
Implementation of the Iterative
Three-Component Heuristic for the Team

Orienteering Problem With Time Windows

Author
Natasja Sluijk

Supervisor
Thomas R. Visser, MSc.

Second accessor
Remy Spliet, Dr.

Bachelor Thesis
Econometrics and Operations Research

Erasmus School of Economics

Erasmus University Rotterdam

July 1, 2016

Abstract

The purpose of this thesis is to replicate the Iterative Three-Component Heuristic posed by Hu
and Lim [13]. This heuristic is applied to the Team Orienteering Problem with Time Windows
in which the aim is to maximize the total profit collected by servicing a set of customers with
a limited number of vehicles. The first two components in the heuristic are local search and
simulated annealing. They explore neighbourhood solutions and discover new sets of routes. The
last component recombines the routes that have been found and tries to find the best solution,
namely the one yielding the highest profit. Our computation results show that the computation
time is significantly larger than the computation time given in [13]. Moreover, we obtained different
and often worse results than reported in [13]. One reason for our replication performing worse is
the decrease of the maximum number of iterations (140 instead of 3000) in order to keep the
computation time to a limit. We did find new best solutions for c108 (1140) and rc102 (909) for
m = 4 vehicles. We extended the original heuristic to include multi-threading which performed 1.6
times faster than the original heuristic. Furthermore, we investigated increased route pool sizes,
which lead to better results at the cost of only a small increase in the computation time.

1

Contents

1 Introduction 3

2 Literature Review 4

3 Problem Definition 5

4 Methodology 6
4.1 Neighbourhood Operators . 6
4.2 Route Pool . 10
4.3 Local Search . 10
4.4 Simulated Annealing . 10
4.5 Route Recombination . 11
4.6 Iterative Framework . 11
4.7 Extensions . 12

4.7.1 Multi-Threading . 12
4.7.2 Size of POOL . 13

5 Data Description 14

6 Results 15
6.1 Extensions . 18

6.1.1 Multi-Thread . 18
6.1.2 Size of POOL . 20

7 New Best Known Solutions 21

8 Conclusion 22

9 Appendix 23
9.1 Algorithms . 23
9.2 Detailed results of our implementation of I3CH . 25
9.3 Detailed results of using Multi-Threading (Extension) 33
9.4 Detailed results of changing the POOL size (Extension) 35
9.5 Routes of the new Best Known Solutions . 44

10 References 45

2

1 Introduction

This thesis studies the Team Orienteering Problem with Time Windows (TOPTW). The set up of
this problem can be explained with the help of a game called orienteering that is often played in
areas with rough landscapes. Given the location of check points, players will try to visit as many
of them as possible. Each check point has its own score and the aim is to maximize the total score.
Due to a limitation on the time, players are not always able to visit all check points and therefore
have to select a subset of locations that will result in the highest total score under the restriction
of time. Not arriving at the finish point on time results in disqualification [25].

Several extensions on the Orienteering Problem (OP) have been posed and studied in literature.
One extension is to consider the game to be played by teams instead of individuals (Team Ori-
enteering Problem, TOP). Another well studied extension is the Orienteering Problem with Time
Windows (OPTW). In this setting, the team consists of one member and each location can only be
visited within a specified time window.

The Team Orienteering Problem with Time Windows (TOPTW) combines the TOP and OPTW.
In the TOPTW we typically use a different terminology. Instead of visiting checkpoints and col-
lecting scores, customers (also referred to as locations) will be visited and profit will be collected.
The aim of TOPTW is to maximize the total profit collected by visiting a set of locations. In
this thesis, it is assumed that each location has a profit, a service time and a time window. The
TOPTW can be modelled as a multi-level optimization problem. First, a subset of customers to
visit has to be chosen. Then, the shortest, feasible path over this subset has to be found. Note
that these two levels are dependent on each other. On one hand, it could be that the subset of
customers is quite small and that there is space left in a tour for more customers. This situation
can be solved by trying to add more customers to the final tour. On the other hand, it could be
impossible to find a feasible tour due to the large size of the subset. In order to solve this situation,
customers have to be removed from the subset.

The TOPTW can be applied to many planning problems. One example is the personalized
electronic tourist guide that is used by tourists to assist them in the planning of their trips [26]. A
second example is the salesman that sells his products from door-to-door. Suppose he has works
from Monday till Friday and he has one week to visit the customers in a city. He will then construct
five routes (one for each day) such that he maximizes profit. Because of the time restriction, he is
not able to visit all customers and therefore prefers to visit the customers with high profit. Besides
taking into account his own time restriction, he also has to take into account the time windows of his
customers. It could be that some of his customers are only home on Monday morning, while others
can only be reached on Friday. This example can be seen as an TOPTW in which the salesman
is his own “team member” and the team consists of five members. His time window contains all
weekdays, but it split up in five smaller parts, one for each day and thus for each “team member”.

The purpose of this thesis is to replicate the results of the Iterative Three-Component Heuristic
developed by Hu and Lim [13]. The first two components explore the solution space with help of
local search and simulated annealing, and discover a set of routes. The third component recombines
the routes and finds the best combination with the help of an Integer Programming problem.
Besides replicating the heuristic, two extensions will be considered. The first extension is the use of
multi-threading in the code. Local search and simulated annealing can be seen as two independent
procedures and could therefore run in parallel. This will reduce the computation time and thus make
the heuristic faster. The second extension is the investigation of the trade-off between computation
time and solution quality with respect to the size of the POOL. In this extension, multi-threading

3

is used in order to obtain results within a reasonable amount of time.
The remainder of this paper is organized as follows. In the next section, a literature overview on

TOPTW is given. In Section 3, the problem description is given, and in Section 4 the methodology
is explained. In Section 5, a description of the data is given and in Section 6 the results are
presented. We found new best solution and represent those in Section 7. This thesis is rounded off
with a conclusion in Section 8.

2 Literature Review

Among researchers that have studied the OP are Chao et al. [1], Schilde et al. [22], and Fischetti
et al. [7]. Both Golden et al. [10] and Laporte and Martello [17] proved that the OP is a NP-
hard problem. This implies that only for small instances an exact solution can be found within a
reasonable amount of time. As has been shown in Section 1, many extensions exist and they are
considered as NP-hard problems as well. A complete overview of all currently studied extensions
can be found in the paper of Gavalas et al. [9].

One possible extension is the Team Orienteering Problem (TOP) where multiple tours are
considered instead of one [2]. In this problem, rather than looking at only one subset of locations, the
subset of locations of each vehicle has to be taken into account. Once one of the vehicles has visited
a location, another vehicle cannot receive a profit from that location anymore. Vansteenwegen
et al. [27] argue that including the time windows in the OP, as is done in the OPTW, significantly
affects the nature of OP and its algorithmic approaches. For instance, reordering locations within
a route does not guarantee feasibility due to those time window restrictions. Other papers that
discuss the OPTW include Kantor and Rosenwein [14] and Righini and Salani [21].

Vansteenwegen et al. [26] introduced the TOP with Time Windows (TOPTW). Since TOPTW
is considered to be NP-hard, most TOPTW literature is focused on developing heuristics that obtain
a good solution quality within a reasonable amount of time. One heuristic is the ant colony system
(ACO) that resulted in, at that time, the best results on the OPTW instances [19]. The ACO
algorithm is a metaheuristic that is based on real ants. Ants leave their nest to find food sources
and while walking they spread a pheromone so that they can find their way back. This pheromone
is also important for routes of other ants, since they will choose their path with a certain probability
and this probability depends on the amount of pheromone. The more pheromone on a path, the
higher the probability of that path will be. In the algorithm, artificial ants are created that try
to find shortest path. Each individual ant tries to find the shortest path, and meanwhile shares
his information with other ants. Hence, they corporate. Further development of this algorithm by
these authors lead even to new best solutions [8, 20].

Vansteenwegen et al. [26] posed an Iterated Local Search (ILS) heuristic that is currently the
fastest known algorithm posed to produce solutions of reasonable quality for TOPTW [9]. They
obtained neighbourhood solutions of the starting solution by either inserting new customers to the
route or by deleting customers from the route. Tricoire et al. [24] developed an algorithm that deals
with a more complex version of the TOPTW, namely the Multi-Period Orienteering Problem with
Multiple Time Windows. Their heuristic contains a local search algorithm which is based on the
Variable Neighbourhood Search (VNS). The idea of VNS is a systematic change of neighbourhoods
within a local search procedure. It explores neighbourhood solutions of increasing sizes. The initial
solution is determined by finding a solution in the set of neighbourhood structures. From this
incumbent solution, random points are generated on which neighbourhoods searches as shaking

4

and iterative improvement are applied.
Another heuristic posed for the TOPTW is the Greedy Randomized Adaptive Search Procedure

with Evolutionary Local Search (GRASP-ELS) [15]. GRASP-ELS gives considerably better quality
solutions than ILS, but at the expense of increased computation time. Whereas ILS starts with an
initial solution s obtained by a heuristic, generates many neighbourhood by changing s and finally
improve these solutions by local search, ELS generates multiple copies of the starting solution s and
then applies ILS on each of these copies. The authors also posed a heuristic called Granular Variable
Neighbourhood Search (GVNS) which lead to new results [16]. The difference between GVNS and
VNS is that the granular variant aims at reducing the size of the analysed neighbourhoods by
excluding non promising arcs during the node sequence construction in the local search procedure.

Lin and Vincent [18] developed two versions of a simulated annealing algorithm. The fast version
(FSA) computes a solution within only several seconds, while the Slow Simulated Annealing (SSA)
requires more computation time, but gives better solutions. These calculations are performed on the
benchmark instances that are also used in this thesis and will be defined later. Some of the current
best-known solutions on these benchmark instances are obtained by the SSA. Hu and Lim [13] posed
an Iterative Three-Component Heuristic (I3CH) for solving the TOPTW. Their heuristic found 35
new best solutions on benchmark instances for which the optimal solution is unknown and achieved
55 optimal solutions on the instances for which the optimal solution is known, which is sixteen more
than the previous best approach. This occurs, however, at the expense of longer computation times.
Cura [5] posed a relatively new technique called artificial bee colony (ABC) approach to solve the
TOPTW. This heuristic simulates the foraging behaviour of learning, memorizing and information
sharing of honey-bee swarms.

El-Hajj et al. [6] used a column generation algorithm to solve the TOPTW exactly. The authors
were able to prove the optimality of several instances by finding their integer solutions at the root
node while solving the linear relaxation of the model. Finally, Gunawan et al. [12] recently posed
a hybridization of Simulated Annealing and Iterated Local Search (SAILS). The main difference
between SA and SAILS is that an additional strategy of intensification is included. If there is
no improvement of the solution after a certain number of iterations, then the search is focussed
once again starting from the best solution obtained so far. In the usual SA, if the upper limit on
the number of consecutive iterations without improvement is reached, the SA calculations is done.
SAILS differs from SA in that it does not stop when the upper limit on iterations is reached, but
continues by taking the best solution, again applying SA to it, and it will only stop when the time
limit is met.

3 Problem Definition

The TOPTW is formulated on the network G = (V,A), where there are n + 1 different vertices
denoted by the set V = {0, 1, 2, ..., n} and a set of arcs that connects these locations A = {(i, j) :
i 6= j ∈ V }. Location 0 is the depot and each of the remaining vertices correspond to one customer.
The travel duration tij from location i to j is equal to the Euclidean distance between these two
locations. Only a limited amount of vehicles m is available. Each vehicle must begin and end its
route at the depot within the time window of the depot [O0, C0]. For each customer ci, where
i = 1, ..., n, the profit pi, service time Ti, and time window [Oi, Ci] is known. Customers can be
visited at most once. A service is successfully delivered to a customer if it begins within his or
her time window. If there is an early arrival, the vehicle has to wait until the opening of the time

5

window. Profit is collected from the successful services. Due to the limited amount of vehicles,
some customers may not be serviced in the feasible solution. The objective of this thesis is to find
a feasible combination of routes that yields maximum profit. A MIP formulation for this problem
is given in [26].

4 Methodology

The Iterative Three-Component Heuristic (I3CH) consists of the following components: Local
Search (LS), Simulated Annealing (SA), and Route Recombination (RR). In general, both LS and
SA will make use of neighbourhood search. The solutions of LS and SA are used for RR and by
iteratively solving, the best solution of RR, LS, and SA is then used as inputs for the LS and SA.

4.1 Neighbourhood Operators

The neighbourhoods are created with the help of the neighbourhood operator eliminator which
removes some customers from the routes and replaces them by unvisited customers that are stored
in a list called u. If those added customers are more profitable than the ones that were placed in the
route before, the solution quality is improved. The elimination of the customers occurs randomly.
Let π̄ be the average profit over all customers on m routes that are given as a starting solution to
the eliminator. Customer cj is then eliminated with probability Ph if πj ≥ π̄ and with probability
Pl if πj < π̄. Assuming that there is a preference of keeping customers with high profit, Ph < Pl.
Both Ph and Pl are set in advance and remain fixed throughout the heuristic. After the eliminator
has removed customers from the routes, it will improve the solution by adding customers from the
head of u to any route. If a customer cannot be added to a route, he or she will be placed at the
end of u. Due to the stochastic element in this procedure, many neighbours can be created with
the same starting solution.

Next, the post-processing (PP) procedure is applied to improve the solution that the eliminator
returns. The PP consists of seven different operators: the relocate operators (3), the exchange
operators (3), and a 2-opt operator. Relocating a customer is done by the relocate operators and
implies replacing customers from the list of unvisited customers to a feasible insertion position into
a route (0-relocate), replacing a customer to a different position of the route he was currently in
(1-relocate), and replacing a customer from one route to another route (2-relocate). The exchange
operators that are used are 0-exchange, 1-exchange, and 2-exchange. 0-exchange replaces a cus-
tomer on a route with a customer from u, 1-exchange interchanges two customers on the same
route, whereas 2-exchange interchanges two customers from different routes. The 2-opt operator
deletes two edges on two different routes (one on each) resulting in four separated routes. Those
routes are then recombined, if possible and profitable, in a different way such that two new feasible
routes are created and the total travel distance is reduced. Note that only 0-relocate and 0-exchange
can lead to a improvement of the solution quality with respect to profit, while the other five oper-
ators cannot. However, they can improve the solution quality with respect to distance. The seven
operators are illustrated in Figure 1. A green circle indicates a customer that was initially in no
route, but is included in a route in the new situation. A red circle indicates a customer who got
removed from a route. Finally, a blue circle indicates a customer who has changed from position
within or between routes. The order in which the operators are invoked is given in Algorithm 1.

6

Initial situation

0-relocate 0-exchange 1-relocate 1-exchange

2-relocate 2-exchange 2-opt

Figure 1: Illustration of the seven operators in the Post-Processing procedure

Algorithm 1 Post-Processing procedure

1: Input: starting solution S
2: Set impr ← true

3: while impr is true do
4: Call 2-relocate, 2-exchange, and 2-opt on S and obtain S′

5: Call 1-relocate and 1-exchange on S′ and obtain S′′

6: Call 0-relocate and 0-exchange on S′′ and obtain S′′′

7: if S′′′ > S then
8: impr ← true

9: S ← S′′′

10: else
11: impr ← false

12: end if
13: end while
14: Return: S

One of the main requirements is that the heuristic should be fast. A reason for this is that
it might be used by a company who wants to be able to determine the route for each day given

7

the time windows of the customers of those days. The company is certainly not willing to wait
hours for a solution and rather prefers to obtain a solution within seconds since the operation of
the company depends on it. One way to achieve this is to provide possibilities for quick evaluations
of a possible move of an operator. Checking each visit on their feasibility would require much
time. This can be avoided by keeping track of a few important variables. For this, we used the
method posed by Vansteenwegen et al. [26]. Waiti keeps track of the waiting time for location i
if the arrival at location i with arrival time Arrivali takes place before the time window of that
location (Openingi) opens. If the arrival occurs during the time window, Waiti will be equal to
zero (Equation (1)).

Waiti = max[0, Openingi −Arrivali] (1)

Another important variable is MaxDelayi that is defined as the maximum amount of time the
start of a service can be delayed, without making any visit infeasible. It is equal to the sum of
the waiting time and the maximum delay of the next location, unless it is limited by the difference
between the closing of its window (Closingi) and the start of service of customer (Starti) (Equations
(2) and (3)).

