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	 Abstract	 	
Communication	is	crucial	in	every	human	life.	It	also	is	very	versatile	and	widely	
studied	 in	 the	 economic	 discipline.	 One	 aspect	 of	 economics	 is	 the	 study	 of	
strategic	 communication,	 to	which	 this	 thesis	 contributes	 by	 creating	 a	model	
and	an	extension	to	this	model.	The	model	is	a	signaling	game	based	on	existing	
literature	(Crawford	and	Sobel,	1982;	Gibbons,	1992),	whereas	the	extension	is	
new	theory:	it	consists	of	a	communication	signal	prior	to	the	signaling	game.	In	
this	thesis,	it	is	proved	that	equilibria	exist	in	which	such	a	signal	is	sent	and	it	is	
proved	 that	 this	 signal	 enriches	 communication	 in	 the	 signaling	 game.	 A	
condition	for	such	an	equilibrium	to	exist	is	that	the	interest	asymmetry	between	
the	players	of	the	signaling	game	is	limited.	
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Introduction	

	
Rick	is	owner	of	a	company	and	wants	to	hire	an	employee.	Rick	invites	Scottie	
for	a	job	interview.	Like	every	employee,	Scottie	has	certain	skills.	Rick	quantifies	
the	skills	of	his	employees	relative	to	the	market	by	assigning	every	employee	a	
score	 that	 ranges	 from	 0	 to	 1,	 where	 0	 is	 the	 score	 of	 the	 employee	with	 the	
lowest	 skill	 and	1	 is	 the	 score	of	 the	 employee	with	 the	highest	 skill.	 The	 skill	
scores	correspond	to	functions	in	Rick’s	company.	Rick	does	not	know	Scottie’s	
skills.	Scottie	knows	her	own	skills	and	thus	which	score	she	should	get,	but	she	
tends	 to	 exaggerate	 it	 to	 get	 a	 higher	 function.	 Rick	 knows	 this.	 In	 the	 job	
interview,	 Scottie	 will	 communicate	 to	 Rick,	 signaling	 her	 skills.	 After	 the	 job	
interview,	Rick	will	 assign	Scottie	a	 function	 in	his	 company,	depending	on	his	
knowledge	about	Scottie’s	skills.	If	Scottie’s	message	cannot	be	trusted,	Rick	will	
expect	 her	 skill	 to	 be	 average.	 Prior	 to	 the	 job	 interview,	 Scottie	 considers	
sending	her	resume	 to	Rick.	From	the	resume,	Rick	can	 infer	whether	Scottie’s	
skills	 are	 below	 or	 above	 average,	 thereby	 bisecting	 Scottie’s	 possible	 skill	
scores.	Will	Scottie	send	her	resume	to	Rick?	

Ray	 owns	 a	 tennis	 club.	 To	 ensure	 fair	 opposition,	 Ray	 assigns	 all	 the	
members	of	the	tennis	club	a	score,	based	on	their	tennis	performance	relative	to	
the	other	members	of	the	club.	The	scores	range	from	0	to	1,	where	0	is	the	score	
of	 the	 worst	 performing	 member	 and	 1	 is	 the	 score	 of	 the	 best	 performing	
member.	 Since	 the	 scores	 measure	 relative	 performance,	 the	 scores	 are	
recalculated	when	 the	club	gains	or	 loses	members.	One	day,	Susan	becomes	a	
member	of	the	tennis	club.	Ray	needs	to	assign	Susan	a	score	based	on	her	tennis	
performance.	However,	 Ray	 does	 not	 know	 Susan’s	 tennis	 performance.	 Susan	
knows	her	own	tennis	performance	and	thus	knows	what	score	she	should	get,	
but	she	tends	to	exaggerate	it	to	get	to	play	against	better	opponents.	If	Susan’s	
message	cannot	be	trusted,	Ray	will	expect	her	score	to	be	average.	Susan	has	a	
friend	who	 is	 already	 a	member	 of	Ray’s	 tennis	 club.	 Prior	 to	 her	 first	 contact	
with	Ray,	Susan	can	ask	her	friend	to	tell	Ray	about	her	tennis	performance.	The	
friend	 is	 no	 tennis	 expert	 and	 can	only	 tell	 if	 Susan’s	 performance	 is	 below	or	
above	average.	Will	Susan	ask	her	 friend	to	 inform	Ray	about	her	performance	
prior	to	her	contact	with	Ray?	
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The	main	objective	of	this	thesis	is	exploring	whether	communication	of	partial	
information	 prior	 to	 a	 signaling	 game	 enriches	 the	 communication	 in	 the	
signaling	 game.	 To	 this	 end,	 a	model	 is	 developed	 in	 which	 two	 players,	 with	
asymmetrical	 information	 and	 asymmetrical	 interests,	 communicate.	 The	main	
feature	of	the	model	is	a	communication	signal	prior	to	the	signaling	game.	
	
The	 results	 of	 this	 thesis	 reveal	 that	 it	 is	 optimal	 for	 the	 player	 with	 partial	
information	 to	 share	 this	 information	and	 that	 there	 is	no	 incentive	 to	deceive	
the	 other	 player.	 Also,	 the	 results	 reveal	 that	 asymmetrical	 interests	 yield	
opaque	communication,	up	to	the	point	where	the	interests	are	so	asymmetrical	
that	communication	is	meaningless.	
	
The	 results	 of	 this	 thesis	 provide	 two	 insights.	 The	 first	 insight	 is	 that,	 when	
interest	asymmetry	 is	 limited,	most	of	 the	available	 information	will	be	shared	
through	both	the	signaling	game	and	the	signal	prior	to	the	signaling	game.	The	
second	insight	is	that,	as	the	interest	asymmetry	becomes	smaller,	more	specific	
information	can	be	shared,	that	is,	communication	becomes	richer.	
	
Two	findings	of	existing	literature	on	the	topic	are	proved	to	apply	to	the	model	
and	 its	 extension.	 Namely	 the	 ally	 principle,	which	 is	 claimed	 to	 be	 part	 of	 an	
ancient	wisdom	that	was	old	before	Rome	(Bendor,	Glazer	and	Hammond,	2001,	
p.	236)	and	the	communication	constraint	(Swank,	2016).	
	
There	 are	 more	 extensions	 to	 the	 cheap	 talk	 game	 à	 la	 Crawford	 and	 Sobel	
(1982).	For	example,	Sharif	(2016)	developed	a	model	in	which	the	information	
of	the	Sender	is	relevant	for	multiple	decisions	of	the	Receiver.	
	
This	thesis	continues	by	describing	the	model	(below)	and	its	equilibria	(on	page	
4).	 Thereafter,	 a	 model	 extension	 is	 presented	 (on	 page	 9)	 along	 with	 its	
corresponding	equilibria.	Finally,	a	conclusion	is	drawn	(on	page	17).	References	
can	be	found	on	page	19	and	appendices	start	on	page	19.	
	
	

Model	
	
This	model	and	 its	equilibria	are	based	on	a	cheap	talk	model	of	Crawford	and	
Sobel	 (1982)	 as	 described	 by	 Gibbons	 (1992).	 Consider	 a	 Sender,	𝑆,	 and	 a	
Receiver,	𝑅 .	𝑅 	has	 to	 take	 action	𝑎! 	from	 an	 infinite	 set	 of	 feasible	 actions	
𝐴 = [0,1].	𝑅’s	 optimal	 action,	𝑎!∗ ,	 depends	on	 the	 stochastic	 variable	𝑣,	which	 is	
uniformly	distributed	on	the	interval	[0,1].	𝑣	cannot	be	observed	by	𝑅,	but	can	be	
observed	by	𝑆.	𝑆	can	 inform	𝑅	about	 the	value	of	𝑣	by	 sending	message	𝑚! 	from	
an	 infinite	set	of	 feasible	messages	𝑀 = [0,1].	 	The	 interests	of	𝑆	and	𝑅	differ	 in	
the	 nonnegative	 parameter	𝑏.	 The	 payoffs	 of	𝑆	and	𝑅	are	 given	 by	 respectively	
𝑈! = − 𝑎! − 𝑣 + 𝑏 !	and	𝑈! = − 𝑎! − 𝑣 !.	
	
Timing:	

1. Nature	draws	𝑣	from	a	uniform	distribution	with	range	[0,1].	
2. 𝑆	observes	𝑣,	but	𝑅	does	not.	
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3. 𝑆	sends	message	𝑚! ∈ 𝑀 = [0,1].	
4. 𝑅	receives	𝑚!	and	chooses	action	𝑎! ∈ 𝐴 = [0,1].	
5. Payoffs	are	given	by	𝑈! = − 𝑎! − 𝑣 + 𝑏 !	and	𝑈! = − 𝑎! − 𝑣 !.	

	
	

Equilibria	
	
The	 equilibria	 for	 this	model	 are	 identified	 using	 backwards	 induction:	 firstly,	
the	strategy	of	𝑅	will	be	identified,	then	the	strategy	of	𝑆	will	be	identified.	

This	 section	 continues	 by	 explaining	 two	 extreme	 equilibria	 of	 the	
signaling	 game.	 In	 the	 first	 equilibrium,	 a	 perfect	 Bayesian	 equilibrium,	 no	
information	is	 lost	 in	the	communication.	In	the	second	equilibrium,	a	babbling	
equilibrium,	communication	contains	no	information	at	all.	

Then,	 two	 partially	 pooling	 equilibria	 with	 respectively	 two	 and	 three	
message	intervals	are	described.	Interested	readers	can	see	Appendix	E	on	page	
34	 for	 a	 description	 of	 a	 partially	 pooling	 equilibrium	 that	 is	 generalized	 to	𝑛	
steps.	
	
	

Perfect	Bayesian	equilibrium	
	
If	𝑏 = 0,	 the	 interests	 of	𝑆	and	𝑅	are	 perfectly	 aligned	 and	 a	 perfect	 Bayesian	
equilibrium	 with	 perfect	 communication	 exists.	 In	 such	 an	 equilibrium,	 no	
information	 is	 lost	 in	 the	 communication:	𝑆 	chooses	𝑚! = 𝑣 	and	𝑅 	chooses	
𝑎! = 𝑚! .	 For	 all	 values	 of	𝑣 ,	 this	 results	 in	𝑈! = − 𝑎! − 𝑣 + 𝑏 ! = − 𝑣 −
𝑣 + 0 ! = 0 	and	 𝑈! = − 𝑎! − 𝑣 ! = − 𝑣 − 𝑣 ! = 0 .	 In	 a	 perfect	 Bayesian	
equilibrium,	 the	 aggregate	 expected	 utility	 equals	 zero	 for	 both	𝑆	and	𝑅	on	 the	
entire	interval	[0,1].	No	other	equilibrium	yields	larger	aggregate	expected	utility	
than	this	perfect	Bayesian	equilibrium.	
	
	

Babbling	equilibrium	
	
A	babbling	equilibrium,	in	which	communication	is	meaningless,	always	exists	in	
a	cheap	talk	game.	In	such	an	equilibrium,	𝑅	always	chooses	𝑎!	independently	of	
𝑚!.	In	the	absence	of	information	infered	from	𝑚! ,	𝑅’s	expected	value	of	𝑣	equals	
1/2,	 so	𝑅	will	choose	𝑎! = 𝐸 𝑣 = 1/2	to	maximize	his	own	utility.	Since	𝑚! 	will	
be	ignored,	𝑆’s	choice	of	𝑚! 	does	not	influence	𝑆’s	payoff.	Therefore,	it	is	optimal	
for	𝑆	to	 send	𝑚! 	containing	no	 information,	 that	 is,	 sending	𝑚! 	independently	of	
𝑣.	
	
Each	 player’s	 aggregate	 expected	 utility	 in	 a	 babbling	 equilibrium	 can	 be	
calculated	using	only	one	integral,	since	each	player’s	actions	are	identical	for	all	
values	of	𝑣.	
	 𝑅 ’s	 aggregate	 expected	 utility	 equals	 − 𝑎! − 𝑣 !𝑑𝑣!

! ,	 which	 can	 be	

rewritten	as	 − !
!
− 𝑣

!
𝑑𝑣!

! 	and	equals	− !
!"
.	



	 5	

	 𝑆’s	aggregate	expected	utility	equals	 − 𝑎! − 𝑣 + 𝑏 !𝑑𝑣!
! ,	which	can	be	

rewritten	as	 − !
!
− 𝑣 − 𝑏

!
𝑑𝑣!

! 	and	equals	– 𝑏! − !
!"
.	

	
Note	that	 in	this	babbling	equilibrium,	there	are	no	restrictions	to	the	size	of	𝑏,	
other	 than	 the	 assumption	 of	 𝑏 ≥ 0 ,	 because	 there	 is	 complete	 loss	 of	
information	 in	 the	 communication.	 Fortunately,	 when	𝑏 > 0,	 partially	 pooling	
equilibria	can	exist.	
	
	

Partially	pooling	equilibria	
	
It	has	been	 shown	 that	when	𝑏 = 0,	 no	 information	 loss	 in	 communication	 can	
occur	in	a	perfect	Bayesian	equilibrium.	It	has	also	been	shown	that,	irrespective	
of	the	value	of	𝑏,	complete	information	loss	can	occur	in	a	babbling	equilibrium.	
There	exists	a	medium,	in	which	information	loss	in	the	communication	occurs,	
but	is	limited.	

When	𝑏 > 0 ,	 informative	 communication	 cannot	 be	 achieved	 when	𝑆	
sends	 a	message	 containing	 the	 exact	 value	 of	𝑣,	 since	 (per	 definition)	𝑆	and	𝑅	
have	asymmetrical	 interests.	 In	other	words,	when	𝑏 > 0,	𝑆's	optimal	action,	𝑎!∗,	
does	 not	 equal	𝑅's	 optimal	 action,	𝑎!∗ 	(i.e.	𝑎!∗ ≠ 𝑎!∗ ).	 A	 message	 that	 equals	𝑆’s	
optimal	 action	 (i.e.	𝑚! = 𝑎!∗ )	 cannot	 be	 an	 equilibrium,	 because	𝑅 	has	 an	
incentive	 to	deviate	 from	𝑚! ,	 since	 	𝑚! = 𝑎!∗ ≠ 𝑎!∗ .	Therefore,	𝑆	has	an	 incentive	
to	deceive	𝑅.	Thus,	when	𝑏 > 0	and	𝑆	sends	a	message	containing	the	exact	value	
of	𝑣,	this	message	is	not	trustworthy	and	an	equilibrium	cannot	exist.	

Instead,	when	𝑏 > 0,	𝑆	can	send	a	message	 that	 indicates	 that	𝑣	lies	on	a	
certain	 interval.	 By	 doing	 so,	 some	 information	 is	 lost,	 but	 the	 communication	
becomes	trustworthy.	Based	on	a	message	that	contains	the	 interval	of	𝑣,	𝑅	can	
update	his	expected	value	of	𝑣,	 leading	𝑅	to	choose	𝑎! = 𝐸(𝑣|𝑚!).	The	extend	to	
which	 the	 communication	 is	 informative	 depends	 on	 the	 size	 of	 the	 message	
interval:	 a	 smaller	 message	 interval	 contains	 more	 information,	 because	 the	
maximum	difference	between	the	exact	value	of	𝑣	and	𝑅’s	expected	value	of	𝑣	is	
smaller.	

This	section	continues	by	describing	two	partially	pooling	equilibria:	one	
with	two	message	intervals	and	one	with	three	message	intervals.	
	
	

Two-step	equilibrium	
	
Suppose	 that	 the	 interval	[0,1]	is	 split	 into	 two	 message	 intervals,	𝑚!	and	𝑚!,	
that	are	separated	by	point	𝑥!.	
	
If	𝑅	receives	𝑚!,	 he	 infers	 that	𝑣	lies	 on	 the	 interval	[0, 𝑥!],	 thus	 updating	 his	
expected	 value	 of	𝑣	to	𝑥!/2.	 This	 leads	𝑅	to	 choosing	𝑎! = 𝑎! = 𝐸 𝑣|𝑚! = 𝑥!/2	
to	maximize	his	own	utility.	

