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Abstract

The task of emergency medical services (EMS) is to timely provide service
to those in urgent need of medical attention. In order to achieve this, ambu-
lances must arrive at the emergency location within a time threshold imposed
by the government. To facilitate this, su�cient base locations containing am-
bulances are spread across regions. An important concept is the notion of
`coverage'. Because each region must be su�ciently covered at any time,
ambulances are constantly redeployed to di�erent base locations. To solve
the relocation problem of ambulances, a model called the MEXCLP is im-
plemented that optimizes the total coverage. Two policies are to be distin-
guished: applying the static policy necessitates that idle ambulances always
return to a prede�ned base location after �nishing service and the dynamic
policy works in conjunction with the dynamic MEXCLP to determine the
location that optimizes the total coverage. By simulation, the performances
of the EMS policies are measured. From the results, the dynamic policy
always outperforms the static policy under any circumstance. Nevertheless,
the static policy is useful as a benchmark.

This thesis provides a solution to the dynamic ambulance redeployment
problem using methods from a related research. Furthermore, it provides
analysis on performance levels for various research questions. The key per-
formance indicator (KPI) is the expected fraction of late arrivals, which is
to be minimized. Another relevant number is the expected average response
time, which correlates with the expected fraction of late arrivals. This re-
search shows that the fraction of late arrivals can be as low as four percent.
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1 Introduction

1.1 Problem description

At any moment, emergencies arise when people get health problems, injuries
or any other medical condition. It is important that aid comes sooner rather
than later to help the people, who are in urgent need of medical attention.
Ambulances must arrive at the location of the emergency as soon as possible.
However, it is no easy task for emergency medical services (EMS) managers,
who coordinate the ambulance system, to ensure that any inhabitant within
a region can be reached and, most importantly, will be reached as soon as
possible by an ambulance, given that they have to deal with limited resources
and budget.

A related issue is that one needs to make sure that at any point in time
each location in a region is su�ciently covered by ambulances, given that
a region has ambulance bases at �xed locations and given a total number
of ambulances. First, the concept of `coverage' will be explained. When
one speaks of coverage, one means that a location is surrounded by a su�-
cient number of ambulances in the neighbourhood, such that it can easily be
reached by an ambulance within a speci�c time threshold. It is ideal to have
this for each demand location. We want to avoid a situation in which no
ambulance is able to respond to an accident1 within the time threshold. It is
also necessary that the number of ambulances stationed at a base location is
su�cient, as an ambulance from a base location may be busy while another
accident occurs at a demand location covered by the same base location.
Furthermore, relocating ambulances to di�erent base locations after �nish-
ing service may improve the total coverage, ensuring that accidents are more
likely to be reached in time. This process is called the dynamic ambulance
redeployment.

Accidents are unpredictable, since they occur randomly at an unknown
rate. Moreover, the rate is dependent on time and location. It is more likely
that an accident occurs in cities or during peak hours than at the country
side or at night.

In this thesis, the studied region is the RAV of Utrecht, one of the largest
ambulance providers of the Netherlands. The RAV is the regional ambulance
service in the Netherlands. Given the base locations and the number of
ambulances, the dynamic ambulance redeployment problem will be solved.
The research objective is to minimize the expected fraction of late ambulance
arrivals by optimizing the coverage for each demand location. The reason for

1In this thesis, accidents will be used to refer to demand for ambulances.
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this objective is because the aim of EMS managers is to provide good service
to citizens, and this will be attained when ambulances arrive in time when
they are needed. This, in turn, is achieved by having su�cient coverage in
each demand location by ambulances.

1.2 Related work

Many insights on this topic can be gained from other papers. The reference
framework [1] of the RIVM, the Dutch National Institute for Public Health
and the Environment, describes methods that have been used to improve the
base locations and the number of ambulances for every RAV in the Nether-
lands. Data acquired from the reference framework (e.g. the travel times
between two demand locations) will be used for the research in this thesis.

Furthermore, the heuristic described in Jagtenberg et al. [2] will be used
to solve the dynamic ambulance redeployment problem, for which implemen-
tation of both an integer linear programming problem and a simulation is
required. Only the most urgent emergencies, called the A1 emergencies in
the Netherlands, are discussed in the thesis. For these emergencies, ambu-
lances must arrive at the demand location within 15 minutes after the call
has been made. The base locations, number of ambulances and travel times
between every demand location are known in advance.

Two di�erent policies are discussed in Jagtenberg et al. [2]. An ambu-
lance that has served an accident either must return to the home base it
has been assigned to, which is the rule applied under a static policy, or may
relocate to another base if it gives a coverage improvement, which is the rule
under a dynamic policy. In case of a dynamic policy, an assumption is made
that repositioning of an ambulance is only allowed after an ambulance has
served an accident. This is a reasonable assumption, as it would be very in-
e�cient for ambulance drivers to relocate from base to base in any occasion
and it would cost a lot of fuel. The restriction ensures that the number of
trips remains the same, which also convinces the EMS managers that the
dynamic policy is a good alternative to the static policy. The goal is to min-
imize the expected fraction of late arrivals, which will be referred to as the
key performance indicator (KPI). The static policy results will be used as
benchmark.

The integer linear programming problem that needs to be solved is the
maximum expected covering location problem (MEXCLP) [3]. For this model,
the demand locations and the base locations are required. A variation of
this model [2] is applied to the dynamic policy, involving relocation of an
ambulance to a di�erent base location by looking for the best coverage im-
provement.



1 INTRODUCTION 3

Furthermore, an overview of statistics [4] of the health care department
in the Netherlands provides insight on the performance of the Dutch medical
service. In this overview, statistical data can be found, such as the number
of A1 accidents, the number of accidents that required a transport and the
number of ambulances. The information will be used as data for this research.

1.3 Research questions

In this thesis, mainly the methods described in Jagtenberg et al. [2] are
implemented to obtain the research objective and to analyze the results.
The methods are easy to implement and very lenient to adjustments for
some further analysis.

The MEXCLP requires a possible set of base locations. Hence, to solve
our problem we use our current base locations in the RAV of Utrecht. An
interesting extension to research is to see the consequence of relaxing our
set of base locations by including all demand locations in the set of possible
base locations. Our assumption is that every location in the RAV of Utrecht
can potentially serve as a base location. So, we use this input to solve the
MEXCLP, after which we can derive a new set of base locations. For the
results of this analysis, we refer to Section 4.3.

As already indicated, ambulances need to arrive at accident locations
within a certain time threshold. For this research, we use the time threshold
that is applied by the Dutch authority to determine the KPI. As mentioned
before, the time threshold for the A1 emergencies in the Netherlands is 15
minutes. This, however, is not a global standard. Some other countries use a
much stricter time threshold, such as 10 or 12minutes. Therefore, Section 4.4
discusses the e�ects on the performance by applying di�erent time thresholds
as a Dutch standard requirement.

