luck or intelligence?

This last subsection analyses the performance of the models in more detail. In the previous section

the performance in terms of statistical and economic measures were discussed. These measures showed

the averages over all companies and reported the percentage of companies for which the models out-

performed. Especially the models based on combining the forecasts of the individual models seemed

to perform well over the entire sample. However, by approaching the results in more detail I tend to

answer the question whether these results are based on luck or whether the models are actually able

to construct good forecasts. The most straightforward way to answer this forecast is to look at the

the first trading strategy, which looks at the cumulative sum of weekly returns. This trading approach

does not require any complicated methods for giving buy and sell signals and is easy to interpret (more

money is better). Furthermore, this trading strategy is less influenced by past returns compared to the

second trading strategy of cumulative compounding of returns.

In the previous section, the combination of forecasts showed the best performance over the entire sam-

ple. With the last model, which selects the individual models that correctly predicted the sign in the

last period and equally weights the forecasts of these model for the next period, as clear winner in

terms of outperforming. Therefore, Figure 4 shows the cumulative sum of weekly returns for these

models and the benchmark model Always Long. The figure shows that the profitability at the end of

the sample is almost equal for Always Long (dark blue) and Lag MSPE EW (red). However, the

volatility of cumulative profits is much higher for Always Long. Thus, most investor would prefer the

trading strategy based on Lag MSPE EW , because it shows the same profits with less risk.

The dark blue (Always Long), green (EW ) and red (Lag MSPE EW ) lines show similar behaviour.

In the period 2007 to mid 2009 the trading strategies based on the first three models seem to be prof-

itable. After this period the profitability decreases. The two main reasons for this decrease are already

mentioned in section 1. The first reason is that the lag of transparency and large taken risk in CDS

contracts were the main drivers of the financial credit crisis. As a result, there has been a large push by

US regulatory and supervisory entities to the make the derivative market more transparent. Therefore,

investor who had an incentive of making profit on CDS contracts before the crisis were less interested

in trading these CDS contracts after this large push. Second, the market standard changed from the

MR clause to the NR clause in April 2009. Because of this event, there was much less trading in CDS

contracts with the MR clause, which resulted in less volatility in these CDS contracts after April 2009.

In this research I focus on the CDS contracts with the MR clause. Thus the volatility of the CDS

spreads in my dataset decreased after the introduction of the new standard.

In contrast to the decreasing profits of Always Long, EW , and Lag MSPE EW , the light blue line

(Lag Sign EW ) shows a stable increase of profits over time. In the last section, this combination of

forecasts showed to be able to outperform the benchmark over the entire period. Figure 4 shows that

it structurally outperforms the benchmark as well. Compared to the other models, this model is not

influenced by the financial crisis and the change of the new market standard. These results confirm

what is shown in Table 3 of the last section. Moreover, this model shows less volatility in profits than
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the Always Long strategy over time. Based on these results, the luck component of constructing fore-

casts for this strategy looks to be eliminated.

Appendix C shows the profitability of the other models over time. These figures confirm the results

of the previous findings. The profitability of the AR(1), CSIR, PCA and 3PRF models do not show

much volatility, but do not seem to be able to outperform the Always Long strategy. Of the six

new methods, the methods that use PCA in the second stage outperform the methods that use EW.

Furthermore, all six new methods show similar behaviour: the peaks are at the same time, but the

methods that use PCA in the second stage correctly predict the direction for more companies than the

methods that use EW.

Figure 4: The graph shows the performance of the first trading strategy over time. This
trading strategy goes long (short) 1$ in every company when a model forecasts a positive
(negative) change in the CDS spread. In other words, the graph shows the cumulative
sum of weekly returns over all companies. The dark blue line (Always Long) is the
benchmark model which always predicts a positive change. The other three models are the
combination of forecast models. On average, these models showed the best performance
over the entire sample (see Table 3).
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So far, the performance of the models is shown for the entire sample and for the profitability over time.

