
Bachelor Thesis: Econometrics and Operations Research
Student number: 383549

Date: 03-07-2016

Incorporating random delays into an existing vehicle
schedule: a method comparison
Author: Tjebbe Bodewes1

Supervisor: Judith Mulder1

Co-reader: Chiel van Oosterom1

Abstract
In this thesis we address the problem of adapting an existing schedule to random delays by deciding on how
to allocate available buffer time to different legs of the route and what actions to take in case delay has been
incurred. We build upon the work of Mulder and Dekker (2016), who formulated the problem of deciding on the
actions as a linear program based on a Markov Decision Process and presented a mixed integer programming
formulation for the full problem. They also proposed two exchange heuristics, which compute or estimate the
cost reduction for each possible exchange of buffer between legs and make the best exchange. We propose
several more methods and recommend three of them based on computational experiments. The best slow and
steady method is the exchange heuristic that computes cost exactly. A similar heuristic that does not analyse
every exchange but draws them randomly should be used for fast approximations of an optimum. An exchange
heuristic that does not recompute cost at every iteration, but uses previously computed values, provides the
best balance between solution quality and computation time. In addition, we show that the estimation method is
inaccurate and should be treated with care.

1Erasmus School of Economics, Erasmus University Rotterdam, the Netherlands

Contents

Introduction 1

1 Literature review 2

2 Problem description 3
2.1 Theory of Markov Decision Processes 3
2.2 Recovery actions . 4
2.3 Buffer time allocation . 5

3 Theoretical results 6

4 Heuristics 7
4.1 Simple local search . 7
4.2 Adapted local search . 9

5 Computational experiments 10
5.1 Data . 10
5.2 Schedule optimization 11
5.3 Method comparison . 11
5.4 Extensions . 13

6 Conclusion 16

References 17

Introduction
Scheduling vehicles effectively can lead to drastic cost reduc-
tions and service level improvements in logistical networks.
Unnecessary detours can be avoided by determining in what
order locations of interest should be visited, and by also pro-
viding a time window in which these locations should be
visited one reduces waiting time or problems in transferring
cargo from one mode of transport to another. These schedul-
ing problems are often large and complex, making it difficult
to include stochastic elements, like delays. In reality how-
ever, delays are an important part of logistical operations and
neglecting them can greatly diminish the efficiency improve-
ment gained by scheduling in the first place. The fact that
delay is important to take into account when obtaining a vehi-
cle schedule, but hard to incorporate into scheduling models,
motivates this thesis. For this problem, we analyze how to
incorporate delays into a given schedule, separating this from
the initial scheduling. Firstly, given some initial schedule,
one can allocate buffer time to the various legs of the route.
Secondly, for a final schedule where buffer has been allocated,
one can decide what action should be taken in case delay
is incurred. With this twofold approach, a schedule can be
adapted to delays.

Incorporating random delays into an existing vehicle schedule: a method comparison — 2/17

This thesis is based on the work of Mulder and Dekker (2016).
They address the problem of choosing recovery actions and
allocating buffer time for liner ships, presenting a mixed inte-
ger programming formulation that guarantees optimality and
several heuristics. In this thesis, we will also address the prob-
lem from the perspective of shipping when necessary. This is
mainly because recovery actions between ports are relatively
easy for ships as they are not encumbered by traffic or tracks.
However, we aim to present the methods and results a general
fashion, such that they can also be applied to other modes of
transport.

First we will discuss papers on disruption management in the
literature review, followed by a discussion of the problem at
hand and the theoretical framework required for it in the prob-
lem description section. Here the MIP formulation by Mulder
and Dekker (2016) is also presented, In the next section we
derive some theoretical results on the problem. After this,
we discuss several heuristics in the section on heuristics and
compare their performance in the section on computational
experiments. We also study several other aspects of the meth-
ods and the problem, like whether reliable estimates for the
cost reduction due to exchanging buffer between ports can be
made and what the shadow price of additional buffer time is.
In addition, we discuss a maximum likelihood approach to
estimating the mean computation time in case an algorithm
is terminated prematurely in some cases, due to a time limit
being exceeded. The aim of this thesis is to find out how high
quality solutions of the vehicle schedule recovery problem
with buffer allocation can be obtained efficiently. In particular,
we aim to find out whether the methods provided by Mulder
and Dekker are satisfactory and see if other methods are better.
We also want to recommend a quick method that gives reason-
able solutions, a balanced method that gives good solutions
and a slow method that gives very good solutions.

1. Literature review
Disruption management is a topic that has already been well
studied in some industries, in particular for aviation and rail
transport. An example is Thengvall, Bard and Yu (2000) who
discuss recovering delays for a fleet of aircraft by canceling
flights or by letting delay propagate through the schedule until
it has been fully absorbed. They present an MIP formulation
in which user preferences, such as minimal deviation from
the original schedule, can also be incorporated, and show
that the LP relaxation combined with a rounding heuristic
gives good solutions to the problem. One interesting thing
that they mention, but do not consider further is to look at
disruption management from the perspective of individual
passengers and look at missed connections. Another example
is Walker, Snowdon and Ryan (2005) who address disruption
management on a rail network. They deal with the additional
complication that changing the vehicle schedule also requires
changing the crew schedule and solve these problems jointly.
They give an integer programming formulation for construct-

ing a new schedule based on the old one and show that it solves
the problem in an acceptable amount of time. Naumann, Suhl
and Kramkowski (2011) discuss a stochastic programming
approach to robust vehicle scheduling in public bus transport,
which outperforms both scheduling without buffer times and
allocating fixed buffer times between service trips in terms of
expected cost. They mention that because buffer times cause
more ’planned’ cost, there tends to be little buffer time in or-
dinary schedules and show that expected cost can be reduced
significantly by incorporating buffer time in a clever way.

Schedule recovery for shipping has not been studied exhaus-
tively yet. For an overview of research on liner ship routing
and scheduling from the past 30 years, we refer to Meng,
Wang and Thun (2012). Notteboom (2006) discusses four
main categories of delays in shipping: terminal operations,
port access, maritime passages and chance. On the Asia-
Europe line studied in Notteboom’s paper, terminal operations
are by far the largest cause of delay, accounting for 85% of
schedule unreliability. In the same paper, several recovery
actions are discussed: port swapping, port skipping, deploy-
ing vessels to take over, decreasing the turnaround time in
some ports, or increasing the sailing speed. A more technical
treatment of the Vessel Schedule Recovery Problem (VSRP)
is given in Brouer et al. (2013). In this problem a vessel
incurs delay once and at this point a recovery action should be
picked, such that recovery takes place within a fixed number
of steps on the route. They discuss that container ships are in
some ways similar to aircraft, where ships are like aircraft and
containers are like passengers. As disruption management has
been studied more extensively in aviation than in shipping,
they propose to use similar methods as the aviation industry
does. They also highlight some differences, such as that the
recovery method of delay propagation used for airlines is not
applicable for ships, while the shipping equivalents of vessel
swapping and trip cancellation are port swapping and port
cancellation. They model the problem on a directed graph on
a time-space network and give an MIP formulation. They also
show that the VSRP is NP-hard.

Disruption management for ships is also discussed in Qi
(2015). He mentions the difference between delay like port
congestion, which can be expected, and delay due to extreme
events, like typhoons. The first type motivates incorporating
buffers in the schedule, while the second type motivates the
use of recovery actions. Recovering from delays by increasing
speed and skipping or swapping ports is studied extensively
by Li, Qi and Lee (2015). They derive structural results for
the optimal schedule in case only speeding up is allowed and
formulate this case as a non-linear program. They give a dy-
namic programming algorithm for cases where port skipping
is allowed as well and propose a local search heuristic for
when both port swapping and port skipping is allowed.

Incorporating random delays into an existing vehicle schedule: a method comparison — 3/17

2. Problem description
Consider a single vehicle on a route consisting of N legs,
where each leg consists of a location and the trip to the next
location, but does not include this next location. The planned
arrival and departure times are known for each location, but
there is a positive probability of incurring delays while trav-
eling between locations. The problem at hand is to allocate
available buffer time in advance and to decide what recovery
actions should be taken when delay has been incurred. In
general, possible recovery actions are speeding up, changing
the order in which locations are visited or skipping locations.
We will only treat the possibility of speeding up, but the meth-
ods can easily be extended to include the other cases. The
objective is to minimize the expected cost, consisting of the
cost of delays and the fuel cost. First, some theory on Markov
Decision Processes (MDP) is discussed, as it is the framework
that we will apply to the problem at hand. Then we treat the
problem of choosing recovery actions for a given buffer allo-
cation. In the section thereafter we extend this to finding an
optimal buffer allocation in addition to the optimal recovery
actions.

2.1 Theory of Markov Decision Processes
At the core of the problem at hand is the random nature of
the delays. To find a good schedule, we need a framework
that allows for actions to be chosen in an environment that
involves stochastic elements. A discrete Markov Decision
Process, a generalization of the Markov process, is well suited
for this task. We will now discuss the results on MDP’s that
we require, for a more extensive treatment we refer to Puter-
man (2005) and White and White (1989). For further reading
on normal Markov processes we refer to Ross (2014).