If	𝑅	receives	𝑚!,	he	infers	that	𝑣	lies	on	the	interval	[𝑥!, 1],	thus	updating	
his	 expected	 value	 of	 𝑣 	to	 (𝑥! + 1)/2 .	 This	 leads	 to	𝑅 	choosing	 𝑎! = 𝑎! =
𝐸 𝑣|𝑚! = (𝑥! + 1)/2	to	maximize	his	own	utility.	
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Anticipating	𝑅’s	strategy,	𝑆	sends	𝑚!	for	all	values	of	𝑣	on	the	interval	[0, 𝑥!)	and	
𝑚!	for	 all	 values	 of	𝑣	on	 the	 interval	(𝑥!, 1]	to	 maximize	 her	 own	 utility.	 One	
condition	 regarding	𝑆 ’s	 choice	 of	𝑚! 	arises:	 if	𝑣 = 𝑥! ,	𝑆 	must	 be	 indifferent	
between	sending	𝑚!	and	𝑚!,	that	is,	𝑈! 𝑚! 𝑣 = 𝑥! = 𝑈!(𝑚!|𝑣 = 𝑥!),	which	can	
be	 rewritten	 as	− 𝑎! − 𝑣 + 𝑏 ! = − 𝑎! − 𝑣 + 𝑏 ! .	 Given	 that	0 < 𝑎! < 𝑣 =
𝑥! < 𝑎!,	 the	 latter	 formula	 solves	 for	𝑥! = 1/2− 2𝑏	and	𝑏 < 1/4	(see	Appendix	
A.1	on	page	19).	

Recall	 that	𝑏	is	 nonnegative.	𝑏 < 1/4	is	 a	 necessary	 condition	 for	 a	 two-
step	equilibrium	to	exist	on	the	interval	[0,1].	If	𝑏 ≥ 1/4,	the	interests	of	𝑅	and	𝑆	
are	too	asymmetrical	for	a	two-step	equilibrium	to	exist	on	the	interval	[0,1].	In	
fact,	if	𝑏 ≥ 1/4,	the	only	equilibrium	that	exists	on	the	interval	[0,1],	is	a	babbling	
equilibrium.	
	
Given	 that	𝑥! = 1/2− 2𝑏,	 it	 can	 be	 proved	 that	 message	 interval	 2,	[𝑥!, 1],	 is	
longer	 than	 message	 interval	 1, [0, 𝑥!] ,	 that	 is:	1− 𝑥! > 𝑥! − 0 ,	 since	 this	
inequality	 yields	4𝑏 > 0,	 which	 implicates	 that	message	 interval	 2	 is	4𝑏	longer	
than	message	interval	1	(see	Appendix	A.2	on	page	20).	This	result	corresponds	
to	findings	of	Gibbons	(1992).	
	
A	player’s	aggregate	expected	utility	for	the	two-step	equilibrium	on	the	interval	
[0,1]	can	be	calculated	using	 the	sum	of	 two	 integrals.	The	 first	 integral	 covers	
the	 situation	 where	𝑣 = [0, 𝑥!],	𝑆	chooses	𝑚! = 𝑚!	and	𝑅	chooses	𝑎! = 𝑎! = 𝑥!/
2.	The	second	integral	covers	the	situation	where	𝑣 = [𝑥!, 1],	𝑆	chooses	𝑚! = 𝑚!	
and	𝑅	chooses	𝑎! = 𝑎! = (𝑥! + 1)/2.	

For	𝑅 ,	 the	 aggregate	 expected	 utility	 can	 be	 expressed	 as	 follows:	
𝑈!! = 𝑈!(𝑣|𝑚!)

!!
! 𝑑𝑣 + 𝑈!(𝑣|𝑚!) 𝑑𝑣

!
!!

,	 which	 can	 be	 rewritten	 as	 𝑈!! =

− !!
!
− 𝑣

!
𝑑𝑣!!

! + − !!!!
!
− 𝑣

!
𝑑𝑣!

!!
,	 which	 equals	−𝑏! − !

!"
	(see	 Appendix	

A.3.i	on	page	20).	
For 𝑆 ,	 the	 aggregate	 expected	 utility	 can	 be	 expressed	 as	 follows:	

𝑈!! = 𝑈!(𝑣|𝑚!)
!!
! 𝑑𝑣 + 𝑈!(𝑣|𝑚!) 𝑑𝑣

!
!!

,	 which	 can	 be	 rewritten	 as	 𝑈!! =

− !!
!
− 𝑣 + 𝑏

!
𝑑𝑣!!

! + − !!!!
!
− 𝑣 + 𝑏

!
𝑑𝑣!

!!
,	 which	 equals	 −2𝑏! − !

!"
	

(see	Appendix	A.3.ii	on	page	20).	
Note	 that	𝑅’s	 aggregate	 expected	 utility	 is	𝑏!	larger	 than	𝑆’s	 aggregate	

expected	utility.	This	difference	exists	because	𝑏	causes	𝑆	to	prefer	action	range	
[0+ 𝑏, 1+ 𝑏],	 although	 both	𝑣	and	𝑎	lie	 on	 the	 interval	[0,1].	 Therefore,	 for	 all	
values	of	𝑎!∗ > 1,	the	only	possible	action	closest	to	𝑎!∗	is	𝑎 = 1.	The	larger	𝑏,	the	
larger	 the	 difference	 between	 𝑎 	and	 𝑎!∗ .	 Since	 𝑅 ’s	 utility	 function	 is	 not	
dependent	 on	𝑏 ,	𝑅 ’s	 optimal	 action	 always	 lies	 on	 the	 interval	 [0,1] .	 The	
quadratic	character	of	the	difference	between	𝑅’s	aggregate	expected	utility	and	
𝑆’s	 aggregate	 expected	 utility	 is	 caused	 by	 the	 quadratic	 character	 of	𝑏	in	 the	
utility	function	of	𝑆.	

	
It	 has	 been	 demonstrated	 that	 when	 the	 interest	 asymmetry	 of	 the	 players	 is	
limited,	namely	𝑏 < 1/4,	 the	 loss	of	 information	 in	 the	communication	can	also	
be	limited.	This	result	corresponds	to	findings	of	Gibbons	(1992).	
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Moreover,	 a	 smaller	value	of	𝑏	can	make	 it	possible	 to	 limit	 information	
loss	 in	 the	 communication	 even	 further,	 as	will	 be	 illustrated	 in	 the	 following	
section.	
	
	

Three-step	equilibrium	
	
Suppose	 that	 the	 interval	[0,1]	is	 split	 into	 three	 message	 intervals,	𝑚! 	with	
𝑖 = {1, 2, 3}, 	where	𝑚! 	and	𝑚! 	are	 separated	 by	 point	𝑦! 	and	𝑚! 	and	𝑚! 	are	
seperated	by	point	𝑦!.	
	
If	𝑅	receives	𝑚!,	 he	 infers	 that	𝑣	lies	 on	 the	 interval	[0,𝑦!],	 thus	 updating	 his	
expected	 value	 of	𝑣	to	𝑦!/2.	 This	 leads	𝑅	to	 choosing	𝑎! = 𝑎! = 𝐸 𝑣|𝑚! = 𝑦!/2	
to	maximize	his	own	utility.	

If	𝑅	receives	𝑚!,	he	infers	that	𝑣	lies	on	the	interval	[𝑦!,𝑦!],	thus	updating	
his	 expected	 value	 of	𝑣 	to	 (𝑦! + 𝑦!)/2 .	 This	 leads	 to	𝑅 	choosing	𝑎! = 𝑎! =
𝐸 𝑣|𝑚! = (𝑦! + 𝑦!)/2	to	maximize	his	own	utility.	

If	𝑅	receives	𝑚!,	he	infers	that	𝑣	lies	on	the	interval	[𝑦!, 1],	thus	updating	
his	 expected	 value	 of	 𝑣 	to	 (𝑦! + 1)/2 .	 This	 leads	 to	𝑅 	choosing	 𝑎! = 𝑎! =
𝐸 𝑣|𝑚! = (𝑦! + 1)/2	to	maximize	his	own	utility.	
	
Anticipating	𝑅’s	strategy,	𝑆	sends	𝑚!	for	all	values	of	𝑣	on	the	interval	[0,𝑦!),	𝑚!	
for	all	values	of	𝑣	on	the	interval	(𝑦!,𝑦!)	and	𝑚!	for	all	values	of	𝑣	on	the	interval	
(𝑦!, 1]	to	 maximize	 her	 own	 utility.	 Two	 conditions	 regarding	𝑆’s	 choice	 of	𝑚! 	
arise.	
Firstly,	if	𝑣 = 𝑦!,	𝑆	must	be	indifferent	between	sending	𝑚!	and	𝑚!,	

that	is,	𝑈! 𝑚! 𝑣 = 𝑦! = 𝑈!(𝑚!|𝑣 = 𝑦!),	which	can	be	rewritten	as	

− 𝑎! − 𝑣 + 𝑏 ! = − 𝑎! − 𝑣 + 𝑏 !.	Given	that	0 < 𝑎! < 𝑣 = 𝑦! <

𝑎!,	the	latter	formula	solves	for	𝑦! = 𝑦!/2 − 2𝑏	and	𝑏 < 𝑦!/4	(see		
Appendix	B.1.i	on	page	21).	
Secondly,	 if	𝑣 = 𝑦! ,	𝑆	must	 be	 indifferent	 between	 sending	𝑚! 	and	𝑚! ,	

that	 is,	𝑈! 𝑚! 𝑣 = 𝑦! = 𝑈!(𝑚!|𝑣 = 𝑦!) ,	 which	 can	 be	 rewritten	 as	− 𝑎! −
𝑣 + 𝑏 ! = − 𝑎! − 𝑣 + 𝑏 ! .	 The	 latter	 formula	 solves	 for	 𝑦! = 1/3− 4𝑏 ,	
𝑦! = 2/3− 4𝑏	and	𝑏 < 1/12	(see	Appendix	B.1.ii	on	page	21).	

Recall	that	𝑏	is	nonnegative.	𝑏 < 1/12	is	a	necessary	condition	for	a	three-
step	equilibrium	to	exist	on	the	interval	[0,1].	If	𝑏 ≥ 1/12,	the	interests	of	𝑅	and	
𝑆	are	too	asymmetrical	for	a	three-step	equilibrium	to	exist	on	the	interval	[0,1]. 
	
Given	 that	𝑦! = 2/3− 4𝑏,	 it	 can	 be	 proved	 that	 message	 interval	 3,	[𝑦!, 1],	 is	
longer	 than	 message	 interval	 2,	[𝑦!,𝑦!] ,	 that	 is:	1− 𝑦! > 𝑦! − 𝑦! ,	 since	 this	
inequality	 yields	4𝑏 > 0,	 which	 implicates	 that	message	 interval	 3	 is	4𝑏	longer	
than	message	interval	2	(see	Appendix	B.2.i	on	page	22).	Note	that	the	difference	
in	interval	length	in	the	two-step	equilibrium	also	equals	4𝑏	(recall	Appendix	A.2	
on	page	20).	

Also,	given	that	𝑦! = 1/3− 4𝑏,	 it	can	be	proved	that	message	 interval	2,	
[𝑦!,𝑦!],	 is	 longer	than	message	interval	1,	[0,𝑦!],	 that	is:	𝑦! − 𝑦! > 𝑦! − 0,	since	
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this	 inequality	 yields	4𝑏 > 0,	 which	 implicates	 that	 message	 interval	 2	 is	4𝑏	
longer	 than	message	 interval	1	 (see	Appendix	B.2.ii	on	page	22).	Note	 that	 the	
difference	in	interval	length	in	both	the	two-step	equilibrium	and	the	three-step	
equilibrium	 equals	 4𝑏	for	 all	 intervals	 (recall	 Appendix	 A.2	 on	 page	 20	 and	
Appendix	B.2.i	on	page	22).	

	
A	 player’s	 aggregate	 expected	 utility	 for	 the	 three-step	 equilibrium	 on	 the	
interval	[0,1]	can	be	calculated	using	the	sum	of	three	integrals.	The	first	integral	
covers	 the	 situation	 where	 𝑣 = [0,𝑦!] ,	 𝑆 	chooses	 𝑚! = 𝑚! 	and	 𝑅 	chooses	
𝑎! = 𝑎! = 𝑦!/2.	 The	 second	 integral	 covers	 the	 situation	 where	𝑣 = [𝑦!,𝑦!],	𝑆	
chooses	𝑚! = 𝑚!	and	𝑅	chooses	𝑎! = 𝑎! = (𝑦! + 𝑦!)/2.	The	third	integral	covers	
the	 situation	 where	𝑣 = [𝑦!, 1] ,	𝑆 	chooses	𝑚! = 𝑚! 	and	𝑅 	chooses	𝑎! = 𝑎! =
(𝑦! + 1)/2.	

For	𝑅 ,	 the	 aggregate	 expected	 utility	 can	 be	 expressed	 as	 follows:	
𝑈!! = 𝑈!(𝑣|𝑚!)

!!
! 𝑑𝑣 + 𝑈!(𝑣|𝑚!) 𝑑𝑣

!!
!!

+ 𝑈!(𝑣|𝑚!) 𝑑𝑣
!
!!

,	 which	 can	 be	

rewritten	 as	 𝑈!! = − !!
!
− 𝑣

!
𝑑𝑣!!

! + − !!!!!
!

− 𝑣
!
𝑑𝑣!!

!!
+ − !!!!

!
−!

!!

𝑣
!
𝑑𝑣,	which	equals	− !

!
𝑏! − !

!"#
	(see	Appendix	B.3.i	on	page	22).		

For 𝑆 ,	 the	 aggregate	 expected	 utility	 can	 be	 expressed	 as	 follows:	
𝑈!! = 𝑈!(𝑣|𝑚!)

!!
! 𝑑𝑣 + 𝑈!(𝑣|𝑚!) 𝑑𝑣

!!
!!

+ 𝑈!(𝑣|𝑚!) 𝑑𝑣
!
!!

,	 which	 can	 be	

rewritten	 as	 𝑈!! = − !!
!
− (𝑣 + 𝑏)

!
𝑑𝑣!!

! + − !!!!!
!

− (𝑣 + 𝑏)
!
𝑑𝑣!!

!!
+

− !!!!
!
− (𝑣 + 𝑏)

!
𝑑𝑣!

!!
,	 which	 equals	− !!

!
𝑏! − !

!"#
	(see	 Appendix	 B.3.ii	 on	

page	23).	
Note	 that	𝑅’s	 aggregate	 expected	 utility	 is	𝑏!	larger	 than	𝑆’s	 aggregate	

expected	 utility.	 This	 is	 also	 observed	 in	 the	 two-step	 quilibrium,	 where	 it	 is	
explained	(recall	Two-step	equilibrium	on	page	5).	
	
	

Conclusion	partially	pooling	equilibria	
	
It	 has	 been	 proved	 that	 when	𝑏 < 1/4,	 a	 two-step	 equilibrium	 exists	 and	 that	
when	𝑏 < 1/12,	a	three-step	equilibrium	exist.	In	the	three-step	equilibrium,	less	
information	 is	 lost	 in	 the	 communication	 than	 in	 the	 two-step	 equilibrium.	
Therefore,	a	three-step	equilibrium	is	more	efficient	than	a	two-step	equilibrium.	
	
	

Examples	
	
Scenario	1:	Suppose	that	𝑏 = 1/4.	The	only	equilibrium	that	exists	is	a	babbling	
equilibrium.	 Communication	 contains	 no	 information	 and	 the	 aggregate	

expected	utility	equals	− !
!"
	for	𝑅	and	– 𝑏! − !

!"
= − !

!

!
− !

!"
= − !

!"
	for	𝑆.	

	
Scenario	 2:	 Suppose	 that	𝑏 = 1/12 .	 Compared	 to	 Scenario	 1,	 the	 interest	
asymmetry	 between	𝑅	and	𝑆	declined.	 Now,	 next	 to	 a	 babbling	 equilibrium,	 a	
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two-step	 equilibrium	 exists.	 Since	𝑏 ≮ 1/12,	 a	 three-step	 equilibrium	 does	 not	
exist.	

In	the	babbling	equilibrium,	the	aggregate	expected	utility	equals	− !
!"
	for	

𝑅	and	– 𝑏! − !
!"
= − !

!"

!
− !

!"
= − !"

!""
	for	𝑆.	

In	 the	 two-step	 equilibrium,	 the	 aggregate	 expected	 utility	 equals	

– 𝑏! − !
!"
= − !

!"

!
− !

!"
= − !

!"
	for	𝑅	and	−2𝑏! − !

!"
= −2 !

!"

!
− !

!"
= − !

!""
.	

Note	 that,	 compared	 to	 the	 babbling	 equilibrium,	 in	 the	 two-step	
equilibrium	communication	is	richer	and	both	players	are	better	off.	
	