Throughout the day, the rate at which accidents occur is not constant,
since more accidents happen at certain hours. Our initial simulation model
assumes the accident rate to be constant, which is far from true. Therefore,
we modify the simulation model to incorporate the changes in the accident
rate throughout the day. We assume accidents occur according to a piecewise
constant non-homogeneous Poisson process. The results are presented in
Section 4.5.

The contents of this thesis are structured as follows. In Section 2, the
methods and the corresponding notations are introduced. This section ex-
plains the MEXCLP and our simulation model. Section 3 features the data
we use. The results to our methods, the analysis and the extensions are
presented in Section 4. Lastly, in Section 5, we end with the conclusion.
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2 Methods

Before we explain the methods for solving the dynamic ambulance redeploy-
ment problem, some notations are introduced to formulate our model.

First, let V be the set of demand locations in the RAV of Utrecht. A
demand location corresponds to a four digits postal code2, meaning that in
order to determine the position, we take the average of the coordinates over
all six digits postal codes locations of which the �rst four digits are the same.
Each demand location i ∈ V has its population di and one may assume that
di corresponds to the demand of the location. Let the demand fraction of
location i be gi = di∑

i di
, for i ∈ V . Furthermore, accidents in the region

comprised of every location in V follow a Poisson process with a rate λ.
Thus, accidents at location i occur at rate giλ.

Let W ⊆ V denote the set of base locations, which is a subset of the set
of demand locations, since base locations are located at speci�c four digits
postal code locations. Moreover, let H ⊆ V be the set of hospitals, which is
a subset of the set of demand locations for the same reason as for the base
locations. Furthermore, A is the set of ambulances and τij are the travel
times between locations i ∈ V and j ∈ V .

The complete overview of demand locations, base locations and hospital
locations in the RAV of Utrecht can be viewed in Appendix A.

As stated before, our objective is to minimize the expected fraction of late
arrivals, that is, accidents served later than T time units. To determine this
fraction, several simulations are performed. For each simulation, the number
of accidents and the number of accidents reached within time threshold T are
tracked. To calculate the fraction of late arrivals, the number of accidents
that are reached later than T is divided by the number of accidents.

In the following section, the concept of MEXCLP is explained.

2.1 MEXCLP

The MEXCLP is an integer linear programming problem that searches for the
best static solution of initial base location for each ambulance. The MEX-
CLP solution gives for each demand location the number of ambulances that
must cover the location and for each base the number of ambulances it holds,
such that the total coverage is maximized. A good coverage by ambulances
prevents that accidents are served later than a speci�c time threshold T .
Therefore, optimizing the coverage reduces the expected fraction of late ar-
rivals, the KPI, which aligns with our objective.

2In the Netherlands, postal codes start with four digits followed by two letters.
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In this model, there is a set of possible base locations W , and for each
base location a number of ambulances must be distributed. Let |A| be the
total number of ambulances available and let q denote the busy fraction, the
probability an ambulance is unavailable, which is assumed to be the same
for all ambulances. The busy fraction is estimated by dividing the expected
load of the system by the total number of available ambulances. Moreover,
let Wi be the set of bases within range of demand location i ∈ V , that is, the
bases of which the travel time is within T time units of a demand location.

Let the decision variables be the variables xj, the number of ambulances
at each base, for j ∈ W , and the binary variables yik, where yik is 1 if demand
location i ∈ V is covered by k ambulances and 0 otherwise. This value k is
determined using the travel times τij.

Lastly, the expected covered demand is introduced, which is de�ned as
Ek = di(1 − qk). This number is the expected coverage when there are k
ambulances within range of demand location i ∈ V . We want to �nd the
number of ambulances k − 1 for which adding another ambulance yields the
highest increase in coverage. This improvement can be calculated by taking
the di�erence between Ek and Ek−1. The marginal contribution of the kth
ambulance is then de�ned as Ek − Ek−1 = di(1− q)qk−1.

The MEXCLP is formulated as:

Maximize
∑
i∈V

p∑
k=1

di(1− q)qk−1yik, (1)

s.t.
∑
j∈Wi

xj ≥
p∑

k=1

yik, i ∈ V, (2)∑
j∈W

xj ≤ |A|, (3)

xj ∈ N, j ∈ W, (4)

yik ∈ {0, 1}, i ∈ V, k = 1, . . . , p. (5)

The objective function is de�ned in Equation (1), which is the sum of
marginal contributions over all demand locations. Equation (2) ensures that
the number of ambulances at base locations in range of demand location
i ∈ V is at least as high as the number of ambulances that covers location i.
Equation (3) states that the sum of the number of ambulances at each base
location is at most the number of available ambulances. Furthermore, xj is
an integer and yik a binary number, as indicated by Equations (4) and (5)
respectively. Hence, the MEXCLP is used to optimize the total coverage.



2 METHODS 6

2.2 DMEXCLP

Beside the static MEXCLP, Jagtenberg has introduced an algorithm that
implements the MEXCLP for the dynamic problem. An ambulance becomes
idle after it has served an accident. Each time an ambulance becomes idle,
the DMEXCLP algorithm searches for the next base location it needs to drive
to. For each base location, the coverage improvement is calculated if it is
sent to that location. The chosen destination is the location that results in
the maximum total coverage. Furthermore, the algorithm does not just send
an ambulance to a base location that has the least number of ambulances, as
this does not necessarily means a better coverage. Therefore, the DMEXCLP
proves to be very useful to solve the dynamic relocation of ambulances. The
DMEXCLP algorithm can be found in Appendix C as Algorithm 1.

2.3 Discrete Event Simulation

In order to determine the performance for a policy, a discrete event simulation
(DES) needs to be performed, which stores and updates relevant statistical
values. For this simulation, the results acquired from the MEXCLP and the
algorithm for the DMEXCLP are used.

Before explaining the components, the DES model will be shortly de-
scribed. It is a system that is modeled in terms of its state at each point
in time. At discrete points in time, events occur that may change the sys-
tem state. After an event has occurred, the system state and the simulation
clock are updated. The simulation clock is a variable that keeps track of the
current value of the simulated time, which continues to proceed until it has
reached the end time of the simulation. The DES also keeps track of statis-
tical counters, which are variables containing valuable information about the
system's performance.

The components of a DES model are the initialization routine, in which
the variables are initialized, the timing routine, in which the next event time
is established and simulation clock is updated, the event routines, which
performs in several steps the events, the library routines, which are used to
generate random variables, the report generator, which reports and summa-
rizes results at the end of the simulation, and the main program, which ties
all routines together and executes them in the right order.

