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Abstract

This thesis studies the Team Orienteering Problem with Time Windows (TOPTW).

In this problem, a set of locations is given and each of these locations has a service

time, a profit and a time window. The objective is to maximize the profit by visiting

the locations, while taking into account the time window of the locations. The aim

of this thesis is to reproduce the iterative three-component heuristic (I3CH) by Hu

and Lim (2014) for TOPTW. This heuristic consists of a local search and a simulated

annealing which give solutions that can be improved by a third component: routing

recombination. The heuristic is applied on test instances which is also used in Hu and

Lim (2014). Results of the Hu and Lim (2014) are verified and we were also able so

find new best known solutions for the TOPTW. Furthermore, we adapted the I3CH

for the Orienteering Problem with Hotel Selection and Time Windows. We tested the

heuristic on a small set of benchmark instances which also give solutions near the best

known solutions for these benchmark instances.
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1 Introduction

This thesis studies the Team Orienteering Problem with Time Windows (TOPTW). The

TOPTW is an optimization problem of which the objective is to maximize the profit by

visiting a set of locations. Each location has a service time, a profit and a time window

and a location can be visited at most once. The number of routes is fixed. A feasible route

is defined as follows: it should start and end at the depot and the locations should visit

within the time window.

A real-life application of the TOPTW is the generation of a personal tourist trip by

electronic tourist guides. Tourists usually have little time when they visit a particular

city. The electronic tourist guides provide a set of routes in which the most valuable

points of interest (POI) are visited taking into account the opening hours of the POI and

the available time spend at a POI. An application to the city of Ghent can be found in

Souffriau et al. (2008).

Hu and Lim (2014) pose an iterative three-component heuristic (I3CH) to solve the

TOPTW. The three components of the heuristic are local search (LS), simulated annealing

(SA) and the route recombination (RR). The aim of this thesis is to reproduce the heuristic

and verify the results of Hu and Lim (2014). Furthermore, the I3CH is adapted for the

Orienteering Problem with Hotel Selection and Time Windows (OPHS-TW). In contrary

to the TOPTW, a route contains a fixed starting hotel and ending hotel and should visit

a given number of intermediate hotels.

This thesis is structured as follows. In Section 2, a literature review is given about

the TOPTW and related problems. In Section 3 the TOPTW is described. The iterative

three-component heuristic is described in Section 4 and its results are discussed in Section

5. The heuristic is adapted for the Orienteering Problem with Hotel Selection and Time

Windows in Section 6. The thesis is concluded with a conclusion in Section 7.

2 Literature review

The TOPTW is one of the many variants of the classic Orienteering Problem (OP). The

OP is derived from the outdoor sport orienteering. The participants start at a certain

point, visit as much as possible checkpoints and then return to the starting position

within a certain time limit. Each checkpoint has a certain score and the participants try

to maximize their total score.

Golden et al. (1987) showed that the OP is NP-hard, hence it is unlikely that an

optimal solution can be found in polynomial time. Heuristics and meta-heuristics are the

most common techniques to tackle large problem instances. Chao et al. (1996) pose a two

step fast and effective heuristic for the OP. In the first step an ellipse around the starting

point is created. The range of the ellipse is determined by the time limit. The second step

consists of creating an optimal path within the ellipse.

The Team Orienteering Problem (TOP) is an extension of the OP. In this extended
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problem, more than one route is possible.

The TOP with Time Windows (TOPTW) is an extension of the TOP. In the recent

years, this extension gained more attention, because problem instances with time windows

can not be solved efficiently using heuristics for problem without time windows (Vansteen-

wegen et al., 2011). Labadie et al. (2012) pose a granular Variable Neighborhood Search

(VNS) procedure. The aim of the granular VNS is to reduce the size of the neighborhood

by inspecting the dual problem of a relaxed integer programming of the TOPTW. Labadie

et al. (2012) found that this increases the efficiency of the algorithm.

Vansteenwegen et al. (2009) pose iterated local search meta-heuristic to solve the

TOPTW. The main contribution on this paper consists of an insert step combined with a

shake step in order to escape from local optima. The performance of this heuristic is good

on a large and diverse set of instances.

Montemanni et al. (2011) improved their ant colony system (ACS) heuristic (Mon-

temanni and Gambardella, 2009) for the TOPTW. This type of algorithms for solving

optimization problems is inspired by ant colonies. The parallel search for solutions is the

main feature of the ACS. In this paper the enhanced ACS performs well on benchmark

instances.

Lin and Yu (2012) pose a fast and a slow SA heuristic for the TOPTW. The fast SA

has a low computation time, while the slow SA provides better solutions.

In Hu and Lim (2014), the I3CH is compared with among others the ACS by Mon-

temanni and Gambardella (2009), the iterated local search algorithm of Vansteenwegen

et al. (2009), the VNS by Tricoire et al. (2010), the slow SA by Lin and Yu (2012) and

the granular VNS by Labadie et al. (2012). The average gap of the I3CH is smaller than

other algorithms for most instances. However, the average computing time is only shorter

for the ACS by Montemanni et al. (2011).

More recently, Gunawan et al. (2015) propose a hybrid algorithm. This algorithm is

a combination of the iterative local search and the simulated annealing (SAILS). Instead

of starting with a random solution for the SAILS, a greedy algorithm is used for creating

an initial solution.

The Orienteering Problem with Hotel Selection and Time Windows (OPHS-TW) is

an extension of the OP. This problem consists of one contiguous route that has a fixed

starting and ending hotel with intermediate hotels and considering the time windows.

There is little research conducted about this problem. Divsalar et al. (2013) developed

a Variable Neighborhood Search to solve the Orienteering Problem with Hotel Selection.

Divsalar et al. (2014) extended this to Genetic Algorithm with a Variable Neighborhood

Descent to solve OPHS-TW.
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3 Problem description

In the TOPTW a directed graph G = (V,A) is given. This graph consists of a set of

vertices V and a set of arcs A. The vertices represent the locations and the set of arcs

contains paths from i ∈ V to j ∈ V with i 6= j. This problem consists of n + 1 locations.

Every location i is characterized by a profit pi, a service time si, the x- and y-coordinate

and a time window [Oi, Ci]. The depot is denoted by the location 0. The remaining

locations represent the customers. These customers can be visited at most once. For

each route k ∈ P, k represents an ordered list of visiting customers starting and ending

at location 0. Let |P| = m, which is the number of routes set in advance. A visit to

a customer should start within the customer’s time window. If the vehicle arrives at a

location before Oi, then the vehicle has to wait until Oi. The objective of the TOPTW is

maximizing the profit by creating feasible set of routes with respect to the time windows.