A discrete Markov Decision process is a collection of objects
(T , I, Ai, p(·|i, a), r(i, a)). Here T = {1, 2, . . . , T} is
the set of decision epochs. For our purpose, we consider an
infinite horizon: T = {1, 2, . . . }. In each decision epoch
the MDP is in a state i ∈ I and a decision a ∈ Ai has to
be made. At this point the state changes to some other state
j ∈ I with probability p(j|i, a) and a reward r(i, a) is ob-
tained. We restrict ourselves to cases where I and all sets
Ai are finite (and thus discrete). In MDP’s, one requires a
procedure to choose actions. For this, we use the idea of a de-
cision rule, which corresponds an action to each state at each
decision epoch. A deterministic decision rule takes the form
of a function d : I → Ai. A policy is a set of decision rules
(d1, d2, . . .), giving a decision rule for each decision epoch.
We only consider stationary policies δ = (d, d, . . .) = {d}∞
with the same decision rule in each epoch. Our central ques-
tion is what policy should be used to achieve optimality, given
some optimality criterion. Given some deterministic policy,
let {Xδ

t , t ∈ T } be the Markov process induced by that policy.
Now the reward in decision epoch t is a random variable given
by r(Xδ

t , d(Xδ
t)).

The optimality criterion that we use is the average reward
criterion. In addition to the assumption that we have already
made (r(i, a) and p(j|i, a) not time dependent, and I finite)
we assume that |r(i, a)| ≤M <∞ for all states i and actions
a. Let vδT (i), given by Equation 1, denote the total reward up
to decision epoch T if the MDP starts in state i and policy δ
is used.

vδT (i) = Ei

[
T∑
t=1

r(Xδ
t , d(Xδ

t)

]
(1)

Here Ei means expectation over the distribution of Xδ
t given

that Xδ
1 = i. Let gδ(i), displayed in Equation 2, be the

average reward function given some policy δ and initial state
i.

gδ(i) = lim
T→∞

1

T
vδT (i) (2)

As mentioned before, a stationary policy {d}∞ is followed.
Let Pd denote the transition probability matrix induced by
decision rule d. Its limiting matrix P ∗d exists if I is countable
and is given by Equation 3.

P ∗d = lim
T→∞

1

T

T∑
t=1

P t−1
d (3)

A real square matrix is called (right) stochastic if all its en-
tries are positive and each of its row sums equals one. If
I is countable and P ∗d is stochastic, the limit in Equation 2
exists. That I is countable follows from that it is finite and
we assume that P ∗d is stochastic for all decision rules d. Now
we require a method that finds an optimal policy δ∗ from the
set ∆ of stationary policies. An optimal policy is defined as
in Equation 4. Note that this definition requires gδ(i) to be
constant over all initial states for all δ ∈ ∆. Puterman (2005)
shows that this holds if P ∗d is stochastic for all decision rules
d and the Markov chain implied by a policy δ consists of a
single recurrent class and possibly some transient states for
all δ ∈ ∆. We assume both of these and give a motivation for
the latter in the next section.

δ∗ = arg sup
δ∈∆

{gδ(i)} (4)

Various methods can be used to find δ∗, like value iteration,
policy iteration or linear programming. We will follow the
linear programming approach, as it is most easily related to
the MIP formulation that we present later. Note however that
value or policy iteration are often a more efficient way to find
optimal policies. Puterman (2005) shows that the problem
can be formulated as on the next page.

Incorporating random delays into an existing vehicle schedule: a method comparison — 4/17

max
∑
i∈I

∑
a∈Ai

r(i, a)x(i, a) (5)

s.t.
∑
a∈Aj

x(j, a)−
∑
i∈I

∑
a∈Ai

p(j|i, a)x(i, a) = 0, j ∈ I

(6)∑
i∈I

∑
a∈Ai

x(i, a) = 1 (7)

In this formulation x(i, a) can be interpreted as the steady
state joint probability of being in state i and choosing ac-
tion a, therefore x(i, a) ≥ 0 for all states and actions. Now
the objective function gives the average reward per decision
epoch. The restrictions in Equation 6 function as balance
equations, relating the steady state probabilities to each other,
while Equation 7 ensures that the probabilities sum to 1. As
mentioned, we assume that the MDP that we consider is
unichain, meaning that there is a single class of recurrent
states and a possibly empty set of transient states in every
Markov chain induced by a deterministic, stationary policy.
Puterman (2005) proves that a bounded, optimal basic feasible
solution x∗ exists and that it can be translated into a deter-
ministic stationary policy that satisfies Equation 4. Define the
set Ix∗ =

{
i ∈ I :

∑
a∈Ai x

∗(i, a) > 0
}

. For all i ∈ Ix∗
there exists exactly one a ∈ Ai such that x(i, a) > 0. Now
an optimal policy is given by δ∗ = (dx∗ , dx∗ , . . .), where
dx∗(i) = a if x(i, a) > 0 and i ∈ Ix∗ and arbitrary other-
wise. In other words, we obtain an action for each state that is
recurrent in the Markov chain induced by the optimal policy.

2.2 Recovery actions
For the problem of choosing recovery actions without allocat-
ing buffer, we define the following notation:

L := Legs of the route
D := Set of possible delays
Kl := Set of possible actions during leg l
K := Set of all possible actions, K = ∪l∈LKl

We assumed that the legs of the route are ordered in a circular
manner: after finishing the last leg a vehicle starts the first
again. To make D a finite set, we only consider discrete time
units, instead of a continuum. Additionally, allowed delay
should have an upper bound d̄. The cost of having more de-
lay than d̄ is defined to be very high, such that it is always
cheaper to choose recovery actions such that the probability
of ending up with more delay than d̄ is low. Therefore we
need only a few delays in D which are larger than d̄, such that
D = {d ∈ N | d ≤ d̄ + x}, where x is a small integer. One
can model the problem as an MDP, with states I = L x D
consisting of both the leg and the current delay. In each state
i ∈ I, an action k ∈ Ki is chosen. Here Ki is the set of
available actions in state i. In our model, it is not necessary
to have different actions available at different delays, so if

i = (l, d), Ki = Kl. There is a cost associated with being in
a state, the delay penalty, and a cost associated with choosing
a certain speed in that state. Taking the sum of the delay cost
and the fuel cost, we define Cik as the total cost of choosing
action k in state i.

Let pijk be the probability of transitioning from state i to state
j if action k is chosen and let p̄iq be the probability that q
time units of additional delay are incurred when the Markov
chain is in state i = (p, d). Let gk be the gain with respect
to the schedule in time units of recovery action k and bl be
the number of buffer time units on leg l. The Markov chain
moves from state i = (l, d) to state j = (l′, d′) if l′ is the leg
after l and d′ = d + q − gk − bp, where q is the delay. The
transition probabilities in case l′ is the leg after l are defined
as Equation 8 if d′ > 0 and as Equation 9 if d′ = 0.

pijk = p̄iq with q = q = d′ −min{d, d̄}+ gk + bl (8)

pijk =
∑
q∈D

p̄iq with D = {q | d+ q − gk − bl ≤ 0} (9)

Define the set of decision epochs as T = {1, 2, . . . }. The
MDP is now (T , I,Ki, pijk,−Cik). We assume that all
Markov processes generated from this MDP by a policy are
unichain (single class of recurrent states and a possibly empty
set of transient states). Solving for the steady state proba-
bilities for a number of policies shows that this assumption
seems to hold. We will not prove that it holds, but give a brief
argument. First, you can reach any leg from any other leg with
positive probability in a finite number of steps due to the cir-
cular nature of the route. As for the delay, in some cases you
gain more time with respect to your schedule than the average
delay, but you cannot have less than zero delay. In these cases
the process will mostly be confined to the states with low
delay and never reach certain states with high delay. On the
other hand, if the expected delay is at least as much as the gain,
the process will mostly be confined to states of high delay and
never reach certain states with low delay. Because whether
two states communicate only depends on whether one can
move from the delay of one state to the delay of the other state
and the process tends to drift to high or low delay, depending
on the policy, it is unlikely that there are two separate classes
of communicating states. This gives some justification for the
unichain assumption. Let πik = P (state = i and action = k)
be the long run steady state probabilities. One can now for-
mulate the problem as a linear program:

min |L|
∑
i∈I

∑
k∈Ki

Cikπik (10)

s.t.
∑
i∈I

∑
k∈Ki

πik = 1 (11)

∑
k∈Kj

πjk −
∑
i∈I

∑
k∈Ki

πikpijk = 0 j ∈ I (12)

πik ≥ 0 i ∈ I, k ∈ Ki

Incorporating random delays into an existing vehicle schedule: a method comparison — 5/17

The objective function in Equation 10 is the expected cost
for the full route. The part with the double summation is
the average cost per decision epoch and in traversing the
full route, one has exactly |L| decision epochs. The mean-
ing of the restrictions is the same as those in the general
LP formulation for MDP’s, presented in the previous sec-
tion. The optimal solution obtained from this formulation can
be translated to a deterministic decision rule in the manner
described previously. As for the size of the problem, there
are
∑
i∈I |Ki| real variables and |I| + 1 constraints. When

only considering speeding up, for state i = (l, d) we have
Ki = {t ∈ N : dla ≤ t ≤

dl
b }, with a and b the maximum and

minimum speed respectively and dl the distance to be traveled
in leg l. Therefore |Ki| =

⌊
dl
b

⌋
−
⌈
dl
a

⌉
, independent from the

delay in state i. In case this would constitute an empty set
(di too small), one action can be added, in which the vehicle
travels at minimum speed. Ignoring this, the total number of
variables can thus be written as |D|

∑
l∈L
(⌊
dl
b

⌋
−
⌈
dl
a

⌉)
.