MaxDelayi = min[Closingi − Starti,Waiti+1 +MaxDelayi+1] (2)

Starti = max[Openingi, Arrivali] (3)

By recording theMaxDelayi, the time it takes to evaluate a possible move is reduced to constant
instead of linear time. When a customer is considered to be inserted in the route, its corresponding
Shiftj is calculated (Equation (4)). This variable indicates the time it would take to include this
customer in the route.

Shiftj = tij +Waiti +Durationj + tjk − tik (4)

In the above equation, tij indicates the travel time from customer i to customer j which is
equal to the Euclidean distance between two locations. Durationj equals the service duration of
customer j.

There are two conditions that need to be satisfied for an insertion of customer j between
customers i and k to be feasible. First of all, the time consumption of inserting customer j should
be smaller than or equal to the waiting time and maximum delay of customer k (Equation (5)).
The second condition is that the start of service of customer j should be before his time window
closes (Equation (6)).

Shiftj ≤ Waitk +MaxDelayk (5)

Startj ≤ Closingj (6)

When looking for a feasible insertion point, the first feasible insertion position is chosen since
considering all feasible insertion positions and taking the best one would be time consuming. In-
serting customer j into a route means that all variables of the customers after customer j and the
maximum delay of the customers before j have to be updated. The variables of the visits after
location j are updated with the formulas given in Equations (7) - (11).

8

Arrivalk∗ = Arrivalk + Shiftj (7)

Startk∗ = Startk + Shiftj (8)

Waitk∗ = max[0,Waitk − Shiftj] (9)

Shiftk∗ = max[0, Shiftj −Waitk] (10)

MaxDelayk∗ = MaxDelayk − Shiftk (11)

A pseudocode for updating these variables is given in Algorithm 2. Note that we leave the
for-loop once we have found a possible insertion position for a customer since we will choose the
first feasible insertion position.

Algorithm 2 Insertion of a customer

1: Input: Tour for which it will be checked whether a customer from u can be added, u
2: for each customer j in u do
3: Insertion ← false

4: for each possible insertion position do
5: if Insertion equals true then
6: break
7: end if
8: Determine Shiftj
9: if Shiftj ≤Waitk +maxDelayk and Startj ≤ Closingj then . Insertion is possible

10: Insertion ← true

11: Calculate Arrival, Start and Wait of location j
12: for each visit after j until Shift == 0 do
13: Update Arrival, Start, Wait, Shift, and MaxDelay;
14: end for
15: For location j: Update MaxDelay
16: for each visit before j do
17: Update MaxDelay
18: end for
19: end if
20: end for
21: end for

Next to inserting customers, customers will also be deleted. When a customer is deleted, the
values of the variables of the other customers in the route have to be updated, which is done
according to Algorithm 3.

9

Algorithm 3 Removal of a customer

1: Input: Tour from which the customer will be removed, removal position
2: Calculate shift (the amount of extra time)
3: for each visit after the removal position do
4: Update Arrival, Start, Wait, Shift, and MaxDelay
5: end for
6: for each visit before the removal position do
7: Update MaxDelay
8: end for

4.2 Route Pool

Throughout the heuristic, many routes are created and saved into a list called POOL. RR will use
this list. Since the set containing all possible routes has exponential elements, the size of POOL
will become large. Having a large set of routes will affect the computation time of RR negatively.
Hu and Lim [13] therefore decided to put an upper bound of 1,000 on the size of POOL. This
implies that routes can be added without any problem if the size of POOL is smaller than 1,000.
When POOL is full and new routes have to be added, old routes should be removed to make space
for the newly discovered routes. On one hand, not having all possible routes in POOL implies that
RR might not obtain the optimal combination of routes. On the other hand, the computation time
should be limited as well. Hence, a trade off has been made. Each route has an apr value that
indicates how often and how recent the route has been used in a solution of RR. When a route is
added to POOL, its apr value is initialized with 0. If a route is contained in the solution of RR,
its apr value will increase to 100, while the apr values of all other routes that are in POOL but
not incorporated in the solution will decrease by one. When POOL is full and new routes have to
be added, the concept of Least Recently Used (LRU) is applied and the routes with the lowest apr
values will be removed. If multiple routes have the same apr, the one with the lowest profit will be
removed. If a tie occurs again, then the route with the largest distance will be removed. If there is
still a tie, one of the considered routes is deleted arbitrarily.

4.3 Local Search

Local Search iteratively generates N neighbourhoods of the starting solution S with the help of the
eliminator and PP. S will be updated with the best neighbourhood solution Y if this solution is
strictly better than S. To avoid ending up in an infinite loop, the variable ILS no impr keeps track
of the number of consecutive iterations without improvement. If an improvement has been made,
ILS no impr is set equal to zero. In case of no improvement, ILS no impr is increased by one. The
corresponding algorithm can be found in Appendix 9.1.

4.4 Simulated Annealing

Simulated Annealing is an alternative of local search with as main difference that it sometimes
accept worse solutions in order to escape local optima. SA requires an initial temperature T0 and
a cooling speed α as parameters and ISA no impr as a variable. Similar to ILS no impr, ISA no impr

keeps track of the number of consecutive iterations without improvement. In each step, one neigh-
bourhood solution Y ′ of the neighbourhood of Y is generated, where Y is initialized with the routes

10

from the starting solution S. If Y ′ is better than Y , Y is set to Y ′. If not, SA will accept this
neighbourhood with probability PSA as given in Equation 12.

PSA = e
1
T

Y ′−Y
YSA (12)

In this equation, YSA equals the best neighbourhood solution found over all iterations. Moving
from Y to Y ′ is called a step. When a step has been made, the temperature is updated to T ← αT .
After N steps have been made, thus, N neighbourhoods have been visited, Y is compared to YSA.
When Y is better than YSA, YSA is set equal to Y and ISA no impr is set equal to zero. Otherwise,
ISA no impr is increased by one. The corresponding algorithm can be found in Appendix 9.1.

4.5 Route Recombination

Route Recombination is the third component of the heuristic and is used to find the best com-
bination of routes in POOL such that profit is maximized and the constraints are not violated.
The first set of constraints (14) makes sure that each customer is included at most once in the
combination of routes. The second set of constraints (15) gives an upper bound on the number of
routes that can be chosen. As can be observed from the formulation, in the last set of constraints
(15) an inequality sign is used instead of an equality sign, since it could be that the optimal profit
is already obtained with less vehicles than m, the number of vehicles available. In this formulation
Spool indicates the size of POOL. If customer j is included in route k, ajk Equals one. The total
profit of route pk is calculated as the sum of profits of all customers in route k. Let variable xk be
equal to one if route k is selected and zero otherwise. The formulation is classified as a set packing
formulation since not all possible routes are considered. Instead, only the routes that are saved in
POOL are considered.

max

Spool∑
k=1

qkxk (13)

s.t.

Spool∑
k=1

ajkxk ≤ 1 ∀j ∈ V \ {0}, (14)

Spool∑
k=1

xk ≤ m, (15)

xk ∈ {0, 1} ∀k ∈ {1, 2, ..., Spool}. (16)

4.6 Iterative Framework

LS, SA, and RR are placed into an iterative framework (I3CH) to ensure better cooperation between
them. First, 3N solutions are generated with the help of the eliminator by initializing m empty
routes. All customers are stored in a random order into the list of unvisited customers u. Since
there are no customers to be removed from the routes, the eliminator will only add customers from
u to the routes until all customers have been considered. In order to improve the solutions found by
the eliminator, the PP procedure is applied. From the 3N solutions, the best solution A is chosen
as a starting solution for LS and SA.

11

Several parameters have been discussed already. Table 1 presents them once more with their
corresponding values and interpretations. The Iterative Three-Component Heuristic is described
in Algorithm 4.

Table 1: Parameters

Parameter Value Interpretation

Ph 0.1 Probability of removing a customer when
its profit is higher than the average profit

Pl 0.3 Probability of removing a customer when
its profit is higher than the average profit

T0 0.1 Initial temperature
α 0.995 Cooling speed

Spool 1000 Size of POOL
Imax 3000 Maximum number of iterations in the it-

erative framework
N 50 Number of neighbourhoods to consider

Ino impr 20 Maximum number of iterations without
improvement

Algorithm 4 Iterative Three-Component Heuristic

1: Input: Ph, Pl, T0, α, Spool, Imax, N , and Ino impr

2: Generate 3N solutions and set the best one as initial solution A
3: Save the routes from A in POOL
4: Set iteration← 1
5: while iteration ≤ Imax do
6: Invoke Route Recombination over POOL to obtain XRR

7: Apply Local Search to explore N neighbourhoods and obtain best solution XLS . Save the
newly discovered routes into POOL

8: Apply Simulated Annealing with N steps to obtain best solution XSA and also save the
routes into POOL

9: Select the best solution B from {A,XRR, XLS , XSA}. In case of a tie, break it arbitrarily
10: A← B, iteration← iteration+ 1
11: if all customers are served in A then
12: iteration← Imax + 1
13: end if
14: end while
15: solution of A;

4.7 Extensions

4.7.1 Multi-Threading

One way to decrease the computation time of a computer program is to run computations parallel.
In this extension, the use of Multi-Threads in Java is explored and included. One requirement for

12

components to run parallel is that they are independent of each other. In the I3CH, there are two
components that can be constructed in such a way this requirement is met. These two components
are Local Search and Simulated Annealing. They both make use of the starting solution A, which
is given as an input and then explore neighbourhood solutions. In the original program, both
components do, however, not run completely independent, but the heuristic can be changed such
that they will be independent.

The first adaptation needed is to change the saving procedures of routes into POOL. In the
original program, routes are saved into POOL while executing the component (LS/SA). In order
to avoid concurrency problems here, the routes that should be added to POOL will be saved in a
list and added to the POOL when both components have finished their calculations. Note that it
is not certain whether it would be an issue to add them to the POOL directly, but that this step is
taken in order to avoid problems. After the calculation for both components has been done, both
lists of routes generated by LS and SA will be added to POOL. In the original heuristic, LS is
executed before SA and thus the routes found by LS will be added to the POOL first. Due to the
already existing checking algorithm, no route will be added twice.

The second adaptation needed is the change from one random generator to three random gen-
erators. In the original heuristic, the random generator is used for the initialization, LS and SA,
since they all make use of the Eliminator that requires a random generator as input. However,
when using multi-threading, it might be difficult to replicate results if only one random generator
will be used since it could happen that one time LS is just a bit faster than SA, while the next time
it is the other way around. This would lead to the drawing of different random numbers within
a component and would result in different outcomes. Another reason for using different random
generators is that if both threads would use the same random generator, concurrency could result
in dread locking issues. If LS is using the random generator, but SA also wants to use it, SA has
to wait until the random generator is not used by LS anymore and this affects the computation
times. Instead, three random generators will be used, one for each component. Each of the random
generators will have the same seed. Hence, for each thread a local random generator will be used.

The effects of using threads will be investigated on a subset of instances that will be chosen based
on the results of the replication with m = 4. In choosing this subset, two criteria are considered.
First, all instances for which the solution is obtained in one iteration (due to optimality) will
be eliminated. Second, instances that require more than 10 minutes computation time will be
eliminated in order to keep the computation time to a limit. Since selection of the instances for
the subset does depend on their corresponding computation times and solution procedures, the
instances that are selected for the subset will be further specified in Section 6.1.1.

In order to make a fair comparison of the possible speed-up of using threads, the original
program has to be executed again due to the change in the use of random generators. Then the five
runs for each instance will be executed using the program that incorporates the multi-threading.

4.7.2 Size of POOL

Here, the trade-off between the computation time and solution quality with respect to the size of
POOL is investigated. In this extension, the POOL sizes will be investigated for the Multi-Thread
heuristic in order to obtain results within reasonable time. Another way to ensure obtaining results
within reasonable time is to consider fewer runs. Instead of taking an average over five runs, an
average of three runs will be taken. In the paper of Hu and Lim [13] investigation on the size of
POOL has been done for sizes of the POOL up to 2000. However, in this extension, we investigate

13

this trade-off more thoroughly by considering sizes from 0 to 5000. From the subset of instances
that has been specified in Section 4.7.1 again a subset will be constructed such that the size of
this subset is equal to 25. The four instances with the largest computation times, when using
multi-threading, will be removed.

5 Data Description

The data that is used in this thesis is collected from two different sources. First, a group of instances
are selected from the instances for the standard sets of routing problems as given in Christofides
et al. [3]. This selection is chosen by Solomon [23]. Righini and Salani [21] used this selection
to create OPTW instances, which then Montemanni and Gambardella [19] used to construct the
TOPTW instances by increasing the number of vehicles: m = 2, 3, 4. The geographical data
are randomly generated by a random uniform distribution (problem sets R1 and R2), clustered
(problems sets C1 and C2), and semi-clustered (problem sets RC1 and RC2). A semi-clustered
problem set contains a mix of clusters and randomly generated data. Problem sets R1, C1, and
RC1 have a short scheduling horizon. In the setting of the TOPTW, the combination of customers
that could be serviced by one vehicle is restricted by time windows and in this case allows only
a few customers to be serviced by the same vehicle. In contrast, the sets R2, C2, and RC2 have
a long scheduling horizon; this characteristic, coupled with large vehicle capacities, permits many
customers to be serviced by the same vehicle.

Given the design method, problem sets C1 and C2 are composed of structured problems in the
sense that the customers appear in clusters and the time windows are positioned around the arrival
times at customers. This approach permits the identification of a very good, possibly optimal,
cluster-by-cluster solution, which, in turn, provides an additional means of evaluating heuristic
performance. The coordinates of the locations in the R*, C* and RC* sets are the same in both
the 1-sets as the 2-set. The only difference between these two sets is the time window, since, as
mentioned before, the 2-set has larger time windows.

Beside these instances, also instances of Cordeau et al. [4] are selected (PR). The number of
vertices in these instances range from 48 to 288.

Each instance contains information on the X and Y coordinate of each vertex, and its corre-
sponding service duration, profit, and time window.

In total, 76 instances are included in the data set and an overview of how they are divided over
the sets can be found in Table 2.

Table 2: Instances

Instance Type Name # Instances # vertices

C c101 - c109 9 100
C c201 - c208 8 100
R r101 - r112 12 100
R r201 - r211 11 100

RC rc101 - rc108 8 100
RC rc201 - rc208 8 100
PR pr01 - pr10 10 different for each instance
PR pr11 - pr20 10 different for each instance

14

6 Results

All computations were carried out on a Lenovo Ideapad 500S-14ISk laptop equiped with a Intel
Core i5-6200U, 2.30GHz, and 8 GB RAM using Eclipse with Java edition 1.8.0. While executing
the heuristic, we observed that our computation times were of larger order than those mentioned
in [13]. This could be due to the use of a different machine and possible misinterpretation of some
parts in the paper of Hu and Lim [13]. Another reason could be our memory usage. Unfortunately,
we have little insight in how they used their memory and we are thus not able to compare our
implementation with theirs. Steps have been taken to reduce the computation times.

One way to decrease the computation time is to decrease the maximum number of iterations.
Hence, instead of allowing 3000 iterations, fewer iterations will be considered. Parameter analysis
for the maximum number of iterations has been done to come up with an appropriate value. For this
analysis, the same ten instances are considered as the ones that Hu and Lim [13] used for testing.
They reasoned that these instances performed relatively worse in preliminary tests in which the
parameters were set to preliminary values. The instances of interest are c203, c207, pr02, pr07,
pr12, pr16, r102, r105, rc107, and rc204. In the parameter analysis, the others parameters do not
change in value and only solutions containing four routes are considered.

Table 3: Parameter tuning on Imax

Imax Average Gap (%) Average Time

20 3.37 129.04
40 2.92 237.60
60 2.91 419.50
80 2.81 445.86
100 2.73 542.44
120 2.52 637.04
140 2.47 742.95
160 2.47 845.49
180 2.47 944.93
200 2.47 1050.25

The maximum number of iterations ranges from 20 to 200 with step size 20. For each number
of iterations, the average gap with respect to the best known solution and the average computation
time are given in Table 3. Random seeds (1,2,3,4, and 5) are used to avoid that a solution after 40
iterations is better than a solution after 60 iterations. Note that our solutions are compared to the
best known solutions as reported in [13].

The second column shows that choosing Imax = 140 would be an appropriate choice since the
average gap does not decline with more iterations. The average computation time is high, but this
is mainly due to one instance (pr16) that is responsible for almost half of the computation time.

The final values for the parameters are given in Table 4.

