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Abstract

This paper investigates the extent to which the level of cooperation between
spatially distributed firms differs with the use of alternative learning rules. The
results are derived based on simulations of a structure conform to that presented
by Waltman et al. (2013). Their model has been converted to Java in order to
improve the efficiency of the model and simultaneously facilitate the comparison
of various learning rules. Testing these rules in a homogeneous setting allows
for comparability and this paper finds that imitation and reciprocity both lead
to forms of cooperation, one on a global scale and the other on a local scale
respectively. Furthermore, the results have proven to be robust to the influence
of noise, experimentation and the presence of explicit cooperation in the form
of a price agreement between two neighbouring firms. The level of information
does however have an impact, often decreasing the level of cooperation between
firms.
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1 Introduction

Despite cooperation often being in the joint best interest of everyone involved, agents
frequently fall prey to the desire to defect on their partners in order to obtain (tempo-
rary) higher payoffs. The conditions under which cooperation or altruism can persist
in the long run, rather than being eradicated by egoistic behaviour, has been studied
extensively both in theory and by means of simulation. However, these have not been
studied in a homogeneous setting. As a result, due to differences in information, mar-
ket structure, the presence of mutations or various other essential aspects, the results
are frequently incomparable.

Cooperation between firms is of particular interest because the resulting increase in
the firms’ welfare comes at a cost of social welfare. Having a better understanding of
the incentives and conditions for cooperative behaviour would be relevant for antitrust
authorities who are in charge of preventing forms of cooperation between firms which
are detrimental to consumers.

Cooperation in this setting refers to firms setting a price above their Nash Equilibrium
price but the notion of cooperation also has strong implications in the field of evolu-
tionary game theory. In this context agents often have two choices; to cooperate or
to defect and winning in a game is equivalent to surviving in an evolutionary setting.
The research in this field served as a starting point for the extensive analysis of co-
operation, in particular the agents incentives to cooperate. An important underlying
concept is that of repeated games which induce agents to delay short term gratification
in order to benefit in later stages. Bergstrom and Stark (1993) used this concept to
show that altruism, the equivalent of cooperating in a Prisoners Dilemma game, can
prevail between siblings in an evolutionary setting.

Eshel et al. (1998) also proved that altruistic behaviour may survive, and in doing
so define a model to help illustrate the nature of the agents steady state behaviour.
In their work they consider two types of players; Altruists and Egoists, all of whom
are arranged in a circle. They abandon two important assumptions, namely that of
rational, utility maximising agents and equal interaction amongst players. Instead
they consider learning rules in which players imitate the most successful strategy in
their neighbourhood and they limit the scope of interaction amongst players. They
derived all possible absorbing sets and find that this limited, local interaction is in fact
essential for the existence of altruism and it has been an important factor of analysis
since.

These researchers’ theoretical findings on altruism have cleared the way for more com-
plex forms of cooperation and have since been applied to various contexts. This con-
cept of altruism and egoism, for example, runs parallel to cooperation and defection in
the Prisoner’s Dilemma. In this set-up both players would be better off cooperating,
however, profit-maximising behaviour will often lead them to defect. How the players
cooperate or defect is subject to the situation at hand and with respect to competition
between firms it often refers to price-setting behaviour. This set-up between firms has
been examined extensively in previous literature and in various settings. The simpler
case of a duopoly has been used to investigate, among other things, the effect of differ-
ent pricing policies, the conditions under which collusion is credible and the optimal
locations for firms in the market (Gupta et al., 1997; Gross and Holahan, 2003; Thisse
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and Vives, 1988).

Although theoretical results have provided noteworthy insights into cooperative be-
haviour, the use of simulation has allowed for the analysis of increasingly complex
game structures. Rather than considering duopolies, previous research has studied the
steady state behaviour in markets with numerous firms and it has been shown that this
behaviour is highly dependent on the market structure (Greenhut and Greenhut, 1975;
Eaton and Lipsey, 1975). In particular, Pal (1998) has demonstrated the tendency for
firms located in a circle to place themselves at equidistance of each other, justifying
the extensive line of research in spatial price competition.

The steady state behaviour between homogeneous firms competing in this manner has
been studied both by means of derivation and by simulation. These firms, arranged in
either a circle or a torus, may select their level of cooperation from a set of strategies
and have the opportunity to adjust this strategy according to a specified learning
rule. Several variations of the learning rule have been provided, mainly involving
forms of imitation or optimisation. Commonly used rules involve copying either the
most successful strategy or the most successful player. These strategies may lead to
some form of cooperative pricing, given that the firms only interact on a local level
(Kirchkamp, 1999, 2000; Tieman et al., 2000). The importance of local interaction is
emphasised by the work of Pinkse et al. (2002), who analyse spatial price competition
using semiparametric methods and find that being nearest neighbours is the most
important factor of rivalry.

In order to investigate the robustness of cooperative outcomes, several researchers
have introduced a stochastic element to their models, namely mutations (Eshel et al.,
1998; Waltman et al., 2013). Following this introduction, it has been proven that,
under specific conditions, collusive behaviour may be interrupted by temporary price
wars before returning to the same state of cooperation (Tieman et al., 2001). This
reinforces the notion that the extent and duration of cooperation is highly-dependent
on the exact setting in which firms compete. Furthermore, this dependence is what
makes the results of previous research incomparable to one another.

For this reason, this paper will focus on the comparison of various learning rules in a
homogeneous setting. The situation to be examined is competition between spatially
distributed firms whose level of cooperation is depicted by their price-setting behaviour.
Whereas theoretical derivations are essential for predicting steady state behaviour, the
final results are obtained by means of simulation.

The learning rules used are such as presented by Waltman et al. (2013) and Tieman
et al. (2001). These learning rules are based on imitation and reciprocity respectively
and hence, cover a large section of the previous research done on cooperative behaviour.
These rules are then adjusted in order to fully incorporate a players own profits and
to enforce the use of up-to-date profits. In addition, the effect of explicit cooperation
is analysed by introducing price agreements to the markets. Previous research tests
for stability by considering unilateral deviation, but these price agreements are based
on the profitability of bilateral deviation between two neighbouring firms.

The aim of this research is therefore to investigate under which circumstances cooper-
ation can result between spatially distributed firms and how the degree of cooperation
can be influenced by altering the structure of the simulation, in particular the learning
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rule of the individual firms.

The starting point for the investigation is the model as presented by Waltman et al.
(2013). Their work involves simulations of price competition between spatially dis-
tributed firms on either a circle or torus. The corresponding learning rule of a firm
involves imitating the strategy which has proven to be most successful in terms of aver-
age profit, given a certain level of noise, amongst the firms in its neighbourhood. The
learning rule from Tieman et al. (2001), however, involves reciprocating cooperative or
uncooperative behaviour by increasing or decreasing its price respectively. In addition,
firms may increase or decrease their price at random based on the experimentation
probability.

This paper finds that both categories of learning rules result in cooperation between
firms, albeit it of a different nature. The rule based on imitation results in cooperation
on a global level where firms set prices which are very close to or equal to the continuous
Nash Equilibrium. The rule based on reciprocity on the other hand, results in a
pattern of extremity where cooperation is of a more local scale. In this context groups
of firms set either the maximum or minimum price and are interrupted by firms who
set prices which tend to be in between the Nash Equilibrium and the maximum. The
results are robust with respect to noise, experimentation and even to the presence
of a price agreement. In fact, in many scenarios the price agreement is virtually
undetectable in the market. The main factor of influence, however is the level of
information available to firms. Similarly to the results found by Waltman et al. (2013),
having more information may in fact diminish the extent of cooperation between firms.

The paper is structured as follows. Section 2 presents the model and its exact struc-
ture. Section 3 provides an overview of the implemented learning rules along with the
expected outcomes of these learning rules. Section 4 discusses the price agreement and
Section 5 goes on to present the results followed by the conclusion and suggestions for
further research.

2 The Model

The model simulated in this paper is as follows. Four hundred homogeneous firms
are spatially distributed over three different market types; a circle, a torus where
consumers are located only on the line segments (Torus A) and a torus where consumers
are located throughout the market (Torus B). A torus is a grid-like structure where
the opposite ends are connected. This implies that the firms on the top row are
neighbours with the firms on the bottom row and similarly, that firms on the left
column are neighbours with firms on the right column. As a result, all firms have the
same number of neighbours and there are no structural differences with firms in the
centre of the market and those on the boundaries.

The firms are assumed to produce identical goods for which they may demand any
price from their strategy set. The strategy set has the following structure

[0.5pn, 0.55pn, ..., 1.45pn, 1.5pn] (1)

where pn is the Nash equilibrium price. The Nash Equilibrium price equals 1 for the
Circle and Torus A market structures, and equals 0.5 for Torus B. Firms also have a
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learning neighbourhood size, which is provided as input. The learning neighbourhood
consists of the neighbours of which a firm knows the price and profit. A learning
neighbourhood of ρ = 2 in the circular market, for example, implies that every firm
knows the profit and price of its left and right neighbour. A learning neighbourhood of
ρ = 4 consists of the two nearest left neighbours and the two nearest right neighbours
and so on for ρ equal to 6, 8, 10 and 20. In a torus a firm has either a learning
neighbourhood of ρ = 4, consisting of the direct horizontal and vertical neighbours,
or ρ = 8, consisting of the eight neighbours surrounding the firm. Furthermore, firms
have unlimited production capacity and a marginal cost of 0.

Consumers, which are uniformly distributed throughout the market, purchase exactly
one unit of the product. The price of this good is the sum of the price set by the firm
and the consumer’s transportation cost. These transportation costs are equal to the
distance travelled and hence consumers will always purchase from one of the firms in
their direct vicinity.

The simulation then plays out as follows. First, initial strategies are chosen at random
for all of the 400 firms. This is done at random in order to determine the steady state
behaviour of the firms irrespective of the initial state. Then one million rounds are
played during each of which one firm is selected to potentially adjust its price. After
a firm is selected, the information required by the learning rule, the firm’s profit and
strategy as well as that of its neighbours, is computed. Based on this information
and the nature of the pre-specified learning rule, the firm may adjust its price and the
simulation moves on to the next round by selecting another firm. After one million
rounds, the effect of the initial strategies is negligible and the behaviour as a result
of the learning rule can be examined. This entire process is referred to as a run, and
for each learning rule 500 runs and hence 500 different sets of initial strategies are
simulated.

In addition, the robustness of the results is tested by allowing for noise and experi-
mentation. Noise biases the information a firm has about its neighbours’ profits. The
noise level is indicated by the variable σ and the profits are increased or decreased by
σ ∗ pn ∗ z where z is a draw from the standard Normal distribution. Experimentation
on the other hand, tests for the robustness of the results with respect to mutations.
At the end of each round, the firm selected may, with the specified experimentation
probability, adjust its price either upwards or downwards with equal probability. The
results are then considered stochastically stable if they are robust with respect to the
experimentation probability.

The learning rules examined in this paper are as follows:

• Imitate Best Strategy: firms copy the strategy which earns the highest average
profit (given a pre-specified level of noise) within their learning neighbourhood.

• Imitate Best Strategy Adjusted: firms copy the most successful strategy within
their learning neighbourhood if the average profit of that strategy exceeds their
current profit.

• Win Cooperate, Lose Defect(WCLD): firms increase their price by one step if the
their neighbours’ average profit exceeds their own and vice versa. In accordance
with the work of Tieman et al. (2000), profit is defined as the profit resulting
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from competing with all direct neighbours when they were last selected by the
learning rule.

• Win Cooperate, Lose Defect Adjusted: firms adjust their prices according to
the Win Cooperate, Lose Defect rule but using the most recent profit of their
neighbours as input, rather than the profits of neighbours when it was last their
turn.

In addition to these learning rules, this paper also considers the effect of explicit co-
operation in the form of a price agreement. In this setting two neighbouring firms
maintain their collusion price throughout the simulation whilst the remaining firms in
the market abide by the learning rule. The two learning rules considered are Imitate
Best Strategy Adjusted and Win Cooperate, Lose Defect Adjusted. Only the adjusted
versions of these rules are considered due to the original rules’ failure to fully incorpo-
rate own profits in the one and the use of outdated profits in the other. More details
on the nature of the price agreement can be found in Section 4.

Of interest is the level of cooperation between firms as a result of the learning rules
examined. Cooperation is defined as setting a price above the continuous Nash Equi-
librium which is computed as follows. A Nash Equilibrium is a set of strategies such
that, given the strategies of the other players, no player has an incentive to deviate
(Nash, 1951). The Nash Equilibrium prices are 1 in the circular and toroidal A mar-
kets and 0.5 in the toroidal B market. To confirm this, if we were to maximise the
unilateral deviation profit, given that the remaining firms in the market maintain the
Nash Equilibrium price, this deviating firm should maximise its profit by setting the
Nash Equilibrium, and it does. For the precise computation of the Nash Equilibrium
for each market see Appendix A.4.

