The Road-Based Vehicle Rescheduling Problem:
Methods and Extensions

Rolf van Lieshout
Student ID: 400376

June 28, 2016

Supervisor: prof. dr. Dennis Huisman
Co-reader: dr. Judith Mulder

Bachelor Thesis Econometrics and Operations Research
Erasmus School of Economics
Erasmus University Rotterdam

Abstract

In contrast to the well-researched aircraft and railway recovery problems, the road-
based vehicle rescheduling problem (VRSP) is a relatively unexplored problem. This
thesis builds further on [Li, Mirchandani, and Borenstein| (2009), who proposed solving
the VRSP using a Lagrangian heuristic. This results in fewer cancelled trips than
an ad hoc rescheduling procedure, emphasizing the benefits of optimized rescheduling.
Besides replicating the results of |Lii et al.| (2009)), we compare their Lagrangian heuristic
with a column generation based heuristic. This heuristic leads to better, very often
optimal solutions, but computation times are longer. The last contribution of this thesis
is the introduction of the vehicle rescheduling problem with retiming (VRSPRT), where
trips can not only be cancelled, but also delayed. This increases scheduling flexibility
such that less disruptive solutions can be obtained. To incorporate the delays in the
problem formulation, we propose a new method that expands the underlying network
to include all relevant delay possibilities. An advantage of this method is that both
heuristics for the VRSP can directly be applied. For large instances, we propose a
dynamic neighborhood exploration heuristic that allows retiming for a subset of all
trips. The results indicate that retiming reduces the number of cancellations with 40%
compared to the original VRSP.

Contents

(1 Introduction|

2 Problem Description and Mathematical Formulation|
2.1 Problem Description| L

[3 Lagrangian Relaxation Based Heuristic|
[3.1 Solving the Lagrangian|
3.2 Primal Heuristic|.
[3.3 Solving the Lagrangian Duall

[4 Computational Experiments|

(5.2 Finding Integer Solutions|.
[>.3 Comparison of the Two Heuristics|.

6 Vehicle Rescheduling with Retiming)
6.1 [iterature Review|
[6.2 Mathematical Formulation and Methodology|
[6.3 Dynamic Neighborhood Exploration|.
[6.4 Added Value of Retimingf.

[r__Conclusion|

8 References|

[A Shortest path algorithms|

N NN

O U

o o 3

15
15
16
18
19

22

23

25

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 1

1 Introduction

Despite increased attention for dynamic vehicle routing and scheduling problems and disruption
management in particular, the vehicle rescheduling problem (VRSP) has largely remained untouched
(Bunte & Kliewer, 2009; |Visentini, Borenstein, Li, & Mirchandanil 2014). This problem, introduced
in |Li, Mirchandani, and Borenstein (2004)), concerns the situation where a vehicle (bus) in a public
transit system breaks down during operation. The other vehicles need to be rescheduled to serve
the remainder of the disrupted trip and other trips originally scheduled for the disabled vehicle,
while considering operation costs, schedule disruption costs and trip cancellation costs. As the
satisfaction of passengers is greatly impacted by delays or even cancellation of trips and it has
proven to be a scientific challenge to quickly find high quality solutions, the relevance of research
on the VRSP is self-evident. The aim of this thesis is to contribute to the literature on the vehicle
rescheduling problem by (i) implementing the methods of |Li, Mirchandani, and Borenstein| (2009)
and replicating their results, (ii) comparing their Lagrangian relaxation based heuristic to a column
generation based heuristic and (iii) generalizing their methodology to also allow for small delays,
which can help to reduce cancellations even further.

The VRSP is an example of disruption management, which refers to the study of how to continue
operating a certain system after one or more disruptions occur that prevent the original schedule
from being executed (Yu & Qi,[2004). In the case of public transportation systems, disruptions can
for example be caused by crew sickness, union strikes, mechanical malfunctions or even weather
conditions. As the status of such a system changes simultaneously as the rescheduling is performed,
it is required that solutions are found quickly, providing a large scientific challenge. In the VRSP,
disruptions are caused by vehicle breakdowns, a topic that is remarkably less well researched than
vehicle delays (Visentini et al.| [2014). Another observation by the same authors, who present a
review of schedule recovery models in road-, train- as well as air-based services, is that the literature
on the road-based VRSP is very scarce compared to the train and aircraft recovery literature, with
only main contributions from Huisman, Freling, and Wagelmans| (2004) and Li et al. (2009).

Huisman et al.| (2004 consider a dynamic environment where the vehicles are not scheduled
beforehand, but iteratively as the day progresses. Delays in previously assigned trips and multiple
scenarios for future travel times are taken into account. In Huisman and Wagelmans (2006) they
integrate the dynamic vehicle scheduling with crew scheduling, which is necessary in order to apply
the approach in practice. However, the authors state that it leads to very large computation times
due to the complexity of the problem.

As [Huisman et al.| do not consider disruptions caused by vehicle breakdowns, this thesis will
mostly build further on |Li et al. (2009)). In |Li et al. (2009), the authors reconsider some of the
assumptions made in |Li et al.| (2004) and propose a new mathematical formulation for the VRSP.
More specifically, they no longer exclude the possibility that trips other than the disrupted trip are
cancelled and impose penalty costs on rescheduled trips, as it is often desirable that schedule changes
are kept to a minimum. A Lagrangian heuristic is developed to solve the VRSP. Overall their results
indicate that the heuristic performs quite well, strongly reducing the number of cancellations in
comparison with an ad hoc rescheduling procedure.

The thesis consists of two parts. First, the results of [Li et al.| are replicated: in Chapter
the VRSP is thoroughly defined and a mathematical formulation is given; Chapter [3] discusses
the Lagrangian heuristic of |[Li et al.; in Chapter [4, the experimental setup is discussed and the
results are presented. In the second part of the thesis, we build further on|[Li et al.; in Chapter [5] a
column generation based heuristic is proposed and its performance is compared with the Lagrangian
heuristic; Chapter [0] discusses the VRSP with retiming, including related literature, methodology
and results. We wrap-up the thesis with a conclusion and suggestions for further research.

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 2

2 Problem Description and Mathematical Formulation

2.1 Problem Description

The VRSP is defined for a transit system (best comparable to a bus system) where a number of
service trips need to be performed. A service trip consists of multiple stops where passengers are
picked up and dropped off and has a specified starting and ending location and a starting and
ending time. Every vehicle starts at the depot and executes a sequence of service trips before
returning to the depot. A pair of trips in a sequence needs to be compatible, meaning that a vehicle
can perform the second trip after the first trip. Not all possible pairs of trips are compatible, as the
times that they are carried out might overlap or it takes too long to get from the ending location of
the first trip to the starting location of the second trip. Movements of a vehicle without passengers,
from or to the depot or from the ending location of one service trip to the starting location of the
next service trip, are referred to as deadhead trips.

The rescheduling needs to take place when one of the vehicles breaks down at a certain breakdown
time and breakdown place. The trip currently being performed by the disrupted vehicle is referred
to as the cut trip. In case the cut trip is a service trip, a back-up wvehicle needs to be send to
the breakdown location to pick up the stranded passengers and finish the remainder of the trip.
This task is referred to as the back-up trip and is denoted by B. In the other case, the cut trip
is a deadhead trip, a back-up vehicle is not necessary. After the breakdown of one vehicle, the
remaining operating vehicles can be seen as pseudo-depots from which one vehicle can be deployed
at a certain availability time. The availability time of vehicles performing a deadhead trip is equal
to the breakdown time. On the other hand, the availability time of vehicles performing a service trip
is equal to the ending time of their current trip, as this trip must be finished before rescheduling.
Moreover, vehicles can instantly be deployed from the real depot, such that the availability time of
the depot is also equal to the breakdown time.

It is often undesirable to have many changes in the schedule, as the crew of a vehicle might
not be familiar with all trips and reassignments might lead to crews work overtime. Therefore
the objective of the VRSP is not only to minimize operating costs and cancellation costs but also
schedule disruption costs.

2.2 Mathematical Formulation

We will now define some notation used to give a mathematical formulation of the VRSP. Let
N = {B,1,2,...,n} denote the set of future service trips (viewed from the breakdown time) and
let st; denote the starting time of service trip ¢. The back-up trip is also regarded as a service
trip, with a starting time equal to the breakdown time, as it can be performed from the moment of
breakdown. Define D as the the set of all (pseudo-)depots, including the real depot, denoted by s,
and all scheduled vehicles apart from the disrupted vehicle. Furthermore, ¢ is used to denote the
depot as an endpoint.

All possible rescheduling possibilities from a (pseudo-)depot are captured in a so-called recovery
network. Traditionally, in vehicle scheduling such a network is modeled as a connection-based
graph, where nodes represent either depots or trips and edges represent connections (exceptions are
Kliewer, Mellouli, and Suhl| (2006) and Steinzen, Gintner, Suhl, and Kliewer| (2010) who employ
time-space networks to solve the multiple-depot vehicle scheduling problem and the integrated
vehicle and crew scheduling problem respectively). The recovery network from (pseudo-)depot d
is defined as G¢ = (V¥ A%), where Vy = NYU {d, t} and A = EYU (d x N¥) U (N? x t). Here,
N denotes the set of service trips and E4 = {(i, j)|st; < st;,i and j compatible, i € N9, j € N}

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 3

denotes the set of possible deadhead trips that can be performed from (pseudo-)depot d.

