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Abstract

For emergency services it is crucial to have an ambulance nearby and
ready for almost all accidents. The scheduling this requires is what this
thesis is about. There have been many approaches to scheduling ambu-
lances efficiently based on coverage concepts. This thesis aims to modify
some previous approaches to include uncertainty in travel time and to be
more realistic.
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1 Introduction

In the Netherlands responsibility for ambulance care is divided between a num-
ber of regions which cooperate but are in principle independent of each other,
these regions are called Regionale Ambulance Voorzieningen (RAVs). In these
RAVs ambulances need to be scheduled so that ambulances have a good starting
point to start their next journey to a new accident after they have finished with
their presently assigned accident.

There are different types of accidents that have different priorities. The
highest priority accident is A1, for which the maximum allowed reaction time
is 15 minutes. This will be the type of accidents this thesis is interested in.
There are however two other types of accidents namely A2 and B, which are
less urgent than A1. It is important to note that 15 minutes is not the maximum
driving time, it is the maximum time between the call and the arrival of the
ambulance. This means the driving time can be at most about 12 minutes
because approximately 3 minutes are spent taking and processing the call to
the emergency service .

2 Problem description

The main problem is to schedule ambulances efficiently, specifically ambulances
that need to be on the scene of an accident in little time, preferably in 15
minutes from the time that the call came in. The ambulances start at a base
location, drive to an accident, and then choose to either bring the patient(s) to
the hospital or not. After they are done with this task, the ambulances need to
be assigned to their next base location. This problem is hard in the sense that
time is continuous; this means that there is an uncountable number of feasible
solutions. Furthermore it matters how many discrete locations are chosen to
represent the real world and how these are chosen from a very large number of
possible locations. The problem that we are facing is that ambulances need to
react quickly to events, but then have to decide where to go from there, without
knowing what will happen next. Another issue is that scheduling ambulances
preferably needs to happen in real time, so that the emergency services can
react to developing situations. This means that the solution method we choose
for this problem needs to not only find a good solution, it also has to do it in
manageable time.

3 Methodology

Our general approach to solve this problem is to formulate a policy to send an
ambulance to a base location after it has become idle. We then evaluate our
policy by calculating a service level. We calculate this service level by running
a Discrete Event Simulation (DES) where we register how many ambulances
arrive too late at an accident as a fraction of the total number of accidents.
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3.1 Mathematical formulation of the problem

To model this problem mathematically, we define A as the set of ambulances,
and V as the set of the locations where demand for ambulances can occur. Let
W ⊆ V be the set of base locations and let H ⊆ V be the set of hospitals.
Let di ∈ R≥0 be the fraction of the total demand that occurs at i ∈ V . Note
that this means that the demand area distribution is represented as a limited
number of discrete points. An ambulance is idle if it returns to a base location
or is already at one. Furthermore, an ambulance can only be sent to an accident
when it is idle. If and when an accident occurs, we require the idle ambulance
that is closest in terms of time to respond to the accident. Note that accidents
that occur when no ambulances are idle are put in a first-come first-serve queue.
The accidents in the queue will have an ambulance assigned to them as soon
as an ambulance is available. Location travel times tij ∈ R≥0, i, j ∈ V are
deterministic. When an ambulance arrives at the scene of the accident it is
determined how long treatment at the accident taccident ∈ R≥0 will last. After
this the need for transportation of the patient to a hospital is determined. When
this decision has been made, the ambulance takes the patient to the nearest
hospital and waits at the hospital for a certain time thospital ∈ R≥0. Given
this, we minimize the number of accidents that are not reached before a certain
threshold time T ∈ R≥0.

3.2 The MEXCLP model

The Maximum Expected Coverage Location Problem (MEXCLP) is a Mixed
Integer Problem (MIP) and models how a number of facilities at a number of
locations can cover a certain area. We can use this to model our ambulances,
their bases and the accidents as is done in [11]. However, the MEXCLP for-
mulation does not incorporate continuous time, so the optimal solution of this
problem will only be used as a benchmark for other methods. Nevertheless it
is a valuable resource in that capacity. There have been numerous variations
of this problem with notable examples being [2, 14, 9]. There have also been
various definitions of the coverage concept [4, 16, 15, 3]. We use the following
formulation as our main static model which is similar to the formulation in [4]
and is the same formulation used in [11]:
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max
∑
i∈V

p∑
k=1

di(1− q)qk−1yik

∑
j∈W

xj ≥
p∑

k=1

yik, i ∈ V,

∑
j∈W

xj ≤ |A|, i ∈ V,

xj ∈ N, j ∈W,
yik ∈ [0, 1], j ∈W,k = 1, . . . , p.

With q ∈ [0, 1] being a constant busy fraction, meaning the proportion of
time an ambulance is busy. The variable yik ∈ B is one if point i is in range
of at least k vehicles and zero otherwise. The variable xj ∈ N is the number of
vehicles that are at base j. Notice that this model assumes that if an ambulance
covers a demand location it either covers it or it does not: there is no partial
coverage.