These results could be biased given that my sample consists out of 278 companies and the results shown

previously are all summed over the companies. Therefore, Figure 5 shows a histogram of the profitabil-

ity of all companies over the entire sample period. First thing to highlight is that the AlwaysLong

strategy is profitable for almost all companies (269 out of 278). Only the last model is profitable for

more companies (275). Models 1, 4, 6, 8, 10, 12, 13 show a clear right-skewed distribution. All other

models seem to be more centered around the mean. All individual models have a mean close to zero,

but most of them make huge losses for a small amount of companies and struggle to make up for these

losses with other companies. Therefore, the profits made by these models shown in Table 3 of the

previous section are somewhat disappointing.
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The profits of the combination of forecasts show on average good results for all companies. Both EW

(12) and Lag MSPE EW (13) do make huge losses for a couple of companies which looks like the

reason why these models do not structurally outperform the benchmark model. This is in contrast

to the last model, which already showed great results in the previous sections, but now confirms its

great ability to forecast the CDS spread. For only three companies this model was not able to generate

profitable trading strategies. The mean of the histogram centres around a 7$ dollar profit, which is

a huge improvement compared to the 2$ of the Alwayslong strategy. This indicates that on average

a ‘simple’ trading strategy based on model 14 would double an investor’s money seven times in the

period end of 2004 - beginning of 2013.

Figure 5: The histograms show the profitability of the first trading strategy in dollars of
all companies over the entire sample period. The number between brackets is the number
of companies for which a profit is earned at the end of the sample. Note the total number
of companies is equal to 278.
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5 Conclusion

In this paper, I provide a comprehensive study on the predictability of the 5-year CDS spreads of USD-

denominated contracts of U.S.-based obligors. The dataset comprises 278 companies over a period of

583 weeks. The predictability is analysed by the use of thirteen models. The first model is an ARMA

model and is the starting point for all other models. Nine of these models model the error term of the

ARMA by incorporating a large number of explanatory variables. One of the explanatory variables is

a new factor which captures the cross-sectional-idiosyncratic-risk of CDS spread, which shows to have

predictive power for the CDS spread. The other explanatory variables are constructed using data on

different asset classes, fundamentals and macro-economic variables. Three of the thirteen models are

combinations of forecasts of these nine models that incorporate explanatory variables.

Multiple variable reduction techniques are used for the forecasting models. Three new approaches of

variable reduction techniques are proposed. These techniques make use of a two stage approach. The

first stage selects a number of explanatory variables that have sufficient explanatory power. The second

stage either uses PCA to construct a forecast with these variables or equally weights the forecasts made

with models consisting of one of the selected variables. These models show an improvement to the more

original PCA.

The forecasting performance is evaluated using multiple statistical tests. These tests compare the fit

of the forecasts, the directional accuracy and the profitability of the models compared to a benchmark

model. On average, the models show better performance in terms of directional accuracy than in terms

of forecasting fit. I find that only a combination of forecasts is able to outperform benchmark models.

This indicates that the nine models that use explanatory variables do show periods of outperforming,

but are not able to structurally outperform the benchmark models. I find that a model that combines

forecasts of models that correctly predicted the sign in the previous period outperforms all other mod-

els. Moreover, trading strategies based on this model were able to generate huge profits. Investing one

dollar in every company at the end of 2004 and reinvesting the total capital made according to the

buy/sell signals of this model would yield a profit of $566,550.37 at the beginning of 2013. Following

this strategy, money is only lost for 3 out of 278 companies.

The impressive results show that this combination of forecasts approach can be useful in practice.

Investor can base profitable trading strategies on this approach and financial institutions can get an

advantage in credit hedging costs by potentially delaying the purchase of the CDS contract. However,

only the 5-year CDS contracts with the MR clause are considered. This clause was the market standard

until April 2009. Therefore, the decision to only include these contracts could have biased the results.

However, the decrease in number of CDS contracts did not decrease substantially after April 2009. This

research could be extended by including the new market standard, the NR clause, and incorporate CDS

spreads of different maturities, although liquidity will cause issues given that the 5-year CDS contract

is the most liquid among all maturities.
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The trading strategies give an indication of the performance of the models. These strategies do not

incorporate transaction costs and restrictions on short selling. More important, the trading strategies

trade in the underlying price of 5-year CDS contracts. To my knowledge, these type of price trackers

are not commonly offered by most brokers. Therefore, the profits made by these trading strategies do

not replicate a realistic scenario. However, in financial markets there is (almost) always a counterparty

who wants to take on the other side of a trade. Furthermore, these trading strategies are more realistic

when trading in derivatives with the 5-year CDS contracts as the underlying.

