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abstract
In this thesis, we address the problems of ambulance dispatching and am-
bulance redeployment. That is, deciding which ambulance to send to an
accident and choosing a base for the ambulance to return to after it finished
service. The goal in these problems is to minimize the fraction of late ar-
rivals. As an alternative to the well known closest-idle policy, we propose
a dispatching policy that makes a weighted choice between distance to the
accident and the coverage an idle ambulance currently provides. For the
ambulance redeployment, we alter an existing dynamic solution that was al-
ready shown to improve performance compared to a static benchmark. We
alter it in such a way that every time an ambulance becomes idle, a base
is chosen by a trade-off between the coverage an extra ambulance at that
base will provide and the distance from the idle ambulance to that base. We
evaluate our performances by a simulation of a realistic case study in which
we measure the fraction of late arrivals. We compare the performances to a
benchmark that uses a static redeployment policy and the closest-idle pol-
icy. We show that our dispatching policy has a relative improvement of 9.4%
compared to the benchmark. Furthermore the original redeployment policy
has a relative improvement of 12.3% compared to the benchmark static so-
lution. Our alteration to this policy does not improve the fraction of late
arrivals, but lowers the fraction of time an ambulance spends on the road
compared to the unaltered policy. Together the policies result in a relative
improvement of 17.8% which can be achieved without costs for extra crew
shifts or extra vehicles.
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1 introduction and related work

There is a constant urge to improve the efficiency of the emergency med-
ical services (EMS). One way of improving efficiency is ambulance rede-
ployment: the action of relocating ambulances during the day. Another is
dispatching: deciding which ambulance to send to an accident1. When an
accident comes in, two decisions have to made. The first decision is which
ambulance should be sent to the emergency site. In the unlikely event that
there is no ambulance available, the accident is put in a first-come-first-
served queue. When the ambulance crew arrived on scene and treated and
transported the patient, one has to decide where to send the idle ambulance.
If there are still unanswered accidents in the queue, the ambulance is sent
to the first arrived accident in the queue. If the queue is empty, a designated
waiting location (or base) for the ambulance to return to has to be chosen.

Over the past 45 years, ambulance deployment and redeployment models
have developed. While during the early years static policies were most com-
mon, there has been a great development in the last twenty years in which
dynamic models emerged.

Static models assign each ambulance to a home base, to which it is sent
when it becomes idle. Early research focused on deterministic location prob-
lems, later the static policies were altered by focusing on stochastic location
problems. One of these static policies is the maximum expected covering lo-
cation problem (MEXCLP) formulation by Daskin in 1983 [2]. In this model
it is assumed that each ambulance has the same busy fraction q, the prob-
ability of being unable to respond to an emergency call. The downside of
these static models is that they do not take real-time information into ac-
count.

Dynamic models are more recent. They consider the possibility to relocate
the ambulances during the day. One of these models is presented by Jagten-
berg et al. in 2015 [1]. Their relocation policy allows for ambulance rede-
ployment during the day with the restriction that an ambulance can only be
relocated the moment it becomes idle (which is at the accident scene or at
the hospital). In this way the amount of relocations stays similar compared
to static models. Jagtenberg presents an algorithm to decide to which base
the ambulance is sent. This algorithm determines the base which has the
highest benefit in terms of the marginal coverage according to the MEXCLP
model.

The most commonly used dispatching policy is the closest-idle policy; sim-
ply sending the closest idle ambulance to an accident. This was already
shown to be suboptimal by Carter et al. in 1972 [3] in terms of the frac-
tion of late arrivals. While there has been research in allowing increased
response times to non-urgent accidents (see for example [4]), this is not rel-
evant for this thesis since we only focus on high-priority calls and make no
distinction in urgency.

In these ambulance dispatching, location and relocation problems, the most
commonly used objective is maximizing the fraction of accidents with a re-
sponse time below a certain threshold, where response time is defined as the
time from the emergency call until an ambulance arrives on scene. Often
governments pose certain restrictions on this fraction and threshold. For ex-

1 In this thesis we refer to an accident as the demand for an ambulance.
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ample in the Netherlands, where the response time for 95% of the accidents
must be within fifteen minutes. Therefore the fraction of late arrivals seems
like a reasonable performance indicator. On the other hand, this indicator
does not take into account the actual response time of the ambulance when
it was on time or too late. Obviously an arrival which is for example half an
hour too late is less desired than an arrival which is only one second too late.

In this thesis we propose an alteration to the dynamic redeployment algo-
rithm from Jagtenberg et al. and develop a dispatching policy different from
the closest-idle policy. Therefore we first formulate the relocation problem
and the dispatching problem in Section 2. Next, in Section 3 we propose
our solution methods to these problems. The performances are evaluated
by a simulation of a realistic case study which we compare to a benchmark
in Section 4. We conclude our findings in Section 5.
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2 problem formulation
In this section, we describe the real-time ambulance relocation problem as
well as the dispatching problem. First we introduce some notation for these
problems. Let V be the discrete set of demand points at which an accident
can occur. Accidents occur at these demand points according to a Poisson
process with rate λ > 0. Let each demand point in V have demand fraction
di ∈ [0, 1], then accidents occur at demand point i with rate diλ with i ∈ V.
We define the set of bases as the set W ⊆ V and the set of hospitals as
H ⊆ V. The set of ambulances is defined as A.