The state space is de�ned by using the destinations of all idle ambulances,
which can only be base locations. If an ambulance is already stationed at a
base location, its destination is the base location it is currently at. Because
each ambulance is identical or exchangable, the state space S can be de�ned
as the set of states s = {n1, . . . , n|W |}, where nj is the number of idle am-
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bulances that has destination base location j, for j ∈ W . The system state
changes if the number of idle ambulances changes.

There are two events that may change the system state s: the moment
an accident occurs and the moment an ambulance �nishes the service. In
case an accident occurs, the closest idle ambulance gets sent to the accident
location. If this happens, the number of idle ambulances reduces by one,
therefore changing the system state. It may occur that there are no idle
ambulances available to immediately serve the accident. In this case, the
accident is stored in a �rst-come-�rst-serve queue and the system state re-
mains unchanged. In case an ambulance �nishes the service, it becomes free
to serve other accidents, therefore the number of idle ambulances increases
by one. However, if the queue is not empty, the ambulance that became just
available will immediately drive to the accident location that is �rst in queue,
meaning its status remains busy.

The next accident times for each demand location is generated at the
start of the simulation using the exponential distribution. By multiplying
the accident rate λ with the respective demand fraction gi of each location
i ∈ V , |V | smaller rates are obtained which are used to generate the next
accident time at the respective demand location.

In the accident event routine, the time an ambulance �nishes the service
is generated. The �nish time is generated by cumulating the service time and
adding it to the current time t. Let the time an accident occurs correspond to
the time a call has been received by the emergency room. Then it takes time
τanswer before an ambulance is on the road to drive to the demand location.
The nearest ambulance is sent from location i to demand location j, taking
up travel time τij, for i, j ∈ V . After the ambulance has arrived at the
demand location, the medical employees provide service that takes up time
τonscene, which is generated using the exponential distribution with rate λs.
Afterwards, it is decided whether the patient needs a transport to the hospital
for further service. This is decided by using a coin �ipping method. With
probability p, a transport to the hospital is needed, and with probability
(1−p), no transport is needed. If a transport is not required, the ambulance
immediately becomes idle. Otherwise, it drives from the current location j
to the nearest hospital location k ∈ H, taking up travel time τjk. After the
ambulance arrives at the hospital, the time it remains there is denoted by
τhospital, after which it becomes idle. τhospital is generated using the Weibull
distribution with shape parameter λh and scale parameter α. The �nish time
is therefore t+ τanswer + τij + τonscene + τjk + τhospital with probability p and
t+ τanswer + τij + τonscene with probability (1− p).

The response time is the time between the moment a call is received by
the emergency room and the moment an ambulance arrives at the accident
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scene. Note that τanswer + τij is the response time of an accident. Since our
objective is to minimize the number of accidents served later than T time
units, it is bene�cial to have a low average response time.

When an ambulance becomes idle, it may either get send to its original
base location under the static policy, which is determined by solving the
MEXCLP, or to the base location that yields the best coverage improvement
under the dynamic policy. In the latter case, the DMEXCLP algorithm is
performed, which gives as output the best base location. When travelling to
a base, the travel speed of the ambulance is v times the speed when it drives
to an accident location, 0 < v < 1.

An idle ambulance that is on the way to a base location and is the closest
ambulance available does not need to �rst arrive at the base when an accident
occurs. To determine the current location of this idle ambulance, we make
use of linear interpolation. First, the fraction of the travel is calculated by
the formula current time−start time

end time−start time
, where start time is the time the ambulance

becomes idle and end time is the time the ambulance arrives at the destina-
tion. Secondly, the coordinates of the current position are calculated using
this fraction and the coordinates of the origin and the destination. Lastly,
we calculate the distance between the current position and each demand
location to determine the nearest demand location. The nearest demand lo-
cation is assumed to be the current position of the idle ambulance, since only
distances between demand locations are known. When an accident occurs,
the simulation model �rst determines the closest base location that contains
available ambulances and afterwards checks whether the location of the idle
ambulance that is still on the way is closer to the accident location.

The performance measures of interest are the expected fraction of late
arrivals (the KPI) and the expected average response time. These measures
are good indicators to decide whether our current policy maintains a good
service, since these evaluate how many accidents are served within time and
how long it takes to arrive at the accident scene. Further statistical measures
are the expected number of accidents occurring, the expected number of
accidents reached within T time units, the expected number of accidents
served, the expected number of times a transport is required and the number
of accidents that have been in queue. Since the ambulance redeployment is a
continuous process, it would be desirable not to start with an empty system,
i.e. no accidents have occurred at all. For this reason, our simulation has
a warm up period of h hours. In the �rst h hours, none of the statistical
counters are updated yet.

An overview of the de�nitions of notations can be found in Appendix B
and algorithms for each component of the simulation in Appendix C.
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3 Data

As we want to replicate the research from Jagtenberg et al. [2], we mostly use
the same data. According to the statistical overview [4], we have a total of
217 demand locations and 11 base locations. The postal codes that are used
to derive the coordinates and the population of each demand location are
obtained from the RIVM. In Jagtenberg et al. [2], on average 9.5 accidents
occur within an hour in the RAV of Utrecht, which is equivalent to an acci-
dent rate of λ = 9.5

3600
, as the time unit in our simulation model is in seconds.

This means accidents at location i occur with rate 9.5
3600

gi. Furthermore, 8
hospitals are found in the RAV of Utrecht.

The number of ambulances is also acquired from the research of Jagten-
berg [2]. In total, 19 ambulances are used. The time before an ambulance
is sent to an accident location τanswer is 3 minutes. The travel times are de-
terministic and are acquired from the RIVM. The probability p an accident
need a transport is derived from the data in the statistical overview [4] by
calculating the fraction of the number of transports to the total number of
accidents. For this number, the data of the year 2010 is used. In 2010, the
number of accidents that needed a transport in the RAV of Utrecht amounts
58961 and the total number of accidents amounts 85152, so p is approxi-
mately 0.69. For τonscene we use an exponential distribution with rate 1

720

and for τhospital we use a Weibull distribution with shape parameter 1
1080

and
scale parameter 1.5. The time threshold T , as already indicated before, is
15 minutes, which means an ambulance has at most 12 minutes to be on the
road driving to an accident location.

Like in the research of Jagtenberg, the busy fraction q is equal to 0.3. If
an idle ambulance is on the road driving to a base location, its travel speed is
0.9 times the speed when it drives to an accident location. The initialization
of the system state is done by using the result obtained from the MEXCLP,
after solving it by using our �xed set of base locations. For generating random
variables, the Mersenne Twister random generator is used with a �xed seed
value of 12345, which is set before the simulation runs. Lastly, a warm up
period of 5 hours is used.