Although the structure of the model is conform to that presented by Waltman et al.
(2013), some adjustments have been made. In the original model for example, there
was a similar possibility to experiment after each round. With a pre-specified probabil-
ity, firms would adjust their price upwards or downwards, each direction being equally
likely. This experimentation possibility is still present in the models presented in this
paper, however with the difference that only the firm chosen in that round has the
ability to experiment whilst in the original model all firms could experiment during
each round. The reasoning behind this adjustment is that in the original model the
experimentation probabilities of 0.00001, 0.0001 and 0.001 would, in probability, result
in 4000, 40,000 and 400,000 adjustments in 1,000,000 rounds. With such frequent ad-
justments, it is questionable to what extent the outcomes were a result of the learning
rule rather than the experimentation

Moreover, due to the relatively robust results with respect to the noise levels and
experimentation probability, the range of these parameters was limited. The noise
levels considered were levels of 0 and 0.2 and the experimentation probabilities chosen
were equal to 0 and 0.0001, the latter resulting in 100 mutations on average. For more
details on the implementation of the model, see Appendix A.
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3 Learning Rules

This section presents the learning rules in greater detail. Imitate Best Strategy is
the learning rule presented by Waltman et al. (2013) and is one based on imitation.
This learning rule is adjusted in order to fully incorporate a player’s own profit when
considering a price adjustment. Win Cooperate, Lose Defect is the learning rule pre-
sented by Tieman et al. (2001) and is one based on reciprocity. Given that this rule
only considers outdated profits, it is also adjusted such that firms use only up-to-date
information as input for their decision making process.

3.1 Imitate Best Strategy

This paper replicates and enhances the results derived by Waltman et al. (2013), but
in addition, examines the effect of alternative learning rules on the level of coopera-
tion in the set-up they presented. The learning rule they considered was such that
firms, chosen at random, would play the strategy which earned the highest profit in
the neighbourhood, subject to a certain degree of noise. Moreover, after potentially
changing their strategy, firms are subject to possible mutations as a result of which
they might increase or decrease their price. The profit for each firm is defined as
follows: π =

∑
ne∈N

p
2
(pne − p + 1) where N is the set of direct neighbours, pne is the

neighbour’s price and p is the firm’s price.

Figure 1: A segment of the Torus B market where firms play according to the Imitate
Best Strategy learning rule and firm O’s market share is indicated by the shaded
region.

In the Torus B market, where consumers are located throughout the market rather
than only on the line segments, indirect neighbours may also impact a firm’s market
share. For each indirect neighbour, firms A, C, F and H depicted in Figure 1, if they
are significantly competitive, the firm’s market share is trimmed by a value dependent
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on α, as can be seen in Figure 1. For indirect neighbour A, the formula for the value
α is as follows:

α =
pB − pO + 1

2
+
pD − pO + 1

2
− pA − pO + 2

2
(2)

If this value α is positive, then firm O’s market share is reduced by α2

2
. This is

done for each indirect neighbour. Figure 1 shows an example where all of the indirect
neighbours are competitive enough to reduce the market share of firm O, whose market
share is indicated by the shaded area.

The results in this scenario should be virtually identical to those found by Waltman
et al. (2013), namely that firms do act cooperatively and more so when the scope
of interaction is limited. Similarly, the results should not be significantly impacted
by noise, experimentation, nor the market structure. Moreover, as the frequency
with which experimentation takes place has been decreased substantially, the effect of
experimentation should become almost negligible.

3.2 Imitate Best Strategy Adjusted

A critique of the Imitate Best Strategy learning strategy, as incorporated by Waltman
et al. (2013), is that the firm at hand does not fully take into account its own profit.
The firm merely chooses the strategy with the highest average payoff, in its learning
neighbourhood, and hence may switch to a strategy with an average payoff which is
lower than its current payoff. Examples can be found in all settings considered in this
paper such that according to the current ’Imitate the Best Strategy Rule’, firms would
switch to a strategy with an average payoff which is less than their current payoff.

Figure 2: An example of where a firm (firm O depicted in the centre of the graph)
would switch to a lower strategy with an average payoff which is less that its own
current payoff in a circular market with a learning neighbourhood of ρ = 2.

Figure 2 shows such an example in the circular market structure with a learning
neighbourhood ρ = 2. The firm in the middle has a current profit of 1.14, but due
to the low profit of its right neighbour (who plays the same strategy), the learning
rule dictates that it should decrease its price to that of its left neighbour. In a similar
fashion, Figure 3 presents such a case for the toroidal market structure with ρ = 8. In
this situation the firm in the centre will switch to a price of 1.05 despite the fact that
his current profit exceeds the average profit of this strategy.
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Figure 3: An example of where a firm (firm O depicted in the centre of the graph)
would switch to a higher strategy with an average payoff which is less that its own
current payoff in a Torus A market with a learning neighbourhood of ρ = 8.

Circle ρ = 2 Torus ρ = 8
Original Price New Price Original Price New Price

Profit Before Switch 1.08 1.1 1.96 1.99
Profit After Switch 0.96 1.1 1.96 2.01

Table 1: Payoff per strategy before and after firm O switches from a price of 1.20 to
1.10 as depicted in Figure 2, and before and after firm O switches from a price of 1.00
to 1.05 as depicted in Figure 3.

Various scenarios can be found such that firms will either increase or decrease their
price to one with an average profit which is less than their current profit. Given that
firms may only choose from strategies that are used in their neighbourhood (not taking
into account the possibility to experiment), incorporating that firms will only switch if
the average payoff exceeds their current payoff may not alter the outcomes significantly.
However, as a result of the Imitate the Best Strategy rule the strategy which the firm
(illogically) switches to becomes relatively more attractive. This can be seen in Table
1 which presents the average profits corresponding to the firm’s original strategy and
that which it switched to. In both cases, and in all cases presented in the appendix
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(see Appendix B), the profit corresponding to the chosen strategy increases more or
decreases less than the profit corresponding to the original strategy. This induces a
tendency for firms to cluster in terms of price and therefore adjusting this rule may
result in a more scattered distribution of prices. The effect should be most significant
in the absence of mutations which would interrupt clusters in the original setting.

Although this alteration may only have a minor impact on the results, it has important
implications for the realism of the game structure. The information available to players
is a key factor in game theoretical settings and many assumptions are made about
the extent of the players’ knowledge. In this paper firms only know the profits and
strategies of firms in a given neighbourhood and profits are subject to noise. However,
it should be a natural assumption that the firms would have perfect information about
their own profits. This paper therefore also examines an adjusted version of the Imitate
the Best Strategy rule so that firms only switch if the average profit of a strategy
exceeds its current profit. The results are discussed in Section 5.

3.3 Win Cooperate, Lose Defect

Research on evolutionary game theory has studied various forms of behaviour, one cat-
egory of which involving reciprocity; players reward cooperative behaviour of the other
players by acting more cooperatively themselves and punish uncooperative behaviour
by acting less cooperative. Tieman et al. (2001) propose an interesting variation of this
rule where profit is measured as a result of competing against the most competitive
neighbour, i.e. the neighbour with the lowest price. Moreover, cooperative behaviour,
defined as when the average profit of a firm’s neighbours is less than its own, is re-
ciprocated by that firm increasing its price. Vice versa uncooperative behaviour is
reciprocated by the firm acting more competitively by decreasing its price. Based on
these conditions they find that states of cooperation are interrupted by temporary
price wars, defined as a downward spiral of firms decreasing their prices, before re-
turning to the same state of cooperation. Their findings are noteworthy due to the
inherent instability of the firms’ steady state behaviour.

Although there are various similarities in the structure of their work and that of
Waltman et al. (2013), there are also several distinct differences. For one, Tieman
et al. (2001) focused only on one market structure, namely the torus where firms have
a learning neighbourhood of size eight. Moreover, they vary the range of prices from
2 to 20, finding that price wars exist when firms may choose from at least 12 prices.
However, they do not incorporate noise nor experimentation which would provide an
indication of the robustness of their results. Lastly, their toroidal market is of a larger
dimension, containing 900 rather than 400 firms.

The reason for defining profit with respect to the most competitive neighbour is related
to the nature of the consumers in their market. Consumers are located at the firms
and for this reason they will either purchase at the firm at which they are located or,
due to the linear transaction costs, to that firm’s cheapest neighbour. In the market
considered in this paper, consumers are located uniformly in the market, either on the
line segments or throughout, and hence, a firm’s profit is not merely determined by
it’s most competitive neighbour but is a function of all of its neighbours’ prices.
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Nevertheless, in correspondence with their work, a firm’s profit is only updated once
it is selected to apply the learning rule. The information a firm receives about the
profits of its neighbours is therefore not a reflection of its neighbours current state of
affairs but rather how those firms were off when they were last selected.

In the absence of noise and experimentation, the toroidal structures of this paper
should result in similar price wars. However, it is questionable whether the trig-
gers inducing price wars can occur when the learning neighbourhood is limited. This
is because price wars are a result of one firm acting competitively, incentivising its
neighbours to also lower their prices. The less firms in the direct neighbourhood, the
less impact a competitive firm has and therefore the less likely that a price war will
occur.

3.4 Win Cooperate, Lose Defect Adjusted

Albeit that the inventive learning rule presented by Tieman et al. (2001) leads to orig-
inal results, it contains an unrealistic aspect. The learning rule which they associate
with price wars involves using outdated information, namely the profits of firms when
it was last their turn. Their model consists of a torus with 900 firms and due to
firms being chosen at random, a firm’s profit may have changed significantly between
the time it last adjusted its strategy and the time that one of its neighbours uses this
profit as input. For this reason, it would seem more realistic to consider the case where
current profits are used as input and to investigate how the results would change.

A price war is a situation where firms act more competitively with one another and
hence set lower prices. According to the Win Cooperate, Lose Defect rule this could
only follow from a firm’s profit being less than the average profit of its neighbours.
This could be a result of the lagged information firms have because it does not account
for the gradual transition towards equilibrium. Starting from randomly generated
initial strategies, firms tend to gradually reach an equilibrium state during which their
prices converge to an evermore limited price range and the difference in their profits
decreases. The use of outdated information implies that the learning rule does not
fully incorporate this conversion of profits due to which firms may be triggered to
act more competitively than they would had they known the current profits. I would
therefore expect that, when using recent information, firms will no longer deviate from
an equilibrium once that state is reached, i.e. no price wars, and that the steady state
behaviour of the firms will be cooperative.

4 Price Agreements

Rather than using simulations, various authors have approached the problem of coop-
eration between agents by using theoretical derivations. These methods can be used
to predict the steady-state behaviour of firms and to determine the Nash Equilibria of
these games. The Nash Equilibrium for the circle and torus of variant A are such that
all firms set a price of 1. The equilibrium for the torus of variant B is one where all
prices are set to 0.5. Note that a Nash Equilibrium is defined as the set of strategies
such that, given the strategies of other players, no player has an incentive to deviate.
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The key in this definition, and the steady state outcomes derived by other authors,
is that they only consider unilateral deviation. This form of deviation does not take
into account commonly known practices of unfair competition such as price agree-
ments, cartels or collusion where more than one agent deviates from the equilibrium
price. Whereas there is no incentive to unilaterally deviate, there is incentive to jointly
deviate. This incentive is derived from the nature of consumers. By assumption con-
sumers will always purchase from one of the firms in their direct neighbourhood and
therefore colluding, neighbouring firms could set the maximum price and still serve
the customers between them.

Figure 4: Illustration of the setting for the price agreement in the Torus A market.
Firms A and B engage in a price agreement and all neighbours are assumed to set
the Nash Equilibrium price of 1. The firms who have a price listed are those who
determine the joint profit of firms A and B.

Consider the case as depicted by Figure 4. The structure is conform to that of a torus
of variant A so that consumers are located on the line segments and a firm’s profit is
only affected by its direct horizontal and vertical neighbours. The Nash Equilibrium
involves all firms setting their prices to p = 1. Now assume that firms A and B want
to jointly deviate from this strategy. Due to symmetry, the profit of both A and B is
equal to

πA = πB = (
7 − 3p∗

2
)p∗ (3)

Optimising this profit with respect to their jointly chosen price p* leads to an optimal
price of 1.16. This is not an option in our market structure, however Table 2 presents
the profits corresponding to the closest alternatives as well as the Nash Equilibrium
price of 1. It can be seen that jointly deviating is in fact profitable and that both firms
would be better off doing so as long as their neighbours stick to the equilibrium price.

Price = 1 Price = 1.15 Price = 1.2
Profit 2 2.041 2.040

Table 2: Profits for each of two neighbouring firms who take part in a price agreement
setting either the Nash Equilibrium price of 1 or two possible collusion prices, given
that the remaining firms in the market set the Nash Equilibrium price.