	

Model	extension	
	
Assume	 that	𝑆	gains	partial	 information	before	 the	 initial	model	 is	played.	This	
information	contains	the	certainty	whether	𝑣	lies	on	the	interval	 0, !

!
,	interval	I,	

or	on	the	interval	 !
!
, 1 ,	interval	II.	Does	𝑆	have	an	incentive	to	share	this	partial	

information?	 To	 answer	 this	 question,	 the	 utility	 of	𝑆 	in	 the	 situation	 of	
concealing	 the	 partial	 information	 will	 be	 compared	 to	 the	 utility	 of	𝑆	in	 the	
situation	of	sharing	the	partial	information.	
	
For	the	model	extension,	an	extra	step	in	the	timing	is	added,	namely	step	2	as	
described	below.	
	
Timing:	

1. Nature	draws	𝑣	from	a	uniform	distribution	with	range	[0,1].	
2. 𝑆	observes	whether	𝑣	lies	on	 0, !

!
	or	 !

!
, 1 	and	chooses	either	 to	 conceal	

or	to	share	this	information	with	𝑅.	
3. 𝑆	observes	the	exact	value	of	𝑣,	but	𝑅	does	not.	
4. 𝑆	sends	message	𝑚! ∈ 𝑀 = [0,1].	
5. 𝑅	receives	𝑚!	and	chooses	action	𝑎! ∈ 𝐴 = [0,1].	
6. Payoffs	are	given	by	𝑈! = − 𝑎! − 𝑣 + 𝑏 !	and	𝑈! = − 𝑎! − 𝑣 !.	

	
Note	 that	when	𝑆	is	credible	and	chooses	 to	share	the	partial	 information,	both	
players	know	whether	𝑣	lies	on	 interval	 I	or	on	 interval	 II.	Therefore,	 although	
𝑚! ∈ 𝑀 = [0,1]	and	𝑎! ∈ 𝐴 = [0,1],	 in	 equilibrium,	 both	𝑚! 	and	𝑎! 	will	 lie	 on	 the	
interval	𝑣	is	known	to	lie	on.	
	
This	 thesis	 continues	 by	 describing	 the	 extended	 equilibria	 of	 two	 partially	
pooling	equilibria	with	respectively	two	and	three	steps.	
	
	

Extended	two-step	equilibrium	
	
Suppose	 that	𝑆	learns	 that	𝑣	lies	 on	 interval	 I.	 If	𝑅	receives	𝑚!,	 he	 infers	 that	𝑣	
lies	 on	 the	 interval	[0, 𝑥!],	 thus	 updating	 his	 expected	 value	 of	𝑣	to	𝑥!/2.	 This	
leads	𝑅	to	choosing	𝑎! = 𝑎! = 𝐸 𝑣|𝑚! = 𝑥!/2	to	maximize	his	own	utility.	
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If	𝑅 	receives	𝑚! ,	 he	 infers	 that	𝑣 	lies	 on	 the	 interval	 𝑥!, 1/2 ,	 thus	
updating	 his	 expected	 value	 of	𝑣 	to	(𝑥! + 1/2 )/2 .	 This	 leads	 to	𝑅 	choosing	
𝑎! = 𝑎! = 𝐸 𝑣|𝑚! = (𝑥! + 1/2)/2	to	maximize	his	own	utility.	

Anticipating	𝑅’s	 strategy,	𝑆	sends	𝑚! 	for	 all	 values	 of	𝑣	on	 the	 interval	
[0, 𝑥!)	and	𝑚!	for	 all	 values	 of	𝑣	on	 the	 interval	(𝑥!, 1/2]	to	 maximize	 her	 own	
utility.	 One	 condition	 regarding	𝑆 ’s	 choice	 of	𝑚! 	arises:	 if	𝑣 = 𝑥! ,	𝑆 	must	 be	
indifferent	between	sending	𝑚!	and	𝑚!,	that	is,	𝑈! 𝑚! 𝑣 = 𝑥! = 𝑈!(𝑚!|𝑣 = 𝑥!),	
which	 can	 be	 rewritten	 as	− 𝑎! − 𝑣 + 𝑏 ! = − 𝑎! − 𝑣 + 𝑏 ! .	 Given	 that	
0 < 𝑎! < 𝑣 = 𝑥! < 𝑎!,	 the	 latter	 formula	 solves	 for	𝑥! = 1/4− 2𝑏	and	𝑏 < 1/8	
(see	Appendix	C.1	on	page	24).	

Given	 that	𝑥! = 1/4− 2𝑏 ,	 it	 can	 be	 proved	 that	 message	 interval	 2,	
[𝑥!, 1/2],	 is	 longer	 than	 message	 interval	 1,	[0, 𝑥!],	 that	 is:	1/2− 𝑥! > 𝑥! − 0,	
since	 this	 inequality	 yields	4𝑏 > 0 ,	 which,	 given	 that	𝑏 > 0 ,	 implicates	 that	
message	 interval	 2	 is	4𝑏	longer	 than	message	 interval	 1	 (see	 Appendix	 C.2	 on	
page	24).	Note	that	the	difference	in	interval	length	of	all	initial	equilibria	equals	
4𝑏	for	all	intervals	(recall	Equilibria	on	page	4).	

A	player’s	aggregate	expected	utility	for	the	two-step	equilibrium	on	the	
interval	[0,1/2]	can	 be	 calculated	 using	 the	 sum	 of	 two	 integrals.	 The	 first	
integral	covers	the	situation	where	𝑣 = [0, 𝑥!],	𝑆	chooses	𝑚! = 𝑚!	and	𝑅	chooses	
𝑎! = 𝑎! = 𝑥!/2.	 The	 second	 integral	 covers	 the	 situation	where	𝑣 = [𝑥!, 1/2],	𝑆	
chooses	𝑚! = 𝑚!	and	𝑅	chooses	𝑎! = 𝑎! = (𝑥! + 1/2)/2.	

For	𝑅 ,	 the	 aggregate	 expected	 utility	 can	 be	 expressed	 as	 follows:	

𝑈!! = 𝑈!(𝑣|𝑚!)
!!
! 𝑑𝑣 + 𝑈!(𝑣|𝑚!) 𝑑𝑣

!
!
!!

,	 which	 can	 be	 rewritten	 as	 𝑈!! =

− !!
!
− 𝑣

!
𝑑𝑣!!

! + − !!!!/!
!

− 𝑣
!
𝑑𝑣

!
!
!!

,	 which	 equals	 − !
!
𝑏! − !

!"#
	(see	

Appendix	C.3.i	on	page	24).	
For 𝑆 ,	 the	 aggregate	 expected	 utility	 can	 be	 expressed	 as	 follows:	

𝑈!! = 𝑈!(𝑣|𝑚!)
!!
! 𝑑𝑣 + 𝑈!(𝑣|𝑚!) 𝑑𝑣

!
!
!!

,	 which	 can	 be	 rewritten	 as	 𝑈!! =

− !!
!
− 𝑣 + 𝑏

!
𝑑𝑣!!

! + − !!!!/!
!

− 𝑣 + 𝑏
!
𝑑𝑣

!
!
!!

,	 which	 equals	−𝑏! − !
!"#
	

(see	Appendix	C.3.ii	on	page	25).	
	
Suppose	 that	𝑆	learns	 that	𝑣	lies	 on	 interval	 II.	 If	𝑅	receives	𝑚!,	 he	 infers	 that	𝑣	
lies	on	the	interval	[1/2, 𝑥!],	thus	updating	his	expected	value	of	𝑣	to	(1/2+ 𝑥!)/
2.	 This	 leads	𝑅	to	 choosing	𝑎! = 𝑎! = 𝐸 𝑣|𝑚! = (1/2+ 𝑥!)/2	to	 maximize	 his	
own	utility.	

If	𝑅	receives	𝑚!,	he	infers	that	𝑣	lies	on	the	interval	[𝑥!, 1],	thus	updating	
his	 expected	 value	 of	 𝑣 	to	 (𝑥! + 1)/2 .	 This	 leads	 to	𝑅 	choosing	 𝑎! = 𝑎! =
𝐸 𝑣|𝑚! = (𝑥! + 1)/2	to	maximize	his	own	utility.	

Anticipating	𝑅’s	 strategy,	𝑆	sends	𝑚! 	for	 all	 values	 of	𝑣	on	 the	 interval	
[1/2, 𝑥!)	and	𝑚!	for	 all	 values	 of	𝑣	on	 the	 interval	(𝑥!, 1]	to	 maximize	 her	 own	
utility.	 One	 condition	 regarding	𝑆 ’s	 choice	 of	𝑚! 	arises:	 if	𝑣 = 𝑥! ,	𝑆 	must	 be	
indifferent	between	sending	𝑚!	and	𝑚!,	that	is,	𝑈! 𝑚! 𝑣 = 𝑥! = 𝑈!(𝑚!|𝑣 = 𝑥!),	
which	 can	 be	 rewritten	 as	− 𝑎! − 𝑣 + 𝑏 ! = − 𝑎! − 𝑣 + 𝑏 ! .	 Given	 that	
0 < 𝑎! < 𝑣 = 𝑥! < 𝑎!,	 the	 latter	 formula	 solves	 for	𝑥! = 3/4− 2𝑏	and	𝑏 < 3/8	
(see	Appendix	C.4	on	page	25).	

Given	 that	𝑥! = 3/4− 2𝑏 ,	 it	 can	 be	 proved	 that	 the	 interval	[𝑥!, 1]	is	
longer	 than	 interval	[1/2, 𝑥!],	 that	 is:	1− 𝑥! > 𝑥! − 1/2,	 since	 this	 inequality	
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yields	4𝑏 > 0,	 which,	 given	 that	𝑏 > 0,	 implicates	 that	 the	 interval	 [𝑥!, 1]	is	4𝑏	
longer	 than	 the	 interval	[1/2, 𝑥!]	(see	Appendix	 C.5	 on	 page	 26).	Note	 that	 the	
difference	 in	 interval	 length	of	all	 initial	equilibria	(recall	Equilibria	on	page	4)	
and	the	extended	two-step	equilibrium	on	interval	I	equals	4𝑏	for	all	intervals.	

A	player’s	aggregate	expected	utility	for	the	two-step	equilibrium	on	the	
interval	[1/2,1]	can	 be	 calculated	 using	 the	 sum	 of	 two	 integrals.	 The	 first	
integral	 covers	 the	 situation	 where	𝑣 = [1/2, 𝑥!] ,	𝑆 	chooses	𝑚! = 𝑚! 	and	𝑅	
chooses	𝑎! = 𝑎! = (1/2+ 𝑥!)/2.	The	second	integral	covers	the	situation	where	
𝑣 = [𝑥!, 1],	𝑆	chooses	𝑚! = 𝑚!	and	𝑅	chooses	𝑎! = 𝑎! = (𝑥! + 1)/2.	

For	𝑅 ,	 the	 aggregate	 expected	 utility	 can	 be	 expressed	 as	 follows:	
𝑈!!! = 𝑈!(𝑣|𝑚!)

!!
!
!

𝑑𝑣 + 𝑈!(𝑣|𝑚!) 𝑑𝑣
!
!!

,	 which	 can	 be	 rewritten	 as	 𝑈!!! =

− !!!!
!
− 𝑣

!
𝑑𝑣!!

!
!

+ − !!!!
!
− 𝑣

!
𝑑𝑣!

!!
,	 which	 equals	 − !

!
𝑏! − !

!"#
	(see	

Appendix	C.6.i	on	page	26).	
For 𝑆 ,	 the	 aggregate	 expected	 utility	 can	 be	 expressed	 as	 follows:	

𝑈!!! = 𝑈!(𝑣|𝑚!)
!!
!
!

𝑑𝑣 + 𝑈!(𝑣|𝑚!) 𝑑𝑣
!
!!

,	 which	 can	 be	 rewritten	 as	 𝑈!!! =

−
!
!!!!
!
− 𝑣 + 𝑏

!

𝑑𝑣!!
!
!

+ − !!!!
!
− 𝑣 + 𝑏

!
𝑑𝑣!

!!
,	 which	 equals	−𝑏! − !

!"#
	

(see	Appendix	C.6.ii	on	page	27).	
	
Note	that	the	aggregate	expected	utility	outcomes	are	identical	for	the	respective	
players	 on	 the	 intervals	 I	 and	 II.	 Also	 note	 that	 the	 difference	 in	 aggregate	
expected	utility	of	𝑅	en	𝑆	has	bisected	relative	to	the	situation	where	𝑣	lies	on	the	
interval	[0,1].	 This	 occurs	 because	 the	 difference	 between	 the	 high	 end	 of	 the	
interval	and	the	largest	𝑎!∗	has	also	bisected	relative	to	the	situation	where	𝑣	lies	
on	the	interval	[0,1].	
	
Irrespective	 of	 the	 value	 of	𝑣,	 for	𝑆,	 choosing	 to	 share	 the	 partial	 information	
with	𝑅 	yields	 an	 aggregate	 expected	 utility	 of	𝑈!! = 𝑈!! + 𝑈!!! = −𝑏! − !

!"#
+

−𝑏! − !
!"#

= −2𝑏! − !
!"#
,	 while	 choosing	 to	 conceal	 the	 partial	 information	

yields	−2𝑏! − !
!"
	(recall	Appendix	A.3.ii	on	page	20).	Hence,	by	truthfully	sharing	

the	 partial	 information,	𝑆	has	 a	 gain	 in	 aggregate	 expected	 utility	 of	 −2𝑏! −
!
!"#

− −2𝑏! − !
!"

= !
!"
.	

	
	

Extended	two-step	equilibrium	-	will	𝑆	deviate?	
	
In	order	to	explore	whether	𝑆	has	an	incentive	to	deviate	from	the	extended	two-
step	equilibrium,	 this	 section	explicates	 two	scenarios	 in	which	𝑆	deceives	𝑅	by	
sharing	 incorrect	 partial	 information.	 In	 both	 scenarios,	 𝑅 	believes	 𝑆 	and	
responds	 accordingly.	 Note	 that	𝑅’s	 responses	 have	 already	 been	 described	 in	
the	previous	section	(recall	Extended	two-step	equilibrium	on	page	9).	
	
In	 the	 first	 scenario,	𝑆	observes	 that	𝑣 	lies	 on	 interval	 I	 and	𝑆	deceives	𝑅 	by	
sharing	 partial	 information	 that	 indicates	 that	𝑣	lies	 on	 interval	 II.	 In	 second	
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scenario,	𝑆	observes	that	𝑣	lies	on	interval	 II	and	𝑆	deceives	𝑅	by	sharing	partial	
information	that	indicates	that	𝑣	lies	on	interval	I.	For	both	scenarios,	𝑆’s	optimal	
𝑚! 	will	 be	 determined.	 Each	 scenario	 concludes	 with	 comparing	𝑆’s	 aggregate	
expected	utility	in	that	scenario	with	𝑆’s	aggregate	expected	utility	in	a	situation	
of	always	 telling	 the	 truth,	𝑈!! = 𝑈!!! = −𝑏! − !

!"#
	(recall	Appendix	C.6.ii	on	page	

27).	
Suppose	 that	𝑆	observes	 that	𝑣	lies	on	 interval	 I	 and	 that	𝑆	deceives	𝑅	by	

sharing	 partial	 information	 that	 indicates	 that	𝑣	lies	 on	 interval	 II.	 Note	 that	
𝑥! =

!
!
− 2𝑏 	(recall	 Appendix	 C.4	 on	 page	 25)Given	𝑅 ’s	 belief	 that	𝑣 	lies	 on	

interval	 II,	𝑆	will	 choose	 a	 utility	 maximizing	𝑚! .	𝑆’s	 aggregate	 expected	 utility	

when	 always	 sending	𝑚! = 𝑚!	equals	𝑈!
!!! = − !/!!!!

!
− 𝑣 + 𝑏

!
𝑑𝑣

!
!
! ,	 which	

equals	−2𝑏! + !
!
𝑏 − !"

!"#
.	𝑆’s	 aggregate	 expected	 utility	 when	 sending	𝑚! = 𝑚!	

equals	𝑈!
!!! = − !!!!

!
− 𝑣 + 𝑏

!
𝑑𝑣

!
!
! ,	 which	 equals	−2𝑏! + !

!
𝑏 − !"

!"#
.	 For	 all	

values	 of	𝑏 < 1/4,	𝑈!
!!! > 𝑈!

!!! ,	 so	𝑆	will	 send	𝑚! = 𝑚!	when	 she	 knows	 that	𝑣	
lies	 on	 interval	 I	 and	𝑅	thinks	 that	𝑣	lies	 on	 interval	 II.	 Yet,	𝑈!

