
Joint replenishment problem with shifting time-lines

R.P.C. Zoun (384414)

July 3, 2016

Supervisor: Dekker, R. Second assessor: Mulder, J.

Bachelor Thesis
Econometrie en Operationele Research

Erasmus University Rotterdam
Erasmus School of Economics

Abstract

In this paper, we do research to an extension of the joint replenishment problem.
In our cases, we look to shifting time-lines of the products. In the solution of the
standard joint replenishment problem, all the products are included in the first order.
However, in our problems this is not always the case. It could be more optimal to
start the time-line of a product on a later order. Where the time-line of a product
begins at the first replenishment of that product and ends with the last one between
the time-interval. We show that shifting is beneficial and will obtain a lower total
average cost. It is also improving the fill rate of the trucks and lowers the average
number of trucks. Besides the proposed methods to solve the joint replenishment
problem with truck limitation and shifting time-lines, we also give an order heuristic
which give an optimal solution with a low computation time. The solution of all the
methods are compared and the influence of different values for the several variables
are investigated.
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1 Introduction

Managing your inventory is a difficult task. To make orders for the replenishment of your
products, you need to know when and how much you need of a product. To make this
more complex, we like to look at joint replenishment. When an company has multiple
product, it is cost saving when you order them together. This can lead to a decrease in
transport costs. This kind of problems is referred as joint replenishment problems (JRP).

In this paper we will use an extension, we consider the case that it is possible to shift
with the time-lines of the products. The time-line of a product is the time from the first
replenishment of a product till the last one. If we solve the joint replenishment problem,
all the replenishment’s will start immediately at the first time-period. This could be non-
optimal, we can let the time-lines of several product begin on a later time-period. This
could lower the total required number of trucks.

First, we will give a review over the existing and interesting literature. We discuss
some methods and ideas to use for our research. After this, we will start with showing a
formulation of the JRP with the corresponding parameters and variables. We will focus
on the JRP with truck limitations. This means that we do not consider constraint on the
budget or storage capacity like is done in some other literature.

Next we construct a method to optimize the solution further. We will use shifting
time-lines and we will evaluate the consequences on the optimal solution and the corre-
sponding functions. We will give a formulation to solve the shifting time-lines problem
and give an example to give some more insight in the methodology. After this, we will
give some methods to solve the JRP with truck limitations and shifting time-lines. We
will modify the algorithm of Goyal, with help of our shifting time-lines formulation and
we will extend this with an iteration method. At last, we will give a heuristic to solve the
problem without a constant basic cycle time.

At the end, the results of the different methods are discussed and compared. We will
evaluate the effects of the several variables and show the effects of the shifting time-lines
on the decision variables. We will also give the results of the heuristic and compare them
with the shifting algorithms. We will evaluate the average number of trucks used in the
solution of the methods and we compare the outcomes of different cases.

With our research we will try to answer the question: Which benefits are there if we
take in to account shifting time-lines, and what is the effect on the optimal solution?

2 Literature review

In the last 30 years there is a lot written about the joint replenishment problem. They
try to determine an econometric policy to handle the JRP in a smart and quick way and
resulted in a solution that was near by the optimal one. Khouja and Goyal (2008) gave
a review over the research that has been done and show some heuristics, methods and
extensions of the JRP. The research is most often based on the algorithm of Goyal (1974).
Which came up with a solution that determines the optimal order frequency for all the
items in the JRP. Van Eijs (1993) modified this algorithm and created a good manner to
solve the basic JRP, which considers a situation with constant known demand over a long
period of time. This is a method for the deterministic side of the problem, which also will
be considered in this paper. There are also methods for the situation when the demand is
not constant. In Lee and Chew (2005) they considered stochastic demands and in Minner
and Silver (2005) they have demands that are Poisson distributed. However, we will not
discuss this side of the JRP in this paper.
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For a long period of time, we have tried to find the optimal solution of the JRP. Khouja
and Goyal (2008) concluded that this took a lot of time and that it is more interesting to
add extensions to the JRP, so we will get a more realistic model. The policy developed by
Goyal (1974) is a strict cyclic policy. This means that we assume that the lowest reorder
interval is equal to one and every order contains products. Porras and Dekker (2008)
suggested a correction factor for empty replenishment that will occur when the lowest
reorder interval is bigger than one. This is called a cyclic policy and holds for all integer
values of the reorder intervals. If there are no empty replenishment’s the model with the
correction factor will be equal to the normal form. So, it will always give an equal or
better solution than the standard form.

In the JRP we want to minimize the total cost. The literature considers two types of
costs. We have the major costs, which are cost that are made per order. We also have the
minor costs, which are made when a product is included in an order. There are a lot of
experiments been done, where the relation between the optimal solution and the height
of the major costs is examine. It has been proven that different methods are optimal for
different values of the major costs and also the ratio between the major and minor costs
has a big influence on the optimal policy. In our paper we will obtain a solution for
different major costs and more interesting, we will look to the situation when the minor
costs are zero.

In the standard JRP there are no constraints on the storage and transport capacity and
on the budget. These were added by Hoque (2006), where the transport capacity is the
most interesting one. In the paper there is a limit per item. Which is not really a real life
implication. It is more interesting to investigated the situation that there is a limitation on
the whole truck. For this transformation they made use of the average number of trucks
in the system. We will use this method in our paper, however we will not consider the
storage and budget constraints.

Recent articles show us that the research has moved to solving real-life aspects of the
JRP. An example of this is the adjustment of defective items, which was done by Paul
et al. (2014). When the products are transported, they could be damaged and useless.
You could take this into account when we place the order for the replenishment of the
products. However, our opinion is that it will not have a huge impact on our optimal
solution. We could also consider different requirements for the products in our JRP. Be-
cause this are rare cases, we will not consider them in our paper. At least we want to
point out another interesting addition, Salameh et al. (2014) discussed the case of substi-
tution products. We will not discuss this, because the lack of time. Nevertheless, it is quit
interesting.

The JRP is NP-Hard, which was proven by Arkin et al. (1989). This has a huge impact
on the computation time. To solve the problem we need to use the algorithm of Goyal
(1974) to solve the problem in a limited time. However, the literature gives also other
possible heuristics. Silver (1976) gave a simple heuristic for determining the optimal
operating policy. In this method the multiplier per item depends on the multipliers of
the other items with a lower value. This means that the lowest multiplier has a huge
impact on the solution. This is not always optimal. Also Wildeman et al. (1997) came
with a different approach. The problem with solving the JRP is long running times for
continues time-periods. They used Lipschitz optimization and had running times that
increases linear in the number of items. Another way to lower the computation time is
constructing a lower and upper the basic cycle time. This was already presented by Goyal
(1974) and was later improved by Viswanathan (1996).

Another method to solve the JRP is to use a genetic algorithm(GA), which is done by
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Ongkunaruk et al. (2016). Like in our case, the GA uses integer number of trucks. There
are a number of trucks available and the GA tries to fill these trucks minimizing the total
costs. The cost of an empty truck will be zero, so the GA will also minimizing the used
number of trucks. The JRP of Ongkunaruk et al. (2016) has also constraints on defective
items and the screening of products. Our opinion is that in reality this happen, however
we see this as two separate problems. In Ongkunaruk et al. (2016) they also look to the
case that some of the products can not transported together. This because requirements
of the products, for example temperature. We do not think this is an important extension,
an it is very hard to shift with time-lines if we implement this constraint. If we omit the
constraint that are not necessary for our case, the GA is a logical and clear method to
use. Our biggest concern is that the computation time will be to large. That is why the
algorithm of Goyal (1974) is more practical.

The literature gives also some new ideas to consider for determining the optimal re-
plenishment policy. Goyal and Satir (1989) came up with the idea to make the multipliers
not longer integer, this will create different replenishment cycles at the same time. Be-
cause of the time-limit of our research, we will not investigate this. However, this could
be interesting for further research. Another idea was to look only at multipliers with a
value of the power of two. Which was done by Lee and Yao (2003). It has been proven
by Jackson et al. (1985) that the solution will not be more than 6% away from the opti-
mal minimum costs. We will discuss this case in our paper to evaluate the effect on the
computation time and the optimal solution.