15

Table 4: Values of the parameters used in the replication

Parameter Value

Ph 0.1
Pl 0.3
T0 0.1
α 0.995

Spool 1000
Imax 140
N 50

Ino impr 20

.

Table 5 summarizes the the results for the 76 instances and compares the results obtained by
Hu and Lim [13] with the results that we obtained with this heuristic. Here, similar to the method
of Hu and Lim [13], one run (seed = 3) is used to obtain a good approximation. The first two
columns provide general information on the set to which the instances belong. The num column
gives the number of instances in a set. The next two columns contain the results obtained by Hu
and Lim [13]. The last columns show our results. First, the average gap of our solutions (SVR)
with respect to the best known solution (BKS) is given. Next, the average gap that we obtained
with respect to the solutions of Hu and Lim [13] (SVHL) are presented. These gaps are computed
by the Equations (17) and (18).

GapBKS =
BKS − SV R

BKS
× 100% (17)

GapHL =
SV HL− SV R

SV HL
× 100% (18)

Finally, the number of identical results and the number of improvements of our solutions with
respect to the solutions of Hu and Lim [13] are given in the last two columns .

16

Table 5: Overall comparison to I3CH

Hu & Lim Sluijk
Set Subset num AGBKS AT AGBKS AGHuLim AT #Same #Impr

(%) (s) (%) (%) (s) SVHL SVHL
m = 1
Solomon 100 C 9 0.00 25.2 0.53 0.53 104.2 8 0

R 12 0.56 28.6 0.59 0.02 100.8 6 2
RC 8 1.66 25.5 0.46 -1.33 89.3 5 3

Solomon 200 C 8 0.40 84.4 3.48 3.09 775.2 0 0
R 11 1.04 176.2 12.33 11.42 1802.5 0 0

RC 8 2.68 119.3 8.93 6.43 2111.0 0 0
Cordeau PR 10 1.05 109.0 5.68 4.66 442.7 1 2
Cordeau PR 10 3.79 130.2 8.96 3.79 1401.0 2 1
m = 2
Solomon 100 C 9 0.00 87.0 0.96 0.96 215.6 4 0

R 12 0.54 63.0 1.36 0.82 190.8 5 1
RC 8 0.90 58.9 1.65 0.75 182.7 2 1

Solomon 200 C 8 0.68 401.2 4.55 3.91 1470.9 0 0
R 11 0.16 526.8 8.36 8.21 2506.6 0 0

RC 8 0.56 439.7 8.53 8.02 3178.1 0 0
Cordeau 1-10 PR 10 0.94 247.1 5.43 4.53 835.2 2 0
Cordeau 11-20 PR 10 2.69 304.6 8.68 6.16 3443.8 0 0
m = 3
Solomon 100 C 9 0.00 190.2 2.11 2.11 345.3 1 0

R 12 0.21 118.3 2.27 2.07 296.6 4 1
RC 8 0.26 101.0 1.08 0.83 282.0 2 1

Solomon 200 C 8 0.00 12.3 3.04 3.04 1653.2 3 0
R 11 0.01 90.8 0.04 0.03 277.9 10 0

RC 8 -0.04 164.1 0.80 0.84 1587.4 3 0
Cordeau 1-10 PR 10 0.35 424.0 5.79 5.46 1324.1 1 0
Cordeau 11-20 PR 10 1.00 497.0 6.15 5.22 1731.6 1 0
m = 4
Solomon 100 C 9 0.01 261.8 1.87 1.86 497.5 3 0

R 12 0.05 184.3 2.55 2.49 438.0 1 0
RC 8 0.12 152.4 0.81 0.68 425.3 2 1

Solomon 200 C 8 0.00 0.1 0.00 0.00 44.3 8 0
R 11 0.00 0.2 0.00 0.00 39.0 11 0

RC 8 0.00 0.2 0.00 0.00 32.0 6 0
Cordeau 1-10 PR 10 0.05 566.5 6.61 6.58 1834.1 1 0
Cordeau 11-20 PR 10 -0.64 728.6 5.73 6.30 2069.1 1 0

Grand total 304 0.59 200.9 3.80 3.18 984.0 93 13

We obtained better results than given in the paper of Hu and Lim [13] on eight instances for
m = 1, on two instances for both m = 2 and m = 3, and on one instance for m = 4. Hu and Lim
[13] reported 35 new best solutions. While replicating the heuristic, only one new best solution has
been found, namely for pr11 when m = 1. This new best solution is equal to the solution that Hu
and Lim [13] obtained for this instance (353, BKS = 351).

The last row of Table 5 gives the total number of instances and the average performances over
all instances. It can be concluded that the heuristic required more time than given in [13] and that
the overall results are worse. One possible reason for these worse results is that we allowed a lower
maximum number of iterations (Imax = 140 instead of 3000). Another reason could be the way we
managed the memory of our program. However, for some instances we obtained better results, but
this is most likely because of the stochasticity of the heuristic.

As has been stated before, our computation times are larger than the ones reported in [13].
During the calculations, we kept track of the computation time that was required for each com-
ponent. Those computation times are included in Table 6. The last four columns of this table
show how many times there was a change in the solution and how many times each component
contributed to this change. We only considered the changes that did not involve a tie. Hence, those
who were strictly better than the previous solution and the solutions of the other components.
Detailed results can be found in Appendix 9.2.

17

Table 6: Detailed results on time and counters

Set Subset AT AT RR AT LS AT SA RR LS SA Total
(s) (s) (s) (s) (#) (#) (#) (#)

m = 1
Solomon 100 C 104.2 4.9 46.4 52.8 0.78 1.56 0.33 2.67

R 100.8 4.9 45.3 50.6 1.58 1.58 0.42 3.58
RC 89.3 5.1 40.2 44.0 0.63 1.13 0.88 2.63

Solomon 200 C 775.2 7.5 396.6 370.8 0.25 12.50 0.00 12.75
R 1802.5 10.5 1087.3 704.3 0.64 10.36 0.00 11.00

RC 2111.0 12.9 1263.7 834.0 0.25 9.75 0.00 10.00
Cordeau PR 442.7 9.7 251.3 181.6 0.60 2.80 0.10 3.50
Cordeau PR 1401.0 18.7 818.5 563.4 0.70 4.00 0.10 4.80
m = 2
Solomon 100 C 215.6 12.4 101.4 101.6 1.89 4.33 0.00 6.22

R 190.8 11.3 94.4 85.1 3.67 3.33 0.08 7.08
RC 182.7 10.1 85.7 86.9 3.25 2.75 0.00 6.00

Solomon 200 C 1470.9 18.5 764.9 686.9 10.63 4.38 0.00 15.00
R 2506.6 25.3 1435.8 1044.8 14.36 2.45 0.00 16.82

RC 3178.1 36.4 1867.3 1273.5 16.38 1.63 0.00 18.00
Cordeau PR 835.2 15.3 473.1 346.6 7.60 4.30 0.00 11.90
Cordeau PR 3443.8 38.8 2038.6 1365.8 16.80 3.10 0.00 19.90
m = 3
Solomon 100 C 345.3 9.5 172.1 163.5 3.33 9.67 0.00 13.00

R 296.6 10.7 152.4 133.5 6.50 4.58 0.00 11.08
RC 282.0 8.7 142.3 130.9 6.25 4.00 0.13 10.38

Solomon 200 C 1653.2 3.9 887.1 761.2 0.00 7.13 0.13 7.25
R 277.9 0.5 163.3 113.1 0.00 3.09 0.00 3.09

RC 1587.4 4.1 957.0 625.6 0.00 8.63 0.00 8.63
Cordeau PR 1324.1 13.7 750.8 559.2 16.40 4.50 0.00 20.90
Cordeau PR 1731.6 22.1 1005.7 703.4 30.20 1.50 0.00 31.70
m = 4
Solomon 100 C 497.5 9.1 250.8 237.3 11.89 8.11 0.00 20.00

R 438.0 11.0 226.3 200.6 9.58 4.67 0.00 14.25
RC 425.3 8.6 219.0 197.6 9.75 2.25 0.13 12.13

Solomon 200 C 44.3 0.0 25.0 18.0 0.00 0.88 0.13 1.00
R 39.0 0.1 18.6 19.0 0.00 1.00 0.00 1.00

RC 32.0 0.3 19.3 11.5 0.00 1.00 0.00 1.00
Cordeau PR 1834.1 13.3 1047.4 772.8 14.50 7.60 0.00 22.10
Cordeau PR 2069.1 16.2 1211.9 840.5 27.30 4.80 0.00 32.10

Grand Average 984.0 11.8 560.6 411.1 6.91 4.42 0.07 11.40
Grand Total 2095 1329 19 3443

From this table can be concluded that the RR does not require much time (11.8 seconds),
while LS and SA components require most of the time, on average 560.6 seconds and 411.1 seconds
respectively. LS requires even more time than SA. The last four columns indicate that, on average,
RR contributes the most to the improvements. LS is accounted for the second largest contribution.
Especially the low number of times that SA contributes to an improvement is remarkably, namely
only 19 times out of 3443 times. We also observe that out of the 140 iterations, on average only
11.4 lead to an improvement of the solution. It differs per instance and even per random seed in
which iterations these differences occur. Some already obtain the reported solution in the first few
iterations, while other instances require more iterations to obtain the reported solution. Finally,
for m = 4 and the set of Solomon 200 we observe that on average only one iteration is required.
The Solomon 200 instances are created in such a way that all customers fit in four routes. Hence,
for these instances the optimal solution is already found in the first iteration.

6.1 Extensions

6.1.1 Multi-Thread

For this extension, as mentioned in Section 4.7.1, we only consider instances being solve with m = 4
vehicles. This leaves 76 possible instances that could be incorporated in evaluating this extension.
However, due to large computation times, fewer instances will be considered. First, we eliminated
all instances that have as final solution that all customers are visited, since they require only one
iteration. The instances that satisfy this criterion are c201-208 , r201-r211, rc201-rc208, pr01,
and pr11. Hence, all the instances in the 2-set of the Solomon instances and two instances from

18

the Cordeau set. Next, instances that require more than 10 minutes computation time are left out
of consideration. The computation times were taken from Tables 17 and 18 in Appendix 9.2 that
contains the computation times of the considered instances for one run. The instances that satisfy
this criterion are c104, pr02-pr10 (excluding pr07), and pr12-pr20. The subset now consists of 29
instances, namely c101-c109 (excluding c104), r101-r112, rc101-rc108, and pr07.

After changing the use of random generators in the original program, the solution of each
instance in the subset is calculated. The original heuristic had to be executed again to make a
fair comparison between the heuristic with and without multi-threading due to the change in use
of random generators. The average computation times of the original heuristic and the Multi-
Threading heuristic are given in Table 7.

Table 7: Results of using threads in the program

Name ATno thread ATthread Speed up Name ATno thread ATthread Speed up
(s) (s) factor (s) (s) factor

c101 464.5 288.4 1.6 r108 476.1 305.0 1.6
c102 544.1 291.8 1.9 r109 377.8 242.5 1.6
c103 600.3 327.9 1.8 r110 421.9 270.9 1.6
c105 481.4 252.8 1.9 r111 422.0 272.6 1.5
c106 435.0 262.2 1.7 r112 465.1 328.5 1.4
c107 444.5 273.2 1.6 rc101 333.9 254.7 1.3
c108 460.2 284.0 1.6 rc102 376.3 296.6 1.3
c109 497.1 304.2 1.6 rc103 435.3 278.5 1.6
r101 267.8 165.8 1.6 rc104 477.7 313.7 1.5
r102 416.4 237.7 1.8 rc105 386.8 241.3 1.6
r103 433.2 270.8 1.6 rc106 404.9 251.5 1.6
r104 497.2 307.1 1.6 rc107 432.0 275.3 1.6
r105 389.1 199.0 2.0 rc108 445.4 296.8 1.5
r106 478.8 270.9 1.8 pr07 602.8 426.9 1.4
r107 448.7 283.9 1.6

Average 445.4 278.4 1.6

Original instances were selected on the 10 minutes restriction, but using multiple runs with
different seeds resulted for two instances in an average computation time that is slightly larger
than 10 minutes in the original heuristic. These instances are c103 and pr07.

We can also conclude that the average computation time without multi-threading is equal to
445.4 seconds, while the average computation times including multi-threading is equal to 278.4
seconds. This implies that the Multi-Threading heuristic is 1.6 times faster than the original
heuristic. However, we expected the heuristic to be (nearly) two times faster. A possible explanation
for Multi-Threading heuristic to not be two times faster is that creating threads also requires times,
which result in larger computation times for the LS and SA component. Hence, it is certainly a
good idea to make use of multi-threading. Using five runs instead of one also leads to different
results. Detailed result of this extension can be found in Appendix 9.3.

Our focus here is on the computation time, because the solution quality remains the same across
the two cases. Nevertheless, it is important to emphasize some results. Taking an average of 5 runs
(seed = 1,2,3,4,5) resulted in different solutions compared to the situation in which we considered

19

only one run. For two instances (rc102 and rc104 we obtained better solutions than the best known
solutions reported in [13]. For rc102 we obtained 909 instead of 908, and for rc104 we obtained
1063 instead of 1059. Hu and Lim [13] obtained 902 for rc102 and 1064 for rc104. Hence, they
obtained a better solution for rc104, but their solution for rc102 is not as good as ours.

6.1.2 Size of POOL

For this investigation, we reduced the subset to 25. This implies that four more instances are
removed from the subset. The instances that are excluded are c103, r112, rc104, and pr07 since
they require the largest computation times. Note that the size of POOL influences the computation
time on two positions in the heuristic. The first position is in the RR component since the time
that is required to solve the set packaging formulation is affected. The second position is in both
the LS and SA component since the time that is needed to add and remove routes from POOL is
affected. Using a larger POOL size implies that more searching time is required in order to find
the correct position to insert and remove routes from the list.

Note also that the Multi-Threading heuristic is used which implies that the computation times
for changes in the POOL are larger than in the original heuristic. In the Multi-Threading heuristic,
routes are not added to the POOL directly, but first to a list (one for LS and one for SA) and once
the threads in the iteration are finished, each route in each list is added to POOL. This procedure
requires more time than adding the routes to POOL directly.

Table 8 reports the average performance for each setting of Spool for the subset. The first
column provides information on the size of POOL. The second and the third column provide
information on the average gap (AG) of the average profit (AP) and the best profit (BP) found
with respect to the best known solution. Column four contains the corresponding average (A)
computation time. Column five and six show how much percent of the computation time is spent
on solving the set packaging formulation (RR) and on changing the content of POOL. The final two
columns give information on the percentage of RR being chosen with respect to the total number
of improvements. Detailed results can be found in Appendix 9.4.

From the table can be observed that the average gap with respect to average profit decreases
until Spool = 4000, the average gap with respect to best profit decreases until Spool = 1500, and
the average percentage of times that RR got chosen as the new solution A is increasing until
Spool = 3000. The average computation time does increase with Spool.

In Figure 2 the computation time for each component is given. In this graph, one can clearly
observe that the time required for the RR component and the addition and removal of routes in
POOL increases as the allowable size of POOL increases. The time required for changes in POOL
increases when the Spool increases due to the fact that more routes have to be added to POOL each
time and more time is required for checking whether a route is already included in POOL since
more comparisons have to be made.

We also observe from the table that for small sizes of POOL, the percentage of times that RR
gets chosen increases rapidly, but once it has reached the size of 1500, it does not change much
any more. This implies that from a size of 1500 onwards, the size of POOL does not have much
influence on the number of times that RR is chosen.

In the original heuristic, Spool was set equal to 1000. We would suggest to increase this size
to 1500 in the Multi-Thread heuristic for three reasons. Firstly, setting Spool larger than 1500 will
lead to larger average gaps with respect to best profit, unless a size of 4000 is chosen. Secondly, the
average computation time for this size is just below five minutes, which is a reasonable boundary.

20

Finally, the percentage of time that RR gets chosen does not change much for larger POOL-sizes.