Figure 1: A recovery network. d and ¢ denote the starting and ending depot respectively, B denotes the
back-up trip and 1, 2, and 3 represent service trips.

An example of a recovery network is depicted in Figure Since B is included in the recovery
network, the back-up trip can be performed from d. There is an arc from every node to ¢ because
a vehicle can return to the depot after every trip. Every path from d to t represents a possible
sequence of trips that can be performed from this (pseudo-)depot.

The decision variables are given by yldj and z;, where yldj indicates whether arc (i, j) € A? is
selected and z; indicates whether service trip ¢ is cancelled. The VRSP can then be formulated as
follows (see |Li et al.[(2009)):

noy, D gt G (2.1)

deD (i,5)eAd ieEN
s.t. o <w d=s, (2.2)
{5:(d.j)eA}
Z v =1 Vd € D — {s}, (2.3)
,J)EAd}

> Z vtz =1 Vie N, (2.4)
deD {j:(i,j)€ A%}
oy — Yy =0 Vie N,Vd € D, (2.5)
{4:(i,5)€ A4} {5:(3,) €A}
yh,zi €{0,1} Vvde D,V(i, j)e A4 Vie N, (2.6)
where ¢ i; 1s the cost of arc (i, j) € A% and C; the cost of cancelling trip i.

The objective is to minimize the sum of the operation costs and cancellatlon costs. Penalties for
reassigning trips can be accounted for in the definition of the arc costs c i Constraints (2.2) and
(2.3) assure that at most W vehicles depart from the depot and exactly 1 from every pseudo-depot.
Constraints (2.4) guarantee that every trip is either executed or cancelled and constraints (2.5) are
flow conservation constraints.

Li et al.|claim that the equality sign in constraints (2.4) can be replaced by a 7> sign if the
triangle inequality holds for the costs cflj (so czk < c i+ k) or the penalty for each reassignment is
sufficiently large. As both conditions are considered hkely to hold, it is assumed that the constraints
can indeed be replaced by ”greater than” constraints throughout the thesis.

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 4

3 Lagrangian Relaxation Based Heuristic

As the VRSP needs to be solved quickly in order to be applicable in practice, Li et al.|(2009) propose
to solve the VRSP using Lagrangian relaxation. In this chapter, we give a thorough description of
the methodology of [Li et al.| An overview of their approach is as follows:

Step 1. Compute a lower bound by solving the Lagrangian problem.

Step 2. Compute an upper bound by applying an insertion-based primal heuristic that transforms
the Lagrangian solution into a feasible solution.

Step 3. Update the Lagrangian multipliers based on subgradient search.

Step 4. Repeat steps 1 to 3 until the gap between the lower and upper bound is sufficiently small
or a given time limit is exceeded.

3.1 Solving the Lagrangian

Li et al. relax constraints (2.4), Z Z y;-jj + z; > 1, and incorporate them in the objective
deD {j:(i,j)€ A%}
function. The resulting Lagrangian problem can then be written as

O =D Ai+D mM)+ D)+ (), (3.1)

iEN i€EN deD—{s}
where k;(A;), pg(A) and vg(X) are sub-problems for trip ¢, pseudo-depot d and the real depot s
respectively. The first sub-problem is given by
lil()\z) = min (CZ —)\i)zi, s.t. z; € {0, 1} (3.2)
which has the trivial solution that z; = 1 if C; — A; < 0 and 0 otherwise. The second sub-problem
is given by

pa(A) = min Y (e — M)y (3.3)

s.t. Z yflj =1 , (3.4)
{J:(d.j)eAd}

oy Yy =0 Vie N, (3.5)
{j:(1,5)e A} {7:(j.0) €A}

vl €{0,1} Vke K,V(i, j) € A%, (3.6)

and can be observed to be a shortest path problem. The sub-problem for the real depot is given by

vs(A) = min Z (ci; — A)yij (3.7)
(i,§)€As
s.t. Z ys; <W , (3.8)

Soy— >y =0 Vie N, (3.9)
{j:G.g)eAs} {j:(G.)eAs}
y;; €{0,1} Vke K\V(i, j)€ A®, (3.10)

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 5

and can be observed to be problem of finding at most W arc-disjoint paths from s to ¢t with the
lowest total costs (only paths with negative costs will be selected as the problem does not require
there to be exactly W paths).

To solve the shortest path problem, |Li et al.|use the GOR1 algorithm of |(Cherkassky, Goldberg,
and Radzik| (1996)), which runs in O(|V| + |A|) time. This algorithm first computes a topological
ordering of the vertices, after which all vertices are ’scanned’ according to this order. However, |Li
et al. do not seem to realize that the first phase of this algorithm can be skipped, since for our case
a topological ordering is readily available by construction (recall that for every arc (i,7) it holds
that st; < stj), so sorting according to starting time gives a topological ordering. Therefore, we
skip the first phase of GOR1 and immediately start scanning the vertices in the topological order.
Pseudo-code for the used algorithm can be found in Appendix [A]

To solve the third sub-problem, Li et al. employ an algorithm by |Jiménez and Marzal (1999).
However, by doing this, they implicitly relax constraints (3.9) and allow for non-negative integer-
valued variables, as this algorithm computes the K shortest paths, which are not necessarily disjoint.
A possible reason why the authors do this is that, despite polynomial algorithms for the K-shortest
disjoint paths problem are available, the implementation is more laborious and the asymptotic
running time is longer in comparison with finding non-disjoint paths (Cheng, Kumar, & Garcia-
Luna-Aceves, 1989; Suurballe, 1974). Consequently, we follow |Li et al.|and use the algorithm by
Jiménez and Marzal (1999)) to solve v4(A). Pseudo-code can be found in Appendix

As can be seen, for a given set of Lagrangian multipliers, §(A) can be solved by decomposing the
problem into ’easy’ problems that can be solved by inspection or for which specialized algorithms
can be employed. An overview of the approach is the following procedureﬂ

Step 1. For each trip i, solve k;(\;) by inspection. Compute the corresponding costs.

Step 2. For each pseudo-depot d, find the shortest path from d to t. Compute the corresponding
costs.

Step 3. For the depot s, find shortest paths from s to ¢ until W paths are found or the cost of the
next path is positive. Compute the corresponding costs.

Step 4. Calculate (), a lower bound the the VRSP, by summing all Lagriangian multipliers and
the costs in steps 1 to 3.

3.2 Primal Heuristic

To generate upper bounds, [Li et al. (2009) propose a primal heuristic that computes a feasible
solution from the Lagrangian solution. Because restrictions (2.4) are relaxed, in the Lagrangian
solution a trip might be covered multiple times or might not be covered nor cancelled. As can-
cellations are quite costly, the idea of the primal heuristic is to first remove redundant covering
and then insert uncovered trips into existing paths (routes). Only if an uncovered trip cannot be
inserted in any of the paths, it is cancelled. A more detailed description of the heuristic is given
below.

Step 1. Remove redundant covering for each trip. If a trip is covered more than once, remove the
trip from paths other than the cheapest path covering the trip.

ILi et al.| (2009) refer to this procedure as the ” Column generation procedure for solving the Lagrangian
dual problem”. However, no column generation is applied. Furthermore, this procedure does not solve the
Lagrangian dual problem of finding the highest lower bound, but rather finds a lower bound.

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 6

Step 2. For each uncovered trip, compute in which paths it can be inserted and request an insertion
in the path that yields the maximum cost decrease. If no feasible insertion position in any
of the paths exists, cancel it.

Step 3. For every requested insertion position, insert the trip that yields the maximum cost de-
crease.

Step 4. Repeat steps 2 and 3 until every trips is either covered or cancelled.

The cost decrease of an insertion is given by the difference between the objective function of the
VRSP before and after the insertion. It is not clear whether Li et al. (2009)) allow for additional
paths to be created from the depot in the second step of the heuristic. In this thesis, we allow it
as long as permitted by the capacity of the depot.

3.3 Solving the Lagrangian Dual
The Lagrangian dual problem, the problem to find the best (highest) lower bound, is given by

max{f(A) : A > 0}. (3.11)

Note that only non-negative values of the Lagrangian multipliers need to be considered since the
relaxed constraints are ’greater than’ constraints. The Lagrangian dual is solved by updating the
Lagrangian multipliers using the commonly used update formula given in Held and Karp| (1971)),
which is based on subgradient search:

UB —0(\F)
lgB2

Here pj denotes a step-size parameter, UB denotes the best known upper bound and g(A) denotes
the vector of subgradients:

)\erl = max{)\f + Pk (M%), 0}, i e N. (3.12)

giA) =1—2z2; — Z Z yldj, i€ N. (3.13)

deD (j:(ij) A1)

The intuition behind the update formula is that when a trip is not covered or cancelled in the
Lagrangian solution, the penalty (Lagrangian multiplier) for violating the corresponding constraint
is increased. Furthermore, when the optimum is approached, the gap between lower and upper
bound gets smaller and the step-size decreases. On the other hand, if the size of the gradient is
smaller, the step-size increases to still be able to obtain a sufficient decrease of the objective value.

Li et al.|seem to be using a constant step-size where pr = p = 1. However, to improve the
likelihood that the optimization converges, in this thesis the step-size is halved every time the best
lower bound has not increased in a certain number of iterations, a rule that has performed well
empirically (Fisher], 2004). Also, multiple initial values are tested, to see whether there are notable
differences in performance.