2.3 Buffer time allocation
Intercontinental liner shipping routes are usually serviced
once a week (see for example Notteboom (2006, p. 22)), but
the minimum amount of time necessary to visit all ports is
in general not an integer number of weeks. Therefore, the
scheduled time is often rounded up to be an integer number of
weeks, meaning that there is more time available than strictly
necessary. This time is called buffer time and therefore be-
sides choosing recovery actions when delay has been incurred,
it is possible to allocate this buffer time to the legs. For other
modes of transport, buffer time could be made available delib-
erately. As the allocating is done in advance, the buffer time
allocation needs to be independent of the realized delay. This
means that one cannot treat these buffer times in the same
way as the recovery actions in an MDP framework. Mulder
and Dekker (2016) presented a mixed integer programming
formulation for this problem, based on the linear program
presented earlier. Following their notation, I introduce the
following additional sets:

B := Set of possible amounts of buffer times
Ai := Set of possible actions in state i of the new MDP
A := Set of possible actions in the new MDP

As an action will now consist of both a recovery action and a
buffer time, it follows that Ai = Ki x B, meaning that every
action a ∈ A is a pair a = (k, b). Let M be the total amount
of buffer time available for the entire route and let Bb be the
number of time units in buffer b ∈ B. Finally, if a = (k, b),
let pija be defined in the same way as pijk, but with ga instead
of gk. In this case, ga + bl denotes the time gain with respect
to the original schedule without buffer allocation, due to both
the recovery action k and the buffer time b. The problem at
hand can be formulated as follows:

min |L|
∑
i∈I

∑
a∈Ai

Ciaπia (13)

s.t.
∑
i∈I

∑
a∈Ai

πia = 1 (14)

∑
a∈Aj

πja −
∑
i∈I

∑
a∈Ai

πiapija = 0 j ∈ I (15)

∑
l∈L

∑
b∈B

Bbylb ≤M (16)∑
b∈B

ylb = 1 l ∈ L (17)

∑
d∈D

∑
k∈K(pd)

π(ld),(kb) =
ylb
|L|

l ∈ L, b ∈ B (18)

πia ≥ 0 i ∈ I, a ∈ A
ypb ∈ {0, 1} p ∈ P, b ∈ B

The objective function and first two restrictions have been
explained earlier. An additional binary decision variable ylb
is introduced, which is one if buffer b is allocated to leg l
and zero otherwise. Equation 16 ensures that no more than
the total available buffer time is allocated, while Equation 17
makes sure that only a unique buffer time is chosen for each
leg. Equation 18 enforces that a certain buffer time ’action’
b can only be taken on leg l if that amount of buffer time
has been allocated to this leg. The equality in this restriction
holds because the ship is in each leg with equal probability.
Besides the variables and constraints that were also in the
LP formulation, an additional |L||B| integer variables and
1 + |L|+ |L||B| constraints appear in this formulation.

Incorporating random delays into an existing vehicle schedule: a method comparison — 6/17

3. Theoretical results
Number of possible buffer allocations
To motivate the extensive treatment of heuristics in the next
section, I will now discuss an aspect of the computational
complexity of the problem at hand. By considering the total
number of buffer configurations, one sees that enumeration
is not feasible. Each buffer allocation is a specific way of
allocating M buffer units to N = |L| bins, where the order
of allocation is not important in a combinatorial sense and
where multiple buffer units can be allocated to the same bin.
This is a clear case of a combination with repetition. The
total number of possibilities is therefore given by Equation 19.
This can also be seen in the following way: if zl is the amount
of buffer allocated to port l, then there exists a one-to-one
relationship between the set of feasible buffer allocations and
the set of non-negative integer solutions to the Diophantine
equation z1 + · · · + zN = M . It is known that the number
of such solutions is given by Equation 19 and the number of
feasible buffer allocations is the same due to the one-to-one
relation.(
M +N − 1

M

)
=

(
M +N − 1

N − 1

)
=

(M +N − 1)!

M !(N − 1)!
(19)

By using Stirling numbers of the first kind sij (see for example
Abramowitz and Stegun, 1972) we can expand a binomial
coefficient around a fixed point n0 as in Equation 20, with the
coefficients of the polynomial given by Equation 21.(

n

k

)
=

k∑
i=0

ci(n− n0)i (20)

ci =

k∑
j=i

nj−i0

(
j

i

)
sij
k!

(21)

This shows that a binomial coefficient grows polynomially in
n if k is considered to be fixed. Given Equation 19, this means
that the number of feasible buffer allocations is polynomial in
N if M is fixed, or polynomial in M if N is fixed (due to the
property of binomial coefficients that

(
n
k

)
=
(
n

n−k
)
).

However, polynomial growth in the numeric value does not
mean polynomial complexity. A computational complexity
of O(f(n)) means that the number of computations grows
(asymptotically) proportional to f(n), with n the number of
bits required to represent the input. If we want to represent
a number x in binary, this takes n = O(log2(x)) bits. We
can then write x =

∑n
i=0 bi2

i for some set of coefficients
bi ∈ B. This means that x = O(2n). Therefore, even if the
number of computations is polynomial in the input, O(xk),
it is exponential in the number of bits, O(2kn). Garey and
Johnson (1978) noted this problem and named algorithms of
which the computation time grows polynomially in the nu-
meric value of the input ’pseudo-polynomial’. This means
that if we consider either N or M to be a fixed value instead
of part of the input of the problem, the number of MDP’s that

have to be solved grows pseudo-polynomially in the other pa-
rameter. It is known that MDP’s can be solved in polynomial
time (see for example Papadimitriou and Tsiksitlis, 1987).
This means that enumeration would have pseudo-polynomial
complexity if either the number of legs or the total amount of
buffer is fixed. In Table 1 we display the order of magnitude of(
M+N−1

M

)
for some values of M and N . We can see that for a

fixed N or M , the number does not seem to grow very rapidly
in the other parameter. On the other hand, considering that
an MDP would have to be solved for each possible allocation,
enumeration is clearly not feasible in practice.

N\M 5 10 15 20
5 1E+02 1E+03 4E+03 1E+04
10 2E+03 9E+04 1E+06 1E+07
15 1E+04 2E+06 8E+07 1E+09
20 4E+04 2E+07 2E+09 7E+10

Table 1. Number of M -combinations from N with repetition

Cost of actions
In determining the cost of specific actions for computational
experiments, we will assume that a vehicle moves at constant
velocity. It seems intuitively correct that this gives the lowest
fuel cost, but we will now show that it is indeed reasonable
to assume. This requires some other assumptions on the
fuel cost per hour of the vehicle. The first is that the cost
depends only on the speed and not on position or time, the
second is that the cost is increasing in the speed and the third
is that the cost is convex in the speed. We want to choose
speed as a function of time such that total cost for a leg is
minimized. Mathematically, let the position of the vehicle
during a specific leg as a function of time be denoted by
x(t) in a reference frame such that x(0) = 0. Choosing
an action such that T time units are allocated to this leg is
equivalent to stating that x(T) = d, where d is the traveling
distance to the next location. We take velocity as the time
derivative of position ẋ(t), using Newton dot notation, and
assume ẋ(t) > 0 ∀t ∈ [0, T]. From now on, the argument t in
ẋ(t) is dropped for the sake of brevity. Let f : R+ → R+ map
velocity to fuel cost per hour, where it holds that f ′(ẋ) > 0
and f ′′(ẋ) > 0 for ẋ > 0. Taking the functional J [x] as the
total cost of sailing the leg of interest, we can formulate the
problem as follows:

min J [x] =

∫ T

0

f(ẋ)dt (22)

s.t. x(0) = 0, x(T) = d

We apply the Euler-Lagrange equation (see for example Brinkhuis
& Tikhomirov, 2011, p. 478) given by Equation 23. Any sta-
tionary point of Equation 22 should satisfy this equation for
all t ∈ [0, T]. The first term is zero, as f does not explicitly
depend on position. As f also does not depend on time ex-
plicitly, the partial derivative in the second term reduces to an
ordinary derivative, displayed in Equation 24.

Incorporating random delays into an existing vehicle schedule: a method comparison — 7/17

Applying the chain rule, we obtain that any stationary point
of this problem must satisfy Equation 25.