Figure 1: Graphical representation of dispatching and relocation process.

When an emergency call comes is, a chain of events is set in motion. This is
visualized in Figure 1. When a call arrives, the dispatcher decides which idle
ambulance to assign according to the dispatching policy. Next, the assigned
ambulance travels to the accident scene. We assume the travel time with
siren on τij ≥ 0 between locations i and j to be deterministic (i, j ∈ V). Two
different travel times are used: when the siren is turned on, the travel time
is 0.9 times the travel time when the siren is turned off. The response time is
compared with a threshold T ≥ 0. When the ambulance has arrived, it takes
an amount of time τonscene ≥ 0 to treat the patient which we assume to be
deterministic. When the service on scene is finished, the decision is made
whether the patient needs to go to hospital. If so, the ambulance transports
the patient to the closest hospital. Upon arrival at the hospital, a certain
amount of time τhospital ≥ 0, which we also assume to be deterministic, is
needed after which the service at hospital is finished and the ambulance be-
comes idle. If there are no accidents in the queue, the ambulance becomes
idle and is sent to a base according to the redeployment policy. When there
are accidents in the queue the moment an ambulance finishes service, the
ambulance is sent to the first accident in queue.

Note that we only allow for an ambulance to relocate the moment it becomes
idle. This might seem restrictive, but especially in urban areas, ambulances
become idle quite often and this allows for enough freedom in relocating.
Second, no extra trips are made by imposing this restriction. This means
that the workload and travel costs stay more or less the same compared to
a static policy.

2.1 Ambulance redeployment

We redeploy ambulances when they become idle. Static models let ambu-
lances always return to their home base while dynamic models use real-time
information to decide to which base the ambulance is sent. Most dynamic
models tend to use a rather elaborate state description, while the algorithm
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of Jagtenberg et al. [1] is unique in the way that it only uses a very simple
state space: the state space is defined as the destinations of all idle ambu-
lances. When an idle ambulance is waiting at a base to be dispatched, its
destination is simply its current location. This results in a relatively small
state space. Since we consider all ambulances identical, it is sufficient to
model the state as the number of idle vehicles nj heading to each base for
j ∈ W. We define the state space S as the set of states s = {n1, . . . , n|W|}
where nj ∈ N for j = 1, . . . , |W|. We also define an action space A where
the action is sending the newly available ambulance to a specific base. We
define the policy π ∈ Π as a mapping S → A. So a policy defines a base
for every possible state. That is, for every possible distribution of idle am-
bulances.

We choose a policy that minimizes the fraction of response times above the
threshold T. Since we can order the accidents by their arrival times, the
objective is

arg min
π∈Π

lim
n→∞

1
n

n

∑
i=1

I(Rπ
i > T),

where I is the indicator function and Rπ
i is the response time for accident i

under policy π. In Section 3 we introduce our solution procedure in order
to minimize this objective.

2.2 Ambulance dispatching

When an emergency call comes in, one has to decide which ambulance to
send to the accident. We use the same state space S as for ambulance re-
deployment, since both the dispatching and the redeployment are done by
the same person and it makes sense to use the same information for both
decisions. We define the action space C, where the action is dispatching
a specific ambulance to the accident. Then we define a policy γ ∈ Γ as a
mapping S → C.

Next, we choose a policy to minimize the fraction of late arrivals. As we dis-
cuss later in this report, the fraction of late arrivals is not the only interesting
criterion to evaluate. The objective is

arg min
γ∈Γ

lim
n→∞

1
n

n

∑
i=1

I(Rγ
i > T).

In the next section, we propose a solution method to this problem.

7



3 solution procedure
In this section we first discuss the static MEXCLP solution for ambulance
redeployment as well as the algorithm of Jagtenberg et al. [1]. After that,
we propose a modification to the method of Jagtenberg et al. Finally, a new
dispatching method is presented.

3.1 Ambulance redeployment policy

We search for an ambulance redeployment policy that minimizes the frac-
tion of late arrivals. It is intuitively clear that the fraction of late arrivals
depends on the coverage the idle ambulances provide; the higher the cov-
erage, the lower the fraction of late arrivals. Therefore it is sufficient to
develop a policy that maximizes the coverage. There are many different
definitions of coverage, we use the definition of the static MEXCLP model.

3.1.1 Static MEXCLP model

The maximum expected covering location problem (MEXCLP) model from
Daskin [2] searches for the best static location policy using linear integer
programming. There is a limited number of ambulances p ≥ 0 and for
each ambulance a home base is determined. A busy fraction q ∈ (0, 1) is
assumed, which is equal for all ambulances. This fraction is determined by
dividing the expected load of the system by the number of ambulances. We
can express the expected covered demand at point i ∈ V as Ek = di(1− qk)
when point i is in range of k idle ambulances. This results in the marginal
coverage of the kth ambulance of Ek − Ek−1 = di(1− q)qk−1.