Table 8: Parameter tuning on pool size Spool

Spool AG AG AT RR Time POOL time RR chosen # changes
(%) (%) (s) (%) (%) (%)
AP BP A A A A A

0 5.43 3.90 231.38 0.00 0.00 0.00 7.15
500 3.03 1.71 235.71 1.04 4.41 28.96 8.21
1000 1.87 0.86 255.20 3.37 10.25 58.94 8.32
1500 1.41 0.59 277.56 5.88 15.17 76.51 8.33
2000 1.32 0.80 302.09 7.43 19.12 77.44 8.29
3000 1.10 0.61 346.61 10.75 25.60 82.56 8.33
4000 0.92 0.55 394.39 12.68 31.16 82.33 8.44
5000 1.00 0.64 474.02 14.54 34.42 82.79 8.52

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

0

500

1000

1500

2000

3000

4000

5000

Time in seconds

P
o
o
l
si
ze
s

time RR

time Multi-Thread

time POOL

Overhead time

Figure 2: Analysis of computation time on the sizes of POOL

While investigating this extension, we found two solutions that were better than the best known
solutions given in [13]. For c108 we found a value of 1140 (BKS = 1130) when the size of the
POOL was equal to 4000. For r107 we found a value of 950 (BKS = 945) when the size of the
POOL was equal to 5000. A final note is that the solution 909 for rc102 that has been reported
before as an improvement, was obtained multiple times for different POOL-sizes.

7 New Best Known Solutions

Throughout Section 6 for some instances we obtained better results than the best known solutions
(BKS) reported in [13]. In Table 9 the corresponding instances are given. For each instance, the
number of vehicles, the BKS given in [13], the latest BKS published by [11], the solution found by

21

Hu and Lim [13] and our solution is given. As can be concluded from the table, we found new best
solutions for c108 and rc104. Their corresponding routes are given in Appendix 9.5.

Table 9: New best known solutions

Instance m BKS [13] Latest BKS [11] Hu & Lim Sluijk

pr11 1 351 353 353 353
c108 4 1130 1130 1130 1140
r107 4 945 950 950 950
rc102 4 908 908 902 909
rc104 4 1059 1064 1064 1063

8 Conclusion

The aim of this thesis was to replicate the results of the Iterative Three-Component Heuristic.
This heuristic is applied to the Team Orienteering Problem with Time Windows (TOPTW). It
uses a local search procedure and a simulated annealing procedure as the first two components to
explore the neighbourhood solutions. During this search, new routes are discovered and stored in
a route POOL which is used by the third component to obtain a high quality solution by route
recombination. Together they form a three-component heuristic that is applied iteratively in order
to improve the solution quality.

When comparing the overall performances on each set of instances, it can be concluded that
overall we obtained worse results than Hu and Lim [13]. However, we did also find solutions that
were better than the solutions that Hu and Lim [13] found.

The average computation time reported in [13] is equal to 200.9 seconds, while the average
computation time we obtained with a lower value for the maximum number of iterations is equal
to 982.0. Hence, our program is significantly slower than theirs. One reason for this is that our
memory usage could be different than theirs. Another reason could be the use of different machine.
A final reason could be that we misunderstood some parameters or procedures which could also
cause larger computation times.

Two extensions were considered in the paper. In the first extension, multi-threading was added
to the heuristic in order to decrease the computation time. LS and SA were made to run inde-
pendently and in parallel. The Multi-Threading heuristic is on average 1.6 times faster than the
original heuristic.

In the second extension, sensitivity analysis was performed on the values for the parameter Spool
for the Multi-Thread heuristic. From the results we concluded that instead of using Spool = 1000, a
pool size of 1500 is more beneficial since it increases both the average gap with respect to average
profit as the average gap with respect to best profit. Moreover, it only leads to a small increase in
computation time.

Throughout the replication and extensions we have found two new best known solutions, namely
for c108 (1140) and rc102 (909).

Further research could be focused on applying the extension of changing pool size to all instances.
Another interesting topic would be the contribution of Simulated Annealing. From our results, it
can be concluded that it does not contribute much, but it is interesting to investigate why this
contribution is low and how this can be improved.

22

9 Appendix

9.1 Algorithms

Algorithm 5 Local Search

1: Input: combination of routes R and a list of unvisited customers u
2: Initialize: Ino impr LS ← 0
3: while Ino impr LS ≤ Ino impr do
4: Generate N neighbourhoods with eliminator and PP. Save each generated route in POOL
5: Save the best neighbourhood solution Y ′ of these N neighbourhood solutions
6: if Y ′ is better than the previous found best solution Y then
7: Y ← Y ′

8: Ino impr LS ← 0
9: else

10: Ino impr LS = Ino impr LS + 1
11: end if
12: end while
13: Return Y

23

Algorithm 6 Simulated Annealing

1: Input: combination of routes R and a list of unvisited customers u
2: Initialize: Ino impr ← 0
3: while Ino impr SA ≤ Ino impr do
4: T ← T0
5: Y ← R
6: for Fifty times do
7: change ← false

8: Generate a neighbourhood solution Y ′ of Y with eliminator and PP
9: Save the routes of Y ′ in POOL

10: if Y ′ is better than the Y then
11: change ← true

12: end if
13: if change equals false then
14: Calculate the acceptance probability PSA

15: Generate a random number r
16: if r ≤ PSA then
17: Accept worse neighbourhood
18: change ← true

19: end if
20: end if
21: if change equals true then
22: Y ← Y ′

23: T = αT
24: end if
25: end for
26: if Y is better than the solution found by SA (YSA) so far then
27: YSA ← Y
28: Ino impr SA ← 0
29: else
30: Ino impr SA = Ino impr SA + 1
31: end if
32: end while
33: Return YSA

24

9.2 Detailed results of our implementation of I3CH

In this part of the appendix, the detailed solutions obtained by the iterative three-component
heuristic (I3CH) on all TOPTW instances are given. The values of the parameters used can be
found in Table 10.

Table 10: Final parameter values

Parameter Value

Ph 0.1
Pl 0.3
T0 0.1
α 0.995

Spool 1000
Imax 140
N 50

Ino impr 20
seed 3

The solutions are given in Tables 11 up to 18. The eight tables contain the solutions for the
TOPTW instances m = 1, 2, 3, 4 and instance sets Solomon 100 & Cordeau 1-10 and Solomon 200 &
Cordeau 11-20 respectively. The first columns contain information about the name of the instance
and its best known solution. The columns under the heading Hu & Lim show the results of Hu
and Lim [13]. The column Profit gives the total profit in a solution and the column Time(s) the
computation time in seconds. The content of the final column, Gap (%), is calculated with the help
of Equation 19. Note that the original maximum number of iterations is used here (Imax = 3000).

AGBKS SV HL =
BKS − SV HL

BKS
× 100% (19)

The results that we obtained are given under the heading Sluijk. First, the obtained profit is
given. The columns Gap with respect to BKS and SVHL are computed by Equations 20 and 21.

GapBKS SV R =
BKS − SV R

BKS
× 100% (20)

GapHL =
SV HL− SV R

SV HL
× 100% (21)

If the solution we found is better than the solution reported by Hu and Lim [13] or the best
known solution given in [13], our solution is given in boldface, and the solution it is better over
(BKS/SVHL) is given in italic.

The last eight columns contain information on the calculation time and the number of times
a change occurred and which component caused this change. The first four of the eight columns
give the total time and the time the RR, LS, and SA component required. The fifth column shows
how many changes of the solution occurred while iterating and the last three columns show how
many times each component contributed to a change. We only considered the changes that did not
involve a tie. Hence, those who were strictly better than the previous solution and the solutions of
the other components.

25

Table 11: Solomon 100 and Cordeau 1-10 with m = 1

Hu & Lim Sluijk
Name BKS Profit Gap Time Profit Gap Gap Time RR LS SA Total R LS SA

(%) (s) (%) (%) (s) (s) (s) (s) (#) (#) (#) (#)
BKS BKS SVHL

c101 320 320 0.00 21.8 320 0.00 0.00 88.9 5.2 37.8 45.4 2 1 1 0
c102 360 360 0.00 28.1 360 0.00 0.00 107.8 4.8 49.1 53.8 1 1 0 0
c103 400 400 0.00 27.1 400 0.00 0.00 113.6 5.1 52.3 56.1 2 1 0 1
c104 420 420 0.00 27.1 400 4.76 4.76 129.9 4.7 57.0 68.2 3 2 0 1
c105 340 340 0.00 23.4 340 0.00 0.00 91.1 4.8 39.9 46.3 2 1 1 0
c106 340 340 0.00 23.6 340 0.00 0.00 92.0 4.9 40.6 46.5 2 1 1 0
c107 370 370 0.00 24.7 370 0.00 0.00 98.4 4.8 43.5 50.1 5 3 0 2
c108 370 370 0.00 24.8 370 0.00 0.00 102.8 5.0 46.3 51.4 6 3 0 3
c109 380 380 0.00 26.3 380 0.00 0.00 113.4 4.9 51.3 57.2 1 1 0 0

r101 198 198 0.00 20.4 198 0.00 0.00 162.0 4.5 31.2 126.3 0 0 0 0
r102 286 286 0.00 29.3 286 0.00 0.00 88.3 5.0 42.5 40.7 3 1 1 1
r103 293 293 0.00 28.8 290 1.02 1.02 92.6 4.8 45.4 42.4 4 1 1 2
r104 303 298 1.65 27.3 303 0.00 -1.68 105.8 4.9 53.5 47.3 6 2 0 4
r105 247 247 0.00 26.0 247 0.00 0.00 85.1 4.9 39.8 40.4 3 2 0 1
r106 293 293 0.00 29.4 289 1.37 1.37 84.8 4.9 39.8 40.0 3 2 0 1
r107 299 297 0.67 27.8 297 0.67 0.00 92.3 4.8 44.4 43.1 5 2 1 2
r108 308 306 0.65 29.7 301 2.27 1.63 104.6 5.0 52.4 47.1 4 2 0 2
r109 277 277 0.00 31.1 277 0.00 0.00 91.2 4.9 44.6 41.7 6 3 1 2
r110 284 284 0.00 33.9 281 1.06 1.06 96.8 4.9 46.9 45.1 3 1 1 1
r111 297 295 0.67 27.7 295 0.67 0.00 99.4 4.9 49.4 45.1 1 1 0 0
r112 298 289 3.02 32.0 298 0.00 -3.11 107.0 4.9 53.6 48.5 5 2 0 3

rc101 219 219 0.00 21.8 219 0.00 0.00 79.8 4.6 35.3 39.9 1 0 1 0
rc102 266 266 0.00 25.5 266 0.00 0.00 82.2 5.1 36.1 40.9 3 1 1 1
rc103 266 266 0.00 27.1 266 0.00 0.00 87.6 4.9 39.6 43.1 3 1 1 1
rc104 301 301 0.00 27.2 301 0.00 0.00 96.3 5.0 44.4 46.9 2 1 1 0
rc105 244 244 0.00 26.4 244 0.00 0.00 92.8 5.1 43.8 43.9 3 2 1 0
rc106 252 250 0.79 25.0 252 0.00 -0.80 86.7 5.4 40.1 41.2 1 1 0 0
rc107 277 274 1.08 26.3 277 0.00 -1.09 92.0 5.3 39.2 47.5 4 1 1 2
rc108 298 264 11.41 25.1 287 3.69 -8.71 96.9 5.0 43.6 48.3 4 2 1 1

pr01 308 305 0.97 20.8 308 0.00 -0.98 185.2 4.0 100.2 80.9 3 1 1 1
pr02 404 394 2.48 47.9 393 2.72 0.25 309.7 6.6 171.6 131.5 2 2 0 0
pr03 394 394 0.00 72.9 359 8.88 8.88 314.0 7.8 164.4 141.7 3 2 0 1
pr04 489 489 0.00 109.3 451 7.77 7.77 394.1 9.9 210.3 173.8 1 1 0 0
pr05 595 594 0.17 185.4 540 9.24 9.09 682.0 12.7 406.8 262.3 6 6 0 0
pr06 590 590 0.00 189.9 568 3.73 3.73 786.6 16.3 465.0 305.1 1 1 0 0
pr07 298 298 0.00 26.5 298 0.00 0.00 149.6 4.7 77.1 67.7 4 2 0 2
pr08 463 454 1.94 77.4 457 1.30 -0.66 354.0 8.2 199.5 146.3 5 4 0 1
pr09 493 490 0.61 137.8 438 11.16 10.61 502.5 11.0 285.1 206.3 7 6 0 1
pr10 594 568 4.38 222.2 523 11.95 7.92 749.1 15.6 433.0 300.4 3 3 0 0

26

Table 12: Solomon 200 and Cordeau 11-20 with m = 1

Hu & Lim Sluijk
Name BKS Profit Gap Time Profit Gap Gap Time RR LS SA Total R LS SA

(%) (s) (%) (%) (s) (s) (s) (s) (#) (#) (#) (#)
BKS BKS SVHL

c201 870 870 0.00 70.1 850 2.30 2.30 706.8 7.6 357.1 341.9 5 5 0 0
c202 930 930 0.00 87.6 890 4.30 4.30 785.1 7.5 401.8 375.5 14 13 0 1
c203 960 960 0.00 92.3 930 3.13 3.13 865.3 7.8 452.6 404.4 18 18 0 0
c204 980 970 1.02 117.4 960 2.04 1.03 924.7 7.4 469.1 447.9 12 11 0 1
c205 910 900 1.10 70.7 890 2.20 1.11 686.8 7.2 349.8 329.6 13 13 0 0
c206 930 920 1.08 75.7 880 5.38 4.35 707.5 7.1 362.0 338.1 6 6 0 0
c207 930 930 0.00 77.4 900 3.23 3.23 775.2 7.8 391.9 375.3 14 14 0 0
c208 950 950 0.00 84.0 900 5.26 5.26 750.3 7.4 388.7 353.8 20 20 0 0

r201 797 789 1.00 101.8 780 2.13 1.14 840.5 8.0 464.2 368.0 9 9 0 0
r202 929 930 -0.11 175.6 846 8.93 9.03 1060.6 8.0 630.7 421.6 11 11 0 0
r203 1021 1020 0.10 221.4 892 12.63 12.55 1521.9 8.6 923.5 589.6 12 12 0 0
r204 1086 1073 1.20 236.9 888 18.23 17.24 1797.4 10.1 1074.8 712.2 13 12 0 1
r205 953 946 0.73 129.3 851 10.70 10.04 1718.3 10.6 1031.2 676.2 7 7 0 0
r206 1029 1021 0.78 169.3 865 15.94 15.28 1858.8 10.4 1117.1 731.0 12 11 0 1
r207 1072 1050 2.05 192.8 930 13.25 11.43 2118.0 10.6 1325.4 781.4 11 7 0 4
r208 1112 1092 1.80 230.0 890 19.96 18.50 2252.7 11.0 1376.8 864.2 8 8 0 0
r209 950 948 0.21 136.5 851 10.42 10.23 2021.6 11.6 1212.1 797.3 14 14 0 0
r210 987 982 0.51 176.9 887 10.13 9.67 2086.7 12.1 1257.6 816.2 11 10 0 1
r211 1046 1013 3.15 167.4 907 13.29 10.46 2551.2 14.0 1547.3 989.3 13 13 0 0

rc201 795 795 0.00 80.9 775 2.52 2.52 1291.6 10.1 708.8 572.5 5 5 0 0
rc202 936 924 1.28 129.3 861 8.01 6.82 1667.6 12.3 966.4 688.7 7 7 0 0
rc203 1003 966 3.69 134.3 906 9.67 6.21 2192.9 13.0 1363.6 815.8 15 15 0 0
rc204 1140 1093 4.12 167.5 951 16.58 12.99 2254.2 12.7 1363.2 877.9 11 10 0 1
rc205 859 847 1.40 99.2 764 11.06 9.80 1921.5 9.8 1146.4 764.9 9 9 0 0
rc206 895 863 3.58 98.4 854 4.58 1.04 2023.4 13.4 1193.1 816.5 13 13 0 0
rc207 983 957 2.64 122.0 899 8.55 6.06 2539.9 13.9 1530.5 995.0 10 10 0 0
rc208 1053 1003 4.75 123.0 943 10.45 5.98 2996.5 18.2 1837.3 1140.5 10 9 0 1

pr11 351 353 -0.57 30.8 353 -0.57 0.00 625.3 6.0 356.1 263.1 6 3 0 3
pr12 442 433 2.04 59.8 411 7.01 5.08 1100.4 17.4 607.0 475.9 5 4 0 1
pr13 461 466 -1.08 89.5 431 6.51 7.51 1745.9 23.4 973.0 749.5 5 4 1 0
pr14 567 521 8.11 144.4 462 18.52 11.32 2348.4 31.5 1291.1 1025.4 6 6 0 0
pr15 685 707 -3.21 248.2 620 9.49 12.31 5353.8 54.3 3271.8 2026.9 8 8 0 0
pr16 674 619 8.16 228.6 579 14.09 6.46 858.6 16.0 541.0 300.8 5 5 0 0
pr17 362 360 0.55 34.7 360 0.55 0.00 173.1 4.6 94.3 74.1 4 2 0 2
pr18 539 497 7.79 99.0 471 12.62 5.23 384.4 8.0 211.5 164.9 3 2 0 1
pr19 562 538 4.27 164.6 505 10.14 6.13 528.7 10.8 309.1 208.6 1 1 0 0
pr20 667 588 11.84 202.7 592 11.24 -0.68 891.0 15.4 530.1 345.4 5 5 0 0