3 Problem Definition

In the paper of Hoque (2006) the joint replenishment problem is extended by adding stor-
age and transport capacities and budget constraints. In this paper we will not consider
the constraints for the storage and budget. We like to focus on the transport capacities
and optimize the required number of trucks to minimize the total costs. First we intro-
duce the variables and parameters for the formulation of our JRP problem.

3.1 Parameters and variables

n := number of products

S := major ordering cost

T := time between two orders, called basic cycle time (decision variable)

w := total number of pallets per truck

c := cost per truck

j := designated product, with j ∈ {1,2,...,n}

Dj := annual demand rate for product j

Sj := minor ordering cost for product j

hj := unit inventory holding cost per unit per year for product j

Hj := hjDj
2

wj := fraction of pallet space for one product
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mj := number of full truck loads for product j

Tj := time between two consecutive orders of product j , called the reorder interval

k j := Tj
T (positive integer)

3.2 Assumptions

In our problem definition, we made the following assumptions.

1: The lead time is equal to zero

2: The demand is constant

3: Shortages are not allowed

4: Quantity discount is not possible

5: Transportation times are insignificant and hence ignored

6: There is a k j equal to one

3.3 Objective function

We want to minimize the total costs for all the replenishment’s of every product. We
have costs for an order, called major costs. The second part consists of the holding costs
and the cost per truck for every product j, called minor costs. In this paper we make an
adjustment on the formulation used in Hoque (2006), which is given by

Hoque JRP

minimize
S
T
+

n

∑
j=1

(
Sj + mjc

Tj
+ Hjk jT)

with

mj =
wjk jTDj

w
(1)

In this formulation we don’t have the case that the sum over all the mj is always a positive
integer value. In fact, most of the time the variable will be not integer. This is not a
realistic situation, in practice they will round up the sum of all the mj. Of course, we
can’t only drive a peace of a truck. To make this adjustment we follow the method in
Guijarro, they make use of the average number of trucks used in the total cycle time. The
only difference is that we will round up the number of trucks per time-period and take
the average of all those integers. We introduce a new variable t, which indicates the time-
period. A time-period is the moment when an replenishment occur. The total number of
time-periods is equal to the least common multiple (lcm) of all the reorder intervals. This
means that the number, equal to the amount of time-periods, is divisible by all the k j. This
will create a full reorder cycle for every product. The first time-period is equal to 1 and
the interval from the first time-period till the time-period equal to the lcm will be referred
to the time-period cycle. We also define a new binary variable Ojt(k j) which indicates if
an order of time-period t contains a certain product with reorder interval multiplier k j.
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dXe will give the rounded up value of a value X. Now the average number of trucks is
given by

B =
∑lcm

t=1d∑n
i=1 Ojt(k j)mje

lcm(k1, ..., kn)
(2)

We can now define the total cost with truck limitations, which depends on the basic cycle
time and all the reorder interval multipliers. We will also differ here from the method
used by Guijarro. We will distinguish the cost per order S, like administration costs, and
the cost per truck c. The average number of trucks B will correspond with the cost per
truck. We want to minimize the total cost as objective function for our JRP:

TC(T, k1, ..., kn) =
Bc + S

T
+

n

∑
j=1

(
Sj

Tj
+

1
2

Hjk jT) (3)

3.4 Formulation

Differently done by Hoque (2006), we don’t take into account the storage and budget
constraints. We only have the constraints that all the multipliers k j needs to be positive
integers and that Tj = k jT holds for every product j. We can implement this in the
objective function, by filling in T. We can also do this for Hj for more specification. The
final formulation:

JRP with truck limitations

minimize
Bc + S

T
+

n

∑
j=1

(
Sj

k jT
+

1
2

hjDjk jT)

subject to k j ∈N, j ∈ {1, 2, ..., n}

4 Shifting time-lines

In the algorithm of Goyal (1974) the optimal multipliers k j with j = 1,..,n are determined.
These multipliers give the reorder interval per product and the replenishment’s of one
order need to fit in all the truck that are used at that time. It can be better to shift some
of the reorder time-lines of the products. This could result in a decrease of the required
number of trucks.

We consider the following simple example:

Table 1: Example for shifting time-lines

number of trucks needed

Product j k j t=1 t=2 t=3 t=4 t=5 t=6

1 1 0.50 0.50 0.50 0.50 0.50 0.50
2 2 0.50 0.50 0.50
3 2 0.50 0.50 0.50

Total 1.50 0.50 1.50 0.50 1.50 0.50
Trucks 2 1 2 1 2 1
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In this example the values of the reorder multipliers are 1 and 2. The least common
multiple will be equal to 2. We give some more time-periods to make the method more
clear. In this case we have three times the time-period cycle. For every cycle we need 3
trucks, so in total we need 9 truck for this solution. However, we can shift the time-line
of the second product to reduce the total number of trucks. The result is shown in table 2

Table 2: Example for shifting time-lines

number of trucks needed

Product k j t=1 t=2 t=3 t=4 t=5 t=6

1 1 0.50 0.50 0.50 0.50 0.50 0.50
2 2 0.50 0.50 0.50
3 2 0.50 0.50 0.50

Total 1.00 1.00 1.00 1.00 1.00 1.00
Trucks 1 1 1 1 1 1

The total number of trucks needed for every time-period cycle is now decreased to a
value of 2. In total for the whole example the number of trucks decrease from 9 to 6. If
we have more products or time-periods, the total number of trucks can be reduced with
a larger amount.

4.1 Shifting time-lines problem

The above method minimizes the number of trucks over a given period of time. We could
use this idea to lower the average number of trucks B of equation 2, which will have an
effect on the total optimal costs. To do this, we need that the reorder interval multipliers
{k1, ..., kn} are fixed. Because we know the k j for every product, the only variable will be
the decision when the replenishment is included in an order. To find the optimal shifting,
we calculated the total number of trucks used in the whole time-period cycle. To provide
this, we define the following parameters and variables:

tmax := least common multiple(lcm) of {k j,...,kn}

t := time period, with t ∈ {1, ..., tmax}

Nt := number of trucks at time period t (integer)

xjt := number of trucks at time period t (real positive)

yjt =

{
1 if product j is included in the order at time-period t
0 otherwise

where t ≤ k j ∀j

We can now solve this problem with the following formulation:
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Shifting time-lines problem formulation

minimize
tmax

∑
t=1

Nt

subject to
n

∑
j=1

xjt ≤ Nt ∀t

xjt = xj(t+k j) ∀j, t ∈ {1, 2, ..., tmax − k j}
xjt = mjyjt ∀j, t ∈ {1, 2, ..., k j}

k j

∑
t=1

yjt = 1 ∀j

xjt ≥ 0 ∀j, t

yjt ∈ {0, 1} ∀j, t ∈ {1, 2, ..., k j}
k j ∈N ∀j

The objective function minimize the total number of trucks in the total period of time. So
we summon over all the time periods till tmax. This maximum value of t is calculated by
finding the least common multiple of all the k j. This is required because the maximum
value needs to be a multiple of the reorder intervals of the products. If this is not the
case, it is possible to remove one replenishment of a product by starting the time-line on
a later time-period. The last replenishment in the last reorder interval could be higher
than the maximum value of t and will not take place, this will give a wrong impression
of the minimum costs. If all the reorder multipliers are even or a power of two, then we
can take the maximum reorder interval as the maximum value of t.