∂f

∂x
− d

dt

∂f

∂ẋ
= 0 (23)

⇒ d

dt
f ′(ẋ) = 0 (24)

⇒f ′′(ẋ(t))ẍ(t) = 0 ∀t ∈ [0, T] (25)

As we assumed f ′′(ẋ) > 0, this equation is only satisfied
for all t ∈ [0, T] if ẍ(t) = 0, implying that ẋ(t) = a and
x(t) = at + b. Applying the boundary conditions, we find
that x(t) = d

T t. Therefore, traveling at a constant speed of d
T

is the only stationary point of the optimization problem given
above. We cannot conclude that it is a global minimum, as
the Euler-Lagrange equation is only a necessary condition.
Proving that this solution is a global minimum is beyond the
scope of this thesis, but a practical argument can be made
that sailing at a constant speed d

T is indeed optimal for a fuel
consumption that is increasing and convex in speed. Total
displacement is the area under the velocity curve, which has
to remain d. Therefore setting speed lower than d

T during
some time requires it to be greater during some other time.
Because f ′(ẋ) > 0 the former leads to lower cost, while the
latter leads to higher cost. However, because f ′′(ẋ) > 0 the
cost decrease is smaller than the cost increase, meaning that
deviating from constant speed should increase overall cost.

4. Heuristics
As shown in the previous section, finding recovery actions
given a buffer allocation can be solved efficiently as a lin-
ear programming problem. However, if we also consider the
problem of allocating buffer we obtain a mixed integer pro-
gramming problem. It is known that integer programming
decision problems are NP-complete and therefore integer op-
timization in general is NP-hard (see for example Garey and
Johnson (1979)). It seems unlikely that an efficient method
that guarantees optimality exists for this problem. Therefore
we will present a number of heuristic methods for approxi-
mating an optimal buffer allocation. First I will discuss two
straightforward local search algorithms, that iteratively im-
prove some initial buffer allocation. Then I will go into some
possible adaptations of these heuristics, to either decrease
their computational complexity or to increase the probability
of obtaining a global optimum.

4.1 Simple local search
Local search algorithms are heuristic methods for finding so-
lutions minimizing some criterion in a finite solution space.
They improve upon a current solution by searching for better
solutions in its neighborhood. For an extensive treatment of
the use of local search heuristics in combinatorial optimiza-
tion, we refer to Lenstra (1997) These methods can be used on
a wide variety of problems, as they require few assumptions
and are easy to implement. On the other hand, because they

only search the neighborhood of a solution, they are sensi-
tive to getting stuck in a local minimum and also require the
’neighborhood’ of a solution to be defined in the first place.
An additional issue is mentioned by Johnson, Papadimitriou
and Yannakakis (1988), who point out that there are classes of
problems for which even local optimality of solutions cannot
be determined in polynomial time. This can also occur if the
neighborhood of a solution is inconveniently defined. When
we propose some heuristics that improve upon simple local
search, we will try to circumvent these issues.

For the buffer allocation problem we consider a b-exchange
local search heuristic, where two solutions are neighbors if
and only if one can be obtained from the other by exchanging
b units of buffer time between two legs. Initial solutions
are randomly generated from a uniform distribution over all
possible buffer allocations, using algorithm 1. We will now
discuss the Buffer Exchange Heuristic (BEH) and the Value
Iteration Heuristic (VIH) as proposed by Mulder and Dekker
(2016).

Initialize empty allocation;
for i = 1 to M do

Generate X as discrete U(1,N) random variable;
Increment buffer in leg X by 1;

end
Return allocation;
Algorithm 1: Generating random buffer allocations

Buffer Exchange Heuristic
The BEH is a steepest-descent method, that considers all
neighbors b-exchange neighbors of the current solution and
moves towards the neighbor that gives the biggest cost de-
crease, if one exists. If no neighbor with lower cost than the
current solution exists, b is decreased or, if b is already 1, the
algorithm terminates. The cost is computed by solving an
MDP for a given buffer allocation. In algorithm 2 we display
a pseudo-code for the BEH, where bmax denotes the maxi-
mum buffer in a single port (possibly different from the total
amount of buffer M). We take a 2-permutation of ports be-
cause we want to exchange buffer between different ports (no
repetition) and exchanging from port x to port y is different
from exchanging from port y to port x (order is important). In
case a b-exchange is not possible because the port from which
buffer is removed has less than b units, the cost should be +∞.
In each iteration N(N − 1) + 1 MDP’s have to be solved,
increasing quadratically in the number of legs (implying a
pseudo-polynomial running time). The size of the MDP’s
also grows as the number of legs increases (remember that the
number of variables contained a summation over legs and the
number of constraints is linear in the number of states, which
is linear in the number of legs). Therefore, one can expect
computation time to be heavily influenced by the number of
legs.

Incorporating random delays into an existing vehicle schedule: a method comparison — 8/17

Data: Feasible buffer allocation;
Set b to 2k with k = blog2(bmax)c;
Set current allocation to given allocation;
while b ≥ 1 do

Compute cost of current allocation;
Set best cost to current cost;
Set best allocation to null;
for each 2-permutation of ports do

Exchange b buffer units between the two ports;
Compute cost of new allocation;
if new cost < best cost then

Set best cost = new cost;
Set best allocation to the new one;

end
end
if best allocation 6= null then

Set current allocation to best allocation;
else

b = b
2 ;

end
end
Return current allocation;

Algorithm 2: Buffer Exchange Heuristic

Value Iteration Heuristic

The most problematic part of the BEH is that in each iteration
a large number of MDP’s have to be solved. Mulder and
Dekker proposed a way of estimating the cost after changing
an allocation slightly, using the value function. The value
function is a mapping v : I → R, mapping each state to the
expected cost if one were to start in that state and follow an
optimal policy from that point onward, up until the last leg of
the route. This cost consists of the cost of being in the current
state, the cost of taking the optimal action in this state and
the expected cost for the rest of the tour. Therefore the value
function is as given in Equation 26 for all states up until the
states corresponding to the last leg. For states corresponding
to the last leg, the value function is just vi = Cik∗(i), where
k∗(i) denotes the optimal action in state i. Even though the
value function originates from dynamic programming, back-
ward induction cannot be used in a straightforward manner
to determine the optimal recovery actions. This is due to the
circular nature of the route: in the states corresponding to the
last leg one requires the value function to be known for the
states corresponding to the first leg. For our purpose, we de-
termine the optimal actions by solving the MDP using linear
programming and translate the solution to a value function.
Alternatives would be more sophisticated implementations
of the dynamic programming concept, like value- or policy
iteration (see Puterman, 2005).

vi = Cik∗(i) +
∑
j∈I

pijk∗(i)vj (26)

This value function can be combined with the following in-
sight: if an additional unit of buffer is allocated to a leg,
two things may happen. Either the time allocated to that
leg is increased by one, decreasing cost in the current leg,
or the conditional distribution of the delay in the next leg
shifts towards zero by one, decreasing cost in the future. Let
k′(i) = k∗(i) + 1, where k∗((l, d)) is the optimal amount
of time allocated to leg l with the current buffer allocation,
given that one has delay d when starting this leg. We set
Cik = ∞ for all k′(i) 6∈ K(i) and vl,−1 = vl,0 for all l ∈ L.
If j = (l, d), define j−1 = (l, d−1). If the value function for
the current allocation is known, v+

i is an estimate of the value
function for state i after adding one extra unit of buffer in the
leg associated with that state. It is given by Equation 27. By
taking s+

i = vi−v+
i in Equation 28 we get the corresponding

estimated cost reduction, which requires less operations to
compute as some terms cancel out. This is also due to that the
transition probabilities are not updated to match k′(i) In these
equations, let k′ and k∗ be understood to mean k′(i) and k∗(i)
for ease of notation.

v+
i = min{Cik′ +

∑
j∈I

pijk∗vj , Cik∗ +
∑
j∈I

pijk∗vj−1}

(27)

s+
i = max{Cik∗ − Cik′ ,

∑
j∈I

pijk∗(vj − vj−1)} (28)

Now set k′(i) = k∗(i) − 1 and vp,dmax+1 = vp,dmax + Cp,
where Cp is the penalty cost per unit delay exceeding the
maximum buffer. The estimated (negative) cost reduction s−i
of allocating one less unit of buffer to the leg corresponding
to i is given by Equation 29

s−i = max{Cik∗ − Cik′ ,
∑
j∈I

pijk∗(vj − vj+1)} (29)

Up to now we only spoke about cost reduction per state, but
buffer allocation is done per leg. To compute the cost reduc-
tion per leg, the distribution over states is required. More
precisely, if S+

l is the cost reduction of adding one unit of
buffer to leg l, it is given as in Equation 30. S−l is defined in
a similar manner.

S+
l =

∑
i∈I

P (state = i | leg = l)s+
i (30)

Denote the conditional probability in this equation by p(i|l).
In computing the value function of the current allocation
an MDP has already been solved using linear programming.
The required probabilities can be retrieved from its solution.
Remember that πik = P (state = i and action = k) and that
P (leg = l) = 1

|L| . Therefore p(i|l) is given as in equation
Equation 31.

p(i|l) =

{
|L|
∑
k∈K(i) πik if ∃d ∈ D : i = (l, d)

0 otherwise
(31)

Incorporating random delays into an existing vehicle schedule: a method comparison — 9/17

Using these probabilities, S+
l and S−l can be computed. The

net cost reduction achieved by transferring one unit of buffer
from leg x to leg y can therefore be estimated by S+

y + S−x .