3.3 The Dynamic MEXCLP model

Our other model for the assignment problem is dynamic, but uses the same
coverage concept as MEXCLP. A solution is found for this model every time
an ambulance becomes idle. This solution is the best base location for that
ambulance to go to. It can be considered as a MEXCLP where we ignore
all busy ambulances and fix all already idle ambulances in their place. There
are also other approaches to modeling of this problem, namely Approximate
Dynamic Programming (ADP) models such as in [12]. However these lead to
drivers not knowing why they should move. Knowing that is one of the benefits
of the Dynamic MEXCLP model. Other alternatives are tabu search algorithms
as used in [6], which could be used in combination with some other methods,
but are not used by us because they are out of the scope of this thesis. We use
Algorithm 1 which is the same algorithm as in [11] to determine the best base
to station an ambulance using Dynamic MEXCLP.

The algorithm we use to solve the Dynamic MEXCLP is a somewhat brute
force based algorithm, but it is nevertheless fast enough to run every time an
ambulance becomes idle. There are other methods possible in this framework
namely lookup tables [1] where the problem is solved for many different states
so that when an answer is required, all that is needed is looking up the answer.
The drawback however is that for our problem there are many states and exact
optima would be hard to find, so that it will be difficult to calculate all the
answers needed within a reasonable time.
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Algorithm 1 Dynamic MEXCLP

1: function Dynamic MEXCLP(ambulances, eventlist, nextevent, instance)
2: initialize BestImprovement, BestLocation
3: check which ambulances are in idleambulances
4: for j ∈W do
5: CoverageImprovement=0
6: for i ∈ V do
7: k=0
8: if Traveltimeji ≤ maxresponsetime then
9: k=k+1

10: for a ∈ idleambulances do
11: if Traveltimedest(a)i ≤ maxresponsetime then
12: k=k+1
13: end if
14: end for
15: CoverageImprovement+ = di(1− q)qk−1
16: end if
17: end for
18: if CoverageImprovement > BestImprovement then
19: BestLocation=j
20: BestImprovement=CoverageImprovement
21: end if
22: end for
23: return BestLocation
24: end function
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3.4 The simulation model

We use a simulation model to evaluate our policies. The simulation model
as previously mentioned is a DES, which means that the time is only updated
when an event happens. This simulation is very similar to the simulation in [11].
There are four types of events. Firstly, there is an event for a new accident.
Secondly, there is an event for an ambulance arriving at an accident. Thirdly,
there is an event for an ambulance arriving at a hospital. Lastly, there is an
event for making an ambulance idle and send it to its base location. After each
event occurs it is checked if one of the ambulances is idle and if there is an
accident that has no ambulance assigned to it. If this is the case an ambulance
is dispatched to the first accident in the queue. These checks are not always
necessary but does not take a long time and avoids errors. Pseudo code for the
main simulation is given in Algorithm 2 and some of the secondary functions
are given in Algorithms 5 to 9 which can be found in the algorithms appendix .

Algorithm 2 Main simulation algorithm

1: procedure Main simulation(a complete instance)
2: initialize ambulances, eventlist, accidents, queue,
3: latearrivals, arrivals, idleambulances=true
4: plan first accident
5: while t ≤ maximumrunningtime do
6: get nextevent
7: if nextevent is of type new accident then
8: run generate a new accident()

9: update state of simulation
10: else if nextevent is of type arrival of an ambulance at an accident

then
11: run arrival of an ambulance at an accident()

12: update state of simulation
13: else if nextevent is of type arrival of an ambulance at a hospital

then
14: run arrival of an ambulance at a hospital()

15: update state of simulation
16: else if nextevent is of type make ambulance idle then
17: run make ambulance idle()

18: update state of simulation (idleambulances =true)
19: end if
20: if size of queue ≥ 1 AND idleambulances =true then
21: run dispatch ambulances()

22: update state of simulation
23: end if
24: set idleambulances to false if appropriate
25: end while
26: end procedure
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Our simulation works by having an outer loop where time and which event
is next are handled and two inner loops that handle dispatching ambulances
and events, of which there are four types. The outer-loop is a while loop which
regulates the inner-loops and makes sure they happen at the right time and in
the right order. The first inner loop is an if-loop that handles all events namely:

• Firstly, there is the event to make a new accident (Algorithm 5). This
event makes a new accident and stores this in the queue. It then plans
the next accident.

• Secondly, there is the event to make an ambulance arrive at an accident
(Algorithm 6). This event updates the eventlist, queue and ambulances.
Then it determines if this was a late arrival or if the arrival was on time.
After that the algorithm determines if the patient should be taken to the
hospital or not and then makes an event according to its decision.

• Thirdly, an event for ambulances that arrive at the hospital(Algorithm 7)
is used. This event plans a new event to make the ambulance idle.