27

Table 13: Solomon 100 and Cordeau 1-10 with m = 2

Hu & Lim Sluijk
Name BKS Profit Gap Time Profit Gap Gap Time RR LS SA Total R LS SA

(%) (s) (%) (%) (s) (s) (s) (s) (#) (#) (#) (#)
BKS BKS SVHL

c101 590 590 0.00 53.4 590 0.00 0.00 194.0 14.0 85.2 94.2 4 2 2 0
c102 660 660 0.00 78.4 650 1.52 1.52 206.4 2.2 102.2 101.8 2 0 2 0
c103 720 720 0.00 116.1 710 1.39 1.39 244.1 14.6 117.0 112.4 9 2 7 0
c104 760 760 0.00 94.4 750 1.32 1.32 276.0 13.3 134.0 128.6 4 1 3 0
c105 640 640 0.00 70.6 640 0.00 0.00 190.0 12.8 87.6 89.6 4 1 3 0
c106 620 620 0.00 149.2 610 1.61 1.61 195.9 14.6 90.1 91.1 6 3 3 0
c107 670 670 0.00 65.4 670 0.00 0.00 201.7 13.3 94.4 94.0 9 2 7 0
c108 680 680 0.00 85.9 680 0.00 0.00 210.2 13.9 97.3 98.9 10 4 6 0
c109 720 720 0.00 69.4 700 2.78 2.78 221.8 12.7 105.0 104.0 8 2 6 0

r101 349 349 0.00 42.1 349 0.00 0.00 131.6 10.8 56.7 64.0 4 2 1 1
r102 508 508 0.00 62.4 508 0.00 0.00 179.3 14.7 83.1 81.5 4 2 2 0
r103 522 519 0.57 68.3 517 0.96 0.39 179.7 2.2 90.9 86.6 5 0 5 0
r104 552 549 0.54 75.3 545 1.27 0.73 221.6 2.2 123.7 95.6 9 0 9 0
r105 453 447 1.32 56.2 447 1.32 0.00 170.5 13.9 77.8 78.8 9 5 4 0
r106 529 529 0.00 63.5 503 4.91 4.91 186.3 14.4 89.3 82.5 2 1 1 0
r107 535 533 0.37 63.2 522 2.43 2.06 208.5 13.8 105.7 89.0 11 7 4 0
r108 558 550 1.43 65.7 537 3.76 2.36 214.3 15.1 107.1 92.1 11 8 3 0
r109 506 506 0.00 60.5 506 0.00 0.00 184.4 13.6 89.6 81.1 7 4 3 0
r110 525 525 0.00 68.9 525 0.00 0.00 206.2 11.4 105.2 89.5 9 5 4 0
r111 544 542 0.37 67.0 541 0.55 0.18 195.2 10.0 97.3 87.9 6 4 2 0
r112 544 534 1.84 63.0 538 1.10 -0.75 212.3 13.5 106.1 92.6 8 6 2 0

rc101 427 427 0.00 52.3 419 1.87 1.87 158.6 9.7 71.4 77.4 2 1 1 0
rc102 505 505 0.00 59.8 504 0.20 0.20 177.3 10.3 84.2 82.8 11 5 6 0
rc103 524 519 0.95 60.3 507 3.24 2.31 185.0 11.8 85.1 88.1 6 3 3 0
rc104 575 556 3.30 59.9 554 3.65 0.36 191.7 10.8 90.4 90.5 12 8 4 0
rc105 480 480 0.00 58.6 480 0.00 0.00 176.7 8.3 84.2 84.1 4 2 2 0
rc106 483 481 0.41 56.0 483 0.00 -0.42 169.2 9.3 79.7 80.2 2 1 1 0
rc107 534 529 0.94 62.9 520 2.62 1.70 197.7 9.6 92.8 95.3 2 1 1 0
rc108 556 547 1.62 61.4 547 1.62 0.00 205.5 10.9 97.8 96.8 9 5 4 0

pr01 502 502 0.00 51.8 502 0.00 0.00 274.0 10.8 137.7 125.3 5 0 5 0
pr02 714 714 0.00 127.7 700 1.96 1.96 506.5 16.6 273.2 216.6 14 11 3 0
pr03 742 731 1.48 175.6 695 6.33 4.92 610.7 15.5 329.9 265.1 12 11 1 0
pr04 924 917 0.76 270.1 889 3.79 3.05 900.8 14.0 521.1 365.5 12 11 1 0
pr05 1090 1101 -1.01 410.0 946 13.21 14.08 1222.1 20.4 682.4 519.1 19 17 2 0
pr06 1076 1040 3.35 427.6 953 11.43 8.37 1340.4 7.0 796.3 536.8 10 0 10 0
pr07 566 566 0.00 71.8 566 0.00 0.00 299.8 14.3 154.7 130.6 9 4 5 0
pr08 834 824 1.20 184.1 810 2.88 1.70 653.2 18.4 366.7 268.0 7 3 4 0
pr09 905 878 2.98 304.9 851 5.97 3.08 1090.0 5.6 645.7 438.4 11 0 11 0
pr10 1124 1117 0.62 447.0 1026 8.72 8.15 1454.1 30.0 822.9 600.8 20 19 1 0

28

Table 14: Solomon 200 and Cordeau 11-20 with m = 2

Hu & Lim Sluijk
Name BKS Profit Gap Time Profit Gap Gap Time RR LS SA Total R LS SA

(%) (s) (%) (%) (s) (s) (s) (s) (#) (#) (#) (#)
BKS BKS SVHL

c201 1460 1450 0.68 321.2 1440 1.37 0.69 1409.7 21.3 740.8 647.0 20 16 4 0
c202 1470 1470 0.00 405.9 1430 2.72 2.72 1523.8 22.9 797.6 702.7 19 15 4 0
c203 1480 1470 0.68 458.2 1400 5.41 4.76 1545.1 24.3 788.4 731.8 12 10 2 0
c204 1480 1480 0.00 498.5 1420 4.05 4.05 1674.5 25.0 851.8 796.9 19 16 3 0
c205 1470 1450 1.36 322.2 1430 2.72 1.38 1402.8 21.7 735.7 644.7 16 14 2 0
c206 1480 1480 0.00 355.9 1420 4.05 4.05 1394.3 23.8 718.4 651.5 16 14 2 0
c207 1490 1470 1.34 423.5 1380 7.38 6.12 1414.3 4.6 747.5 661.6 10 0 10 0
c208 1490 1470 1.34 424.3 1360 8.72 7.48 1403.0 4.0 739.2 659.1 8 0 8 0

r201 1250 1254 -0.32 333.6 1199 4.08 4.39 1607.5 29.3 871.7 705.9 24 23 1 0
r202 1347 1344 0.22 588.5 1297 3.71 3.50 2081.8 24.4 1185.1 871.7 13 10 3 0
r203 1414 1416 -0.14 815.9 1273 9.97 10.10 2099.2 8.7 1220.0 869.7 14 8 6 0
r204 1458 1458 0.00 33.5 1282 12.07 12.07 2011.7 24.3 1119.4 867.3 15 13 2 0
r205 1379 1380 -0.07 606.1 1227 11.02 11.09 1718.8 23.9 942.4 752.0 8 6 2 0
r206 1440 1427 0.90 739.9 1292 10.28 9.46 2034.2 24.0 1156.8 852.8 16 14 2 0
r207 1458 1458 0.00 453.8 1331 8.71 8.71 2126.0 24.5 1233.8 867.1 11 10 1 0
r208 1458 1458 0.00 4.3 1310 10.15 10.15 2910.0 28.0 1665.1 1216.3 22 20 2 0
r209 1405 1404 0.07 600.3 1337 4.84 4.77 3605.3 34.3 2104.9 1465.0 24 22 2 0
r210 1423 1415 0.56 728.5 1327 6.75 6.22 3686.4 27.2 2160.4 1497.7 17 12 5 0
r211 1458 1450 0.55 890.9 1307 10.36 9.86 3691.9 29.3 2134.1 1527.2 21 20 1 0

rc201 1377 1384 -0.51 267.4 1308 5.01 5.49 2314.4 41.2 1291.6 980.9 14 13 1 0
rc202 1509 1500 0.60 386.7 1442 4.44 3.87 2902.0 35.2 1658.0 1208.1 23 22 1 0
rc203 1632 1627 0.31 482.8 1448 11.27 11.00 3031.8 33.3 1766.5 1231.3 11 10 1 0
rc204 1716 1704 0.70 760.8 1443 15.91 15.32 3279.4 30.5 1956.5 1291.4 18 16 2 0
rc205 1458 1452 0.41 311.0 1396 4.25 3.86 2858.2 34.7 1623.2 1199.7 16 14 2 0
rc206 1546 1525 1.36 335.9 1451 6.14 4.85 3364.5 38.7 2011.7 1313.1 30 28 2 0
rc207 1587 1582 0.32 408.6 1462 7.88 7.59 3791.5 38.8 2251.2 1500.3 17 16 1 0
rc208 1691 1669 1.30 564.4 1466 13.31 12.16 3883.0 39.2 2380.0 1463.1 15 12 3 0

pr11 566 559 1.24 71.3 540 4.59 3.40 707.8 3.1 385.7 319.0 1 0 1 0
pr12 774 768 0.78 143.6 728 5.94 5.21 1335.7 37.3 744.8 553.5 14 13 1 0
pr13 831 832 -0.12 238.6 773 6.98 7.09 2220.5 26.4 1293.6 900.0 11 9 2 0
pr14 1017 978 3.83 337.3 907 10.82 7.26 2966.9 30.9 1759.7 1175.7 21 20 1 0
pr15 1219 1205 1.15 479.1 1047 14.11 13.11 4278.2 49.4 2519.6 1708.5 39 38 1 0
pr16 1231 1124 8.69 500.5 1028 16.49 8.54 4592.0 64.2 2704.9 1822.0 28 27 1 0
pr17 652 639 1.99 117.0 612 6.13 4.23 1258.2 34.0 691.3 532.8 5 4 1 0
pr18 938 937 0.11 231.0 916 2.35 2.24 3232.0 9.0 1974.8 1247.7 19 0 19 0
pr19 1034 1003 3.00 386.1 915 11.51 8.77 5231.6 54.0 3170.4 2006.1 23 21 2 0
pr20 1232 1155 6.25 541.6 1135 7.87 1.73 8615.5 79.7 5141.2 3392.9 38 36 2 0

29

Table 15: Solomon 100 and Cordeau 1-10 with m = 3

Hu & Lim Sluijk
Name BKS Profit Gap Time Profit Gap Gap Time RR LS SA Total R LS SA

(%) (s) (%) (%) (s) (s) (s) (s) (#) (#) (#) (#)
BKS BKS SVHL

c101 810 810 0.00 303.1 810 0.00 0.00 290.8 11.8 140.7 137.6 10 3 7 0
c102 920 920 0.00 237.5 910 1.09 1.09 348.3 13.1 170.6 164.4 18 9 9 0
c103 980 990 -1.02 156.5 940 4.08 5.05 388.4 2.3 199.1 186.9 16 0 16 0
c104 1030 1030 0.00 155.9 1000 2.91 2.91 464.2 3.1 242.8 218.1 14 3 11 0
c105 870 870 0.00 110.2 850 2.30 2.30 302.4 12.8 144.9 144.6 3 0 3 0
c106 870 870 0.00 227.4 850 2.30 2.30 300.7 11.4 143.2 146.0 8 4 4 0
c107 910 910 0.00 151.8 900 1.10 1.10 329.4 13.5 163.8 152.0 14 4 10 0
c108 920 920 0.00 212.6 910 1.09 1.09 333.9 15.2 164.2 154.4 16 7 9 0
c109 970 960 1.03 157.2 930 4.12 3.13 349.9 2.5 179.7 167.5 18 0 18 0

r101 484 481 0.62 67.7 481 0.62 0.00 189.0 12.4 81.3 95.3 3 2 1 0
r102 694 691 0.43 111.4 691 0.43 0.00 287.0 15.0 141.6 130.4 9 7 2 0
r103 747 740 0.94 125.6 711 4.82 3.92 313.9 2.6 167.5 143.7 11 1 10 0
r104 777 777 0.00 128.3 745 4.12 4.12 339.4 14.7 174.5 150.1 10 8 2 0
r105 620 619 0.16 165.8 620 0.00 -0.16 243.3 16.1 115.2 111.8 8 4 4 0
r106 729 729 0.00 122.7 716 1.78 1.78 298.0 13.7 152.6 131.7 12 8 4 0
r107 760 759 0.13 120.5 745 1.97 1.84 307.9 12.2 159.5 136.1 16 13 3 0
r108 797 797 0.00 135.7 759 4.77 4.77 346.4 12.1 187.7 146.5 19 17 2 0
r109 710 710 0.00 103.6 710 0.00 0.00 281.6 11.7 142.0 127.8 12 9 3 0
r110 737 736 0.14 109.9 736 0.14 0.00 316.9 13.1 164.0 139.7 11 9 2 0
r111 774 773 0.13 118.1 742 4.13 4.01 303.2 2.2 160.7 140.2 11 0 11 0
r112 776 776 0.00 110.5 741 4.51 4.51 332.4 2.2 181.9 148.2 11 0 11 0

rc101 621 621 0.00 87.6 621 0.00 0.00 237.8 6.6 113.3 117.9 3 1 1 1
rc102 714 714 0.00 105.4 710 0.56 0.56 261.8 9.6 130.5 121.7 15 9 6 0
rc103 764 764 0.00 105.7 755 1.18 1.18 296.4 8.6 149.3 138.4 16 11 5 0
rc104 833 834 -0.12 124.4 807 3.12 3.24 321.9 8.6 166.7 146.5 11 7 4 0
rc105 682 682 0.00 90.4 680 0.29 0.29 276.6 8.5 140.4 127.7 7 3 4 0
rc106 706 706 0.00 88.1 706 0.00 0.00 252.1 8.3 121.9 121.9 17 11 6 0
rc107 773 762 1.42 98.7 746 3.49 2.10 294.0 9.4 156.4 128.1 6 4 2 0
rc108 795 789 0.75 107.4 795 0.00 -0.76 315.1 9.8 160.2 144.9 8 4 4 0

pr01 622 622 0.00 132.1 622 0.00 0.00 333.9 2.0 168.8 163.0 3 0 3 0
pr02 942 936 0.64 260.6 851 9.66 9.08 685.0 2.9 370.2 311.7 6 0 6 0
pr03 1010 1010 0.00 301.5 977 3.27 3.27 988.9 20.0 542.5 426.3 16 15 1 0
pr04 1294 1286 0.62 442.7 1263 2.40 1.79 1448.3 20.6 826.0 601.4 46 45 1 0
pr05 1482 1481 0.07 650.3 1377 7.09 7.02 1997.7 30.6 1126.8 839.9 36 35 1 0
pr06 1514 1501 0.86 651.2 1397 7.73 6.93 2108.8 25.6 1206.0 876.7 30 29 1 0
pr07 744 738 0.81 260.4 736 1.08 0.27 470.9 2.4 258.0 210.4 8 0 8 0
pr08 1138 1139 -0.09 307.0 1061 6.77 6.85 943.5 3.7 525.2 414.4 9 0 9 0
pr09 1275 1272 0.24 503.1 1108 13.10 12.89 1711.8 5.2 999.5 706.8 13 0 13 0
pr10 1573 1567 0.38 731.1 1465 6.87 6.51 2551.6 24.5 1484.9 1041.7 42 40 2 0

30

Table 16: Solomon 200 and Cordeau 11-20 with m = 3

Hu & Lim Sluijk
Name BKS Profit Gap Time Profit Gap Gap Time RR LS SA Total R LS SA