4 RESULTS AND ANALYSIS 10

4 Results and analysis

Performing the DES model yields results for both the static and dynamic
policies.

Table 1 shows the results for both the static and dynamic policies for 500
simulation hours, 10 runs, λ = 9.5

3600
and q = 0.3. The corresponding standard

deviations are in the columns next to the results. From the standard devia-
tions, we see that we can use these results as performance measures, as the
deviations are relatively not high. It can be seen that the expected number of
accidents occurring is approximately the same as the expected number of ac-
cidents served in the same time window, meaning the time interval between
accidents occurring and the time interval between ambulances �nishing a
service are approximately the same. The expected number of accidents that
are handled within 15 minutes is higher under the dynamic policy, which
coincides with the lower expected fraction of late arrivals (the KPI).

Performance measures Static policy Dynamic policy
Mean St. Dev. Mean St. Dev.

No. of accidents occurring 4762.5 50.4276 4762.5 50.4276
No. of accidents handled on time 4233.3 35.1822 4357.4 41.9582
No. of accidents served 4763.2 50.1947 4763.0 49.9355
No. of times transported 3303.2 64.4012 3303.2 64.4012
No. of accidents in queue 0.0 0.0 0.0 0.0
Fraction of late arrivals 0.1111 0.0053 0.0850 0.0056
Average response time (in seconds) 608.51 3.6574 578.02 3.9015

Table 1: Performance of the static policy and the dynamic policy with λ =
9.5
3600

and q = 0.3 for 500 simulation hours and 10 runs.

One remarkable observation is that there has been no accident put in the
queue in every run. This is due to the high number of ambulances we use,
namely 19. Since the time interval between accidents occurring and the time
interval between ambulances �nishing a service are approximately the same,
we always have an ambulance becoming idle for every accident that occurs
before all ambulances are busy. We have con�rmed that, when we use lower
numbers of ambulances, some accidents are put in the queue.

Furthermore, Figure 1 on page 11 shows a comparison in the performance
between the static and the dynamic policy. The performances of each of the
10 simulation runs have been plotted. It can be clearly seen from both
Table 1 and Figure 1 that implementing the dynamic MEXCLP results in
a better performance than the static policy. A relative decrease of 23.5%
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in the expected fraction of late arrivals can be gained by performing the
DMEXCLP, which is a signi�cant improvement.

Figure 1: Comparison between the performance of the static policy with
the performance of the dynamic policy using λ = 9.5

3600
and q = 0.3 for 500

simulation hours and 10 runs.

Figure 2 on page 12 shows a comparison in the response times between
the static policy and the dynamic policy, for 1 simulation and 2500 simulation
hours. Like Table 1, it shows that the average response times are lower under
the dynamic policy than under the static policy, as the line of the dynamic
policy is constantly above the line of the static policy and it approaches faster
to 1.

Overall, from these results we can conclude that the dynamic policy
greatly improves the performance of the EMS system. We may, however,
want to check whether changing a parameter like the accident rate will a�ect
this result.

In the next subsections, some further analysis are discussed. First, in
Section 4.1, we check the e�ect of changing the accident rate λ on the ex-
pected fraction of late arrivals and the expected average response time of
both policies and compare them. Afterwards, in Section 4.2, the sensitivity
of the dynamic policy on the busy fraction q is investigated, by performing
the simulation for several values of q. Section 4.3 introduces a new set of
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Figure 2: Comparison in the response times between the static policy with
the dynamic policy using λ = 9.5

3600
, q = 0.3, 2500 simulation hours and 1 run.

base locations, after we solve an MEXCLP for which every demand location
can potentially serve as a base location. The solution is used as an initial-
ization of the system state in our simulation model to check its performance.
Section 4.4 investigates the e�ect in the performance of our model under
the dynamic policy when di�erent time standards T are applied. Lastly, in
Section 4.5, the performance of our policies are checked after using di�erent
accident rates within a day, assuming that accidents occur according to a
non-homogeneous Poisson process.

4.1 Performance by changing the accident rate

Since there is chance that the static policy may outperform the dynamic
policy for a di�erent accident rate, we perform simulations using di�erent
accident rates. The simulation is performed for 1000 simulation hours and
10 runs and the busy fraction q is hold �xed at 0.3. Figure 3 on page 13
shows a chart with the absolute performance of both the static policy and
the dynamic policy for various accident rates. It can be seen that the dynamic
policy always outperforms the static policy, for every λ.

However, it can also be seen from Figure 3 that the di�erence in the abso-
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lute performance between the two di�erent policies is very small at extreme
time intervals between accidents. This can be easily seen in the �gure, as the
�rst and last points of both policies are almost equally positioned. At most,
the static policy performs just as good as the dynamic policy.

Figure 3: Comparison in the absolute performance between the static policy
and the dynamic policy for q = 0.3, 1000 simulation hours and 10 runs, when
di�erent accident rates are used.

Figure 4 on page 14 shows the relative improvement in the expected
fraction of late arrivals when the dynamic policy is applied over the static
policy. This value peaks when the average time between accidents is around
4 minutes, which is around 26.1%, after which the improvement increasingly
decreases for a higher average time between accidents.

4.2 Sensitivity to the busy fraction

Now, we investigate the sensitivity of the dynamic policy to the busy fraction
q. We hold the accident rate λ �xed at 9.5

3600
and we simulate 10 runs of 1000

simulation hours each for every value of q. Table 2 shows the performance
measures for di�erent values of q. As can be seen in the table, the expected
fraction of late arrivals is not very sensitive to the value of q for lower values
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Figure 4: The relative improvement in performance when applying the dy-
namic policy over the static policy for q = 0.3, 1000 simulation hours, 10
runs and di�erent accident rates.

of q, as there is small di�erence in the performance of our dynamic policy for
q = 0.2 and q = 0.4.

Performance measures q = 0.2 q = 0.4 q = 0.6 q = 0.8
Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

Fraction of late arrivals 0.0843 0.0021 0.0855 0.0026 0.0991 0.0039 0.2303 0.0054
Av. response time (in seconds) 574.42 2.5873 579.29 1.8615 588.41 2.9846 708.15 3.5626

Table 2: Obtained performance values for di�erent values of q, λ = 9.5
3600

after
10 runs for 1000 simulation hours each.

When the busy fraction exceeds 0.5, it becomes increasingly harder to
�nd available ambulances. The increase in both the expected fraction of late
arrivals and the expected average response time are still relatively small for
q = 0.6, with a relative increase of 15.9% and 1.6% respectively, compared to
the performances of q = 0.4. However, for q = 0.8, the relative increases are
132.4% and 20.3% respectively, compared to the performances of q = 0.6.