!!! < 𝑈!! ,	 so	𝑆	will	
not	deceive	𝑅.	

Suppose	that	𝑆	observes	that	𝑣	lies	on	interval	II	and	that	𝑆	deceives	𝑅	by	
sharing	 partial	 information	 that	 indicates	 that	𝑣	lies	 on	 interval	 I.	 Note	 that	
𝑥! =

!
!
− 2𝑏	(recall	 Appendix	 C.1	 on	 page	 24).	 Given	𝑅’s	 belief	 that	𝑣	lies	 on	

interval	 I,	𝑆	will	 choose	 a	 utility	 maximizing	𝑚! .	𝑆’s	 aggregate	 expected	 utility	

when	 always	 sending	𝑚! = 𝑚! 	equals	𝑈!
!!"! = − !!

!
− 𝑣 + 𝑏

!
𝑑𝑣!

!
!

,	 which	

equals	−2𝑏! − !
!
𝑏 − !"

!"#
.	𝑆’s	 aggregate	 expected	 utility	 when	 sending	𝑚! = 𝑚!	

equals	𝑈!
!!"! = − !/!!!!

!
− 𝑣 + 𝑏

!
𝑑𝑣!

!
!

,	which	equals	−2𝑏! − !
!
𝑏 − !"

!"#
.	For	all	

values	of	𝑏,	𝑈!
!!!! < 𝑈!

!!!! ,	 so	𝑆	will	 send	𝑚! = 𝑚!	when	she	knows	 that	𝑣	lies	on	
interval	 II	 and	𝑅	thinks	 that	𝑣	lies	 on	 interval	 I.	 Yet,	𝑈!

!!"! < 𝑈!! ,	 so	𝑆	will	 not	
deceive	𝑅.	
	
It	 has	 been	 proved	 that,	 in	 an	 extended	 two-step	 equilibrium	 on	 the	 interval	
[0,1],	𝑆	will	truthfully	share	the	partial	information	with	𝑅.	
	
	

Extended	three-step	equilibrium	
	
Suppose	 that	𝑆	learns	 that	𝑣	lies	 on	 interval	 I.	 If	𝑅	receives	𝑚!,	 he	 infers	 that	𝑣	
lies	 on	 the	 interval	[0,𝑦!],	 thus	 updating	 his	 expected	 value	 of	𝑣	to	𝑦!/2.	 This	
leads	𝑅	to	choosing	𝑎! = 𝑎! = 𝐸 𝑣|𝑚! = 𝑦!/2	to	maximize	his	own	utility.	

If	𝑅	receives	𝑚!,	he	infers	that	𝑣	lies	on	the	interval	[𝑦!,𝑦!],	thus	updating	
his	 expected	 value	 of	𝑣 	to	 (𝑦! + 𝑦!)/2 .	 This	 leads	 to	𝑅 	choosing	𝑎! = 𝑎! =
𝐸 𝑣|𝑚! = (𝑦! + 𝑦!)/2	to	maximize	his	own	utility.	

If	𝑅 	receives	𝑚! ,	 he	 infers	 that	𝑣 	lies	 on	 the	 interval	 [𝑦!, 1/2] ,	 thus	
updating	 his	 expected	 value	 of	𝑣 	to	(𝑦! + 1/2)/2 .	 This	 leads	 to	𝑅 	choosing	
𝑎! = 𝑎! = 𝐸 𝑣|𝑚! = (𝑦! + 1/2)/2	to	maximize	his	own	utility.	
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Anticipating	𝑅’s	 strategy,	𝑆	sends	𝑚! 	for	 all	 values	 of	𝑣	on	 the	 interval	
[0,𝑦!),	𝑚!	for	all	values	of	𝑣	on	the	interval	(𝑦!,𝑦!)	and	𝑚!	for	all	values	of	𝑣	on	
the	 interval	(𝑦!, 1/2]	to	maximize	her	own	utility.	Two	conditions	regarding	𝑆’s	
choice	of	𝑚! 	arise.	

Firstly,	 if	𝑣 = 𝑦!,	𝑆	must	 be	 indifferent	 between	 sending	𝑚!	and	𝑚!,	 that	
is,	𝑈! 𝑚! 𝑣 = 𝑦! = 𝑈!(𝑚!|𝑣 = 𝑦!) ,	 which	 can	 be	 rewritten	 as	− 𝑎! − 𝑣 +
𝑏 ! = − 𝑎! − 𝑣 + 𝑏 ! .	 Given	 that	0 < 𝑎! < 𝑣 = 𝑦! < 𝑎! ,	 the	 latter	 formula	
solves	for	𝑦! = 𝑦!/2− 2𝑏	and	𝑏 < 𝑦!/4	(see	Appendix	D.1.i	on	page	27).	

Secondly,	 if	𝑣 = 𝑦! ,	𝑆	must	 be	 indifferent	 between	 sending	𝑚! 	and	𝑚! ,	
that	 is,	𝑈! 𝑚! 𝑣 = 𝑦! = 𝑈!(𝑚!|𝑣 = 𝑦!) ,	 which	 can	 be	 rewritten	 as	− 𝑎! −
𝑣 + 𝑏 ! = − 𝑎! − 𝑣 + 𝑏 ! .	 The	 latter	 formula	 solves	 for	 𝑦! = 1/6− 4𝑏 ,	
𝑦! = 1/3− 4𝑏	and	𝑏 < 1/24	(see	Appendix	D.1.ii	on	page	28).	

Given	 that	𝑦! = 1/3− 4𝑏 ,	 it	 can	 be	 proved	 that	 message	 interval	 3,	
[𝑦!, 1/2],	 is	 longer	 than	message	 interval	 2,	[𝑦!,𝑦!],	 that	 is:	1/2− 𝑦! > 𝑦! − 𝑦!,	
since	 this	 inequality	 yields	4𝑏 > 0 ,	 which,	 given	 that	𝑏 > 0 ,	 implicates	 that	
message	 interval	3	is	4𝑏	longer	 than	message	 interval	2	(see	 Appendix	 D.2.i	 on	
page	28).	

Also,	given	that	𝑦! = 1/6− 4𝑏,	it	can	be	proved	that	message	interval	2	is	
longer	 than	 message	 interval	1 ,	 [0,𝑦!] ,	 that	 is:	𝑦! − 𝑦! > 𝑦! − 0 ,	 since	 this	
inequality	 yields	4𝑏 > 0 ,	 which,	 given	 that	𝑏 > 0 ,	 implicates	 that	 message	
interval	2	is	4𝑏	longer	than	message	interval	1	(see	Appendix	D.2.ii	on	page	29).	
Note	 that	 this	 outcome	 is	 identical	 to	 the	 outcome	 in	 the	 initial	 three-step	
equilibrium.	

A	player’s	aggregate	expected	utility	for	the	three-step	equilibrium	on	the	
interval	[0,1/2]	can	 be	 calculated	 using	 the	 sum	 of	 three	 integrals.	 The	 first	
integral	covers	the	situation	where	𝑣 = [0,𝑦!],	𝑆	chooses	𝑚! = 𝑚!	and	𝑅	chooses	
𝑎! = 𝑎! = 𝑦!/2.	 The	 second	 integral	 covers	 the	 situation	 where	𝑣 = [𝑦!,𝑦!],	𝑆	
chooses	𝑚! = 𝑚!	and	𝑅	chooses	𝑎! = 𝑎! = (𝑦! + 𝑦!)/2.	The	third	integral	covers	
the	 situation	 where	𝑣 = [𝑦!, 1/2],	𝑆 	chooses	𝑚! = 𝑚! 	and	𝑅 	chooses	𝑎! = 𝑎! =
(𝑦! + 1/2)/2.	

For	𝑅 ,	 the	 aggregate	 expected	 utility	 can	 be	 expressed	 as	 follows:	

𝑈!! = 𝑈!(𝑣|𝑚!)
!!
! 𝑑𝑣 + 𝑈!(𝑣|𝑚!) 𝑑𝑣

!!
!!

+ 𝑈!(𝑣|𝑚!) 𝑑𝑣
!
!
!!

,	 which	 can	 be	

rewritten	 as	 𝑈!! = − !!
!
− 𝑣

!
𝑑𝑣!!

! + − !!!!!
!

− 𝑣
!
𝑑𝑣!!

!!
+ − !!!!/!

!
−

!
!
!!

𝑣
!
𝑑𝑣,	which	equals	− !

!
𝑏! − !

!"#
	(see	Appendix	D.3.i	on	page	29).	

For 𝑆 ,	 the	 aggregate	 expected	 utility	 can	 be	 expressed	 as	 follows:	

𝑈!! = 𝑈!(𝑣|𝑚!)
!!
! 𝑑𝑣 + 𝑈!(𝑣|𝑚!) 𝑑𝑣

!!
!!

+ 𝑈!(𝑣|𝑚!) 𝑑𝑣
!
!
!!

,	 which	 can	 be	

rewritten	 as	 𝑈!! = − !!
!
− (𝑣 + 𝑏)

!
𝑑𝑣!!

! + − !!!!!
!

− (𝑣 + 𝑏)
!
𝑑𝑣!!

!!
+

− !!!!/!
!

− (𝑣 + 𝑏)
!
𝑑𝑣

!
!
!!

,	 which	 equals	− !!
!
𝑏! − !

!"#
	(see	 Appendix	 D.3.ii	 on	

page	30).	
	
Suppose	 that	𝑆	learns	 that	𝑣	lies	 on	 interval	 II.	 If	𝑅	receives	𝑚!,	 he	 infers	 that	𝑣	
lies	on	the	interval	[1/2,𝑦!],	thus	updating	his	expected	value	of	𝑣	to	(1/2+ 𝑦!)/
2.	 This	 leads	𝑅	to	 choosing	𝑎! = 𝑎! = 𝐸 𝑣|𝑚! = (1/2+ 𝑦!)/2	to	 maximize	 his	
own	utility.	
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If	𝑅	receives	𝑚!,	he	infers	that	𝑣	lies	on	the	interval	[𝑦!,𝑦!],	thus	updating	
his	 expected	 value	 of	𝑣 	to	 (𝑦! + 𝑦!)/2 .	 This	 leads	 to	𝑅 	choosing	𝑎! = 𝑎! =
𝐸 𝑣|𝑚! = (𝑦! + 𝑦!)/2	to	maximize	his	own	utility.	

If	𝑅	receives	𝑚!,	he	infers	that	𝑣	lies	on	the	interval	[𝑦!, 1],	thus	updating	
his	 expected	 value	 of	 𝑣 	to	 (𝑦! + 1)/2 .	 This	 leads	 to	𝑅 	choosing	 𝑎! = 𝑎! =
𝐸 𝑣|𝑚! = (𝑦! + 1)/2	to	maximize	his	own	utility.	

Anticipating	𝑅’s	 strategy,	𝑆	sends	𝑚! 	for	 all	 values	 of	𝑣	on	 the	 interval	
[0,𝑦!),	𝑚!	for	all	values	of	𝑣	on	the	interval	(𝑦!,𝑦!)	and	𝑚!	for	all	values	of	𝑣	on	
the	 interval	(𝑦!, 1/2]	to	maximize	her	own	utility.	Two	conditions	regarding	𝑆’s	
choice	of	𝑚! 	arise.	

Firstly,	 if	𝑣 = 𝑦!,	𝑆	must	 be	 indifferent	 between	 sending	𝑚!	and	𝑚!,	 that	
is,	𝑈! 𝑚! 𝑣 = 𝑦! = 𝑈!(𝑚!|𝑣 = 𝑦!) ,	 which	 can	 be	 rewritten	 as	− 𝑎! − 𝑣 +
𝑏 ! = − 𝑎! − 𝑣 + 𝑏 ! .	 Given	 that	0 < 𝑎! < 𝑣 = 𝑦! < 𝑎! ,	 the	 latter	 formula	
solves	for	𝑦! = 𝑦!/2− 2𝑏	and	𝑏 < 𝑦!/4	(see	Appendix	D.4.i	on	page	30).	

Secondly,	 if	𝑣 = 𝑦! ,	𝑆	must	 be	 indifferent	 between	 sending	𝑚! 	and	𝑚! ,	
that	 is,	𝑈! 𝑚! 𝑣 = 𝑦! = 𝑈!(𝑚!|𝑣 = 𝑦!) ,	 which	 can	 be	 rewritten	 as	− 𝑎! −
𝑣 + 𝑏 ! = − 𝑎! − 𝑣 + 𝑏 ! .	 The	 latter	 formula	 solves	 for	 𝑦! = 2/3− 4𝑏 ,	
𝑦! = 5/6− 4𝑏	and	𝑏 < 1/6	(see	Appendix	D.4.ii	on	page	31).	

Given	that	𝑦! =
!
!
− 4𝑏,	it	can	be	proved	that	message	interval	3,	 𝑦!, 1 ,	is	

longer	 than	 message	 interval	 2,	 𝑦!,𝑦! ,	 that	 is:	1− 𝑦! > 𝑦! − 𝑦! ,	 since	 this	
inequality	 yields	4𝑏 > 0 ,	 which,	 given	 that	𝑏 > 0 ,	 implicates	 that	 message	
interval	3	is	4𝑏	longer	than	message	interval	2	(see	Appendix	D.5.i	on	page	31).	

Also,	given	that	𝑦! = 2/3− 4𝑏,	it	can	be	proved	that	message	interval	2	is	
longer	 than	message	 interval	 1,	[1/2,𝑦!],	 that	 is:	𝑦! − 𝑦! > 𝑦! − 1/2,	 since	 this	
inequality	 yields	4𝑏 > 0 ,	 which,	 given	 that	𝑏 > 0 ,	 implicates	 that	 message	
interval	2	is	4𝑏	longer	than	message	interval	1	(see	Appendix	D.5.ii	on	page	32).	
Note	 that	 this	 outcome	 is	 identical	 to	 the	 outcome	 in	 the	 initial	 three-step	
equilibrium	and	identical	to	the	outcome	of	the	extended	three-step	equilibrium	
on	interval	I.	

A	player’s	aggregate	expected	utility	for	the	three-step	equilibrium	on	the	
interval	 !

!
, 1 	equals	 the	 sum	 of	 three	 integrals.	 The	 first	 integral	 covers	 the	

situation	 where	𝑣 = !
!
,𝑦! ,	𝑆 	chooses	𝑚! = 𝑚! 	and	𝑅 	chooses	𝑎! = 𝑎! =

!/!!!!
!

.	
The	 second	 integral	 covers	 the	 situation	where	𝑣 = [𝑦!,𝑦!],	𝑆	chooses	𝑚! = 𝑚!	
and	𝑅	chooses	𝑎! = 𝑎! =

!!!!!
!
.	 The	 third	 integral	 covers	 the	 situation	 where	

𝑣 = [𝑦!, 1],	𝑆	chooses	𝑚! = 𝑚!	and	𝑅	chooses	𝑎! = 𝑎! =
!!!!
!
.	

For	 𝑅 ,	 this	 can	 be	 expressed	 as	 follows:	 𝑈!!! = 𝑈!(𝑣|𝑚!)
!!
!
!

𝑑𝑣 +

𝑈!(𝑣|𝑚!) 𝑑𝑣
!!
!!

+ 𝑈!(𝑣|𝑚!) 𝑑𝑣
!
!!

,	 which	 can	 be	 rewritten	 as	

𝑈!!! = − !/!!!!
!

− 𝑣
!
𝑑𝑣!!

!
!

+ − !!!!!
!

− 𝑣
!
𝑑𝑣!!

!!
+ − !!!!

!
− 𝑣

!
𝑑𝑣!

!!
,	

which	equals	− !
!
𝑏! − !

!"#
	(see	Appendix	D.6.i	on	page	32).	

For 𝑆 ,	 this	 can	 be	 expressed	 as	 follows:	 𝑈!!! = 𝑈!(𝑣|𝑚!)
!!
!
!

𝑑𝑣 +

𝑈!(𝑣|𝑚!) 𝑑𝑣
!!
!!

+ 𝑈!(𝑣|𝑚!) 𝑑𝑣
!
!!

,	 which	 can	 be	 rewritten	 as	
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𝑈!!! = − !/!! !!
!

− (𝑣 + 𝑏)
!
𝑑𝑣!!

!
!

+ − !!!!!
!

− (𝑣 + 𝑏)
!
𝑑𝑣!!

!!
+ − !!!!

!
−!

!!

(𝑣 + 𝑏)
!
𝑑𝑣,	which	equals	− !!