We introduce the binary variable yik which is equal to one if and only if de-
mand point i ∈ V is in range of at least k ambulances with k = 1, . . . , p. Next
the decision variables xj represents the number of ambulances assigned to
each base j ∈ W. Finally, let Wi be the set of bases that are within range
of demand point i, so Wi = {j ∈ W : τij ≤ T}. Recall that the goal of this
policy is to maximize the coverage. The formulation of the MEXCLP model
is

maximize ∑
i∈V

p
∑

k=1
di(1− q)qk−1yik

subject to ∑
j∈Wi

xj ≥
p
∑

k=1
yik i ∈ V

∑
j∈W

xj ≤ p

xj ∈N j ∈W
yik ∈ B i ∈ V, k = 1, . . . , p.

In our dynamic redeployment policy we use the specification of the MEX-
CLP model for marginal coverage (Ek − Ek−1 = di(1− q)qk−1).

3.1.2 Dynamic MEXCLP solution

A redeployment policy π that maximizes the coverage is wanted, while
only making use of the state space as described in Section 2. So when an
ambulance becomes idle, the only information available is the set of desti-
nations of all idle ambulances. The idea behind the algorithm of Jagtenberg
et al. is as follows: whenever an ambulance becomes idle, we send the idle
ambulance to the base at which the ambulance provides the best marginal
coverage for future accidents. The base is chosen by calculating the marginal
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coverage one extra ambulance would give for each base and choosing the
base with the highest marginal coverage. When calculating the marginal
coverage we only look at the idle ambulances and the coverage they provide.
Furthermore, since we only know the destinations of the idle ambulances,
we make no distinction whether or not they have arrived at their destina-
tions when calculating the coverage. The algorithm can then be formulated
as in Algorithm 1. In the following subsection we alter this policy.

Algorithm 1: Dynamic ambulance redeployment [1]
Data: The demand di per node i ∈ V,
base locations W ⊆ V,
busy fraction q ∈ (0, 1),
current destinations dest(a) for all a ∈ IdleAmbulances ⊆ A,
ambulance a∗ 6∈ IdleAmbulances that will become available,
travel times τij between any i, j ∈ V,
time threshold T to reach an emergency call.
Result: Destination for the ambulance that becomes idle

1 BestImprovement = 0;
2 BestLocation = NULL;
3 foreach j ∈W do
4 CoverageImprovement = 0;
5 foreach i ∈ V do
6 k = 0;
7 if τji ≤ T then
8 k++;
9 foreach a ∈ IdleAmbulances do

10 if τdest(a)i ≤ T then
11 k++;
12 end
13 end
14 CoverageImprovement + = di(1− q)qk−1;
15 end
16 end
17 if CoverageImprovement > BestImprovement then
18 BestLocation = j;
19 BestImprovement = CoverageImprovement;
20 end
21 end

3.1.3 Dynamic MEXCLP with travel times

A possible flaw of the current algorithm is that the travel time of the trip
from the current location of the ambulance to the base it is sent to is not
taken into account. This might not be desired since an ambulance can be
sent to the other side of the region which means higher transport cost and
longer driving times. Also when the travel time between ambulance and
base is high, the ambulance might not arrive at the base before being dis-
patched again. Our state space does not take into account that an ambulance
may not have arrived yet, so when an ambulance has to travel far, the state
does not represent reality as good as when travel times are shorter. So in-
stead of simply choosing the base with the highest marginal coverage, we
also consider the travel time to each base. Note that we do not consider the
actual distance between two location points, but the travel time is approxi-
mately proportional with the distance.
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To illustrate our method we first consider the previous situation where we
choose the base with the highest marginal coverage [1]. The decision prob-
lem for ambulance a ∈ A is

arg max
j∈W

{covj},

where covj is the marginal coverage improvement of base j as calculated in
Algorithm 1.

To take the travel time into account as well as the coverage, we first scale
both expressions so they are both in the range between zero and one. The
minimum marginal coverage improvement is equal to zero so we divide
the coverage by the maximum marginal coverage. The new expression is
cov∗j =

covj
ucov

where ucov is the upperbound of the marginal coverage. This
upperbound can be mathematically determined: recall that the marginal
coverage for an ambulance at a base j ∈W is

covj = ∑
i∈Vj

di(1− q)qki−1,

where Vj is the set of demand points in range of location j, so Vj = {i ∈ V :
τji ≤ T}, and ki is the amount of idle ambulances in range of demand point
i. The marginal coverage is maximal, when ki is minimal. So to determine
the maximum we take ki = 1 for all i ∈ Vj. Then the marginal coverage is
maximal for the base j for which ∑i∈Vj

di is maximal. With an upperbound
of ucov = (1− q)max

j∈W
∑

i∈Vj

di, the scaled coverage is

cov∗j =
covj

(1− q)max
j∈W

∑
i∈Vj

di
. (1)

Next, we scale the travel times. For the travel times we make the modifica-
tion

τ∗loc(a)j = 1−
τloc(a)j

max
i∈V,j∈W

τij
,

where loc(a) is the location of ambulance a. Note that we divide by the maxi-
mum travel time between a demand point and a base to scale the expression.
Next, we subtract it from one since a higher travel time is less desired than
a low travel time and we are maximizing the objective. As both travel time
and coverage are now on the same range, we solve the following problem
for ambulance a ∈ A and θ ∈ [0, 1]:

arg max
j∈W

{θ cov∗j + (1− θ) τ∗loc(a)j}.