This problem can also be formulated as a mixed integer programming. We use a

formulation of the TOPTW that is formulated by Montemanni and Gambardella (2009).

Let a binary variable xkij be 1 if arc (i, j) ∈ A is in route k and 0 otherwise. Let zki be an

integer containing the time of visiting a customer i in route k. Let tij be the Euclidean

distance between i and j and M be a large constant. Let location n + 1 be a dummy

depot.

max
∑
k∈P

∑
(i,j)∈A

pix
k
ij (1)

s.t.
∑
k∈P

∑
j∈V

xkij ≤ 1 ∀i ∈ V, (2)

∑
j∈V

xk0j = 1 ∀k ∈ P, (3)

∑
i∈V

xkih −
∑
j∈V

xkhj = 0 ∀h ∈ V \ {0, n+ 1},∀k ∈ P, (4)

∑
i∈V

xki(n+1) = 1 ∀k ∈ P, (5)

zki + tij + si −M(1− xkij) ≤ zkj ∀i, j ∈ V,∀k ∈ P, (6)

Oi ≤ zki ≤ Ci ∀i ∈ V,∀k ∈ P, (7)

xkij ∈ {0, 1} ∀(i, j) ∈ A,∀k ∈ P, (8)

zki ∈ N ∀i ∈ V,∀k ∈ P. (9)

The objective function (1) maximizes the total profit of the customers. Constraints (2)

ensure that each location is visited at most once. Constraints (3) impose that a route start

at the depot. Constraints (4) ensures the connection of the arcs in a route. Constraints

(5) impose that a route end at the depot. Inequalities (6) and (7) make sure that the time

windows constraints are satisfied.
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A solution for m = 2 is represented as follows: route r1 = {0, 1, 2, 3, 4, 0}, r2 =

{0, 5, 6, 7, 8, 0} and u = {9, 10}. In this representation route r1 will start from the depot

and visit customer 1, 2, 3 and 4, and then return back to the depot. Route r2 visits

customer 5, 6, 7 and 8. The remaining customers 9 and 10 are not visited. In figure 1,

this solution is depicted.

0

1

2

3

4

5

6

78

9

10

Figure 1: Example of a solution for m = 2
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4 Methodology

The I3CH by Hu and Lim (2014) consists of three components. These components are the

local search (LS), simulated annealing (SA) and the route recombination (RR). The routes

found by the LS and SA are stored in a solution pool. The RR finds a new combination

of routes with equal or higher profit found by one of the two first components. This

procedure is repeated in the iterative framework until all customers are visited or the

maximum number of iterations is reached.

4.1 The iterative framework

In the initialization the Eliminator operator generates 3 ·N solutions and select the best

as the starting solution A. All routes of the initial solutions are stored in a route pool. As

input for the Eliminator an empty solution is given with m empty routes and a randomly

shuffled list of unvisited customers. Since no customers are visited, no customers can be

removed. The Eliminator improves the solution by adding as much as possible customers in

one of the routes. Thereafter, the post-processing procedure is executed to further improve

the solution. The framework then subsequently runs RR, LS and SA until the stopping

criterion is met. In algorithm 1 the framework is shown. In the following subsections, we

first describe the Eliminator and then the individual components of the heuristic.

Algorithm 1 I3CH for the TOPTW

Require: maximum number of iterations Imax

Require: integer N repetitions
Require: route pool POOL
1: Use eliminator to create 3 · N solutions and store routes in POOL and obtain best starting

solution A
2: i← 1
3: while i ≤ Imax do
4: ZRR ← solution from RR over POOL
5: XLS ← best solution LS with N neighbors and store routes in POOL
6: YSA ← best solution SA with N steps and store routes in POOL
7: A← max{A,XLS , YSA, ZRR}, breaking ties arbitrarily
8: i← i+ 1
9: if all customers are served in A then

10: i← Imax + 1
11: return Best solution A

4.2 Eliminator

The Eliminator is a neighborhood operator that searches for neighborhood solutions. The

LS and SA invoke the Eliminator to obtain a neighborhood solution. Given a solution A,

the Eliminator randomly removes customers from some routes with the following policy.

A customer c is randomly selected from a route has the profit pc. If the customer’s profit

is higher than the average profit of solution A, then this customer is removed with a

probability Ph. If the customer’s profit is lower than the average, then the customer is
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removed with a probability Pl. The probability Ph is lower than the probability Pl, to

ensure that the more profitable is more likely to remain in the route. The probabilities

Ph and Pl are set in advance. The removed customers are stored in a list of unvisited

customers, denoted by u. This is solution A′.

After removing some customers, the routes of this solution provide space to insert

customers. A′ is called partial. We are now able to improve the solution by adding

customers from u. After shuffling u, we pick the first customer c from the list and insert

this customer into the first possible position in route ri with i = 1, ...,m. If the customer

c can not be inserted in ri, the customer is moved to the end of the list. In case of a

successful insertion, the customer is removed from u. This procedure is repeated until no

further insertion could be made. The resulting solution B is called complete.

Procedure 2 Post-processing procedure

Require: solution B
1: impr ← true
2: while impr do
3: Apply 2-relocate, 2-opt and 2-exchange on B and obtain best solution B′

4: Apply 1-relocate and 2-exchange on B′ and obtain best solution B′′

5: Apply 0-relocate and 0-exchange on B′′ and obtain best solution B′′′

6: if B′′′ is not an improvement of B then
7: impr ← false
8: B ⇐ B′′′

9: return Best solution B

Subsequently, the solution B will be further improved by the procedure post-processing.

In this procedure, several neighborhood operator will be used. Each operator enumerates

all feasible solutions. These neighborhood operators can be divided into three types: intra-

routes, inter-routes and profit-increasing. In this order, the post-processing procedure first

reduces the total travel distance. The total reduced travel distances provide more room

the for profit-increasing operators.
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10

(a) starting solution
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10

(b) 2-opt

Figure 2: The starting solution and solution after a 2-opt operation.

The intra-route operators consist of 2-relocate, 2-opt and 2-exchange. The 2-opt selects
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two routes ri and rj . Each route is divided into two parts. The first part of one route is

connected with the last part of the other route. This operator prevents that routes are

crossed over each other and will usually lead to a lower travel distance. In figure 2a, the

starting situation is shown. Route r1 is divided into {0, 1, 2, 3} and {0, 4}. Route r2 is

split into {0, 5, 6} and {7, 8, 9, 0}. The result of this 2-opt operation is shown in figure 2b.