In order to test the stability of their cooperation, it is key to compute the payoffs A or
B would receive from breaking their price agreement. Given that A and B set a price of
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1.15, it would be optimal for either of the two firms to return to the Nash Equilibrium,
earning them a profit of 2.075. However, this would only be temporary as the other
firm would then return to the Nash Equilibrium as well. Assuming that the firms
compete forever (i.e. an infinite game) and that future payoffs are discounted, we can
compute the discount factor for which A and B will be willing to continue cooperating.
In order to cooperate, the infinite sum of payoffs associated with cooperating needs
to exceed the one-off payoff from deviating and the infinite sum of Nash Equilibrium
payoffs which follow. The discount factor δ should be such that the following equation
holds

2.075 +
∞∑
i=1

2 ∗ δi <
∞∑
i=0

2.041 ∗ δi (4)

It follows that δ should be at least 0.45. This assumes however that firms can change
prices immediately, which is not the case in the simulations. If there are just three
rounds between one firm breaking the agreement and the other returning to the Nash
Equilibrium then the discount factor should be at least 0.82. For the purpose of our
investigation we will however assume that the discount factor is sufficiently large and
that the firms trust each other.

Now let’s consider the behaviour of the colluding firms’ neighbours. Given that these
firms are in the neighbourhood of only either A or B, their profit is the same as A
or B’s profit for deviating from the price agreement, namely 2.075. Their optimal
strategy, disregarding the possibility of them joining the price agreement, is therefore
to continue playing the Nash Equilibrium. In theory we would therefore expect a
situation where all firms play the Nash Equilibrium price but firms A and B set a
price of 1.15.

The corresponding collusion prices for the circular market and Torus B market can
be found in a similar manner. For the circle we would optimise the prices of two
neighbouring colluding firms given that all remaining firms play the Nash Equilibrium
price of 1. This leads to a collusion price of 1.5 and a profit of 1.125 versus the
Nash Equilibrium profit (where all firms set a price of 1) of 1. The Nash Equilibrium
price in the Torus B market is 0.5 and given that all firms maintain this strategy,
two neighbouring firms would maximise their profits by committing to a price of 0.6
earning them profits of 0.5115 rather than profits of 0.5.

In order to determine to the effect of bilateral cooperation in the form of price agree-
ments, these agreements are incorporated explicitly in the models. For each market
structure, two neighbouring firms are chosen to collude and to set the corresponding
collusion prices (1.5 in the Circle, 1.15 in Torus A and 0.6 in Torus B). These firms will
not apply the learning rule and their price agreement is therefore assumed to be stable,
implying that they do not at any point in the simulation default on their agreement.
The remaining firms will act as dictated by the learning rule. Given the objections of
the original versions of Imitate Best Strategy and Win Cooperate, Lose Defect, only
the adjusted versions of these learning rules will be applied.

It is of particular interest to investigate whether, upon inspection of the market, it
is evident that there is a price agreement and which firms take part in this agree-
ment. Seeing that cooperative behaviour tends to induce more cooperative behaviour
(Bergstrom and Stark, 1993), it is expected that the remaining firms in the markets
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will also behave more cooperatively, especially those which find themselves in the di-
rect neighbourhood of the collusive firms. However, it is of interest to know the exact
impact on the market as a whole in terms of average prices, price dispersion and overall
cooperation.

5 Results

For each of the learning rules, including or excluding a price agreement, 500 runs of
the simulation are analysed. Of interest is the level of cooperation between firms in
the final round of the model, as well as the stability of the outcomes with respect
to the varying parameters. The stability is tested by examining the effect of the
experimentation probability as well as the effect of noise. In addition, the final 1000
rounds are examined in order to determine if a steady state has been reached.

With respect to the price agreements, it is of interest to examine their impact on the
overall level of cooperation in the market, as well as their impact on the behaviour of
the colluding firms’ direct neighbours. Moreover, it is examined whether or not it is
obvious that there is a price agreement and if the partaking firms can be identified.

5.1 Imitate the Best Strategy

The mean prices resulting from the learning rule Imitate the Best Strategy are pre-
sented in Table 3. Given that cooperation is defined as setting a price above the
continuous Nash Equilibrium pn (equal to 1 for the Circle and Torus A market struc-
tures and 0.5 for Torus B), cooperation is not a frequent occurrence. In fact, the
mean prices are only substantially above the Nash Equilibria in situations where the
entirety of a firm’s learning neighbourhood directly impacts its market share. The re-
sults in this sense reflect the idea that cooperation requires a limited, local interaction
amongst agents (Eshel et al., 1998). This is the case in the circular market with two
neighbours, the toroidal A market with 4 neighbours and in the toroidal B market.
The mean prices in these cases range from 1.281 to 1.317 in the Circle, 1.035 to 1.164
in Torus A and from 0.505 to 0.583 in Torus B.
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Experimentation
Market Noise Neighbours 0 0.0001
Circle 0 2 1.283 (0.029) 1.283 (0.023)

4 0.901 (0.005) 0.898 (0.000)
6 0.899 (0.008) 0.900 (0.001)
8 0.901 (0.007) 0.900 (0.000)
10 0.930 (0.014) 0.931 (0.013)
20 0.981 (0.009) 0.991 (0.011)

0.2 2 1.316 (0.034) 1.314 (0.032)
4 0.928 (0.017) 0.927 (0.014)
6 0.944 (0.014) 0.942 (0.013)
8 0.953 (0.021) 0.952 (0.016)
10 0.960 (0.016) 0.960 (0.015)
20 0.979 (0.016) 0.978 (0.014)

Torus A 0 4 1.154 (0.014) 1.156 (0.010)
8 1.036 (0.007) 1.035 (0.004)

0.2 4 1.060 (0.013) 1.060 (0.011)
8 0.996 (0.011) 0.995 (0.008)

Torus B 0 4 0.577 (0.006) 0.0579 (0.005)
8 0.519 (0.004) 0.518 (0.003)

0.1 4 0.534 (0.009) 0.535 (0.008)
8 0.505 (0.008) 0.507 (0.007)

Table 3: The average mean prices of 500 simulation runs where firms abide by the
Imitate Best Strategy learning rule. The standard deviations are presented in paren-
theses. The shaded entries indicate the combinations of parameters for which one of
the Nash Equilibria was obtained.

Conversely, in the presence of external neighbours, who are in the firm’s learning
neighbourhood but whose strategies do not directly influence the firm’s payoff, firms
tend to act more competitively. In the circular structure this results in average prices
which are two steps below the Nash Equilibrium. However, as the learning neighbour-
hood increases, the distance between the mean price and the Nash Equilibrium price
converges to 0. In Torus A the mean prices stay close to the Nash Equilibrium price.

Despite the slight dispersion of outcomes, as indicated by the standard deviations, in
several cases the continuous Nash Equilibrium or one of the discrete Nash Equilibria is
reached. This is especially true in the absence of noise even though noise tends to bring
the mean price closer to pn. The settings for which one or more of the Nash Equilibria
is reached are highlighted in Table 3. These are outcomes when the entire market sets
the same price. The stability of these equilibria, as well as non-equilibrium outcomes,
has been analysed by examining the development of the firms’ prices in the final 1000
rounds. When a Nash Equilibrium is reached, the firms do not deviate from this state,
however, non-equilibrium outcomes are less stable. In circular markets with a learning
neighbourhood of ρ = 10 or higher, and in both toroidal markets significant dispersion
of prices is observed. Moreover, in the final 1000 rounds of these outcomes, firms tend
to fluctuate between a selected range of prices. This often occurs in clusters. However,
in both tori with a learning neighbourhood of 4, there are also several fixed clusters
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where small subgroups deviate from the Nash Equilibrium price but no firm changes
strategy during the final 1000 rounds. An example of this can be seen in Figure 5
where the Nash Equilibrium price is 0.575. Firms do not deviate from their strategies
because the average profits in their respective learning neighbourhoods are highest for
their current strategy.

Figure 5: Example output based on Imitate Best Strategy in Torus B with ρ = 4,
σ = 0 and µ = 0.

Another interesting outcome is one in the circular market with four neighbours. Here
the set of prices switches from one where all firms set a price of 0.9 which the exception
of one firm who sets a price of 0.8. Then for 390 rounds, its right neighbour also sets
a price of 0.8 before returning to a price of 0.9 for the remaining 239 rounds.

5.2 Imitate Best Strategy Adjusted

As the learning rules Imitate Best Strategy and Imitate Best Strategy Adjusted do
not differ substantially, it comes as no surprise that their resulting mean prices also do
not differ substantially. The main difference however, is that the mean prices resulting
from Imitate Best Strategy Adjusted are all closer to the continuous Nash Equilibria,
on average one step (0.05) closer. The single exception to this is the Torus A market
with ρ = 8 and σ = 0.2. However, the difference between the mean prices of this
structure is less than 0.01. An overview of the mean prices along with their standard
deviations is presented in Appendix C.

Another noteworthy difference between the learning rules is the frequency with which
the Nash Equilibria are obtained. Whereas Nash Equilibria occurred rather sporad-
ically in Imitate Best Strategy (only a few, if any, of the 500 runs reached an equi-
librium), they occur much more frequently as a result of the Imitate Best Strategy
Adjusted rule. To illustrate, for the circle with a learning neighbourhood of ρ = 4
and in absence of noise and experimentation, the continuous Nash Equilibrium was
reached 40.6% of the time. For both tori with ρ = 8 this was even more substantial
with an occurrence of 83.4% and 80.4% for Torus A and Torus B respectively.

It was predicted that the steady states would contain less clustering in prices, based
on the findings in Section 3.2 where if firms switch to a strategy with an average
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profit less than their own, then this strategy becomes relatively more attractive. It
turns out that the opposite is true. This is confirmed in the increased frequency with
which the equilibrium states are reached, but also in the nature of clustering when
the equilibrium is not reached. In Imitate Best Strategy clustering often takes place
between small groups of firms, which mostly consist of only one or two members. In
Imitate Best Strategy Adjusted however, the clusters tend to be significantly larger and
sometimes even involve a 50/50 division where firms continually fluctuate between two
prices. These differences can be illustrated by considering example output resulting
from the Torus A market structure with a learning neighbourhood of ρ = 4 (excluding
noise and experimentation).

Figure 6: Example of prices set in the Torus A market with a learning neighbourhood
of ρ = 4, no noise σ = 0 and no experimentation µ = 0 as a result of the Imitate Best
Strategy learning rule.

Figure 7: Example of prices set in the Torus A market with a learning neighbourhood
of ρ = 4, no noise σ = 0 and no experimentation µ = 0 as a result of the Imitate Best
Strategy Adjusted learning rule.

Given that, in this structure, a firm’s neighbourhood consists only of its direct hori-
zontal and vertical neighbours, Imitate Best Strategy leads to substantially more price
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clusters than Imitate Best Strategy Adjusted does. In fact, in Figure 6 we can find 22
clusters with a price of 1.20, 13 clusters with a price of 1.15 and 6 clusters who set a
price of 1.10. This is in stark contrast to Figure 7 which contains a mere 6 clusters in
total.

The reason for this unexpected outcome could be due to the nature of the examples
considered. In those examples, the prices were not significantly dispersed and suggested
that there was already significant clustering present. This would not be the case in the
randomly generated initial strategies however and hence as a result of behaviour in the
earlier rounds, firms would not tend towards the same price as commonly. The results
do however support the existence of Nash Equilibria in the Imitate Best Strategy
structure because as firms tend towards uniform behaviour, they follow this tendency
up to the equilibrium. Another reason for the increased stability in the adjusted
version of the learning rule is that firms are also less likely to switch prices. This is
because with respect to the original learning rule, they are met with an additional
requirement, namely, that the average profit of a strategy must exceed their own.

In line with the previous section, the stability of the outcomes has been examined
by considering the final 1000 rounds. Again, once an equilibrium is reached, firms
do not deviate. The large clusters, which are most common in toroidal markets, are
relatively stable, even more so when only two prices are involved, and maintain the
same approximate structure despite fluctuations. The circular market also experiences
large clusters, as can be seen in Figure 8 but in other situations may switch between
unilateral and bilateral deviation.

Figure 8: Example of prices set in the circular market with a learning neighbourhood
of ρ = 8, no noise σ = 0 and no experimentation µ = 0 as a result of the Imitate Best
Strategy Adjusted learning rule.

5.3 Win Cooperate, Lose Defect

In Tieman et al.’s (2001) original work, they found that states of cooperation were
temporarily disrupted by price wars, during which firms would set lower prices before
returning to the same state of cooperation they were in before. This was only the
case in their toroidal market structure with a substantial price range from which firms
could choose. Profit was defined as a firm’s profit whilst competing with the most
competitive neighbour when they were last called to apply the learning rule. The
reason for defining profit in this manner is that it follows naturally from the structure
of their market. In this case, however, a firm’s market share is determined by the
prices set by all neighbours rather than just the most competitive one. By applying
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the learning rule to another market structure we test the robustness of their results.
It turns out that the price wars found by Tieman et al. (2001) are not obtained in this
context.