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 7

4 Computational Experiments

The goals of the computational experiments are to investigate the benefits of an optimized reschedul-
ing approach compared to an ad hoc rescheduling approach and to analyse the effectiveness of the
Lagrangian heuristic by [Li et al.| First, the experimental setup is discussed. Next, we explain the
ad hoc rescheduling procedure. Afterwards, the results are presented and analysed.

4.1 Experimental Setup

The experiments are configured to be as similar to the ones by [Li et al.| as possible. In case of
ambiguities, our interpretation is clearly stated.

Before we can reschedule, an initial schedule is needed. To this end, vehicle scheduling instances
are generated using the method of |Carpaneto, Dell’Amico, Fischetti, and Toth|(1989)). This method
aims to simulate a real-life public transport system in which short and long service trips (referred to
as trips henceforth) are executed from 5 a.m. till midnight. Two classes of instances are examined.
In class S all trips are short trips and in class M the ratio between short and long trips is 40:60.
The following steps generate a vehicle scheduling instance with n trips.

Step 1. Generate v relief points, where v is an integer drawn randomly from [n/3,n/2], and one
depot on a 60 by 60 grids according to a uniform distribution. The travel time between two
points is given by the Euclidean distance.

Step 2. Generate a number of short trips. Short trips start in peak hours (7-8 a.m. and 5-6 p.m.)
with a probability of 30%. Exact starting times are determined using uniform distributions
(either inside or outside the peak hours). The starting and ending relief points are drawn
randomly from the set of relief points. The duration of a short trip is the travel time plus a
random component between 5 and 40 minutes.

Step 3. Generate a number of long trips. Long trips have starting times that are uniformly
distributed over the day. Long trips are round trips, such that only one relief point is drawn
per trip. The duration of a long trip is between 3 and 5 hours.

Step 4. Compute the arc costs ¢;;. If i and j both correspond to the depot, the cost is a combi-
nation of travel and idle time. If 7 corresponds to the depot, the cost is the travel time plus
a fixed vehicle cost. If j corresponds to the depot, the cost only includes travel time.

The generated vehicle scheduling problem is formulated as a network flow problem (see e.g. Freling,
Wagelmans, and Paixao| (2001))) and solved using CPLEX, a general purpose MIP solver. After-
wards, an early short trip is selected as the cut trip. To obtain the breakdown location, it is
assumed that during a trip vehicles travel in a straight line with constant speed from the starting
to ending relief point. As|Li et al., when a back-up vehicle arrives at the breakdown location, it
serves the remainder of the cut trip after a service time of 3 minutes. Moreover, only vehicles that
can arrive at the breakdown location within 25 minutes after breakdown are allowed to serve as
back-up vehicles. The recovery networks for all (pseudo-)depots are constructed correspondingly.

The arc costs for the VRSP are defined as follows:
d {cij, if trip j is originally covered from (pseudo-)depot d
Cij ==

cij + P, otherwise,

where P is a penalty costs incurred for a reassignment. It must be noted that the fixed vehicle
costs are subtracted from cflj if # = d, as they can be considered sunk costs. Furthermore, the

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 8

cancellation costs are defined as C; = 5 x (duration of ¢) + C, where C is a fixed component for
every cancelled trip. [Li et al.| (2009) do not state how they make sure that the back-up trip is
executed. In our experiments, we do so by imposing a very large cancellation cost on this trip.

The algorithms are implemented in Java on a HP EliteBook 8460p running Windows 10 with
an Intel Core i5 processor at 2.5 GHz and 4 GB of RAM.

4.2 Ad Hoc Rescheduling Procedure

According to[Li et al, human schedulers often employ the following ad hoc rescheduling procedure
in case of vehicle breakdowns. If no back-up vehicle is available at the depot, all scheduled trips
for the disrupted vehicle are cancelled. The passengers are supposed to be picked up by a vehicle
performing the same trip as the cut trip but at a later time. If a back-up vehicle is available, the
human schedulers first checks when the first scheduled vehicle will pass by the breakdown location.
If the back-up vehicle cannot arrive sooner, it is send out to perform the original schedule of the
disrupted vehicle from the first compatible trip. On the other hand, if the back-up vehicle can
arrive sooner, it is sent out to first pick up the stranded passengers and finish the remainder of the
cut trip. Afterwards, it will continue to perform the schedule of the disrupted vehicle from the first
compatible trip.

It must be noted that even though the ad hoc rescheduling solution can serve as a benchmark
for the optimized approach, it is not always a feasible solution for the VRSP since the back-up
trip is not always executed and the delay time of the stranded passengers can exceed 25 minutes.
Consequently, the cost of the ad hoc solution are often lower than those of the optimized solution.
Therefore, we only compare the solutions on the delay of the stranded passengers and the number
of cancelled trips.

4.3 Results

Before performing the experiments, 10 test instances of class S were used to determine after how
many iterations without improvement in the lower bound the step-size parameter p; in equation
should be halved and what initial step-size should be used. The resulting gaps after running
the algorithm for 60 seconds are presented in Table As can be seen, an initial step-size of 3
and halving the step-size after 6 iterations without improvement seems to perform the best. These
values are used in the remainder of this thesis.

Table 1: Optimality gaps for different parameter combinations of the subgradient search.

Initial | Allowed iterations without improvement
step-size | 2 4 6 8 10 12
11068 054 0.57 0.66 0.66 0.66
21059 049 0.68 0.79 0.68 0.63
31040 0.15 0.12 0.58 0.58 0.85
41026 037 032 1.06 0.67 1.17

To evaluate the performance of the heuristic, we test it on large instances of 700 originally scheduled
trips. 10 instances of both classes are generated and solved for every configuration; three breakdown
times given as a percentage into the cut trip (BT), two values for the fixed component of the
cancellation cost (C), two values of the reassignment penalty (P), the case with a backup-vehicle
available at the depot (W = 1) and the case without (W = 0). For these experiments, the iteration

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions.

limit is set at 100 iterations and the time limit is set at 2 minutes, as solutions need to be provided
quickly in real-life situations. The results are presented in Table [2 NRT is the average number of
remaining trips, D the average delay for the cut trip, CT the average number of cancelled trips,
RT the average number of reassigned trips, AHD and AHCT are the average delay and number of
cancelled trips for the ad hoc rescheduling approach, CC the average cancellation costs, OC the

average operating costs, G the average optimality gap and CPU the average computation time.

Table 2: Results of the Lagrangian heuristic for solving the VRSP.

Class S: only short trips. On average 109.8 vehicles.

W=0
BT (%) NRT C P D CT RT AHD AHCT CcC OoC G (%) CPU (s)
20 604.4 1000 300 16.6 1.1 6.7 25.0 7.1 1,376 106,503 0.8 62.7
500 133 1.2 6.2 25.0 7.1 1,521 107,188 0.3 48.9
2000 300 155 1.1 6.8 25.0 7.1 2,481 106,273 1.4 79.1
500 164 1.1 6.5 25.0 7.1 2,494 107,364 1.3 64.2
50 584.0 1000 300 178 0.8 6.9 25.0 7.1 1,044 102,307 0.5 57.3
500 175 09 6.3 25.0 7.1 1,165 102,645 0.3 47.5
2000 300 17.7 0.8 6.9 25.0 7.1 1,875 102,347 1.2 72.3
500 164 08 6.5 25.0 7.1 1,884 103,355 1.1 56.5
80 569.0 1000 300 164 09 6.8 25.0 7.1 1,151 99,945 0.6 55.5
500 176 1.1 6.1 25.0 7.1 1,393 99,829 0.3 42.2
2000 300 185 09 6.8 25.0 7.1 2,061 99,032 1.4 72.7
500 177 09 6.3 25.0 7.1 2,066 99,986 1.1 57.4
W=1
BT (%) NRT C P D CT RT AHD AHCT CC oC G(%) CPU (s)
20 604.4 1000 300 142 03 20 32.4 1.3 345 107,272 0.9 64.2
500 129 04 11 32.4 1.3 458 107,978 0.2 47.2
2000 300 16.1 03 1.7 324 1.3 610 107,050 1.0 64.7
500 159 0.2 15 324 1.3 409 108,376 0.5 49.2
50 584.0 1000 300 16.4 0.0 1.6 294 1.2 - 102,921 0.4 63.9
500 153 0.2 1.0 29.4 1.2 232 103,846 0.2 42.3
2000 300 14.7 0.1 1.6 29.4 1.2 201 103,061 0.7 56.7
500 16.7 00 14 29.4 1.2 - 104,146 0.3 394
80 569.0 1000 300 159 03 1.3 28.7 1.1 336 99,619 0.6 56.5
500 182 0.2 0.9 28.7 1.1 205 100,556 0.0 34.5
2000 300 172 0.1 1.6 28.7 1.1 207 99,746 0.6 52.9
500 178 0.1 1.1 28.7 1.1 197 100,728 0.1 35.6
Class M: 40% short trips, 60% long trips. On average 169.6 scheduled vehicles.
W=0
BT (%) NRT C P D CT RT AHD AHCT CC oC G (%) CPU (s)
20 599.7 1000 300 152 1.5 45 25.0 5.3 2,304 118,590 1.5 74.6
500 161 1.5 3.9 25.0 5.3 2,569 118,641 0.8 56.3
2000 300 16.1 1.5 4.2 25.0 5.3 4,069 118,328 2.5 99.1
500 149 15 4.1 25.0 5.3 3,773 118,881 1.7 69.3
50 583.9 1000 300 142 1.5 44 25.0 5.3 2,619 114,528 1.4 76.2
500 132 1.7 38 25.0 5.3 2,807 114,772 0.9 56.4
2000 300 13.7 1.5 4.3 25.0 5.3 4,393 114,352 2.5 94.5
500 12.8 1.5 4.1 25.0 5.3 4,167 114,983 1.8 76.3
80 569.8 1000 300 141 17 3.6 25.0 5.3 3,125 110,664 1.4 69.6
500 141 1.7 3.9 25.0 5.3 2,775 111,381 0.7 54.1
2000 300 141 15 5.1 25.0 5.3 3,822 111,533 2.1 84.3
500 141 1.7 3.8 25.0 5.3 4,591 111,356 1.8 75.4