The new routes are: {0, 1, 2, 3, 5, 6, 0} and {0, 4, 7, 8, 9, 0}. Note that the order of visiting

locations of a split route can reverse. After a 2-opt operation, the route has to be feasible

in terms of time windows, otherwise this solution is not used.
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(a) 2-relocate
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(b) 2-exchange

Figure 3: Intra-route operators

A 2-relocate operation removes a customer c from route ri and try to insert c in route

j, provided that i 6= j. In figure 2a and 3a, customer 1 is moved from the route above the

depot to the route below. The 2-exchange swaps customer c from ri with customer d from

rj with i 6= j. In figure 3b customer 4 and 5 are swapped. The solution B′ has the least

travel time among the intra-route operators and is the starting point of the inter-route

operators.
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(a) 1-relocate
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(b) 1-exchange

Figure 4: Inter-route operators

Given solution B′, the 1-relocate moves customer c to another position in the same
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route, an example is shown in figures 2a and 4a. Customer 4 is routed between customer

3 and the depot, after the operation it is routed between the depot and customer 1. 1-

exchange swap two customers from the same route with each other. In figure 2a and 4b

a swap is shown with the customers 7 and 8. B′′ represents the solution with the least

travel time after the inter-route operations is used for the profit-increasing operators.
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(a) 0-relocate
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(b) 0-exchange

Figure 5: Profit-increasing operators

The last part of the post-processing procedure contains the two profit-increasing oper-

ator. For each customer c in u, the 0-relocate operator attempts to insert c in any possible

position of any route. An example of the 0-relocate is depicted in figures 2a and 5a. Cus-

tomer 10, currently in the list of unvisited customers, is added into the route located below

the depot. The result of this operation is shown in figure 5a. The 0-exchange swaps an

unvisited customer with any customer in any route. Figure 5b shows the swap of a visited

customer 1 to an unvisited customer 10. Only swaps, in which the unvisited customers

has a higher profit than the customer to be replaced, are considered.

4.3 Local search

Given a starting solution A, the local search operator iteratively invokes the eliminator

to obtain a neighborhood solution. In each iteration, N neighborhood solutions are ex-

plored. All routes of the N neighbors are stored in the route pool. X is updated with

the neighborhood with the highest total profit if there is one, otherwise the last explored

operator replaces X. Let Xbest the best solution found so far, if the best solution has a

higher total profit than X, there is an improvement. The local search explores until the

maximum number of consecutive iterations with no improvement, denoted by Ino impr, is

reached. Then, the current best solution of the heuristic A will replace X.

4.4 Simulated annealing

The simulated annealing (SA) produces each time one iteration and moves to the neighbor

if it is an improvement, otherwise it will move with a certain probability. The main



4 METHODOLOGY 9

Algorithm 3 Local search

Require: starting solution A
Require: maximum number of no improvements Ino impr

Require: integer N repetitions
1: if first local search then
2: X ← A, Xbest ← X
3: if Ils no impr > Ino impr then
4: X ← A, Ils no impr ← 0
5: for N neighbors do
6: X ′ ← neighbor of X from the Eliminator
7: if X ′ is better than Xbest then
8: Xbest ← X ′, Ils no impr ← 0
9: if no new Xbest then

10: X ← last explored neighbor
11: Ils no impr ← Ils no impr + 1
12: else
13: X ← Xbest

14: return Xbest

advantage of this method is that the SA could escape from a local optimum. Let T0, α

and Ino impr be respectively, the starting temperature, the cooling speed and the maximum

consecutive iterations with no improvement. At each step, a neighbor Y ′ of starting

solution Y is explored. If there is an improvement, the SA will move to Y ′. If the neighbor

Y ′ is better than best solution Ybest, then Ybest is replaced. In case of no improvement,

SA will accept the neighbor with a certain probability. This probability is computed with

Equation (10). The SA explores until the maximum number of consecutive iterations with

no improvement, denoted by Ino impr, is reached. Then, the current best solution of the

heuristic A will replace Y .

Algorithm 4 Simulated annealing

Require: starting solution A
Require: maximum number of no improvements Ino impr

Require: starting temperature T0, cooling speed α
Require: integer N repetitions
1: if first simulated annealing then
2: Y ← A, Ybest ← Y ,T ← T0
3: if Isa no impr > Ino impr then
4: Y ← A, T ← T0, Isa no impr ← 0
5: for N neighbors do
6: Y ′ ← neighbor of Y from the Eliminator
7: if Y ′ is better than Y then
8: Y ← Y ′

9: if Y ′ is better than Ybest then
10: Ybest ← Y ′, Isa no impr ← 0
11: else if rand(0, 1) < PSA then
12: Y ← Y ′

13: T ← α · T
14: if no new Xbest then
15: Isa no impr ← Isa no impr + 1
16: return Ybest
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PSA = exp

(
1

T

Y ′ − Y
Ybest

)
(10)

The probability of accepting increases as the SA is cooling down, that is, the temperature

is decreasing. Furthermore, if the neighborhood solution is relatively far from the the

starting solution, the PSA goes to 1. After each step, the temperature is updated: T ← αT

and the routes of the neighbor is stored in POOL. The values of Y , Y ′ and Ybest represent

the total profit of the starting solution, neighbor and best solution respectively.

4.5 Route recombination

The route recombination (RR) creates a new solution from routes from POOL. The RR

solves a set packing formulation. The aim is to cover as much as possible locations with

the routes from POOL. The size of POOL is restricted by a number Spool. Let POOL =

{r1, r2...., rSpool
}, where Spool is the size of POOL. For all customers c ∈ C and k ∈

{1, 2, ..., Spool}, ack indicates whether a customer is in route rk. The total profit a route

is computed by the sum of the visited customers of a route and is denoted by pk. The

Integer Programming (IP) is defined as follows.

max

Spool∑
k=1

pkxk (11)

subject to

Spool∑
k=1

ackxk ≤ 1 ∀c ∈ C, (12)

Spool∑
k=1

xk ≤ m, (13)

xk ∈ {0, 1} ∀k ∈ {1, 2, ..., Spool}. (14)

The objective function maximizes the profit over the routes. The first constraints restrict

that a customer can be visited more than once. The second restriction sets the maximum

number of routes used in the new solution.

After the new combination of routes, a list of unvisited customers u is created and

sorted decreasing order of profit. Then a complete solution is created by adding as much

as possible customers from u.