Albeit that the toroidal markets both show significant levels of cooperation in terms
of mean prices, which lie several steps above the continuous Nash Equilibria; for Torus
A the mean price lies between 1.117 and 1.155 and for Torus B the mean price lies
between 0.552 and 0.581, there is no such inherent instability as was found by Tieman
et al. (2001). Once a steady state is reached, there is no or limited deviation from
these prices, deviation mainly occurring as a result of noise or experimentation. The
outcomes in the circular market have a similar stability, albeit that the average be-
haviour is not as cooperative. In this market structure the mean prices remain close
to the Nash Equilibrium price of 1, being 1.073 with a learning neighbourhood of just
two and gradually decreasing to 0.964 as the learning neighbourhood increases.

Whereas the mean prices, being similar to those from Imitate Best Strategy, suggest
that firms act according to the continuous Nash Equilibrium or a more cooperative
equilibrium, this is not the case. In fact, upon inspection of the firms’ price setting
behaviour, an interesting pattern emerges. In the final output there are various groups
of firms, mainly consisting of 2 to 6 members (clusters), setting either the maximum
or minimum prices on an alternating basis. Interrupting these groups are individual
or pairs of firms which take advantage of the extremity of their neighbours by setting
prices which are most commonly between the maximum and the continuous Nash
Equilibrium price.

Figure 9 illustrates one of the final outcomes resulting from the circular market with
a learning neighbourhood of ρ = 6 and in absence of noise and experimentation. The
mean price is very close to the Nash Equilibrium price of 1, but in fact the firms’
pricing behaviour is far from unanimous. As can be seen there is an alternating
sequence of firms setting the minimum price, indicated in white, followed by firms
setting the maximum price, indicated in grey, with firms setting prices between 1 and
1.45, indicated in black, in between.

Figure 9: Example of prices set in the circular market with a learning neighbourhood of
ρ = 6, no noise σ = 0 and no experimentation µ = 0 as a result of the Win Cooperate,
Lose Defect learning rule. The lighter shade indicates firms setting the minimum price
of 0.5, the grey shaded areas indicate firms setting a price of 1.5 and the firms setting
alternative prices are depicted in black.

This almost 50/50 like pattern is prominent in each of the market structures, the main
difference being that the size of the clusters as well as the level of the interrupting
prices increases with the learning neighbourhood. However, despite this diversity, the
outcomes are relatively stable with minimal fluctuations. Win Cooperate, Lose Defect
is a rule based on reciprocity. Firms reciprocate cooperative behaviour (the firm’s profit
exceeds the average profit of its neighbours) by increasing their price. Vice versa, they
reciprocate uncooperative behaviour by lowering their price. The extremity in pricing
is therefore a result of firms’ profits being constantly above or below their neighbours’
average payoffs.
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There are however still slight fluctuations in pricing which take place even in the
last of the one million rounds. These price changes occur when one of the firms in
between the clusters is chosen by the learning rule. In order to illustrate the motivation
for switching, let us consider an example from the structure with the most limited
interaction amongst players, namely the circular market with a learning neighbourhood
of ρ = 2.

Own Price 1.5 1.15 0.5 0.5 1.2 1.5 1.5 1.5 1.15 0.5
Own Profit 1.24 0.98 0.66 0.68 0.96 1.28 1.5 1.24 0.98 0.66
Avg. Profit Neighbours 1.15 0.95 0.83 0.81 0.98 1.23 1.26 1.24 0.95 0.82

Table 4: Prices and profits of a section of the circular market with ρ = 2, σ = 0 and
µ = 0 as a result of Win Cooperate, Lose Defect

One of the final outputs from this market is partially presented in Table 4. The firms’
prices are presented in the top row, the firms’ own profits in the middle row and the
average profits corresponding to their neighbours are presented in the bottom row.
Notice that the profits of the firms setting the maximum or minimum price are such
that they would increase or decrease their prices respectively. However, as they cannot
exceed the price range they continue to set their current prices. According to these
current profits, the firms setting non-extreme prices also have an incentive to deviate.
The second firm in the table, for example, setting a price of 1.25, has a profit of 0.938
whereas the average profit of its neighbours is 1. Therefore, according to the learning
rule, this firm would decrease its price. Similarly, the fifth firm would decrease its
price and the ninth firm would increase its price.

If we assume that the second firm indeed lowers its price by one step to 1.2, its profit
will still be less than the average profit of its neighbours, and its neighbours incentives
also do not change. If the second firm was once more selected to adjust its price it
would again lower it but now, as a result of this further decrease, its own profit would
exceed the average of its neighbours, whereas its neighbours incentives once more do
not change. This implies that if the second firm was selected twice, and assuming its
neighbours prices do not change, it would then increase its price back to 1.2. These
incentives explain why these intermediate firms do not eventually set the maximum or
minimum price like its neighbours but continue to act as barriers in the market.

Note that given that profits are only updated once a firm is selected by the learning
rule, the above description may not be entirely accurate. However, due to the relative
stability of the final outcomes and the infrequency with which firms adjust their prices,
profits will be for a large part up-to-date in the final rounds of the simulation. Fur-
thermore, in the presence of noise or experimentation, such stability is compromised.
This is because noise biases a firm’s information about its neighbour’ profits and ex-
perimentation forces them to adjust their strategy even when they have no incentive
to do so.

The results presented in this section differ from those found by Tieman et al. (2001)
in various ways. The outcomes presented here were fascinating in terms of their ex-
tremity yet those found by Tieman et al. (2001) were significant due to their inherent
instability. The main cause for the difference in results is likely to be the effect of dif-
ferent cost structures and the nature of consumers. Whereas in this context firms are
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assumed to have zero marginal production costs and consumers are located uniformly
either on the lines (Circle and Torus A) or throughout the market (Torus B), in the
work by Tieman et al. (2001) marginal costs were assumed to be linear and consumers
were located at the firms. Both of these dissimilarities result in an entirely different
profit structure and hence different outcomes.

5.4 Win Cooperate, Lose Defect Adjusted

A critique of the Win Cooperate, Lose Defect(WCLD) rule is its use of outdated infor-
mation with regards to the profits of firms. The learning rule WCLD Adjusted is an
altered version of this rule such that firms use the most recent profits of their neigh-
bours when considering potential price changes. Given that the outdated information
could have been the cause for the price wars found by Tieman et al. (2001), updating
the learning rule could remove the inherent instability of their steady states. However,
the WCLD learning rule did not lead to price wars in the simulations presented in this
paper. In fact, due to the relative stability in the general structure of the outcomes, in
absence of noise and experimentation, firms do in fact use somewhat up-to-date profits
in the final rounds. The main difference in output is then a result of what happens
during earlier stages of the simulation.

As it happens, the results do not vary significantly in structure. Due to the nature of
the profit functions and the lack of marginal costs, the reciprocity in the learning rule
leads to the same form of extremity in pricing. Groups of firms set either the minimum
price of 0.5 or 0.25 and the maximum price of 1.5 of 0.75 with firms between these
groups setting a variety of prices and hence acting as barriers between the clusters.
The main difference is that in the circular market firms act on average more cooper-
atively than they would in the original version of the learning rule, implying that the
maximum price occurs more frequently than it did previously. This suggests that the
use of outdated profits may indeed lead to more competitive behaviour amongst firms,
however, the difference is small and in the toroidal markets even negligible.
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Figure 10: Example of prices set in the Torus B market with a learning neighbourhood
of ρ = 8, a noise level of σ = 0.1 and no experimentation µ = 0 as a result of the Win
Cooperate, Lose Defect Adjusted learning rule.

Figure 11: Example of prices set in the Torus B market with a learning neighbourhood
of ρ = 8, a noise level of σ = 0.1 and no experimentation µ = 0 as a result of the Win
Cooperate, Lose Defect Adjusted learning rule.

Once again, noise may alter the outcomes slightly because it causes firms to believe
that their neighbours’ profits are slightly higher or lower than they really are. For
this reason, the prices of firms between the clusters often only lies one step below the
maximum price. An example is provided in Figure 10 which presents one of the final
outcomes of the Torus B market with a learning neighbourhood of ρ = 8, a noise level
of σ = 0.1 and no experimentation. In markets without noise, the firms in between
clusters set a diverse range of prices between the continuous Nash Equilibrium of 0.5
and the maximum of 0.75. However, in the absence of noise, approximately half of
these in between firms set the price which is one step removed from the maximum,
namely 0.725. Of the 400 firms, 201 set the maximum price of 0.75 and 24 set a price
of 0.725.

This figure also shows the interconnectedness of firms setting the maximum or mini-
mum price, despite the influence of noise. Given that the learning neighbourhood is
8,there are only four clusters of firms setting a price of 0.5 and merely one large cluster

21



setting a price of 0.75. The four clusters setting a price of 0.25 have been highlighted
in Figure 11

5.5 Price Agreement in Imitate Best Strategy Adjusted

In this section, the results are discussed with respect to the situation where two neigh-
bouring firms maintain a price agreement of the optimal collusion price of the corre-
sponding market structure (a price of 1.5 in Circle, 1.15 in Torus A and 0.6 in Torus
B), and the remaining firms follow the Imitate Best Strategy Adjusted learning rule.
It was expected that the firms, especially those within the direct neighbourhood of
the colluding firms, would set higher prices than in the absence of the price agreement
and that firms would in general behave more cooperatively in this context. This is
confirmed in terms of the mean prices which are on average 0.006 higher due to the
existence of a price agreement. The difference is larger in the presence of noise, with
an average difference of 0.010. In terms of mean prices, the effect is not substantial
enough in order to suggest the existence of a price agreement, but this does not imply
that upon further inspection of the market, the price agreement cannot be identified.
For an overview of the mean prices for each combination of parameters see Appendix
C.

Besides the effect of a price agreement on the average market price, it is also of interest
to examine the effect of such an agreement on the structure of the market. In particu-
lar, whether upon inspection of the market, it can be determined that there is explicit
cooperation between firms and if the two colluding firms can be easily identified. In
this aspect there is quite a lot of variation even within the output of just one set of
parameters.

If we start with the simplest market structure; the circular market with only two
neighbours, no noise and no experimentation, we see that the results are quite similar
to that of Imitate Best Strategy Adjusted. There are large clusters of firms setting
prices above the continuous Nash Equilibrium of 1, interrupted by one or two firms
setting prices which are significantly below the Nash Equilibrium. In Imitate Best
Strategy Adjusted, the collusion price of 1.5 in this market was a regular occurrence,
being part of 185 of the 500 final outcomes. Now the price agreement forces this price
to be present in all 500 outcomes but the remaining firms do not deviate significantly
in behaviour.

Cooperative behaviour tends to induce more cooperative behaviour (Bergstrom and
Stark, 1993), hence it is expected that the direct neighbours of the colluding firms
would set higher prices. In 42.4% of the 500 cases, one or more of the direct neigh-
bours also sets the collusion price of 1.5, making it impossible to identify which firms
are partaking in the price agreement. Moreover, due to the variety of prices it isn’t
clear in this context that there is a price agreement. There are three main types of out-
put; one where direct neighbours set the collusion price, one where direct neighbours
set prices above the continuous Nash Equilibrium and one where direct neighbours
take advantage of the high price set by colluding firms by setting prices which are sig-
nificantly below the continuous Nash Equilibrium. Either the neighbours on each side
act similarly or they take a combination of these types of behaviour. Some examples
are presented below in Table 5.
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Direct Neighbour Colluding Firms Direct Neighbour
0.65 0.65 1.5 1.5 0.85 0.85
0.55 1.5 1.5 1.5 1.5 0.85
0.65 0.65 1.5 1.5 1.4 1.4

Table 5: The prices set by the colluding firms and their direct neighbours as a result
of the Imitate Best Strategy Adjusted in the circular market with a learning neigh-
bourhood of ρ = 2, no noise and no experimentation

In all remaining market structures there is a similar disparity in the behaviour of
the colluding firms’ direct neighbours. The main difference, however, is the general
behaviour of the remaining firms in the market. Whereas in the circle with a learning
neighbourhood ρ = 2 there was significant dispersion in prices, often ranging from the
minimum price of 0.5 to the maximum price of 1.5, the remaining market structures
have much less variation. In fact, similarly to Imitate Best Strategy Adjusted, the
majority of firms set prices which are equal to the continuous Nash Equilibrium prices
of 1 (in the Circle or Torus A markets) or 0.5 (in the Torus B market) or prices
which are merely one step away from these Nash Equilibria. In both tori with learning
neighbourhoods of ρ = 4 however, the prices are often closer to or equal to the collusion
prices (1.15 in Torus A and 0.6 in Torus B). In these settings it is therefore impossible
to clearly identify the presence of a price agreement, whereas in the other market
structures it may well be. An example of Torus A with ρ = 8 where the price agreement
is quite evident is presented in Figure 12 where all firms set the continuous Nash
Equilibrium price of 1 with the exception of the colluding firms and one of their direct
neighbours.