This paper makes three contributions to the literature. The first is the introduction of the Cross-

Sectional-Idiosyncratic-Risk factor, which shows to have predictive power for the CDS spread. The

second contribution consists of new techniques of variable reduction. These techniques tend to outper-

form the widely used PCA. Lastly, I show that these techniques can be used for models that forecast

the CDS spreads. By incorporating a large number of explanatory variables on different asset classes,

fundamentals and macro-economic variables the models are able to outperform benchmark models in

sub-samples of the dataset. A model that constructs the next period forecast by combining forecasts

of these models that correctly predicted the sign in the last period is able to detect the sub-samples

in which the models outperformed the benchmark. This model is able to outperform the benchmark

for the entire sample in terms of statistical and economic measures and two ‘simple’ trading strategies

based on the forecast direction are able to generate huge profits.



REFERENCES 39

References

Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy.

The journal of finance, 23(4):589–609.

Altman, E. I. (1989). Measuring corporate bond mortality and performance. Journal of finance, pages

909–922.

Anatolyev, S. and Gerko, A. (2005). A trading approach to testing for predictability. Journal of

Business & Economic Statistics, 23(4):455–461.

Armstrong, J. S. (2001). Combining forecasts. In Principles of forecasting, pages 417–439. Springer.

Armstrong, J. S. and Collopy, F. (1992). Error measures for generalizing about forecasting methods:

Empirical comparisons. International journal of forecasting, 8(1):69–80.

Bai, J. and Wu, L. (2012). Anchoring credit default swap spreads to firm fundamentals. Available at

SSRN 2020841.

Baillie, R. T., Booth, G. G., Tse, Y., and Zabotina, T. (2002). Price discovery and common factor

models. Journal of financial markets, 5(3):309–321.

Berndt, A. and Obreja, I. (2010). Decomposing european cds returns*. Review of Finance, 14(2):189–

233.

Berndt, A. and Ostrovnaya, A. (2007). Information flow between credit default swap, option and equity

markets. Tepper School of Business, Carnegie-Mellon Working Paper.

Bharath, S. T. and Shumway, T. (2004). Forecasting default with the kmv-merton model. In AFA 2006

Boston Meetings Paper.

Bharath, S. T. and Shumway, T. (2008). Forecasting default with the merton distance to default model.

Review of Financial Studies, 21(3):1339–1369.

Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. The journal of

political economy, pages 637–654.
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Jordà, Ò. and Taylor, A. M. (2011). Performance evaluation of zero net-investment strategies. Technical

report, National Bureau of Economic Research.

Kelly, B. and Pruitt, S. (2015). The three-pass regression filter: A new approach to forecasting using

many predictors. Journal of Econometrics, 186(2):294–316.

Lawrence, M. J., Edmundson, R. H., and O’Connor, M. J. (1986). The accuracy of combining judge-

mental and statistical forecasts. Management Science, 32(12):1521–1532.

Li, K. (2002). Long-memory versus option-implied volatility predictions. The Journal of Derivatives,

9(3):9–25.

Lin, H., Wu, C., and Zhou, G. (2015). Forecasting corporate bond returns: A regressed combination

approach. Available at SSRN 2346299.

Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates*. The

Journal of Finance, 29(2):449–470.

Obuchowski, N. A. (1994). Computing sample size for receiver operating characteristic studies. Inves-

tigative Radiology, 29(2):238–243.

Pearson, K. (1901). Liii. on lines and planes of closest fit to systems of points in space. The London,

Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572.

Peña, J. I. and Forte, S. (2006). Credit spreads: Theory and evidence about the information content of

stocks, bonds and cdss. Business Economics Working Papers, Universidad Carlos III, Departamento

de Economı́a de la Empresa.

Pesaran, M. H. and Timmermann, A. (1992). A simple nonparametric test of predictive performance.

Journal of Business & Economic Statistics, 10(4):461–465.

Rittler, D. (2012). Price discovery and volatility spillovers in the european union emissions trading

scheme: A high-frequency analysis. Journal of Banking & Finance, 36(3):774–785.