Each route in POOL has a value called apr denoting its appreciation. The value of

new routes are assigned with an apr = 0. Routes that are included in the solution found

by the IP are assigned an apr of 100. The apr of routes, which are not in the final solution,

are decreased by one. Since a maximum number of routes in the POOL Spool is set, it

is more likely to keep the routes which are already used. When the number of routes

exceeds the Spool, we remove the routes with the lowest apr from POOL until the number

of routes in POOL is below the maximum. Before we solve the IP, the upper bound of LP
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relaxation can be used to determine whether it is necessary to solve the IP. Therefore, the

IP is only solved, if the upper bound is better than the best solution found. This prevents

the unnecessary use of the time consuming IP solver (Hu and Lim, 2014).
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5 Computational results

The iterative heuristic is written in Java. The computations were run on a laptop equipped

with an Intel Core i7-6500U CPU clocked at 2.50 GHz, 8 GB RAM and running Windows

10. The ILOG CPLEX 12.6.3 (Windows 64-bit version) is used to solve the MIP. To

compare the running time with the original I3CH, we use Super Pi as an benchmark.

Super Pi calculates the first million decimals of π. The seconds it takes to compute these

decimals is the benchmark. The performance of our laptop is slightly better than Hu and

Lim (2014), 13.2 and 14.7 respectively.

5.1 Test instances

The I3CH is tested on the benchmark instances originally created for the Vehicle Routing

Problem with Time Windows (VRPTW) by Solomon (1987) and Cordeau et al. (1997).

Each of the Solomon instances contains 100 locations and 1 depot. These locations are

grouped into the distribution of the coordinates of the locations. The geographical lo-

cations of r100 and c100 instances are respectively randomly uniform distributed and

clustered. In the rc100 instances, the locations are both randomly distributed and clus-

tered. Furthermore, the locations of r100, c100 and rc100 have short time windows, we

denote these three instance sets by Solomon 100. The Cordeau et al. (1997) instances

pr01-pr10 each has a different number of locations. The geographical coordinates of these

locations are randomly distributed. We denote these instances by Cordeau 1-10. Righini

and Salani (2009) adapted the Solomon 100 and Cordeau 1-10 instances for the OPTW.

Montemanni and Gambardella (2009) adapted the Solomon (1987) and Cordeau et al.

(1997) instances for long time windows and these modified instances are respectively de-

noted by Solomon 200, which contains r200, c200 and rc200, and Cordeau 11-20. These

instances are the same as the ones used by Hu and Lim (2014).

The calculated Euclidean distances between locations are rounded down to one decimal

for the Solomon instances and to two decimals for the Cordeau et al. instances.

5.2 Comparison with the I3CH

We initially run the aforementioned instances for m = 1, ..., 4 with a random seed = 3.

Note that, if m = 1 the TOPTW is equivalent to the OPTW. Therefore, the RR is not

used when m = 1, because it would only select the route with the highest profit (Hu

and Lim, 2014). We run the I3CH with the same parameter settings as used by Hu and

Lim (2014). The settings of the Eliminator parameters are Ph = 0.1 and Pl = 0.3. As

starting temperature for the SA, we used T0 = 0.1 and the cooling speed is α = 0.995. The

maximum number of routes in POOL is set on Spool = 1000 and the maximum number

of iterations Imax = 3000. The number of repetitions in LS, SA and Eliminator is set

N = 50. Furthermore, the LS and SA will use a new starting solutions after 20 iterations

of no improvement Ino impr.



5 COMPUTATIONAL RESULTS 13

In the table 1, a summary of the results of the Hu and Lim’s I3CH and the reproduction

shown. The column m represents the number of routes. The AG is the average gap

between the best known solution BKS from 2014. The gap of an instance is calculated

with Equation (15). The column AT shows the average computation time in seconds and

is not adjusted to the computer’s speed of the original I3CH. The columns #B and #W

show the number of instances for which the I3CH reproduction has found better or worse

solutions than the best known solutions (BKS) respectively. The BKSs are retrieved from

Hu and Lim (2014) are used and could be improved by others in the meantime. In the

appendix, the tables A6, A7, A8 and A9 show the solutions of each Solomon instance for

m = 1, 2, 3, 4 respectively.

Gap =
BKS − I3CH

BKS
× 100% (15)

Table 1: Comparison Solomon instances with seed = 3

m Set
I3CH (original) I3CH

m Set
I3CH (original) I3CH

AG (%) AT (s) AG (%) AT (s) #B #W AG (%) AT (s) AG (%) AT (s) #B #W

1 c100 0.00 25.2 0.00 38.2 0 0 3 c100 0.00 190.2 -0.11 248.1 1 0
r100 0.56 28.6 0.06 33.7 0 1 r100 0.21 118.3 0.00 204.5 1 1
rc100 1.66 25.6 0.00 32.6 0 0 rc100 0.26 101.0 0.30 175.3 1 2
c200 0.40 84.4 0.00 201.5 0 0 c200 0.00 12.3 0.00 42.5 0 0
r200 1.04 176.2 0.33 629.3 3 5 r200 0.01 90.8 0.00 265.5 0 0
rc200 2.68 119.3 0.73 337.6 2 4 rc200 -0.04 164.1 -0.03 511.3 1 1

2 c100 0.00 87.0 0.00 159.2 0 0 4 c100 0.01 261.8 0.01 388.9 1 1
r100 0.54 63.0 0.09 142.2 1 3 r100 0.05 184.3 -0.16 301.5 8 0
rc100 0.90 58.9 0.00 127.9 0 0 rc100 0.12 152.4 -0.23 276.4 4 0
c200 0.68 401.2 -0.08 1112.3 1 0 c200 0.00 0.1 0.00 53.3 0 0
r200 0.16 526.8 -0.38 1171.0 7 0 r200 0.00 0.2 0.00 82.4 0 0
rc200 0.56 439.7 0.00 1360.3 5 2 rc200 0.00 0.2 0.00 46.3 0 0

The AG and AT denote the average gap in percentage and average computation time in seconds
respectively. The #B and #W denote the number of instances for which the solution found is
better and worse than BKS respectively.

Table 1 shows that our I3CH underperforms in terms of computation time. Especially,

for instance sets modified by Solomon 200 for all m, the solving time is greater than the

original I3CH. For m = {1, 2, 3}, this is possible due to the longer time windows, which

lead to more possible exchange and relocate possibilities. However, the average gap is for

the most instance sets lower than the original I3CH of Hu and Lim (2014) and in some

cases even better than the BKS.