The cost reduction is not computed exactly because neither
the transition probabilities nor the distribution over states is
updated. On the other hand, with this method the cost reduc-
tion of exchanging buffer can be estimated without solving an
MDP, as long as the value function for the current allocation
is known. This means that instead of solving N(N − 1) + 1
MDP’s per iteration, only one needs to be solved (to deter-
mine the value function and optimal actions). Therefore a
buffer exchange algorithm that uses the value function can be
expected to work significantly faster than the BEH. Mulder
and Dekker called this method the Value Iteration Heuristic
(VIH) and it is presented in algorithm algorithm 3. Besides
the cost estimation, there are two more differences with the
BEH. The first is that in the VIH only 1-exchanges are con-
sidered, as otherwise the costs cannot be estimated accurately.
The second is that the VIH uses a different stopping criterion.
Instead of only making the best exchange if it is profitable,
this exchange is even made if it leads to a cost increase. The
solutions are stored and if the algorithm cycles and comes
back to a solution that has already been considered, the algo-
rithm terminates. In the algorithm we use ’saving’ instead of
’cost reduction’ for the sake of brevity.

Data: Feasible buffer allocation
Initialize empty list of solutions and their costs;
Set current allocation to the given one;
while current allocation 6∈ solutions do

Add current allocation and its cost to solutions;
Solve MDP for current allocation;
Compute value function for current allocation;
Compute delay distribution for current allocation;
Set best allocation to null;
Set best saving to −∞;
for each 2-permutation of ports do

Compute saving of exchanging 1 buffer unit;
if new saving > best saving then

Set best saving = new saving;
Set best allocation to the new one;

end
end
Set current allocation to best allocation;

end
Return solution with lowest cost;

Algorithm 3: Value Iteration Heuristic

4.2 Adapted local search
Both of the methods discussed above were shown by Mulder
and Dekker to give good solutions in far less time than the
MIP formulation. However, neither are without flaw: the BEH
is not very fast, while the VIH potentially leads to solutions
that are far from the global optimum. Because both methods
use local search, they are sensitive to local minima. I will now
present several ways to improve upon the simple local search
methods. For the BEH this will mainly be about decreasing
the computation time, while for the VIH the focus lies on
improving the quality of the solutions without compromising
the running time too much.

Adapted buffer exchange
The main problem with the BEH is that in each iteration a large
number of MDP’s have to be solved. On this matter one might
wonder whether it is necessary to solve a number of MDP’s
that is quadratic in the number of legs after each exchange.
The idea behind the adapted buffer exchange heuristic (ABEH)
is that for each value of b the saving is computed and stored
once for each port combination. After this, only those that
were found to give a cost reduction are considered in further
iterations. In the first iteration, the exchange that gave the
largest cost reduction is made. In the second iteration, the
exchange with the second largest cost reduction is considered
and an MDP is solved to see whether this would still lead to
a cost reduction. If it does, the exchange is made, otherwise
the next best exchange is considered. This goes on until there
are no more positive savings in the list, at which point b is
set to b

2 . This means that O(N2) MDP’s have to be solved
for each value of b. Therefore the total number of MDP’s to
be solved is in O(kN2), where k = blog2(bmax)c. Compare
this to the normal BEH, which has complexity O(N2) for
each iteration, while the number of iterations could be very
large. As MDP’s can be solved in polynomial time, the ABEH
has pseudo-polynomial running time.

Stochastic buffer exchange
Even though the ABEH has to solve less MDP’s, it still has
to solve O(2kN2). This is computationally intensive and not
strictly necessary. Instead of trying all combinations of legs
and selecting the best, one could also try random exchanges
until one is found that gives a cost reduction. The advantage is
also that instead of taking b to be decreasing with time, it can
also be generated randomly, reducing the probability of get-
ting stuck in a local minimum. This motivates the stochastic
buffer exchange heuristic (SBEH). Given some initial alloca-
tion, it randomly generates a 2-permutation from the legs and
a b and solves an MDP to find if exchanging b from one port
to the other leads to a cost reduction. If it does, this exchange
is accepted, the current allocation is updated and the process
repeats. Each 2-permutation from the legs is equally likely
to be drawn and the b is drawn uniformly from zero to the
amount of buffer in the leg from which it will be removed, to
guarantee that all ports have a non-negative amount of buffer.

Incorporating random delays into an existing vehicle schedule: a method comparison — 10/17

The algorithm terminates if no improvement has been found
for a certain number of iterations. An analysis of the com-
plexity is less straightforward here, as the algorithm is proba-
bilistic. An observation that can be made is that the running
time per iteration of this algorithm does not (directly) depend
on the number of legs, as opposed to all previously discussed
algorithms.

Simulated annealing
The SBEH described above works quickly, but due to its hill-
climber nature it might be prone to getting stuck in a local
minimum. To reduce the probability of this happening, one
could also accept worse solutions with a positive probability.
If this is done in a particular way, it is called simulated an-
nealing, as first described by Kirkpatrick and Vecchi (1983)
and explained extensively as a method for operations research
by Eglese (1990). Simulated annealing is based on physical
annealing, slowly cooling molten material such that it gets to
settle in a state of low energy (like a crystal). If the material
is cooled too fast, the molecules do not get enough time to
rearrange into a crystalline structure. This is because there are
many ’local minima’ for the molecules, that require energy
to get out of. This energy is only available if the tempera-
ture is sufficiently high. For our purpose, this means that we
start of with a high probability of accepting a worse solution
(high temperature), but that this slowly decreases according
to an annealing schedule, until at a very low temperature the
method becomes equivalent to the stochastic buffer exchange
heuristics.

In each iteration, a single possible exchange is drawn, the cost
reduction is evaluated by solving an MDP and the exchange
is accepted or rejected. Besides the aspects already described
in the section on SBEH, one requires the acceptance prob-
abilities and the temperature function (annealing schedule)
to be specified. Let δ denote the change in cost due to the
proposed exchange. If δ < 0, the exchange reduces cost
and is always accepted. If δ > 0, the exchange is accepted
with probability e−

δ
T . This distribution is mentioned by many

authors, including Eglese, because of its simplicity and its
interpretation in thermodynamics and statistical mechanics.
It is very similar to the Boltzmann factor e−

E1−E2
qT , which

is the non-normalized probability that a physical system is
in a state with energy level E1 instead of one with energy
level E2, where q is the Boltzmann constant. We choose a
simple annealing schedule, where the temperature in the kth
iteration is given by Tk = αkT0, with T0 the initial temper-
ature. The algorithm terminates when Tk falls below some
predefined threshold and returns the best solution found in
all iterations. This implies that the algorithm always does
k =

⌈
logα(T−1

0)
⌉

=
⌈

log2(T0)
log2(α−1)

⌉
iterations. Considering α

to be fixed, the number of iterations is inO(n), where n is the
number of bits required to represent T0. As 1 MDP is solved
in each iteration this algorithm has polynomial running time
in the number of bits required to represent T0.

Multi-start value iteration
A commonly applied method to reduce the probability that a
local search method gets stuck in a local minimum is to run
the algorithm for more than one starting point, after which
the best solution out of all solutions is chosen. One can try to
improve the quality of the solutions found by the VIH. The
complexity grows linearly in the number of starting points, as
for each starting point an optimization using the VIH has to
be done.

5. Computational experiments
I will now test the methods described above using a combi-
nation of real data and randomly generated cases. The real
data is largely based on the data described by Mulder and
Dekker, on the ME1 route in September 2012 of the Maersk
Line network.

5.1 Data

Port Distance (nmi) Sailing time (hr)
Jebel Ali 1329 60
Jawaharlal 443 20
Mundra 1122 52
Salalah 1553 68
Jeddah 778 36
Suez Canal 2283 100
Algeciras 1476 68
Felixstowe 156 8
Antwerp 366 16
Bremerhaven 283 16
Rotterdam 3829 168
Suez Canal 395 20
Aqaba 656 32
Jeddah 2648 116

Table 2. Route characteristics

The route that we use is given in Table 2. The first column is
the name of the port in a leg (from which the ship departs),
while the second column contains the distance in nautical
miles (1 nmi≈ 1.85 km) obtained from SeaRates (2015). The
sailing time given in the third column is under the assumption
that the ship sails at 23 knots (nmi/hr) and is rounded to a
multiple of four. This is because we discretize time to units
of four hours. Because liner shipping times are usually in the
order of days or weeks, four hour blocks seem reasonable. We
take the sailing time in the third column to be the ’default’
schedule. Recovery actions and buffer allocations are made
with respect to this schedule. Delay is capped at 20 time units
(80 hours) and a total of 28 time units (112 hours) can be
allocated as buffer time. For the ships, we assume a minimum
and maximum speed of 12 and 23 knots respectively. For fuel
cost in US dollar per day, we use the formula given by Brouer
et al. (2014), displayed in Equation 32.