(%) (s) (%) (%) (s) (s) (s) (s) (#) (#) (#) (#)
BKS BKS SVHL

c201 1810 1810 0.00 3.8 1810 0.0 0.0 37.1 0.2 25.2 10.7 1 0 1 0
c202 1810 1810 0.00 7.2 1810 0.0 0.0 571.2 1.8 329.8 238.5 6 0 6 0
c203 1810 1810 0.00 7.9 1700 6.1 6.1 2451.9 4.5 1278.4 1167.8 6 0 6 0
c204 1810 1810 0.00 11.2 1670 7.7 7.7 2598.1 5.3 1325.3 1266.2 6 0 5 1
c205 1810 1810 0.00 12.6 1810 0.0 0.0 477.0 1.0 276.4 198.6 7 0 7 0
c206 1810 1810 0.00 18.0 1750 3.3 3.3 2338.6 6.1 1271.0 1060.6 9 0 9 0
c207 1810 1810 0.00 16.9 1780 1.7 1.7 2466.3 5.9 1390.9 1068.6 16 0 16 0
c208 1810 1810 0.00 20.6 1710 5.5 5.5 2285.4 6.3 1199.5 1078.5 7 0 7 0

r201 1441 1439 0.14 981.2 1434 0.5 0.3 2420.6 3.7 1382.8 1033.2 20 0 20 0
r202 1458 1458 0.00 15.3 1458 0.0 0.0 103.1 0.2 72.4 29.5 2 0 2 0
r203 1458 1458 0.00 0.2 1458 0.0 0.0 58.6 0.0 44.0 13.5 1 0 1 0
r204 1458 1458 0.00 0.2 1458 0.0 0.0 69.3 0.2 45.9 22.2 2 0 2 0
r205 1458 1458 0.00 0.3 1458 0.0 0.0 64.2 0.2 44.3 18.8 2 0 2 0
r206 1458 1458 0.00 0.3 1458 0.0 0.0 122.9 0.4 76.1 45.3 2 0 2 0
r207 1458 1458 0.00 0.3 1458 0.0 0.0 36.5 0.2 21.1 14.1 1 0 1 0
r208 1458 1458 0.00 0.2 1458 0.0 0.0 39.1 0.2 20.8 17.1 1 0 1 0
r209 1458 1458 0.00 0.3 1458 0.0 0.0 34.6 0.2 18.8 14.7 1 0 1 0
r210 1458 1458 0.00 0.2 1458 0.0 0.0 47.3 0.2 29.0 17.1 1 0 1 0
r211 1458 1458 0.00 0.4 1458 0.0 0.0 60.5 0.2 40.8 18.5 1 0 1 0

rc201 1698 1693 0.29 575.2 1668 1.8 1.5 2029.6 3.3 1201.1 824.7 9 0 9 0
rc202 1724 1724 0.00 1.1 1719 0.3 0.3 2920.5 6.3 1809.5 1104.0 14 0 14 0
rc203 1724 1724 0.00 0.3 1724 0.0 0.0 136.0 2.0 95.2 38.1 3 0 3 0
rc204 1724 1724 0.00 0.3 1664 3.5 3.5 2322.4 7.8 1304.1 1009.9 2 0 2 0
rc205 1709 1719 -0.59 734.4 1704 0.3 0.9 2401.2 4.7 1467.3 928.6 18 0 18 0
rc206 1724 1724 0.00 0.5 1714 0.6 0.6 2369.6 7.0 1435.6 926.5 16 0 16 0
rc207 1724 1724 0.00 0.3 1724 0.0 0.0 148.7 0.5 105.9 41.7 2 0 2 0
rc208 1724 1724 0.00 0.4 1724 0.0 0.0 370.9 1.2 237.8 131.2 5 0 5 0

pr11 654 654 0.00 151.7 654 0.0 0.0 443.0 2.8 239.5 200.6 2 0 2 0
pr12 1002 997 0.50 294.3 958 4.4 3.9 841.7 17.7 457.9 365.8 28 27 1 0
pr13 1139 1145 -0.53 378.9 1045 8.3 8.7 1283.0 19.5 732.9 530.3 18 16 2 0
pr14 1372 1315 4.15 533.7 1218 11.2 7.4 1756.9 27.2 986.6 742.7 42 41 1 0
pr15 1650 1654 -0.24 708.1 1587 3.8 4.1 2878.6 27.9 1721.8 1128.3 38 37 1 0
pr16 1668 1609 3.54 818.1 1495 10.4 7.1 2666.8 29.9 1556.4 1080.0 67 66 1 0
pr17 838 841 -0.36 184.3 835 0.4 0.7 642.5 20.4 348.7 273.3 14 12 2 0
pr18 1281 1276 0.39 386.6 1228 4.1 3.8 1531.6 23.1 895.3 612.9 26 25 1 0
pr19 1417 1403 0.99 604.1 1277 9.9 9.0 2096.4 19.8 1231.1 845.0 37 36 1 0
pr20 1684 1658 1.54 909.7 1532 9.0 7.6 3175.0 32.5 1886.5 1255.4 45 42 3 0

31

Table 17: Solomon 100 and Cordeau 1-10 with m = 4

Hu & Lim Sluijk
Name BKS Profit Gap Time Profit Gap Gap Time RR LS SA Total R LS SA

(%) (s) (%) (%) (s) (s) (s) (s) (#) (#) (#) (#)
BKS BKS SVHL

c101 1020 1020 0.00 176.4 980 3.9 3.9 427.8 3.6 215.5 207.5 10 0 10 0
c102 1150 1150 0.00 274.1 1150 0.0 0.0 519.8 9.2 261.8 248.5 26 20 6 0
c103 1200 1210 -0.83 301.1 1200 0.0 0.8 585.3 13.6 292.7 278.7 30 24 6 0
c104 1260 1260 0.00 281.8 1240 1.6 1.6 662.7 14.8 331.9 315.8 25 23 2 0
c105 1070 1060 0.93 333.2 1060 0.9 0.0 432.8 10.3 216.1 206.2 21 10 11 0
c106 1080 1080 0.00 179.4 1070 0.9 0.9 440.8 13.0 218.3 209.4 22 14 8 0
c107 1120 1120 0.00 209.3 1120 0.0 0.0 455.3 11.7 227.5 215.9 21 16 5 0
c108 1130 1130 0.00 373.1 1080 4.4 4.4 460.4 3.0 239.1 218.1 15 0 15 0
c109 1190 1190 0.00 227.6 1130 5.0 5.0 492.7 2.7 254.5 235.4 10 0 10 0

r101 611 608 0.49 93.5 608 0.5 0.0 258.6 12.0 118.9 127.6 9 4 5 0
r102 843 837 0.71 162.6 810 3.9 3.2 361.4 2.5 179.5 179.4 5 0 5 0
r103 926 928 -0.22 206.9 876 5.4 5.6 455.4 2.8 242.0 210.3 10 0 10 0
r104 972 969 0.31 209.1 955 1.7 1.4 474.7 13.9 249.8 210.9 25 24 1 0
r105 778 778 0.00 142.4 772 0.8 0.8 327.7 16.2 157.2 154.2 5 4 1 0
r106 905 906 -0.11 185.9 890 1.7 1.8 474.5 15.4 240.1 218.8 13 11 2 0
r107 945 950 -0.53 221.4 901 4.7 5.2 495.2 3.1 263.4 228.5 14 0 14 0
r108 994 994 0.00 220.0 956 3.8 3.8 559.0 15.1 300.4 243.3 24 23 1 0
r109 885 885 0.00 145.8 859 2.9 2.9 456.2 19.6 226.1 210.4 17 16 1 0
r110 914 915 -0.11 168.6 910 0.4 0.5 454.4 13.9 238.3 202.1 17 15 2 0
r111 949 952 -0.32 203.5 916 3.5 3.8 450.6 2.5 241.3 206.7 13 0 13 0
r112 971 967 0.41 251.8 959 1.2 0.8 488.1 14.6 257.9 215.4 19 18 1 0

rc101 811 808 0.37 119.7 808 0.4 0.0 370.1 7.5 177.3 185.1 4 3 0 1
rc102 908 899 0.99 136.7 902 0.7 -0.3 386.7 10.9 198.8 176.9 10 6 4 0
rc103 970 974 -0.41 170.2 967 0.3 0.7 448.9 9.6 230.7 208.4 16 15 1 0
rc104 1059 1064 -0.47 194.1 1031 2.6 3.1 492.0 8.5 265.1 218.3 11 10 1 0
rc105 875 875 0.00 127.0 875 0.0 0.0 386.6 7.5 190.8 188.1 6 4 2 0
rc106 909 909 0.00 143.0 901 0.9 0.9 402.1 8.4 205.5 188.2 14 9 5 0
rc107 980 980 0.00 155.4 974 0.6 0.6 420.9 5.4 225.5 189.9 9 7 2 0
rc108 1025 1020 0.49 173.2 1015 1.0 0.5 494.6 10.7 257.9 225.9 27 24 3 0

pr01 657 657 0.00 0.1 657 0.0 0.0 9.2 0.4 6.6 2.0 1 0 1 0
pr02 1079 1073 0.56 380.6 1013 6.1 5.6 1018.6 4.4 558.4 455.4 10 0 10 0
pr03 1222 1232 -0.82 436.6 1118 8.5 9.3 1386.5 4.7 774.2 607.2 14 0 14 0
pr04 1557 1585 -1.80 603.6 1532 1.6 3.3 2473.3 26.7 1406.3 1039.8 48 47 1 0
pr05 1833 1838 -0.27 902.9 1707 6.9 7.1 2825.8 29.7 1629.7 1165.5 36 34 2 0
pr06 1860 1835 1.34 939.6 1501 19.3 18.2 2849.1 6.8 1635.5 1206.1 16 0 16 0
pr07 876 872 0.46 228.9 867 1.0 0.6 581.3 2.7 313.0 265.4 14 0 14 0
pr08 1382 1377 0.36 429.9 1346 2.6 2.3 1287.9 22.6 705.1 559.9 24 23 1 0
pr09 1619 1604 0.93 698.5 1364 15.8 15.0 2276.4 5.5 1308.2 962.1 16 0 16 0
pr10 1939 1943 -0.21 1044.4 1855 4.3 4.5 3632.7 29.6 2137.3 1464.9 42 41 1 0

32

Table 18: Solomon 200 and Cordeau 11-20 with m = 4

Hu & Lim Sluijk
Name BKS Profit Gap Time Profit Gap Gap Time RR LS SA Total R LS SA

(%) (s) (%) (%) (s) (s) (s) (s) (#) (#) (#) (#)
BKS BKS SVHL

c201 1810 1810 0.00 0.1 1810 0.0 0.0 43.5 0.0 10.8 31.4 1 0 0 1
c202 1810 1810 0.00 0.1 1810 0.0 0.0 39.1 0.0 27.6 10.1 1 0 1 0
c203 1810 1810 0.00 0.2 1810 0.0 0.0 57.0 0.0 28.6 27.0 1 0 1 0
c204 1810 1810 0.00 0.1 1810 0.0 0.0 47.0 0.0 33.2 12.2 1 0 1 0
c205 1810 1810 0.00 0.1 1810 0.0 0.0 35.0 0.0 15.7 18.1 1 0 1 0
c206 1810 1810 0.00 0.1 1810 0.0 0.0 30.2 0.1 16.1 12.8 1 0 1 0
c207 1810 1810 0.00 0.1 1810 0.0 0.0 60.1 0.0 41.8 16.9 1 0 1 0
c208 1810 1810 0.00 0.1 1810 0.0 0.0 42.4 0.1 25.8 15.3 1 0 1 0

r201 1458 1458 0.00 0.2 1458 0.0 0.0 56.8 0.0 30.6 25.1 1 0 1 0
r202 1458 1458 0.00 0.2 1458 0.0 0.0 51.1 0.0 24.2 25.7 1 0 1 0
r203 1458 1458 0.00 0.2 1458 0.0 0.0 29.0 0.0 17.8 9.9 1 0 1 0
r204 1458 1458 0.00 0.2 1458 0.0 0.0 29.9 0.1 14.1 14.3 1 0 1 0
r205 1458 1458 0.00 0.2 1458 0.0 0.0 31.2 0.0 16.1 13.9 1 0 1 0
r206 1458 1458 0.00 0.1 1458 0.0 0.0 41.1 0.1 20.1 19.7 1 0 1 0
r207 1458 1458 0.00 0.2 1458 0.0 0.0 41.7 0.1 16.9 23.4 1 0 1 0
r208 1458 1458 0.00 0.2 1458 0.0 0.0 54.7 0.0 22.4 30.8 1 0 1 0
r209 1458 1458 0.00 0.2 1458 0.0 0.0 35.9 0.1 12.8 21.9 1 0 1 0
r210 1458 1458 0.00 0.2 1458 0.0 0.0 31.1 0.1 15.5 14.0 1 0 1 0
r211 1458 1458 0.00 0.2 1458 0.0 0.0 26.0 0.1 13.9 10.7 1 0 1 0

rc201 1724 1724 0.00 0.2 1724 0.0 0.0 29.1 0.3 20.4 7.6 1 0 1 0
rc202 1724 1724 0.00 0.2 1724 0.0 0.0 33.6 0.5 21.6 10.6 1 0 1 0
rc203 1724 1724 0.00 0.2 1724 0.0 0.0 33.4 0.3 17.0 15.1 1 0 1 0
rc204 1724 1724 0.00 0.2 1724 0.0 0.0 33.8 0.2 22.0 10.7 1 0 1 0
rc205 1724 1724 0.00 0.2 1724 0.0 0.0 36.1 0.5 22.4 12.4 1 0 1 0
rc206 1724 1724 0.00 0.2 1724 0.0 0.0 21.1 0.3 12.1 7.9 1 0 1 0
rc207 1724 1724 0.00 0.2 1724 0.0 0.0 40.9 0.3 28.6 11.1 1 0 1 0
rc208 1724 1724 0.00 0.2 1724 0.0 0.0 27.7 0.3 10.0 16.6 1 0 1 0

pr11 657 657 0.00 0.1 657 0.0 0.0 5.7 0.3 3.0 2.2 1 0 1 0
pr12 1132 1120 1.06 477.1 1098 3.0 2.0 997.3 12.6 541.5 442.9 29 28 1 0
pr13 1364 1386 -1.61 672.0 1332 2.3 3.9 1585.5 18.8 904.5 661.7 32 31 1 0
pr14 1670 1651 1.14 783.2 1536 8.0 7.0 2289.7 25.1 1328.9 935.1 29 28 1 0
pr15 1958 2065 -5.46 1161.7 1886 3.7 8.7 3305.8 26.1 1930.6 1347.9 47 46 1 0
pr16 2065 2017 2.32 1183.8 1874 9.2 7.1 3712.9 26.4 2191.0 1494.6 53 51 2 0
pr17 933 934 -0.11 332.8 917 1.7 1.8 687.0 2.4 394.5 290.0 25 0 25 0
pr18 1525 1539 -0.92 559.5 1348 11.6 12.4 1598.8 4.9 945.9 647.6 12 0 12 0
pr19 1723 1750 -1.57 919.4 1518 11.9 13.3 2606.8 13.0 1517.4 1075.8 32 30 2 0
pr20 2037 2062 -1.23 1196.6 1919 5.8 6.9 3902.0 32.3 2361.8 1507.0 61 59 2 0

9.3 Detailed results of using Multi-Threading (Extension)

In this appendix, the detailed results when using threads and multiple runs are given. The seeds
that have been used for the different runs are 1, 2, 3, 4, and 5. In the second column, the best
profit of these five runs is given. The third column gives the gap of this profit with respect to the
profit found while executing one run. The results of only using one run can be found in Table 17.
The fourth and the fifth column provides information on the gap of best profit with respect to the
best known solution (BKS) and the solutions reported by Hu and Lim [13].

For eighteen instances, the solution quality increased, for nine instances the solution quality
remained equal and for two instances the solution quality decreased. Moreover, for two instances
(rc102 and rc104) we obtained a better solution than the best known solution. A reason for an
increase in the solution quality is that we are now using different random seeds which result in
different, and thus possibly better, solutions.