In other words, the performance of the dynamic policy increasingly dete-
riorates for a higher busy fraction. This makes sense, as the probability that
an ambulance is available decreases and it becomes more di�cult to serve
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accidents within the time threshold.

4.3 Reallocation of base locations

We solve the MEXCLP again, but without a speci�c set of base locations
known beforehand. We �rst assume the set of possible base locations to
be the set of demand locations. After solving the MEXCLP, our solution
shows at which locations ambulances are stationed. Now we let the set of
base locations be the set of all locations that has at least one ambulance sta-
tioned. Fifteen locations in total have at least one ambulance stationed. Ap-
pendix D shows the locations and the corresponding number of ambulances.
In addition, our previous base locations and the corresponding number of
ambulances can be seen for comparison.

Using the new set of base locations, we perform the simulation for both
the static and dynamic policy 10 times for 500 simulation hours each using
λ = 9.5

3600
and q = 0.3. Table 3 shows the performance measures of the

static and dynamic policy. As can be seen, when comparing to Table 1, huge
improvement in the expected fraction of late arrivals for both the static and
dynamic policy can be achieved. The expected fraction of late arrivals of the
static policy shows a relative improvement of 37.3% and the expected fraction
of late arrivals of the dynamic policy a relative improvement of 51.3%. The
expected average response time also shows a signi�cant improvement over
the earlier results. The results make sense, as, with our new base locations,
we have optimized the total coverage over the whole RAV of Utrecht. The
total coverage has improved relatively with 5.5% over the old situation.

Performance measures Static policy Dynamic policy
Mean St. Dev. Mean St. Dev.

Fraction of late arrivals 0.0697 0.0047 0.0414 0.0037
Av. response time (in seconds) 596.86 4.5689 570.04 3.3794

Table 3: Obtained performance values for the new set of base locations, for
q = 0.3, λ = 9.5

3600
after 10 runs for 500 simulation hours each.

We conclude that the MEXCLP is a capable model to optimize base
locations, since great improvements in the performance of our policies can
be seen. The question remains whether it would be possible to set a base
location at any location the model indicates under real circumstances. Nev-
ertheless, it gives a good and fast indication for research purposes. If certain
circumstances changes, like an additional ambulance becomes available in our
model, we can simply use the MEXCLP to determine the best base locations.
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4.4 Di�erent response time standards

We investigate the performance of the dynamic policy when we change the
time threshold T . The acceptable time standard for ambulances to arrive
at the accident location varies between countries. As we already mentioned,
the time standard for the Netherlands is 15 minutes. Some other countries
apply a di�erent time standard, which are usually much stricter, like 8 or 10
minutes. We are interested in the performance of the Dutch system when
other time standards are applied.

Table 4 shows the performance of the dynamic policy when applying
di�erent time standards. For this outcome, we have used our �xed set of
base locations. The corresponding initialization of the system state is found
in Appendix E in Table 12. As expected, the performances are very poor
when the Dutch medical system applies these di�erent time standards. For
a time threshold of 12 minutes, only 4

5
of the accidents are reached in time.

For a time threshold of 8 minutes, less than half of the accidents are reached
in time.

Performance measures T = 8 T = 10 T = 12 T = 15
Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

Fraction of late arrivals 0.5850 0.0042 0.3838 0.0057 0.2276 0.0029 0.0848 0.0026
Av. response time (in seconds) 582.62 3.0220 576.24 3.3630 574.36 2.0583 576.44 2.1176

Table 4: Obtained performance values for di�erent values of T , using q = 0.3,
λ = 9.5

3600
, 1000 simulation hours and 10 runs.

We see that the current system of the Netherlands is not adaptable to
the time standards of other countries and is mostly optimized with respect
to their own time standard. Therefore, we try to make the system adaptable
to other time standards by choosing new base locations using the method
described in Section 4.3 and changing the number of ambulances to acquire
a new set of base locations and an optimal allocation of ambulances. We
consider a policy acceptable if the expected fraction of late arrivals is at most
0.1. To determine the number of ambulances that achieves this performance,
we manually change the number of ambulances and check its performance,
until we reach our desired performance. In other words, we perform a linear
search.

Table 5 shows the performance of the dynamic policy for di�erent T values
using the new optimized base locations and the new optimized allocations of
ambulances. These performances are acceptable, as the expected fraction of
late arrivals fall just below 0.1. We see that, in order to have an acceptable
performance for T = 8, we need nearly four times the number of bases of
T = 15 and more than double the number of ambulances.
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Performance measures T = 8 T = 10 T = 12
Mean St. Dev. Mean St. Dev. Mean St. Dev.

Number of bases 42 - 23 - 19 -
Number of ambulances 48 - 28 - 21 -
Fraction of late arrivals 0.0973 0.0017 0.0946 0.0027 0.0914 0.0048
Av. response time (in seconds) 371.38 0.8313 457.92 1.7968 528.55 2.9724

Table 5: The performance of the dynamic policy for di�erent T values, after
optimizing the base locations and the number of ambulances, using q = 0.3,
λ = 9.5

3600
, 1000 simulation hours and 10 runs.

In short, lots of rearrangement and reallocation of base locations and
ambulances are required, should the Dutch time standard change, to maintain
an acceptable performance. Tables 13-15 in Appendix E show the new base
locations and allocation of ambulances for di�erent values of T .

4.5 Non-constant accident rate

As our last research, we consider the fact that the accident rate changes mul-
tiple times during the day. This is a reasonable assumption, since it is likely
that accidents occur more frequently at certain hours than at other hours.
We assume that accidents follow a piecewise constant non-homogeneous Pois-
son process. This means that the accident rate changes during the day, but
for a certain period the accident rate remains constant.

From the reference framework [1], we �nd that the number of ambulances
varies depending on the part of the day and also di�ers between weekdays,
Saturdays and Sundays. The parts of the day considered are 12 pm to 8
am, 8 am to 4 pm and 4 pm to 12 pm. Since the number of ambulances
used may be an indication of the bustle on a particular part of the day, we
use the di�erent numbers of ambulances for each part to derive the di�erent
accident rates during the day. For simplicity, we only consider the rates of
the weekdays.

The number of ambulances for all emergencies are as follows: between
12 pm and 8 am 15 ambulances are deployed, between 8 am and 4 pm 35
ambulances are deployed and between 4 pm and 12 pm 22 ambulances are
deployed. Even though these numbers are not just for A1 emergencies, we can
still approximate the proper numbers of ambulances. We assume that λ =
9.5
3600

is the highest rate. We use this rate and a total of 19 ambulances between
8 am and 4 pm, as within this time interval the number of ambulances
for all emergencies is the highest. We further assume that the proportion
of the number of ambulances used for A1 emergencies to the number of
ambulances used for all emergencies is the same at any time. Using this
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approximation, we �nd that 9 ambulances are deployed between 12 pm and
8 am, 19 ambulances between 8 am and 4 pm and 12 ambulances between 4
pm and 12 pm. In a similar way, we derive the corresponding accident rates
for each part of the day, which are 1

800
, 9.5

3600
and 1

600
respectively.