Schwarz, G. et al. (1978). Estimating the dimension of a model. The annals of statistics, 6(2):461–464.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society. Series B (Methodological), pages 267–288.



A DERIVATION KMV-MERTON MODEL 42

A Derivation KMV-merton model

The KMV-merton uses the proposed method of Merton (1974) by looking at the distance to default

(DD). The DD means the number of standard deviations the stock price is away from the point where

it defaults. After deriving this DD, one can approximate the implied probability of default by assuming

stock prices follow a normal distribution.

Merton (1974) uses a Black and Scholes (1973) framework where he states the value of a company

follows a geometric. This model is later developed and noways broadly used by credit rating agencies

such as Moodies and S&P and is often referred to as the KMV-model. In this model the capital

structure of a company is defined as follows:

VA(t) = D(t) + VE(t) (57)

Which in other words can be seen as the value of the assets of a company is the sum of the debt and

the equity value. In this framework the equity can be seen as a call option on the assets of the company

with strike price equal to the debt value. The value of the assets are assumed to follow a geometric

Brownian motion such that

dV = µV dt+ σvV dZ (58)

Given the equity is a call option on this value of assets with strike price equal to the debt value, the

equity price is obtained as

VE(t) = VA(t)Φ(d1)−D(t)exp(−r(T − t))Φ(d2) (59)

with:

d1 =
log
(
VA(t)
D(t)

)
+ (r − 0.5σ2A)(T − t)

σA
√
T − t

d2 = d1− σA
√
T − t

(60)

Using Ito’s formula once can show that

σE =
VA
VE

∂VE
∂VA

σA (61)

Then the Distance-to-Default is given by:

DD(t) =
log
(
VA(t)
D(t)

)
+ (r − 0.5σ2A)(T − t

σA
√
T − t

(62)

And implied probability of default:

IPDs(t) = P [VA ≤ D] = ... = Φ(−DD(t)) (63)

The value of the assets (VA(t)) and the volatility of the assets (σA) are obtained by simultaneously

solving Equations 59 and 61. This requires a lot of computational time for large datasets.
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B Forecast evaluation measures

Table B.1: The table shows the characteristics of the different forecasting evaluation mea-
sures described in section 3.3. The second column indicates whether a measure takes the
forecasting fit into consideration. The second and the third column indicate whether the
sign of the predicted change and the profitability are taken into consideration, respec-
tively. The fourth column shows the benchmarks of the forecasting measures. RW is
defined as the random walk, where the forecast for the next period is set to the value of
today. The coin-flip benchmark forecasts a 50% chance of correctly predicted the sign of
the change in CDS spread. The weighted coin-flip takes the realised number of positive
and negative changes into account and Always Long benchmark gives always buy signals
to a trader. The last column is especially for the JT measure, because that is the only
measure that takes different kind of buy/sell signals into consideration. The other mea-
sures which take profitability into account consider a buy (sell) signal when the predicted
change is positive (negative).

Measure Statistical test Fit Sign Profitability Benchmark Different type of investors

MSPE - + - - RW -

DM + + - - RW -

PCPS - - + - Coin-flip -

PT + - + - Weighted Coin-flip -

EP + - + + Weighted Coin-flip -

JT + - + + Weighted Coin-flip +

Trade 1 - - + + Always Long -

Trade 2 - - + + Always Long -
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C Figures trading strategies

Figure C.1: The graph shows the performance of the first trading strategy over time.
This trading strategy goes long (short) 1$ in every company when a model forecasts
a positive (negative) change in the CDS spread. In other words, the graph shows the
cumulative sum of weekly returns over all companies. The dark blue line (Always Long)
is the benchmark model which always predicts a positive change. The other models are
the first four models described in section 3.
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Figure C.2: The graph shows the performance of the first trading strategy over time. This
trading strategy goes long (short) 1$ in every company when a model forecasts a positive
(negative) change in the CDS spread. In other words, the graph shows the cumulative sum
of weekly returns over all companies. The dark blue line (Always Long) is the benchmark
model which always predicts a positive change. The other models are the six models that
use the three new variable reduction techniques.
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