• Lastly, Algorithm 8 is an event to make ambulances idle, it runs either
Dynamic MEXCLP or gets the base location of this ambulance and sends
it to the selected base, it of course also makes the ambulance idle. It
should be noted that MEXCLP is only run once at the beginning of the
simulation. In this run each ambulance gets assigned a home base that
it returns to every time it becomes idle. However it is possible to have
a simulation where MEXCLP (with some adjustments) is run every time
an ambulance becomes idle, this is however very time consuming and very
similar to running Dynamic MEXCLP if one does not want to move every
idle ambulance.

The last part of the simulation is the part where first it is determined, if there
are accidents in the queue and if there are idle ambulances. If these conditions
are true it then runs an algorithm, Algorithm 9, that sends the closest idle
ambulance to the accident that happened earliest.

The way we used to calculate distances in algorithm 9 for ambulances that
are between bases is not completely realistic, however we have no data regarding
these travel times, and had to make an approximation.

We start by calculating the Euclidean distance between the gps-coordinates
of the relevant areas. Then we calculate how many percent of the time that is
needed to travel from the origin to the current destination has past. We deter-
mined the coordinates of the ambulance as if it was traveling in a straight line.
After this we calculate the distance between the ambulance and the accident.
Lastly, we divide this last distance by the distance between the current desti-
nation and the accident to get the relative distance and then multiply it by the
time it takes to get from the current destination to the accident, which gives us
its new travel time. This last calculation is shown in the following formula:

ttravel =

(
dloc
ddest

)
(tdest). (1)
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With ttravel being the travel time between the current location of the ambu-
lance and the accident, dloc being the distance between the current location and
the accident, ddest being the distance between the current destination and the
accident, and tdest being the time that is needed to travel between the current
destination and the accident.

This way of calculating the travel time assumes Euclidean space. This as-
sumption is false, but it is realistic enough for large distances. For small dis-
tances the inaccuracy is large compared to the distance but in total terms is
still small.

3.5 Modification to the MEXCLP coverage concept

A major problem with our assumptions is that in real life situations travel times,
are not deterministic but stochastic. Another problem is that our definition of
demand locations is discrete instead of continuous. This means that not all
accidents that occur in the same postal code actually have the same distance to
the same base location. Both these problems can be solved to a certain degree
by introducing partial coverage, meaning that instead of an ambulance covering
a location in full or not at all, it can cover that location to a certain degree.
The concept being that some parts of the location can be reached in time, but
others cannot. Partial coverage can also simulate the chance that a location can
be reached in time for the patient to have a good outcome.

We do this by adding a random number to the average travel times. The
random number that is added will be normally distributed with mean zero and
standard deviation σconstant +σvariable. We do not have any reliable data about
the distribution of this number, but it is reasonable to assume that there is a
constant part to the standard deviation caused by the imprecision of where an
accident happened in a neighborhood say σconstant, and a part that is dependent
on the mean travel time say σvariable that represents differences in travel times
(caused by open bridges for example). In most cases σconstant will be relatively
small, and is less significant but still relevant. Unfortunately this can result
in negative travel times. To solve this we round negative numbers up to zero,
this means that for very small average travel times the average travel time will
significantly differ from their mean. However because the constant variance is
small this should not make too much difference.

Of course this means that yik is no longer well defined since all ambulances
now cover all bases with a certain chance. This gives rather large problems for
the MEXCLP formulation because we could not find a new objective function
that is linear. However for the Dynamic MEXCLP we will provide a new objec-
tive function. It is interesting to note that this can also be used to represent the
mortality rate instead of the fraction of late arrivals as is done in [5]. After our
second modification we introduce a objective function for the whole modified
model which includes both modifications. Because of this second modification
we do not use the formulation in [14].
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3.6 Modification to the busy fraction concept

Another possible limitation to the current model is that it uses the same busy
fraction for all bases. This of course is not necessarily correct, therefore we want
to look at how the fraction of time that ambulances are busy is represented in our
model. We identified two ways to approach this problem. First, there is a data
based method that looks at historical busy fractions and applies this data to the
current situation; with this method busy fractions for a certain base location
at a given time of day are always the same. Second, there is a moving average
approach, which updates predictions of future busy fractions using the data of
a period in the past, for example the last few hours, by calculating a moving
average. We choose for a predetermined busy fraction because the calculation of
busy fractions in real time tends to be biased. It is biased in the sense that the
busy fractions react to random fluctuations in how many accidents there are in
a certain region, which does not have any predictive value. A way to solve this
problem is to take the moving average over a long period, however this is very
similar to using predetermined busy fractions. This means that for our research
predetermined busy fractions are sufficient, however if one is in the position that
there is no reliable way of predetermining busy fractions one should use moving
averages.