Table 2 shows the performance of the I3CH on the Cordeau instances. On average,

the gaps of our I3CH is smaller than the average gap of the original heuristic. However,

also in this case the the computation time is longer. This is possibly due to the difference

in interpretation and the coding of the reproduction of the I3CH. In table 3, the results

are shown for the Cordeau instances pr01-pr10, using the number of routes of which all

customers could be visited. The table shows that the gap is lower than the original I3CH.

However, we were not able to find the optimal solution which the original I3CH could not

find.
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Table 2: Comparison Cordeau instances with seed = 3

m Cordeau
I3CH (original) I3CH

AG (%) AT (s) AG (%) AT (s) #B #W

1 1-10 1.06 109.0 0.32 129.3 1 1
11-20 3.79 130.2 1.43 170.1 2 6

2 1-10 0.94 247.1 0.08 429.2 2 3
11-20 2.69 304.6 1.71 552.3 2 8

3 1-10 0.35 424.0 0.19 765.3 5 3
11-20 1.00 497.0 0.34 989.2 4 4

4 1-10 0.06 566.5 -0.15 1157.6 4 4
11-20 -0.64 728.6 -1.36 1564.3 7 2

Table 3: Performance using minimum required m to obtain the optimal solution for
Coredeau 1-10

name m OPT
I3CH (original) I3CH

profit gap (%) t (s) profit gap (%) t (s)

pr01 3 657 619 5.78 146.7 622 5.33 210
pr02 6 1220 1207 1.07 669.7 1213 0.57 1288
pr03 9 1788 1781 0.39 1383.7 1785 0.17 3779
pr04 12 2477 2477 0 641.9 2477 0.00 174
pr05 15 3351 3351 0 19.3 3351 0.00 180
pr06 18 3671 3671 0 30 3671 0.00 325
pr07 5 948 943 0.53 299.7 945 0.32 543
pr08 10 2006 2006 0 55.9 2006 0.00 63
pr09 15 2736 2736 0 10.8 2736 0.00 142
pr10 20 3850 3850 0 9.1 3850 0.00 385

5.3 Parameter tuning

The heuristic has nine parameters. Imax, N and Ino impr in the iterative framework, Ph and

Pl in the Eliminator, T0 and α in the simulated annealing, Spool in the route recombination

and a random seed. We use the instances c103 and c105 to tune the parameters withm = 4.

These two instances perform the same as the original I3CH in terms of profit. The limited

number of instances on which we tune the parameters is partly due to the time restriction

of the research.

We first tune the parameters of the neighbor operator Eliminator. The parameters of

the Eliminator which we test Ph ∈ {0.0, 0.1, 0.2, 0.3, 0.5} and Pl ∈ {0.1, 0.2, 0.3, 0.5, 0.75, 1.0}.
We repeated this four times with seed ∈ {3, 5, 7, 9}. Table 4 shows the results of the pa-

rameter tuning on the two instances. The parameter settings with Ph = 0.5 and for all

Pl = 0.2 give on average the lowest gap. This is different than the parameter setting of

Hu and Lim (2014), which was Ph = 0.1 and Pl = 0.3. However, our sample is small and

therefore we can not state that these parameter setting is useful for all instances.

The RR has one parameter Spool, the size of the route pool. A small route pool size

probably leads to a worse solution quality. A large route pool size leads to a longer solving

time when the RR also uses the IP. Again we tested this with seed ∈ {3, 5, 7, 9}. We used
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Table 4: Parameter tuning on the Eliminator

Ph Pl = 0.1 Pl = 0.2 Pl = 0.3 Pl = 0.5 Pl = 0.75 Pl = 1.0

0 1.73 1.73 1.73 1.73 1.73 1.73
0.1 1.73 1.74 1.63 1.63 1.63 1.63
0.2 1.63 1.63 1.63 1.63 1.63 1.63
0.3 1.63 1.63 1.63 1.74 1.63 1.63
0.5 1.63 1.51 1.81 1.73 1.73 1.89

the following parameter values for the Spool = {100, 200, 300, 400, 500, 750, 1000, 1500, 2000}.
The best average gap with 1.51 is at Spool = 750.

Table 5: Parameter tuning on RR

Spool AG (%) AT(%)

100 1.73 127.4
200 1.63 130.8
300 1.63 153.9
400 1.63 144.1
500 1.63 150.6
750 1.51 161.6

1000 1.63 171.0
1500 1.63 198.5
2000 1.63 205.3

5.4 Stability of best solutions

Some instances beat the BKS, therefore we are interested whether this solution is found

fortuitously or this is structural. We rerun the several instances with a new best solution

with different seeds: seed = {2, 4, 6, 8, 10}. In table 6, the results are shown.

Table 6: Stability of best solution

instance m Min gap Max gap AG(%) AT(%)

r202 2 -0.30 -0.15 -0.22 1439.0
r209 2 -1.28 -0.21 -0.75 1964.4
c108 4 -0.88 0.00 -0.53 355.0
rc104 4 -0.57 -0.57 -0.57 354.2
pr03 4 -2.05 -1.23 -1.69 784.8
pr15 4 -0.87 0.58 0.01 2767.6

Table 6 shows that the results vary over the different seeds. That is, more optimal

solution than the BKS is found most of the times, except for the instances c108 and pr15.

For pr15, a solution was found which was worse than the BKS. However, on average the

BKS was beaten.
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5.5 Analysis RR, LS and SA

We use the computational results of Section 5.2 to analyze the individual components.

The histogram of figure 6 shows the frequency of the different components which give the

best final solution for the Solomon instances. Since the RR is not invoked for m = 1,

only the results of m = 2, 3, 4 is showed in the graph. The RR provides in more than

two third of the Solomon 100 instances the best final solution. This is a confirmation the

effectiveness of the heuristic. For the Solomon 200 instances, the most optimal solution

was usually found after the initialization. That is, a solution is found in which the all

customers were visited.
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Figure 6: Best final solution for each component for the Solomon instances

Table 7: Computation time of the individual components of the I3CH

m Instance set
AT (s)

m Instance set
AT (s)

RR LS SA RR LS SA

1 Solomon 100 0 17 17 3 Solomon 100 82 63 64
Solomon 200 0 202 211 Solomon 200 19 102 104
Cordeau 1-10 0 64 65 Cordeau 1-10 112 321 329
Cordeau 11-20 0 84 86 Cordeau 11-20 126 421 438

2 Solomon 100 72 35 36 4 Solomon 100 95 111 115
Solomon 200 125 499 568 Solomon 200 0 3 3
Cordeau 1-10 103 160 164 Cordeau 1-10 118 508 526
Cordeau 11-20 108 218 224 Cordeau 11-20 131 691 733

Table 7 shows the average computing time of the three components for the instance

set Solomon 100, 200, Cordeau 1-10 and Cordeau 11-20. The computation times of the LS
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and SA are almost equal, since the Eliminator is used N times for both components. The

computation time of the RR component is usually lower than the other two combined.