Figure 12: Example of prices set in the Torus A market with a learning neighbourhood
of ρ = 8, a noise level of σ = 0 and no experimentation µ = 0 as a result of the Imitate
Best Strategy Adjusted learning rule in the presence of a price agreement between the
adjacent firms in the top left corner.

It follows that especially in the case of limited, local interaction it is often indeter-
minable which two firms are partaking in a price agreement and whether or not there
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is a price agreement at all. The larger the scope of interaction, the more uniform the
firms’ behaviour becomes and the easier it becomes to identify the price agreement.

5.6 Price Agreement in Win Cooperate, Lose Defect Ad-
justed

In this section we present the results of the various markets where two firms maintain
a price agreement whilst the remaining firms act according to the Win Cooperate,
Lose Defect Adjusted learning rule. In the absence of a price agreement we found
a consistent pattern in the outcomes. Small groups of direct neighbours would set
either the maximum or minimum market price and would be interrupted by one or
two firms setting prices between the continuous Nash Equilibrium and the maximum
price. In the presence of a price agreement, two firms are forced to maintain the
optimal collusion price equal to 1.5 in the circular market, 1.15 in Torus A and 0.6 in
Torus B. Given that 1.5 equals the maximum price in the circular market and hence
was quite prominent in absence of the price agreement, the price agreement should
not have a significant impact on the behaviour in the market as a whole. The toroidal
markets may be more heavily influenced.

In terms of general cooperativeness, the price agreement hardly makes an impact. The
mean prices are the slightest bit higher but the difference is not substantial enough to
suggest the presence of a price agreement. What is more interesting then, is the impact
the price agreement has on the structure of the market and whether the colluding firms
can be identified. For this purpose, it is essential to examine the market more closely,
and in particular the direct neighbours of the colluding firms.

Market Structure Direct Neighbours Set Collusion Price (%)
Circle ρ = 2 52.2
Circle ρ = 4 69.8
Circle ρ = 6 68.8
Circle ρ = 8 81
Circle ρ = 10 86.6
Circle ρ = 20 92.4
Torus A ρ = 4 8.4
Torus A ρ = 8 7.4
Torus B ρ = 4 18
Torus B ρ = 8 10.2

Table 6: The percentage of the 500 simulations run in which one of the direct neigh-
bours of the colluding firms sets the collusion price.

Table 6 presents the percentages corresponding to the amount of times one of the
direct neighbours; defined as the neighbours whose behaviour has a direct impact on
the market share of the firm, sets the collusion price. In the circular market this is
especially high, ranging from 52.2% to a substantial 92.4%, increasing as the learning
neighbourhood of the firms increases. This implies that as the scope of the interaction
amongst firms increases, it becomes exceedingly difficult to identify the two colluding
firms.
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In the toroidal market, however, it is often quite easy to distinguish that two firms
are deviating from the general behaviour in the market due to the limited occurrence
of the collusion prices. However, as these prices (1.15 in Torus A and 0.6 in Torus
B), lie below the maximum market prices, it would not raise suspicion by anti-trust
authorities. Let us consider an example from the Torus B market with a learning
neighbourhood of ρ = 8 as presented in Figure 13. The deviating firms are the two
adjacent firms in the top left corner of the torus, as indicated in bold. None of their
direct neighbours also set the collusion price, however, four firms spread out over the
market, indicated in bold, do. Moreover, the firms setting neither the maximum or
minimum price set a range of prices starting from 0.525 to 0.725, the collusion price
being almost exactly in the middle.

Figure 13: Example of prices set in the Torus B market with a learning neighbourhood
of ρ = 8, a noise level of σ = 0.1 and no experimentation µ = 0 as a result of the Win
Cooperate, Lose Defect Adjusted learning rule in the presence of a price agreement
between the adjacent firms in the top left corner.

To conclude, two firms may set a price agreement in a market which abides by the
Win Cooperate, Lose Defect Adjusted learning rule without raising any suspicion. The
overall market behaviour does not change significantly, the deviating firms cannot be
pinpointed, and their behaviour is not distinct enough to make any real impact on the
level of cooperation amongst firms.

6 Conclusion

The aim of this paper has been to examine the effect of various learning rules on the
level of cooperation between spatially distributed firms. In addition, to investigate the
impact of explicit cooperation between two neighbouring firms who maintain a price
agreement. The results were obtained by simulating circular and toroidal markets
where homogeneous firms were set at equidistance of each other and consumers were
located uniformly, either on the line segments or throughout. For 500 distinct sets of
initial strategies, one million rounds were simulated. During each round, one firm was
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chosen at random in order to apply the learning rule and hence potentially adjust its
price.

The first learning rule examined was the Imitate Best Strategy rule, where firms copy
the strategy which proves most successful in their learning neighbourhood. In the case
of limited interaction amongst firms, the market shows significant cooperation, the
average price being several steps above the continuous Nash Equilibrium price. More-
over, the continuous Nash Equilibrium as well as one of the discrete Nash Equilibria
occurs for various structures.

The Imitate Best Strategy rule was then adjusted so that firms only adjust their
prices if the mean price of a neighbour’s strategy exceeds their own current profit.
In this scenario the overall level of cooperation is similar to that resulting from the
original learning rule, however, whereas the Nash Equilibria were previously a sporadic
occurrence, in this setting they occur more often than not. Adjusting the learning rule
therefore results in more stable behaviour amongst firms and a more uniform market
in all settings.

After adjusting the learning rule, the final step was to examine the effect of explicit
cooperation in the form of a price agreement. Two firms would maintain a price
agreement of 1.5 in the Circle, 1.15 in Torus A and 0.6 in Torus B whilst the remaining
firms followed the Imitate Best Strategy Adjusted rule. The main matter of importance
was whether, upon inspection of the market, it could be determined that a price
agreement was present. In terms of mean prices this was not the case, however in
terms of pricing behaviour it often was. In markets where all firms in the learning
neighbourhood directly impact a firm’s market share, one of the direct neighbours of
the colluding firms often sets the collusion price. This makes it impossible to exactly
pinpoint the two colluding firms, at least without accusing the direct neighbour. When
the scope of interaction increases, however, the price agreement becomes easier to
identify. The reason for this is that the remaining firms approach the continuous Nash
Equilibrium whilst the collusion prices lie above this equilibrium.

The next category of learning rules was one based on reciprocity, referred to as Win
Cooperate, Lose Defect. This learning rule dictates that if the average profit of a
firm’s neighbours exceeds its own profit, the firm will reciprocate this uncooperative
behaviour by decreasing its price. Vice versa, firms reciprocate cooperative behaviour
by increasing their price. The original version of this rule involves the use of outdated
profits which are only updated once a firm is selected by the learning rule. The
adjusted version corrects this by allowing firms to use the most up-to-date profits of
their neighbours as input for the decision making process.

Both versions of the learning rule result in a distinct pattern in the markets. Small
groups of firms (clusters) set either the minimum or maximum market price and are
interrupted by individual or pairs of firms setting alternative prices. These prices
tend to lie between the continuous Nash Equilibrium price and the maximum and
may be adjusted even in the final rounds of the simulation. Increasing the learning
neighbourhood of firms does not impact the general pattern, however, it does increase
the size of the clusters.

Due to the prominence of the maximum price in all market structures, and the differen-
tiation amongst the non-extreme firms, the price agreement did not have a significant
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impact on the general behaviour in the market. Once more, the presence of a price
agreement does not raise suspicion in terms of mean prices nor in terms of market
structure.

The two main learning rules, based on imitation and reciprocity, have lead to almost
polar opposites in terms of market structures despite being extremely similar in terms
of average market prices. Whereas the Imitate Best Strategy rule led to prices which
centred around the continuous Nash Equilibrium, the Win Cooperate, Lose Defect rule
conversely led to prices on opposite ends of the equilibrium. All results have proven
to be stochastically stable due to their robustness with respect to the experimenta-
tion probability. Noise also did not have a significant impact on the structure of the
outcomes, but often led to firms being one step above or below the prices they would
have otherwise set due to the biased information. The main factor of influence was,
just as in the work of Waltman et al. (2013), the learning neighbourhood. Increasing
the scope of interaction of firms tends to decrease the level of cooperation. Moreover,
the level of cooperation tends to be highest when a firm’s neighbourhood only consists
of the firms which directly impact its market share.

To conclude, both markets found forms of cooperation, albeit of completely different
nature, and were robust to external influences on the firm’s behaviour. Cooperation
as a result of imitation is of a more global form, resulting in uniform behaviour across
the market. Cooperation as a result of reciprocity is of a more local nature result-
ing in clusters of firms taking advantage of their neighbours’ cooperation. Even in
the presence of explicit cooperation, this implicit cooperation between firms remains
robust.

7 Limitations and Suggestions for Further Research

The main contribution of this research has been to compare and adjust previously
examined learning rules in a homogeneous setting and thereby to test the robustness
of the results found by Waltman et al. (2013) and Tieman et al. (2001). The setting
in which these results were obtained was based on that presented by Waltman et al.
(2013) with the only exception being the frequency with which the experimentation
possibility is applied.

In order to obtain a more global picture on how learning rules influence the level
of cooperation in a market, alternative learning rules, for example one where players
imitate their most successful neighbour rather than the most successful strategy, could
also be examined. In terms of explicit cooperation, it may also be of interest to consider
when more than two firms collude and to determine how many firms should partake
in a price agreement in order to significantly impact the market as a whole.

Whereas this paper has focused on the effect of various learning rules, it may also be
of interest to determine the sensitivity of these results to factors related to the market
structure rather than the way firms make decisions. Examples are the size of the mar-
ket, the use of continuous prices, the nature of the profit function or the distribution of
consumers. Evolutionary game theory is an immensely broad topic focusing on various
players, diverse contexts and the analysis of which has been approached both in theory
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and by means of simulation. It is a topic which allows for significant generalisation as
well as extreme specificity which makes the comparability of previous research limited.
This paper has allowed for this comparability whilst maintaining a reasonable scope,
outside of which there are still various factors of influence to be examined.
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A Appendix - The Model

A.1 Implementation

The model used for the simulations involves three different market structures; a circle,
a torus where consumers are located on the line segments and a torus where consumers
are located throughout. Each round a firm is chosen at random to potentially adjust
its price according to a pre-specified learning rule and the steady state behaviour
is then studied. The details of the model is such as presented by Waltman et al.
(2013), however their model has been adjusted and moved to another platform. The
simulations performed by Waltman et al. (2013) were for a large part programmed in
the language C and thereafter implemented in MATLAB. This was done by converting
the C code to C-MEX files which are compatible with MATLAB. Albeit that C has
advantages in terms of efficiency with respect to MATLAB, there are several issues
related to adjusting C-MEX files, particularly with debugging (Gamma, 1995). Java,
on the other hand, is a high-level object-orientated programming language which is
efficient in terms of speed and should have no such troubles when adjusting code for
alternative learning rules (Guzdial and Ericson, 2007).

For this reason, the simulation models for both the circle and torus (amounting to
approximately 600 lines of code) were translated to Java and adjusted accordingly
to compare the outcomes for various learning rules. The model makes use of Java’s
object orientated programming with both Market and Firm interfaces to depict both
market structures and the set of firms corresponding to the different learning rules.
The classes “RunCircle”, “RunTorusA” and “RunTorusB” (the general code for these
and all other classes can be found in Appendix E) initialise the markets and play one
million rounds for 500 different initial strategy sets, chosen at random. Due to the
nature of the random number generators, all results are reproducible. The amount of
code has been decreased to approximately 300 lines and the running time has been
halved (see Appendix A.3 for the comparison of running times), whilst producing
identical output to those presented in the original model.

A.2 Random Number Generators

Given that the results of these simulations are highly dependent on stochastic elements
such as the randomly generated initial strategies, the choice of firms for each round and
the noise level, it is essential to have a sophisticated random number generator. Java’s
standard generators Math.random and java.util.Random are fine in some contexts, but
due to their limited period of 248 the frequency with which these methods would be
called in the simulations may result in serial correlation (L’Ecuyer and Simard, 2007).
For this reason, it was decided to use one of the random number generators developed
by L’Ecuyer et al. (2002). The authors provide an array of random number gener-
ators and tools for stochastic simulation, and from this list the generator LFSR113
was chosen. The reasoning behind this decision was that LFSR113 had the best com-
bination of speed and diversity for the context of this paper. With a period of 2113

serial correlation should not be a problem. What is more, the use of one of the other
generators with a larger period would reduce simulation time and would be somewhat
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exaggerated for simulations where the maximum range generated integers lies between
0 and 399.