The parameter θ is determined by a parameter search. Setting θ = 1, means
the travel time is not taken into account and the problem remains the same
as before. We continue by proposing an alternative dispatching policy.

3.2 Ambulance dispatching policy

The most commonly used dispatching policy is the closest-idle policy. With
this policy the closest idle ambulance is sent to an accident. You can imagine
that, although sending the closest ambulance is best for the emergency the
ambulance is sent to, sending another ambulance might result in a better
coverage for future emergencies. So instead of sending the closest ambu-
lance, one could also send for example the ambulance which provides the
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least marginal coverage. Of course we do not want an ambulance to arrive
late at the accident scene just because it has a smaller marginal coverage
while another ambulance could have been on time. Therefore we restrict
our decision to all ambulances which would arrive at the accident scene on
time. When there are no ambulances that would arrive on time, we send the
closest ambulance.

For each incoming accident we have to make a trade-off between future
coverage and the response time for the incoming accident. It is obvious that
for an ambulance, which is not the closest and the marginal coverage is only
slightly lower, but the response time is a lot higher, the closest ambulance
is still preferred. So we propose a method quite similar to what we have
seen in the previous section. First, we formulate the closest-idle policy. Let
A∗ ⊆ A be the set of idle ambulances. Then the formulation for the accident
at location l ∈ V is

arg min
a∈A∗

{τloc(a)l}. (2)

We alter the objective function so that the marginal coverage of ambulance
a is taken into account. To compare travel time and coverage we first scale
both expressions so they are in the same range from zero to one. Note that
the lower the marginal coverage, the more likely the ambulance is chosen.
The scaled travel time is

τ∗∗loc(a)l =
τloc(a)l

max
i∈V,j∈W

τij

(
= 1− τ∗loc(a)l

)
.

Again the marginal coverage covloc(a) of an idle ambulance a can be scaled
as in (1). We define the set A∗l to be the set of idle ambulances that is within
range of the accident at location l, so A∗l = {a ∈ A∗ : τloc(a)l ≤ T}. Then
the formulation of the new MEXCLP dispatching policy for the accident at
location l ∈ V and η ∈ [0, 1] is

arg min
a∈A∗l

{η τ∗∗loc(a)l + (1− η)cov∗loc(a)}. (3)

Note that we only use this objective (3) when there is at least one idle ambu-
lance in range of the accident (A∗l 6= ∅). When there are no idle ambulances
in range (A∗l = ∅), we choose the closest idle ambulance as in (2). We do
a parameter search for the best η. Setting η = 1, means this MEXCLP dis-
patching method is similar to the closest-idle dispatching method. In the
next section we evaluate our methods.
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4 results
In order to compare the results of our policies explained in Section 3, we
measure their performance using simulation. In our simulation model there
are three types of events: the arrival of an emergency call, the arrival of an
ambulance on scene and an ambulance becoming idle.

When an emergency call arrives, an idle ambulance is chosen and sent to the
accident. Next, the event of the arrival of the ambulance on scene is sched-
uled. When there is no idle ambulance available, the accident is put in a
first-come first-serve queue. Finally, the next accident is scheduled.

When an ambulance arrives on scene, it is decided if the patient needs to be
transported to hospital. If so, the operating ambulance is sent to a hospital
after treating the patient on scene. For simplicity, the patient is always trans-
ported to the closest hospital. Next, the event of the ambulance becoming
idle is scheduled. This event happens when the ambulances finishes service
on scene, if the patient does not need to go to hospital. If the patient needs
to go to hospital, this event is scheduled when the ambulances finishes ser-
vice at the hospital.

When an ambulance becomes idle, we first check whether there are still acci-
dents in queue. If so, the ambulance is sent to the first accident in line and
the arrival of the ambulance on scene is scheduled. If there are no more
accidents in queue, a base is chosen for the ambulance to return to. No new
events are scheduled.

4.1 The case study of RAV Utrecht

The problem instance we use to evaluate our policies is a region in the
Netherlands called Utrecht. The Netherlands is split up in twenty-four am-
bulance care regions (in Dutch: Regionale Ambulance Voorzieningen or RAV).
One of the largest is RAV Utrecht which has an area of almost 1400 square
kilometers. In RAV Utrecht there are nineteen ambulance bases and eight
hospitals2. We only focus on high priority emergency calls. Since 40% of all
calls are high priority calls, we assume 40% of the total fleet of RAV Utrecht
that consists of 46 ambulances is realistic to cover this area [6], which is 18

ambulances.

In the Netherlands governments pose restrictions on the percentage acci-
dents that are not served within fifteen minutes. Since answering the call
and assigning a vehicle takes about three minutes, we use a threshold T of
twelve minutes. That is, when an arrival of an emergency call occurs, the
call first needs to be processed which takes about three minutes, then a vehi-
cle can be dispatched and should arrive within twelve minutes. On average
9.5 accidents happen per hour. So accidents happen with an average interar-
rival time of 60

9.5 minutes, therefore we use a rate of λ = 1
6.32 for the Poisson

process.