Sometimes the RR takes only 10% of the total computation time. For the instances on

which the RR lead to the best solution, the RR usually takes a larger part of the total

computation time. An explanation for this could be that RR then solves the integer

programming.

Table 8 shows the average number of times the component obtain a new best solution

during solving an instance. Noteworthy is that for m = 2 for all instance sets the RR often

provides new best solution. That also holds for the Solomon 100 for m = 3 and m = 4.

Table 8: Average number of new best best solutions by component

m Set RR LS SA m Set RR LS SA

1 c100 0.0 0.3 0.0 3 c100 1.2 0.4 0.3
r100 0.0 0.7 0.8 r100 3.2 0.4 0.3
rc100 0.0 0.8 0.3 rc100 3.4 0.4 0.1
c200 0.0 1.1 0.8 c200 0.0 0.0 0.0
r200 0.0 5.3 5.6 r200 0.1 0.2 0.3
rc200 0.0 4.9 3.3 rc200 0.9 0.9 0.8

2 c100 0.6 0.4 0.1 4 c100 1.9 0.1 0.4
r100 2.8 0.2 0.8 r100 5.7 0.0 0.3
rc100 2.5 0.4 0.6 rc100 3.9 0.0 0.4
c200 0.6 0.6 0.4 c200 0.0 0.0 0.0
r200 2.7 4.4 2.7 r200 0.0 0.0 0.0
rc200 4.6 2.5 2.6 rc200 0.0 0.0 0.0
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6 The OP with Hotel Selection and Time Windows

6.1 Problem description

The OP with Hotel Selection and Time Windows (OPHS-TW) is another variant of the

Orienteering Problem. In the OPHS-TW, a directed graph G = (V,A) is given. This

problem consists of at least n+2 locations: n customers and a begin and ending hotel. Also

a set of intermediate hotels is given and also the number of routes. Not all intermediate

hotels need to be visited. Let a route be a ordered set of locations which start and end

at a hotel. Let a tour be a ordered set of routes. The tour should start and end with the

given hotels. Each customer has a profit pi, a service time si and time window [Oi, Ci].

Since there are multiple possible orders to visit hotels in between the starting hotel

end ending hotel, we fix the the order of hotels on beforehand. Note that, this could lead

to a sub-optimal solution since the order of hotels is fixed.

H0

H1

H2

3

45

6

78

9

10

Figure 7: Example of a solution for m = 2 with one additional hotel

6.2 Adjustments to I3CH

To solve the OPHS-TW, we need to determine the order of the intermediate hotels before

the I3CH can be executed. As a optimal order of hotels is challenging (Divsalar et al.,

2013), we simplify the hotel selection with the following algorithm. From the starting

hotel, we choose the next intermediate hotel of which the difference between the distance

from the starting hotel to the next hotel and the trip length is the smallest. We repeat

this until the number of intermediate hotels are visited. Then we add the ending hotel to

the list of visiting hotels. The disadvantage of this algorithm is that we do not necessarily

obtain the optimal ordering of visiting hotels. Moreover, there is a possibility that the

distance to the ending hotel is larger than the trip length.

Furthermore, we change the operator 2-opt. The original 2-opt splits a route into

two parts. By splitting two routes and reconnecting each other, there exists a possibility

that the the order of visiting hotels could be changed. Therefore, we split the the route,

without considering the hotels. If we apply this adapted 2-opt operation to the solution
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in figure 7, we obtain the solution in figure 8. The remaining operators do not need to be

changed, since these operators do not interact with the hotels.
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Figure 8: Example of a solution after a 2-opt operation

The route r1 = {H0, 8, 7, 6, H2} is split into {8} and {7, 6} and the route r2 =

{H2, 9, 10, 3, H1} is split into {9} and {10, 9}. The new routes are {H0, 8, 9, H2} and

{H2, 6, 7, 10, 9, H1}.
Since the routes do not start and end at one hotel, the route recombination has to be

changed. We need to find a sequence of routes with the right order of visiting hotels. Let

define t ∈ T as a trip type between starting hotel hi and hj . A solution is feasible if it

contains all trip types. Equation (14) of the RR is changed into:

Spool∑
k=1

btkxk = 1 ∀t ∈ T (16)

Where btk is an indicator variable which equals to 1 if the trip k is of trip type t and 0

otherwise. The LS and SA component do not need to be changed, since these components

do not alter the hotels in a particular route.

6.3 Results

The performance of the I3CH on the OPHS-TW is tested on several instances retrieved

from http://www.mech.kuleuven.be/en/cib/op. We only applied the I3CH on a small

number of routes and intermediate hotels. These instances have different number of loca-

tions, total trip length, number of routes and number of intermediate hotels. The number

of intermediate hotels we use is m− 1, that means we visit all given intermediate hotels.

We use the same parameters as used by Hu and Lim (2014) for the I3CH. Not all instances

are were solvable, since our hotel selection algorithm was not always able to return a feasi-

ble hotel selection. In table 9 a summary of our results are shown. An optimal solution for

each instance is known, therefore the gap is the percentage difference between the optimal

solution value and the solution value found by the heuristic.

The results of table 9 show that for m = 2, the average gap is smaller than Divsalar

et al. (2014). The computation time of the I3CH is substantially higher for all m. The
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Table 9: Summary of results I3CH for OPHS-TW

I3CH Divsalar et al. (2014)
m #instances AG (%) AT (s) AG (%) AT (s)

2 20 0.98 203.20 3.80 0.98
3 17 10.90 161.65 1.55 0.68
4 10 17.06 141.00 1.59 0.56

average gap increases ifm increases. The main cause could be the hotel selection algorithm.

More detailed results for each instance are shown in table A10.
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7 Conclusion

In this thesis, we have reproduced the iterative three-component heuristic by Hu and Lim

(2014) for the TOPTW. The computational results show that our reproduction performs

on average as good as the original I3CH or sometimes even better in terms of solution

quality with the same parameter settings as Hu and Lim (2014). For the most instance

sets, the average gap between the best known solutions and the solutions of our I3CH

was 0.00%. For several instance sets the average gap was even lower, which means we

also found some new best known solutions. However, our reproduced heuristic did not

perform better in computation time. Since both the original I3CH and the reproduction

is written in Java, coding or difference in interpretation could be the cause of the different

computation times. Nonetheless, we do reach the computation time of the Hu and Lim

(2014).