3.7 The modified model

Before the new objective function is presented we need to introduce some nota-
tion. Particularly let j ∈ Wi be ordered so that j = 1 is the base in Wi which
has the highest chance of serving i well, and j = 2 is the base with the second
highest chance and so forth. Let pi,j be the chance that an ambulance from
base j ∈ Wi serves a demand location i ∈ V adequately. Let kj be the number
of ambulances at base j ∈ Wi and let qj be the busy fraction of base j ∈ Wi.
Then the expected coverage for one demand point i is:

∑
j∈Wi

dipi,j(1− (qj)
kj )

m<j∏
m=1

(qm)km (2)

This means the expected coverage for the entire model can be denoted with:

∑
i∈V

∑
j∈Wi

dipi,j(1− (qj)
kj )

m<j∏
m=1

(qm)km (3)

While we do not use it, it might be useful to give the restrictions that complete
this model which are:∑

j∈W
kj ≤ |A|,

kj ∈ N, j ∈W.
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It should be noted that this modification is, although independently developed,
very similar to what is done in [8] and is actually a special case of the extended
model presented in this paper, if all bases are open. It is also mathematically
identical to the model in [10] with slightly different interpretations. The follow-
ing dynamic version of this model can therefore be considered to be a dynamic
version of that model as well. Our method for solving our modified model is
very similar to what was done for the Dynamic MEXCLP in the sense that it
also solves the problem by calculating all possibilities and selects the best. This
program does need more calculations and so one possible drawback is that it
might for some data cases not be able to run in real time.
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Algorithm 3 Adjusted Dynamic MEXCLP

1: function Adjusted Dynamic MEXCLP(ambulances, eventlist, queue,
accidents, instance)

2: initialize best location (BL)
3: initialize current coverage (CC);
4: run Adjusted Dynamic MEXCLP current coverage()

5: initialize coverage improvement (CI)
6: for z ∈W do
7: initialize adjusted coverage (AC)
8: for i ∈ V do
9: initialize specific coverage (SC);

10: initialize the multiplication busy fractions (MQ)
11: get Wi

12: for j ∈Wi do
13: get number of idle ambulances at base j (NOIA);
14: if ( thenz = j)
15: NOIA = NOIA+ 1
16: end if
17: get the busy fraction for this base (BF )
18: initialize base specific cover (BSC)
19: get chance of sufficient service for this j and i (COSS)
20: if j is the highest priority base for i then
21: BSC = COSS(1−BFNOIA)
22: MQ = BFNOIA

23: else
24: BSC = COSS(1−BFNOIA) ∗MQ
25: MQ = MQ(BFNOIA)
26: end if
27: SC = SC +BSC
28: end for
29: AC = AC + SC
30: end for
31: if CC −AC > CI then
32: CI = CC −AC
33: BL = z
34: end if
35: end for
36: return BL
37: end function
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Algorithm 4 Adjusted Dynamic MEXCLP current coverage

1: function Adjusted Dynamic MEXCLP current cover-
age(ambulances, eventlist, queue, accidents, instance)

2: initialize current coverage (CC);
3: for i ∈ V do
4: initialize specific coverage (SC);
5: initialize the multiplication busy fractions (MQ)
6: get Wi

7: for j ∈Wi do
8: get number of idle ambulances at base j (NOIA);
9: get the busy fraction for this base (BF )

10: initialize base specific cover (BSC)
11: get chance of sufficient service for this j and i (COSS)
12: if j is the highest priority base for i then
13: BSC = COSS(1−BFNOIA)
14: MQ = BFNOIA

15: else
16: BSC = COSS(1−BFNOIA)MQ
17: MQ = MQ(BFNOIA)
18: end if
19: SC = SC +BSC
20: end for
21: CC = CC + SC
22: end for
23: return current coverage
24: end function

4 Results

4.1 Data

The data we gained from RIVM[7] consists of the average driving time of ambu-
lance between locations (represented as 4-digit postal code areas) in 2008, the
population of each postal code area (used as an indication for demand in that
postal code), and the gps coordinates for all postal code areas used. We also
have all the possible base locations for the ambulances. In addition we need the
fraction of accidents that require ambulance transport, we got this information
from [13], unfortunately this is not for the same year as our other data but it
can be assumed to be reasonably constant at around 70%. Lastly we also need
to know the location of all hospitals. This was slightly harder since this changes
over time. We also see that our data set does differ from the data set in [11]
because our case has less base locations but more hospitals, than that case. We
use the arrival rate used in [11] which is 9.5 accidents per hour on average, and
inter arrival rates which are exponentially distributed with λ = 0.0026388. We
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use a constant busy fraction of 0.3. We use a hospitalization chance of 0.701.
We use a Weibull distribution with α = 1.5 and λ = 0.0009259 to generate hos-
pital treatment times. We use an exponential distribution with λ = 0.0013888
to generate treatment times at the accident. There are 19 ambulances in our
model. We have 16 hospitals, 11 base locations and 217 demand locations, of
which the hospitals and base locations are given in the data appendix.