The Dutch National Institute for Public Health and the Environment (RIVM
[5]) provided us with deterministic estimations of the driving times τij with
the siren turned on between any pair of four-digit postal codes in Utrecht.
So we let V consist of all four-digit postal codes in Utrecht. We choose the
fraction of population as demand di, since the demand is approximately

2 We make a distinction between community hospitals, academic hospitals and polyclinics, for
this case study we consider all community hospitals and academic hospitals in RAV Utrecht.
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Table 1: Characteristics of the problem instance RAV Utrecht.
Parameter Magnitude Clarification
λ 1/6.32 min Realistic for high priority emergency calls
V 217 All four-digit postal codes in Utrecht
W 19 Bases as in 2016

H 8 Hospitals as in 2016

A 18 Realistic amount of ambulances to cover high-priority demand
di Fraction of inhabitants as in 2008

τij Deterministic driving times with siren turned on as in 2008 [5]
τon scene 12 min Realistic estimate of the service time on scene
τhospital 15 min Realistic estimate of the service time in the hospital
h 0.735 Fraction of accidents that went to hospital in 2014 [6]
T 12 min Realistic value for threshold [6]

proportional with the population. Although this might not be the actual
distribution of demand (for example industrial areas have a higher demand
during working hours), the population is known with great accuracy and
gives a realistic setting. To determine whether or not a patient needs further
service in hospital, we assume the probability h ∈ [0, 1] that a patient needs
to go to a hospital is equal for each patient. For a summary of characteristics
of RAV Utrecht, see Table 1.

We simulate and evaluate five models of which an overview can be found
in Table 2. For all models we use the static MEXCLP solution to initialize
the location of the ambulances. To determine the location of an ambulance,
we use linear interpolation between the origin and the destination and the
driving time of the ambulance and determine the point in V closest to the
interpolated location. In all simulation models, we use the random number
generator by Mersenne Twister [7] to generate interarrival times for acci-
dents. Furthermore, we use the same set of seeds for the random number
generator to compare different models.

Table 2: Characteristics of the evaluated models.
Section Redeployment Policy Dispatching Policy

4.2 Static MEXCLP (benchmark) Closest-idle (benchmark)
4.2 Dynamic MEXCLP Closest-idle
4.3 Dynamic MEXCLP with travel times Closest-idle
4.4 Static MEXCLP MEXCLP dispatching
4.5 Dynamic MEXCLP MEXCLP dispatching

4.2 Static and dynamic MEXCLP redeployment

A commonly used benchmark for dynamic redeployment models is the
static MEXCLP model, which typically gives a good static policy. We com-
pare the static MEXCLP model and the dynamic MEXCLP model from
Jagtenberg et al. [1] in Table 3. The fraction of late arrivals decreases from
8.9% with the static model to 7.8% with the dynamic model. This is a signif-
icant relative decrease of 12.3% which can be achieved without extra costs
for purchasing extra ambulances or extra crew shifts. The average response
times are a little bit lower with the dynamic model compared to the static
model. This is confirmed by the cumulative distribution function as in Fig-
ure 2. The figure shows that overall, the dynamic policy has lower response
times.
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Table 3: Comparison between the static MEXCLP model and the dynamic MEXCLP
model, both policies are evaluated with 100 runs of 10.000 simulation hours
and a value of q = 0.3 is used.

Performance
Static Dynamic

Mean Std dev Mean Std dev
Fraction of late arrivals 8.94% 0.001 7.84% 0.001

Fraction of time on the road 18.40% 0.001 26.49% 0.001

Average response time 10.1 min 0.019 9.9 min 0.016

Average on-time response time 9.3 min 0.011 9.2 min 0.011

Average late response time 18.6 min 0.051 18.4 min 0.042

Figure 2: Response times for the static and dynamic MEXCLP redeployment poli-
cies, for both policies a value of q = 0.3 is used. Each policy is evaluated
with 100 runs of 10.000 simulation hours.

As can be expected, the average fraction of time an ambulance spends on the
road is a lot higher when using the dynamic MEXCLP policy; 18% and 26%
for the static and dynamic policy respectively. This is also an incentive to
the modification we presented previously in Section 3.1.3; taking the travel
time between ambulance and base into account when redeploying.

We simulated the dynamic policy for different values of the busy fraction q.
As can be seen in Table 4, we can conclude that for this problem instance
the quality of the solution is insensitive to the value of q.