In the first constraint the number of trucks per time-period needs to be higher than
the required truck space. This truck space could be non-integer. Because we can’t drive
a piece of a truck the total number of trucks Nt will always be the rounded up value of
the total required truck space. The second constraint covers that the replenishment of
the products are cyclic. The truck space of a product at a time-period needs to be equal
to the trucks space a cycle later. So their will always be k j time-periods between two
replenishment’s. When there is no replenishment in a time-period, the truck space will
be zero and from the second constraint follows that the time-period of a cycle later will
also be zero. The constraint is for all time-periods until tmax − k j, otherwise the algorithm
will try to find the x variables for time-periods higher than tmax.

To provide that the replenishment’s will have the right value, we have the two re-
maining constraints. The time-line needs to start in one of the time-periods of the first
reorder interval of the product. This means before the value of k j. This is covered by
the fourth constraints. When the time-line of a product begins at a time-period the value
of the corresponding y will be 1. This means that the corresponding x will be equal to
the truck space mj. When the value of y is zero, the value of x will also be zero. We do
not need a variable y for every time-period, because the second constraint already covers
that the replenishment’s are cyclic.

After a few tests we concluded that the computation time of this method is not very
large, we can implement the formulation into the algorithm of Goyal (1974). Where the
total cost will decrease with help of the above formulation. We can adjust the average
number of trucks B with the solution of the shifting time-lines problem. We have

B =
∑tmax

t=1 Nt

tmax
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4.2 Example shifting formulation

We consider the following example to give some more insight of the shifting algorithm.
For this example we consider five products. Every product has his own demand rate Dj.
Which is respectively {8.1, 3.0, 0.8, 0.8, 0.3}. We also have the variables wj which indicates
how many pallets we need per product. In this example we have the following vector for
w: {0.2, 0.2, 0.4, 0.4, 0.8}. So, for product 1, we can place five products on a pallet. The
total number of pallets in a truck has a maximum W of 24. We assume that from earlier
calculations we obtain an optimal basic cycle time T of 7 and the optimal reorder interval
multipliers vector k: {1, 2, 3, 2, 6}. This means that we have a least common multiple of 6.
So, we will consider 6 time-periods in our example, after this the time-period cycle will
repeat itself.

To find the optimal shifting policy the shifting algorithm will place the replenishment
of the product on the best time-period. First, we will calculate the size of the replenish-
ment of each product mj if they are included in an order. We can use equation 1 and fill
in the values of the variables given above. The will result in the vector m: {0.47, 0.35, 0.26,
0.19, 0.42}. Now we can compute the number of trucks for each time-period. In table 3
the ’normal’ situation is shown, there is still no shifting involved.

Table 3: Example shifting formulation, still without shifting

Time-period

Product j k j 1 2 3 4 5 6

1 1 0.47 0.47 0.47 0.47 0.47 0.47
2 2 0.35 0 0.35 0 0.35 0
3 3 0.28 0 0 0.28 0 0
4 2 0.19 0 0.19 0 0.19 0
5 6 0.42 0 0 0 0 0

Total 1.71 0.47 1.01 0.75 1.01 0.47

For the six time-periods we need in total 9 trucks. We see clearly that this policy would
not be optimal, because in the third and fifth time-period we use a truck for only 1 percent
of the total available truck-space. The shifting algorithm will find the optimal starting
time-periods for the time-lines of the products. If we look to our example, we see that
we can not shift the first product. However, all the other products could be shifted. The
solution of the algorithm is given as follow

Table 4: Example shifting formulation, with shifting

Time-period

Product j k j 1 2 3 4 5 6

1 1 0.47 0.47 0.47 0.47 0.47 0.47
2 2 0 0.35 0 0.35 0 0.35
3 3 0 0 0.28 0 0 0.28
4 2 0.19 0 0.19 0 0.19 0
5 6 0 0 0 0 0 0.42

Total 0.66 0.82 0.94 0.82 0.66 1.52
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We only need 7 trucks for all the time-periods. The minimum was 6, so that is a small
differences. Table 4 shows that, in the optimal solution, a lot of products do not start at
the first time-period. This shows the effect of the shifting time-lines.

5 Methods

We propose several methods to calculated the optimal solution of the JRP with shifting
time-lines. We will evaluate the outcomes of the different methods with each other and
with the solution of the JRP with only the truck limitations. We will also discuss the
correctness of the used methods and the corresponding computation times. First we will
solve the problem with a modified version of the algorithm of Van Eijs (1993), which was
already a modified algorithm of Goyal (1974). In the second chapter we show how we can
calculate the optimal solution by iterating over different values for the reorder interval
multipliers.

5.1 Modified algorithm of Goyal

Because we have a problem which includes shifting time-lines, the total costs are no
longer linear for T. This means that the algorithm of Goyal (1974) will not be optimal
anymore. We will modified some functions of this algorithm, so it will represent our
case. The method that we use will be a heuristic because it could be not optimal.

To optimal solution of the JRP depends on the basic cycle time T and the reorder
interval multipliers k1, ..., kn. Goyal (1974) derived functions for these decision variables.
We will evaluate which functions can be used in our case and which are not applicable
for our situation. From equation 3 we can derive the function, for fixed k1, ..., kn and fixed
B, of the optimal basic cycle time T∗, which is given by

T∗ =

2(Bc + S + ∑n
j=1

Sj
k j
)

∑n
j=1 k jDjhj


1
2

(4)

If we combine equations 3 and 4, we get a total average cost per time-period (TRC) of

TRC =

[
2(Bc + S +

n

∑
j=1

Sj

k j
)(

n

∑
j=1

k jDjhj)

] 1
2

(5)

However, B is a function of T. So if we take the derivative of equation 3 to T, we also
need to take into account the derivative of B to T. This is impossible, because we have
rounded up values. We need to apply a heuristic and consider the non-rounded up values
for deriving the derivative. We will now get an optimal basic cycle time T∗ of

T∗ =

2(S + ∑n
j=1

Sj
k j
)

∑n
j=1 k jDjhj


1
2

(6)

because

B∗ =
B
T

=

∑lcm
t=1 ∑n

i=1 Ojt(k j)wjk jTDj
lcm(k1,...,kn)w

T
=

∑lcm
t=1 ∑n

i=1 Ojt(k j)wjk jDj

lcm(k1, ..., kn)w
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Because the function B∗ does not depend on T, the derivative will be zero and that is
why we do not find this part back in equation 6. We will combine this new function with
equation 3 to obtain the optimal total average cost per time-period, which is given by

TRC =

[
2(S +

n

∑
j=1

Sj

k j
)(

n

∑
j=1

k jDjhj)

] 1
2

+ B∗c (7)

When we have a fixed T, Goyal (1974) derived a formulation to obtain the reorder interval
multipliers separately by minimizing the variable costs per product:

k j(T)(k j(T)− 1) <

2Sj
Djhj

T2 ≤ k j(T)(k j(T) + 1) (8)

Because we will shift the time-lines of the products, equation 8 will not be valid in our
case. It could be optimal to choose another value for Kj, which results in a lower number
of trucks and therefore lower total costs. This depends on the demand of every prod-
uct and we can not create a formula for this phenomena. That is why we will still use
equation 8, because the solution will not far from optimum.

To minimize the total computation time, the algorithm of Goyal (1974) uses a maxi-
mum and minimum value for the optimal basic cycle time. Tmax is given when all the
reorder interval multipliers are equal to one. We can calculate this with equation 6, so
we will get Tmax = T∗(1, 1, ..., 1). This is the same as in the standard JRP. However, the
function for the minimum of the basic cycle time will change. We can derive a function
for Tmin as follow:

T∗TRC∗ = 2(S +
n

∑
j=1

Sj

k j
) + B∗T∗c

We have TRC∗ ≤ TRC, the optimal total average cost will always be lower than the cost
of a different solution.