4.2 Results from MEXCLP and Dynamic MEXCLP

Our first results concern our base models, MEXCLP and Dynamic MEXCLP.
We summarize the results of our simulations using these two models in the
next figure. To get these results we ran both algorithms twenty times. We
used the IBM CPLEX Optimizer to solve the MEXCLP and Algorithm 1 to
solve Dynamic MEXCLP. Figure 1 gives the mean fraction of late arrivals (as
a red line) and the spread of the fraction of late arrivals. These results where
obtained with the use of 20 seeds. The Random Number Generator (RNG) used
is a Mersenne Twister RNG.
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Figure 1: Fraction of arrivals that are late for Dynamic MEXCLP and MEXCLP
respectively in a simulation without uncertainty in the driving times and without
varying busy fractions.
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The mean fraction of late arrivals is 0.0309 for Dynamic MEXCLP and
0.0544 for MEXCLP. The standard deviation is 0.0041 for Dynamic MEXCLP
and 0.0064 for MEXCLP. In all cases Dynamic MEXCLP performed better,
and it is clear that Dynamic MEXCLP performs better overall because of the
large differences between the models results. We can see that the results are
somewhat similar to the results in [11], even though the difference between
Dynamic MEXCLP and MEXCLP is relatively large and service levels are higher
(or the fraction of arrivals that are too late is lower). This could have various
reasons, but is probably due to the different data cases. These results are
however in line with the performance of this RAV which is given in [13], in this
report the fraction of late arrivals for RAV Utrecht is given as 4.6% which is
similar to our results.

4.3 Results from the modified model

To evaluate our modified model we use the Dynamic MEXCLP as a benchmark.
We have several cases, firstly we have the default case were there is only one
value for the busy fraction and no uncertainty in the travel times. Secondly,
there is a case where there is uncertainty in the travel times in the model but
one value for the busy fraction. Thirdly, there is a case with no uncertainty in
the travel times and different busy fractions. Lastly there is a case where there
is uncertainty in the travel times and different busy fractions. We only give
the results for the first and the last case to show the similarities between the
Dynamic MEXCLP and the modified model in a situation for which both should
work approximately the same, and the improvements that can be made by the
modified model. The other cases can be found in the results appendix. It should
be noted that Dynamic MEXCLP does not incorporate varying busy fractions,
and so when an instance has varying busy fractions, Dynamic MEXCLP uses
the mean of the varying busy fractions. We will test the significance of the
difference between each pair of results using non parametric tests. Using the
fact that the random generators used have the same seeds we can do a one-sided
paired sign test to test if one model has a significantly higher median than the
other model. It is also very useful that this test makes very little assumptions,
and does not assume symmetry since symmetry in this case would probably
not hold. We will report the null hypothesis and the alternative hypothesis, the
way we calculated the end results and finally the chance that the null hypothesis
holds. All tests in the following sections will be one-sided paired sign tests.

The random travel times are generated by using a mersenne twister RNG.
The results in Figure 2 and 3 are generated by setting σconstant to 30 seconds

and a σvariable of 15% of the mean travel time. The busy fractions we used are
generated by running the Dynamic MEXCLP with a constant busy fraction and
then calculating the averages for each base location. The used busy fractions are
reported in full in the data appendix. The running time of the modified model
was somewhat longer but still within acceptable ranges, since one execution
of the modified algorithm took less than 2 seconds. In each case we ran both
algorithms 20 times.
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Figure 2: Fraction of arrivals that are late for Dynamic MEXCLP and the
modified model respectively in a simulation without uncertainty in the driving
times and without varying busy fractions.

As can be seen in Figure 2, the modified model performs similarly to Dy-
namic MEXCLP if the busy fraction is not entirely correct and there is no
uncertainty in driving times. The mean fraction of late arrivals is 0.0309 for
Dynamic MEXCLP and 0.0320 for the modified model. The standard deviation
is 0.0041 for Dynamic MEXCLP and 0.0046 for the modified model. Dynamic
MEXCLP had a lower fraction of too late arrivals in 12 out of 20 cases. The
H0 is that the modified model has a lower or equal median fraction of arrivals
that are late than Dynamic MEXCLP. The Ha is that the modified model has
a higher median fraction of arrivals that are late than Dynamic MEXCLP. We
test with p < 0.05 significance. We calculate the chance of this happening un-
der H0 by calculating the CDF of the binomial distribution with 20 trials and
8 successes and a success chance of 50%. This gives a chance of p = 0.2517 and
we do not reject H0. This means that Dynamic MEXCLP does not perform
significantly better than the modified model. This is not surprising since the
modified model is in essence an extended version of the Dynamic MEXCLP
model.
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Figure 3: Fraction of arrivals that are late for Dynamic MEXCLP and the
modified model respectively in a simulation with uncertainty in the driving
times and with varying busy fractions.