33

Table 19: Detailed results of using threads and five runs

Name BKS BP Gap Gap Gap
(%) (%) (%)

One Run BKS SVHL

c101 1020 1020 -4.08 0.00 0.00
c102 1150 1150 0.00 0.00 0.00
c103 1200 1200 0.00 0.00 0.83
c105 1070 1060 0.00 0.93 0.00
c106 1080 1070 0.00 0.93 0.93
c107 1120 1120 0.00 0.00 0.00
c108 1130 1120 -3.70 0.88 0.88
c109 1190 1140 -0.88 4.20 4.20
r101 611 608 0.00 0.49 0.00
r102 843 837 -3.33 0.71 0.00
r103 926 913 -4.22 1.40 1.62
r104 972 964 -0.94 0.82 0.52
r105 778 772 0.00 0.77 0.77
r106 905 904 -1.57 0.11 0.22
r107 945 940 -4.33 0.53 1.05
r108 994 986 -3.14 0.80 0.80
r109 885 880 -2.44 0.56 0.56
r110 914 893 1.87 2.30 2.40
r111 949 944 -3.06 0.53 0.84
r112 971 966 -0.73 0.51 0.10
rc101 811 808 0.00 0.37 0.00
rc102 908 909 -0.78 -0.11 -1.11
rc103 970 970 -0.31 0.00 0.41
rc104 1059 1063 -3.10 -0.38 0.09
rc105 875 875 0.00 0.00 0.00
rc106 909 909 -0.89 0.00 0.00
rc107 980 979 -0.51 0.10 0.10
rc108 1025 1020 -0.49 0.49 0.00
pr07 876 866 0.12 1.14 0.69

34

9.4 Detailed results of changing the POOL size (Extension)

In this appendix, the detailed results for using different sizes of POOL are given. The seeds that
have been used for the different runs are 1,2, and 3. In the second column, the average profit for
the three runs is given, with its average gap to the solutions of Hu and Lim [13] (SVHL) in the
next column. Column four and five contain the best profit found and its gap with respect to SVHL.
Column six provides information on the average computation times, which is split up in column
seven and eight to the average time used for the RR-component and the average time required
for the changes in POOL, respectively. Column nine contains information on the percentage of
computation time that is devoted to the changes in POOL and the RR-component. The last two
columns tells us how many changes were needed from the starting solution to derive at the final
solution.

35

T
ab

le
20

:
D

et
ai

le
d

re
su

lt
s

of
u

si
n

g
S
p
o
o
l

=
0

N
am

e
A

P
G

a
p

B
P

G
ap

A
T

A
T

R
R

A
T

P
o
ol

T
im

e
C

h
an

ge
s

R
R

ch
os

en
(%

)
(%

)
(s

)
(s

)
(s

)
(%

)
(#

)

c1
01

98
3
.3

3
3
.5

9
99

0.
00

2.
94

20
6.

37
0.

00
0.

00
0.

00
4.

67
0.

00
c1

02
1
07

3
.3

3
6
.6

7
11

20
.0

0
2.

61
30

3.
39

0.
00

0.
00

0.
00

7.
00

0.
00

c1
05

1
02

3
.3

3
4
.3

6
10

30
.0

0
3.

74
23

0.
27

0.
00

0.
00

0.
00

3.
67

0.
00

c1
06

1
02

0
.0

0
5
.5

6
10

20
.0

0
5.

56
23

6.
88

0.
00

0.
00

0.
00

4.
33

0.
00

c1
07

1
09

0
.0

0
2
.6

8
11

00
.0

0
1.

79
25

4.
65

0.
00

0.
00

0.
00

7.
00

0.
00

c1
08

1
07

0
.0

0
5
.3

1
10

80
.0

0
4.

42
26

6.
98

0.
00

0.
00

0.
00

7.
00

0.
00

c1
09

1
11

0
.0

0
6
.7

2
11

20
.0

0
5.

88
29

6.
82

0.
00

0.
00

0.
00

8.
67

0.
00

r1
0
1

59
1
.0

0
3
.2

7
59

8.
00

2.
13

11
8.

76
0.

00
0.

00
0.

00
1.

67
0.

00
r1

0
2

79
0
.0

0
6
.2

9
81

6.
00

3.
20

19
8.

23
0.

00
0.

00
0.

00
3.

33
0.

00
r1

0
3

87
2
.3

3
5
.8

0
88

6.
00

4.
32

24
7.

97
0.

00
0.

00
0.

00
8.

67
0.

00
r1

0
4

87
8
.3

3
9
.6

4
88

8.
00

8.
64

28
1.

98
0.

00
0.

00
0.

00
14

.3
3

0.
00

r1
0
5

75
5
.0

0
2
.9

6
77

1.
00

0.
90

17
5.

33
0.

00
0.

00
0.

00
4.

67
0.

00
r1

0
6

85
6
.6

7
5
.3

4
86

8.
00

4.
09

21
8.

53
0.

00
0.

00
0.

00
8.

33
0.

00
r1

0
7

86
4
.6

7
8
.5

0
87

8.
00

7.
09

23
4.

47
0.

00
0.

00
0.

00
10

.0
0

0.
00

r1
0
8

88
5
.3

3
1
0
.9

3
91

1.
00

8.
35

26
6.

16
0.

00
0.

00
0.

00
10

.6
7

0.
00

r1
0
9

81
2
.3

3
8
.2

1
83

7.
00

5.
42

20
1.

14
0.

00
0.

00
0.

00
9.

33
0.

00
r1

1
0

86
1
.6

7
5
.7

3
87

9.
00

3.
83

22
9.

67
0.

00
0.

00
0.

00
12

.0
0

0.
00

r1
1
1

88
5
.6

7
6
.6

7
90

0.
00

5.
16

25
6.

04
0.

00
0.

00
0.

00
10

.6
7

0.
00

rc
1
0
1

7
9
8.

33
1
.5

6
80

8.
00

0.
37

17
3.

89
0.

00
0.

00
0.

00
3.

67
0.

00
rc

1
0
2

8
6
4.

67
4
.7

7
88

2.
00

2.
86

22
8.

52
0.

00
0.

00
0.

00
4.

00
0.

00
rc

1
0
3

9
2
5.

00
4
.6

4
94

3.
00

2.
78

26
9.

06
0.

00
0.

00
0.

00
8.

67
0.

00
rc

1
0
5

8
5
5.

00
2
.2

9
86

4.
00

1.
26

20
1.

42
0.

00
0.

00
0.

00
6.

33
0.

00
rc

1
0
6

8
6
2.

33
5
.1

3
88

5.
00

2.
64

19
9.

46
0.

00
0.

00
0.

00
6.

33
0.

00
rc

1
0
7

9
5
6.

33
2
.4

1
96

5.
00

1.
53

23
3.

55
0.

00
0.

00
0.

00
7.

33
0.

00
rc

1
0
8

9
5
7.

33
6
.6

0
96

3.
00

6.
05

25
5.

06
0.

00
0.

00
0.

00
6.

33
0.

00

36

T
ab

le
21

:
D

et
ai

le
d

re
su

lt
s

of
u

si
n

g
S
p
o
o
l

=
50

0

N
a
m

e
A

P
G

a
p

B
P

G
ap

A
T

A
T

R
R

A
T

P
o
ol

T
im

e
C

h
an

ge
s

R
R

ch
os

en
(%

)
(%

)
(s

)
(s

)
(s

)
(%

)
(#

)

c1
0
1

9
96

.6
7

2.
29

10
10

.0
0

0.
98

21
1.

32
1.

42
9.

69
5.

25
3.

67
0.

00
c1

0
2

1
1
20

.0
0

2.
61

11
50

.0
0

0.
00

28
1.

82
4.

15
10

.6
9

5.
27

8.
67

5.
33

c1
0
5

1
0
46

.6
7

2.
18

10
60

.0
0

0.
93

23
3.

02
1.

50
9.

88
4.

88
5.

67
0.

00
c1

0
6

1
0
43

.3
3

3.
40

10
50

.0
0

2.
78

23
5.

64
1.

43
10

.2
5

4.
96

5.
67

0.
00

c1
0
7

1
0
90

.0
0

2.
68

11
00

.0
0

1.
79

25
9.

23
1.

47
10

.2
8

4.
53

7.
00

0.
00

c1
0
8

1
0
90

.0
0

3.
54

11
00

.0
0

2.
65

25
9.

54
1.

54
9.

87
4.

40
7.

00
0.

00
c1

0
9

1
1
30

.0
0

5.
04

11
40

.0
0

4.
20

28
5.

73
1.

43
9.

63
3.

87
9.

00
0.

00
r1

01
6
00

.6
7

1.
69

60
4.

00
1.

15
12

7.
00

1.
25

9.
54

8.
50

2.
33

0.
33

r1
02

8
08

.3
3

4.
11

82
3.

00
2.

37
21

5.
33

1.
30

9.
20

4.
87

6.
00

0.
00

r1
03

8
80

.6
7

4.
90

89
1.

00
3.

78
24

9.
61

1.
29

9.
70

4.
40

10
.0

0
0.

00
r1

04
9
35

.0
0

3.
81

95
7.

00
1.

54
27

5.
18

4.
79

10
.1

1
5.

41
18

.3
3

11
.3

3
r1

05
7
63

.3
3

1.
89

77
2.

00
0.

77
19

0.
15

1.
40

9.
63

5.
80

5.
00

0.
00

r1
06

8
72

.3
3

3.
61

89
1.

00
1.

55
23

0.
40

1.
27

8.
96

4.
44

12
.3

3
0.

00
r1

07
8
75

.3
3

7.
37

89
0.

00
5.

82
24

6.
18

1.
33

9.
86

4.
54

12
.6

7
0.

00
r1

08
9
10

.3
3

8.
42

95
0.

00
4.

43
27

8.
02

2.
80

10
.2

9
4.

71
13

.0
0

5.
33

r1
09

8
60

.0
0

2.
82

87
6.

00
1.

02
21

9.
40

2.
28

9.
76

5.
49

9.
33

3.
33

r1
10

8
63

.3
3

5.
54

86
7.

00
5.

14
24

2.
61

1.
45

10
.2

1
4.

81
12

.3
3

0.
67

r1
11

9
08

.6
7

4.
25

94
9.

00
0.

00
29

3.
46

3.
01

12
.3

2
5.

23
12

.6
7

4.
33

rc
10

1
80

8
.0

0
0
.3

7
80

8.
00

0.
37

18
0.

65
3.

59
11

.0
1

8.
08

2.
33

1.
33

rc
10

2
89

4
.3

3
1
.5

1
90

8.
00

0.
00

22
3.

74
5.

06
10

.8
0

7.
09

6.
33

4.
00

rc
10

3
96

7
.6

7
0
.2

4
96

8.
00

0.
21

24
2.

36
4.

50
10

.0
7

6.
01

8.
67

7.
33

rc
10

5
86

5
.6

7
1
.0

7
86

7.
00

0.
91

20
4.

59
1.

32
9.

95
5.

51
6.

67
2.

33
rc

10
6

90
6
.3

3
0
.2

9
90

9.
00

0.
00

21
2.

18
3.

74
10

.6
6

6.
78

5.
33

4.
33

rc
10

7
96

6
.6

7
1
.3

6
97

8.
00

0.
20

23
8.

44
3.

20
10

.1
3

5.
59

8.
00

5.
00

rc
10

8
1
01

7
.6

7
0
.7

2
10

23
.0

0
0.

20
25

7.
03

4.
47

10
.3

5
5.

76
7.

33
6.

33

37

T
ab

le
22

:
D

et
ai

le
d

re
su

lt
s

of
u

si
n

g
S
p
o
o
l

=
10

00

N
am

e
A

P
G

ap
B

P
G

ap
A

T
A

T
R

R
A

T
P

o
ol

T
im

e
C

h
an

ge
s

R
R

ch
os

en
(%

)
(%

)
(s

)
(s

)
(s

)
(%

)
(#

)

c1
01

10
2
0
.0

0
0
.0

0
10

20
.0

0
0.

00
23

8.
88

10
.0

2
26

.3
6

15
.2

3
6.

67
5.

00
c1

02
11

5
0
.0

0
0
.0

0
11

50
.0

0
0.

00
29

4.
78

11
.2

6
26

.7
0

12
.8

8
9.

67
8.

00
c1

05
10

4
6
.6

7
2
.1

8
10

60
.0

0
0.

93
25

1.
29

5.
81

26
.1

1
12

.7
0

5.
00

1.
33

c1
06

10
5
6
.6

7
2
.1

6
10

70
.0

0
0.

93
26

2.
16

12
.1

1
27

.6
3

15
.1

6
6.

67
5.

33
c1

07
11

1
0
.0

0
0
.8

9
11

20
.0

0
0.

00
27

5.
21

11
.6

7
27

.2
8

14
.1

5
7.

33
5.

67
c1

08
11

0
3
.3

3
2
.3

6
11

20
.0

0
0.

88
28

3.
34

9.
15

25
.3

9
12

.1
9

7.
67

3.
33

c1
09

11
3
3
.3

3
4
.7

6
11

40
.0

0
4.

20
30

1.
98

3.
10

24
.4

6
9.

13
8.

67
0.

00
r1

0
1

60
8
.0

0
0
.4

9
60

8.
00

0.
49

16
0.

74
12

.2
0

25
.6

6
23

.5
5

3.
33

2.
33

r1
0
2

81
8
.3

3
2
.9

3
82

3.
00

2.
37

23
2.

08
2.

65
23

.3
2

11
.1

9
5.

33
0.

33
r1

0
3

88
8
.0

0
4
.1

0
91

3.
00

1.
40

26
8.

41
6.

22
24

.6
1

11
.4

9
10

.0
0

3.
33

r1
0
4

94
9
.3

3
2
.3

3
96

4.
00

0.
82

31
0.

94
14

.1
6

25
.8

5
12

.8
7

15
.3

3
14

.0
0

r1
0
5

77
0
.6

7
0
.9

4
77

2.
00

0.
77

20
1.

37
2.

61
24

.0
1

13
.2

2
5.

33
1.

33
r1

0
6

89
0
.6

7
1
.5

8
90

4.
00

0.
11

24
8.

99
7.

25
23

.8
0

12
.4

7
13

.0
0

4.
00

r1
0
7

89
4
.6

7
5
.3

3
93

9.
00

0.
63

26
9.

13
5.

80
25

.2
3

11
.5

3
11

.6
7

4.
67

r1
0
8

95
4
.6

7
3
.9

6
97

9.
00

1.
51

30
4.

50
12

.4
7

26
.6

6
12

.8
5

14
.0

0
12

.3
3

r1
0
9

87
3
.3

3
1
.3

2
88

0.
00

0.
56

23
4.

76
8.

65
24

.3
3

14
.0

5
13

.3
3

8.
67

r1
1
0

88
1
.6

7
3
.5

4
89

3.
00

2.
30

26
1.

10
6.

35
25

.6
6

12
.2

6
10

.6
7

6.
00

r1
1
1

90
6
.3

3
4
.5

0
92

6.
00

2.
42

28
6.

43
7.

14
28

.5
2

12
.4

5
10

.6
7

3.
67

rc
1
01

8
08

.0
0

0.
37

80
8.

00
0.

37
20

2.
07

7.
08

26
.1

9
16

.4
6

2.
33

1.
33

rc
1
02

9
03

.6
7

0.
48

90
9.

00
-0

.1
1

23
9.

07
11

.9
9

25
.3

2
15

.6
1

6.
33

4.
67

rc
1
03

9
62

.6
7

0.
76

97
0.

00
0.

00
25

5.
40

9.
66

24
.6

5
13

.4
3

9.
00

8.
00

rc
1
05

8
75

.0
0

0.
00

87
5.

00
0.

00
23

0.
55

7.
42

26
.5

4
14

.7
3

4.
00

3.
00

rc
1
06

9
03

.3
3

0.
62

90
8.

00
0.

11
23

4.
00

8.
01

25
.9

5
14

.5
1

5.
33

4.
33

rc
1
07

9
75

.3
3

0.
48

97
9.

00
0.

10
25

3.
63

9.
18

25
.6

0
13

.7
1

7.
33

6.
33

rc
1
08

10
1
7.

33
0.

75
10

19
.0

0
0.

59
27

9.
29

10
.1

1
25

.4
0

12
.7

1
9.

33
8.

00

38

T
ab

le
23

:
D

et
ai

le
d

re
su

lt
s

of
u

si
n

g
S
p
o
o
l

=
15

00

N
am

e
A

P
G

ap
B

P
G

ap
A

T
A

T
R

R
A

T
P

o
ol

T
im

e
C

h
an

ge
s

R
R

ch
os

en
(%

)
(%

)
(s

)
(s

)
(s

)
(%

)
(#

)

c1
01

10
2
0
.0

0
0
.0

0
10

20
.0

0
0.