Partly due to the longer computation time, running a parameter tuning takes a lot

of computation time. Therefore, we had to limit the number of instances on which we

tune the parameters, and the number of parameters tuned. However, our results with the

parameter settings of Hu and Lim (2014) show that it already performs relatively good.

This is a confirmation that the I3CH of Hu and Lim (2014) is effective in terms of solution

quality.

In addition to the the reproduction of the heuristic, we also applied the reproduction on

the OPHS-TW, one of the variants of the original OP. We were able to solve some instances

adapted for the OPHS-TW. However, not every instance could be solved by our adapted

I3CH. The order of visiting intermediate hotels is a difficult problem (Divsalar et al.,

2013). Therefore, when it is desirable to use the I3CH on the OPHS-TW, a better hotel

selection algorithm is preferable. A possibility for further research could be a combination

of the I3CH and hotel selection algorithm.
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Appendices

A Parameter settings CPLEX

Table A1: Parameter settings CPLEX MIP solver

parameter value

IloCplex.Param.Simplex.Tolerances.Feasibility 1E-09
IloCplex.Param.Simplex.Tolerances.Optimality 1E-09
IloCplex.Param.Simplex.Tolerances.Markowitz 0.99999
IloCplex.DoubleParam.EpGap 1E-09
IloCplex.IntParam.ParallelMode 1
IloCplex.IntParam.Threads 1

B Comparision with I3CH

The following pages in this section contain the solution values of the I3CH for the Solomon

100, Solomon 200, Cordeau 1-10 sn Cordeau 11-20 instances. The parameter settings are

as follows: Ph = 0.1, Pl = 0.3, T0 = 0.1, α = 0.995, Spool = 1000, Imax = 3000, N = 50

and Ino impr = 20. The tables shows the profit, the gap and the computation time of

the original I3CH by Hu and Lim (2014) and the reproduced I3CH. In addition, the

computation time of each the three components, RR, LS and SA, are given. The best

known solutions (BKS) are from Hu and Lim (2014) and thus some solutions could be

outdated. The solution values in bold are solutions that are better than the BKS and Hu

and Lim (2014). G denotes the gap between the BKS and the solution.
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Table A2: Comparision I3CH for m = 1 and seed = 3

name BKS
I3CH (original) I3CH
profit gap (%) t (s) profit gap (%) t (s) RR LS SA

pr01 308 305 0.97 20.8 308 0.00 40 0 19 20
pr02 404 394 2.48 47.9 404 0.00 77 0 38 39
pr03 394 394 0.00 72.9 394 0.00 90 0 44 46
pr04 489 489 0.00 109.3 489 0.00 126 0 62 64
pr05 595 594 0.17 185.4 595 0.00 227 0 111 115
pr06 590 590 0.00 189.9 591 -0.17 223 0 109 113
pr07 298 298 0.00 26.5 298 0.00 29 0 14 15
pr08 463 454 1.94 77.4 463 0.00 81 0 40 41
pr09 493 490 0.61 137.8 493 0.00 161 0 80 80
pr10 594 568 4.38 222.2 574 3.37 239 0 119 120

pr11 351 353 -0.57 30.8 353 -0.57 31 0 15 15
pr12 442 433 2.04 59.8 438 0.90 73 0 37 36
pr13 461 466 -1.08 89.5 457 0.87 111 0 54 57
pr14 567 521 8.11 144.4 555 2.12 181 0 91 90
pr15 685 707 -3.21 248.2 708 -3.36 333 0 163 169
pr16 674 619 8.16 228.6 631 6.38 298 0 148 149
pr17 362 360 0.55 34.7 362 0.00 39 0 19 20
pr18 539 497 7.79 99.0 539 0.00 103 0 50 53
pr19 562 538 4.27 164.6 560 0.36 217 0 106 111
pr20 667 588 11.84 202.7 616 7.65 315 0 158 156

Table A3: Comparision I3CH for m = 2 and seed = 3

name BKS
I3CH (original) I3CH
profit gap (%) t (s) profit gap (%) t (s) RR LS SA

pr01 502 502 0.00 51.8 502 0.00 147 82 32 31
pr02 714 714 0.00 127.7 714 0.00 274 111 82 79
pr03 742 731 1.48 175.6 742 0.00 326 115 105 106
pr04 924 917 0.76 270.1 920 0.43 445 106 163 175
pr05 1090 1101 -1.01 410.0 1094 -0.37 642 99 261 280
pr06 1076 1040 3.35 427.6 1049 2.51 700 117 290 290
pr07 566 566 0.00 71.8 566 0.00 178 90 44 44
pr08 834 824 1.20 184.1 834 0.00 319 89 114 114
pr09 905 878 2.98 304.9 904 0.11 495 103 191 200
pr10 1124 1117 0.62 447.0 1145 -1.87 766 120 322 322

pr11 566 559 1.24 71.3 559 1.24 199 83 59 56
pr12 774 768 0.78 143.6 768 0.78 284 95 91 96
pr13 831 832 -0.12 238.6 832 -0.12 376 88 143 143
pr14 1017 978 3.83 337.3 992 2.46 614 110 247 254
pr15 1219 1205 1.15 479.1 1183 2.95 928 129 401 394
pr16 1231 1124 8.69 500.5 1156 6.09 913 129 384 396
pr17 652 639 1.99 117.0 639 1.99 204 87 57 59
pr18 938 937 0.11 231.0 944 -0.64 425 106 155 163
pr19 1034 1003 3.00 386.1 1029 0.48 634 125 249 257
pr20 1232 1155 6.25 541.6 1209 1.87 946 129 394 420
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Table A4: Comparision I3CH for m = 3 and seed = 3

name BKS
I3CH (original) I3CH
profit gap (%) t (s) profit gap (%) t (s) RR LS SA

pr01 622 622 0 132.1 622 0.00 210 80 62 66
pr02 942 936 0.64 260.6 943 -0.11 405 85 159 160
pr03 1010 1010 0 301.5 996 1.39 524 100 206 216
pr04 1294 1286 0.62 442.7 1295 -0.08 791 113 331 344
pr05 1482 1481 0.07 650.3 1499 -1.15 1210 155 514 535
pr06 1514 1501 0.86 651.2 1487 1.78 1218 141 533 538
pr07 744 738 0.81 260.4 744 0.00 277 89 90 97
pr08 1138 1139 -0.09 307.0 1141 -0.26 550 105 218 225
pr09 1275 1272 0.24 503.1 1270 0.39 960 104 424 427
pr10 1573 1567 0.38 731.1 1574 -0.06 1508 149 676 677

pr11 654 654 0 151.7 654 0.00 256 79 84 92
pr12 1002 997 0.5 294.3 981 2.10 453 106 166 180
pr13 1139 1145 -0.53 378.9 1156 -1.49 691 125 276 287
pr14 1372 1315 4.15 533.7 1335 2.70 928 120 392 411
pr15 1650 1654 -0.24 708.1 1673 -1.39 1682 151 750 772
pr16 1668 1609 3.54 818.1 1629 2.34 1747 154 782 803
pr17 838 841 -0.36 184.3 840 -0.24 335 110 112 112
pr18 1281 1276 0.39 386.6 1281 0.00 689 122 274 291
pr19 1417 1403 0.99 604.1 1413 0.28 1238 140 534 557
pr20 1684 1658 1.54 909.7 1699 -0.89 1873 149 837 879