Some updates are made in the simulation algorithms. First of all, a new
event is introduced, namely the change in the part of the day. Furthermore,
we have to make sure that both the number of ambulances |A| and the
accident rate λ change when the simulation is at the next part of the day.
We use the new notations |Apart| and λpart to distinguish between the di�erent
values. When the simulation time is updated, we check whether the current
time is at the next part of the day. If this is the case, our new event is
invoked. We also reverse the simulation clock back to the time at which the
change in the part occurs.

Furthermore, we solve the MEXCLP using our �xed set of base locations
with the numbers of ambulances for each part of the day and store the solu-
tions. We assume that our simulation excluding the warm up period starts at
12 pm. Since we have a warm up period of 5 hours, our simulation including
the warm up period actually starts at 7 pm, which means we initialize the
system state with the MEXCLP solution for 12 ambulances.

In our new event routine, we update the state space by adding or remov-
ing ambulances from base locations. This is done by determining the number
of ambulances that are actually at each base location and by calculating the
di�erences of the solutions from the MEXCLP for di�erent |Apart| values and
adding or removing these di�erences to each base location. To illustrate this,
at the base location located at postal code 3436, we start with a total of 3
ambulances in the simulation. At the next part of the day, the MEXCLP
solution indicates that we should start with 2 ambulances at that location.
So, when we arrive at the next part of the day, after having determined the
number of ambulances that are actually at the base location, we subtract 1
ambulance from the base location. This way, we do not remove an ambulance
that is still busy or on the way to a base location. Because the number of
ambulances at a base may be negative after subtracting, any excess ambu-
lance is automatically removed when it returns to the base location with a
negative number of ambulances.

Since the accident rates change during the day, we also make sure that the
next accident is generated one at a time using the proper rate. A number
is generated between 0 and 1. We add up the demand fraction of each
demand location to the total until the sum exceeds our generated number.
The demand location of which the fraction is added last is our next accident
location. Afterwards, the next accident time is generated. This process is
done at the end of the updated accident event routine or the change in the
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part of the day event routine. Appendix F shows the updated algorithms for
our model.

In Table 6, the results of the new simulation model for both the static
and dynamic policy can be seen, using q = 0.3 for 500 simulation hours and
10 runs. From the table, we see worse performances in both the expected
fraction of late arrivals and the expected average response time compared to
the performances from Table 1. This is due to our chosen accident rates and
number of ambulances. When we perform the simulation with only λ = 800
and 9 ambulances using q = 0.3, 500 simulation hours and 10 runs, the
expected fraction of late arrivals for the static and dynamic policy are 0.2535
and 0.2353 respectively. These performances are absolutely bad and it is
very likely that we have not used the appropriate arrival rates. However, as
we do not have any data on the di�erent accident rates, our only option is
to use these approximations.

Performance measures Static policy Dynamic policy
Mean St. Dev. Mean St. Dev.

No. of accidents occurring 3331.9 40.9863 3331.5 44.4953
No. of accidents handled on time 2785.8 17.6623 2907.6 36.4789
No. of accidents served 3332.9 39.8119 3332.5 43.6100
No. of times transported 2310.2 36.9197 2308.1 36.6134
No. of accidents in queue 5.8 3.7947 4.7 4.3474
Fraction of late arrivals 0.1638 0.0079 0.1272 0.0052
Average response time (in seconds) 654.46 4.7722 618.94 5.9019

Table 6: Performance of the static policy and the dynamic policy using
di�erent accident rates and q = 0.3 for 500 simulation hours and 10 runs.

Another limitation to our approximation is that we base our accident
rates on the number of ambulances that are used per part of the day. Since
the number of ambulances only changes three times per day, we can only
acquire three di�erent accident rates that change constantly after eight hours.
However, in real time the accident rate is way more volatile and may change
in a matter of seconds. Moreover, since we assume a piecewise constant
behaviour for accident rates, the rates abruptly change after eight hours. We
could account for this by assuming that the accident rates follow a piecewise
linear non-homogeneous Poisson process. Again, since we lack the data for
it, we unfortunately cannot implement it.
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5 Conclusion

Using the methods from the research of Jagtenberg et al. [2], we have solved
the dynamic ambulance redeployment problem. In particular, the dynamic
variant of the MEXCLP searches for the next best location for an ambulance
that has just become idle, which is implemented in the simulation model.
After performing several simulations, we acquire and analyze our results.
Furthermore, the methods from the research of Jagtenberg are very easy to
implement and to adjust for further analysis.

As we have already seen in Section 4, the dynamic policy yields generally
better performances than the static policy, with a relative improvement of
23.5% in the expected fraction of late arrivals when we replicate the research
of Jagtenberg. Nevertheless, the static policy is still useful as a benchmark.
Further analysis shows that the dynamic policy performs better than the
static policy when we use di�erent accident rates, although for extreme val-
ues of the accident rates the di�erences in performance between the static
and dynamic policy are minimal. When we change the busy fraction q, our
performances are not much a�ected for lower values of q. However, when we
use higher values of q, the performances start to worsen exponentially.

Our research shows that by including all demand locations in our set of
base locations and solving the MEXCLP we can obtain a new set of base
locations. Since this set of base locations optimizes the total coverage, we
obtain much better performances using this set than using our �xed set
of base locations, with relative improvements of 37.3% and 51.3% for the
static and dynamic policy respectively. The MEXCLP can also be used to
determine which base locations are needed to acquire a decent performance
when di�erent time standards T are used. In order to derive the required
number of ambulances for each T , we perform a linear search. We see that
a lot more base locations and ambulances are needed in order to obtain an
acceptable performance for lower T values.

By assuming that accident rates are not constant over the day, we modi-
�ed our simulation model to include the di�erent accident rates and numbers
of ambulances per part of the day. Since we do not have any data on the
di�erent accident rates, we have to use approximations. These approxima-
tions lead to worse performances for both the static and dynamic policy than
before.

