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Abstract
This thesis studies the Team Orienteering Problem with Time Windows (TOPTW).

In this problem, a set of locations is given and each of these locations has a service
time, a profit and a time window. The objective is to maximize the profit by visiting
the locations, while taking into account the time window of the locations. The aim
of this thesis is to reproduce the iterative three-component heuristic (I3CH) by Hu
and Lim| (2014]) for TOPTW. This heuristic consists of a local search and a simulated
annealing which give solutions that can be improved by a third component: routing
recombination. The heuristic is applied on test instances which is also used in [Hu and
Lim| (2014). Results of the |Hu and Lim)| (2014) are verified and we were also able so
find new best known solutions for the TOPTW. Furthermore, we adapted the I3CH
for the Orienteering Problem with Hotel Selection and Time Windows. We tested the
heuristic on a small set of benchmark instances which also give solutions near the best

known solutions for these benchmark instances.
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1 INTRODUCTION 1

1 Introduction

This thesis studies the Team Orienteering Problem with Time Windows (TOPTW). The
TOPTW is an optimization problem of which the objective is to maximize the profit by
visiting a set of locations. Each location has a service time, a profit and a time window
and a location can be visited at most once. The number of routes is fixed. A feasible route
is defined as follows: it should start and end at the depot and the locations should visit
within the time window.

A real-life application of the TOPTW is the generation of a personal tourist trip by
electronic tourist guides. Tourists usually have little time when they visit a particular
city. The electronic tourist guides provide a set of routes in which the most valuable
points of interest (POI) are visited taking into account the opening hours of the POI and
the available time spend at a POI. An application to the city of Ghent can be found in
Souffriau et al.| (2008]).

Hu and Lim| (2014) pose an iterative three-component heuristic (I3CH) to solve the
TOPTW. The three components of the heuristic are local search (LS), simulated annealing
(SA) and the route recombination (RR). The aim of this thesis is to reproduce the heuristic
and verify the results of [Hu and Lim| (2014). Furthermore, the I3CH is adapted for the
Orienteering Problem with Hotel Selection and Time Windows (OPHS-TW). In contrary
to the TOPTW, a route contains a fixed starting hotel and ending hotel and should visit
a given number of intermediate hotels.

This thesis is structured as follows. In Section [2| a literature review is given about
the TOPTW and related problems. In Section [3| the TOPTW is described. The iterative
three-component heuristic is described in Section [4] and its results are discussed in Section
The heuristic is adapted for the Orienteering Problem with Hotel Selection and Time

Windows in Section [6l The thesis is concluded with a conclusion in Section [7

2 Literature review

The TOPTW is one of the many variants of the classic Orienteering Problem (OP). The
OP is derived from the outdoor sport orienteering. The participants start at a certain
point, visit as much as possible checkpoints and then return to the starting position
within a certain time limit. Each checkpoint has a certain score and the participants try
to maximize their total score.

Golden et al| (1987) showed that the OP is NP-hard, hence it is unlikely that an
optimal solution can be found in polynomial time. Heuristics and meta-heuristics are the
most common techniques to tackle large problem instances. |Chao et al.| (1996) pose a two
step fast and effective heuristic for the OP. In the first step an ellipse around the starting
point is created. The range of the ellipse is determined by the time limit. The second step
consists of creating an optimal path within the ellipse.

The Team Orienteering Problem (TOP) is an extension of the OP. In this extended
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problem, more than one route is possible.

The TOP with Time Windows (TOPTW) is an extension of the TOP. In the recent
years, this extension gained more attention, because problem instances with time windows
can not be solved efficiently using heuristics for problem without time windows (Vansteen-
wegen et al., |2011). Labadie et al.| (2012)) pose a granular Variable Neighborhood Search
(VNS) procedure. The aim of the granular VNS is to reduce the size of the neighborhood
by inspecting the dual problem of a relaxed integer programming of the TOPTW. [Labadie
et al.| (2012) found that this increases the efficiency of the algorithm.

Vansteenwegen et al.| (2009) pose iterated local search meta-heuristic to solve the
TOPTW. The main contribution on this paper consists of an insert step combined with a
shake step in order to escape from local optima. The performance of this heuristic is good
on a large and diverse set of instances.

Montemanni et al.| (2011) improved their ant colony system (ACS) heuristic (Mon-
temanni and Gambardella, 2009) for the TOPTW. This type of algorithms for solving
optimization problems is inspired by ant colonies. The parallel search for solutions is the
main feature of the ACS. In this paper the enhanced ACS performs well on benchmark
instances.

Lin and Yu| (2012) pose a fast and a slow SA heuristic for the TOPTW. The fast SA
has a low computation time, while the slow SA provides better solutions.

In |[Hu and Lim| (2014)), the I3CH is compared with among others the ACS by Mon-
temanni and Gambardellal (2009), the iterated local search algorithm of Vansteenwegen
et al. (2009), the VNS by [Tricoire et al.| (2010]), the slow SA by |Lin and Yu| (2012)) and
the granular VNS by [Labadie et al. (2012). The average gap of the I3CH is smaller than
other algorithms for most instances. However, the average computing time is only shorter
for the ACS by Montemanni et al.| (2011)).

More recently, (Gunawan et al.| (2015) propose a hybrid algorithm. This algorithm is
a combination of the iterative local search and the simulated annealing (SAILS). Instead
of starting with a random solution for the SAILS, a greedy algorithm is used for creating
an initial solution.

The Orienteering Problem with Hotel Selection and Time Windows (OPHS-TW) is
an extension of the OP. This problem consists of one contiguous route that has a fixed
starting and ending hotel with intermediate hotels and considering the time windows.
There is little research conducted about this problem. [Divsalar et al. (2013) developed
a Variable Neighborhood Search to solve the Orienteering Problem with Hotel Selection.
Divsalar et al.| (2014)) extended this to Genetic Algorithm with a Variable Neighborhood
Descent to solve OPHS-TW.
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3 Problem description

In the TOPTW a directed graph G = (V, A) is given. This graph consists of a set of
vertices V and a set of arcs A. The vertices represent the locations and the set of arcs
contains paths from ¢ € V to j € V with ¢ # j. This problem consists of n + 1 locations.
Every location i is characterized by a profit p;, a service time s;, the x- and y-coordinate
and a time window [O;,C;]. The depot is denoted by the location 0. The remaining
locations represent the customers. These customers can be visited at most once. For
each route k € P, k represents an ordered list of visiting customers starting and ending
at location 0. Let |P| = m, which is the number of routes set in advance. A visit to
a customer should start within the customer’s time window. If the vehicle arrives at a
location before O;, then the vehicle has to wait until O;. The objective of the TOPTW is
maximizing the profit by creating feasible set of routes with respect to the time windows.