Table 4: Comparing the fraction of late arrivals of the dynamic MEXCLP model for
different values of q, each policy is evaluated with 10 runs of 10.000 simula-
tion hours.

q 0.1 0.2 0.3 0.4
Mean 8.09% 7.99% 7.85% 7.84%
Std dev 0.0006 0.0008 0.0010 0.0010
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4.3 Dynamic MEXCLP redeployment with travel times

We evaluate the performance of our altered redeployment policy as de-
scribed in Section 3.1.3, therefore we perform a parameter search for the
best value of θ. For each value of θ, we check the fraction of late arrivals
and the average fraction of time that an ambulance spends on the road. The
results can be found in Figure 3. The figure shows that θ close to one results
in the lowest fraction of late arrivals. As expected, when θ decreases, the
average time on the road also decreases. If less time on the road is wanted,
one could choose to use this policy with a value of θ a little below one. This
way the fraction of late arrivals only increases negligibly while the time on
the road decreases significantly. For example, setting θ = 0.95 results in a
significant relative improvement of 7% in time on the road, while the frac-
tion of late arrivals increases with only 0.02 percentage point.

The performance of the policy was compared for different values of q, all
values gave similar results as in Figure 3. That is, for all q setting θ = 1
was best and the shape of the graphs was similar. We can conclude, that the
solution of this policy is also insensitive to the value of q.

Figure 3: Comparison between fraction of late arrivals and percentage of time spent
on the road. θ iterated from 0 to 1 with steps of 0.01, for each θ we ran the
simulation for 10 runs of 1000 simulation hours and a value of q = 0.3 was
used.

4.4 MEXCLP dispatching

To evaluate our MEXCLP dispatching policy, we use the closest-idle policy
as a benchmark. In both models we use the static MEXCLP policy for re-
deployment. To determine the best η, we perform a parameter search as
in Figure 4. These results show that by implementing the MEXCLP dis-
patching policy one can obtain a lower fraction of late arrivals compared
to the closest-idle policy. A more detailed analysis shows that η = 0.32 is
best for this problem instance with 8.1% late arrivals. As could be expected:
although the fraction of late arrivals lowers, the average response time is
higher. A comparison of the properties of both policies can be found in Ta-
ble 5. The MEXCLP dispatching policy leads to a decrease in late arrivals of
0.84 percentage point which is a significant relative decrease of 9.4%. The
average response time for on-time accidents increases from 9.3 minutes to
9.6 minutes which is a relative increase of 3.2%. This is confirmed in Figure
5.
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Table 5: Comparison between closest-idle dispatching policy and the MEXCLP dis-
patching policy with η = 0.32, both use the static redeployment policy and
are evaluated with 100 runs of 10.000 simulation hours and use a value of
q = 0.3.

Performance
Closest-idle MEXCLP

Mean Std dev Mean Std dev
Fraction of late arrivals 8.94% 0.001 8.10% 0.001

Fraction of time on the road 18.40% 0.001 19.20% 0.001

Average response time 10.1 min 0.019 10.3 min 0.018

Average on-time response time 9.3 min 0.011 9.6 min 0.011

Average late response time 18.6 min 0.051 18.7 min 0.050

Figure 4: Fraction of late arrivals for different values of η which iterated from 0 to
1 with steps of 0.05, for each η we ran the simulation for 10 runs of 1000

simulation hours and a value of q = 0.3 was used.

Figure 5: Response times for the closest-idle and MEXCLP dispatching policies, for
both policies a value of q = 0.3 is used. Each policy was evaluated for 100

runs of 10.000 simulation hours.

We check if the quality of the solution is insensitive to the busy fraction q
by simulating the model for different values of q as in Table 6. The results
show that setting q = 0.3 is a good choice. Note that the values of q between
0.1 and 0.7 are quite extreme and small deviations of q result in negligible
changes in the performance. Therefore we still conclude the quality of the
solution is insensitive to q.
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Table 6: Comparing the fraction of late arrivals of the MEXCLP dispatching model
for different values of q, each policy is evaluated with 10 runs of 10.000

simulation hours.
q 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Mean 8.32% 8.15% 8.09% 8.14% 8.27% 8.51% 8.82%
Std dev 0.0013 0.0011 0.0013 0.0009 0.0009 0.0013 0.0011

4.5 MEXCLP redeployment and MEXCLP dispatching

Finally, we combine the redeployment policy as well as the MEXCLP dis-
patching policy. Since the altered MEXCLP redeployment policy did not
improve the fraction of late arrivals, we use the (unaltered) MEXCLP rede-
ployment policy. We compare this model to the benchmark that uses the
static MEXCLP redeployment policy and the closest-idle dispatching policy.
A detailed analysis showed that in this case setting η = 0.27 for the dis-
patching policy is best. Combined our policies reduce the fraction of late
arrivals from 8.94% to 7.35% as can be seen in Table 7, which is a relative
improvement of 17.8%.

Table 7: Comparison between the benchmark model that uses the static MEXCLP re-
deployment policy and the closest-idle dispatching policy and the MEXCLP
model that uses the dynamic MEXCLP redeployment policy and the MEX-
CLP dispatching policy with η = 0.27, both are evaluated with 100 runs of
10.000 simulation hours and use a value of q = 0.3.