!
𝑏! − !

!"#
	(see	Appendix	D.6.ii	on	page	33).	

	
Note	 two	 things	 that	 are	 similar	 to	 the	 extended	 two-step	 equilibrium.	 Firstly,	
the	aggregate	expected	utility	outcomes	are	 identical	 for	 the	respective	players	
on	the	intervals	I	and	II.	Secondly,	the	difference	in	aggregate	expected	utility	of	
𝑅	en	𝑆	has	 bisected	 relative	 to	 the	 situation	 where	𝑣	lies	 on	 the	 interval	[0,1].	
This	occurs	because	the	difference	between	the	high	end	of	the	interval	and	the	
largest	𝑎!∗	has	also	bisected	relative	to	the	situation	where	𝑣	lies	on	the	 interval	
[0,1].	
	
Irrespective	 of	 the	 value	 of	𝑣,	 for	𝑆,	 choosing	 to	 share	 the	 partial	 information	
with	𝑅	yields	an	aggregate	expected	utility	of	𝑈!! = 𝑈!! + 𝑈!!! = − !!

!
𝑏! − !

!"#
+

− !!
!
𝑏! − !

!"#
= − !!

!
𝑏! − !

!"#
,	while	choosing	to	conceal	the	partial	information	

yields	 	− !!
!
𝑏! − !

!"#
	(recall	 Appendix	 B.3.ii	 on	 page	 23).	 Hence,	 by	 sharing	 the	

partial	information,	𝑆	has	a	gain	in	aggregate	expected	utility	of	 − !!
!
𝑏! − !

!"#
−

 − !!
!
𝑏! − !

!"#
= !

!""
.	

	
	

Extended	three-step	equilibrium	-	will	𝑆	deviate?	
	
In	 order	 to	 explore	 whether	𝑆	has	 an	 incentive	 to	 deviate	 from	 the	 extended	
three-step	equilibrium,	this	section	explicates	two	scenarios	in	which	𝑆	deceives	
𝑅	by	sharing	incorrect	information.	In	both	scenarios,	𝑅	believes	𝑆	and	responds	
accordingly.	Note	that	𝑅’s	responses	have	already	been	described	in	the	previous	
section.	
	
In	 the	 first	 scenario,	𝑆	observes	 that	𝑣 	lies	 on	 interval	 I	 and	𝑆	deceives	𝑅 	by	
sharing	information	that	indicates	that	𝑣	lies	on	interval	II.	In	second	scenario,	𝑆	
observes	 that	𝑣	lies	 on	 interval	 II	 and	𝑆	deceives	𝑅	by	 sharing	 information	 that	
indicates	 that	𝑣 	lies	 on	 interval	 I.	 For	 both	 scenarios,	𝑆’s	 optimal	𝑚! 	will	 be	
determined.	 Each	 scenario	 concludes	 with	 comparing	𝑆’s	 aggregate	 expected	
utility	in	that	scenario	with	𝑆’s	aggregate	expected	utility	in	a	situation	of	always	
telling	the	truth,	𝑈!! = 𝑈!!! = − !!

!
𝑏! − !

!"#
.	

Suppose	 that	𝑆	observes	 that	𝑣	lies	on	 interval	 I	 and	 that	𝑆	deceives	𝑅	by	
sharing	information	that	indicates	that	𝑣	lies	on	interval	II.	Note	that	𝑦! =

!
!
− 4𝑏	

and	𝑦! =
!
!
− 4𝑏.	 Given	𝑅’s	 belief	 that	𝑣	lies	 on	 interval	 II,	𝑆	will	 choose	 a	utility	

maximizing	𝑚! .	𝑆’s	 aggregate	 expected	 utility	 when	 always	 sending	𝑚! = 𝑚!	

equals	 𝑈!
!!! = − !/!!!!

!
− 𝑣 + 𝑏

!
𝑑𝑣

!
!
! ,	 which	 equals	 − !

!
𝑏! + !

!
𝑏 − !

!"
	(see	

Appendix	D.7.i	on	page	33).	𝑆’s	aggregate	expected	utility	when	always	sending	

𝑚! = 𝑚! 	equals	𝑈!
!!! = − !!!!!

!
− 𝑣 + 𝑏

!
𝑑𝑣

!
!
! ,	 which	 equals	− !"

!
𝑏! + !

!
𝑏 −

!"
!"
.	𝑆’s	 aggregate	 expected	 utility	 when	 always	 sending	𝑚! = 𝑚!	equals	𝑈!

!!! =
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− !!!!
!
− 𝑣 + 𝑏

!
𝑑𝑣

!
!
! ,	 which	 equals	 − !

!
𝑏! + !

!
𝑏 − !

!"
.	 For	 all	 values	 of	

𝑏 < 5/24 ,	𝑈!
!!! > 𝑈!

!!! .	 For	 all	 values	 of	 𝑏 < 1/12 ,	𝑈!
!!! > 𝑈!

!!! .	 Given	 the	
restriction	 of	𝑏 < 1/24	for	 an	 extended	 three-step	 equilibrium	 to	 exist,	𝑆	will	
always	send	𝑚! = 𝑚!	when	she	knows	that	𝑣	lies	on	interval	I	and	𝑅	thinks	that	
𝑣	lies	on	interval	II.	Yet,	for	all	values	of	𝑏,	𝑈!

!!! < 𝑈!! ,	so	𝑆	will	not	deceive	𝑅.	
Suppose	that	𝑆	observes	that	𝑣	lies	on	interval	II	and	that	𝑆	deceives	𝑅	by	

sharing	information	that	indicates	that	𝑣	lies	on	interval	I.	Note	that	𝑦! =
!
!
− 4𝑏	

and	𝑦! =
!
!
− 4𝑏.	 Given	𝑅’s	 belief	 that	𝑣	lies	 on	 interval	 I,	𝑆	will	 choose	 a	 utility	

maximizing	𝑚! .	𝑆’s	 aggregate	 expected	 utility	 when	 always	 sending	𝑚! = 𝑚!	

equals	 𝑈!
!!"! = − !!

!
− 𝑣 + 𝑏

!
𝑑𝑣!

!
!

,	 which	 equals	 − !
!
𝑏! − !

!
𝑏 − !

!"
	(see	

Appendix	 D.7.ii	 on	 page	 34).	𝑆 ’s	 aggregate	 expected	 utility	 when	 sending	

𝑚! = 𝑚! 	equals	𝑈!
!!"! = − !!!!!

!
− 𝑣 + 𝑏

!
𝑑𝑣!

!
!

,	 which	 equals	− !"
!
𝑏! − !

!
𝑏 −

!"
!"
.	 For	 all	 values	 of	𝑏 ,	𝑈!

!!! > 𝑈!
!!! .	 For	 all	 values	 of	𝑏 < 1/12 ,	𝑈!

!!! > 𝑈!
!!! .	

Therefore,	𝑆	will	always	send	𝑚! = 𝑚!	when	she	knows	that	𝑣	lies	on	interval	II	
and	𝑅	thinks	 that	𝑣	lies	on	 interval	 I.	Yet,	 for	all	 values	of	𝑏,	𝑈!

!!! < 𝑈!! ,	 so	𝑆	will	
not	deceive	𝑅.	
	
It	 has	 been	proved	 that,	 in	 an	 extended	 three-step	 equilibrium	on	 the	 interval	
[0,1],	𝑆	will	always	truthfully	share	the	partial	information	with	𝑅.	
	
	

Conclusion	extended	partially	pooling	equilibria	
	
It	 has	 been	 proved	 that	when	𝑏 < 1/8,	 an	 extened	 two-step	 equilibrium	 exists	
and	 that	 when	𝑏 < 1/24 ,	 an	 extended	 three-step	 equilibrium	 exist.	 In	 the	
extended	 three-step	equilibrium,	 less	 information	 is	 lost	 in	 the	 communication	
than	 in	 the	 extended	 two-step	 equilibrium.	 Therefore,	 an	 extended	 three-step	
equilibrium	is	more	efficient	than	an	extended	two-step	equilibrium.	
	
	

Examples	
	
Scenario	1:	Suppose	that	𝑏 = 1/4.	The	only	equilibrium	that	exists	is	a	babbling	
equilibrium.	 Communication	 contains	 no	 information	 and	 the	 aggregate	

expected	utility	equals	− !
!"
	for	𝑅	and	– 𝑏! − !

!"
= − !

!

!
− !

!"
= − !

!"
	for	𝑆.	

	
Scenario	 2:	 Suppose	 that	𝑏 = 1/12 .	 Compared	 to	 Scenario	 1,	 the	 interest	
asymmetry	between	𝑅	and	𝑆	declined	and	now,	next	to	a	babbling	equilibrium,	a	
two-step	equilibrium	exists.	Moreover,	since	𝑏	is	small	enough,	an	extended	two-
step	 equilibrium	 exists.	 However,	𝑏	is	 too	 large	 for	 a	 three-step	 equilibrium	 to	
exist.	The	same	goes	for	an	extended	three-step	equilibrium.	

In	the	babbling	equilibrium,	the	aggregate	expected	utility	equals	− !
!"
	for	

𝑅	and	– 𝑏! − !
!"
= − !

!"

!
− !

!"
= − !"

!""
	for	𝑆.	
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In	 the	 two-step	 equilibrium,	 the	 aggregate	 expected	 utility	 equals	

– 𝑏! − !
!"
= − !

!"

!
− !

!"
= − !

!"
	for	 𝑅 	and	 −2𝑏! − !

!"
= −2 !

!"

!
− !

!"
= − !

!""
.	

Note	 that,	 compared	 to	 the	 babbling	 equilibrium,	 in	 the	 two-step	 equilibrium	
communication	is	richer	and	both	players	are	better	off.	

In	 the	 extended	 two-step	 equilibrium,	 the	 aggregate	 expected	 utility	

equals	 – !
!
𝑏! − !

!"#
= − !

!
!
!"

!
− !

!"#
= − !

!!"#
	for	 𝑅 	and	 – 𝑏! − !

!"#
= − !

!"

!
−

!
!"#

= − !!
!!"#

	for	𝑆.	Note	that,	compared	tot	the	babbling	equilibrium	and	the	two-
step	equilibrium,	in	the	extended	two-step	equilibrium	communication	is	richer	
and	 both	 players	 are	 better	 off.	 This	 is	 the	 most	 efficient	 equilibrium	 when	
𝑏 = 1/12.	
	
These	 examples	 illustrate	 that	 smaller	 interest	 asymmetry	 between	𝑆 	and	𝑅	
yields	richer	communication	and	makes	both	players	better	off.	
	
	

Conclusion	
	
In	this	thesis,	it	is	explored	whether	communication	of	partial	information	prior	
to	a	 signaling	game	enriches	 the	 communication	 in	 the	 signaling	game.	To	 this	
end,	a	model	is	developed	in	which	two	players,	with	asymmetrical	information	
and	 asymmetrical	 interests,	 communicate.	 The	main	 feature	 of	 the	model	 is	 a	
communication	signal	prior	to	the	signaling	game.	The	model	has	three	types	of	
equilibria.	

The	first	type	is	a	perfect	Bayesian	equilbirium	in	which	no	information	is	
lost	in	the	communication.	The	restriction	for	such	an	equilibrium	to	exist	is	that	
the	interests	of	the	Sender	and	the	Receiver	are	perfectly	aligned,	that	 is	𝑏 = 0.	
This	equilibrium	yields	the	highest	aggregate	expected	utility	to	both	players.	

The	 second	 type	 is	 a	 babbling	 equilibrium,	 in	 which	 communication	 is	
meaningless.	 Such	an	equilibrium	has	no	 restrictions	 to	 the	asymmetricality	of	
interests,	 because	 there	 is	 complete	 loss	 of	 information	 in	 the	 communication.	
This	is	the	only	equilibrium	that	exists	when	𝑏 ≥ 1/4.	This	equilibrium	yields	the	
lowest	aggregate	expected	utility	to	both	players.	

The	third	type	is	a	partially	pooling	equilibrium,	in	which	information	loss	
in	 the	 communication	 occurs,	 but	 is	 limited.	 Such	 an	 equilibrium	 exists	 when	
0 < 𝑏 < 1/4.	 A	 partially	 pooling	 equilibrium	 yields	 higher	 aggregate	 expected	
utility	to	both	players	than	a	babbling	equilibrium,	but	lower	aggregate	expected	
utility	to	both	players	than	a	perfect	Bayesian	equilibrium.	

There	are	two	types	of	partially	pooling	equilibria	described	in	this	thesis.	
The	first	has	two	message	intervals	and	is	called	a	two-step	equilibrium,	and	the	
second	has	three	message	intervals	and	is	called	a	three-step	equilibrium.	

Both	partially	pooling	equilibria	are	proved	to	have	richer	communication	
when	 partial	 information	 is	 shared	 prior	 to	 the	 signaling	 game.	 It	 has	 been	
proved	 that	 when	𝑏 < 1/8,	 an	 extened	 two-step	 equilibrium	 exists	 and	 that	
when	𝑏 < 1/24,	 an	 extended	 three-step	 equilibrium	 exist.	 Therefore,	 the	main	
conclusion	 of	 this	 thesis	 is	 that	 when	 interest	 asymmetry	 is	 limited,	 sharing	
partial	 information	via	a	communication	signal	prior	to	a	signaling	game	yields	
richer	communication.	
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The	equilibria	of	the	model	and	its	extension	can	be	summarized	in	two	existing	
phenomena:	the	ally	principle	and	the	communication	constraint.	

The	 ally	 principle	 is	 proved	 to	 apply:	 it	 has	 been	 shown	 that	 the	 lower	
interest	asymmetry	between	the	Sender	and	the	Receiver,	the	less	information	is	
lost	in	the	communication,	that	is,	the	richer	the	information,	and	the	better	off	
both	players	are.	

Also,	the	communication	constraint	is	proved	to	apply:	when	𝑏 ≥ 1/4,	the	
only	equilibrium	that	exists	on	the	 interval	[0,1]	is	a	babbling	equilibrium.	This	
restriction	to	𝑏	for	 informative	communication	to	exist,	corresponds	 findings	of	
Gibbons	(1992).	
	
In	terms	of	the	examples	in	the	introduction,	this	means	the	following.	

When	𝑏 ≥ 1/4,	 Rick	 ignores	what	 Scottie	 says	 about	 her	 score	 and	 Ray	
ignores	what	Susan	sends	of	her	resume.	Scottie	sends	a	resume	independently	
of	her	own	skill	and	Susan	says	a	performance	score	independently	of	her	actual	
score.	

When	𝑏 < 1/4,	 Scottie	will	 tell	her	skill	 score	 to	Rick	and	Susan	will	 tell	
her	performance	score	to	Ray.	When	𝑏 < 1/8,	Scottie	will	also	send	her	resume	
to	Ray	and	Susan	will	ask	her	friend	to	inform	Ray	about	her	performance.	
	 When	𝑏 < 1/12,	 communication	 between	 the	 ladies	 and	 the	 gentlemen	
can	 contain	more	 information,	 since	 there	 exists	 an	 equilibrium	with	 an	 extra,	
third,	 message	 interval.	 When	𝑏 < 1/24 ,	 that	 equilibrium	 is	 extended	 and	
communication	 becomes	 even	 richer,	 because	 the	 partial	 information	 will	 be	
communicated	to	the	Receiver	through	the	resume	or	the	friend.	

The	 same	 holds,	 of	 course,	 for	 all	 Senders	 and	 Receivers	 in	 similar	
situations.	
	
It	 has	 been	 found	 that	 the	 aggregate	 expected	utility	 of	 the	Receiver	 is	 always	
higher	 than	the	aggregate	expected	utility	of	 the	Sender.	This	difference	equals	
𝑏!	in	the	initial	equilibria	and	!

!
𝑏!	in	the	extended	equilibria.	

This	difference	exists	because	𝑏	causes	𝑆	to	prefer	action	range	[0+ 𝑏, 1+
𝑏],	 although	 both	𝑣	and	𝑎	lie	 on	 the	 interval	[0,1].	 Therefore,	 for	 all	 values	 of	
𝑎!∗ > 1,	 the	only	possible	actions	closest	to	𝑎!∗	are	𝑎 = 1.	The	larger	𝑏,	 the	larger	
the	 difference	 between	𝑎	and	 the	𝑎!∗.	 Since	𝑅’s	 utility	 function	 does	 not	 depend	
on	𝑏,	𝑅’s	optimal	action	always	lies	on	the	interval	[0,1].	