This problem can also be formulated as a mixed integer programming. We use a
formulation of the TOPTW that is formulated by [Montemanni and Gambardella (2009).
Let a binary variable xfj be 1 if arc (i,7) € A is in route k and 0 otherwise. Let 2* be an
integer containing the time of visiting a customer ¢ in route k. Let ¢;; be the Euclidean
distance between ¢ and j and M be a large constant. Let location n + 1 be a dummy

depot.

maxz Z pz.ff] (1)

kEP (i,5)€A

st Y af <1 Viev, (2
keP jev
D af; =1 Vk € P, (3)
JjeV
> af, = ak;=0 VYh e V\{0,n+1},Vk e P, (4)
ey jev
> k=1 Vk € P, (5)
2%
2+t +si— M(1—afy) < 2F Vi,j € V,Vk € P, (6)
0; <2k <G Vi€ V,Vk € P, (7)
xy; € {0,1} Y(i,7) € A, Vk € P, (8)
2FeN Vi€ V,Vk € P. (9)

The objective function maximizes the total profit of the customers. Constraints
ensure that each location is visited at most once. Constraints impose that a route start
at the depot. Constraints ensures the connection of the arcs in a route. Constraints
impose that a route end at the depot. Inequalities @ and @ make sure that the time

windows constraints are satisfied.
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A solution for m = 2 is represented as follows: route m = {0,1,2,3,4,0}, ro =
{0,5,6,7,8,0} and uw = {9,10}. In this representation route r; will start from the depot
and visit customer 1, 2, 3 and 4, and then return back to the depot. Route ro visits
customer 5, 6, 7 and 8. The remaining customers 9 and 10 are not visited. In figure

this solution is depicted.

© (5
0]

@

Figure 1: Example of a solution for m = 2
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4 Methodology

The I3CH by |[Hu and Lim| (2014)) consists of three components. These components are the
local search (LS), simulated annealing (SA) and the route recombination (RR). The routes
found by the LS and SA are stored in a solution pool. The RR finds a new combination
of routes with equal or higher profit found by one of the two first components. This
procedure is repeated in the iterative framework until all customers are visited or the

maximum number of iterations is reached.

4.1 The iterative framework

In the initialization the Eliminator operator generates 3 - N solutions and select the best
as the starting solution A. All routes of the initial solutions are stored in a route pool. As
input for the Eliminator an empty solution is given with m empty routes and a randomly
shuffled list of unvisited customers. Since no customers are visited, no customers can be
removed. The Eliminator improves the solution by adding as much as possible customers in
one of the routes. Thereafter, the post-processing procedure is executed to further improve
the solution. The framework then subsequently runs RR, LS and SA until the stopping
criterion is met. In algorithm [I] the framework is shown. In the following subsections, we

first describe the Eliminator and then the individual components of the heuristic.

Algorithm 1 I3CH for the TOPTW

Require: maximum number of iterations I,,qz
Require: integer N repetitions
Require: route pool POOL
1: Use eliminator to create 3 - N solutions and store routes in POOL and obtain best starting
solution A
141
while ¢ < I,,,4, do
ZrRr < solution from RR over POOL
X1s < best solution LS with N neighbors and store routes in POOL
Ysa < best solution SA with N steps and store routes in POOL
A+ max{A, X1s,Ysa, Zrr}, breaking ties arbitrarily
t—1i+1
if all customers are served in A then
14 Lpae + 1
: return Best solution A

—_ =
= o

4.2 FEliminator

The Eliminator is a neighborhood operator that searches for neighborhood solutions. The
LS and SA invoke the Eliminator to obtain a neighborhood solution. Given a solution A,
the Eliminator randomly removes customers from some routes with the following policy.
A customer c is randomly selected from a route has the profit p.. If the customer’s profit
is higher than the average profit of solution A, then this customer is removed with a

probability Pj. If the customer’s profit is lower than the average, then the customer is
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removed with a probability P;. The probability P, is lower than the probability P, to
ensure that the more profitable is more likely to remain in the route. The probabilities
P, and P, are set in advance. The removed customers are stored in a list of unvisited
customers, denoted by u. This is solution A’.

After removing some customers, the routes of this solution provide space to insert
customers. A’ is called partial. We are now able to improve the solution by adding
customers from u. After shuffling u, we pick the first customer ¢ from the list and insert
this customer into the first possible position in route r; with ¢ = 1,...,m. If the customer
c can not be inserted in r;, the customer is moved to the end of the list. In case of a
successful insertion, the customer is removed from w. This procedure is repeated until no

further insertion could be made. The resulting solution B is called complete.

Procedure 2 Post-processing procedure

Require: solution B
1: impr < true
2: while impr do
3:  Apply 2-relocate, 2-opt and 2-exchange on B and obtain best solution B’
4:  Apply 1-relocate and 2-exchange on B’ and obtain best solution B”
5 Apply 0-relocate and 0-exchange on B” and obtain best solution B"’
6: if B” is not an improvement of B then
7: impr <« false
8 B« B"”
9: return Best solution B

Subsequently, the solution B will be further improved by the procedure post-processing.
In this procedure, several neighborhood operator will be used. Each operator enumerates
all feasible solutions. These neighborhood operators can be divided into three types: intra-
routes, inter-routes and profit-increasing. In this order, the post-processing procedure first
reduces the total travel distance. The total reduced travel distances provide more room

the for profit-increasing operators.

(a) starting solution (b) 2-opt

Figure 2: The starting solution and solution after a 2-opt operation.

The intra-route operators consist of 2-relocate, 2-opt and 2-exchange. The 2-opt selects
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two routes r; and r;. Each route is divided into two parts. The first part of one route is
connected with the last part of the other route. This operator prevents that routes are
crossed over each other and will usually lead to a lower travel distance. In figure the
starting situation is shown. Route r; is divided into {0,1,2,3} and {0,4}. Route 7o is
split into {0,5,6} and {7,8,9,0}. The result of this 2-opt operation is shown in figure
The new routes are: {0,1,2,3,5,6,0} and {0,4,7,8,9,0}. Note that the order of visiting
locations of a split route can reverse. After a 2-opt operation, the route has to be feasible

in terms of time windows, otherwise this solution is not used.