A.3 Speed of Model

Market Neighbourhood Wendelien Waltman
Circle 2 70 415

4 123 415
6 159 415
8 197 415
10 233 415
20 412 415

Torus A 4 125 628
8 232 598

Torus B 4 155 795
8 222 873

Table 7: Speed of the original (Waltman) vs. the new model (Wendelien) in computing
mean prices for 16 combinations of noise (0, 0.1, 0.2 and 0.5) and experimentation
probability (0, 0.00001, 0.0001 and 0.001) measured in minutes.

A.4 Computing Nash Equilibria

A Nash Equilibrium is defined as the set of strategies for which, given the strategies
of the remaining players, no player has an incentive to deviate (Nash, 1951). In these
models, every price is a discrete price Nash Equilibrium because, given that all players
play the same strategy, each player maximises its profit by continuing to play that
strategy. Of more interest is the continuous Nash Equilibrium.

If we consider the circular market structure, then a firm’s market share and hence
profit depends only on it’s own price and the prices set by its two direct neighbours.
To show that the Nash Equilibrium price pN equals 1, consider the situation where
all firms set a price of 1 and only one firm deviates. If all firms set the same price,
consumers will simply purchase from the firm which minimises their transportation
costs. However, if a firm deviates, consumers will purchase from the firm for which
the sum of the price and distance travelled is minimised. The market profit function
for the deviating firm is thus equal to:

Π = p ∗ (pN − p+ 1) + (pN − p+ 1)

2
(5)

We know that pN equals 1 so this simplifies down to Π = p ∗ (2 − p). Maximising this
expression with respect to the firm’s collusion price p gives us p = 1 = pN . A similar
computation can be done for the Torus A market structure where the profit function
is determined by a firm’s direct horizontal and vertical neighbours and equals:

Π = p ∗ (pN − p+ 1) + (pN − p+ 1) + (pN − p+ 1) + (pN − p+ 1)

2
(6)
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Figure 14: Illustration of the market share of a firm in the Torus B market

The Torus B market is slightly more complicated due to the effect of the indirect
neighbours, namely firms A, C, F and H in Figure 14. For this reason we need to
distinguish between two cases: one where the deviating firm sets a price above the
Nash Equilibrium of 0.5, and one where he sets a price below 0.5. The α as indicated
in the figure, is computed as follows, taking α1 as an example:

α1 =
pB − pO + 1

2
+
pD − pO + 1

2
− pA − pO + 2

2
(7)

Each α is computed, and if it is positive α2/2 is subtracted from Firm O’s market
share. Assuming that all firms set the Nash Equilibrium price of 0.5, each α simplifies
down to α = 1

4
− pO

2
. This is only positive for pO < 1

2
, hence the need to distinguish

between a price increase and decrease.

If Firm O were to deviate from the Nash Equilibrium by increasing its price, its profit
function would be Π = pO∗(3

2
−pO)2. Maximising with respect to pO gives an optimum

price of pO = 0.5 = pN . If Firm O were to deviate by decreasing its price, its profit
function would be Π = pO ∗ ((3

2
− pO)2 − 2 ∗ (1

4
− pO

2
)2). This too is maximised for

pO = 0.5 = pN , proving that in Torus B, the Nash Equilibrium price is equal to 0.5.
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B Appendix: Examples Where Firm’s Profit Ex-

ceeds Average Profit

Figure 15: An example of where a firm (firm O depicted in the center of the graph)
would switch to a higher strategy with an average payoff which is less that its own
current payoff in a circular market with a learning neighbourhood of ρ = 2.

[H]

Figure 16: An example of where a firm (firm O depicted in the center of the graph)
would switch to a lower strategy with an average payoff which is less that its own
current payoff in a Torus A market with a learning neighbourhood of ρ = 8.
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C Overview of Mean Prices - Imitate Best Strategy

Imitate Best Strategy(IBS) IBS Adjusted IBS Adjusted & Price War
Market σ ρ µ = 0 µ = 0.0001 µ = 0 µ = 0.0001 µ = 0 µ = 0.0001
Circle 0 2 1.283 (0.029) 1.283 (0.023) 1.008 (0.018) 0.998 (0.000) 1.180 (0.036) 1.181 (0.028)

4 0.901 (0.005) 0.898 (0.000) 0.901 (0.005) 0.898 (0.000) 1.009 (0.012) 1.004 (0.004)
6 0.899 (0.008) 0.900 (0.001) 0.993 (0.007) 0.997 (0.003) 1.002 (0.009) 1.004 (0.003)
8 0.901 (0.007) 0.900 (0.000) 1.002 (0.009) 0.998 (0.003) 1.010 (0.009) 1.005 (0.003)
10 0.930 (0.014) 0.931 (0.013) 0.998 (0.004) 0.997 (0.001) 1.006 (0.004) 1.006 (0.003)
20 0.981 (0.009) 0.991 (0.011) 0.993 (0.012) 0.997 (0.011) 1.007 (0.011) 1.008 (0.006)

0.2 2 1.316 (0.034) 1.314 (0.032) 1.107 (0.024) 1.103 (0.022) 1.115 (0.025) 1.107 (0.024)
4 0.928 (0.017) 0.927 (0.014) 0.900 (0.018) 0.899 (0.013) 1.003 (0.083) 0.974 (0.041)
6 0.944 (0.014) 0.942 (0.013) 0.933 (0.016) 0.930 (0.015) 0.940 (0.019) 0.937 (0.014)
8 0.953 (0.021) 0.952 (0.016) 0.940 (0.020) 0.942 (0.016) 0.950 (0.019) 0.947 (0.017)
10 0.960 (0.016) 0.960 (0.015) 0.958 (0.014) 0.956 (0.013) 0.965 (0.015) 0.961 (0.012)
20 0.979 (0.016) 0.978 (0.014) 0.985 (0.015) 0.981 (0.014) 0.995 (0.015) 0.990 (0.015)

Torus A 0 4 1.154 (0.014) 1.156 (0.010) 1.106 (0.022) 1.093 (0.011) 1.100 (0.018) 1.093 (0.011)
8 1.036 (0.007) 1.035 (0.004) 1.001 (0.008) 1.000 (0.000) 1.002 (0.007) 1.002 (0.003)

0.2 4 1.060 (0.013) 1.060 (0.011) 1.012 (0.013) 1.013 (0.011) 1.026 (0.016) 1.028 (0.011)
8 0.996 (0.011) 0.995 (0.008) 0.988 (0.013) 0.988 (0.010) 1.005 (0.015) 1.003 (0.011)

Torus B 0 4 0.577 (0.006) 0.0579 (0.005) 0.551 (0.007) 0.0548 (0.005) 0.551 (0.007) 0.0550 (0.005)
8 0.519 (0.004) 0.518 (0.003) 0.501 (0.004) 0.500 (0.000) 0.506 (0.003) 0.508 (0.004)

0.1 4 0.534 (0.009) 0.535 (0.008) 0.513 (0.008) 0.515 (0.007) 0.523 (0.009) 0.522 (0.009)
8 0.505 (0.008) 0.507 (0.007) 0.501 (0.008) 0.502 (0.009) 0.514 (0.008) 0.514 (0.008)

Table 8: The average mean prices after 500 simulation runs where firms act according to the learning rule Imitate Best Strategy, Imitate
Best Strategy Adjusted and Imitate Best Strategy Adjusted where two firms maintain a price agreement. The standard deviations of the
500 mean prices are presented in brackets. The learning neighbourhood is indicated by the symbol ρ, noise by σ and the experimentation
probability by µ.
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D Overview of Mean Prices - Win Cooperate, Lose Defect

WCLD WCLD Adjusted WCLD Adjusted & Price War
Market σ ρ µ = 0 µ = 0.0001 µ = 0 µ = 0.0001 µ = 0 µ = 0.0001
Circle 0 2 1.073 (0.01) 1.072 (0.01) 1.076 (0.009) 1.076 (0.009) 1.077 (0.009) 1.078 (0.01)

4 1.018 (0.009) 1.018 (0.009) 1.030 (0.009) 1.029 (0.009) 1.033 (0.01) 1.031 (0.01)
6 1.003 (0.008) 1.003 (0.007) 1.014 (0.007) 1.013 (0.007) 1.014 (0.008) 1.015 (0.008)
8 0.993 (0.007) 0.993 (0.007) 1.000 (0.007) 1.001 (0.007) 1.000 (0.007) 1.001 (0.006)
10 0.986 (0.006) 0.986 (0.006) 0.991 (0.007) 0.991 (0.006) 0.992 (0.007) 0.991 (0.007)
20 0.964 (0.007) 0.964 (0.007) 0.967 (0.007) 0.966 (0.007) 0.967 (0.007) 0.967 (0.006)

0.2 2 1.064 (0.005) 1.064 (0.005) 1.064 (0.005) 1.065 (0.004) 1.064 (0.004) 1.063 (0.005)
4 1.031 (0.005) 1.003 (0.005) 1.032 (0.006) 1.033 (0.005) 1.035 (0.005) 1.035 (0.005)
6 0.999 (0.007) 0.998 (0.009) 1.003 (0.007) 1.001 (0.007) 1.002 (0.007) 1.001 (0.008)
8 1.001 (0.008) 1.000 (0.007) 1.004 (0.007) 1.002 (0.007) 1.004 (0.007) 1.002 (0.006)
10 0.995 (0.006) 0.996 (0.006) 0.997 (0.006) 0.996 (0.005) 0.996 (0.006) 0.997 (0.006)
20 0.965 (0.005) 0.964 (0.005) 0.965 (0.005) 0.965 (0.005) 0.967 (0.005) 0.966 (0.005)

Torus A 0 4 1.147 (0.013) 1.149 (0.015) 1.15 (0.011) 1.152 (0.014) 1.15 (0.012) 1.149 (0.012)
8 1.129 (0.013) 1.128 (0.014) 1.127 (0.013) 1.129 (0.013) 1.129 (0.013) 1.127 (0.012)

0.2 4 1.155 (0.011) 1.155 (0.01) 1.154 (0.011) 1.154 (0.01) 1.156 (0.01) 1.156 (0.01)
8 1.117 (0.013) 1.119 (0.012) 1.116 (0.011) 1.118 (0.013) 1.118 (0.012) 1.117 (0.012)

Torus B 0 4 0.562 (0.006) 0.563 (0.006) 0.566 (0.006) 0.566 (0.006) 0.565 (0.006) 0.564 (0.006)
8 0.552 (0.007) 0.553 (0.007) 0.553 (0.006) 0.552 (0.007) 0.554 (0.006) 0.553 (0.006)

0.1 4 0.579 (0.004) 0.581 (0.005) 0.580 (0.005) 0.581 (0.005) 0.582 (0.005) 0.582 (0.004)
8 0.554 (0.007) 0.554 (0.006) 0.555 (0.006) 0.555 (0.005) 0.555 (0.006) 0.555 (0.006)

Table 9: The average mean prices after 500 simulation runs where firms act according to the learning rule Win Cooperate, Lose Defect
(WCLD), WCLD Adjusted and WCLD Adjusted where two firms maintain a price agreement. The standard deviations of the 500 mean
prices are presented in brackets. The learning neighbourhood is indicated by the symbol ρ, noise by σ and the experimentation probability
by µ.
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E Code

E.1 Firms

import java.util.HashMap;

import java.util.Map;

import java.util.Random;

import umontreal.iro.lecuyer.rng.LFSR113;

/** This class represents the homogeneous firms in the market who compete

by price and adjust their strategies

* based on the Imitate Best Strategy learning rule */

public class FirmIBS

{

private int indexStrategy; // the firm’s current strategy

private double[] setOfPrices; // the strategy set consisting of all

possible prices

private double profit; // the firm’s current profit

private int numStrategies; // the total number of strategies in the

strategy set

private double noise; // the noise parameter

private double expProb; // the experimentation probability

private LFSR113 rand; // the random number generator used to generate

integers and doubles

private Random gaussian; // the random number generator used to

generate draws from a Gaussian distribution

private Map<FirmIBS, Double> directNeighbours; // consists of the

firm’s neighbours who directly impact its market share

private Map<FirmIBS,Double> indirectNeighbours; // consists of the

firm’s neighbours who do not directly impact its market share

/** Initialises the FirmIBS */

public FirmIBS(int initialStrategy, int numberOfStrategies, double

noiseLevel, double experimentProb, int[] randomSeed, double[]

allPrices)

{

indexStrategy = initialStrategy;

numStrategies = numberOfStrategies;

noise = noiseLevel;

expProb = experimentProb;

LFSR113.setPackageSeed(randomSeed);

rand = new LFSR113();

gaussian = new Random(randomSeed[0]);

setOfPrices = allPrices;

indirectNeighbours = new HashMap<FirmIBS,Double>();

directNeighbours = new HashMap<FirmIBS, Double>();

}

/** Calculates and returns the current profit of the firm */
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public double getProfit()

{

double marketShare = 0.0;

for(FirmIBS neighbour : directNeighbours.keySet())

{

if(neighbour == null)

{

throw new IllegalArgumentException();

}

else

{

marketShare += (neighbour.getPrice() -

setOfPrices[indexStrategy] + 1)/2;

}

}

profit = marketShare*setOfPrices[indexStrategy];

return profit;

}

/** The firm determines the average profit of each strategy in its

learning neighbourhood (with a certain level of noise added to the

neighbours’ profits)

* The firm then imitates the strategy earning the highest average

profit.