In Figure 3 we can see that the modified model performs better than the
original in a simulation with uncertainty in the driving times and with data
about the busy fractions of different locations. The mean fraction of late arrivals
was 0.0359 for the modified method and 0.0404 for Dynamic MEXCLP. The
standard deviations were 0.0042 and 0.0046 respectively. The modified model
had lower fractions of late arrivals in 16 out of 20 simulations. The H0 is that
Dynamic MEXCLP has a lower or equal median fraction of arrivals that are
late than the modified model. The Ha is that Dynamic MEXCLP has a higher
median fraction of arrivals that are late than the modified model. We test with
p < 0.05 significance. We calculate the chance of this happening under H0 by
calculating the CDF of the binomial distribution with 20 trials and 4 successes
and a success chance of 50%. This gives a chance of p = 0.0059 and we reject
H0. This means that the modified model does perform significantly better than
Dynamic MEXCLP.

The fact that the improvement is not more significant is caused by various
reasons, but mostly because these busy fractions are based on the Dynamic
MEXCLP outcomes, and are thus more accurate for that method than for the
modified method.
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4.4 Sensitivity analysis

We also wanted to investigate how the Modified Dynamic MEXCLP and Dy-
namic MEXCLP react to small changes in parameters especially in the uncer-
tainty in driving times, but also in busy fractions. We are most interested in
the modified model, but since we expect that performance will change we will
compare it to Dynamic MEXCLP to see how both models react. Our first vari-
ation is a simulation with larger variance in both ways namely a σconstant of 40
seconds and a σvariable of 20% of the mean travel time.
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Figure 4: Fraction of arrivals that are late for Dynamic MEXCLP and MEXCLP
respectively in a simulation with extra uncertainty in the driving times and with
varying busy fractions.

In Figure 4 we can see that the modified model performs much better than
Dynamic MEXCLP with high uncertainty in driving times and varying busy
fractions. The mean fraction of late arrivals was 0.0418 for the modified method
and 0.0492 for Dynamic MEXCLP. The standard deviations were 0.0041 and
0.0046 respectively. The modified model had lower fractions of late arrivals in
19 out of 20 simulations. The H0 is that Dynamic MEXCLP has a lower or
equal median fraction of arrivals that are late than the modified model. The
Ha is that Dynamic MEXCLP has a higher median fraction of arrivals that are
late than the modified model. We test with p < 0.05 significance. We calculate
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the chance of this happening under H0 by calculating the CDF of the binomial
distribution with 20 trials and 1 success and a success chance of 50%. This gives
a chance of p = 0.0000 and we reject H0. This means that the modified model
does perform significantly better than Dynamic MEXCLP.

Our second variation is a simulation with smaller variance in both ways namely
a σconstant of 20 seconds and a σvariable of 10% of the mean travel time.
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Figure 5: Fraction of arrivals that are late for Dynamic MEXCLP and MEXCLP
respectively in a simulation with less uncertainty in the driving times and with
varying busy fractions.

In Figure 5 we can see that the modified model performs only slightly better
than Dynamic MEXCLP with low uncertainty in driving times and varying busy
fractions. The mean fraction of late arrivals was 0.0322 for the modified method
and 0.0353 for Dynamic MEXCLP. The standard deviations were 0.0033 and
0.0048 respectively. The modified model had lower fractions of late arrivals in
14 out of 20 simulations. The H0 is that Dynamic MEXCLP has a lower or
equal median fraction of arrivals that are late than the modified model. The
Ha is that Dynamic MEXCLP has a higher median fraction of arrivals that are
late than the modified model. We test with p < 0.05 significance. We calculate
the chance of this happening under H0 by calculating the CDF of the binomial
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distribution with 20 trials and 6 successes and a success chance of 50%. This
gives a chance of p = 0.0577 and we do not reject H0. This means that the
modified model does not perform significantly better than Dynamic MEXCLP.
We can see that the modified model performs worse with more uncertainty in
driving times but in relation to Dynamic MEXCLP it does perform better. This
is what we would expect since the modified model incorporates this uncertainty,
but still suffers from it, while Dynamic MEXCLP does not incorporate it at all.

Besides the influence of uncertainty on performance we also wanted to inves-
tigate the influence of higher and lower busy fractions. These were generated
by respectively adding 0.1 to or subtracting 0.1 from all busy fractions and
rounding when this results in a negative number or a number above 1.

Modified Dynamic MEXCLP Dynamic MEXCLP

0.028

0.03

0.032

0.034

0.036

0.038

0.04

0.042

0.044

0.046

F
ra

c
ti
o
n
 o

f 
a
rr

iv
a
ls

 t
h
a
t 
a
re

 l
a
te

.

Figure 6: Fraction of arrivals that are late for Dynamic MEXCLP and MEXCLP
respectively in a simulation with uncertainty in the driving times and with high
varying busy fractions.