Since	the	interval	on	which	the	signaling	game	is	played	bisects	when	the	
Sender	 sends	 a	 credible	 signal	 prior	 to	 the	 signaling	 game,	 the	 impact	 of	𝑏	is	
smaller.	

The	quadratic	character	of	the	difference	between	𝑅’s	aggregate	expected	
utility	and	𝑆’s	aggregate	expected	utility	is	caused	by	the	quadratic	character	of	𝑏	
in	the	utility	function	of	𝑆.	
	
As	 for	the	practical	 implications	of	 this	thesis,	Sobel	(2010,	p.	33)	 justly	stated:	
“While	 the	study	of	 strategic	communication	supplies	 some	powerful	 insights,	 the	
domain	 of	 plausible	models	 is	 so	 rich	 that	 the	most	 reliable	 intuition	will	 fail	 in	
some	simple	environment.”	
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Future	research	can	focus	on	further	specifying	the	signal	prior	to	the	signaling	
game.	 For	 example,	 the	 signal	 can	 be	 expanded	 to	 three	 (or	 more)	 intervals.	
Future	 research	 can	 also	 focus	 on	 the	 impact	 of	 inacuracy:	 the	 impact	 of	 a	
difference	between	the	action	the	Receiver	wants	to	take	and	the	action	that	 is	
ultimately	 realized.	 The	 same	 can	 be	 done	 for	 inacuracy	 of	 the	 Sender:	 the	
impact	 of	 a	 difference	 between	 the	 message	 a	 Sender	 wants	 to	 send	 and	 the	
message	that	is	actually	sent.	
	
	

References	
	
Crawford,	 V.	 &	 Sobel,	 J.	 (1982).	 Strategic	 information	 transmission.	

Econometrica,	50,	pp.	1431-1451.	
Gibbons,	 R.	 (1992).	A	primer	 in	game	 theory.	 Harvester	Wheatsheaf.	 pp.	

210-218.	
Sharif,	 Z.	 (2016).	 Essays	 on	 Strategic	 Communication	 (No.	 655).	

Rotterdam:	Tinbergen	Institute.	
Sobel,	 J.	 (2010,	 August).	 Giving	 and	 receiving	 advice.	 In	 Econometric	

Society	10th	World	Congress.	
Swank,	O.	(2016).	Decision	maker	–	adviser	model	[material	of	the	course	

Economics	 of	 Management	 and	 Organization].	 Erasmus	 School	 of	 Economics,	
Erasmus	University,	Rotterdam.	
	
	

Appendix	A.1	
Two-step	equilibrium	

If	𝑣 = 𝑥!,	𝑆	must	be	indifferent	between	sending	𝑚!	and	𝑚!:	

𝑈! 𝑚! 𝑣 = 𝑥! = 𝑈! 𝑚! 𝑣 = 𝑥! =	

− 𝑎! − 𝑣 + 𝑏 ! = − 𝑎! − 𝑣 + 𝑏 ! =	

|𝑎! − (𝑣 + 𝑏)| = |𝑎! − (𝑣 + 𝑏)|	

which,	given	that	0 < 𝑎! < 𝑣 = 𝑥! < 𝑎!,	equals	

𝑥! + 𝑏 − 𝑎! = 𝑎! − 𝑥! + 𝑏 =	

𝑥! + 𝑏 −
𝑥!
2 =

𝑥! + 1
2 − 𝑥! + 𝑏 	

which	yields	

𝑥! =
1
2− 2𝑏	

which,	given	that	𝑥! > 0,	yields	

𝑏 <
1
4	



Appendix	A.2	
Two-step equilibrium 

Message	interval	2,	[𝑥!, 1],	is	longer	than	message	interval	1,	[0, 𝑥!],	that	is:	

1− 𝑥! > 𝑥! − 0	

1− 2𝑥! > 0	

1− 2(1/2− 2𝑏) > 0	

4𝑏 > 0	

More	specifically,	message	interval	2	is	4𝑏	longer	than	message	interval	1.	

	
Appendix	A.3.i	

Two-step equilibrium 

𝑅’s aggregate expected utility equals: 

𝑈!! = 𝑈!(𝑣)
!!

!
𝑑𝑣 + 𝑈!(𝑣) 𝑑𝑣

!

!!
=	

−(𝑎! − 𝑣)!𝑑𝑣
!!

!
+ − 𝑎! − 𝑣 !𝑑𝑣

!

!!
= 

−
𝑥!
2 − 𝑣

!
𝑑𝑣

!!

!
+ −

𝑥! + 1
2 − 𝑣

!

𝑑𝑣
!

!!
= 

−
1
2− 2𝑏
2 − 𝑣

!
!!!!

!

!

𝑑𝑣 + −
1
2− 2𝑏 + 1

2 − 𝑣
!

!
!!!!

!

𝑑𝑣 = 

𝑈!! = −𝑏! −
1
48 

 

Appendix	A.3.ii	
Two-step equilibrium 

𝑆’s aggregate expected utility equals: 

𝑈!! = 𝑈!(𝑣|𝑎!)
!!

!
𝑑𝑣 + 𝑈!(𝑣|𝑎!) 𝑑𝑣

!

!!
=	

− 𝐸(𝑎!)− 𝑣 + 𝑏 !𝑑𝑣
!!

!
+ − 𝐸(𝑎!)− 𝑣 + 𝑏 !𝑑𝑣

!

!!
 

−
𝑥!
2 − 𝑣 − 𝑏

!
𝑑𝑣

!!

!
+ −

𝑥! + 1
2 − 𝑣 − 𝑏

!

𝑑𝑣
!

!!
= 
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−
1
2− 2𝑏
2 − 𝑣 − 𝑏

!
!!!!

!

!

𝑑𝑣 + −
1
2− 2𝑏 + 1

2 − 𝑣 − 𝑏
!

!
!!!!

!

𝑑𝑣 = 

𝑈!! = −2𝑏! −
1
48 

	

Appendix	B.1.i	
Three-step	equilibrium	

If	𝑣 = 𝑦!,	𝑆	must	be	indifferent	between	sending	𝑚!	and	𝑚!:	

𝑈! 𝑚! 𝑣 = 𝑦! = 𝑈! 𝑚! 𝑣 = 𝑦! =	

− 𝑎! − 𝑣 + 𝑏 ! = − 𝑎! − 𝑣 + 𝑏 ! =	

|𝑎! − (𝑣 + 𝑏)| = |𝑎! − (𝑣 + 𝑏)|	

which,	given	that	0 < 𝑎! < 𝑣 = 𝑦! < 𝑎!,	equals	

𝑦! + 𝑏 − 𝑎! = 𝑎! − 𝑦! + 𝑏 =	

𝑦! + 𝑏 −
𝑦!
2 =

𝑦! + 𝑦!
2 − 𝑦! + 𝑏 	

which	yields	

𝑦! =
𝑦!
2 − 2𝑏	

which,	given	that	𝑦! > 0,	yields	

𝑏 <
𝑦!
4 	

	

Appendix	B.1.ii	
Three-step	equilibrium	

If	𝑣 = 𝑦!,	𝑆	must	be	indifferent	between	sending	𝑚!	and	𝑚!:	

𝑈! 𝑚! 𝑣 = 𝑦! = 𝑈! 𝑚! 𝑣 = 𝑦! =	

− 𝑎! − 𝑣 + 𝑏 ! = − 𝑎! − 𝑣 + 𝑏 ! =	

|𝑎! − (𝑣 + 𝑏)| = |𝑎! − (𝑣 + 𝑏)|	

which,	given	that	0 < 𝑎! < 𝑣 = 𝑦! < 𝑎!,	equals	

𝑦! + 𝑏 − 𝑎! = 𝑎! − 𝑦! + 𝑏 =	

𝑦! + 𝑏 −
𝑦! + 𝑦!
2 =

𝑦! + 1
2 − 𝑦! + 𝑏 =	

𝑦! =
1
2+

𝑦!
2 − 2𝑏 =	
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𝑦! =
2
3− 4𝑏	

𝑦! =
1
3− 4𝑏	

which,	given	that	𝑦! > 0,	yields	

𝑏 <
1
12	

	

Appendix	B.2.i	
Three-step equilibrium 

Message	interval	3,	[𝑦!, 1],	is	longer	than	message	interval	2,	[𝑦!,𝑦!],	that	is:	

1− 𝑦! > 𝑦! − 𝑦!	

1+ 𝑦! − 2𝑦! > 0	

1+
1
3− 4𝑏 − 2

2
3− 4𝑏 > 0	

4𝑏 > 0	

More	specifically,	message	interval	3	is	4𝑏	longer	than	message	interval	2.	

	

Appendix	B.2.ii	
Three-step equilibrium 

Message	interval	2,	[𝑦!,𝑦!],	is	longer	than	message	interval	1,	[0,𝑦!],	that	is:	

𝑦! − 𝑦! > 𝑦! − 0	

𝑦! − 2𝑦! > 0	
2
3− 4𝑏 − 2

1
3− 4𝑏 > 0	

4𝑏 > 0	

More	specifically,	interval	2	is	4𝑏	longer	than	interval	1.	

	

Appendix	B.3.i	
Three-step equilibrium 

𝑅’s aggregate expected utility equals: 

𝑈!! = 𝑈!(𝑣)
!!

!
𝑑𝑣 + 𝑈!(𝑣) 𝑑𝑣

!!

!!
+ 𝑈!(𝑣) 𝑑𝑣

!

!!
=	
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−(𝑎! − 𝑣)!
!!

!
𝑑𝑣 + −(𝑎! − 𝑣)! 𝑑𝑣

!!

!!
+ −(𝑎! − 𝑣)! 𝑑𝑣

!

!!
=	

−
𝑦!
2 − 𝑣

!
𝑑𝑣

!!

!
+ −

𝑦! + 𝑦!
2 − 𝑣

!
𝑑𝑣

!!

!!
+ −

𝑦! + 1
2 − 𝑣

!

𝑑𝑣
!

!!
=	

−
1
3− 4𝑏
2 − 𝑣

!

𝑑𝑣
!
!!!!

!
+ −

1
3− 4𝑏 + 2

3− 4𝑏
2 − 𝑣

!

𝑑𝑣
!
!!!!

!
!!!!

+ −
2
3− 4𝑏 + 1

2 − 𝑣

!

𝑑𝑣
!

!
!!!!

=	

𝑈!! = −
8
3 𝑏

! −
1
108	

	

Appendix	B.3.ii	
Three-step equilibrium 

𝑆’s aggregate expected utility equals: 

𝑈!! = 𝑈!(𝑣)
!!

!
𝑑𝑣 + 𝑈!(𝑣) 𝑑𝑣

!!

!!
+ 𝑈!(𝑣) 𝑑𝑣

!

!!
=	

−[𝑎! − 𝑣 + 𝑏 ]!
!!

!
𝑑𝑣 + −[𝑎! − 𝑣 + 𝑏 ]! 𝑑𝑣

!!

!!
+ − 𝑎! − (𝑣 + 𝑏) ! 𝑑𝑣

!

!!
=	

−
𝑦!
2 − 𝑣 − 𝑏

!
𝑑𝑣

!!

!
+ −

𝑦! + 𝑦!
2 − 𝑣 − 𝑏

!
𝑑𝑣

!!

!!

+ −
𝑦! + 1
2 − 𝑣 − 𝑏

!

𝑑𝑣
!

!!
=	

−
1
3− 4𝑏
2 − 𝑣 − 𝑏

!

𝑑𝑣
!
!!!!

!
+ −

1
3− 4𝑏 + 2

3− 4𝑏
2 − 𝑣 − 𝑏

!

𝑑𝑣
!
!!!!

!
!!!!

+ −
2
3− 4𝑏 + 1

2 − 𝑣 − 𝑏

!

𝑑𝑣
!

!
!!!!

=	

𝑈!! = −
11
3 𝑏! −

1
108	



Appendix	C.1	
Extended	two-step	equilibrium	on	interval	I	

If	𝑣 = 𝑥!,	𝑆	must	be	indifferent	between	sending	𝑚!	and	𝑚!:	

𝑈! 𝑚! 𝑣 = 𝑥! = 𝑈! 𝑚! 𝑣 = 𝑥! =	

− 𝑎! − 𝑣 + 𝑏 ! = − 𝑎! − 𝑣 + 𝑏 ! =	

|𝑎! − (𝑣 + 𝑏)| = |𝑎! − (𝑣 + 𝑏)|	

which,	given	that	0 < 𝑎! < 𝑣 = 𝑥! < 𝑎!,	equals	

𝑥! + 𝑏 − 𝑎! = 𝑎! − 𝑥! + 𝑏 =	

𝑥! + 𝑏 −
𝑥!
2 =

𝑥! + 1/2
2 − 𝑥! + 𝑏 	

which	yields	

𝑥! =
1
4− 2𝑏	

which,	given	that	𝑥! > 0,	yields	

𝑏 <
1
8	

	
Appendix	C.2	

Extended two-step equilibrium on interval I 

Message	interval	2,	[𝑥!, 1/2],	is	longer	than	message	interval	1,	[0, 𝑥!],	that	is:	

1/2− 𝑥! > 𝑥! − 0	

1/2− 2𝑥! > 0	

1/2− 2(1/4− 2𝑏) > 0	

4𝑏 > 0	

More	specifically,	message	interval	2	is	4𝑏	longer	than	message	interval	1.	

	
Appendix	C.3.i	

Extended two-step equilibrium on interval I 

𝑅’s aggregate expected utility equals: 

𝑈!! = 𝑈!(𝑣|𝑎!)
!!

!
𝑑𝑣 + 𝑈!(𝑣|𝑎!) 𝑑𝑣

!
!

!!
=	

− 𝐸(𝑎!)− 𝑣 !𝑑𝑣
!!

!
+ − 𝐸(𝑎!)− 𝑣 !𝑑𝑣

!
!

!!
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−
𝑥!
2 − 𝑣

!
𝑑𝑣

!!

!
+ −

𝑥! + 1/2
2 − 𝑣

!

𝑑𝑣
!
!

!!
= 

−
1
4− 2𝑏
2 − 𝑣

!
!!!!

!

!

𝑑𝑣 + −
1
4− 2𝑏 + 1/2

2 − 𝑣
!

!
!!!!

!

𝑑𝑣 = 

𝑈!! = −
1
2 𝑏

! −
1
384	

	
	

Appendix	C.3.ii	
Extended two-step equilibrium on interval I 

𝑆’s aggregate expected utility equals: 

𝑈!! = 𝑈!(𝑣|𝑎!)
!!

!
𝑑𝑣 + 𝑈!(𝑣|𝑎!) 𝑑𝑣

!
!

!!
=	

− 𝐸(𝑎!)− 𝑣 + 𝑏 !𝑑𝑣
!!

!
+ − 𝐸(𝑎!)− 𝑣 + 𝑏 !𝑑𝑣

!
!

!!
 

−
𝑥!
2 − 𝑣 − 𝑏

!
𝑑𝑣

!!

!
+ −

𝑥! + 1/2
2 − 𝑣 − 𝑏

!

𝑑𝑣
!
!

!!
= 

−
1
4− 2𝑏
2 − 𝑣 − 𝑏

!
!!!!

!

!

𝑑𝑣 + −
1
4− 2𝑏 + 1/2

2 − 𝑣 − 𝑏
!
!

!
!!!!

!

𝑑𝑣 = 

𝑈!! = −𝑏! −
1
384 

	
Appendix	C.4	

Extended	two-step	equilibrium	on	interval	II	

If	𝑣 = 𝑥!,	𝑆	must	be	indifferent	between	sending	𝑚!	and	𝑚!:	

𝑈! 𝑚! 𝑣 = 𝑥! = 𝑈! 𝑚! 𝑣 = 𝑥! =	

− 𝑎! − 𝑣 + 𝑏 ! = − 𝑎! − 𝑣 + 𝑏 ! =	

𝑎! − 𝑣 + 𝑏 = 𝑎! − 𝑣 + 𝑏 	

which,	given	that	0 < 𝑎! < 𝑣 = 𝑥! < 𝑎!,	equals	

𝑥! + 𝑏 − 𝑎! = 𝑎! − 𝑥! + 𝑏 =	

𝑥! + 𝑏 −
1/2+ 𝑥!