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 10

W=1
BT (%) NRT C P D CT RT AHD AHCT CC OC G(%) CPU (s)
20 599.7 1000 300 177 05 1.8 277 14 58 119,115 i3 732
500 161 05 1.1 277 14 590 119,256 0.1 36.0

2000 300 154 05 1.8 277 14 1,072 119,128 15 86.3

500 162 05 1.1 277 14 1,051 119,249 0.2 42.6

50 583.9 1000 300 148 05 1.8 246 15 716 115,040 1.0 60.7
500 144 05 1.2 246 1.5 823 115,607 0.3 36.6

2000 300 145 05 22 246 15 1,178 115,367 1.5 72.4

500 141 05 14 246 1.5 1,328 115,670 0.6 40.8

80 569.8 1000 300 141 05 15 253 1.5 944 111,469 0.6 57.4
500 145 06 08 253 15 1,135 111,780 0.1 25.8

2000 300 137 05 15 253 15 1424 111,547 0.9 62.5

500 141 05 1.2 253 15 1,486 112,142 0.3 32.2

In general, the obtained results are in line with the results of |[Li et al| With relatively few reas-
signments, the number of cancellations and the delay for the cut trip are substantially reduced in
comparison with the ad hoc approach. In class S, the number of cancellations is one average around
1if W =0 and close to 0 if W = 1. In class M more trips need to be cancelled compared to class S,
on average 1.5 if W =0 and 0.5 if W = 1. This can be explained by the fact that in class M most
vehicles are performing long trips at the time of breakdown and can only be rescheduled when this
trip is finished. Therefore, even though there are more scheduled vehicles in class M, there is less
scheduling flexibility. The number of reassignments is smaller if W = 1, because trips originally
scheduled for the disrupted vehicle can be executed by the vehicle from the depot (which is not
considered reassigning), and is smaller in class M, because fewer trips are originally scheduled for
the disrupted vehicle. Higher cancellation costs reduce the number of cancellations, but the differ-
ence is fairly small (on average only 0.1 over all configurations). Perhaps it is simply not possible
to reduce cancellations further. On the other hand, higher reassignment penalties seem effective
in reducing the number of reassignments. Interestingly enough, the number of cancellations barely
increases in spite of the fewer reassignments. The fewest trips need to be cancelled when C = 2000
and P = 500.

In Table 3, a comparison between the results in Table [2| and in |Li et al.|is provided. We cancel
fewer trips in class M, but more in class S. Our computation times for class S are significantly
shorter, so perhaps we could find a better solution if we allowed for more iterations of the Lagrangian
heuristic. However, the difference in computation times must be compared with care as we used
a different computer than [Li et al|] A second possibility is that more trips had to be cancelled
because more trips were originally scheduled for the disrupted vehicle, which can be derived from
the higher number of cancelled trips for the ad hoc approach. A final explanation is the small
number of solved instances per configuration. Overall, we consider the differences to be small and
therefore we adopt the conclusion from |Li et al.| that their Lagrangian heuristic performs very well
for solving the VRSP.

Table 3: Comparison of the average results in Table [2| with the results in |Li et al.| (2009).

CcT AHCT RT Gap (%) CPU (s)
Lieshout Li | Lieshout Li | Lieshout Li | Lieshout Li | Lieshout Li
Class S W =0 1.0 0.6 7.1 6.1 6.6 6.1 0.8 0.6 59.7 93.1
W=1 0.2 0.1 02 1.0 14 14 05 1.0 50.6 93.1
W=0 1.6 2.9 5.3 4.8 4.1 3.5 1.6 14 73.8 68.6
Class M
W=1 05 1.1 14 14 1.5 0.8 0.7 1.1 52.2 68.4

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 11

5 Column Generation Based Heuristic

For over three decades, column generation is one of the most successful and widely used techniques
in (dynamic) vehicle routing and scheduling (Desaulniers, Desrosiers, & Solomon| 2002; [Irnich,
Desaulniers, et al.,2005). In this chapter, we develop a column generation based heuristic to solve
the VRSP and compare its performance with the Lagrangian heuristic of [Li et al.

5.1 Column Generation

Rather than solving the compact formulation of a problem (such as the multi-commodity flow
formulation) column generation concerns solving the extensive formulation of a problem, which
typically contains a huge number of VariablesE] The most important principle of column generation
is that not all of these variables need to be considered explicitly. Instead, a sequence of reduced
problems with only a subset of the variables (columns) are solved. Dual information of the solutions
of the reduced problems are then used to find a new set of columns. If the optimal value of the
reduced problem cannot increase if new columns are added, the obtained solution for the reduced
problem is optimal for the original problem.

We will now explain column generation and its application to the VRSP in more detail. For
the VRSP, the extensive formulation is as follows. Let Q% be the set of all feasible sequences of
trips that can be performed from (pseudo-)depot d € D. For each sequence p € Q7 let ¢p denote
the costs of the sequence and let the parameter a;, be equal to 1 if the sequence includes trip i € N
and 0 otherwise. As before, let C; denote the cancellation cost of trip ¢. Furthermore, define for
each sequence p the decision variable 0, that indicates whether p is selected and define for each
trip ¢ the decision variable z; that takes value 1 if the trip is cancelled. The VRSP can then be
formulated as follows:

min Z Z cplp + ZQ’Z@' (5.1)

dEDpEQd 1EN
s.t. Z Z aiplp +2; =1 Vie N, (5.2)
dEDpEQd
d apb, <W Vd=s, (5.3)
peEQS
> apt, =1 vd € D — {s}, (5.4)
peQd
0p,2s €{0,1} VYpeQdVde D,Vic N. (5.5)

As can be seen, the extensive formulation of the VRSP is a set partitioning formulation with a huge
number of decision variables, as there is a huge number of feasible sequences of trips. The objective
is to minimize the sum of operation costs and cancellation costs. Constraints (5.2) ensure that every
trip is either performed or cancelled. Often, these set partitioning constraints are replaced by set
covering constraints (with a ” > " sign) as the linear relaxation of the set covering problem is more
stable and integer solutions are more easily constructed for the set covering problem (Barnhart,
Johnson, Nemhauser, Savelsbergh, & Vance, [1998). Constraints (5.3) and (5.4) assure that at most
W vehicles depart from the depot and exactly 1 from every pseudo-depot.

Column generation is used to solve the linear programming relaxation of the above stated
problem. This relaxed problem is referred to as the master problem. The master problem is

2Formally, the extensive formulation can be obtained by applying Dantzig-Wolfe decomposition to the
compact formulation (Dantzig & Wolfe, [1960)).

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 12

decomposed into two parts, the restricted master problem (RMP) and pricing problems for every
(pseudo-)depot. The RMP at iteration n is the same as the master problem but restricted to a
subset of all possible sequences Q¢ C Q¢ for all d. The RMP is solved, resulting in a primal and
dual solution. The role of the pricing problems is to verify whether the obtained solution is optimal
and if not, to propose new columns that should be added to the RMP. To this end, the pricing
problem for a (pseudo-)depot is to compute the minimum reduced cost of a column 6, € (Q4\ QZ)
Columns with negative reduced costs have the potential to improve the objective value. Therefore,
if the minimum reduced cost is positive for every d, the current optimal solution for the RMP is
also optimal for the overall master problem. If not, columns with negative reduced cost are added
to the RMP and the RMP is re-optimized.

If we denote the values of the dual variables associated with constraints (5.2) and (5.3, 5.4)
by m; and ug respectively, the reduced costs of a column p € Q% is given by Cp = Ud — Y e N Qij T
As follows, the pricing problem for (pseudo-)depot d is equivalent to finding the shortest path in
GY from d to t where the arc costs are given by ¢;; —uq it i = d and ¢;; — m; if i € N. It is this
result that makes column generation such an attractive method, as the pricing problems can often
be solved using (pseudo-)polynomial algorithms.

5.2 Finding Integer Solutions

As column generation solves the linear relaxation of the extensive formulation, it does not produce
integral solutions (at least in general). Therefore, to solve integer programs, more steps need to
be taken. The traditional method to compute integer solutions is integrating column generation in
a branch-and-bound scheme (Barnhart et al., [1998), referred to as branch-and-price. This allows
solving the integer program to optimality. A different technique is to exploit the similarities between
the pricing problems and the Lagrangian relaxation of the compact formulation (in our case both
are shortest path problems). That is, to combine column generation with Lagrangian relaxation
to compute high quality integer solutions (Huisman, Jans, Peeters, & Wagelmans|, |2005)). As the
implementation of either method requires a large amount of fine-tuning before performing properly
(e.g. specialized branching techniques and proper termination criteria), in this thesis a relatively
simple method is used, namely the truncated column generation heuristic that [Pepin, Desaulniers,
Hertz, and Huisman! (2009)) propose for the multiple-depot vehicle scheduling problem.