In Figure 6 we can see that the modified model does perform slightly better
than Dynamic MEXCLP with uncertainty in driving times and high varying
busy fractions. The mean fraction of late arrivals was 0.0364 for the modified
method and 0.0401 for Dynamic MEXCLP. The standard deviations were 0.0042
and 0.0042 respectively. The modified model had lower fractions of late arrivals
in 15 out of 20 simulations. The H0 is that Dynamic MEXCLP has a lower or
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equal median fraction of arrivals that are late than the modified model. The
Ha is that Dynamic MEXCLP has a higher median fraction of arrivals that are
late than the modified model. We test with p < 0.05 significance. We calculate
the chance of this happening under H0 by calculating the CDF of the binomial
distribution with 20 trials and 5 successes and a success chance of 50%. This
gives a chance of p = 0.0207 and we reject H0. This means that the modified
model does perform significantly better than Dynamic MEXCLP.
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Figure 7: Fraction of arrivals that are late for Dynamic MEXCLP and MEXCLP
respectively in a simulation with uncertainty in the driving times and with low
varying busy fractions.

In Figure 7 we can see that the modified model performs better than Dy-
namic MEXCLP with uncertainty in driving times and low varying busy frac-
tions. The mean fraction of late arrivals was 0.0359 for the modified method
and 0.0412 for Dynamic MEXCLP. The standard deviations were 0.0040 and
0.0052 respectively. The modified model had lower fractions of late arrivals in
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16 out of 20 simulations. The H0 is that Dynamic MEXCLP has a lower or
equal median fraction of arrivals that are late than the modified model. The
Ha is that Dynamic MEXCLP has a higher median fraction of arrivals that are
late than the modified model. We test with p < 0.05 significance. We calculate
the chance of this happening under H0 by calculating the CDF of the binomial
distribution with 20 trials and 4 success and a success chance of 50%. This gives
a chance of p = 0.0059 and we reject H0. This means that the modified model
does perform significantly better than Dynamic MEXCLP.

Note that both results are very similar to the original results. This was ex-
pected for Dynamic MEXCLP since in [11] there was established that Dynamic
MEXCLP is relatively invariant with regards to the precise busy fraction. The
modified model also seems to be relatively invariant with regards to the precise
busy fractions.

5 Discussion and conclusion

We want to discuss some limitations and benefits to the methods and concepts
in this thesis, and offer some suggestions to modify the models so that these
problems are less severe. Then we will summarize our findings and conclude the
thesis.

5.1 Discussion

There are various limitations to the algorithms presented in this thesis. The first
limitation is that acquiring a reliable busy fraction is very hard, and that busy
fractions should actually depend on how many ambulances there are at each
base, and thus on the policy up until that point. Another limitation is that
the current model only includes currently idle ambulances, while not taking
into account the ambulances that are currently busy but could become idle in
the near future. This omission has various drawbacks; it can cause sending
ambulances from neighborhood to neighborhood without any necessity to do so
and can be confusing for the staff. The last major limitation to these models is
that these models do not incorporate that there are mass accidents, for example
a large fire or pile-up car crash where tens or even hundreds of people are hurt
at the same time. These events are very unlikely to occur in the simulation but
they do occur in real life with effects that are not modeled, limiting the realism
of these results.

The main strong points of the methods and models that are presented in this
thesis, are that they are transparent and that they are able to run in real time
in real situations. These benefits are preserved for the modified model while
performance was enhanced.

We would also like to suggest some possible extensions that could be included
into new research.
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One possible modification addresses that the current algorithm does not in-
clude the information of the currently busy ambulances. To provide better real
coverage, a system that uses information regarding the time the ambulances
are dispatched and the spots they are dispatched to is probably useful. That
information will enable the model to predict where these ambulances will be
when they become idle and the moment when they become idle, thus enabling
the algorithm to have a better estimate of future coverage.

A possible improvement is that busy fractions are calculated for a number of
available ambulances at a base location, so that busy fractions actually vary
depending on how many ambulances are present at a certain location. This
would allow more realistic busy fractions and thus would probably give better
results.

A possible improvement that could be made on the running time is restrict-
ing ambulances to only accept jobs that are within a certain distance of the
base they are currently based at, since moving outside of that region takes so
long that it is never (or almost never) worth it.

5.2 Conclusion

We examined the algorithm in [11] and have found that it indeed generated
higher service levels than MEXCLP. We then introduced modifications to in-
corporate uncertainty in travel times and different busy fractions between bases
to this algorithm. Finally we analyzed the results and found that the modi-
fied model does perform significantly better with a decrease of arrivals that are
too late of 11.1% on average. This occurs if there is uncertainty in the driving
times and if there is knowledge of how busy bases are, but not in cases without
both these characteristics. We also established that both models are relatively
invariant for changes in busy fractions but not for chances in how large the
uncertainty is. Finally we noted some weaknesses and strengths in the models.
The weaknesses are mainly that it can be very hard to determine realistic busy
fractions while the main strength of our modified model is that performs better
and runs fast enough to be dynamically used in real situations.
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A Algorithms

Algorithm 5 Generate a new accident

1: function generate a newaccident(ambulances, eventlist, nextevent, in-
stance, typeofalghorithm)