T∗ ≥
2(S + ∑n

j=1
Sj
k j
) + B∗T∗c

TRC

We can obtain the minimum of the basic cycle time from the above formulation and we
will get

Tmin =
2S + c
TRC

(9)

5.2 Iterative

Because the solution of the modified algorithm of Goyal (1974) is not always optimal, we
like to propose an other method to solve the JRP with truck limitations and shifting time-
lines. In some cases the number of trucks that we can save by using shifting time-lines,
could be higher than for other values of the reorder interval multipliers. This means
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that equation 8 is not valid anymore. However, the k j from this equation will be close to
the optimal solution. The solution that we got from the modified algorithm will be not
further than c

T∗ of the optimal total average costs. We like to show this with the following
example:

Table 5: Example minimum difference of the optimal solution

Time-period

1 2 3 4 ... LCM - 1 LCM

Trucks before 1+ε 1+ε 1+ε 1+ε ... 1+ε 1+ε
Trucks after 1 1 1 1 ... 1 2

In the example we have every time-period 1 + ε number of trucks. This means that
we need at every order 2 trucks. The second truck will be almost empty, so this could be
more optimal. Because our method to shift with the time-lines of the products, we could
obtain situation two. All the little ε of the time-period is now at the last time-period (or
another one), so we have a decrease of (LCM-1) number of trucks. We can not decrease
the number of trucks anymore, because if we remove the needed truck space at one time-
period, we also need to add it at another one. This is the most extreme case and will not
happen in practice. That is why we will only look to solution nearby the optimal solution
of the modified algorithm. We will only iterate over the k j that are in the interval -1 and
+1 of the multiplier calculated with 8. So if k∗1, ..., k∗n are the reorder interval multipliers of
the optimal solution from the modified algorithm of Goyal. We have the following

kmin
j =

{
k∗j − 1 if k∗j > 1

1 otherwise
(10)

and

kmax
j = k∗j + 1 (11)

The iterative algorithm is an addition to the solution of the modified algorithm of Goyal.
The iterative algorithm will try to find a lower total cost nearby the optimal solution that
already exist. The algorithm will check all the possible combinations and will return the
solution with the minimized cost. The full algorithm is as follow



5 METHODS 12

Iterative algorithm

We define the vector k∗ = k∗1, ..., k∗n, which store the best reorder interval multipliers found so far.
We define the value TRC∗, which stores the best total average costs found so far.

Step 1: Initialization

Solve the JRP with truck limitations and shifting time-lines, with the method of
chapter 5.1 and obtain the optimal vector kgoyal
k∗ = kgoyal
TRC∗ = TRC(k∗), with equation 5
T∗ = T(k∗), with equation 6

Step 2: Create interval

kmax
j = k∗j + 1

if( k∗j > 1 )
| Set kmin

j = k∗j − 1
else
| Set kmin

j = 1
end

Step 3: Iterative

for(every combination of all knew
j , with kmin

j ≤ knew
j ≤ kmax

j ∀j)
| newK = {knew

1 , ..., knew
n }

| newTRC = TRC(newK), with equation 5
| if( newTRC < TRC∗ )
| | k∗ = newK
| | TRC∗ = newTRC
| | T∗ = T(newK), with equation 6
| end
end

Step 4: Solution

kopt = k∗

TRCopt = TRC∗

Topt = T∗
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5.3 Order heuristic

At last, we give a heuristic for determining when the orders take place and which prod-
ucts in which amount are included in the order. For this order heuristic, we do not have
a constant basic cycle time. So, we also do not have reorder interval multipliers anymore.
We expect that the total costs of this heuristic will be higher than of the other methods,
however the computation time will be very fast. In this method, the variable t is not a
time-period, it is the current time in our time-interval. The time-interval will be from
zero till tmax. For this heuristic we define the following extra variables:

tnext := the next time, when there is a new order.

∆t := time between the last order and the next one, so tnext − t.

v := vector with the stock level for every product at the current time.

λ := order size rate.

Every product starts with an initial stock level. This could also be zero for every product,
but we prefer to use non-zero initial stock levels. In the order heuristic, we determine
when a new order takes place. To determine the value of tnext, we iterate over all the
products and find the lowest value for t + vj

Dj
for product j, where t is the current time.

So, we determine when the first product is out of stock. After this, we will update the
stock levels, which are given by

vnew
j = vj − ∆tDj (12)

Now we have the stock levels before the order. To determine which products are included
in the order and in which amount, we follow some steps. First, we have the product that
is out of stock. This product will be in the order and the amount will be determined by the
equation λDj. After this, we determine how many trucks we need for this replenishment,

this is the rounded up value of λDj
W . If the last truck is not totally full, we like to include

other products in the order till the whole truck is full. To determine which product this
should be, we again use the method to find the first product with a stock out. There could
appear two situations. It could be that the room left in the truck is enough to transport
the whole order amount of the determined product, in this case we include this order
amount. In the other case, the room in the truck is to small, then we put as many items of
the determined product in the truck. We repeat this until there is no place left in the truck.
An important remark is that we do not include products that already have a high stock
level. This will result in unnecessary expensive holding costs. So, we define a vector LB,
which has a lower bound of the stock level for every product, that needs been reached
before we can include that product in an order. If we have done all this, we update the
stock levels of the products we just order and the current time will be equal to the time
of this last order.
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We will repeat this whole procedure until we reach tmax. At the end, we can determine
the total made costs. We have three parts of the total costs. First, we have the setup costs
of all the products. So, when a product is included in an order, we need to add up the
setup costs of this product to the total costs, also when it is just for one item. Secondly,
we have the holding costs. We calculate this costs with the holding rate times the main
stock level. We calculate this immediately after we determine tnext, the equation is given
by

holding costs =
1
2

n

∑
j=1

hj∆t(vj + vnew
j ) (13)

If we determine these costs after every order, we will obtain the total holding costs. The
last part of the total costs are the major setup costs and the truck costs. The truck costs
are just the number of trucks used in total of all the orders times the cost per truck. The
major setup costs are the number of orders times the cost per order. The major costs will
have a big influence on the total costs, because we expect a lot more orders.

we have the total costs of the whole period from zero till tmax, to obtain the total
average costs we just divide the total costs by tmax. At the end, we can find an optimal
value for the order size rate λ, if you do not have one beforehand, by iterating over
an self chosen interval for this variable. Because the total average costs function is not
convex for the order size rate, we need to pay attention that we do not end up in a local
minimum. We propose the following method, we take the basic cycle time from the
algorithm of Goyal with shifting as starting point. Then iterate over all the values from
zero till two times this basic cycle time. We choose the order size rate that gives the lowest
total average costs.

6 Results

In the last part of this paper, we like to show, compare and discuss our results. We used
a big data-set for our main calculations. This data-set is of an original problem from
Mexico and was also used by Oudenes. The data of this problem is given in appendix
24 and 25 and will be further referred as the main data-set. In all the problems that are
solved we express T in days. First, we give an example of the shifting time-lines. We only
use the first 20 products of the main data-set for this example, however we will run the
methods on the whole data-set. Only for simplicity, we show only the results of a peace
of the data-set. Because the main data-set is not sorted in any way, by picking the first 20
products we selected them randomly. In the second part, we will show the effects if we
will change some of the different variables and at least we will compare the solutions of
the different methods that were proposed in the last chapter.

6.1 Example Shifting time-lines

We like to examine the effect of taking into account the shifting time-lines. We can split
this into two parts, namely the change in the optimal cost and the change in the optimal
solution. In table 6 we can see that there are a lot of time-lines that are not beginning at
the first time-period. The maximum multiplier has a value of 8, so we give the first eight
time-periods to observe when the time-lines of all the products starts. When the product
is included in an order at a time-period, this is given by a ’1’. In table 6 is only given the
first twenty products of the main data-set. The full table with all the products is given in
the appendix. The major costs which corresponds to this solution are S = 500 and the
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cost per truck are c = 1000. There is space for 24 pallets per truck and the truck-space per
product is given in the table in the appendix.