2 =
𝑥! + 1
2 − (𝑥! + 𝑏)	

which	yields	
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𝑥! =
3
4− 2𝑏	

which,	given	that	𝑥! > 0,	yields	

𝑏 <
3
8	

	

Appendix	C.5	
Extended two-step equilibrium on interval II 

The	interval	[𝑥!, 1]	is	larger	than	the	interval	[1/2, 𝑥!],	that	is:	

1− 𝑥! > 𝑥! − 1/2	

3/2− 2𝑥! > 0	

3/2− 2(3/4− 2𝑏) > 0	

4𝑏 > 0	

More	specifically,	the	interval	 𝑥!, 1 	is	4𝑏	larger	than	the	interval	[1/2, 𝑥!].	

	
Appendix	C.6.i	

Extended two-step equilibrium on interval II 

𝑅’s aggregate expected utility equals: 

𝑈!!! = 𝑈!(𝑣|𝑎!)
!!

!
!

𝑑𝑣 + 𝑈!(𝑣|𝑎!) 𝑑𝑣
!

!!
=	

− 𝐸(𝑎!)− 𝑣 !𝑑𝑣
!!

!
!

+ − 𝐸(𝑎!)− 𝑣 !𝑑𝑣
!

!!
 

−
1/2+ 𝑥!

2 − 𝑣
!

𝑑𝑣
!!

!
!

+ −
𝑥! + 1
2 − 𝑣

!

𝑑𝑣
!

!!
= 

−
1
2+

3
4− 2𝑏
2 − 𝑣

!
!!!!

!
!

!

𝑑𝑣 + −
3
4− 2𝑏 + 1

2 − 𝑣
!

!
!!!!

!

𝑑𝑣 = 

𝑈!!! = −
1
2 𝑏

! −
1
384	

	



Appendix	C.6.ii	
Extended two-step equilibrium on interval II 

𝑆’s aggregate expected utility equals: 

𝑈!!! = 𝑈!(𝑣|𝑎!)
!!

!
!

𝑑𝑣 + 𝑈!(𝑣|𝑎!) 𝑑𝑣
!

!!
=	

− 𝐸(𝑎!)− (𝑣 + 𝑏) !𝑑𝑣
!!

!
!

+ − 𝐸(𝑎!)− (𝑣 + 𝐵) !𝑑𝑣
!

!!
 

−
1/2+ 𝑥!

2 − 𝑣 − 𝑏
!

𝑑𝑣
!!

!
!

+ −
𝑥! + 1
2 − 𝑣 − 𝑏

!

𝑑𝑣
!

!!
= 

−
1
2+

3
4− 2𝑏
2 − 𝑣 − 𝑏

!
!!!!

!
!

!

𝑑𝑣 + −
3
4− 2𝑏 + 1

2 − 𝑣 − 𝑏
!

!
!!!!

!

𝑑𝑣 = 

𝑈!!! = −𝑏! −
1
384 

 

Appendix	C.7.i	
Extended	two-step	equilibrium	on	interval	I	

Note	 that	𝑅	thinks	 that	𝑣	lies	on	 interval	 II,	 !
!
, 1 ,	 so	𝑎! =

!/!!!!
!

	and	𝑥! =
!
!
− 2𝑏	

(recall	 Appendix	 C.1	 on	 page	 24).	𝑆’s	 aggregate	 expected	 utility	 when	 always	

sending	𝑚! = 𝑚!	equals	

𝑈!
!!! = − 𝑎! − 𝑣 + 𝑏 !𝑑𝑣

!
!

!
=	

𝑈!
!!! = −

1/2+ 𝑥!
2 − 𝑣 + 𝑏

!

𝑑𝑣
!
!

!
=	

𝑈!
!!! = −2𝑏! +

3
4 𝑏 −

31
384	

	

Appendix	D.1.i	
Extended	three-step	equilibrium	on	interval	I	

If	𝑣 = 𝑦!,	𝑆	must	be	indifferent	between	sending	𝑚!	and	𝑚!:	

𝑈! 𝑚! 𝑣 = 𝑦! = 𝑈! 𝑚! 𝑣 = 𝑦! =	

− 𝑎! − 𝑣 + 𝑏 ! = − 𝑎! − 𝑣 + 𝑏 ! =	

|𝑎! − (𝑣 + 𝑏)| = |𝑎! − (𝑣 + 𝑏)|	
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which,	given	that	0 < 𝑎! < 𝑣 = 𝑦! < 𝑎!,	equals	

𝑦! + 𝑏 − 𝑎! = 𝑎! − 𝑦! + 𝑏 =	

𝑦! + 𝑏 −
𝑦!
2 =

𝑦! + 𝑦!
2 − 𝑦! + 𝑏 	

which	yields	

𝑦! =
𝑦!
2 − 2𝑏	

which,	given	that	𝑦! > 0,	yields	

𝑏 <
𝑦!
4 	

	
Appendix	D.1.ii	

Extended	three-step	equilibrium	on	interval	I	

If	𝑣 = 𝑦!,	𝑆	must	be	indifferent	between	sending	𝑚!	and	𝑚!:	

𝑈! 𝑚! 𝑣 = 𝑦! = 𝑈! 𝑚! 𝑣 = 𝑦! =	

− 𝑎! − 𝑣 + 𝑏 ! = − 𝑎! − 𝑣 + 𝑏 ! =	

|𝑎! − (𝑣 + 𝑏)| = |𝑎! − (𝑣 + 𝑏)|	

which,	given	that	0 < 𝑎! < 𝑣 = 𝑦! < 𝑎!,	equals	

𝑦! + 𝑏 − 𝑎! = 𝑎! − 𝑦! + 𝑏 =	

𝑦! + 𝑏 −
𝑦! + 𝑦!
2 =

𝑦! + 1/2
2 − 𝑦! + 𝑏 	

which,	given	that	𝑦! = 𝑦!/2− 2𝑏,	yields	

𝑦! = 1/3− 4𝑏	

and	

𝑦! = 1/6− 4𝑏	

which,	given	that	𝑦! > 0,	yields	

𝑏 <
1
24	

	
Appendix	D.2.i	

Extended three-step equilibrium on interval I 

Message	interval	3,	[𝑦!, 1/2],	is	longer	than	message	interval	2,	[𝑦!,𝑦!],	that	is:	

1/2− 𝑦! > 𝑦! − 𝑦!	

1/2+ 𝑦! − 2𝑦! > 0	

1/2+
1
6− 4𝑏 − 2

1
3− 4𝑏 > 0	
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4𝑏 > 0	

More	specifically,	message	interval	3	is	4𝑏	longer	than	message	interval	2.	

	

Appendix	D.2.ii	
Extended three-step equilibrium on interval I 

Message	interval	2,	[𝑦!,𝑦!],	is	longer	than	message	interval	1,	[0,𝑦!],	that	is:	

𝑦! − 𝑦! > 𝑦! − 0	

𝑦! − 2𝑦! > 0	
1
3− 4𝑏 − 2

1
6− 4𝑏 > 0	

4𝑏 > 0	

More	specifically,	interval	2	is	4𝑏	longer	than	interval	1.	

	

Appendix	D.3.i	
Extended three-step equilibrium on interval I 

𝑅’s aggregate expected utility equals: 

𝑈!! = 𝑈!(𝑣)
!!

!
𝑑𝑣 + 𝑈!(𝑣) 𝑑𝑣

!!

!!
+ 𝑈!(𝑣) 𝑑𝑣

!
!

!!
=	

−(𝑎! − 𝑣)!
!!

!
𝑑𝑣 + −(𝑎! − 𝑣)! 𝑑𝑣

!!

!!
+ −(𝑎! − 𝑣)! 𝑑𝑣

!
!

!!
=	

−
𝑦!
2 − 𝑣

!
𝑑𝑣

!!

!
+ −

𝑦! + 𝑦!
2 − 𝑣

!
𝑑𝑣

!!

!!
+ −

𝑦! +
1
2 

2 − 𝑣

!

𝑑𝑣
!
!

!!
=	

−
1
3− 4𝑏
2 − 𝑣

!

𝑑𝑣
!
!!!!

!
+ −

1
3− 4𝑏 + 2

3− 4𝑏
2 − 𝑣

!

𝑑𝑣
!
!!!!

!
!!!!

+ −
2
3− 4𝑏 + 12

2 − 𝑣

!

𝑑𝑣
!
!

!
!!!!

=	

𝑈!! = −
4
3 𝑏

! −
1
864	



Appendix	D.3.ii	
Extended three-step equilibrium on interval I 

𝑆’s aggregate expected utility equals: 

𝑈!! = 𝑈!(𝑣)
!!

!
𝑑𝑣 + 𝑈!(𝑣) 𝑑𝑣

!!

!!
+ 𝑈!(𝑣) 𝑑𝑣

!
!

!!
=	

−[𝑎! − 𝑣 + 𝑏 ]!
!!

!
𝑑𝑣 + −[𝑎! − 𝑣 + 𝑏 ]! 𝑑𝑣

!!

!!
+ − 𝑎! − (𝑣 + 𝑏) ! 𝑑𝑣

!
!

!!
=	

−
𝑦!
2 − 𝑣 − 𝑏

!
𝑑𝑣

!!

!
+ −

𝑦! + 𝑦!
2 − 𝑣 − 𝑏

!
𝑑𝑣

!!

!!

+ −
𝑦! +

1
2

2 − 𝑣 − 𝑏

!

𝑑𝑣
!
!

!!
=	

−
1
3− 4𝑏
2 − 𝑣 − 𝑏

!

𝑑𝑣
!
!!!!

!
+ −

1
3− 4𝑏 + 2

3− 4𝑏
2 − 𝑣 − 𝑏

!

𝑑𝑣
!
!!!!

!
!!!!

+ −
2
3− 4𝑏 + 12

2 − 𝑣 − 𝑏

!

𝑑𝑣
!
!

!
!!!!

=	

𝑈!! = −
11
6 𝑏! −

1
864	

	

Appendix	D.4.i	
Extended	three-step	equilibrium	on	interval	II	

If	𝑣 = 𝑦!,	𝑆	must	be	indifferent	between	sending	𝑚!	and	𝑚!:	

𝑈! 𝑚! 𝑣 = 𝑦! = 𝑈! 𝑚! 𝑣 = 𝑦! =	

− 𝑎! − 𝑣 + 𝑏 ! = − 𝑎! − 𝑣 + 𝑏 ! =	

|𝑎! − (𝑣 + 𝑏)| = |𝑎! − (𝑣 + 𝑏)|	

which,	given	that	0 < 𝑎! < 𝑣 = 𝑦! < 𝑎!,	equals	

𝑦! + 𝑏 − 𝑎! = 𝑎! − 𝑦! + 𝑏 =	

𝑦! + 𝑏 −
1
2+ 𝑦!
2 =

𝑦! + 𝑦!
2 − 𝑦! + 𝑏 	

which	yields	

𝑦! =
𝑦!
2 − 2𝑏 +

1
4	
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which,	given	that	𝑦! > 0,	yields	

𝑏 <
𝑦!
4 +

1
8	

	

Appendix	D.4.ii	
Extended	three-step	equilibrium	on	interval	II	

If	𝑣 = 𝑦!,	𝑆	must	be	indifferent	between	sending	𝑚!	and	𝑚!:	

𝑈! 𝑚! 𝑣 = 𝑦! = 𝑈! 𝑚! 𝑣 = 𝑦! =	

− 𝑎! − 𝑣 + 𝑏 ! = − 𝑎! − 𝑣 + 𝑏 ! =	

|𝑎! − (𝑣 + 𝑏)| = |𝑎! − (𝑣 + 𝑏)|	

which,	given	that	0 < 𝑎! < 𝑣 = 𝑦! < 𝑎!,	equals	

𝑦! + 𝑏 − 𝑎! = 𝑎! − 𝑦! + 𝑏 =	

𝑦! + 𝑏 −
𝑦! + 𝑦!
2 =

𝑦! + 1
2 − 𝑦! + 𝑏 	

which,	given	that	𝑦! =
!!
!
− 2𝑏 + !

!
,	yields	

𝑦! =
5
6− 4𝑏	

and	

𝑦! =
2
3− 4𝑏	

which,	given	that	𝑦! > 0,	yields	

𝑏 <
1
6	

	

Appendix	D.5.i	
Extended three-step equilibrium on interval II 

Message	interval	3,	[𝑦!, 1/2],	is	longer	than	message	interval	2,	[𝑦!,𝑦!],	that	is:	

1− 𝑦! > 𝑦! − 𝑦!	

1+ 𝑦! − 2𝑦! > 0	

1+
2
3− 4𝑏 − 2

5
6− 4𝑏 > 0	

4𝑏 > 0	

More	specifically,	message	interval	3	is	4𝑏	longer	than	message	interval	2.	
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Appendix	D.5.ii	
Extended three-step equilibrium on interval II 

Message	interval	2,	[𝑦!,𝑦!],	is	longer	than	message	interval	1,	[0,𝑦!],	that	is:	

𝑦! − 𝑦! > 𝑦! −
1
2 	

𝑦! − 2𝑦! +
1
2 > 0	

5
6− 4𝑏 − 2

2
3− 4𝑏 +

1
2 > 0	

4𝑏 > 0	

More	specifically,	interval	2	is	4𝑏	longer	than	interval	1.	

	

Appendix	D.6.i	
Extended three-step equilibrium on interval II 

𝑅’s aggregate expected utility equals: 

𝑈!!! = 𝑈!(𝑣)
!!

!
!

𝑑𝑣 + 𝑈!(𝑣) 𝑑𝑣
!!

!!
+ 𝑈!(𝑣) 𝑑𝑣

!

!!
=	

−(𝑎! − 𝑣)!
!!

!
!

𝑑𝑣 + −(𝑎! − 𝑣)! 𝑑𝑣
!!

!!
+ −(𝑎! − 𝑣)! 𝑑𝑣

!

!!
=	

−
1
2+ 𝑦!
2 − 𝑣

!

𝑑𝑣
!!

!
!

+ −
𝑦! + 𝑦!
2 − 𝑣

!
𝑑𝑣

!!

!!
+ −

𝑦! + 1
2 − 𝑣

!

𝑑𝑣
!

!!
=	

−
1
2+

1
3− 4𝑏
2 − 𝑣

!

𝑑𝑣
!
!!!!

!
!

+ −
1
3− 4𝑏 + 2

3− 4𝑏
2 − 𝑣

!

𝑑𝑣
!
!!!!

!
!!!!

+ −
2
3− 4𝑏 + 1

2 − 𝑣

!

𝑑𝑣
!

!
!!!!

=	

𝑈!!! = −
4
3 𝑏

! −
1
864	



Appendix	D.6.ii	
Extended three-step equilibrium on interval II 

𝑆’s aggregate expected utility equals: 

𝑈!!! = 𝑈!(𝑣)
!!

!
!

𝑑𝑣 + 𝑈!(𝑣) 𝑑𝑣
!!

!!
+ 𝑈!(𝑣) 𝑑𝑣

!

!!
=	

−[𝑎! − 𝑣 + 𝑏 ]!
!!

!
!

𝑑𝑣 + −[𝑎! − 𝑣 + 𝑏 ]! 𝑑𝑣
!!

!!
+ − 𝑎! − (𝑣 + 𝑏) ! 𝑑𝑣

!

!!
=	

−
1
2+ 𝑦!
2 − 𝑣 − 𝑏

!

𝑑𝑣
!!

!
!

+ −
𝑦! + 𝑦!
2 − 𝑣 − 𝑏

!
𝑑𝑣

!!

!!

+ −
𝑦! + 1
2 − 𝑣 − 𝑏

!

𝑑𝑣
!

!!
=	

−
1
2+

1
3− 4𝑏
2 − 𝑣 − 𝑏

!

𝑑𝑣
!
!!!!

!
!

+ −
1
3− 4𝑏 + 2

3− 4𝑏
2 − 𝑣 − 𝑏

!

𝑑𝑣
!
!!!!

!
!!!!

+ −
2
3− 4𝑏 + 1

2 − 𝑣 − 𝑏

!

𝑑𝑣
!

!
!!!!

=	

𝑈!!! = −
11
6 𝑏! −

1
864 

 

Appendix	D.7.i	
Extended	three-step	equilibrium	on	interval	I	

Note	 that	𝑅 	thinks	 that	𝑣 	lies	 on	 interval	 II,	 !
!
, 1 ,	 so	𝑎! =

!
!!!!
!
,	𝑎! =

!!!!!
!

,	

𝑎! =
!!!!
!
,	𝑦! =

!
!
− 4𝑏	and	𝑦! =

!
!
− 4𝑏	(recall	 Appendix	 D.1.ii	 on	 page	 28).	𝑆’s	

aggregate	expected	utility	when	always	sending	𝑚! = 𝑚!	equals	

𝑈!
!!! = − 𝑎! − 𝑣 + 𝑏 !𝑑𝑣

!
!