2: initialize new accident Alpha
3: according to the demand assign location to Alpha
4: generate time for Alpha
5: generate event Aleph of type ”new accident”
6: add Aleph to eventlist
7: add new Alpha to accidents
8: add Alpha to queue
9: delete this event from eventlist

10: return queue, accidents, eventlist
11: end function

Algorithm 6 Arrival of an ambulance at an accident

1: function arrival of an ambulance at an accident(ambulances,
eventlist, nextevent, instance, typeofalgorithm)

2: arrivals=arrivals+1
3: if currenttime-accidenttime > maxresponsetime then
4: latearrivals=latearrivals+1
5: end if
6: delete relevant accident from accidents
7: delete this event from eventlist
8: decide if patient should be hospitalized
9: if hospitalized=true then

10: select closest hospital
11: calculate travel time to that hospital
12: determine service time at accident
13: add service time to travel time to get new arrival time
14: adjust ambulance to new hospital and new arrival time
15: make new event Aleph of type arrival at hospital
16: add Aleph to eventlist
17: else
18: determine service time at accident
19: adjust ambulance to new service time
20: make new event Aleph of type make ambulance idle
21: add Aleph to eventlist
22: end if
23: return accidents, eventlist, ambulances
24: end function
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Algorithm 7 Arrival of an ambulance at a hospital

1: function Arrival of an ambulance at an hospital(ambulances,
eventlist, nextevent, instance)

2: determine service time at hospital
3: delete this event from eventlist
4: make new event Aleph of type ”make ambulance idle”
5: add Aleph to eventlist
6: return Eventlist
7: end function

Algorithm 8 Make ambulance idle

1: function Make ambulance idle(ambulances, eventlist, nextevent, in-
stance, typeofalghorithm)

2: get which ambulance should be made idle
3: if typeofalghorithm is MEXCLP then
4: get predetermined base for selected ambulance
5: set selected ambulance to idle
6: update ambulances
7: else
8: set selected ambulance to idle
9: identify all idle ambulances

10: identify all destinations of idle ambulances
11: run Dynamic MEXCLP()

12: update ambulances
13: end if
14:

15: delete this event from eventlist
16: return ambulances, eventlist
17: end function
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Algorithm 9 Dispatch ambulances

1: function Dispatch ambulances(ambulances, eventlist,queue,accidents,
instance)

2: select the accident that happened earliest from queue
3: delete selected accident from queue
4: update this accident so that it indicates that an ambulance is on its way
5: initialize ttravel for all ambulances
6: for all ambulances do
7: if ambulance has arrived at its destination then
8: set ttravel to tdest
9: else

10: calculate dloc
11: calculate ddest
12: get tdest

13: calculate ttravel =
(

dloc

ddest

)
(tdest)

14: end if
15: end for
16: get idle ambulance with smallest distance(tdest)
17: update selected ambulance
18: update ambulances
19: make new event of type arrival of an ambulance to an accident
20: update eventlist
21: return ambulances, eventlist, accidents, queue
22: end function
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B Results

we now give our results for some of the less important cases since they are not
what either model was meant for.

Firstly we have the model with uncertainty in driving times but no varying
busy fractions in Figure 8. The mean fraction of late arrivals was 0.0393 for the
modified method and 0.0404 for Dynamic MEXCLP. The standard deviations
were 0.0030 and 0.0029 respectively. The modified model had lower fractions of
late arrivals in 13 out of 20 simulations.
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Figure 8: Fraction of arrivals that are late for Dynamic MEXCLP and the
modified model respectively in a simulation with uncertainty in the driving
times and without varying busy fractions.

Secondly we have the model without uncertainty in driving times but with
varying busy fractions in Figure 9. The mean fraction of late arrivals was
0.0301 for the modified method and 0.0321 for Dynamic MEXCLP. The standard
deviations were 0.0037 and 0.0037 respectively. The modified model had lower
fractions of late arrivals in 12 out of 20 simulations.
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Figure 9: Fraction of arrivals that are late for Dynamic MEXCLP and the
modified model respectively in a simulation without uncertainty in the driving
times and with varying busy fractions.

C Data

Table 1: busy fractions per base
Base high busy fraction normal busy fraction low busy fraction
3811 0.3572 0.2572 0.1572
3823 0.3434 0.2434 0.1434
3941 0.2334 0.1334 0.0334
3608 0.3056 0.2056 0.1056
3436 0.3724 0.2724 0.1724
3911 0.2563 0.1563 0.0563
3582 0.4867 0.3867 0.2867
3561 0.4100 0.3100 0.2100
3645 0.1921 0.0921 0.0000
3447 0.2455 0.1455 0.0455
3707 0.1382 0.0382 0.0000
mean 0.3037 0.2037 0.1100
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Table 2: Hospital locations as postal codes
Hospitals

3435
3903
3941
3813
3994
3762
3743
3707
3584
3582
3562
3453
3542
3452
3447
3641
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