Cf (v) = f̄ ∗ pbunker(
v

v̄
)3 (32)

Incorporating random delays into an existing vehicle schedule: a method comparison — 11/17

In this formula, f̄ denotes the fuel consumption of the ship
in ton per day when sailing at design speed, v̄ the design
speed of the ship in knots and pbunker the bunker price in US
dollars per ton. From Brouer et al, we obtain values for these
parameters, using pbunker = $600 per ton, v̄ = 16.5 and
f̄ = 82.2. Using these, the cost for a leg can be determined
if the time allocated to it is known and ships are assumed to
sail at constant speed. The cost Cif (ti) in US dollar of sailing
the distance di of leg i in ti hours is given in Equation 33.
Note that this requires translating the blocks of time back into
actual hours.

Cif (ti) = f̄ ∗ pbunker(
di

ti ∗ v̄
)3 ∗ ti

24
(33)

The cost per time unit of delay is taken to be $10,000, imply-
ing a cost of $2,500 per hour. The cost of each time unit of
delay that exceeds the maximum delay is taken to be $100
million. We take the default delay on leg i to follow a discrete
uniform distribution between 0 and 2 +

⌊
di

800

⌋
.

5.2 Schedule optimization
First we find an optimal schedule for the route given above,
using the MIP formulation. The optimized costs are just over
$3.93 million and the optimized schedule is found by the
CPLEX MIP solver in 1414 seconds. The schedule is given
in Table 3.

Leg
Buffer
(hr) Delay (hr)

Min sailing
time (hr)

0 4 ≥8
Jebel Ali 12 68 64 60 60
Jawaharlal 8 24 20 20 20
Mundra 4 52 52 52 52
Salalah 12 76 72 68 68
Jeddah 4 36 36 36 36
Suez Canal 8 104 100 100 100
Algeciras 12 76 72 68 68
Felixstowe 4 8 8 8 8
Antwerp 8 20 16 16 16
Bremerhaven 4 16 16 16 16
Rotterdam 12 172 168 168 168
Suez Canal 8 24 20 20 20
Aqaba 4 32 32 32 32
Jeddah 12 124 120 116 116

Table 3. Buffer and sailing times for various delays under the
optimized schedule

5.3 Method comparison
To compare the performance of our methods, we generated 70
test cases. Each of these had the same route as discussed be-
fore, but for each leg a discrete random U(−1, 1) disturbance
on the upper bound of the delay distribution was generated.
Each case was solved using the MIP formulation, the BEH,
the VIH with 1, 5 and 10 initial points, the ABEH, simulated

annealing (SA) and the SBEH. For each test case, the com-
putation time and the objective value of the obtained solution
were recorded for all methods. It is important to note that
the solution time also included any time required to build the
model. All algorithms were capped at 3600 seconds, meaning
that the computation times are right censored. Only the MIP
formulation actually exceeded the 3600 second limit, meaning
that it was terminated before finding an optimal solution. The
costs are those required to complete a single full tour. Besides
this 3600 second time limit, a number of other parameters had
to be chosen, which we will discuss now.

Parameter settings
First of all, the optimality criterion for the MIP solver was
that the gap between the best lower bound and the best upper
bound was at most 0.1%. We also used the fact that ran-
dom integer feasible solutions to the problem could be easily
generated by providing the solver with 50 random initial al-
locations to start a branch and cut procedure from. The BEH
and VIH do not require any parameters to be set, but the ini-
tial solutions were generated as mentioned before, with each
possible allocation being equally likely. The ABEH does not
require any parameters either, but an important detail is that
all exchanges that were found to give a cost reduction at the
start are analyzed. It might be worthwhile to consider other
stopping criteria, like a certain number of iterations without
improvement or considering all exchanges again (but ordered
from largest to smallest cost reduction as found at the start).
For simulated annealing, trial and error led to a parameter
setting of T0 = 10000 and α = 0, 99. The algorithm termi-
nated if the temperature fell below 1. Finally, for SBEH the
termination criterion was if 30 candidate exchanges in a row
did not lead to a cost reduction.

Absolute performance
We will now look at the absolute performance over all cases
of the methods separately. In Table 4 we report some of the
key statistics on the methods. In the first row we display
the average time required to either come to a solution or to
terminate if the timer hits 3600 seconds. In the second row
the coefficient of variation of this same measure is reported
(the coefficient of variation is defined as S

X̄
, where S is the

sample standard deviation and X̄ is the sample mean). The
latter is used as a measure of predictability of the computation
time. We can see that in general the VIH-1, VIH-5 and SBEH
methods tend to be the fastest, while the MIP and BEH are
usually slower. Simulated annealing and the ABEH have quite
predictable running times. For simulated annealing this can be
explained naturally by that the number of iterations depends
on T0 and α, but not on the problem instance itself. For the
ABEH it is likely due to that most of the running time can
be attributed to evaluating the cost reduction of each possible
exchange. This part has to be done the same number of times
for each case.

Incorporating random delays into an existing vehicle schedule: a method comparison — 12/17

MIP BEH VIH-1 VIH-5 VIH-10 ABEH SA SBEH
Mean computation time (s) 1500 378 11 49 95 101 132 36
Coefficient of variation computation time (% of mean) 95% 26% 46% 32% 24% 13% 12% 38%
Max computation time (s) 3600 611 28 100 154 129 170 71
Proven optimal (% of cases) 74% 73% 0% 0% 0% 33% 16% 0%
Mean difference with MIP (% of MIP cost) 0.0% 1.2% 1.1% 0.4% 0.2% 0.1% 0.4%
Max difference with MIP (% of MIP cost) 0.2% 25.3% 23.3% 4.7% 9.7% 1.1% 7.7%
Fastest (% of cases) 0% 0% 100% 0% 0% 0% 0% 0%

Table 4. Key statistics on method comparison across 70 random cases

MIP BEH VIH-1 VIH-5 VIH-10 ABEH SA SBEH
MIP 27% 0% 0% 0% 1% 6% 0%
BEH 73% 0% 0% 0% 0% 0% 0%
VIH-1 100% 100% 100% 100% 100% 100% 100%
VIH-5 100% 100% 0% 100% 100% 100% 21%
VIH-10 100% 100% 0% 0% 54% 99% 1%
ABEH 99% 100% 0% 0% 46% 99% 0%
SA 94% 100% 0% 0% 1% 1% 0%
SBEH 100% 100% 0% 79% 99% 100% 100%

Table 5. Relative performance in computation time. (i,j) is the proportion of cases in which method i was faster than j

The computation times for the fastest three methods tend to
be the most variable, but not nearly as unpredictable as the
time required by the MIP solver. This is a problematic feature
of the MIP method, which becomes even more clear when
one considers Figure 1.

Figure 1. Frequency diagram for MIP computation times

The branch and cut process finds a solution within 10 minutes
in 45% of the cases, which could be considered reasonable.
However, in 30% of the cases, the algorithm did not find an
optimal solution within an hour. This shows the flaw of MIP
for this problem: the computation time is very unstable. This
can be explained by the nature of the branch and cut method
that is used, where the entire solution space has to be explored.
By branching efficiently and pruning branches in which the
optimal solution can not possibly be found, an attempt is
made to render this possible. However, if the wrong variable
is branched on somewhere at the start or large branches cannot
be pruned, the running time increases very rapidly. This is
another practical motivation for the use of heuristics. Based
on this table, we can put these algorithms into three categories.
The fast and sloppy algorithms are VIH-1, VIH-5 and SBEH,
which tend to terminate in less than 100 seconds, but can give

poor quality solutions. The balanced algorithms are VIH-10,
ABEH and SA, giving good solutions in less than 200 sec-
onds. Finally, the slow but steady algorithms are MIP and
BEH, which run for a while, but usually give optimal solutions
within an hour.

In the fourth row we show the percentage of cases in which
the methods find an optimal solution. This optimality is deter-
mined as follows: if the MIP terminates within an hour, this
solution is considered optimal. If another method obtains the
same solution, this is also considered optimal. MIP finds the
optimal solution within an hour in 52 out of 70 cases and BEH
has the same solution in 51 of these 52 cases. This is in line
with the finding of Mulder and Dekker that the BEH usually
converges to an optimal solution. The ABEH also performs
reasonably well, finding an optimal solution in 23 out of 70
cases. The next two rows show the difference between the
MIP solution and the heuristic solution. Once again, the BEH
finds the best solutions on overall, being at most 0.2% higher
than the MIP solution. An important flaw of VIH can be found
here: it can be off by a significant amount. Starting with a
larger number of initial points seems to work well against this
problem, reducing the worst case difference to 4.7%. The
ABEH does well on average, but can be off quite far in the
worst case scenario (but not nearly as far as VIH). Here the
power of SA becomes apparent, as it clearly is less likely to
get a bad solution than the SBEH and ABEH on which it is
based. VIH-1 is always the fastest, as could be expected.