©
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(a) 2-relocate (b) 2-exchange

Figure 3: Intra-route operators

A 2-relocate operation removes a customer ¢ from route r; and try to insert ¢ in route
j, provided that i # j. In figure [2al and customer 1 is moved from the route above the
depot to the route below. The 2-exchange swaps customer ¢ from r; with customer d from
r; with ¢ # j. In figure 3b| customer 4 and 5 are swapped. The solution B’ has the least

travel time among the intra-route operators and is the starting point of the inter-route

VSRS

D Fo @

(a) l-relocate (b) l-exchange

operators.

Figure 4: Inter-route operators

Given solution B’, the 1-relocate moves customer ¢ to another position in the same
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route, an example is shown in figures 28] and [da] Customer 4 is routed between customer
3 and the depot, after the operation it is routed between the depot and customer 1. 1-
exchange swap two customers from the same route with each other. In figure [2a] and D]
a swap is shown with the customers 7 and 8. B” represents the solution with the least

travel time after the inter-route operations is used for the profit-increasing operators.

(a) O-relocate (b) 0-exchange

Figure 5: Profit-increasing operators

The last part of the post-processing procedure contains the two profit-increasing oper-
ator. For each customer c in u, the O-relocate operator attempts to insert ¢ in any possible
position of any route. An example of the 0-relocate is depicted in figures [2al and Cus-
tomer 10, currently in the list of unvisited customers, is added into the route located below
the depot. The result of this operation is shown in figure The 0-exchange swaps an
unvisited customer with any customer in any route. Figure |bb|shows the swap of a visited
customer 1 to an unvisited customer 10. Only swaps, in which the unvisited customers

has a higher profit than the customer to be replaced, are considered.

4.3 Local search

Given a starting solution A, the local search operator iteratively invokes the eliminator
to obtain a neighborhood solution. In each iteration, N neighborhood solutions are ex-
plored. All routes of the N neighbors are stored in the route pool. X is updated with
the neighborhood with the highest total profit if there is one, otherwise the last explored
operator replaces X. Let Xp.s the best solution found so far, if the best solution has a
higher total profit than X, there is an improvement. The local search explores until the
maximum number of consecutive iterations with no improvement, denoted by I, impr, is

reached. Then, the current best solution of the heuristic A will replace X.

4.4 Simulated annealing

The simulated annealing (SA) produces each time one iteration and moves to the neighbor

if it is an improvement, otherwise it will move with a certain probability. The main
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Algorithm 3 Local search

Require: starting solution A
Require: maximum number of no improvements ;s impr
Require: integer N repetitions
1: if first local search then
2 X<+ A Xpest +— X
3: if Iis no impr ~> I impr then
4 X<—A7 Ilsnoimpr<_0
5: for N neighbors do
6: X' < neighbor of X from the Eliminator
7 if X’ is better than Xj.,; then
8 Xbest — X/a Ils no impr 0
9: if no new Xj.s; then
10: X <« last explored neighbor
11: Iis no impr < Iis no impr +1
12: else
13: X  Xpest
14: return Xp .

advantage of this method is that the SA could escape from a local optimum. Let Ty, «
and I, impr be respectively, the starting temperature, the cooling speed and the maximum
consecutive iterations with no improvement. At each step, a neighbor Y’ of starting
solution Y is explored. If there is an improvement, the SA will move to Y. If the neighbor
Y’ is better than best solution Yj.g, then Y. is replaced. In case of no improvement,
SA will accept the neighbor with a certain probability. This probability is computed with
Equation . The SA explores until the maximum number of consecutive iterations with
no improvement, denoted by I impr, is reached. Then, the current best solution of the

heuristic A will replace Y.

Algorithm 4 Simulated annealing

Require: starting solution A
Require: maximum number of no improvements I, impr
Require: starting temperature Ty, cooling speed «
Require: integer N repetitions

1: if first simulated annealing then

20 Y A Yot < YT T

3: if Isa no impr > Ino impr then

4. Y+ A T+ T, Iy noimpr < 0

5: for N neighbors do

6: Y’ < neighbor of Y from the Eliminator

7. if Y’ is better than Y then

8: Y Y

9: if Y’ is better than Yj.s: then
10: Yiest < Y/, Isa no impr < 0
11:  else if rand(0,1) < Pga then
12: Y <Y’
13: T+ a-T
14: if no new Xp.s; then

15: Isa no impr — Isa no impr +1
16: return Y
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(10)

1 Y’—Y>
T Ybest

Pga = exp (
The probability of accepting increases as the SA is cooling down, that is, the temperature
is decreasing. Furthermore, if the neighborhood solution is relatively far from the the
starting solution, the Pg4 goes to 1. After each step, the temperature is updated: T + oT
and the routes of the neighbor is stored in POOL. The values of Y, Y’ and Y} represent

the total profit of the starting solution, neighbor and best solution respectively.

4.5 Route recombination

The route recombination (RR) creates a new solution from routes from POOL. The RR
solves a set packing formulation. The aim is to cover as much as possible locations with
the routes from POOL. The size of POOL is restricted by a number Sj. Let POOL =
{r1,72.,75,,, 1> Where Spoy is the size of POOL. For all customers ¢ € C and k €
{1,2,..., Spoot }, Gc indicates whether a customer is in route r,. The total profit a route
is computed by the sum of the visited customers of a route and is denoted by pi. The

Integer Programming (IP) is defined as follows.

Spool
max Z DLTE (11)
k=1
Spool
subject to Z acpr <1 Ve e C, (12)
k=1
Spool
Z xr < m, (13)
k=1
xy, € {0,1} VEk € {1,2,..., Spooi }- (14)

The objective function maximizes the profit over the routes. The first constraints restrict
that a customer can be visited more than once. The second restriction sets the maximum
number of routes used in the new solution.

After the new combination of routes, a list of unvisited customers u is created and
sorted decreasing order of profit. Then a complete solution is created by adding as much
as possible customers from u.