Truncated column generation is an iterative heuristic consisting of two phases, a column gen-
eration phase and a rounding-up phase. The algorithm starts by solving the master problem using
column generation. If the obtained solution is integer, a feasible solution has been found and the
heuristic terminates. Otherwise, the rounding-up phase is invoked. All fractional variables larger
than a parameter 6,;, are rounded up. If no such variable exists, the largest fractional variable is
rounded up. After the rounding-up phase, the algorithm is repeated, but now with a part of the
columns ’fixed’. This eventually produces a feasible solution for the set covering formulation of the
VRSP, which can, if necessary, easily be transformed to a feasible solution of the set partitioning
formulation by removing redundant covering.

Multiple acceleration strategies were tested to speed up the column generation heuristic. First,
we tried generating more than 1 column with negative reduced cost in each pricing problem using
the K-shortest paths algorithm discussed in Chapter [3] Second, we tried accepting the first found
path with a negative reduced cost instead of only accepting the path with the minimum reduced
cost. However, neither strategy yielded a improvement of the performance of the algorithm. On the
other hand, a surprising observation during these tests was that more often than not, the heuristic
never enters the rounding phase, implying that actually the exact optimum is found. For the vehicle
routing problem with time windows, a problem with a similar formulation as the VRSP, it has been

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 13

proven that the gap between integer and fractional optimal solutions decreases if the number of
customers (comparable to trips in the VRSP) increases (Bramel & Simchi-Levi, [1997). Perhaps a
similar result holds for the VRSP. As not only the final solution often is integer valued, but also
intermediate solutions, we can keep track of the best found feasible solution.

5.3 Comparison of the Two Heuristics

To compare the performances of the Lagrangian based and the column generation based approach,
we generate a number of instances and solve them using both heuristics. Furthermore, as the
relative performance of the heuristics may differ with the instance size, instances of 300, 500 and
700 trips are considered. Both instances of class S and class M are tested, with and without an
available back-up vehicle (W = 0 and W = 1). The breakdown time is 50% into the cut trip, C
and P are set at 2000 and 500 respectively. We generate 10 instances for each configuration. As
for the column generation heuristic, the original vehicle schedules serve as the initial set of trip
sequences. O, is set at 0.95.

The average results of the experiments are presented in Table[d] The column generation heuristic
finds slightly higher costs for instances of 300 trips and slightly lower costs for instances of 500 and
700 trips. The computation times are more than twice as long, but are still reasonable. Of the
120 instances, the column generation heuristic finds optimal solutions in 112 cases. However, this
only yields improvements over the Lagrangian heuristic in 19 cases. Apparently, the Lagrangian
heuristic also finds optimal solutions very often. In 7 instances (out of 8 where it does not find the
optimal solution) the column generation heuristic finds worse solutions.

Table 4: Average results of the column generation heuristic (CG) and Lagrangian heuristic (LG).

Total costs CPU (s) Total costs CPU (s) CG CG lower CG higher

Trips CG CG LG LG optimal costs costs

300 62,071 10.6 62,027 4.7 88% 18% 10%
500 86,313 59.6 86,332 23.2 100% 10% 0%
700 113,229 202.6 113,337 86.1 93% 20% ™%

In Figure [2[the the average objective value (of feasible solutions) is plotted against the computation
time for instances with 700 trips in class M with W = 0. As can be seen, while the column generation
heuristic finds better solutions eventually, the Lagrangian heuristic is better in finding reasonable
feasible solutions quickly. On average, only after 160 seconds does the column generation heuristic
find less costly solutions. This shows that the column generation heuristic needs a large set of
columns before it can find high quality solutions. The same pattern is displayed for other instance
sizes and configurations, and when considering individual instances instead of the average.

Summarizing, the comparison showed that both heuristics very often find optimal solutions.
The column generation heuristic on average finds the best solutions, but its computation times are
more than twice as long as the Lagrangian heuristic. Perhaps delicate acceleration strategies can
speed up the column generation algorithm.

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 14

160,000 ‘ \ i
—— Column generation
—e— Lagrangian heuristic
150,000 ¢ :
5}
=
<
>
2 140,000 | |
oY
o
130,000 |
* oo —o 3 S —
120,000 : : ‘ :
20 60 100 140 180 220

CPU (s)

Figure 2: Plot of the average objective value (of best found feasible solutions) versus the computation time
for instances of 700 trips in class M with no back-up vehicle at the depot.

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 15

6 Vehicle Rescheduling with Retiming

The major drawback of the VRSP as formulated in |Li et al.|is that the rescheduling options are very
limited. It is only possible to either perform a trip or cancel it altogether, whereas a small delay
is likely to be preferred over a cancellation. In this chapter, we introduce the vehicle rescheduling
problem with retiming (VRSPRT). Retiming a trip means that it is delayed with a couple of
minutes, with the aim to avoid cancellations. We first discuss previous research on considering
delays in rescheduling problems. Next, we propose a new method for incorporating delays that
results in a formulation that is very similar to the original VRSP, such that the same heuristics can
be applied. Subsequently, we discuss a dynamic approach that can be used to solve large instances.
Finally, the results of two experiments are presented, illustrating the added value of retiming.

6.1 Literature Review

In the context of road-based vehicle rescheduling, Huisman et al.| (2004) are the first to take
delays into account. They consider a dynamic environment where they reschedule when one or
more vehicles have incurred delays. By imposing delay costs on arcs in a multi-commodity flow
formulation, delays for future trips can be reduced or avoided. A disadvantage of modeling delays
in this manner, is that not all delays on arcs can be computed beforehand, because delays might
be propagated to later trips. For instance, if trip ¢ can be executed by two vehicles, one of which
is delayed, it is unknown whether delay costs should be imposed on arcs (i, 7). |Li, Borenstein, and
Mirchandani| (2008]) circumvent this problem by modeling delays explicitly in a multi-commodity
network flow problem with time windows. However, this requires a large number of additional
variables and constraints (one variable and one additional constraint for each trip and one variable
and four constraints for each compatible pair of trips), making it impractical for solving medium or
large sized instances without a specialized algorithm; the authors solve instances of only 23 vehicles
and 31 trips using CPLEX. Trip cancellations are not considered in their research, but could easily
be included in the problem formulation.

In the airline industry, flight delays are very costly, explaining why more papers takes delays
into account in the air-based rescheduling literature. Thengvall, Yu, and Bard| (2001)) incorporate
delays in a multi-commodity flow formulation by adding a series of flight options for each flight
that needs to be covered. The delay times are predetermined, so e.g. one flight option represents a
20-minute delay and a second option a 60-minute delay. All arc costs can be computed beforehand
because the formulation is based on a time-space network rather than the connection-based network
used by Huisman et al. (2004). On the other hand, their method potentially leads to redundant
arcs and inefficiencies, since perhaps the first option is impossible to be reached or a plane that
could depart with a 21-minute delay must wait for another 39 minutes. Other papers employ a
set partitioning formulation, where every set represents a certain sequence of flights (trips). The
advantage of the set partitioning formulation is that delays can be incorporated without difficulties,
as the delay cost of a sequence of flights can be evaluated after the whole sequence is constructed.
Lgve, Sgrensen, Larsen, and Clausen| (2002) develop two neighborhood search heuristics to solve the
resulting problem. Stojkovi¢ and Soumis| (2001) and |Eggenberg, Salani, and Bierlaire| (2010) take
a different approach and solve the set partitioning problem using column generation. A difference
between the two is that the former represents the recovery network as a connection based network,
while the latter uses a time-space network. An advantage of the time-space network is that the
time windows of every flight are satisfied in every path in the network. Consequently, the time
windows need not be considered in the pricing problem and is therefore easier to solve. On the
other hand, Eggenberg et al. (2010) do not embed the algorithm in a branch-and-bound scheme,

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 16

so they cannot guarantee optimality.

Railway rescheduling problems are less similar to the VRSP as aircraft rescheduling problems,
because the disruption of a train immediately influences surrounding trains since tracks and sta-
tions are shared across trains. However, some of the proposed solution approaches are still useful.
Potthoff, Huisman, and Desaulniers (2010) solve the railway crew rescheduling problem using an
iterative approach. As the number of possible duties is extremely large, initially only a subset of
all duties is considered. The corresponding problem is referred to as the core problem and solved
using column generation. In case some tasks are cancelled in the solution of the core problem,
duties that lie in a neighborhood of the uncovered tasks are added to the core problem, after which
the procedure is repeated. [Veelenturf, Potthoff, Huisman, and Kroon| (2012)) extend the railway
crew rescheduling problem by introducing retiming. Delay possibilities are incorporated into the
problem by introducing copies of tasks that need to be executed, each with a different starting
time. The problem is solved by column generation in combination with Lagrangian heuristics.

As is clear, many different methods for including delays already exist in the literature. However,
to the best of our knowledge, no method yet exists that efficiently models all delay options and
uses a flow formulation. The reason a flow formulation is preferred is that in that case both the
Lagrangian heuristic from Chapter [3| and the column generation heuristic from Chapter [5| can be
applied. Consequently, we will now propose a new method for incorporating delays in rescheduling
problems exhibiting the desired features.