Table 6: Example begin shifting time-lines
Time-period

Product Multiplier 1 2 3 4 5 6 7 8

1 4 0 0 1 0 0 0 1 0
2 5 1 0 0 0 0 1 0 0
3 1 1 1 1 1 1 1 1 1
4 4 0 1 0 0 0 1 0 0
5 1 1 1 1 1 1 1 1 1
6 2 0 1 0 1 0 1 0 1
7 3 1 0 0 1 0 0 1 0
8 7 1 0 0 0 0 0 0 1
9 1 1 1 1 1 1 1 1 1
10 5 0 0 0 1 0 0 0 0
11 7 0 0 0 1 0 0 0 0
12 2 1 0 1 0 1 0 1 0
13 2 0 1 0 1 0 1 0 1
14 8 0 0 0 1 0 0 0 0
15 7 0 0 0 0 0 0 1 0
16 2 0 1 0 1 0 1 0 1
17 1 1 1 1 1 1 1 1 1
18 2 1 0 1 0 1 0 1 0
19 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1

When the multiplier of the product is 1, obviously we can not change the starting time-
period of the time-line. If we leave out these products, we have 14 products left of the
above example. Of those products, there are 9 products that are not included in the first
order. If we look at all the products from the main data-set, we can conclude that, in the
optimal solution, there are a significant number of products which are not replenished at
the first order.

We can not detect a pattern in table 6 for the value of the multiplier of the product.
We see that the products 4 and 13 both start at the first time-period. However, products
12 and 18 does not, while they have the same multiplier. There are more products with a
multiplier of two that start at the first time-period than products with a multiplier of four
and five. This is logical because with a multiplier of two, the first time-period is 50% of
the possible starting points and for a multiplier of four this is 25%.

6.2 Comparing methods

We make use of different kind of data-sets to compare the several methods that are pro-
posed earlier in this paper. Because the iterative method can only solve problems with a
low number of products in an acceptable period of time, we can not run the main data-set
with this method. If we solve the problem for the whole data-set, we will have 383 itera-
tions. Because the computation time of 2000 iterations is approximately one minute, the
computation time of all the iterations will be too large, around 3.830 years. We will first
use the modified algorithm of Goyal and compare the case without shifting and with
shifting of the time-lines. We have the standard situation with S = 500, c = 1000 and
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W = 24. Table 7 contains the total costs and the corresponding optimal basic cycle time
for both cases.

Table 7: Number of trucks per time-period

Optimal T Optimal TRC Optimal B

Goyal without shifting 2.24 e5296.33 8.33
Goyal with shifting 2.25 e5150.03 8.03

Table 7 shows us that the optimal basic cycle time is almost equal for both situation. One
of the reasons is that the functions for the optimal basic cycle time T and the reorder
interval multipliers k j are the same for both cases. Therefore, the decrease for the total
costs is entirely on account of the number of trucks. The reduction is in total e146,30 per
day, which corresponds with e53,399.50 per year. We will evaluate the reduced number
of trucks in chapter 6.3.

After some evaluation and the knowledge of some shortcomings of the modified al-
gorithm of Goyal, we conclude that the solution of this method is not optimal. To find a
better solution we will use the Iterative method as described in chapter 5.2. Because we
need to iterate over all possible cases, we need to consider an example with less num-
ber of products. For this example we have seven products with the following data, we
constructed this data set ourselves:

Seven products data-set

D = {10.56, 20.57, 10.23, 50.23, 60.25, 20.69, 30.01}

h = {0.35, 0.35, 6.0, 6.0, 0.32, 0.32, 19.2}

s = {20, 20, 50, 50, 20, 40, 40}

w = {4, 5, 4, 5, 4, 5, 4}

W = 24

S = 500

c = 1000

This data-set will create a situation were there will be multiple k j bigger than one. This
case will show the effects of the used methods and will help us to compare the proposed
methods. First, we will look to the optimal basic cycle time T and the corresponding
total average costs TRC. This results are shown in table 8. The Iterative method is always
with shifting, because it is an extension for the modified algorithm of Goyal with shifting.
The last column gives the differences in percentage of the total average cost between the
method and the algorithm of Goyal without shifting.

Table 8: Compare methods, basic cycle time and total average costs

Optimal T Optimal TC gap in percentage

Goyal without shifting 1.23 e3637.61 -
Goyal with shifting 1.15 e3203.00 -11.95%

Iterative 1.19 e3149.53 -13.42%
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We see that the optimal T is for all the methods nearly the same. However, there is more
change than with the solutions of the main data-set. We see that the costs difference
between the ’normal’ method of Goyal without shifting and the Iterative method is quite
large. There is a gap of almost e500. Also the cost difference between the methods
which uses the modified algorithm of Goyal is more than e50. If we compare the reorder
interval multipliers of all the methods with each other, we see that considering shifting
will give a different solution.

Table 9: Compare methods, reorder interval multipliers

k j

Method 1 2 3 4 5 6 7

Goyal without shifting 1 1 1 1 1 1 1
Goyal with shifting 3 2 1 1 2 3 1

Iterative 3 1 1 1 1 3 1

Table 9 shows that the solution for the k j of Goyal without and with shifting is totally
different. This means that the solution with the lowest cost before shifting is a different
one after shifting. The shifting of the time-lines is more optimal for other values of the
reorder interval multipliers. Also the Iterative method makes beneficial adjustments for
some of the k j, which lead to a lower optimal cost of e3149.53. An important remark is
that the above example does not prove that the k j will always be going up, it could be
that the optimal solution contains lower k j than those of the solution of the algorithm of
Goyal.

6.3 Fill rate and average number of trucks

We need to evaluate another important aspect of the shifting time-lines solution. We can
decrease the average number of trucks by optimizing the fill rate. This means that we
want to minimize the difference between the number of trucks per order and the rounded
up value of this. So, we define the fill rate as, how much the last truck of every order is
filled. However, we like to know how much this is improved and if there is more room
for improvement. We will look to the solution of the main data-set. So, we have S = 500,
c = 1000 and W = 24. The least common multiple is equal to 840 and we will use Goyal
with shifting to solve this problem. In table 10, we have the first 20 time-periods and the
corresponding number of trucks.

Table 10: Number of trucks per time-period

Time-period

1 2 3 4 5 6 7 8 9 10

Trucks 9.38 6.99 8.28 7.40 8.48 7.13 8.74 7.08 8.68 7.40

11 12 13 14 15 16 17 18 19 20

Trucks 8.43 6.99 8.93 6.99 8.38 7.54 8.68 6.99 8.74 6.99

The important part of the number of trucks is the fill rate of the ’last truck’. For example,
in the first time-period there are 9 full trucks. The tenth truck is full for 38%, So that is
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less than half a truck. If we look to all the time-periods, this happens quite often. We also
see a difference in number of trucks between time-periods, all the values are between 7
and 10 trucks. The average number of trucks over all the 840 time-periods is 8,33. In table
11, we see the number of trucks per time-period after shifting.

Table 11: Number of trucks per time-period after shifting

Time-period

1 2 3 4 5 6 7 8 9 10

Trucks 7.99 7.87 7.87 7.91 7.96 7.81 7.96 7.94 7.90 7.95

11 12 13 14 15 16 17 18 19 20

Trucks 7.95 7.87 7.92 7.93 7.98 7.96 7.88 7.90 7.93 7.95

We see that all the values are between 7.75 and 8.00. Shifting of time-lines ensures an
increase in the fill rate, which will reduce costs. A secondary positive effect is that the
solution contains an equal number of trucks for every time-period. Every time-period
requires eight trucks, which become handy when the company owns the trucks and not
rent them. The average number of trucks are equal to 8.03. This means that we reduce
the transport costs with 0.30∗c

T∗ per time, where c is the cost per truck and T∗ the optimal
basic cycle time. In this problem we have a truck cost of e1000. If we express T in days,
we can earn e134 per day. Which corresponds with e48910 per year. Therefore, we can
conclude that optimizing the fill rate is a good strategy to reduce the total costs.

If we examine the results of the Seven products data-set we see the same pattern.
In the table below, we compare the results of the three methods. We show the first 6
time-periods, because this is the largest time-period cycle of the three methods.