Each route in POOL has a value called apr denoting its appreciation. The value of
new routes are assigned with an apr = 0. Routes that are included in the solution found
by the IP are assigned an apr of 100. The apr of routes, which are not in the final solution,
are decreased by one. Since a maximum number of routes in the POOL S,y is set, it
is more likely to keep the routes which are already used. When the number of routes
exceeds the Sp,01, we remove the routes with the lowest apr from POOL until the number

of routes in POOL is below the maximum. Before we solve the IP, the upper bound of LLP
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relaxation can be used to determine whether it is necessary to solve the IP. Therefore, the
IP is only solved, if the upper bound is better than the best solution found. This prevents

the unnecessary use of the time consuming IP solver (Hu and Liml, 2014]).
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5 Computational results

The iterative heuristic is written in Java. The computations were run on a laptop equipped
with an Intel Core i7-6500U CPU clocked at 2.50 GHz, 8 GB RAM and running Windows
10. The ILOG CPLEX 12.6.3 (Windows 64-bit version) is used to solve the MIP. To
compare the running time with the original I3CH, we use Super Pi as an benchmark.
Super Pi calculates the first million decimals of w. The seconds it takes to compute these
decimals is the benchmark. The performance of our laptop is slightly better than Hu and
Lim| (2014), 13.2 and 14.7 respectively.

5.1 Test instances

The I3CH is tested on the benchmark instances originally created for the Vehicle Routing
Problem with Time Windows (VRPTW) by [Solomon| (1987) and (Cordeau et al.| (1997)).
Each of the |Solomon| instances contains 100 locations and 1 depot. These locations are
grouped into the distribution of the coordinates of the locations. The geographical lo-
cations of r100 and c100 instances are respectively randomly uniform distributed and
clustered. In the rc100 instances, the locations are both randomly distributed and clus-
tered. Furthermore, the locations of r100, ¢100 and rc100 have short time windows, we
denote these three instance sets by Solomon 100. The [Cordeau et al. (1997) instances
pr01-prl0 each has a different number of locations. The geographical coordinates of these
locations are randomly distributed. We denote these instances by Cordeau 1-10. [Righini
and Salani| (2009) adapted the Solomon 100 and Cordeau 1-10 instances for the OPTW.

Montemanni and Gambardellal (2009) adapted the Solomon! (1987) and (Cordeau et al.
(1997) instances for long time windows and these modified instances are respectively de-
noted by Solomon 200, which contains r200, ¢c200 and rc200, and Cordeau 11-20. These
instances are the same as the ones used by |[Hu and Lim (2014]).

The calculated Euclidean distances between locations are rounded down to one decimal

for the [Solomon! instances and to two decimals for the |[Cordeau et al. instances.

5.2 Comparison with the I3CH

We initially run the aforementioned instances for m = 1,...,4 with a random seed = 3.
Note that, if m = 1 the TOPTW is equivalent to the OPTW. Therefore, the RR is not
used when m = 1, because it would only select the route with the highest profit (Hu
and Lim, 2014). We run the I3CH with the same parameter settings as used by [Hu and
Lim| (2014)). The settings of the Eliminator parameters are P, = 0.1 and P, = 0.3. As
starting temperature for the SA, we used Ty = 0.1 and the cooling speed is @ = 0.995. The
maximum number of routes in POOL is set on Sy, = 1000 and the maximum number
of iterations Iq: = 3000. The number of repetitions in LS, SA and Eliminator is set
N = 50. Furthermore, the LS and SA will use a new starting solutions after 20 iterations

of no improvement I impr-
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In the table[l] a summary of the results of the|[Hu and Lim/s I3CH and the reproduction
shown. The column m represents the number of routes. The AG is the average gap
between the best known solution BKS from 2014. The gap of an instance is calculated
with Equation . The column AT shows the average computation time in seconds and
is not adjusted to the computer’s speed of the original I3CH. The columns #B and #W
show the number of instances for which the I3CH reproduction has found better or worse
solutions than the best known solutions (BKS) respectively. The BKSs are retrieved from
Hu and Lim| (2014)) are used and could be improved by others in the meantime. In the
appendix, the tables [A6] [A7] and [A9] show the solutions of each Solomon instance for
m = 1,2, 3,4 respectively.

_ BKS—I3CH

Gap BKS

x 100% (15)

Table 1: Comparison Solomon instances with seed = 3

m Set I3CH (original) I3CH m Set I3CH (original) 13CH
AG (%) AT (s) AG (%) AT (s) | #B #W AG (%) AT (s) AG (%) AT (s) | #B #W
1 ¢100 0.00 252 0.00 382] 0 0]3 cl00 0.00  190.2 -0.11 2481 1 0
r100 0.56  28.6 006 337| 0 1 100 021 1183 0.00 2045| 1 1
rc100 1.66 256 0.00 326| 0 0 rc100 0.26  101.0 030 1753 | 1 2
€200 0.40  84.4 0.00 20L5| 0 0 €200 0.00  12.3 0.00 425| 0 0
200 1.04  176.2 033 6293 | 3 5 1200 0.01 90.8 0.00 2655| 0 0
1c200 2.68 1193 0.73 3376 | 2 4 rc200 -0.04  164.1 -0.03 5113 | 1 1
2 ¢100 0.00  87.0 0.00 1592 ] 0 0]4 cl00 0.01  261.8 001 3889 1 1
r100 0.54  63.0 0.09 1422 1 3 100 0.05 184.3 -0.16 3015 | 8 0
rc100 0.90 589 0.00 1279| 0 0 rc100 0.12 1524 -0.23 2764 | 4 0
¢200 0.68  401.2 -0.08 11123 | 1 0 €200 0.00 0.1 000  533| 0 0
1200 0.16  526.8 -0.38 1171.0 | 7 0 1200 0.00 0.2 000 824 0 0
1c200 0.56  439.7 0.00 1360.3 | 5 2 1c200 0.00 0.2 0.00  463| 0 0

The AG and AT denote the average gap in percentage and average computation time in seconds
respectively. The #B and #W denote the number of instances for which the solution found is
better and worse than BKS respectively.

Table [T] shows that our I3CH underperforms in terms of computation time. Especially,
for instance sets modified by Solomon 200 for all m, the solving time is greater than the
original I3CH. For m = {1, 2, 3}, this is possible due to the longer time windows, which
lead to more possible exchange and relocate possibilities. However, the average gap is for
the most instance sets lower than the original I3CH of Hu and Lim| (2014)) and in some
cases even better than the BKS.