Performance
Benchmark MEXCLP

Mean Std dev Mean Std dev
Fraction of late arrivals 8.94% 0.001 7.35% 0.001

Fraction of time on the road 18.40% 0.001 27.28% 0.001

Average response time 10.1 min 0.019 10.3 min 0.018

Average on-time response time 9.3 min 0.011 9.6 min 0.013

Average late response time 18.6 min 0.051 18.5 min 0.039
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5 conclusion and discussion
In this thesis, we developed a real-time ambulance redeployment policy
and a dispatching policy, with the goal to minimize the fraction of late ar-
rivals. The dynamic MEXCLP redeployment policy from Jagtenberg et al.
[1] reduces the fraction of late arrivals by relatively 12.3% compared to a
benchmark for static solutions, furthermore the overall response times are
lowered. The quality of the solution is insensitive to the value of q. The re-
deployment algorithm does not take the travel time between the newly idle
ambulance and base into account, but chooses a base only according to the
coverage an extra ambulance at that base will provide. Our alteration to this
policy makes a trade-off between coverage and travel time. It does not result
in a lower fraction of late arrivals, but the time on the road can be signif-
icantly lowered with only a negligible increase in the fraction of late arrivals.

Typically the closest idle ambulance is dispatched to an accident. Our pro-
posed MEXCLP dispatching policy makes a trade-off between travel time to
the accident and the coverage an idle ambulance is providing. It reduces
the fraction of late arrivals by relatively 9.4%, but the average response
times are longer compared to the static benchmark that uses the closest-
idle policy. The increase in response times is an important downside and a
trade-off needs to be made between minimizing the objective and decreas-
ing response times. The solution is also insensitive to the value of q.

Together the unaltered redeployment policy and the MEXCLP dispatching
policy give a relative improvement of 17.8% compared to the static bench-
mark with the closest-idle policy. This result is achieved without extra costs
for crew shifts or ambulances and without extensive state information.

The improvement of performance by the dynamic redeployment policy of
Jagtenberg et al. can be obtained without any extra costs. Note that it might
be hard for staff members to give up having a home base. EMS managers
should make the trade-off between staff satisfaction and performance im-
provement. Also, the workload of staff increases since they will spend more
time on the road when the dynamic policy is implemented. For this reason,
we propose our altered dynamic MEXCLP policy which can lower the time
on the road while still improving the fraction of late arrivals.

It is interesting to consider the applicability of our policies when we relax
some of our assumptions. In practice, EMS systems may have different,
more complicated, characteristics than assumed in this thesis. First of all,
we assumed all parameters to be constant, while it might be more realistic
to have changes during the day. For example driving times can be higher
during rush hours or the demand can be higher in industrial areas during
office hours. This is usually quite hard to incorporate in a solution, but in
our algorithms you can simply change the relevant parameters over time. A
second assumption we made is that the driving times and service times are
deterministic, while it would be more realistic to consider them stochastic.
Jagtenberg et al. proposed using the expected value of driving times, but it
would require further research to check the validity of our methods.
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a pseudocode simulation program

Algorithm 2: Simulation
Input : T and instance parameters
Output : Fraction of late arrivals

1 initialize numAccidents, numOnTimeAccidents and clock to zero
2 plan first accident arrival event and add it to the eventlist
3 while clock is below T do
4 get next event E and remove it from the eventlist
5 update clock to time of E
6 if E is an accident arrival then
7 execute AccidentArrivalEvent
8 else if E is an ambulance arrival on scene then
9 execute AmbulanceArrivalEvent

10 numAccidents++
11 else if E is an ambulance becoming idle then
12 execute AmbulanceBecomingIdleEvent
13 end
14 end

Algorithm 3: Accident arrival event
Input : event, clock

1 determine location of event
2 get list L of idle ambulances at time clock
3 if L is empty then
4 add event to queue
5 else
6 find closest idle ambulance A at time clock
7 let A go to the accident scene
8 make A not idle
9 schedule ambulance arrival event of A on scene

10 end
11 schedule next accident arrival

Algorithm 4: Ambulance arrival event
Input : event E, clock, ambulance A

1 if A arrived on time at E then
2 numOnTimeAccidents++
3 end
4 if patient needs to go to hospital then
5 determine closest hospital H
6 let A go to H after it finished service on scene
7 schedule A becoming idle event at H for when A brought the

patient to hospital and finished service at the hospital
8 else
9 schedule A becoming idle event for when A finishes treating the

patient on scene
10 end
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Algorithm 5: Ambulance becoming idle event
Input : ambulance A, clock

1 if queue is empty then
2 determine base B to send A to, by the redeployment policy
3 let A go to B
4 make A idle
5 else
6 get first accident in line C and remove C from queue
7 let A go to accident C
8 schedule the ambulance arrival event of A at C
9 end
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b altered mexclp redeployment algorithm

Algorithm 6: Altered dynamic MEXCLP redeployment [1]
Data: The demand di per node i ∈ V,
base locations W ⊆ V,
busy fraction q ∈ (0, 1),
current destinations dest(a) for all a ∈ IdleAmbulances ⊆ A,
ambulance a∗ 6∈ IdleAmbulances that will become available at
location(a∗),
travel times τij between any i, j ∈ V,
time threshold T to reach an emergency call,
parameter θ ∈ [0, 1],
upperbound ucov of CoverageImprovement,
upperbound utt of the travel time from base to demand point.
Result: Destination for the ambulance that becomes idle