All in all, the MEXCLP and the simulation model are very simple and
�exible methods, and especially useful to analyze the dynamic ambulance
redeployment problem. Should more data on the accident rates be collected,
further research could include piecewise linear accident rates. For now, our
methods are good enough to warrant a good performance.
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A Locations overview

1391 3439 3515 3562 3626 3723 3791 3902 3984
1393 3441 3521 3563 3628 3731 3811 3903 3985
1396 3442 3522 3564 3631 3732 3812 3904 3989
1426 3443 3523 3565 3632 3734 3813 3905 3991
1427 3444 3524 3566 3633 3735 3814 3906 3992
3401 3445 3525 3571 3634 3737 3815 3907 3993
3402 3446 3526 3572 3641 3738 3816 3911 3994
3403 3447 3527 3573 3642 3739 3817 3912 3995
3404 3448 3528 3581 3643 3741 3818 3921 3997
3405 3449 3531 3582 3645 3742 3819 3922 3998
3411 3451 3532 3583 3646 3743 3821 3927 3999
3412 3452 3533 3584 3648 3744 3822 3931 4121
3413 3453 3534 3585 3701 3749 3823 3941 4122
3415 3454 3541 3601 3702 3751 3824 3945 4124
3417 3455 3542 3602 3703 3752 3825 3947 4131
3421 3461 3543 3603 3704 3754 3826 3951 4132
3425 3464 3544 3604 3705 3755 3828 3953 4133
3431 3467 3545 3605 3706 3761 3829 3956
3432 3471 3546 3606 3707 3762 3831 3958
3433 3474 3551 3607 3708 3763 3832 3959
3434 3481 3552 3608 3709 3764 3833 3961
3435 3511 3553 3611 3711 3765 3834 3962
3436 3512 3554 3612 3712 3766 3835 3971
3437 3513 3555 3615 3721 3768 3836 3972
3438 3514 3561 3621 3722 3769 3901 3981

Table 7: All four digits demand locations in the RAV of Utrecht.

3436 3447 3561 3582 3608 3645 3707 3811 3823
3911 3941

Table 8: All four digits base locations in the RAV of Utrecht.

3435 3447 3543 3582 3707 3743 3813 3831

Table 9: All four digits hospital locations in the RAV of Utrecht.
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B Notation overview

Notation Description
A The set of ambulances in the RAV of Utrecht.
V The set of demand locations in the RAV of Utrecht.
W The set of base locations in the RAV of Utrecht,W ⊆ V .
H The set of hospital locations in the RAV of Utrecht,

H ⊆ V .
T The time threshold.
λ The accident rate in the RAV of Utrecht.
di The demand at location i ∈ V .
gi The demand fraction at location i ∈ V .
τij The driving time between i and j when driving to an

accident location, i, j ∈ V .
τanswer The time before an ambulance is dispatched to an acci-

dent location.
τonscene The time the ambulance is at the accident location.
τhospital The time the ambulance is at the hospital.
λs The rate to generate τonscene.
λh, α The shape and scale parameters to generate τhospital.
p The probability an accident needs a transport.
q The busy fraction.
v The fraction of the speed an idle ambulance travels to a

base location.
S The state space of the simulation.
s The states {n1, . . . , n|W |} S consists of.
nj The number of ambulances that has destination j ∈ W .
Wi The set of base locations within range of demand loca-

tion i ∈ V , Wi ⊆ W .
k The number of ambulances that covers demand location

i ∈ V .
xj The number of ambulances at location j ∈ W .
yik Binary value equal to 1 if demand location i ∈ V is

covered by k ambulances and 0 otherwise.
Ek The expected coverage when there are k ambulances

within range of demand location i ∈ V .
t The current time.
h The warm up period for the simulation.
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C Simulation algorithms

Algorithm 1 Dynamic MEXCLP

Require: Demand di of each demand location i ∈ V ,
base locations W ⊆ V ,
busy fraction q ∈ (0, 1),
current destinations dest(a) for all a ∈ IdleAmbulances ⊆ A,
travel times τij between any i, j ∈ V ,
time threshold T to reach an emergency call.

Output: new destination for the ambulance that is about to become idle.
This ambulance should not be counted as an idle ambulance yet.

1: BestImprovement = 0.
2: BestLocation = NULL.
3: for each j ∈ W do

4: CoverageImprovement = 0.
5: for each i ∈ V do

6: k = 0.
7: if τji ≤ T then

8: k++.
9: for each a ∈ IdleAmbulances do

10: if τdest(a)i ≤ T then

11: k++.
12: end if

13: end for

14: CoverageImprovement+ = di(1− q)qk−1.
15: end if

16: end for

17: if CoverageImprovement > BestImprovement then
18: BestLocation = j.
19: BestImprovement = CoverageImprovement.
20: end if

21: end for

22: Return BestLocation.
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Algorithm 2 Initialization routine

Require: Demand locations i ∈ V and its demand di, demand fraction gi,
coordinates and whether also i ∈ W or i ∈ H,
matrix of travel times between locations τij, i, j ∈ V ,
system state with number of ambulances with destination j,∀j ∈ W ,
number of vehicles |A|,
busy fraction q ∈ (0, 1),
accident rate λ,
driving time threshold T ,
boolean value that determines static or dynamic policy,
total simulation hours u,
total simulation runs.

1: Initialize variables and statistical counters f .
2: for each simulation run do
3: Invoke Algorithm 3.
4: end for

5: Print statiscal counters f .

Algorithm 3 Main event loop

Require: System state with number of ambulances with destination j,∀j ∈
W .

1: Initialize current time t.
2: Initialize list of next accidents, �nish times, system state and queue.
3: Initialize statistical counters used within a run.
4: Generate next accident time of each location i ∈ V .
5: while t < u do
6: Invoke Algorithm 4.
7: if t > u then
8: Do not count the next event.
9: end if

10: if next event is accident then
11: Invoke Algorithm 5.
12: else

13: Invoke Algorithm 6.
14: end if

15: end while

16: Update statistical counters f .
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Algorithm 4 Timing routine
1: Store next accident time and �nish times of all ambulances in a list.
2: if earliest time is accident then
3: Next event is accident.
4: else

5: Next event is �nish.
6: end if

7: Update t.
8: for each idle ambulance still on the way aonway do

9: if t exceeds arrival time to base then
10: Remove aonway.
11: end if

12: end for

Algorithm 5 Accident event routine
1: Generate next accident time for the current location i ∈ V .
2: if number of busy ambulances equals |A| then
3: Store accident time and location in queue.
4: else

5: Initialize ShortestTravelT ime and BestBase.
6: for each j ∈ W do

7: if τji < ShortestTravelT ime and j contains ambulances then
8: ShortestTravelT ime = τji and BestBase = j.
9: end if

10: end for

11: for each aonway ∈ IdleAmbulances ⊆ A do

12: Determine current position.
13: for each k ∈ V do

14: Calculate distance between k and current position.
15: Store k if smallest distance.
16: end for

17: if τki < ShortestTravelT ime then
18: ShortestTravelT ime = τki and BestBase = k.
19: end if

20: end for

21: Update system state.
22: Invoke Algorithm 7.
23: end if
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Algorithm 6 Finish event routine
1: Determine which ambulance has �nished service.
2: if Queue is empty then
3: Make ambulance idle and store current location and time.
4: if policy is static then
5: Store original base location and update system state.
6: else

7: Invoke Algorithm 1.
8: Store best location and update system state.
9: end if

10: Calculate and store the arrival time of the idle ambulance.
11: else

12: Remove the �rst accident from the queue.
13: Invoke Algorithm 7.
14: end if

Algorithm 7 Service method
1: Generate τonscene.
2: Generate number o between 0 and 1.
3: if o > p then
4: Calculate �nish time and store current location i ∈ V .
5: else

6: Initialize ShortestTravelT ime and BestHospital.
7: for each k ∈ H do

8: if τik < ShortestTravelT ime then
9: ShortestTravelT ime = τik and BestHospital = k.