6.2 Mathematical Formulation and Methodology

The main idea for incorporating the possibility of delays into a mathematical formulation is to
not model delays explicitly, by adding variables for the starting times and constraints these must
adhere to, but implicitly, by adding vertices and arcs to the recovery network. To model the delays,
we associate with every trip ¢ served from (pseudo-)depot d a set Tid of possible starting times.
The possible starting times of trip j are determined by the possible starting times of all possible
predecessors i and the corresponding travel times. To limit the size of Tid7 time can be discretized
and a maximum delay D; can be specified for each trip. Recall that the original recovery for pseudo-
depot d is given by G = (V¢ A?) where V; = NYU {d, t} and A? = E4U (d x N4) U (N? x t).
This recovery network can account for delays by splitting vertex ¢ into a different vertex for each
starting time in 7 (similar to the copies of tasks in [Veelenturf et al. (2012)). Arcs that result in
these delayed starting times and arcs from the new vertices to compatible trips are added to Ad
Note that theoretically it is possible that the recovery network now contains cycles. However, this
can only occur if the maximum allowed delay is larger than the minimum trip duration (in that
case a vehicle could perform say trip 5 after trip 6), a situation that is disregarded in this thesis.

An example of an extended recovery network is presented in Figure [3 The solid part is the
original network and the dotted part is added when delays are introduced. It can be seen that
originally, trip 1 could not be performed after the back-up trip. However, if trip 1 is delayed it can
be performed after the back-up trip, with the side-effect that trip 2 needs to be delayed as well if
one wants to execute it after trip 1. Note that even though it is possible that a vehicle performs
for example trip 2* after trip 1, this arc is not added to the network as it is simply not necessary
to delay trip 2 if it is performed after trip 1.

If retiming is accounted for by expanding the recovery network, the VRSPRT can be formulated

3 As the starting time of a trip can be regarded as a resource, an interesting application of this methodology
would be to solve the resource-constrained shortest path problem by solving the shortest path problem on
the corresponding expanded graph.

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 17

Figure 3: A recovery network extended with delay options. The dotted part of the network represents
the options that become possible by introducing delays. d and t denote the starting and ending depot
respectively, B denotes the back-up trip and a * indicates a trip with delay.

very similar to the VRSP. Let N denote the set of all trips with all possible starting times and
let N%(k) denote the set of vertices in Nt that correspond to trip k in G¢ (e.g. in Figure
Nt ={B,1,1*,2,2*} and N%(1) = {1,1*}). The formulation of the VRSPRT is then given by:

min Ayl +3 Ciz (6.1)
3Jij

deD (i,5)e Ad ieEN
s.t. Z yfilj <W d=s, (6.2)
{4:(d.j) €A}
ooy =1 Vd € D — {s}, (6.3)

{5:(d.j)eAd}
oS > wh+a =1 VkeN, (o4
deD ie N4(k) {j:(i,j)€Ad}
> - Y b =0 vientwen, o
{j:(i,j)€Ad} {7:(j.) €At}
yl.z €{0.1}) Vde DY, j)eALvie N, (6.6)

As before, the objective is to minimize the sum of the operation costs and cancellation costs. Addi-
tional to reassignment costs, delay costs can now also be included in the arc costs cfj. Constraints
(6.2) and (6.3) assure that at most W vehicles depart from the depot and exactly 1 from every
pseudo-depot. Constraints (6.4) and (6.5) differ compared to the VRSP, but fulfill the same func-
tion. Constraints (6.4) guarantee that every trip is either executed or cancelled and now include
an extra summation, as there is no longer a one-to-one correspondence between trips and vertices.
Constraints (6.5) are flow conservation constraints and now hold for all 7 € N, since flow must be
conserved in every vertex.

As can be seen, the structure of the given formulation for the VRSPRT is the same as the
formulation of the VRSP, with the only difference being that a trip is now represented by a group
of nodes, of which at most one is covered by a vehicle. Moreover, if constraints (6.4) are relaxed and
incorporated into the objective function, the resulting Lagrangian problem can again be decomposed
into a trivial sub-problem for every trip, a shortest path problem for every pseudo-depot (now in
the expanded graph) and the K-shortest paths problem for the depot (also in the expanded graph).
Consequently, both heuristics designed for the VRSP can be used to solve the VRSPRT.

Since the column generation approach has longer computation times and the difference between
solution quality is not large, only the Lagrangian heuristic is used in the remainder of this thesis.

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 18

The primal heuristic that transforms the Lagrangian solution into a feasible solution needs small
adjustments. In the first step of the heuristic, redundant coverings are removed. As there are
multiple options for performing a trip, the trips after a removed trip can possibly be performed
with less delay. Consider the recovery network from Figure [3| and assume the back-up trip needs
to be removed from the path {d, B,1*,2* ¢t} As it is no longer necessary to delay trips 1 and 2,
the result is the path {d,1,2,¢}. In the second step of the heuristic, uncovered trips are inserted
in the existing paths. Before, to check whether an insertion is feasible it sufficed to check whether
the trip is compatible with respect to its predecessor and its successor. However, now it is possible
that an insertion only is feasible if trips after the inserted trip are delayed. For example, assume
that trip 1 needs to be inserted in the path {d, B,2,t}. This insertion is feasible only if trip 2 is
delayed, hence the result is {d, B, 1*,2* t¢}.

6.3 Dynamic Neighborhood Exploration

Even with discretized time and a maximum delay, the number of vertices and arcs in the recovery
network with delays can be much larger than in the corresponding recovery network without delays.
For instances of 700 trips in class M, when we permit a maximum delay of only 5 minutes and
discretize time to minutes, it is not rare for the number of arcs and vertices to more than triple. As
a result, the pre-processing phase of the algorithm, where the recovery network is constructed, can
take up to 15 minutes with delays in comparison with a mere 60 to 90 seconds without. Moreover,
due to the increased problem size the Lagrangian heuristic needs more time to find good solutions.
Out of 5 test instances, where the Lagrangian heuristic was terminated after 5 minutes, only in
one case the number of cancellations was reduced compared to the VRSP. In two of the cases the
number of cancellations even increased. On average, the heuristic could only perform 9 iterations
before the time limit exceeded. As is clear, the size of the network needs to be reduced in order to
realize an applicable rescheduling method.

To this end, we apply the ideas of Potthoft et al.| (2010) to the VRSPRT. [Potthoff et al.| (2010)
consider a subset of all possible duties in the railway crew rescheduling problem. If not all tasks are
covered in the resulting solution, duties in the neighborhood of uncovered tasks are added to the
duties under consideration, after which the process is repeated. The neighborhood is defined such
that duties in the neighborhood can possibly cover the uncovered task. Likewise, in the VRSPRT
we can start by only allowing a subset of all trips to be delayed. If the Lagrangian heuristic gives
a solution with cancelled trips, trips in the neighborhood of difficult trips (trips that are difficult
to perform) can be added to the subset.

More specifically, we maintain a set R of trips that are allowed to be retimed. Initially, only
the cut trip is in this set. In other words, we start by solving the VRSP. If the solution of the
Lagrangian heuristic does not include any cancellations, the algorithm is terminated. Otherwise,
trips that lie in the neighborhood of difficult trips are added to R. To speed up the process, we do
not only regard cancelled trips in the final solution as difficult trips, but all trips ¢ for which it holds
that (i) z; = 1 in the Lagrangian solution (implying that this trips has a high Lagrangian multiplier,
so it is difficult to perform) or (ii) is not performed in the Lagrangian solution (before the insertion
heuristic). Furthermore, we consider the iteration that lead to the best feasible solution as well
as the final iteration of the Lagrangian heuristic to find the difficult trips. This broader definition
enables us to extract more information from the Lagrangian optimization.

As for the neighborhood of a trip, let st; and et; denote the original starting and ending time
and sp; and ep; the starting and ending relief point of trip 4, respectively. Moreover, let 7, ,, denote
the travel time between relief point u and v. Inspired by Potthoff et al. (2010]), we define that trip
j lies in the neighborhood of trip ¢ if it satisfies one of the following three conditions:

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 19

1. j =1,
2. sj € [si —m,s;+m] and Ty, o, <7,
3. 55 € [e; —m,e;+m] and Tep, op, < T

The first condition is trivial; if a trip is hard to cover we want to be able to delay it in the next
iteration. For the second and third condition, the intuition is that it is more likely that a trip is
performed if scheduling flexibility around its starting time and location and its ending time and
location is increased. In this thesis, m is set to 30 minutes and r to 10 minutes, as these values
lead to neighborhoods of decent sizes (up to 20 trips).

In case all trips in the neighborhood of difficult trips are already in R, there would be no trips
to add to R, causing the algorithm to get stuck. To prevent this, in such a case trips that lie in
the neighborhood of a trip in R, are added to R, with a maximum of 10 trips. Lastly, to speed up
the algorithm, the final Lagrangian multipliers of the previous iteration are used as initial values
in the next iteration. The algorithm can be terminated if all trips are covered, if no improvement
is found in a certain number of iterations or if a time limit is exceeded.

6.4 Added Value of Retiming

In this section, we investigate whether the introduction of retiming can lead to less disruptive
solutions, especially regarding the number of cancellations. For this purpose, we perform two
experiments for the VRSPRT, where the original VRSP serves as a benchmark. In the first exper-
iment instances of 300 trips are solved using the regular Lagrangian heuristic and in the second
experiment instances of 700 trips are solved using the dynamic neighborhood exploration.