Table [2 shows the performance of the I3CH on the Cordeau instances. On average,
the gaps of our I3CH is smaller than the average gap of the original heuristic. However,
also in this case the the computation time is longer. This is possibly due to the difference
in interpretation and the coding of the reproduction of the I3CH. In table [3| the results
are shown for the Cordeau instances prO1-prl0, using the number of routes of which all
customers could be visited. The table shows that the gap is lower than the original I3CH.
However, we were not able to find the optimal solution which the original I3CH could not
find.
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Table 2: Comparison Cordeau instances with seed = 3

m Cordeau I3CH (original) I3CH
AG (%) AT (s) AG (%) AT (s) #B #W
1 1-10 1.06 109.0 0.32 129.3 1 1
11-20 3.79 130.2 1.43 170.1 2 6
2 1-10 0.94 247.1 0.08 429.2 2 3
11-20 2.69 304.6 1.71 552.3 2 8
3 1-10 0.35 424.0 0.19 765.3 5 3
11-20 1.00 497.0 0.34 989.2 4 4
4 1-10 0.06  566.5 -0.15  1157.6 4 4
11-20 -0.64 728.6 -1.36  1564.3 7 2

Table 3: Performance using minimum required m to obtain the optimal solution for
Coredeau 1-10

I3CH (original) I3CH
name m  OPT profit gap (%) t (s) | profit gap (%) t (s)
prO1 3 657 619 5.78  146.7 622 5.33 210
pr02 6 1220 | 1207 1.07  669.7 | 1213 0.57 1288
pr03 9 1788 | 1781 0.39 1383.7 | 1785 0.17 3779
pr04 12 2477 | 2477 0 641.9 | 2477 0.00 174
pr05 15 3351 | 3351 0 19.3 | 3351 0.00 180
pr06 18 3671 | 3671 0 30 | 3671 0.00 325
pr07 5 948 943 0.53  299.7 945 0.32 543
prO8 10 2006 | 2006 0 55.9 | 2006 0.00 63
pr09 15 2736 | 2736 0 10.8 | 2736 0.00 142
prl0 20 3850 | 3850 0 9.1 | 3850 0.00 385

5.3 Parameter tuning

The heuristic has nine parameters. I 4., N and Iy impr in the iterative framework, P, and
P, in the Eliminator, T and « in the simulated annealing, Sy in the route recombination
and a random seed. We use the instances c103 and ¢105 to tune the parameters with m = 4.
These two instances perform the same as the original I3CH in terms of profit. The limited
number of instances on which we tune the parameters is partly due to the time restriction
of the research.

We first tune the parameters of the neighbor operator Eliminator. The parameters of
the Eliminator which we test P, € {0.0,0.1,0.2,0.3,0.5} and P, € {0.1,0.2,0.3,0.5,0.75,1.0}.
We repeated this four times with seed € {3,5,7,9}. Table 4| shows the results of the pa-
rameter tuning on the two instances. The parameter settings with P, = 0.5 and for all
P, = 0.2 give on average the lowest gap. This is different than the parameter setting of
Hu and Lim! (2014), which was P, = 0.1 and P, = 0.3. However, our sample is small and
therefore we can not state that these parameter setting is useful for all instances.

The RR has one parameter Sy, the size of the route pool. A small route pool size
probably leads to a worse solution quality. A large route pool size leads to a longer solving
time when the RR also uses the IP. Again we tested this with seed € {3,5,7,9}. We used
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Table 4: Parameter tuning on the Eliminator

Ph‘Plzo.l P=02 P=03 P=05 FP=07 PF=10

0 1.73 1.73 1.73 1.73 1.73 1.73
0.1 1.73 1.74 1.63 1.63 1.63 1.63
0.2 1.63 1.63 1.63 1.63 1.63 1.63
0.3 1.63 1.63 1.63 1.74 1.63 1.63
0.5 1.63 1.51 1.81 1.73 1.73 1.89

the following parameter values for the Sy, = {100, 200, 300, 400, 500, 750, 1000, 1500, 2000} .
The best average gap with 1.51 is at Spp0 = 750.

Table 5: Parameter tuning on RR

Spoot | AG (%) AT(%)

100 1.73 127.4
200 1.63 130.8
300 1.63 153.9
400 1.63 144.1
500 1.63 150.6
750 1.51 161.6
1000 1.63 171.0
1500 1.63 198.5
2000 1.63 205.3

5.4 Stability of best solutions

Some instances beat the BKS, therefore we are interested whether this solution is found
fortuitously or this is structural. We rerun the several instances with a new best solution
with different seeds: seed = {2,4,6,8,10}. In table @, the results are shown.

Table 6: Stability of best solution

instance m | Min gap Max gap AG(%) AT(%)

r202 2 -0.30 -0.15 -0.22  1439.0
r209 2 -1.28 -0.21 -0.75  1964.4
cl108 4 -0.88 0.00 -0.53 355.0
rcl04 4 -0.57 -0.57 -0.57 354.2
pr03 4 -2.05 -1.23 -1.69 784.8
prld 4 -0.87 0.58 0.01  2767.6

Table [0] shows that the results vary over the different seeds. That is, more optimal
solution than the BKS is found most of the times, except for the instances c108 and prl5.
For prl5, a solution was found which was worse than the BKS. However, on average the
BKS was beaten.
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5.5 Analysis RR, LS and SA

We use the computational results of Section to analyze the individual components.
The histogram of figure [6] shows the frequency of the different components which give the
best final solution for the Solomon instances. Since the RR is not invoked for m = 1,
only the results of m = 2,3,4 is showed in the graph. The RR provides in more than
two third of the Solomon 100 instances the best final solution. This is a confirmation the
effectiveness of the heuristic. For the Solomon 200 instances, the most optimal solution
was usually found after the initialization. That is, a solution is found in which the all

customers were visited.

mmm [nit B LSE==T RR (IP)SA
30 T

final solution found by component

100 200 100 200 100 200

Figure 6: Best final solution for each component for the Solomon instances

Table 7: Computation time of the individual components of the I3CH

m  Instance set RR Ar]iéb) gA | ™ Instance set RR Arl;éb) SA
1 Solomon 100 0 17 17 | 3 Solomon 100 82 63 64
Solomon 200 0 202 211 Solomon 200 19 102 104
Cordeau 1-10 0 64 65 Cordeau 1-10 112 321 329
Cordeau 11-20 0 84 86 Cordeau 11-20 126 421 438

2 Solomon 100 72 35 36 | 4 Solomon 100 95 111 115
Solomon 200 125 499 568 Solomon 200 0 3 3
Cordeau 1-10 103 160 164 Cordeau 1-10 118 508 526
Cordeau 11-20 108 218 224 Cordeau 11-20 131 691 733

Table [7] shows the average computing time of the three components for the instance
set Solomon 100, 200, Cordeau 1-10 and Cordeau 11-20. The computation times of the LS
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and SA are almost equal, since the Eliminator is used N times for both components. The
computation time of the RR component is usually lower than the other two combined.
Sometimes the RR takes only 10% of the total computation time. For the instances on
which the RR lead to the best solution, the RR usually takes a larger part of the total
computation time. An explanation for this could be that RR then solves the integer
programming.