Table 12: Number of trucks per time-period, seven products data-set

Time-period

1 2 3 4 5 6

Goyal 2.36 2.36 2.36 2.36 2.36 2.36
Goyal shifting 2.81 0.97 3.79 1.97 2.81 1.94

Iterative 1.94 1.94 2.94 1.94 1.94 2.94

We can see that the fill rate of the modified algorithm of Goyal without shifting is very
low. The time-period cycle is equal to one time-periods, so we can see that the fill rate of
the last truck is on average 36%. The average number of truck is equal to 3. The fill rate
of the second method is already much higher. The method with shifting has on average a
fill rate of 88.17% for the last truck. A huge difference, also the average number of trucks
decreases to 2,5. Finally, the iterative method shows the finest results. With a time-period
cycle of three periods, we can see that the fill rate of the last trucks is equal to 94%. Also
the average number of trucks is further reduced till 2,33.
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6.4 Different variable values

Last, we want to evaluate some influence of the several variables on the optimal solution.
In this chapter we will review what happens with the total cost if we change some of the
variables. First, we will look to changes in the costs variables and at the end we will try
some different values for the truck capacity. We have the standard situation with S = 500,
c = 1000 and W = 24. We will change every time one variable and let the other variables
on the original value. First, we looked at different kind of values for the order costs S.
The results are shown in table 13

Table 13: Different values for the order costs S, basic cycle time and total average costs

Without shifting With Shifting

S Optimal T Total average cost Optimal T Total average cost Cost reduction

100 1.90 e5126.13 1.90 e5053.02 1.43%
300 2.07 e5343.87 2.07 e5096.15 4.64%
500 2.24 e5296.33 2.25 e5150.03 2.76%
800 2.48 e5422.99 2.49 e5324.31 1.82%
1000 2.63 e5485.75 2.63 e5402.49 1.52%

For all the values of S, the shifting has no impact on the optimal T. However, the total
average cost changes and has also changes between the different values for S. We notice
that the value for S = 300 without shifting is higher than the value for S = 500. The
reason is that the modified algorithm of Goyal will search for the optimal total average
cost. However, we took an assumption for this method that the value of the average
number of trucks is not rounded up when we take the derivative to T. The values of the
method with shifting will be correct, because we do not use this assumption here. The
average number of trucks will be calculated with our shifting problem.

In table 14, the results of the seven product data-set are shown. In the last two
columns, we see the decrease in total average cost in percentage between the several
methods. The first column shows the decrease in percentage of the total average cost
between Goyal without and with shifting (∆ Costs 1) and the second column shows the
decrease in percentage between the Goyal with shifting and the Iterative method (∆ Costs
2).

Table 14: Different values for the order costs S, basic cycle time and total average costs
for the seven products data-set

Without shifting With Shifting Iterative

S T TRC T TRC T TRC ∆ Costs 1 ∆ Costs 2

100 0.83 e3210.33 0.67 e3103.41 0.72 e2801.35 3.33% 9.73%
300 1.05 e3440.52 0.99 e3352.96 0.91 e2922.43 2.54% 12.84%
500 1.23 e3637.61 1.15 e3303.00 1.19 e3149.53 11.95% 4.65%
800 1.46 e3844.43 1.46 e3479.37 1.39 e3479.37 9.50% 0.00%
1000 1.59 e4064.60 1.54 e3661.24 1.56 e3636.81 9.92% 0.67%

From table 14, we can observe some interesting cases. First, we like to point out that
the reduction of the total average cost by the Iterative method is significantly large. The
Iterative method is an useful improvement on the algorithm of Goyal with shifting. The
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second observation is that for higher values of the major setup costs S, the improvement
made by the Iterative method is very small. So it seems that for high values of S, the
algorithm of Goyal with shifting already gives a good estimation of the total average cost.
we think the reason for this is that when the Iterative method makes an improvement,
it search for a solution with more orders, but with less number of trucks with help of
shifting. When the major costs are very high, the decrease of the transport costs needs to
be higher than these already high order costs.

In our methodology, we took the order costs and the transport costs separate. So, in
table 15 we will see the results of different values for the transport costs c.

Table 15: Different values for the truck costs c, basic cycle time and total average costs

Without shifting With Shifting

c Optimal T Total average cost Optimal T Total average cost Cost reduction

500 2.24 e3434.81 2.24 e3361.88 2.12%
800 2.24 e4551.72 2.25 e4434.96 2.57%
1000 2.24 e5296.33 2.25 e5150.03 2.76%
1200 2.24 e6040.94 2.25 e5865.11 2.91%
1500 2.24 e7157.86 2.25 e6937.72 3.08%

The changes of the costs per truck will not effect the optimal basic cycle time T, because
these costs are not present in equation 6. In table 15 we see the pattern that if we increase
c, the reduction of the total costs when we use shifting will also be higher. The reason of
this is because the average number of trucks corresponds with the costs per truck. So, if
the shifting method decreases the number of average trucks, this will immediately have
a bigger effect on the total average costs when we have a high value for c.

In table 16, we again look to different values for the truck costs, only now for the
seven products data-set. In the table we show the optimal basic cycle time T and the total
average costs TRC. The last two columns give the cost reduction in percentage between
respectively the first two methods and the last two methods.

Table 16: Different values for the truck costs c, basic cycle time and total average costs for
the seven products data-set

Without shifting With Shifting Iterative

c T TRC T TRC T TRC ∆ Costs 1 ∆ Costs 2

500 1.23 e2419.66 1.15 e2191.22 1.19 e2165.30 9.44% 1.18%
800 1.23 e3150.43 1.15 e2798.29 1.19 e2755.84 11.18% 1.52%
1000 1.23 e3637.61 1.15 e3303.00 1.19 e3149.53 11.95% 4.65%
1200 1.23 e4124.79 1.15 e3607.72 1.19 e3543.22 12.54% 1.79%
1500 1.23 e4855.56 1.15 e4214.78 1.19 e4133.76 13.20% 1.92%

We see, as in table 15, that the reduction of the costs is higher when the truck costs are
higher. We can also see that, like in table 15, the truck costs has no impact on the optimal
basic cycle time. If we evaluate the Iterative method, we like to make a nice remark that
for example the total average costs of the Iterative method for c = 1000 is lower than
the total average costs of the basic method for c = 800. So the truck costs are higher,
however with shifting time-lines the total costs are lower. Another remark, the reduction
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in percentage of the total average cost is higher in table 16 than in table 15. In table 16,
we run the seven products data-set, because we have a little number of products the
truck costs are, in comparison with the other costs, very large. So, this will give a bigger
reduction in percentage when we could lose some trucks with help of shifting.

Finally, we want to consider different values for the truck capacity. In the standard
situation, we got W = 24. We will look to some different truck-space values and we will
evaluate the effect on the fill rate of the trucks. The first results are shown in table 17.

Table 17: Different values for the truck-space W, basic cycle time and total average costs

Without shifting With Shifting

W Optimal T Total average cost Optimal T Total average cost Cost reduction

10 2.25 e10219.82 2.25 e10162.36 0.56%
18 2.55 e6550.60 2.25 e6401.16 2.28%
24 2.24 e5296.33 2.25 e5150.03 2.76%
30 2.55 e4787.69 2.25 e4568.80 4.57%
100 2.24 e2640.05 2.25 e2465.22 6.62%

The different value for W has an effect on the optimal value of T, the effect is very small
because the impact of W on T is not very large. How larger the value for W, how lower
the total average costs. The number of average trucks will decrease and this will result
in a large reduction on the costs. We also observe the pattern that for a high value of
W the cost reduction with the shifting method is bigger than for a low value of W. This
means that when the truck capacity is higher, the shifting method works better. We are
interested if the fill rate of the trucks is more optimal for the higher values of W. In table
18, we see the first ten time-periods of the solutions with W = 10, 24 and 100.