Incorporating random delays into an existing vehicle schedule: a method comparison — 13/17

MIP BEH VIH-1 VIH-5 VIH-10 ABEH SA SBEH
MIP 10% 100% 100% 100% 61% 81% 100%
BEH 7% 100% 100% 100% 66% 81% 97%
VIH-1 0% 0% 23% 14% 1% 0% 16%
VIH-5 0% 0% 71% 24% 3% 1% 27%
VIH-10 0% 0% 84% 69% 3% 10% 39%
ABEH 1% 0% 99% 97% 96% 59% 89%
SA 0% 1% 99% 96% 89% 24% 81%
SBEH 0% 0% 83% 71% 57% 7% 19%

Table 6. Relative performance in solution quality. (i,j) is the proportion of cases in which method i gave a lower cost than j

MIP BEH VIH-1 VIH-5 VIH-10 ABEH SA SBEH
MIP 1% 0% 0% 0% 1% 3% 0%
BEH 7% 0% 0% 0% 0% 0% 0%
VIH-1 0% 0% 23% 14% 1% 0% 16%
VIH-5 0% 0% 0% 24% 3% 1% 7%
VIH-10 0% 0% 0% 0% 3% 10% 0%
ABEH 1% 0% 0% 0% 46% 59% 0%
SA 0% 1% 0% 0% 1% 1% 0%
SBEH 0% 0% 0% 57% 56% 7% 19%

Table 7. Overall relative performance. (i,j) is the proportion of cases in which method i gave a better solution in less time than j

Relative performance

We will now decide on a best algorithm for each of the three
categories mentioned previously. To do this it is not sufficient
to look at measures that are averaged over all cases. In this
section we will analyze how the methods perform compared to
each other on specific cases. For this purpose we use Table 5,
Table 6 and Table 7. In these tables, the element at row i
and column j is the proportion of cases in which the method
at i was faster than the method of j, got a better solution
or did both, for Table 5, Table 6 and Table 7 respectively.
Comparing the computation time, we see that the algorithms
can be ordered from fastest to slowest as VIH-1, SBEH, VIH-
5, VIH-10, ABEH, SA, BEH and MIP. In terms of solution
quality, the algorithms can be ordered from best to worst as
MIP, BEH, ABEH, SA, SBEH, VIH-10, VIH-5 and VIH-
1. In the last table we report in what proportion of cases
an algorithm got a better solution in less time than another
algorithm. Here we see that BEH dominated MIP in 7% of
the cases, while the other way around was only 1%. If we
combine this with the unpredictability of the MIP running
time, we would recommend the BEH in the slowest category.
In deciding between SA, ABEH and VIH-10, we observe
that ABEH dominated VIH-10 in 46% of the cases, while
the other way around is just 3%. At the same time, ABEH
beats SA in 59% of the cases, as opposed to just 1% the
other way around. Therefore, we conclude that ABEH has
the best performance among the balanced algorithms. Finally,
for the fast algorithms SBEH dominates VIH-5 in 57% of
the cases. If we combine this with the unreliability of the
VIH-1, it becomes clear that SBEH should be used to obtain
approximate solutions quickly.

5.4 Extensions
MDP solving versus value function estimation
For our heuristics we discuss two methods of evaluating the
change in cost due to exchanging buffer between two legs.
We can choose between the exact method of solving an MDP,
for which we use linear programming, and an estimate based
on the value function. We name the former LP and the latter
VE (value estimation) It is of interest to know how good of
an estimate is made by the VE method. To investigate this we
generated 1000 random allocations with a random 1-exchange
for each allocation and computed the cost change using both
methods. As a performance measure we use the absolute value
of the percentual deviation of VE from LP. In Table 8 some
key statistics on this analysis are reported and in Figure 2 a
histogram of the performance measure mentioned above is
shown.

Mean 527%
Mean (only values <500%) 118%
Coefficient of variation (% of mean) 474%
Median 102%
Mode 20%
Sign right (% of cases) 71%

Table 8. Statistics on absolute value of percentual deviation
of cost change estimates from true cost change

One can immediately see that the estimates are quite far off
the mark. On average, they deviate 527% from the real values.
As this is heavily influenced by some outliers, which will be
discussed later, we also show the mean where we only con-
sider values that are at most 500% off. Even in this truncated
sample the estimates miss the mark by over 100% on average.

Incorporating random delays into an existing vehicle schedule: a method comparison — 14/17

Figure 2. Histogram of comparison performance measure

Another finding is that the coefficient of variation (standard
deviation divided by mean) is almost 500%. Not only is the
deviation of the estimate from the mean large, but it is also
highly random. Because of the large number of outliers, as
can also be seen in the histogram, we also report some more
robust statistics. The most interesting of these is that the
estimate has the right sign in just 71% of the cases. It is
questionable whether the exchanges that are optimal under
the value estimates are also good in reality. To investigate
this further, we display a number of scatter plots. In Figure 3
the exact values are on the vertical axis, while the estimates
are on the horizontal axis. One would prefer these to lie on
a 45◦line. There is some clustering around a line through
the origin, but a large number of observations are quite far
off. Regressing the estimates on the exact values in the model
y = βx + ε gives β̂ = 0.56 with a standard error of 0.075.
Testing H0 : β = 1 gives a t-value of 5.87, clearly rejecting
the null hypothesis. There is no evidence to suggest that the
values lie on a 45◦line.

Figure 3. Scatterplot LP (vertical) vs VE (horizontal)

A last point of interest is whether anything can be said about
when the estimates are bad and when they are better. For this
purpose we show Figure 4, in which we show the performance
measures on the vertical axis and the absolute exact values
on the horizontal axis. Here one sees that the performance
measure tends to be very high for low exact values. This is
partly due to that the exact value is in the denominator: if it is
low, the measure is higher. On the other hand this seems to
indicate that the deviation is not proportional to the exact value.
Put differently, it seems that its just as likely to be off by 1,000
if the LP estimate is 10 as when it is 10,000. Figure 5 shows
the absolute values of the difference between the estimate and
the exact value on the vertical axis against the exact value on
the horizontal axis. If the difference was proportional to the
exact value, these should lie on a 45◦line trough the origin.
They seem quite randomly distributed though, leading to the
conclusion that the deviation of the estimate from the exact
value and the exact value are not related in a straightforward
manner. This means that the error is especially large for small
cost reductions. Summarizing: the value estimates tend to be
off quite far from the exact values and it is not advisable to
rely on them too much. This is another reason to use SBEH
for quick problem solving, instead of VIH-1 or VIH-5.

Figure 4. Scatterplot performance measure (vertical) vs
absolute LP values (horizontal)

Figure 5. Scatterplot absolute deviation VE from LP
(vertical) vs absolute LP values (horizontal)

Incorporating random delays into an existing vehicle schedule: a method comparison — 15/17

Cost as function of total buffer time
In their paper, Mulder and Dekker prove that the total cost for
a route is non-decreasing in the total amount of buffer that can
be allocated. It seems likely that the cost reduction due to an
additional unit of buffer time is decreasing in the amount of
buffer time already allocated. To investigate this further we
computed the total expected cost for the case presented earlier,
without disturbance in the delays. The cost was computed
using the SBEH, yielding Figure 6.

Figure 6. Expected cost as a function of available buffer time

One can observe that the total cost is indeed strictly decreas-
ing in the amount of available buffer. However, one cannot
conclude convexity based on this diagram. It seems that for
most of the interval the shadow price of buffer time decreases
only slightly. Another finding is that on this route, at least 25
units of buffer time are required with our delay distribution.
If less buffer time is available, the delay will frequently rise
above the delay cap and lead to very high costs. This also
has to do with that we have defined the schedule as one were
ships already sail at their top speed. This makes buffer time
the only way delays can be compensated.

Mean estimation for right-censored computation times
When drawing conclusions about the computation times, we
are interested in the random variable T , the computation time
of an algorithm on some instance. However, the algorithms
are cut off if they run for longer than some time t∗. Therefore,
instead of T , we observe another random variable X , defined
by Equation 34.

X =

{
T if T ≤ t∗

t∗ if T > t∗
(34)

When doing computational experiments, we observe a se-
quence of realizations for X . By taking the sample mean, we
obtain an unbiased and consistent estimate of E[X]. How-
ever, this estimator is biased and inconsistent for E[T], as the
following derivation shows that E[T] > E[X].

E[X] =P (T ≤ t∗)E[X|T ≤ t∗] + P (T > t∗)E[X|T > t∗]

=P (T ≤ t∗)E[T |T ≤ t∗] + P (T > t∗)t∗

<P (T ≤ t∗)E[T |T ≤ t∗] + P (T > t∗)E[T |T > t∗]

=E[T]

To obtain a good estimate of E[T], we have to incorporate
information about the censoring in it. Several approaches to
dealing with censored data exist. A commonly used one is the
non-parametric Kaplan-Meier estimator of the survival func-
tion (see for example Borgan, 2005). This method actually
assumes a more general situation, in which t∗ is a random
variable too, which is not the case. Additionally, estimating
the mean using the Kaplan-Meier estimator is not straight-
forward. Therefore we choose to use a maximum likelihood
approach instead. A downside of this approach is that we need
to postulate a distribution for T .