Table A5: Comparision I3CH for m = 4 and seed = 3

name BKS
I3CH (original) I3CH
profit gap (%) t (s) profit gap (%) t (s) RR LS SA

pr01 657 657 0.00 0.1 657 0.00 1 0 0 0
pr02 1079 1073 0.56 380.6 1078 0.09 586 102 231 251
pr03 1222 1232 -0.82 436.6 1247 -2.05 744 103 306 332
pr04 1557 1585 -1.80 603.6 1573 -1.03 1228 123 539 559
pr05 1833 1838 -0.27 902.9 1814 1.04 2060 161 934 954
pr06 1860 1835 1.34 939.6 1881 -1.13 2198 133 1005 1049
pr07 876 872 0.46 228.9 876 0.00 389 158 112 117
pr08 1382 1377 0.36 429.9 1377 0.36 783 118 323 338
pr09 1619 1604 0.93 698.5 1622 -0.19 1389 130 617 635
pr10 1939 1943 -0.21 1044.4 1911 1.44 2198 149 1009 1029

pr11 657 657 0.00 0.1 657 0.00 2 0 0 0
pr12 1132 1120 1.06 477.1 1125 0.62 703 119 271 309
pr13 1364 1386 -1.61 672 1387 -1.69 1143 118 485 528
pr14 1670 1651 1.14 783.2 1683 -0.78 1614 151 706 747
pr15 1958 2065 -5.46 1161.7 2067 -5.57 2743 173 1266 1291
pr16 2065 2017 2.32 1183.8 2050 0.73 2923 180 1328 1399
pr17 933 934 -0.11 332.8 934 -0.11 509 100 192 215
pr18 1525 1539 -0.92 559.5 1549 -1.57 1101 128 468 500
pr19 1723 1750 -1.57 919.4 1764 -2.38 2019 169 881 958
pr20 2037 2062 -1.23 1196.6 2095 -2.85 2886 173 1314 1383
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C Comparison I3CH on OPHS-TW

The names of the instance sets are structured as follows: number of locations - total trip

length - additional hotels - number of routes.
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Table A10: Comparion I3CH and Divsalar et al. (2014)

I3CH Divsalar et al. (2014)
m instance OPT profit gap (%) t (s) profit gap (%) t (s)

2 64-45-1-2 816 816 0.00 146 816 0.00 0.6
64-50-1-2 900 876 2.67 174 876 2.67 1.0
64-55-1-2 984 960 2.44 201 960 2.44 1.3
64-60-1-2 1062 1062 0.00 247 1062 0.00 2.1
64-65-1-2 1116 1116 0.00 276 936 16.13 1.7
64-70-1-2 1188 1170 1.52 345 1152 3.03 1.9
64-75-1-2 1236 1224 0.97 389 1218 1.46 1.6
64-80-1-2 1284 1284 0.00 403 1272 0.93 1.7
66-40-1-2 575 570 0.87 104 570 0.87 0.5
66-45-1-2 650 645 0.77 119 600 7.69 0.7
66-50-1-2 730 715 2.05 121 705 3.42 0.9
66-55-1-2 825 825 0.00 138 825 0.00 0.9
66-60-1-2 915 910 0.55 137 910 0.55 1.1
66-130-1-2 1680 1675 0.30 671 1655 1.49 2.2
100-30-1-2 173 160 7.51 82 160 7.51 0.1
100-35-1-2 241 241 0.00 97 241 0.00 0.2
100-40-1-2 299 299 0.00 105 216 27.76 0.4
100-45-1-2 367 367 0.00 133 367 0.00 0.4
102-50-1-2 181 181 0.00 78 181 0.00 0.1
102-60-1-2 243 243 0.00 98 243 0.00 0.1

3 64-45-2-3 816 816 0.00 148 816 0.00 0.5
64-50-2-3 900 870 3.33 152 870 3.33 0.6
64-55-2-3 984 960 2.44 162 936 4.88 0.7
64-60-2-3 1062 864 18.64 169 1062 0.00 1.1
64-65-2-3 1116 1116 0.00 263 1116 0.00 1.5
64-75-2-3 1236 1218 1.46 328 1218 1.46 1.2
64-80-2-3 1284 1284 0.00 338 1128 12.15 1.5
66-40-2-3 575 320 44.35 85 570 0.87 0.2
66-45-2-3 650 645 0.77 108 645 0.77 0.2
66-50-2-3 730 330 54.79 92 715 2.05 0.4
66-55-2-3 825 410 50.30 96 825 0.00 0.6
66-60-2-3 915 910 0.55 127 910 0.55 0.7
66-125-2-3 1670 1525 8.68 338 1665 0.30 1.9
100-30-2-3 173 173 0.00 75 173 0.00 0.1
100-35-2-3 241 241 0.00 93 241 0.00 0.1
102-50-2-3 181 181 0.00 74 181 0.00 0.1
102-60-2-3 243 243 0.00 100 243 0.00 0.1

4 64-50-3-4 900 666 26.00 113 858 4.67 0.5
64-55-3-4 984 774 21.34 144 954 3.05 0.6
64-60-3-4 1062 852 19.77 165 1062 0.00 0.7
64-65-3-4 1116 996 10.75 193 1116 0.00 0.8
64-75-3-4 1236 1086 12.14 222 1194 3.40 1.0
66-40-3-4 575 570 0.87 94 570 0.87 0.2
66-45-3-4 650 645 0.77 104 645 0.77 0.3
66-55-3-4 825 455 44.85 93 825 0.00 0.3
100-30-3-4 173 160 7.51 71 160 7.51 0.1
100-35-3-4 241 241 0.00 88 241 0.00 0.1
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