Table 18: Number of trucks per time-period after shifting, with different values for the
truck capacity

Time-period

W 1 2 3 4 5 6 7 8 9 10

10 19.00 19.31 18.82 18.89 18.76 19.87 18.71 18.94 18.76 19.36
24 7.99 7.87 7.87 7.91 7.96 7.91 7.96 7.94 7.90 7.95
100 2.00 1.88 1.89 1.92 1.88 1.90 1.95 1.85 1.89 1.95

It is logical that the number of trucks is higher when the truck capacity is low. However,
we also see that there are low filled trucks at the time-period 2 and 10 for W = 10. When
we look to the values of W = 24, we see that this got already very high fill rates, only
a few under the 90%. When we look at the numbers of W = 100, we see that all the fill
rates are a little bit worse, this because it is harder to fill a truck when you have a lot of
space that you do not need.

At last, we will show the results for different truck-space for the seven products data-
set. The last two columns gives the decrease of the total average cost in percentage be-
tween respectively the first two methods and the last two methods.
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Table 19: Different values for the truck-space W, basic cycle time and total average costs
for the seven products data-set

Without shifting With Shifting Iterative

W T TRC T TRC T TRC ∆ Costs 1 ∆ Costs 2

10 1.23 e6073.51 1.23 e6073.51 1.17 e5893.27 0.00% 2.97%
18 1.17 e4161.56 1.17 e4161.56 1.14 e3821.09 0.00% 8.18%
24 1.23 e3637.61 1.15 e3303.00 1.19 e3149.53 11.95% 4.65%
30 1.19 e3149.53 1.23 e2825.64 1.23 e2825.64 10.28% 0.00%
100 1.17 e2029.62 1.23 e2013.68 1.23 e2013.68 0.79% 0.00%

From the table, we can see that when the truck-space is very low, the algorithm of Goyal
with shifting is not effective. However, the Iterative method finds a better solution. We
also see that when the truck-space is high, the improvement by the Iterative method is
low. Also, in the case of a truck-space of 100 pallets, we see that the improvement of any
method is very low.

6.5 Results order heuristic

For the results of the order heuristic, we consider the main data-set. So, we have S =
500, c = 1000 and W = 24. For this heuristic, we expect more orders than with the other
methods. We compare these outcomes and look to cases with lower major setup costs.
Secondly, we compare the outcomes of the cases with different initial stock levels. In the
first situation, the stock levels will all be zero. In our examples, we have a tmax equal
to 365. t is in days and we want to know the ordering for a whole year. For the order
size rate λ, we iterated over the interval zero till five, because the basic cycle time of the
algorithm of Goyal with shifting is equal to 2,23. An order size rate of three gives the
lowest total average costs, so λ = 2.5. 20 shows the total average costs of all the different
methods for the main data-set, including the costs of the order heuristic. In the other
columns, we can see the total average costs more detailed.

Table 20: Compare methods, total average costs of the main data-set

TRC Holding Minor Setup Major Setup Truck

Goyal without shifting e5296.33 e790.91 e562.16 e223.29 e3719.97
Goyal with shifting e5150.03 e774.81 e565.93 e223.29 e3586.00

Order heuristic e6763.32 e847.64 e744.45 e1628.77 e3542.46

We can see from the table that the total average costs are higher for the order heuristic
than for the methods of the modified algorithm of Goyal. One of the big reasons is the
many more orders and this increases the major setup costs as you can see in the fourth
column. In a whole year, the solution of the order heuristic includes 1182 orders. This is
much higher than from the other methods, as is shown in the following table.
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Table 21: Compare methods, number of orders and trucks of the main data-set

Number of orders Average number of trucks

Goyal without shifting 163 8.33
Goyal with shifting 163 8.03

Order heuristic 1182 1.09

The other methods have only 163 orders per year. But, the number of trucks per order
is much higher. For the order heuristic, most of the orders consists of one truck, it is
very rare when there is more than one truck for an order. We can also see that in total,
the order heuristic needs less trucks. When we multiply the number of orders with the
average number of trucks per order, we have the total number of trucks for the whole
time interval. This is respectively 1358, 1309 and 1288. So, there are less trucks needed
with the order heuristic. Because of the major setup costs the total costs are very high. If
we reduce these costs, we get the following results

Table 22: Different values for the major setup costs, with the order heuristic

S Optimal TRC Number of orders Average number of trucks

500 e6763.32 1182 1.09
300 e6111.82 1182 1.09
100 e5460.31 1182 1.09
0 e5134.56 1182 1.09

So from table 22, we can see that the other variables stay constant. While the total average
costs decreases more than three times the reduction of the major setup costs. We also like
to compare the cases with different initial stock levels. For the past problems, we have a
stock level of zero. Now, we consider higher values for the initial stock. In table 23, we
see the results of these cases. The initial stock level is for all the products the same value.

Table 23: Different initial stock levels, with the order heuristic
Stock level Total average costs Number of orders Average number of trucks

0 e6763.32 1182 1.09
5 e6756.76 1185 1.09
10 e6740.04 1182 1.09
50 e6885.35 1166 1.08

100 e7596.26 1112 1.10

From the table, we can see that the total average costs is going down, when we have a
stock level of 5 or 10. However, when we have a initial stock level that is to high, we
see that the total average costs is rising again. The number of orders is going down,
this because you need less orders in the beginning because of the already many items in
stock. The unnecessary high holding costs will be the reason for the increase in the total
average costs. The reason why we have more orders with an initial stock of five than with
an initial stock of zero could be that, the heuristic determines somewhere in the algorithm
that another product will be first out of stock and this will lead to a different order time-
line, which contains more orders. The heuristic is sensible for this kind of things, but big
differences will not occur.
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7 Conclusion

In the introduction of this paper, we define the question: Which benefits are there if we
take in to account shifting time-lines and what is the effect on the optimal solution? After
introducing several methods in chapter 5, we compare the solution of these methods in
chapter 6 and we can conclude that there is a significant effect of the shifting time-lines on
the optimal solution. First, we have shown that if we consider shifting time-lines in the
modified algorithm of Goyal, the optimal solution will have many products that are not
included in the first order. So, the optimal solution uses a lot of the possibility of shifting
the time-lines of the products. We run the method of Goyal, with and without shifting
time-lines. We compared the total average costs and showed that there is a decrease in
costs and number of used trucks.

We also proposed a second method as an extension on the first one. We concluded
that the solution of the algorithm of Goyal with shifting is not optimal in many cases.
However, the solution is not far from a better one. We proposed an Iteration method,
which searched for a solution nearby with lower total average costs. To compare the
results of the three methods, we define an extra data-set. In this example we showed that
the costs reduction is beneficial and that it influences the decision variables of the optimal
solution.

We investigated what the influence of the different variables is on the optimal solu-
tion. We considered different values for the major setup costs, the costs per truck and
the truck capacity. We saw that the improvement of the Iterative method is not very high
with high values for the major setup costs. We showed that the cost per truck is very
important for the total average costs and that a high truck capacity is not working for the
proposed methods. We also looked to the average number of trucks and the fill rate of
these trucks. We saw that the iterative method not only optimizes the fill rate of the last
truck in every order, also there is an equality of the number of trucks over all the orders.
Which is useful when you need to own the used trucks.

At the end, we also give an order heuristic. In this heuristic we do not have a constant
basic cycle time. The computation time of the heuristic is much faster. The computation
time of the order heuristic for the main data-set is less than two seconds, while the com-
putation time of the other methods are close to two minutes. If we want to iterate over
more cases in the Iterative method, we could deal with computation times of multiple
days. The solution of the order heuristic includes many orders. This because the orders
are most of the time one truck. The major setup costs per order results in high total aver-
age costs, however when we lower these costs, the total average costs decrease fast and
the optimal solution is close to the solutions of the other methods.