As we observed that the number of cancellations after solving the VRSP is the highest in
instances of class M with no back-up vehicle available at the depot and where the breakdown
occurs 80% into the cut trip, this configuration is used in the experiments. Furthermore, C' is taken
to be 2000 and P is taken to be 500, the combination that lead to the fewest cancellations in the
experiments for the VRSP. Starting times of trips are rounded to minutes to limit the number of
retiming options (so if the maximum allowed delay is 5 minutes, the trip can be delayed with 0,
1,... or 5 minutes).

In the first experiment, we solve 10 instances of 300 trips with different allowed delays and delay
costs to analyse to what extent delaying trips is an effective measure for reducing the number of
cancelled trips. The iteration limit is set at 350 and the time limit is set at 60 seconds.

The results of the first experiment are presented in Table [5] and in Figure [l If the allowed
delay is 0, the VRSPRT reduces to the original VRSP, so the added value of retiming can easily
be deduced. As can be seen, when the allowed delay increases, the number of cancelled trips
decreases. With an allowed delay of 10 minutes or more, the average number of cancelled trips
is halved compared to the situation without retiming. If the delay costs are 60 per minute, this
reduction can be achieved by, on average, delaying only one trip with less than 7 minutes. If the
delay costs are 20 or 40 per minute the number of cancellations is slightly less, whereas the number
of delayed trips is 0.5 more. It seems that with low delay costs, delays are not only introduced
to avoid cancellations, but also to create cheaper connections. All in all, it can be concluded that
retiming is an effective method that leads to solutions preferred to those of the VRSP.

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 20

Table 5: Results of the VRSPRT with different delay costs and allowed delays. An allowed delay of 0 minutes
corresponds to the original VRSP.

Delay costs Max. allowed | Cancelled Delayed Average Maximum Total
per min. delay (min.) trips trips delay delay costs Gap (%) CPU (s)
0 1.6 - - - 62,301 1.9 29.6
20 5 1.0 0.9 2.8 4.0 61,524 14 39.1
10 0.8 1.3 5.1 7.0 60,818 0.7 43.9
15 0.7 1.5 6.3 11.0 60,233 1.9 48.3
0 1.6 - - - 62,301 1.9 29.3
40 5 1.1 0.6 2.4 4.0 61,581 1.4 40.5
10 0.8 1.1 5.5 9.0 61,001 0.9 46.8
15 0.7 14 5.7 9.0 61,269 2.0 47.5
0 1.6 - - - 62,301 1.9 29.6
60 5 1.1 0.4 2.5 4.0 61,574 1.3 38.7
10 0.8 0.8 6.2 9.0 61,324 1.2 49.1
15 0.8 1.0 6.5 11.0 61,313 1.8 51.6
= 0.6 T Cancelled trips: B8 0B8 1002083 ||
5 o —
=
Zoaf b - f
Z CEt
é 0.2 | 2
o
Y I =35 53 777/ B 77 555! R -

Maximum allowed delay (min.)

Figure 4: Histograms of the number of cancellations for the different maximum allowed delays, with delay
costs of 40 per minute. An allowed delay of 0 minutes corresponds to the original VRSP.

In the second experiment, we solve 50 instances of 700 trips with the dynamic approach explained in
the previous section. As a maximum allowed delay of 10 minutes and delay costs of 60 per minute
performed the best in the first experiment, these values are used in the second experiment. To
make sure that the cancellations are reduced by retiming and not by a longer running time of the
heuristic, we first find a good solution without retiming by terminating the Lagrangian heuristic
after 60 seconds if the optimality gap is smaller than 5 and after 120 seconds otherwise. The
resulting number of cancellations serves as a benchmark for the dynamic approach. Every next
iteration of the algorithm has a time limit of 30 seconds. The whole process is terminated if the
number of cancellations is reduced compared to the benchmark or if 10 iterations are performed.
Of the 50 solved instances, the number of cancellations was reduced without retiming in 8
instances, despite the long running time for the initial solution. Because the algorithm terminates
if the number of cancellations is reduced, these instances cannot provide us with any information
regarding the performance of the dynamic neighborhood exploration. Moreover, in one instance no
trips were cancelled in the initial solution. Of the other 41 instances, cancellations were reduced
using retiming in 23 cases. The average results over the 41 instances are presented in Table [6]

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 21

Additional results of the 23 cases where cancellations were reduced are presented in Table [7]

If the benchmark is 1 cancelled trip (so the solution of the VRSP contains 1 cancelled trip),
the dynamic neighborhood exploration reduces this to 0 by retiming in one third of the cases.
To achieve this, on average 1 trip needs to be delayed with 3.5 minutes. If the initial number of
cancellations is larger than 1, reductions are achieved in 80 percent of the cases. On the other hand,
this requires on average 2 trips to be delayed with 4 to 5 minutes. As expected, the algorithm has a
much harder time reducing cancellations if the benchmark is 1, taking on average 5 iterations and
3 extra minutes, compared to 2 or 1 iterations and around 1.5 extra minute if the benchmark is 2
or more. Surprisingly, this does not lead to a much larger set R (the set of trips for which retiming
is allowed). Perhaps larger values of m and r would be more suitable if the benchmark is 1, such
that the size of R increases more rapidly. Still, it can be concluded that the dynamic neighborhood
exploration achieves the desirable results. The additional computation times are moderate and the
number of cancellations decreases on average from 1.8 to 1.1.

Table 6: Results of the dynamic neighborhood exploration for solving large instances of the VRSPRT.
Benchmark refers to the number of cancellations in the solution of the VRSP and CT is the average number
of cancelled trips.

Benchmark CT CT Reduced Total costs Total costs

(proportion) no retiming with retiming CT (%) no retiming with retiming
1 (51%) 1.0 0.7 33% 118,156 117,688
2 (27%) 2.0 1.2 82% 121,884 119,872

3 or more (22%) 3.7 2.1 78% 133,993 130,793

Table 7: Results of the dynamic neighborhood exploration on instances where cancellations were reduced
using retiming. Benchmark refers to the number of cancellations in the solution of the VRSP, extra CPU is
the average additional computation time required to reduce cancellations and |R| is the average number of
trips for which retiming is allowed when the neighborhood exploration terminates.

(Bpre;l;};ftlzll:) ‘ Delayed trips delléx‘}/felgilgii.) Iterations Extra CPU (s) |R|
1 (30%) 1.1 3.4 4.9 186.8 85.6
2 (39%) 2.0 4.2 1.8 92.6 62.0
3 or more (30%) 2.1 4.9 1.0 773 94.7

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 22

7 Conclusion

This thesis examined the road-based vehicle rescheduling problem (VRSP); given a series of trips,
a current schedule and a vehicle breakdown, determine a new feasible schedule which minimizes
operation, trip cancellation and schedule disruption costs. Despite of increased attention for dis-
ruption management, the VRSP is relatively unexplored in two ways. First, it concerns road-based
rescheduling (aircraft and railway rescheduling problems are better researched) and second, it con-
cerns disruptions caused by breakdowns (most papers consider disruptions caused by delays).

In the first part of the thesis, the results of |Li et al.| (2009) were replicated. |Li et al. introduced
the VRSP and proposed solving it using a Lagrangian heuristic. The results of [Li et al.| are
confirmed: even for instances of 700 trips the heuristic finds high quality solutions within 90
seconds. Compared to an ad hoc rescheduling approach, the number of cancellations is reduced.

In the second part of the thesis, we built further on |[Li et al. (2009). First, the Lagrangian
heuristic of |Li et al.| was compared to a column generation based heuristic. The results show that
column generation leads to better (often even optimal solutions), but the computation times are
larger compared to the Lagrangian heuristic. Additional research might be able to speed up the
column generation heuristic.

Second, we introduced the vehicle rescheduling problem with retiming (VRSPRT). By retim-
ing trips (delaying trips with a couple of minutes) scheduling flexibility is increased, which helps
avoiding cancellations. To incorporate the delays, the underlying recovery network is expanded to
include all relevant retiming possibilities. The advantage of this method, that was not found in
the literature, is that it leads to a formulation very similar to the original VRSP, such that the
same heuristics can be applied. The results indicate retiming can half the number of cancellations
compared to the VRSP. At the same time, the incurred delays are very moderate (on average one
trip was delayed with 6.5 minutes). This implies that the VRSPRT leads to less disrupted schedules
compared to the VRSP, increasing the satisfaction of passengers.

As the size of the recovery network can become very large by introducing retiming, we proposed
a dynamic neighborhood exploration heuristic for large instances. In this heuristic, only a subset of
all trips is allowed to be delayed and relevant trips are added to this subset iteratively if trips are
still cancelled. The results indicate that the heuristic performs well, especially when the number of
cancellations without retiming is larger than 1. On average, the number of cancellations is reduced
from 1.8 to 1.1 with 1 or 2 trips being cancelled with less than 5 minutes. Computation times do
increase, but not excessively. Additional refinements to the neighborhood definition can possibly
further improve the heuristic.