* After copying the price, the firm may increase or decrease its price

dependent on the draws experiment and upDown provided as input.

* @param experiment: random number between 0 and 1 which determines

whether the firm will experiment

* @param upDown: random number between 0 and 1 which determines, if

the firm experiments, if it will increase or decrease its price*/

public void changeStrategy(double experiment, double upDown)

{

double[] totalProfitsPerStrategy = new double[numStrategies];

int[] firmsPerStrategy = new int[numStrategies];

firmsPerStrategy[indexStrategy]++;

totalProfitsPerStrategy[indexStrategy] += (this.getProfit());

for(FirmIBS neighbour : directNeighbours.keySet())

{

if(neighbour == null)

{

throw new IllegalArgumentException();

}

else

{

firmsPerStrategy[neighbour.getStrategy()]++;

totalProfitsPerStrategy[neighbour.getStrategy()] +=

(neighbour.getProfit() + noise*gaussian.nextGaussian());

}

}

for(FirmIBS neighbour : indirectNeighbours.keySet())

{
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if(neighbour == null)

{

throw new IllegalArgumentException();

}

else

{

firmsPerStrategy[neighbour.getStrategy()]++;

totalProfitsPerStrategy[neighbour.getStrategy()] +=

(neighbour.getProfit() + noise*gaussian.nextGaussian());

}

}

double[] meanProfitsPerStrategy = new double[numStrategies];

double maxProfit = Double.NEGATIVE_INFINITY;

int newStrategy = 0;

for(int i = 0; i < numStrategies; i++)

{

if(firmsPerStrategy[i] > 0)

{

meanProfitsPerStrategy[i] =

totalProfitsPerStrategy[i]/firmsPerStrategy[i] +

1E-10*rand.nextDouble();

}

if (meanProfitsPerStrategy[i] > maxProfit)

{

maxProfit = meanProfitsPerStrategy[i];

newStrategy = i;

}

}

if(experiment <= expProb)

{

if(upDown < 0.5 && newStrategy < (numStrategies - 1))

{

newStrategy++;

}

if(upDown >= 0.5 && newStrategy > 0)

{

newStrategy--;

}

}

indexStrategy = newStrategy;

}

/** Returns the firm’s current price */

public double getPrice()

{

return setOfPrices[indexStrategy];

}

/** Returns the firm’s current strategy ranging from 0 to numStrategies

- 1 */
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public int getStrategy()

{

return indexStrategy;

}

/** Adds a neighbour who influences the firm’s market share directly to

the map of direct neighbours */

public void addDirectNeighbour(FirmIBS neighbour)

{

if(neighbour == null || neighbour.getPrice() == 0)

{

throw new IllegalArgumentException();

}

else

{

directNeighbours.put(neighbour, neighbour.getPrice());

}

}

/** Adds a neighbour which the firm doesn’t share the market with, but

does have information about to the map of indirect neighbours */

public void addIndirectNeighbour(FirmIBS neighbour)

{

if(neighbour == null || neighbour.getPrice() == 0)

{

throw new IllegalArgumentException();

}

else

{

indirectNeighbours.put(neighbour, neighbour.getPrice());

}

}

}

/** The implementation of the Imitate Best Strategy Adjusted learning rule

*/

public void changeStrategy(double experiment, double upDown)

{

double[] totalProfitsPerStrategy = new double[numStrategies];

int[] firmsPerStrategy = new int[numStrategies];

firmsPerStrategy[indexStrategy]++;

double ownProfit = this.getProfit();

totalProfitsPerStrategy[indexStrategy] += ownProfit;

for(FirmWAdjusted neighbour : directNeighbours.keySet())

{

if(neighbour == null)

{

throw new IllegalArgumentException();

}

else

{
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firmsPerStrategy[neighbour.getStrategy()]++;

totalProfitsPerStrategy[neighbour.getStrategy()] +=

(neighbour.getProfit() + noise*gaussian.nextGaussian());

}

}

for(FirmWAdjusted neighbour : indirectNeighbours.keySet())

{

if(neighbour == null)

{

throw new IllegalArgumentException();

}

else

{

firmsPerStrategy[neighbour.getStrategy()]++;

totalProfitsPerStrategy[neighbour.getStrategy()] +=

(neighbour.getProfit() + noise*gaussian.nextGaussian());

}

}

double[] meanProfitsPerStrategy = new double[numStrategies];

double maxProfit = ownProfit; //key adjustment with original Waltman

model

for(int i = 0; i < numStrategies; i++)

{

if(firmsPerStrategy[i] > 0)

{

meanProfitsPerStrategy[i] =

totalProfitsPerStrategy[i]/firmsPerStrategy[i] +

1E-10*rand.nextDouble();

}

if (meanProfitsPerStrategy[i] > maxProfit)

{

maxProfit = meanProfitsPerStrategy[i];

indexStrategy = i;

}

}

if(experiment <= expProb)

{

if(upDown < 0.5 && indexStrategy < (numStrategies - 1))

{

indexStrategy++;

}

if(upDown >= 0.5 && indexStrategy > 0)

{

indexStrategy--;

}

}

}

import java.util.HashMap;
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import java.util.Map;

import java.util.Random;

/** This class represents the homogeneous firms in the market who compete

by price and adjust their strategies

* based on the Win Cooperate, Lose Defect learning rule */

public class FirmWCLD //implements Firm

{

private int indexStrategy; // the firm’s current strategy

private double[] setOfPrices; // the strategy set consisting of all

possible prices

private double profit; // the firm’s current profit

private int numStrategies; // the total number of strategies in the

strategy set

private double noise; // the noise parameter

private double expProb; // the experimentation probability

private Random gaussian; // the random number generator used to

generate draws from a Gaussian distribution

private Map<FirmWCLD, Integer> directNeighbours; // consists of the

firm’s neighbours who directly impact its market share

private Map<FirmWCLD, Integer> indirectNeighbours; // consists of the

firm’s neighbours who do not directly impact its market share

/** Initialises the FirmWCLD */

public FirmWCLD(int initialStrategy, int numberOfStrategies, double

noiseLevel, double experimentProb, int[] randomSeed, double[]

allPrices)

{

indexStrategy = initialStrategy;

numStrategies = numberOfStrategies;

noise = noiseLevel;

expProb = experimentProb;

gaussian = new Random(randomSeed[0]);

setOfPrices = allPrices;

indirectNeighbours = new HashMap<FirmWCLD, Integer>();

directNeighbours = new HashMap<FirmWCLD, Integer>();

profit = Double.NEGATIVE_INFINITY;

}

/** Calculates and returns the current profit of the firm */

public double updateProfit()

{

double marketShare = 0.0;

for(FirmWCLD neighbour : directNeighbours.keySet())

{

if(neighbour == null)

{

throw new IllegalArgumentException();

}

else

{
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marketShare += (neighbour.getPrice() -

setOfPrices[indexStrategy] + 1)/2;

}

}

profit = marketShare*setOfPrices[indexStrategy];

return profit;

}

/** Returns the firm’s profit when last updated. If no such profit has

been stored yet, it computes the firm’s current profit */

public double getProfit()

{

if(profit < 0)

{

profit = this.updateProfit();

}

return profit;

}

/** The firm determines the average profit of its neighbours when they

were last selected by the learning rule.

* Based on the Win Cooperate, Lose Defect learning rule, if the

average profit of its neighbours exceeds its own profit, the firm

will decrease its price and vice versa.

* It may then still experiment by increasing or decreasing its price.

* @param experiment: random number between 0 and 1 which determines

whether the firm will experiment

* @param upDown: random number between 0 and 1 which determines, if

the firm experiments, if it will increase or decrease its price

*/

public void changeStrategy(double experiment, double upDown)

{

double ownProfit = this.updateProfit();

double totalProfits = 0;

int count = 0;

for(FirmWCLD neighbour : directNeighbours.keySet())

{

if(neighbour == null)

{

throw new IllegalArgumentException();

}

else

{

totalProfits += (neighbour.getProfit() +

noise*gaussian.nextGaussian());

count++;

}

}

for(FirmWCLD neighbour : indirectNeighbours.keySet())

{

if(neighbour == null)
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{

throw new IllegalArgumentException();

}

else

{

totalProfits += (neighbour.getProfit() +

noise*gaussian.nextGaussian());

count++;

}

}

double averageProfit = totalProfits/count;

if(averageProfit > ownProfit && indexStrategy > 0)

{

indexStrategy--;

}

else if(averageProfit < ownProfit && indexStrategy < (numStrategies

- 1))

{

indexStrategy++;

}

if(experiment <= expProb)

{

if(upDown < 0.5 && indexStrategy < (numStrategies - 1))

{

indexStrategy++;

}

if(upDown >= 0.5 && indexStrategy > 0)

{

indexStrategy--;

}

}

}

/** Returns the firm’s current price */

public double getPrice()

{

return setOfPrices[indexStrategy];

}

/** Returns the firm’s current strategy ranging from 0 to numStrategies

- 1 */

public int getStrategy()

{

return indexStrategy;

}

/** Adds a neighbour who influences the firm’s market share directly to

the map of direct neighbours */

public void addDirectNeighbour(FirmWCLD neighbour, int index)

{
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if(neighbour == null)

{

throw new IllegalArgumentException();

}

else

{

directNeighbours.put(neighbour, index);

}

}

/** Adds a neighbour which the firm doesn’t share the market with, but

does have information about to the map of indirect neighbours */

public void addIndirectNeighbour(FirmWCLD neighbour, int index)

{

if(neighbour == null)

{

throw new IllegalArgumentException();

}

else

{

indirectNeighbours.put(neighbour, index);

}

}

}

/** The implementation of the Win Cooperate, Lose Defect learning rule. The

firm determines the average current profit of its neighbours

(getProfit() now returns current profit).

* Based on the Win Cooperate, Lose Defect learning rule, if the

average profit of its neighbours exceeds its own profit, the firm

will decrease its price and vice versa.

* It may then still experiment by increasing or decreasing its price.

* @param experiment: random number between 0 and 1 which determines

whether the firm will experiment

* @param upDown: random number between 0 and 1 which determines, if

the firm experiments, if it will increase or decrease its price

*/

public void changeStrategy(double experiment, double upDown)

{

double ownProfit = this.getProfit();

double totalProfits = 0;

int count = 0;

for(FirmWCLDAdj neighbour : directNeighbours.keySet())

{

if(neighbour == null)

{

throw new IllegalArgumentException();

}

else

{

totalProfits += (neighbour.getProfit() +
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noise*gaussian.nextGaussian());

count++;

}

}

for(FirmWCLDAdj neighbour : indirectNeighbours.keySet())

{

if(neighbour == null)

{

throw new IllegalArgumentException();

}

else

{

totalProfits += (neighbour.getProfit() +

noise*gaussian.nextGaussian());

count++;

}

}

double averageProfit = totalProfits/count;

if(averageProfit > ownProfit && indexStrategy > 0)

{

indexStrategy--;

}

else if(averageProfit < ownProfit && indexStrategy < (numStrategies

- 1))

{

indexStrategy++;

}

if(experiment <= expProb)

{

if(upDown < 0.5 && indexStrategy < (numStrategies - 1))

{

indexStrategy++;

}

if(upDown >= 0.5 && indexStrategy > 0)

{

indexStrategy--;

}

}

}

E.2 Markets

import umontreal.iro.lecuyer.rng.LFSR113;

/** This class represents the Circle market. The firms are initialised and

stored after which the firms are assigned their neighbours.