At the end of our research, we like to conclude that the idea of shifting time-lines is
beneficial and an interesting area which is not discussed many times in the past literature.
For following research, we like to propose more investigation in a method with dynamic
basic cycle times or a faster iteration method to iterate over more possible cases.
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8 Appendix

Table 24: Main data-set
Product j D h s Product per pallet

1 0.58 0.52 19.6 4
2 0.38 1.08 46.7 4
3 0.33 1.65 3.3 4
4 0.63 1.30 45.1 4
5 6.58 0.84 6.4 42
6 0.67 0.80 9.4 4
7 0.92 1.07 24.4 4
8 0.17 0.99 30.0 4
9 4.54 0.63 21.2 1

10 0.17 1.22 17.3 4
11 0.17 1.11 34.5 4
12 0.71 0.73 11.8 4
13 3.08 0.97 38.6 4
14 0.17 0.46 21.1 4
15 0.25 0.29 13.4 4
16 2.96 0.97 50.9 48
17 2.71 0.60 3.2 48
18 2.00 1.11 17.7 42
19 17.38 1.93 21.7 4
20 11.75 1.54 3.0 42
21 0.71 0.34 8.0 4
22 2.21 0.85 32.9 4
23 17.13 1.75 4.7 42
24 1.13 0.51 3.7 4
25 12.67 0.59 23.4 4
26 0.17 1.47 6.1 4
27 0.33 1.55 21.4 4
28 1.33 1.75 4.5 4
29 14.00 1.08 28.3 48
30 7.71 0.92 41.4 42
31 0.50 1.23 16.8 4
32 0.25 0.42 17.4 4
33 1.25 1.59 34.1 4
34 0.25 0.44 8.1 4
35 9.33 0.23 16.9 100
36 67.38 0.91 28.7 42
37 0.17 0.68 11.8 1
38 11.38 1.98 38.5 4
39 3.83 1.15 11.9 42
40 3.50 1.95 1.2 42
41 1.04 1.37 5.9 1
42 19.17 1.76 46.9 42



8 APPENDIX 28

Table 25: Main data-set second part

Product j D h s Product per pallet

43 3.08 1.95 41.4 4
44 10.21 1.01 37.9 4
45 3.25 1.15 37.8 4
46 5.13 0.33 14.9 42
47 1.04 1.36 11.7 4
48 0.75 1.02 27.4 4
49 3.29 0.88 25.6 42
50 5.54 0.60 5.7 4
51 1.33 1.29 3.5 1
52 6.29 1.34 21.9 42
53 77.29 0.58 23.9 4
54 0.17 1.20 47.8 1
55 19.42 0.64 19.0 42
56 14.13 0.97 43.0 4
57 21.88 1.85 20.4 42
58 16.29 1.38 39.4 4
59 23.88 0.70 10.5 4
60 0.29 0.88 32.2 4
61 6.58 1.38 44.9 1
62 2.54 1.51 50.8 4
63 4.92 1.75 42.2 42
64 0.63 0.47 21.5 4
65 1.83 1.03 47.6 42
66 18.71 1.65 44.1 42
67 1.83 1.12 7.4 4
68 12.42 1.23 16.0 42
69 1.46 0.78 47.1 4
70 6.63 1.43 18.4 42
71 3.21 1.41 44.3 4
72 6.29 1.36 39.1 42
73 3.46 1.67 35.3 4
74 4.42 1.03 33.1 42
75 0.79 0.64 4.2 4
76 0.42 1.90 28.4 4
77 0.50 0.44 1.6 4
78 5.83 0.75 41.1 4
79 1.67 0.67 12.2 4
80 20.67 1.76 2.0 4
81 1.75 0.84 35.7 42
82 8.08 1.46 14.8 42
83 0.67 1.76 44.2 9
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Table 26: Main data-set begin shifting time-lines

S = 500, c = 1000 Time-period

Product j k j 1 2 3 4 5 6 7 8

1 4 0 0 1 0 0 0 1 0
2 5 1 0 0 0 0 1 0 0
3 1 1 1 1 1 1 1 1 1
4 4 0 1 0 0 0 1 0 0
5 1 1 1 1 1 1 1 1 1
6 2 0 1 0 1 0 1 0 1
7 3 1 0 0 1 0 0 1 0
8 7 1 0 0 0 0 0 0 1
9 1 1 1 1 1 1 1 1 1
10 5 0 0 0 1 0 0 0 0
11 7 0 0 0 1 0 0 0 0
12 2 1 0 1 0 1 0 1 0
13 2 0 1 0 1 0 1 0 1
14 8 0 0 0 1 0 0 0 0
15 7 0 0 0 0 0 0 1 0
16 2 0 1 0 1 0 1 0 1
17 1 1 1 1 1 1 1 1 1
18 2 1 0 1 0 1 0 1 0
19 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1
21 3 0 1 0 0 1 0 0 1
22 2 1 0 1 0 1 0 1 0
23 1 1 1 1 1 1 1 1 1
24 1 1 1 1 1 1 1 1 1
25 1 1 1 1 1 1 1 1 1
26 3 0 1 0 0 1 0 0 1
27 3 1 0 0 1 0 0 1 0
28 1 1 1 1 1 1 1 1 1
29 1 1 1 1 1 1 1 1 1
30 1 1 1 1 1 1 1 1 1
31 3 0 0 1 0 0 1 0 0
32 8 0 0 0 1 0 0 0 0
33 2 0 1 0 1 0 1 0 1
34 4 0 1 0 0 0 1 0 0
35 1 1 1 1 1 1 1 1 1
36 1 1 1 1 1 1 1 1 1
37 5 0 0 0 0 1 0 0 0
38 1 1 1 1 1 1 1 1 1
39 1 1 1 1 1 1 1 1 1
40 1 1 1 1 1 1 1 1 1
41 1 1 1 1 1 1 1 1 1
42 1 1 1 1 1 1 1 1 1
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Table 27: Main data-set begin shifting time-lines, second part

S = 500, c = 1000 Time-period

Product j k j 1 2 3 4 5 6 7 8

43 1 1 1 1 1 1 1 1 1
44 1 1 1 1 1 1 1 1 1
45 2 1 0 1 0 1 0 1 0
46 2 0 1 0 1 0 1 0 1
47 2 0 1 0 1 0 1 0 1
48 3 0 1 0 0 1 0 0 1
49 2 1 0 1 0 1 0 1 0
50 1 1 1 1 1 1 1 1 1
51 1 1 1 1 1 1 1 1 1
52 1 1 1 1 1 1 1 1 1
53 1 1 1 1 1 1 1 1 1
54 8 0 0 0 0 0 0 0 1
55 1 1 1 1 1 1 1 1 1
56 1 1 1 1 1 1 1 1 1
57 1 1 1 1 1 1 1 1 1
58 1 1 1 1 1 1 1 1 1
59 1 1 1 1 1 1 1 1 1
60 6 1 0 0 0 0 0 1 0
61 1 1 1 1 1 1 1 1 1
62 2 1 0 1 0 1 0 1 0
63 1 1 1 1 1 1 1 1 1
64 4 1 0 0 0 1 0 0 0
65 3 0 1 0 0 1 0 0 1
66 1 1 1 1 1 1 1 1 1
67 1 1 1 1 1 1 1 1 1
68 1 1 1 1 1 1 1 1 1
69 3 0 0 1 0 0 1 0 0
70 1 1 1 1 1 1 1 1 1
71 2 1 0 1 0 1 0 1 0
72 1 1 1 1 1 1 1 1 1
73 1 1 1 1 1 1 1 1 1
74 1 1 1 1 1 1 1 1 1
75 2 0 1 0 1 0 1 0 1
76 3 1 0 0 1 0 0 1 0
77 1 1 1 1 1 1 1 1 1
78 2 0 1 0 1 0 1 0 1
79 2 1 0 1 0 1 0 1 0
80 1 1 1 1 1 1 1 1 1
81 3 0 1 0 0 1 0 0 1
82 1 1 1 1 1 1 1 1 1
83 3 1 0 0 1 0 0 1 0
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