Table [§ shows the average number of times the component obtain a new best solution
during solving an instance. Noteworthy is that for m = 2 for all instance sets the RR often

provides new best solution. That also holds for the Solomon 100 for m = 3 and m = 4.

Table 8: Average number of new best best solutions by component

m Set |RR LS SA|m Set |RR LS SA

1 ¢100 0.0 03 00| 3 cl100 1.2 04 0.3
r100 0.0 0.7 038 r100 3.2 04 03
rcl00 | 0.0 0.8 0.3 rcl00 | 34 04 0.1
c200 0.0 1.1 038 c200 0.0 0.0 0.0
r200 0.0 53 56 r200 0.1 02 0.3
rc200 | 0.0 49 3.3 rc200 | 0.9 09 0.8

2 cl00 06 04 01] 4 cl100 19 01 04
r100 28 02 038 r100 5.7 0.0 0.3
rcl00 | 25 04 0.6 rcl00 | 39 0.0 04
c200 0.6 06 04 c200 0.0 0.0 0.0
r200 2.7 44 27 r200 0.0 0.0 0.0
rc200 | 4.6 2.5 2.6 rc200 | 0.0 0.0 0.0
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6 The OP with Hotel Selection and Time Windows

6.1 Problem description

The OP with Hotel Selection and Time Windows (OPHS-TW) is another variant of the
Orienteering Problem. In the OPHS-TW, a directed graph G = (V, A) is given. This
problem consists of at least n+2 locations: n customers and a begin and ending hotel. Also
a set of intermediate hotels is given and also the number of routes. Not all intermediate
hotels need to be visited. Let a route be a ordered set of locations which start and end
at a hotel. Let a tour be a ordered set of routes. The tour should start and end with the
given hotels. Each customer has a profit p;, a service time s; and time window [O;, C;].
Since there are multiple possible orders to visit hotels in between the starting hotel
end ending hotel, we fix the the order of hotels on beforehand. Note that, this could lead

to a sub-optimal solution since the order of hotels is fixed.

Figure 7: Example of a solution for m = 2 with one additional hotel

6.2 Adjustments to I3CH

To solve the OPHS-TW, we need to determine the order of the intermediate hotels before
the I3CH can be executed. As a optimal order of hotels is challenging (Divsalar et al.,
2013), we simplify the hotel selection with the following algorithm. From the starting
hotel, we choose the next intermediate hotel of which the difference between the distance
from the starting hotel to the next hotel and the trip length is the smallest. We repeat
this until the number of intermediate hotels are visited. Then we add the ending hotel to
the list of visiting hotels. The disadvantage of this algorithm is that we do not necessarily
obtain the optimal ordering of visiting hotels. Moreover, there is a possibility that the
distance to the ending hotel is larger than the trip length.

Furthermore, we change the operator 2-opt. The original 2-opt splits a route into
two parts. By splitting two routes and reconnecting each other, there exists a possibility
that the the order of visiting hotels could be changed. Therefore, we split the the route,
without considering the hotels. If we apply this adapted 2-opt operation to the solution
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in figure [7] we obtain the solution in figure [§] The remaining operators do not need to be

changed, since these operators do not interact with the hotels.

(9)
(o)

& @

Figure 8: Example of a solution after a 2-opt operation

The route 1 = {H0,8,7,6, H2} is split into {8} and {7,6} and the route ro =
{H2,9,10,3, H1} is split into {9} and {10,9}. The new routes are {HO0,8,9, H2} and
{H2,6,7,10,9, H1}.

Since the routes do not start and end at one hotel, the route recombination has to be
changed. We need to find a sequence of routes with the right order of visiting hotels. Let
define t € T as a trip type between starting hotel h; and hj. A solution is feasible if it
contains all trip types. Equation of the RR is changed into:

Spool

d bpap=1 VteT (16)
k=1

Where by is an indicator variable which equals to 1 if the trip k& is of trip type ¢ and 0
otherwise. The LS and SA component do not need to be changed, since these components

do not alter the hotels in a particular route.

6.3 Results

The performance of the I3CH on the OPHS-TW is tested on several instances retrieved
from http://www.mech.kuleuven.be/en/cib/op. We only applied the I3CH on a small
number of routes and intermediate hotels. These instances have different number of loca-
tions, total trip length, number of routes and number of intermediate hotels. The number
of intermediate hotels we use is m — 1, that means we visit all given intermediate hotels.
We use the same parameters as used by Hu and Lim, (2014]) for the I3CH. Not all instances
are were solvable, since our hotel selection algorithm was not always able to return a feasi-
ble hotel selection. In table[d]a summary of our results are shown. An optimal solution for
each instance is known, therefore the gap is the percentage difference between the optimal
solution value and the solution value found by the heuristic.

The results of table [0 show that for m = 2, the average gap is smaller than [Divsalar
et al.| (2014). The computation time of the I3CH is substantially higher for all m. The
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Table 9: Summary of results I3CH for OPHS-TW

I3CH Divsalar et al.| (2014))
m  #instances | AG (%) AT (s) | AG (%) AT (s)
2 20 0.98 203.20 3.80 0.98
3 17 10.90 161.65 1.55 0.68
4 10 17.06 141.00 1.59 0.56

average gap increases if m increases. The main cause could be the hotel selection algorithm.

More detailed results for each instance are shown in table [AT0l
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7 Conclusion

In this thesis, we have reproduced the iterative three-component heuristic by [Hu and Lim
(2014) for the TOPTW. The computational results show that our reproduction performs
on average as good as the original I3CH or sometimes even better in terms of solution
quality with the same parameter settings as [Hu and Lim| (2014). For the most instance
sets, the average gap between the best known solutions and the solutions of our I3CH
was 0.00%. For several instance sets the average gap was even lower, which means we
also found some new best known solutions. However, our reproduced heuristic did not
perform better in computation time. Since both the original I3CH and the reproduction
is written in Java, coding or difference in interpretation could be the cause of the different
computation times. Nonetheless, we do reach the computation time of the |[Hu and Lim
(2014).

Partly due to the longer computation time, running a parameter tuning takes a lot
of computation time. Therefore, we had to limit the number of instances on which we
tune the parameters, and the number of parameters tuned. However, our results with the
parameter settings of Hu and Lim| (2014) show that it already performs relatively good.
This is a confirmation that the I3CH of Hu and Lim| (2014)) is effective in terms of solution
quality.