!
=	

𝑈!
!!! = −

1/2+ 𝑦!
2 − 𝑣 + 𝑏

!

𝑑𝑣
!
!

!
=	
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𝑈!
!!! = −

1
2+

1
6− 4𝑏
2 − 𝑣 + 𝑏

!

𝑑𝑣
!
!

!
=	

𝑈!
!!! = −

9
2 𝑏

! +
1
4 𝑏 −

1
72	

The calculations for always sending 𝑚! = 𝑚! and 𝑚! = 𝑚! are analogous. 

 

Appendix	D.7.ii	
Extended	three-step	equilibrium	on	interval	II	

Note	 that	𝑅	thinks	 that	𝑣	lies	 on	 interval	 I,	 0, !
!
,	 so	𝑎! =

!!
!
,	𝑎! =

!!!!!
!
,	𝑦! =

!
!
−

4𝑏	and	𝑦! =
!
!
− 4𝑏	(recall	 Appendix	 D.1.ii	 on	 page	 28).	𝑆’s	 aggregate	 expected	

utility	when	always	sending	𝑚! = 𝑚!	equals	

𝑈!
!!! = − 𝑎! − 𝑣 + 𝑏 !𝑑𝑣

!
!

!
=	

𝑈!
!!! = −

1/2+ 𝑦!
2 − 𝑣 + 𝑏

!

𝑑𝑣
!
!

!
=	

𝑈!
!!! = −

1
2+

1
6− 4𝑏
2 − 𝑣 + 𝑏

!

𝑑𝑣
!
!

!
=	

𝑈!
!!! = −

9
2 𝑏

! +
1
4 𝑏 −

1
72	

The calculations for always sending 𝑚! = 𝑚! and 𝑚! = 𝑚! are analogous. 

	
Appendix	E	

𝑛-step	equilibrium	
	
Suppose	 that	 the	 interval	 [0,1] 	is	 split	 into	 𝑛 	message	 intervals,	𝑚! 	with	
𝑖 = 1, 2, 3,… ,𝑛 ,	 where	𝑚! 	and	𝑚! 	are	 seperated	 by	 point	𝑧! ,	 where,	 with	
𝑘 = {2, 3, 4,… ,𝑛 − 1},	𝑚! 	and	𝑚!!!	are	 separated	 by	 point	𝑧! 	and	 where	𝑚!!!	
and	𝑚!	are	seperated	by	point	𝑧!!!.	
	
If	𝑅	receives	𝑚!,	 he	 infers	 that	𝑣	lies	 on	 the	 interval	[0, 𝑧!],	 thus	 updating	 his	
expected	 value	 of	𝑣	to	𝑧!/2.	 This	 leads	𝑅	to	 choosing	𝑎! = 𝑎! = 𝐸 𝑣|𝑚! = 𝑧!/2	
to	maximize	his	own	utility.	

If	𝑅 	receives	𝑚! ,	 he	 infers	 that	𝑣 	lies	 on	 the	 interval	[𝑧!!!, 𝑧!] ,	 thus	
updating	 his	 expected	 value	 of	𝑣 	to	(𝑧!!! + 𝑧!)/2 .	 This	 leads	𝑅 	to	 choosing	
𝑎! = 𝑎! = 𝐸 𝑣|𝑚! = (𝑧!!! + 𝑧!)/2	to	maximize	his	own	utility.	
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If	𝑅 	receives	𝑚! ,	 he	 infers	 that	𝑣 	lies	 on	 the	 interval	 [𝑧!!!, 1] ,	 thus	
updating	 his	 expected	 value	 of	𝑣 	to	(𝑧!!! + 1)/2 .	 This	 leads	𝑅 	to	 choosing	
𝑎! = 𝑎! = 𝐸 𝑣|𝑚! = (𝑧!!! + 1)/2	to	maximize	his	own	utility.	
	
Anticipating	𝑅’s	strategy,	𝑆	sends	𝑚!	for	all	values	of	𝑣	on	the	interval	[0, 𝑧!),	𝑚! 	
for	 all	 values	 of	𝑣	on	 the	 interval	(𝑧!!!, 𝑧!)	and	𝑚! 	for	 all	 values	 of	𝑣	on	 the	
interval	(𝑧!!!, 1).	
	
If	 𝑣 = 𝑧! ,	 𝑆 	must	 be	 indifferent	 between	 sending	𝑚! 	and	𝑚!!! ,	 that	 is:	
𝑈! 𝑚! 𝑣 = 𝑧! = 𝑈!(𝑚!!!|𝑣 = 𝑧!) ,	 which	 equals	− 𝑎! − 𝑣 + 𝑏 ! = − 𝑎!!! −

𝑣 + 𝑏 ! ,	 which	 equals	 – !!!!!!!
!

− 𝑣 + 𝑏
!
= − !!!!!!!

!
− 𝑣 + 𝑏

!
,	 which	

yields	𝑧!!! − 𝑧! = 𝑧! − 𝑧!!! + 4𝑏,	 which	 proves	 that	 the	 length	 of	 an	 interval	
equals	the	length	of	the	previous	interval	plus	4𝑏	(see	Appendix	F.1	on	page	37).	
This	corresponds	to	findings	of	Gibbons	(1992).	
	
Suppose	 that	 interval	1	is	of	 length	𝑐.	Given	 that	each	 interval	 is	4𝑏	longer	 than	
the	 previous	 interval,	 interval	2 	is	 of	 length	𝑐 + 4𝑏 ,	 interval	3 	is	 of	 length	
𝑐 + 4𝑏 ∗ 2	etcetera.	This	series,	consisting	of	𝑛	steps,	must	equal	1	when	𝑣	lies	on	
the	 interval	[0,1],	 that	 is,	𝑛𝑐 + 4𝑏 𝑖 = 1!!!

!!! ,	 which	 equals	𝑛𝑐 + 4𝑏 ! !!!
!

= 1	
and	can	be	simplified	to	
	
	 𝑛𝑐 + 2𝑏𝑛 𝑛 − 1 = 1	 (1)	
	
which	 can	 be	 rewritten	 as	 the	 definition	 of	 the	 first	 interval,	which	 equals	 the	
first	 indifference	 point:	𝑐 = 𝑧! =

!!!" !!!
!

.	 Every	 following	 indifference	 point	
equals	 𝑧! = 𝑖 ∗ 𝑧! + 2𝑏𝑛(𝑛 − 1) .	 Substituting	 𝑧! 	and	 simplifying	 yields	 𝑧! =
!!!!"(!!!)(!!!)

!
.	 Recall	 that	𝑛 	and	𝑖 	are	 integers	 and	 note	 that	 when	𝑖 = 𝑛 ,	𝑧! 	

always	equals	1,	 corresponding	 to	 the	 right	boundary	of	 the	 interval	of	𝑣.	Also,	
note	that	𝑛 ≠ 0.	
	
In	(1),	the	value	of	endogenous	variable	𝑐	is	formed	such	that	the	equation	holds.	
Stated	differently,	given	the	value	of	exogenous	parameter	𝑏,	the	value	of	integer	
𝑛	is	set	so	that	2𝑏𝑛 𝑛 − 1 < 1,	after	which	the	value	of	𝑐	ensures	that	𝑛𝑐 = 1−
2𝑏𝑛(𝑛 − 1).	Therefore,	the	value	of	𝑛	is	not	dependent	on	𝑐,	but	rather	the	other	
way	 around.	 Consequently,	 the	 value	 of	𝑛	is	 subject	 to	2𝑏𝑛 𝑛 − 1 < 1,	 which	

solves	for	𝑛 < !
!
1+ 1+ !

!
		(see	Appendix	F.2	on	page	37).	

	
From	(1),	 it	can	be	 infered	that	when	the	 interest	asymmetricality	of	𝑅	and	𝑆	is	
infinitely	 small,	 that	 is,	𝑏	approaches	 zero,	 the	 maximum	 number	 of	 intervals	
becomes	infinitely	large,	that	is,	𝑛	approaches	infinity	and	the	length	of	interval	1	
becomes	infinitely	small,	that	is,	𝑐	approaches	zero.	
	
A	 player’s	 aggregate	 expected	 utility	 for	 the	𝑛-step	 equilibrium	on	 the	 interval	
[0,1]	can	be	calculated	using	the	sum	of	𝑛	integrals.	The	first	integral	covers	the	
situation	 where	𝑣 = [0, 𝑧!] ,	𝑆 	chooses	𝑚! = 𝑚! 	and	𝑅 	chooses	𝑎! = 𝑎! = 𝑧!/2 .	
The	𝑘-th	 integral	 covers	 the	 situation	 where	𝑣 = [𝑧!!!, 𝑧!],	𝑆	chooses	𝑚! = 𝑚! 	
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and	𝑅	chooses	𝑎! = 𝑎! = (𝑧!!! + 𝑧!)/2.	 The	𝑛-th	 integral	 covers	 the	 situation	
where	𝑣 = [𝑧!!!, 1],	𝑆	chooses	𝑚! = 𝑚!	and	𝑅	chooses	𝑎! = 𝑎! = (𝑧!!! + 1)/2.	
	
	

Extended	𝑛-step	equilibrium	
	
Suppose	 that	 the	 interval	 0, !

!
	is	 split	 into	 𝑛 	message	 intervals,	𝑚! 	with	

𝑖 = 1, 2, 3,… ,𝑛 ,	 where	𝑚! 	and	𝑚! 	are	 seperated	 by	 point	𝑧! ,	 where,	 with	
𝑘 = {2, 3, 4,… ,𝑛 − 1},	𝑚! 	and	𝑚!!!	are	 separated	 by	 point	𝑧! 	and	 where	𝑚!!!	
and	𝑚!	are	seperated	by	point	𝑧!!!.	
	
If	𝑅	receives	𝑚!,	 he	 infers	 that	𝑣	lies	 on	 the	 interval	[0, 𝑧!],	 thus	 updating	 his	
expected	 value	 of	𝑣	to	𝑧!/2.	 This	 leads	𝑅	to	 choosing	𝑎! = 𝑎! = 𝐸 𝑣|𝑚! = 𝑧!/2	
to	maximize	his	own	utility.	

If	𝑅 	receives	𝑚! ,	 he	 infers	 that	𝑣 	lies	 on	 the	 interval	[𝑧!!!, 𝑧!] ,	 thus	
updating	 his	 expected	 value	 of	𝑣 	to	(𝑧!!! + 𝑧!)/2 .	 This	 leads	𝑅 	to	 choosing	
𝑎! = 𝑎! = 𝐸 𝑣|𝑚! = (𝑧!!! + 𝑧!)/2	to	maximize	his	own	utility.	

If	𝑅 	receives	𝑚! ,	 he	 infers	 that	𝑣 	lies	 on	 the	 interval	[𝑧!!!, 1/2],	 thus	
updating	 his	 expected	 value	 of	𝑣	to	(𝑧!!! + 1/2)/2.	 This	 leads	𝑅	to	 choosing	
𝑎! = 𝑎! = 𝐸 𝑣|𝑚! = (𝑧!!! + 1/2)/2	to	maximize	his	own	utility.	

	
Anticipating	𝑅’s	strategy,	𝑆	sends	𝑚!	for	all	values	of	𝑣	on	the	interval	[0, 𝑧!),	𝑚! 	
for	 all	 values	 of	𝑣	on	 the	 interval	(𝑧!!!, 𝑧!)	and	𝑚! 	for	 all	 values	 of	𝑣	on	 the	
interval	(𝑧!!!, 1/2).	
	
If	 𝑣 = 𝑧! ,	 𝑆 	must	 be	 indifferent	 between	 sending	𝑚! 	and	𝑚!!! ,	 that	 is:	
𝑈! 𝑚! 𝑣 = 𝑧! = 𝑈!(𝑚!!!|𝑣 = 𝑧!) ,	 which	 equals	− 𝑎! − 𝑣 + 𝑏 ! = − 𝑎!!! −

𝑣 + 𝑏 ! ,	 which	 equals	 – !!!!!!!
!

− 𝑣 + 𝑏
!
= − !!!!!!!

!
− 𝑣 + 𝑏

!
,	 which	

yields	𝑧!!! − 𝑧! = 𝑧! − 𝑧!!! + 4𝑏,	 which	 proves	 that	 the	 length	 of	 an	 interval	
equals	 the	 length	of	 the	previous	 interval	plus	4𝑏	(recall	Appendix	F.1	on	page	
37).	
	
Suppose	 that	 interval	1	is	of	 length	𝑐.	Given	 that	each	 interval	 is	4𝑏	longer	 than	
the	 previous	 interval,	 interval	2 	is	 of	 length	𝑐 + 4𝑏 ,	 interval	3 	is	 of	 length	
𝑐 + 4𝑏 ∗ 2	etcetera.	This	series,	consisting	of	𝑛	steps,	must	equal	1/2	when	𝑣	lies	
on	 the	 interval	 0, !

!
,	 that	 is,	𝑛𝑐 + 4𝑏 𝑖 = !

!
!!!
!!! ,	which	equals	𝑛𝑐 + 4𝑏 ! !!!

!
= !

!
	

and	can	be	simplified	to	
	
	 𝑛𝑐 + 2𝑏𝑛 𝑛 − 1 = 1/2	 (2)	

	
which	 can	 be	 rewritten	 as	 the	 definition	 of	 the	 first	 interval,	which	 equals	 the	
first	 indifference	point:	𝑐 = 𝑧! =

!/!!!!" !!!
!

.	Every	following	indifference	point	
equals	 𝑧! = 𝑖 ∗ 𝑧! + 2𝑏𝑛(𝑛 − 1) .	 Substituting	 𝑧! 	and	 simplifying	 yields	 𝑧! =
!!!!"(!!!)(!!!)

!
.	 Recall	 that	𝑛 	and	𝑖 	are	 integers	 and	 note	 that	 when	𝑖 = 𝑛 ,	𝑧! 	

always	equals	1.	Also,	note	that	𝑛 ≠ 0.	
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In	(2),	the	value	of	endogenous	variable	𝑐	is	formed	such	that	the	equation	holds.	
Stated	differently,	given	the	value	of	exogenous	parameter	𝑏,	the	value	of	integer	
𝑛 	is	 set	 so	 that	2𝑏𝑛 𝑛 − 1 < 1/2 ,	 after	 which	 the	 value	 of	𝑐 	ensures	 that	
𝑛𝑐 = 1/2− 2𝑏𝑛(𝑛 − 1).	 Therefore,	 the	 value	 of	𝑛	is	 not	 dependent	 on	𝑐,	 but	
rather	the	other	way	around.	Consequently,	the	value	of	𝑛	is	subject	to	2𝑏𝑛 𝑛 −

1 < 1/2,	which	solves	for	𝑛 < !
!

1+ !
!
		(see	Appendix	F.2	on	page	37).	

	
Appendix	F.1	
𝑛-step	equilibrium	

If	𝑣 = 𝑧! ,	𝑆	must	be	indifferent	between	sending	𝑚! 	and	𝑚!!!:	

𝑈! 𝑚! 𝑣 = 𝑧! = 𝑈! 𝑚!!! 𝑣 = 𝑧! =	

− 𝑎! − 𝑣 + 𝑏 ! = − 𝑎!!! − 𝑣 + 𝑏 ! =	

𝑎! − 𝑣 + 𝑏 = 𝑎!!! − 𝑣 + 𝑏 	

Which,	given	that	0 < 𝑎! < 𝑣 = 𝑧! < 𝑎!!!,	equals	

𝑧! + 𝑏 − 𝑎! = 𝑎!!! − 𝑧! + 𝑏 =	

𝑧! + 𝑏 −
𝑧!!! + 𝑧!

2 =
𝑧!+𝑧!!!

2 − 𝑧! + 𝑏 =	

𝑧! − 𝑧!!! + 4𝑏 = 𝑧!!! − 𝑧! 	

This	 proves	 that	 the	 length	 of	 an	 interval	 equals	 the	 length	 of	 the	 previous	

interval	plus	4𝑏.	

	
Appendix	F.2	
𝑛-step	equilibrium	

2𝑏𝑛 𝑛 − 1 < 1	

𝑛! − 𝑛 −
1
2𝑏 < 0	

Given	that	both	𝑛	and	𝑏	are	positive,	this	yields	

𝑛 <
1
2
𝑏 + 𝑏! + 2𝑏

𝑏 	

which	can	be	simplified	to	

𝑛 <
1
2 1+ 1+

2
𝑏 	