1 BestImprovement = 0;
2 BestLocation = NULL;
3 foreach j ∈W do
4 CoverageImprovement = 0;
5 foreach i ∈ V do
6 k = 0;
7 if τji ≤ T then
8 k++;
9 foreach a ∈ IdleAmbulances do

10 if τdest(a)i ≤ T then
11 k++;
12 end
13 end
14 CoverageImprovement + = di(1− q)qk−1;
15 end
16 end

17 Improvement = θ
CoverageImprovement

ucov
+ (1− θ)

(
1− τlocation(a∗)j

utt

)
;

18 if Improvement > BestImprovement then
19 BestLocation = j;
20 BestImprovement = Improvement;
21 end
22 end
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c data for rav utrecht

Table 8: Bases of RAV Utrecht with their four-digit postal codes.
Location of base Postal code
Abcoude 1391

Amerongen 3958

Amersfoort Centrum 3811

Amersfoort Noord 3823

Baarn 3743

Doorn 3941

Houten 3991

Maarssen 3608

Montfoort 3417

Nieuwegein 3436

Rhenen 3911

Soesterberg 3769

Utrecht (Andreaelaan) 3582

Utrecht (Vader Rijndreef) 3561

Vinkeveen 3645

Wilnis 3648

Woerden 3447

Woudenberg 3931

Zeist 3707

Table 9: Hospitals in RAV Utrecht with their four-digit postal codes.
Hospital Postal code
Diakonessenhuis Utrecht 3582

Diakonessenhuis Zeist 3707

Meander Medisch Centrum Amersfoort 3813

Meander Medisch Centrum Baarn 3743

St. Antonius Ziekenhuis Nieuwegein 3435

St. Antonius Ziekenhuis Utrecht 3543

Universitair Medisch Centrum Utrecht 3584

Zuwe Hofpoort Ziekenhuis 3447
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Table 10: All four-digit postal codes (PC) in RAV Utrecht together with their popu-
lation (Pop.) as in 2008.

PC Pop. PC Pop. PC Pop. PC Pop.
1391 7435 3525 5700 3646 805 3826 3470

1393 1590 3526 9785 3648 6545 3828 10820

1396 1330 3527 11825 3701 5700 3829 2900

1426 905 3528 10 3702 3830 3831 12815

1427 965 3531 11350 3703 5890 3832 3800

3401 12555 3532 6915 3704 9110 3833 7350

3402 9240 3533 7365 3705 9345 3834 2050

3403 2285 3534 1280 3706 5200 3835 350

3404 10140 3541 15 3707 5815 3836 135

3405 3455 3542 205 3708 5910 3901 9070

3411 8090 3543 7105 3709 320 3902 10260

3412 1110 3544 16705 3711 1460 3903 7125

3413 320 3545 135 3712 2035 3904 13510

3415 1200 3546 215 3721 7620 3905 14315

3417 9705 3551 6940 3722 4465 3906 7595

3421 7875 3552 6220 3723 9935 3907 165

3425 850 3553 7180 3731 5955 3911 13760

3431 7240 3554 7355 3732 4510 3912 660

3432 5795 3555 7705 3734 3940 3921 4065

3433 3490 3561 8755 3735 1730 3922 365

3434 8520 3562 6670 3737 1890 3927 4600

3435 6095 3563 6230 3738 4975 3931 11895

3436 6530 3564 9530 3739 1445 3941 10050

3437 13665 3565 65 3741 8885 3945 3110

3438 9260 3566 335 3742 9660 3947 2060

3439 300 3571 9590 3743 4410 3951 4650

3441 1925 3572 11110 3744 1080 3953 1310

3442 3930 3573 3205 3749 285 3956 7555

3443 7035 3581 9630 3751 6095 3958 5475

3444 235 3582 8505 3752 13035 3959 1355

3445 3985 3583 5885 3754 865 3961 9640

3446 7725 3584 5440 3755 8835 3962 8350

3447 15 3585 180 3761 4905 3971 7915

3448 9565 3601 6980 3762 8405 3972 10500

3449 385 3602 3610 3763 2565 3981 6635

3451 9245 3603 2365 3764 5190 3984 5460

3452 9280 3604 1510 3765 5040 3985 2360

3453 9255 3605 5275 3766 7460 3989 10

3454 11680 3606 30 3768 5805 3991 17125

3455 420 3607 14125 3769 6300 3992 6665

3461 3785 3608 3370 3791 2435 3993 5390

3464 395 3611 545 3811 5920 3994 13620

3467 720 3612 1190 3812 10780 3995 1560

3471 3810 3615 1220 3813 15450 3997 630

3474 2345 3621 10610 3814 5830 3998 1935

3481 8370 3626 730 3815 10455 3999 690

3511 8535 3628 3265 3816 11185 4121 1240

3512 7820 3631 455 3817 11885 4122 810

3513 5315 3632 4200 3818 10120 4124 1480

3514 7360 3633 1745 3819 430 4131 4220

3515 4765 3634 515 3821 195 4132 4655

3521 5360 3641 11625 3822 8555 4133 7235

3522 8530 3642 3410 3823 11850

3523 8770 3643 1665 3824 15275

3524 11600 3645 8465 3825 9595
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