* Circle also has the function runSimulation() which applies the learning

rule numberOfRounds times. */

public class Circle
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{

private final int numFirms; // the number of firms in the market

private FirmIBS[] listOfFirms; // stores the firms in the market

private final int numberOfStrategies; // the total number of strategies

in the strategy set

private final int learningNeighbourhood; // the size of the firms’

learning neighbourhood

private final int numberOfRounds; // the number of times the learning

rule is applied

private final int[] randomSeed; // the seed of the LFSR113 random number

generator

private final double noiseLevel; // the noise level which perturbs the

firms’ information with respect to their neighbours’ profits

private final double experimentationProb; // the experimentation

probability

private final double[] setOfPrices; // the strategy set

private LFSR113 rand; // the random number generator

public Circle(int dimension, int[] initialStrategies, int

numStrategies,int neighbourhood,int numRounds,int[] seed,double

noise, double experiment, double[] prices)

{

numFirms = dimension;

listOfFirms = new FirmIBS[numFirms];

numberOfStrategies = numStrategies;

learningNeighbourhood = neighbourhood;

numberOfRounds = numRounds;

randomSeed = seed;

noiseLevel = noise;

experimentationProb = experiment;

LFSR113.setPackageSeed(randomSeed);

rand = new LFSR113();

setOfPrices = prices;

for(int i = 0; i < numFirms; i++)

{

/** Initialise firms with initial strategies */

FirmIBS newFirm = new FirmIBS(initialStrategies[i],

numberOfStrategies, noiseLevel, experimentationProb,

randomSeed, setOfPrices);

listOfFirms[i] = newFirm;

}

int i = 0;

for(FirmIBS firm : listOfFirms)

{

for(int j = 1; j <= learningNeighbourhood; j++)

{

/** add neighbours to firms */

if(j == 1)

{
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int locationRight = ((i+j) >= numFirms) ? (i+j-numFirms) :

(i+j);

int locationLeft = ((i-j) < 0) ? (numFirms + (i-j)) : (i-j);

firm.addDirectNeighbour(listOfFirms[locationRight]);

firm.addDirectNeighbour(listOfFirms[locationLeft]);

}

if (j > 1)

{

int locationRight = ((i+j) >= numFirms) ? (i+j-numFirms) :

(i+j);

int locationLeft = ((i-j) < 0) ? (numFirms + (i-j)) : (i-j);

firm.addIndirectNeighbour(listOfFirms[locationRight]);

firm.addIndirectNeighbour(listOfFirms[locationLeft]);

}

}

i++;

}

}

/** Implements the learning rule numberOfRounds times */

public void runSimulation()

{

for(int i = 0; i < numberOfRounds; i++)

{

int index = rand.nextInt(0,numFirms-1); // picks a firm at random

FirmIBS currentFirm = listOfFirms[index];

currentFirm.changeStrategy(rand.nextDouble(), rand.nextDouble());

//the firm obtains the relevant information and applies the

Imitate Best Strategy learning rule

}

}

/** Returns the mean market price */

public double getMean()

{

double mean = 0.0;

for(FirmIBS firm : listOfFirms)

{

mean += firm.getPrice();

}

return mean/numFirms;

}

}

import umontreal.iro.lecuyer.rng.LFSR113;

/** This class represents the Torus A market. The firms are initialised and

stored after which the firms are assigned their neighbours.

* Torus A also has the function runSimulation() which applies the

learning rule numberOfRounds times. */
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public class TorusA

{

private final int numFirms; // the number of firms in the market

private FirmIBS[] listOfFirms; // stores the firms in the market

private final int numberOfStrategies; // the total number of strategies

in the strategy set

private final int learningNeighbourhood; // the size of the firms’

learning neighbourhood

private final int numberOfRounds; // the number of times the learning

rule is applied

private final int[] randomSeed; // the seed of the LFSR113 random number

generator

private final double noiseLevel; // the noise level which perturbs the

firms’ information with respect to their neighbours’ profits

private final double experimentationProb; // the experimentation

probability

private final double[] setOfPrices; // the strategy set

private final FirmIBS[][] torusFirms; // stores the firms in the

location corresponding to the torus

private LFSR113 rand; // the random number generator

public TorusA(int dimension, int[] initialStrategies, int

numStrategies,int neighbourhood,int numRounds,int[] seed,double

noise, double experiment, double[] allPrices)

{

numFirms = dimension*dimension; /** this is circle! for torus use

dimension*dimension */

listOfFirms = new FirmIBS[numFirms];

numberOfStrategies = numStrategies;

learningNeighbourhood = neighbourhood;

numberOfRounds = numRounds;

randomSeed = seed;

noiseLevel = noise;

experimentationProb = experiment;

setOfPrices = allPrices;

LFSR113.setPackageSeed(randomSeed);

rand = new LFSR113();

torusFirms= new FirmIBS[dimension][dimension];

int count = 0;

for(int i = 0; i < dimension; i++)

{

for(int j = 0; j < dimension; j++)

{

/** initialise firms with initial strategies */

FirmIBS newFirm = new FirmIBS(initialStrategies[count],

numberOfStrategies, noiseLevel, experimentationProb,

randomSeed, setOfPrices);

torusFirms[i][j] = newFirm;

listOfFirms[count] = newFirm;

count++;
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}

}

if(learningNeighbourhood == 4)

{

for(int i = 0; i < dimension; i++)

{

for(int j = 0; j < dimension; j++)

{

/** add neighbours to firms */

FirmIBS firm = torusFirms[i][j];

int locationUp = ((i-1) < 0) ? (dimension-1) : (i-1);

int locationDown = ((i+1) >= dimension) ? (0) : (i+1);

int locationLeft = ((j-1) < 0) ? (dimension-1) : (j-1);

int locationRight = ((j+1) >= dimension) ? (0) : (j+1);

firm.addDirectNeighbour(torusFirms[locationUp][j]);

firm.addDirectNeighbour(torusFirms[locationDown][j]);

firm.addDirectNeighbour(torusFirms[i][locationLeft]);

firm.addDirectNeighbour(torusFirms[i][locationRight]);

}

}

}

else

{

for(int i = 0; i < dimension; i++)

{

for(int j = 0; j < dimension; j++)

{

FirmIBS firm = torusFirms[i][j];

/** add neighbours to firms */

int locationUp = ((i-1) < 0) ? (dimension-1) : (i-1);

int locationDown = ((i+1) >= dimension) ? (0) : (i+1);

int locationLeft = ((j-1) < 0) ? (dimension-1) : (j-1);

int locationRight = ((j+1) >= dimension) ? (0) : (j+1);

firm.addDirectNeighbour(torusFirms[locationUp][j]);

firm.addDirectNeighbour(torusFirms[locationDown][j]);

firm.addDirectNeighbour(torusFirms[i][locationRight]);

firm.addDirectNeighbour(torusFirms[i][locationLeft]);

firm.addIndirectNeighbour(torusFirms[locationUp][locationRight]);

firm.addIndirectNeighbour(torusFirms[locationUp][locationLeft]);

firm.addIndirectNeighbour(torusFirms[locationDown][locationRight]);

firm.addIndirectNeighbour(torusFirms[locationDown][locationLeft]);

}

}

}

}

/** Implements the learning rule numberOfRounds times */

public void runSimulation()

{

for(int i = 0; i < numberOfRounds; i++)

48



{

int index = rand.nextInt(0, numFirms-1); // picks a firm at random

FirmIBS currentFirm = listOfFirms[index];

currentFirm.changeStrategy(rand.nextDouble(), rand.nextDouble());

//adjusts the strategy and updates neighbour information

}

}

/** Returns the mean market price */

public double getMean()

{

double mean = 0.0;

for(FirmIBS firm : listOfFirms)

{

mean += firm.getPrice();

}

return mean/numFirms;

}

}

import umontreal.iro.lecuyer.rng.LFSR113;

/** This class represents the Torus B market. The firms are initialised and

stored after which the firms are assigned their neighbours.

* Torus B also has the function runSimulation() which applies the

learning rule numberOfRounds times. */

public class TorusB

{

private final int numFirms; // the number of firms in the market

private FirmIBS[] listOfFirms; // stores the firms in the market

private final int numberOfStrategies; // the total number of strategies

in the strategy set

private final int learningNeighbourhood; // the size of the firms’

learning neighbourhood

private final int numberOfRounds; // the number of times the learning

rule is applied

private final int[] randomSeed; // the seed of the LFSR113 random number

generator

private final double noiseLevel; // the noise level which perturbs the

firms’ information with respect to their neighbours’ profits

private final double experimentationProb; // the experimentation

probability

private final double[] setOfPrices; // the strategy set

private final FirmVarB[][] torusFirms; // stores the firms in the

location corresponding to the torus

private LFSR113 rand; // the random number generator

public TorusB(int dimension, int[] initialStrategies, int

numStrategies,int neighbourhood,int numRounds,int[] seed,double

noise, double experiment, double[] allPrices)

{
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numFirms = dimension*dimension; /** this is circle! for torus use

dimension*dimension */

listOfFirms = new FirmVarB[numFirms];

numberOfStrategies = numStrategies;

learningNeighbourhood = neighbourhood;

numberOfRounds = numRounds;

randomSeed = seed;

noiseLevel = noise;

experimentationProb = experiment;

setOfPrices = allPrices;

LFSR113.setPackageSeed(randomSeed);

rand = new LFSR113();

torusFirms= new FirmVarB[dimension][dimension];

int count = 0;

for(int i = 0; i < dimension; i++)

{

for(int j = 0; j < dimension; j++)

{

/** initialise firms with initial strategies */

FirmVarB newFirm = new FirmVarB(initialStrategies[count],

numberOfStrategies, noiseLevel, experimentationProb,

randomSeed, setOfPrices, learningNeighbourhood);

torusFirms[i][j] = newFirm;

listOfFirms[count] = newFirm;

count++;

}

}

for(int i = 0; i < dimension; i++)

{

for(int j = 0; j < dimension; j++)

{

FirmVarB firm = torusFirms[i][j];

/** add neighbours to firms */

int locationUp = ((i-1) < 0) ? (dimension-1) : (i-1);

int locationDown = ((i+1) >= dimension) ? (0) : (i+1);

int locationLeft = ((j-1) < 0) ? (dimension-1) : (j-1);

int locationRight = ((j+1) >= dimension) ? (0) : (j+1);

firm.addDirectNeighbour(torusFirms[locationUp][j],0); //North

firm.addDirectNeighbour(torusFirms[locationDown][j],2); //South

firm.addDirectNeighbour(torusFirms[i][locationRight],1); //East

firm.addDirectNeighbour(torusFirms[i][locationLeft],3); //West

firm.addIndirectNeighbour(torusFirms[locationUp][locationRight],0);

//NorthEast

firm.addIndirectNeighbour(torusFirms[locationUp][locationLeft],3);

//NorthWest

firm.addIndirectNeighbour(torusFirms[locationDown][locationRight],1);

//SouthEast

firm.addIndirectNeighbour(torusFirms[locationDown][locationLeft],2);

//SouthWest

50



}

}

}

/** Implements the learning rule numberOfRounds times */

public void runSimulation()

{

for(int i = 0; i < numberOfRounds; i++)

{

int index = rand.nextInt(0, numFirms-1); // picks a firm at random

FirmVarB currentFirm = listOfFirms[index];

currentFirm.changeStrategy(rand.nextDouble(), rand.nextDouble());

//adjusts the strategy and updates neighbour information

}

}

/** Returns the mean market price */

public double getMean()

{

double mean = 0.0;

for(FirmVarB firm : listOfFirms)

{

mean += firm.getPrice();

}

return mean/numFirms;

}

}

E.3 Run Model

import java.io.FileNotFoundException;

import java.io.PrintWriter;

import umontreal.iro.lecuyer.rng.LFSR113;

/** This class provides the input for the Circle market and runs the

simulation for all combinations of noise and experimentation */

public class RunCircle

{

public static void main(String[] args) throws FileNotFoundException

{

int n = 400;

int n_strategies = 21;

int learning_neighbourhood = 1;

int n_rounds = 1000000;

int n_simulation_runs = 500;

int[] randomSeed = new int[4];

randomSeed[0] = 987654321;
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randomSeed[1] = 987654321;

randomSeed[2] = 987654321;

randomSeed[3] = 987654321;

double[] noise_levels = {0, 0.1, 0.2, 0.5};

double[] experimentation_probs = {0, 0.00001, 0.0001, 0.001};

double[] prices = {0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9,

0.95, 1.0, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5};

LFSR113.setPackageSeed(randomSeed);

LFSR113 rand = new LFSR113();

int[] initialStrategies = new int[n];

long startTime = System.currentTimeMillis();

PrintWriter writerMean = new PrintWriter("CircleL1.txt");

for(double noise : noise_levels)

{

for(double exp : experimentation_probs)

{

for(int i = 0; i < n_simulation_runs; i++)

{

for(int j = 0; j < n; j++)

{

initialStrategies[j] = rand.nextInt(0, n_strategies-1);

}

Circle circle = new Circle (n, initialStrategies,

n_strategies, learning_neighbourhood, n_rounds,

randomSeed, noise, exp, prices);

circle.runSimulation();

writerMean.println(circle.getMean());

}

}

}

long endTime = System.currentTimeMillis();

long totalTime = endTime - startTime;

writerMean.println("Speed Circle L1:" + totalTime);

writerMean.close();

}

}
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