In addition to the the reproduction of the heuristic, we also applied the reproduction on
the OPHS-TW, one of the variants of the original OP. We were able to solve some instances
adapted for the OPHS-TW. However, not every instance could be solved by our adapted
I3CH. The order of visiting intermediate hotels is a difficult problem (Divsalar et al.,
2013). Therefore, when it is desirable to use the I3CH on the OPHS-TW, a better hotel
selection algorithm is preferable. A possibility for further research could be a combination
of the I3CH and hotel selection algorithm.
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Appendices

A Parameter settings CPLEX

Table A1l: Parameter settings CPLEX MIP solver

parameter value

IloCplex.Param.Simplex.Tolerances.Feasibility 1E-09

IloCplex.Param.Simplex.Tolerances.Optimality 1E-09
IloCplex.Param.Simplex.Tolerances.Markowitz 0.99999
IloCplex.DoubleParam.EpGap 1E-09
IloCplex.IntParam.ParallelMode 1
IloCplex.IntParam.Threads 1

B Comparision with I3CH

The following pages in this section contain the solution values of the I3CH for the Solomon
100, Solomon 200, Cordeau 1-10 sn Cordeau 11-20 instances. The parameter settings are
as follows: P, = 0.1, P, = 0.3, Tp = 0.1, o = 0.995, Spoor = 1000, Ipq, = 3000, N = 50
and Inoimpr = 20. The tables shows the profit, the gap and the computation time of
the original I3CH by Hu and Lim (2014) and the reproduced I3CH. In addition, the
computation time of each the three components, RR, LS and SA, are given. The best
known solutions (BKS) are from Hu and Lim| (2014) and thus some solutions could be
outdated. The solution values in bold are solutions that are better than the BKS and [Hu
and Lim| (2014). G denotes the gap between the BKS and the solution.
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Table A2: Comparision I3CH for m = 1 and seed = 3

name  BKS I3CH (original) I3CH

profit  gap (%) t(s) | profit gap (%) t(s) RR LS SA
pr01 308 305 0.97 208 308 0.00 40 0 19 20
pr02 404 394 248 479 404 0.00 7 0 38 39
pr03 394 394 0.00 72.9 394 0.00 90 0 44 46
pr04 489 489 0.00 109.3 489 0.00 126 0 62 64
pr05 595 594 0.17 1854 595 0.00 227 0 111 115
pr06 590 590 0.00 189.9 591 -0.17 223 0 109 113
pr07 298 298 0.00 26.5 298 0.00 29 0 14 15
pr08 463 454 1.94 77.4 463 0.00 81 0 40 41
pr09 493 490 0.61 137.8 493 0.00 161 0 80 80
prl0 594 568 4.38 2222 574 3.37 239 0 119 120
prll 351 353 -0.57  30.8 353 -0.57 31 0 15 15
prl2 442 433 2.04 398 438 0.90 73 0 37 36
prl3 461 466 -1.08 89.5 457 087 111 0 54 57
prl4 567 521 8.11 1444 555 2.12 181 0 91 90
prld 685 707 -3.21  248.2 708 -3.36 333 0 163 169
prl6 674 619 8.16 228.6 631 6.38 298 0 148 149
prl7 362 360 0.55  34.7 362 0.00 39 0 19 20
prl8 539 497 7.79 99.0 539 0.00 103 0 50 53
prl9 562 538 4.27 164.6 560 0.36 217 0 106 111
pr20 667 588 11.84 202.7 616 7.65 315 0 158 156

Table A3: Comparision I3CH for m = 2 and seed = 3

I3CH (original I3CH
name  BKS profit ( gap (%)) t (s) | profit gap (%) t(s) RR LS SA
prO1 502 502 0.00 51.8 502 0.00 147 82 32 31
pr02 714 714 0.00 127.7 714 0.00 274 111 82 79
pr03 742 731 1.48 175.6 742 0.00 326 115 105 106
pro4 924 917 0.76 270.1 920 0.43 445 106 163 175
pr05 1090 | 1101 -1.01  410.0 | 1094 -0.37 642 99 261 280
pr06 1076 | 1040 3.35 427.6 | 1049 2,51 700 117 290 290
pr07 566 566 0.00 718 566 0.00 178 90 44 44
pr08 834 824 1.20 184.1 834 0.00 319 89 114 114
pr09 905 878 2.98 304.9 904 0.11 495 103 191 200
prl0 1124 1117 0.62 447.0 | 1145 -1.87 766 120 322 322
prll 566 559 1.24 713 559 124 199 83 59 56
prl2 774 768 0.78 143.6 768 0.78 284 95 91 96
pri3 831 832 -0.12  238.6 832 -0.12 376 88 143 143
prl4d 1017 978 3.83 337.3 992 2.46 614 110 247 254
prls 1219 1205 1.15 479.1 1183 2.95 928 129 401 394
prl6 1231 | 1124 8.69 500.5 | 1156 6.09 913 129 384 396
prl7 652 639 1.99 117.0 639 1.99 204 87 57 B9
pris8 938 937 0.11 231.0 944 -0.64 425 106 155 163
prl9 1034 | 1003 3.00 386.1 1029 0.48 634 125 249 257
pr20 1232 1155 6.25 541.6 1209 1.87 946 129 394 420

25
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Table A4: Comparision I3CH for m = 3 and seed = 3