Wrapping up, considering we (i) replicated the results of [Li et al.; (ii) compared the performance
of their Lagrangian heuristic to a column generation based approach and (iii) introduced the VRSP
with retiming, including a dynamic heuristic for large instances, it can be concluded that this thesis
succeeded in its aim of contributing to the VRSP literature. It is our hope that this thesis revitalizes
interests in the VRSP. Apart from refining the methods discussed in this thesis, directions for further
research include the application of time-space networks and the integration of vehicle rescheduling
with crew rescheduling.

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 23

8 References

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W., & Vance, P. H. (1998).
Branch-and-Price: Column Generation for Solving Huge Integer Programs. Operations
Research, 46(3), 316-329.

Bramel, J., & Simchi-Levi, D. (1997). On the Effectiveness of Set Covering Formulations
for the Vehicle Routing Problem with Time Windows. Operations Research, 45(2),
295-301.

Bunte, S., & Kliewer, N. (2009). An Overview on Vehicle Scheduling Models. Public
Transport, 1(4), 299-317.

Carpaneto, G., Dell’Amico, M., Fischetti, M., & Toth, P. (1989). A Branch and Bound
Algorithm for the Multiple Depot Vehicle Scheduling Problem. Networks, 19(5), 531—
548.

Cheng, C., Kumar, S. P., & Garcia-Luna-Aceves, J. (1989). A Distributed Algorithm for
Finding K Disjoint Paths of Minimum Total Length.

Cherkassky, B. V., Goldberg, A. V., & Radzik, T. (1996). Shortest Paths Algorithms:
Theory and Experimental Evaluation. Mathematical Programming, 73(2), 129-174.

Dantzig, G. B., & Wolfe, P. (1960). Decomposition Principle for Linear Programs. Operations
Research, 8(1), 101-111.

Desaulniers, G., Desrosiers, J., & Solomon, M. M. (2002). Accelerating Strategies in Column
Generation Methods for Vehicle Routing and Crew Scheduling Problems. Springer.

Eggenberg, N., Salani, M., & Bierlaire, M. (2010). Constraint-Specific Recovery Network
for Solving Airline Recovery Problems. Computers & Operations Research, 37(6),
1014-1026.

Fisher, M. L. (2004). The Lagrangian Relaxation Method for solving Integer Programming
Problems. Management Science, 50(12), 1861-1871.

Freling, R., Wagelmans, A. P., & Paixao, J. M. P. (2001). Models and Algorithms for
Single-Depot Vehicle Scheduling. Transportation Science, 35(2), 165-180.

Held, M., & Karp, R. M. (1971). The Traveling-Salesman Problem and Minimum Spanning
Trees: Part II. Mathematical Programming, 1(1), 6-25.

Huisman, D., Freling, R., & Wagelmans, A. P. (2004). A Robust Solution Approach to the
Dynamic Vehicle Scheduling Problem. Transportation Science, 38(4), 447-458.
Huisman, D., Jans, R., Peeters, M., & Wagelmans, A. P. (2005). Combining Column

Generation and Lagrangian Relaxation. Springer.

Huisman, D., & Wagelmans, A. P. (2006). A Solution Approach for Dynamic Vehicle and
Crew Scheduling. Furopean Journal of Operational Research, 172(2), 453-471.
Irnich, S., Desaulniers, G., et al. (2005). Shortest Path Problems with Resource Constraints.

Column Generation, 6730, 33-65.

Jiménez, V. M., & Marzal, A. (1999). Computing the K Shortest Paths: A New Algorithm
and an Experimental Comparison. In Algorithm Engineering (pp. 15-29). Springer.

Kliewer, N.; Mellouli, T., & Suhl, L. (2006). A Time-Space Network Based Exact Op-
timization Model for Multi-Depot Bus Scheduling. Furopean Journal of Operational
Research, 175(3), 1616-1627.

Li, J.-Q., Borenstein, D., & Mirchandani, P. B. (2008). Truck Schedule Recovery for Solid
Waste Collection in Porto Alegre, Brazil. International Transactions in Operational

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 24

Research, 15(5), 565-582.

Li, J.-Q., Mirchandani, P. B., & Borenstein, D. (2004). Parallel Auction Algorithm for
Bus Rescheduling. In Computer-Aided Systems in Public Transport (pp. 281-299).
Springer.

Li, J.-Q., Mirchandani, P. B., & Borenstein, D. (2009). A Lagrangian Heuristic for the
Real-Time Vehicle Rescheduling Problem. Transportation Research Part E, 45(3),
419-433.

Love, M., Sgrensen, K. R., Larsen, J., & Clausen, J. (2002). Disruption Management for
an Airline - Rescheduling of Aircraft. In Applications of Evolutionary Computing (pp.
315-324). Springer.

Pepin, A.-S., Desaulniers, G., Hertz, A., & Huisman, D. (2009). A Comparison of Five
Heuristics for the Multiple Depot Vehicle Scheduling Problem. Journal of Scheduling,
12(1), 17-30.

Potthoff, D., Huisman, D., & Desaulniers, G. (2010). Column Generation with Dynamic
Duty Selection for Railway Crew Rescheduling. Transportation Science, 44(4), 493
505.

Steinzen, I., Gintner, V., Suhl, L., & Kliewer, N. (2010). A Time-Space Network Approach
for the Integrated Vehicle-and Crew-Scheduling Problem with Multiple Depots. Trans-
portation Science, 44 (3), 367-382.

Stojkovié, M., & Soumis, F. (2001). An Optimization Model for the Simultaneous Opera-
tional Flight Pilot Scheduling Problem. Management Science, 47(9), 1290-1305.

Suurballe, J. (1974). Disjoint Paths in a Network. Networks, 4(2), 125-145.

Thengvall, B. G., Yu, G., & Bard, J. F. (2001). Multiple Fleet Aircraft Schedule Recovery
Following Hub Closures. Transportation Research Part A, 35(4), 289-308.

Veelenturf, L. P., Potthoff, D., Huisman, D., & Kroon, L. G. (2012). Railway Crew
Rescheduling with Retiming. Transportation Research Part C, 20(1), 95-110.

Visentini, M. S., Borenstein, D., Li, J.-Q., & Mirchandani, P. B. (2014). Review of Real-Time
Vehicle Schedule Recovery Methods in Transportation Services. Journal of Scheduling,
17(6), 541-567.

Yu, G., & Qi, X. (2004). Disruption Management: Framework, Models and Applications.
World Scientific.

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 25

A Shortest path algorithms

Let G = (V, A) be a directed graph, where V is the set of vertices and A C V x V the set of arcs.
Let I : A — R be a weighting function on the arcs. I(u,v) is referred to as the length of arc (u,v).

A path 7 is a sequence of vertices m - g - ... - T, such that all 7; € V' and all (7, m;41) € A. The
length of a path 7 is L(m) = S0 (7, mis1)-

The shortest path algorithm used in this thesis requires that the vertices are sorted in a topolog-
ical order, meaning that for every arc (u,v), v must comes before v in the order. In this algorithm,
m(v) denotes the shortest path from the source s to vertex v.

Algorithm 1 Calculating the shortest paths from a vertex s to all other vertices in a
topologically sorted graph

Input: A graph G = (V, A) and a function [: A — R. V must be topologically sorted and
s is the first element in this order.
Initialization. w(s) < s, L(7(v)) + 0 and all other L(m(v)) < oo.
for all v € V do
for all (v,w) € A do
if L(7(v)) 4+ (v,w) < L(mw(w)) then
m(w) < m(v) - w

For the K-shortest paths algorithm, some additional notation is used. Let 7*(v) denote the kth
shortest path from s to v and let C'(v) denote a set of candidate paths for the next shortest path
from s to v. The algorithm for computing the K shortest paths is as follows.

Note that also other stopping conditions can be used. For instance, in this thesis the next
shortest path is calculated until the length of the next shortest path is positive.

Rolf van Lieshout. The Road-Based Vehicle Rescheduling Problem: Methods and Extensions. 26

Algorithm 2 Calculating the K shortest paths from a source s to a sink ¢

Input: A graph G = (V, A) and a function [: A — R.
Initialization. Calculate 7!(v) for all v with a suitable one-to-all shortest path algorithm.
k<1
repeat
k< Fk+1
7%(s) <~ NEXTPATH(t, k)
until £ = K

function NEXTPATH(v, k)

if k =2 then
Initialize C(v)
Cv) « {r'(u)-v:(u,v) € A and '(u) - v # 7' (v)}

if kK #2 or v # s then
Let v and &’ be the vertex and index such that 7%~1(v) = 7¥(u) - v
if 7¢+1(u) not already computed then ¥ *'(u) <~ NEXTPATH(u, k' + 1)
if 7¢+1(u) exists then C(v) + C(v) UnF+(u) - v

if C(v) # () then
7 (v) < argmin L(m(v))

m(v)eC(v)

C(v) + C(v) \ ()

else
7% (v) does not exist

return 7*(v)

	Introduction
	Problem Description and Mathematical Formulation
	Problem Description
	Mathematical Formulation

	Lagrangian Relaxation Based Heuristic
	Solving the Lagrangian
	Primal Heuristic
	Solving the Lagrangian Dual

	Computational Experiments
	Experimental Setup
	Ad Hoc Rescheduling Procedure
	Results

	Column Generation Based Heuristic
	Column Generation
	Finding Integer Solutions
	Comparison of the Two Heuristics

	Vehicle Rescheduling with Retiming
	Literature Review
	Mathematical Formulation and Methodology
	Dynamic Neighborhood Exploration
	Added Value of Retiming

	Conclusion
	References
	Shortest path algorithms