Say that T has CDF F (t;β) = P (T < t) and pdf f(t;β) =
d
dtF (t), both dependent on a vector of parameters β. Further-
more, say a one-to-one function exists such that E[T] = g(β).
The invariance property of maximum likelihood estimates
implies that by obtaining a maximum likelihood estimator
β̂ for β, we obtain a maximum likelihood estimator g(β)
for E[T]. This estimator is

√
n−consistent and asymptoti-

cally efficient. Considering a random sample x1, . . . , xn, the
maximum likelihood estimate for β is given by Equation 35.

L(β) =
∑

i: xi<t∗

log(f(xi;β)) +
∑

i: xi=t∗

log(1− F (t∗;β))

β̂ = arg sup
β
{L(β)} (35)

It is highly unlikely that the MIP computation times follow
some standard distribution. We will look for a distribution that
resembles reality as close as possible. Among all possible dis-
tributions, we consider the Exponential, Weibull and Gamma
distributions. The first two are commonly applied to lifetime
modeling and the last is relevant if the MIP computation time
consists of a series of i.i.d. exponential random variables. In
Figure 7 we compare the computation times with the pdf’s
of the relevant distributions, with the parameters estimated
using Equation 35. We conclude that a Weibull distribution

Figure 7. Frequency diagram for MIP computation times
with pdf’s

with parameters (λ̂ = 1969, k̂ = 0.71) fits the data best. The
mean of a Weibull distributed variable is given by λΓ(1 + 1

k).
This gives an estimated mean of 2444. As expected, the mean
estimate that we find in this way is significantly higher than
the sample mean from the uncensored data.

Incorporating random delays into an existing vehicle schedule: a method comparison — 16/17

6. Conclusion
In this thesis we looked at the problem of incorporating delays
into an existing vehicle schedule by allocating buffer time
to the various legs of the route and by deciding on recovery
actions that should be taken if delay has been incurred. For
this problem a mixed integer programming formulation and
several heuristics had already been proposed by Mulder and
Dekker (2016), whose paper we aimed to replicate and ex-
tend. They also discussed solving the problem of choosing
recovery actions if a buffer allocation is given as a Markov
Decision Process (MDP). Of the heuristics that they proposed,
we considered two that evaluated the cost reduction due to
exchanging buffer time between two legs for all possible ex-
changes and made the most profitable one. The cost reduction
was computed either by solving an MDP (called the Buffer
Exchange Heuristic, BEH) or by estimating it using the value
function (called the Value Iteration Heuristic, VIH). They rec-
ommended the VIH, because it gave reasonable solutions in
little time.

We proposed several new heuristics for this problem. The
simplest was to use multiple starting points in the VIH, to
decrease the probability of ending up in a bad local minimum.
Another new method, called the Adapted Buffer Exchange
Heuristic (ABEH), was not to compute the cost reduction
for all exchanges in each iteration, but computing it once
per so many iterations and considering only the exchanges
which were found to give a cost decrease in the next few it-
erations, such that the cost reduction had to be computed for
less exchanges. Two other methods that also reduced the num-
ber of exchanges to be evaluated were the Stochastic Buffer
Exchange Heuristic (SBEH) that draws random exchanges
and only evaluates the cost change for these exchanges and
Simulated Annealing (SA) that did the same, but also allows
exchanges that lead to a cost increase with a positive prob-
ability. This probability decreases as the algorithm progresses.

The main goal of this thesis was to recommend good methods
for solving the problem sketched above. For this purpose, a
computational study was done in which 70 test cases, based on
the ME1 route of the Maersk Line Network, were generated.
All methods were used separately to solve each test case and
the computation time and final objective value were recorded.
When comparing these, we found that the algorithms could
roughly be divided into three categories. The MIP and BEH
are the slowest, but give high quality solutions. Of these two,
the BEH is to be recommended, as it is faster than the MIP and
gives solutions that are almost always as good. Furthermore,
the running time for the MIP is unpredictable and can be
very long, while the computation time for the BEH is much
more stable. The ABEH, SA and VIH with 10 starting points
are the most balanced algorithms, giving good solutions in a
reasonable time frame. Of these, the ABEH clearly dominates
both SA and VIH in terms of computation time as well as
solution quality. Therefore we recommend the ABEH for

cases where a good solution is required, but the problem is
large or time constraints are relevant. Finally, SBEH and VIH
with 1 or 5 starting points fall in the fastest category. VIH
was shown to be quite unreliable, giving costs of up to 25%
more than the MIP solution in some cases. VIH-5 is also
slower than SBEH. Therefore, in case the problem needs to
be solved as quick as possible or the problem instance is very
large, the SBEH should be used. An analysis of the quality
of the value function estimates used for the VIH showed that
these estimates are quite poor in general, providing another
argument for the SBEH as opposed to the VIH.

Incorporating random delays into an existing vehicle schedule: a method comparison — 17/17

References
[1] Abramowitz, M., Stegun, I. (1972). ”§24.1.3. Stirling Num-

bers of the First Kind”. Handbook of Mathematical Func-
tions with Formulas, Graphs, and Mathematical Tables
(9th ed.). New York: Dover. p. 824.

[2] Borgan, Ø. (2005). Kaplan–Meier Estimator. Encyclope-
dia of biostatistics.

[3] Brouer, B. D., Dirksen, J., Pisinger, D., Plum, C. E., &
Vaaben, B. (2013). The Vessel Schedule Recovery Prob-
lem (VSRP)–A MIP model for handling disruptions in
liner shipping. European Journal of Operational Research,
224(2), 362-374.

[4] Brouer, B. D., Alvarez, J. F., Plum, C. E., Pisinger, D., &
Sigurd, M. M. (2013). A base integer programming model
and benchmark suite for liner-shipping network design.
Transportation Science, 48(2), 281-312.

[5] Brinkhuis, J., & Tikhomirov, V. (2011). Optimization: in-
sights and applications. Princeton University Press.

[6] Eglese, R. W. (1990). Simulated annealing: a tool for oper-
ational research. European journal of operational research,
46(3), 271-281.

[7] Garey, M. R., & Johnson, D. S. (1978). “Strong” NP-
Completeness Results: Motivation, Examples, and Impli-
cations. Journal of the ACM (JACM), 25(3), 499-508.

[8] Garey, M. R. & Johnson, D. S. (1979). Computers and
Intractability, A Guide to the Theory of NP-Completeness.
Freeman & Co., San Francisco

[9] Johnson, D. S., Papadimitriou, C. H., & Yannakakis, M.
(1988). How easy is local search?. Journal of computer
and system sciences, 37(1), 79-100.

[10] Kirkpatrick, S., & Vecchi, M. P. (1983). Optimization by
simulated annealing. Science, 220(4598), 671-680.

[11] Lenstra, J. K. (1997). Local search in combinatorial opti-
mization. Princeton University Press.

[12] Li, C., Qi, X., & Lee, C. Y. (2015). Disruption recov-
ery for a vessel in liner shipping. Transportation Science,
49(4), 900-921.

[13] Mulder, J & Dekker, R. (2016). Designing robust liner
shipping schedules: Optimizing recovery actions and
buffer times, working paper.

[14] Naumann, M., Suhl, L., & Kramkowski, S. (2011).
A stochastic programming approach for robust vehicle
scheduling in public bus transport. Procedia-Social and
Behavioral Sciences, 20, 826-835.

[15] Notteboom, T.E. (2006). The time factor in liner shipping
services. Maritime Economics & Logistics, 8(1), 19-39.

[16] Papadimitriou, C. H., & Tsitsiklis, J. N. (1987). The com-
plexity of Markov decision processes. Mathematics of
operations research, 12(3), 441-450.

[17] Puterman, M. L. (2014). Markov decision processes: dis-
crete stochastic dynamic programming. John Wiley &
Sons.

[18] Qi, X. (2015). Disruption Management for Liner Ship-
ping. In Handbook of Ocean Container Transport Logis-
tics (pp. 231-249). Springer International Publishing.

[19] Ross, S. M. (2014). Introduction to probability models.
Academic press.

[20] SeaRates. 2015. Reference guide, port to port dis-
tance. https://www.searates.com/reference/portdistance.
Acessed: 19 October 2015

[21] Thengvall, B. G., Bard, J. F., & Yu, G. (2000). Balanc-
ing user preferences for aircraft schedule recovery during
irregular operations. IIE Transactions, 32(3), 181-193.

[22] Walker, C. G., Snowdon, J. N., & Ryan, D. M. (2005).
Simultaneous disruption recovery of a train timetable and
crew roster in real time. Computers & Operations Re-
search, 32(8), 2077-2094.

[23] Wang, S., & Meng, Q. (2012). Robust schedule design for
liner shipping services. Transportation Research Part E:
Logistics and Transportation Review, 48(6), 1093-1106.

[24] White, C. C., & White, D. J. (1989). Markov decision
processes. European Journal of Operational Research,
39(1), 1-16.

	Introduction
	Literature review
	Problem description
	Theory of Markov Decision Processes
	Recovery actions
	Buffer time allocation

	Theoretical results
	Heuristics
	Simple local search
	Adapted local search

	Computational experiments
	Data
	Schedule optimization
	Method comparison
	Extensions

	Conclusion
	References