name  BKS I3CH (original) I3CH
profit  gap (%) t(s) | profit gap (%) t(s) RR LS SA
pr01 622 622 0 1321 622 0.00 210 80 62 66
pr02 942 936 0.64 260.6 943 -0.11 405 8 139 160
pr03 1010 | 1010 0 301.5 996 1.39 524 100 206 216
pro4 1294 1286 0.62 442.7 | 1295 -0.08 791 113 331 344
pr05 1482 | 1481 0.07 650.3 | 1499 -1.15 1210 155 514 535
pr06 1514 | 1501 0.86 651.2 | 1487 1.78 1218 141 533 538
pr07 744 738 0.81 260.4 744 0.00 277 8 90 97
pr08 1138 | 1139 -0.09 307.0 | 1141 -0.26 550 105 218 225
pr09 1275 1272 0.24 503.1 1270 0.39 960 104 424 427
prl0 1573 | 1567 0.38 731.1 | 1574 -0.06 1508 149 676 677
prll 654 654 0 151.7 654 0.00 256 79 84 92
prl2 1002 997 0.5 294.3 981 2.10 453 106 166 180
prl3 1139 | 1145 -0.53 3789 | 1156 -1.49 691 125 276 287
prl4d 1372 1315 4.15  533.7 1335 2.70 928 120 392 411
prl5 1650 | 1654 -0.24 708.1 | 1673 -1.39 1682 151 750 772
prl6 1668 | 1609 3.54 818.1 | 1629 234 1747 154 782 803
prl7 838 841 -0.36  184.3 840 -0.24 335 110 112 112
prl8 1281 1276 0.39 386.6 | 1281 0.00 689 122 274 291
prl9 1417 | 1403 0.99 604.1 1413 0.28 1238 140 534 557
pr20 1684 | 1658 1.54 909.7 | 1699 -0.89 1873 149 837 879
Table A5: Comparision I3CH for m = 4 and seed = 3
I3CH (original I3CH
name  BKS profit ( gap (%)) t (s) | profit gap (%) t(s) RR LS SA
pr01 657 657 0.00 0.1 657 0.00 1 0 0 0
pr02 1079 | 1073 0.56  380.6 | 1078 0.09 586 102 231 251
pr03 1222 | 1232 -0.82 436.6 | 1247 -2.05 744 103 306 332
pro4 1557 | 1585 -1.80 603.6 | 1573 -1.03 1228 123 539 559
pr05 1833 | 1838 -0.27 902.9 | 1814 1.04 2060 161 934 954
prO6 1860 | 1835 1.34  939.6 | 1881 -1.13 2198 133 1005 1049
pr0o7 876 872 0.46  228.9 876 0.00 389 158 112 117
prO8 1382 | 1377 0.36 4299 | 1377 0.36 783 118 323 338
pr09 1619 | 1604 0.93 698.5 | 1622 -0.19 1389 130 617 635
prl0 1939 1943 -0.21 10444 1911 1.44 2198 149 1009 1029
prll 657 657 0.00 0.1 657 0.00 2 0 0 0
prl2 1132 | 1120 1.06 477.1 1125 0.62 703 119 271 309
prl3 1364 | 1386 -1.61 672 | 1387 -1.69 1143 118 485 528
prl4d 1670 | 1651 1.14 783.2 | 1683 -0.78 1614 151 706 747
prld 1958 | 2065 -5.46 1161.7 | 2067 -5.57 2743 173 1266 1291
prl6 2065 | 2017 2.32 1183.8 | 2050 0.73 2923 180 1328 1399
prl7 933 934 -0.11 3328 934 -0.11 509 100 192 215
prl8 1525 | 1539 -0.92  559.5 | 1549 -1.57 1101 128 468 500
prl9 1723 | 1750 -1.57 919.4 | 1764 -2.38 2019 169 881 958
pr20 2037 | 2062 -1.23  1196.6 | 2095 -2.85 2886 173 1314 1383
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C Comparison I3CH on OPHS-TW

The names of the instance sets are structured as follows: number of locations - total trip

length - additional hotels - number of routes.
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Table A10: Comparion I3CH and [Divsalar et al. (2014)

13CH Divsalar et al.| (2014])
m  instance OPT | profit gap (%) t(s) | profit gap (%) ¢t (s)
2 64-45-1-2 816 816 0.00 146 816 0.00 0.6
64-50-1-2 900 876 2.67 174 876 2.67 1.0
64-55-1-2 984 960 244 201 960 2.44 1.3
64-60-1-2 1062 | 1062 0.00 247 | 1062 0.00 2.1
64-65-1-2 1116 1116 0.00 276 936 16.13 1.7
64-70-1-2 1188 | 1170 1.52 345 | 1152 3.03 1.9
64-75-1-2 1236 | 1224 0.97 389 | 1218 1.46 1.6
64-80-1-2 1284 | 1284 0.00 403 | 1272 0.93 1.7
66-40-1-2 575 570 0.87 104 570 0.87 0.5
66-45-1-2 650 645 0.77 119 600 7.69 0.7
66-50-1-2 730 715 2.06 121 705 3.42 0.9
66-55-1-2 825 825 0.00 138 825 0.00 0.9
66-60-1-2 915 910 0.55 137 910 0.55 1.1
66-130-1-2 1680 | 1675 0.30 671 1655 1.49 2.2
100-30-1-2 173 160 7.51 82 160 7.51 0.1
100-35-1-2 241 241 0.00 97 241 0.00 0.2
100-40-1-2 299 299 0.00 105 216 27.76 0.4
100-45-1-2 367 367 0.00 133 367 0.00 0.4
102-50-1-2 181 181 0.00 78 181 0.00 0.1
102-60-1-2 243 243 0.00 98 243 0.00 0.1
3 64-45-2-3 816 816 0.00 148 816 0.00 0.5
64-50-2-3 900 870 3.33 152 870 3.33 0.6
64-55-2-3 984 960 244 162 936 4.88 0.7
64-60-2-3 1062 864 18.64 169 | 1062 0.00 1.1
64-65-2-3 1116 | 1116 0.00 263 | 1116 0.00 1.5
64-75-2-3 1236 | 1218 1.46 328 | 1218 1.46 1.2
64-80-2-3 1284 | 1284 0.00 338 | 1128 12.15 1.5
66-40-2-3 LYE) 320 44.35 85 570 0.87 0.2
66-45-2-3 650 645 0.77 108 645 0.77 0.2
66-50-2-3 730 330 54.79 92 715 2.05 0.4
66-55-2-3 825 410 50.30 96 825 0.00 0.6
66-60-2-3 915 910 0.55 127 910 0.55 0.7
66-125-2-3 1670 | 1525 8.68 338 | 1665 0.30 1.9
100-30-2-3 173 173 0.00 75 173 0.00 0.1
100-35-2-3 241 241 0.00 93 241 0.00 0.1
102-50-2-3 181 181 0.00 74 181 0.00 0.1
102-60-2-3 243 243 0.00 100 243 0.00 0.1
4 64-50-3-4 900 666 26.00 113 858 4.67 0.5
64-55-3-4 984 774 21.34 144 954 3.05 0.6
64-60-3-4 1062 852 19.77 165 | 1062 0.00 0.7
64-65-3-4 1116 996 10.75 193 | 1116 0.00 0.8
64-75-3-4 1236 | 1086 12.14 222 | 1194 3.40 1.0
66-40-3-4 LYE) 970 0.87 94 970 0.87 0.2
66-45-3-4 650 645 0.77 104 645 0.77 0.3
66-55-3-4 825 455 44.85 93 825 0.00 0.3
100-30-3-4 173 160 7.51 71 160 7.51 0.1
100-35-3-4 241 241 0.00 88 241 0.00 0.1
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