10: end if

11: end for

12: Generate τhospital.
13: Calculate �nish time and store current location k ∈ H.
14: end if

15: Store original base location.
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D Optimized base locations

Base Number of
ambulances

3417 1
3439 1
3461 1
3471 1
3541 2
3573 2
3628 1
3645 1
3741 1
3818 1
3819 1
3825 1
3905 2
3945 2
3958 1

Table 10: The new set of base locations in the RAV of Utrecht obtained
after solving the MEXCLP without a speci�c set of base locations and the
corresponding number of ambulances.

Base Number of
ambulances

3436 2
3447 2
3561 1
3582 2
3608 2
3645 2
3707 0
3811 2
3823 2
3911 2
3941 2

Table 11: The �xed set of base locations in the RAV of Utrecht and the
corresponding number of ambulances.



E RESULTS FOR DIFFERENT TIME STANDARDS VIII

E Results for di�erent time standards

Base Number of ambulances
T = 8 T = 10 T = 12 T = 15

3436 2 2 2 2
3447 2 1 2 2
3561 2 2 1 1
3582 3 2 2 2
3608 1 2 2 2
3645 1 2 2 2
3707 2 2 2 0
3811 2 2 2 2
3823 2 2 1 2
3911 1 1 2 2
3941 1 1 1 2

Table 12: The number of ambulances at each base location, after solving the
MEXCLP using the �xed set of base locations, for di�erent time thresholds
T .

Base Number of
ambulances

Base Number of
ambulances

Base Number of
ambulances

3401 2 3604 1 3825 1
3417 1 3632 1 3833 1
3425 1 3641 2 3835 1
3431 1 3701 1 3903 1
3434 1 3702 1 3904 2
3439 1 3712 1 3947 1
3442 1 3723 1 3951 1
3445 1 3741 1 3953 1
3453 2 3752 1 3961 1
3522 1 3755 1 3985 1
3531 1 3761 1 3995 2
3534 1 3765 1 4131 1
3552 1 3813 1
3573 2 3817 1
3603 1 3824 1

Table 13: Base locations and initial allocation of ambulances for T = 8.
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Base Number of
ambulances

Base Number of
ambulances

Base Number of
ambulances

3405 1 3645 1 3921 1
3436 2 3709 1 3953 1
3444 2 3712 1 3962 1
3531 1 3741 2 3992 1
3544 1 3768 1 3994 1
3573 2 3823 1
3603 1 3835 2
3606 1 3904 1
3643 1 3905 1

Table 14: Base locations and initial allocation of ambulances for T = 10.

Base Number of
ambulances

Base Number of
ambulances

Base Number of
ambulances

3405 1 3645 2 3997 1
3433 1 3709 1
3438 1 3712 1
3442 1 3741 1
3461 1 3742 1
3541 1 3821 1
3553 1 3832 1
3573 1 3906 2
3606 1 3947 1

Table 15: Base locations and initial allocation of ambulances for T = 12.



F ALGORITHMS FOR NON-CONSTANT ACCIDENT RATE X

F Algorithms for non-constant accident rate

Algorithm 8 Initialization routine

Require: Demand locations i ∈ V and its demand di, demand fraction gi,
coordinates and whether also i ∈ W or i ∈ H,
matrix of travel times between locations τij, i, j ∈ V ,
system state with number of ambulances with destination j,∀j ∈ W ,
number of vehicles used at a part of the day |Apart|, part ∈ PartOfDay,
busy fraction q ∈ [0, 1],
accident rates λpart, part ∈ PartOfDay,
driving time threshold T ,
boolean value that determines static or dynamic policy,
total simulation hours u,
total simulation runs.

1: Initialize variables and statistical counters f .
2: for each simulation run do
3: Invoke Algorithm 9.
4: end for

5: Print statiscal counters f .

Algorithm 9 Main event loop
1: Initialize current time t.
2: Initialize part, list of �nish times, system state and queue.
3: Initialize statistical counters used within a run.
4: Generate next accident time for a location in V .
5: while t < u do
6: Invoke Algorithm 10.
7: if t > u then
8: Do not count the next event.
9: end if

10: if next event is change in part of the day then
11: Invoke Algorithm 11.
12: else if next event is accident then
13: Invoke Algorithm 12.
14: else

15: Invoke Algorithm 6.
16: end if

17: end while

18: Update statistical counters f .
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Algorithm 10 Timing routine
1: Store next accident time and �nish times of all ambulances in a list.
2: Determine earliest time and update t.
3: Update part if t is at the next part of the day.
4: if part changes then
5: Next event is part of the day change.
6: Update t to time at which part changes.
7: else if earliest time is accident then
8: Next event is accident.
9: else

10: Next event is �nish.
11: end if

12: for each idle ambulance still on the way aonway do

13: if t exceeds arrival time to base then
14: Remove aonway.
15: end if

16: end for

Algorithm 11 Part of the day change event routine
1: Change the state space by adding or removing ambulances from base

locations, excluding the ambulances that are still on the way to a base
location.

2: Generate next accident time for a location in V .
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Algorithm 12 Accident event routine

1: if number of busy ambulances equals or exceeds |Apart| then
2: Store accident time and location in queue.
3: else

4: Initialize ShortestTravelT ime and BestBase.
5: for each j ∈ W do

6: if τji < ShortestTravelT ime and j contains ambulances then
7: ShortestTravelT ime = τji and BestBase = j.
8: end if

9: end for

10: for each aonway ∈ IdleAmbulances ⊆ A do

11: Determine current position.
12: for each k ∈ V do

13: Calculate distance between k and current position.
14: Store k if smallest distance.
15: end for

16: if τki < ShortestTravelT ime then
17: ShortestTravelT ime = τki and BestBase = k.
18: end if

19: end for

20: Update system state.
21: Invoke Algorithm 7.
22: end if

23: Generate next accident time for a location in V .
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