00
25

2.
02

10
.8

9
42

.0
5

21
.0

1
6.

00
4.

67
c1

02
11

4
6
.6

7
0
.2

9
11

50
.0

0
0.

00
30

8.
39

12
.3

7
43

.2
0

18
.0

2
8.

00
6.

00
c1

05
10

6
0
.0

0
0
.9

3
10

60
.0

0
0.

93
28

1.
95

18
.4

0
44

.5
7

22
.3

3
6.

00
4.

33
c1

06
10

6
3
.3

3
1
.5

4
10

80
.0

0
0.

00
28

0.
20

15
.9

1
45

.0
5

21
.7

6
6.

33
5.

00
c1

07
11

0
6
.6

7
1
.1

9
11

10
.0

0
0.

89
30

2.
61

19
.0

5
44

.3
1

20
.9

4
7.

00
4.

67
c1

08
11

2
0
.0

0
0
.8

8
11

20
.0

0
0.

88
29

4.
07

12
.6

2
41

.5
4

18
.4

2
7.

33
6.

33
c1

09
11

7
3
.3

3
1
.4

0
11

90
.0

0
0.

00
33

4.
40

17
.7

0
41

.9
7

17
.8

4
12

.3
3

10
.6

7
r1

0
1

60
8
.0

0
0
.4

9
60

8.
00

0.
49

17
8.

30
14

.9
5

39
.2

9
30

.4
2

3.
33

2.
33

r1
0
2

82
1
.0

0
2
.6

1
82

8.
00

1.
78

25
0.

05
9.

33
38

.8
2

19
.2

6
5.

33
2.

67
r1

0
3

89
8
.0

0
3
.0

2
91

7.
00

0.
97

29
4.

57
15

.0
1

40
.4

1
18

.8
1

11
.0

0
7.

67
r1

0
4

94
3
.0

0
2
.9

8
97

0.
00

0.
21

33
0.

31
21

.6
7

41
.2

7
19

.0
5

15
.0

0
14

.0
0

r1
0
5

77
5
.3

3
0
.3

4
77

8.
00

0.
00

23
3.

26
17

.9
8

41
.4

7
25

.4
9

5.
67

4.
67

r1
0
6

89
4
.3

3
1
.1

8
89

8.
00

0.
77

27
2.

37
22

.0
2

37
.4

2
21

.8
3

8.
67

7.
00

r1
0
7

90
6
.3

3
4
.0

9
93

9.
00

0.
63

29
4.

45
15

.0
7

41
.7

9
19

.3
1

12
.3

3
8.

33
r1

0
8

95
5
.3

3
3
.8

9
96

9.
00

2.
52

32
2.

07
19

.2
4

42
.0

8
19

.0
4

19
.6

7
18

.6
7

r1
0
9

87
4
.3

3
1
.2

1
88

5.
00

0.
00

25
9.

97
19

.6
4

39
.3

3
22

.6
8

10
.6

7
9.

67
r1

1
0

88
1
.6

7
3
.5

4
89

2.
00

2.
41

28
7.

05
12

.9
7

43
.0

7
19

.5
2

13
.0

0
9.

00
r1

1
1

92
2
.3

3
2
.8

1
93

7.
00

1.
26

29
3.

13
15

.7
4

43
.6

1
20

.2
5

8.
00

4.
00

rc
1
01

8
08

.0
0

0.
37

80
8.

00
0.

37
24

0.
46

14
.2

8
42

.8
5

23
.7

6
2.

67
1.

67
rc

1
02

9
04

.3
3

0.
40

90
9.

00
-0

.1
1

26
0.

87
21

.4
4

39
.7

3
23

.4
5

5.
67

4.
33

rc
1
03

9
61

.3
3

0.
89

96
7.

00
0.

31
27

6.
02

15
.7

0
39

.3
7

19
.9

5
7.

33
6.

33
rc

1
05

8
75

.0
0

0.
00

87
5.

00
0.

00
25

0.
20

14
.6

0
41

.4
3

22
.3

9
4.

00
2.

67
rc

1
06

9
09

.0
0

0.
00

90
9.

00
0.

00
25

8.
77

14
.4

4
41

.6
8

21
.6

9
5.

67
4.

67
rc

1
07

9
72

.6
7

0.
75

97
8.

00
0.

20
28

2.
21

16
.4

6
41

.2
9

20
.4

6
7.

33
6.

33
rc

1
08

10
2
0.

00
0.

49
10

22
.0

0
0.

29
30

1.
20

16
.4

3
40

.0
7

18
.7

6
10

.0
0

9.
00

39

T
ab

le
24

:
D

et
ai

le
d

re
su

lt
s

of
u

si
n

g
S
p
o
o
l

=
20

00

N
a
m

e
A

P
G

a
p

B
P

G
ap

A
T

A
T

R
R

A
T

P
o
ol

T
im

e
C

h
an

ge
s

R
R

ch
os

en
(%

)
(%

)
(s

)
(s

)
(s

)
(%

)
(#

)

c1
0
1

1
0
20

.0
0

0.
00

10
20

.0
0

0.
00

27
4.

85
14

.6
0

58
.3

8
26

.5
5

5.
67

4.
00

c1
0
2

1
1
46

.6
7

0.
29

11
50

.0
0

0.
00

33
0.

31
18

.4
0

59
.4

6
23

.5
7

8.
67

7.
67

c1
0
5

1
0
56

.6
7

1.
25

10
60

.0
0

0.
93

30
0.

62
18

.5
7

62
.6

7
27

.0
3

6.
33

4.
33

c1
0
6

1
0
60

.0
0

1.
85

10
60

.0
0

1.
85

31
0.

44
19

.0
5

64
.9

5
27

.0
6

6.
33

5.
33

c1
0
7

1
1
03

.3
3

1.
49

11
10

.0
0

0.
89

32
2.

18
23

.1
9

57
.5

0
25

.0
4

8.
00

6.
33

c1
0
8

1
1
20

.0
0

0.
88

11
20

.0
0

0.
88

35
6.

97
27

.2
9

60
.2

4
24

.5
2

8.
00

6.
67

c1
0
9

1
1
63

.3
3

2.
24

11
70

.0
0

1.
68

34
9.

59
21

.2
5

57
.3

7
22

.4
9

10
.3

3
8.

67
r1

01
6
08

.0
0

0.
49

60
8.

00
0.

49
19

4.
92

18
.4

5
52

.2
2

36
.2

6
3.

33
2.

33
r1

02
8
24

.0
0

2.
25

83
7.

00
0.

71
27

6.
13

12
.6

9
54

.2
3

24
.2

4
5.

00
2.

00
r1

03
8
91

.6
7

3.
71

90
6.

00
2.

16
31

4.
64

18
.9

3
55

.6
2

23
.6

9
6.

67
3.

00
r1

04
9
52

.0
0

2.
06

95
5.

00
1.

75
35

0.
93

26
.8

4
55

.5
1

23
.4

7
16

.3
3

15
.3

3
r1

05
7
73

.3
3

0.
60

77
8.

00
0.

00
28

0.
92

23
.9

0
62

.5
8

30
.7

9
5.

67
4.

33
r1

06
8
99

.3
3

0.
63

90
4.

00
0.

11
29

5.
06

28
.3

5
52

.3
7

27
.3

6
12

.3
3

10
.6

7
r1

07
9
33

.0
0

1.
27

94
5.

00
0.

00
32

1.
41

25
.8

9
58

.5
1

26
.2

6
13

.0
0

12
.0

0
r1

08
9
48

.6
7

4.
56

96
1.

00
3.

32
34

1.
00

25
.4

7
57

.2
1

24
.2

5
16

.6
7

15
.6

7
r1

09
8
77

.0
0

0.
90

88
5.

00
0.

00
28

2.
31

28
.9

1
53

.1
3

29
.0

6
9.

00
8.

00
r1

10
8
80

.0
0

3.
72

88
7.

00
2.

95
30

3.
16

18
.7

1
57

.9
1

25
.2

7
11

.3
3

7.
33

r1
11

9
36

.6
7

1.
30

93
9.

00
1.

05
32

0.
90

26
.5

9
57

.6
7

26
.2

6
11

.3
3

9.
67

rc
10

1
80

8
.0

0
0
.3

7
80

8.
00

0.
37

24
5.

53
22

.5
0

54
.5

2
31

.3
7

2.
33

1.
33

rc
10

2
90

6
.0

0
0
.2

2
90

8.
00

0.
00

28
1.

76
27

.4
6

54
.1

9
28

.9
8

7.
00

5.
33

rc
10

3
96

0
.0

0
1
.0

3
97

0.
00

0.
00

29
4.

17
21

.5
3

52
.6

0
25

.2
0

8.
33

7.
33

rc
10

5
87

5
.0

0
0
.0

0
87

5.
00

0.
00

27
2.

52
19

.9
8

56
.2

4
27

.9
7

3.
67

2.
33

rc
10

6
90

3
.6

7
0
.5

9
90

9.
00

0.
00

30
3.

32
23

.0
8

59
.7

1
27

.3
0

5.
00

4.
00

rc
10

7
97

6
.0

0
0
.4

1
97

9.
00

0.
10

30
1.

30
22

.7
0

56
.1

1
26

.1
6

7.
33

6.
33

rc
10

8
1
01

6
.3

3
0
.8

5
10

18
.0

0
0.

68
32

7.
35

22
.2

0
54

.5
2

23
.4

4
9.

67
8.

67

40

T
ab

le
25

:
D

et
ai

le
d

re
su

lt
s

of
u

si
n

g
S
p
o
o
l

=
30

00

N
am

e
A

P
G

ap
B

P
G

ap
A

T
A

T
R

R
A

T
P

o
ol

T
im

e
C

h
an

ge
s

R
R

ch
os

en
(%

)
(%

)
(s

)
(s

)
(s

)
(%

)
(#

)

c1
01

10
2
0
.0

0
0
.0

0
10

20
.0

0
0.

00
32

4.
14

23
.1

3
93

.7
8

36
.0

7
6.

33
4.

67
c1

02
11

4
6
.6

7
0
.2

9
11

50
.0

0
0.

00
36

9.
91

27
.5

5
91

.5
4

32
.1

9
10

.0
0

9.
00

c1
05

10
6
0
.0

0
0
.9

3
10

60
.0

0
0.

93
35

2.
00

35
.9

2
96

.2
1

37
.5

4
6.

00
4.

33
c1

06
10

6
0
.0

0
1
.8

5
10

70
.0

0
0.

93
35

0.
33

30
.0

4
99

.7
5

37
.0

5
6.

00
5.

00
c1

07
11

1
0
.0

0
0
.8

9
11

20
.0

0
0.

00
39

3.
46

48
.0

2
92

.1
1

35
.6

2
7.

33
6.

33
c1

08
11

1
6
.6

7
1
.1

8
11

20
.0

0
0.

88
38

5.
46

37
.2

3
92

.1
8

33
.5

7
8.

00
6.

67
c1

09
11

6
6
.6

7
1
.9

6
11

70
.0

0
1.

68
40

2.
57

39
.8

1
87

.3
2

31
.5

8
9.

67
8.

33
r1

0
1

60
8
.0

0
0
.4

9
60

8.
00

0.
49

22
9.

31
26

.6
8

78
.5

7
45

.9
0

3.
00

2.
33

r1
0
2

82
8
.6

7
1
.7

0
83

7.
00

0.
71

33
5.

36
31

.2
2

86
.8

4
35

.2
0

6.
67

5.
00

r1
0
3

91
1
.0

0
1
.6

2
91

4.
00

1.
30

37
2.

21
37

.8
6

90
.2

1
34

.4
1

10
.6

7
9.

00
r1

0
4

95
3
.6

7
1
.8

9
96

3.
00

0.
93

40
0.

02
43

.0
0

86
.3

7
32

.3
4

14
.3

3
13

.3
3

r1
0
5

77
6
.0

0
0
.2

6
77

8.
00

0.
00

30
5.

23
41

.4
6

87
.6

4
42

.2
9

5.
67

4.
67

r1
0
6

89
4
.3

3
1
.1

8
89

8.
00

0.
77

33
3.

17
40

.7
7

79
.0

3
35

.9
6

9.
33

8.
33

r1
0
7

93
2
.0

0
1
.3

8
94

2.
00

0.
32

36
8.

89
39

.1
6

90
.2

4
35

.0
8

11
.6

7
10

.6
7

r1
0
8

95
3
.6

7
4
.0

6
96

7.
00

2.
72

38
7.

60
36

.0
3

90
.0

7
32

.5
3

17
.6

7
16

.3
3

r1
0
9

88
3
.0

0
0
.2

3
88

5.
00

0.
00

32
6.

64
43

.4
3

82
.5

4
38

.5
6

11
.6

7
10

.3
3

r1
1
0

88
9
.0

0
2
.7

4
89

4.
00

2.
19

35
8.

18
38

.8
1

91
.8

0
36

.4
7

11
.6

7
10

.3
3

r1
1
1

94
0
.6

7
0
.8

8
94

6.
00

0.
32

36
7.

15
42

.9
4

90
.5

8
36

.3
7

10
.6

7
9.

33
rc

1
01

8
08

.0
0

0.
37

80
8.

00
0.

37
28

6.
42

39
.0

0
82

.8
2

42
.5

3
2.

33
1.

33
rc

1
02

9
06

.6
7

0.
15

90
9.

00
-0

.1
1

33
3.

11
49

.4
6

83
.0

0
39

.7
7

7.
00

5.
67

rc
1
03

9
58

.0
0

1.
24

96
8.

00
0.

21
33

4.
12

34
.8

2
82

.4
1

35
.0

9
7.

67
6.

67
rc

1
05

8
75

.0
0

0.
00

87
5.

00
0.

00
31

4.
81

32
.4

7
85

.0
8

37
.3

4
4.

33
3.

00
rc

1
06

9
03

.6
7

0.
59

90
9.

00
0.

00
31

9.
62

34
.2

7
84

.0
5

37
.0

2
4.

67
3.

67
rc

1
07

9
72

.6
7

0.
75

97
8.

00
0.

20
34

3.
79

35
.5

6
86

.6
8

35
.5

6
6.

67
5.

33
rc

1
08

10
1
6.

00
0.

88
10

20
.0

0
0.

49
37

1.
77

37
.0

2
84

.6
5

32
.7

3
9.

33
8.

00

41

T
ab

le
26

:
D

et
ai

le
d

re
su

lt
s

of
u

si
n

g
S
p
o
o
l

=
40

00

N
am

e
A

P
G

ap
B

P
G

ap
A

T
A

T
R

R
A

T
P

o
ol

T
im

e
C

h
an

ge
s

R
R

ch
os

en
(%

)
(%

)
(s

)
(s

)
(s

)
(%

)
(#

)

c1
01

10
2
0
.0

0
0
.0

0
10

20
.0

0
0.

00
36

5.
98

29
.7

5
13

1.
26

43
.9

9
5.

33
3.

67
c1

02
11

4
6
.6

7
0
.2

9
11

50
.0

0
0.

00
42

1.
24

38
.5

5
12

8.
69

39
.7

0
9.

33
8.

33
c1

05
10

6
0
.0

0
0
.9

3
10

60
.0

0
0.

93
40

0.
34

45
.2

6
13

5.
15

45
.0

6
6.

33
5.

00
c1

06
10

6
0
.0

0
1
.8

5
10

60
.0

0
1.

85
40

9.
89

53
.4

3
13

4.
28

45
.8

0
6.

33
5.

33
c1

07
11

1
3
.3

3
0
.6

0
11

20
.0

0
0.

00
41

5.
83

42
.1

9
12

6.
01

40
.4

5
7.

00
6.

00
c1

08
11

2
6
.6

7
0
.2

9
11

40
.0

0
-0

.8
8

43
9.

83
52

.5
1

13
1.

21
41

.7
7

8.
67

7.
67

c1
09

11
7
3
.3

3
1
.4

0
11

80
.0

0
0.

84
49

4.
74

55
.1

6
13

8.
49

39
.1

4
10

.0
0

9.
00

r1
0
1

60
8
.0

0
0
.4

9
60

8.
00

0.
49

26
8.

78
35

.5
0

10
8.

12
53

.4
4

3.
33

2.
33

r1
0
2

83
5
.3

3
0
.9

1
83

7.
00

0.
71

37
0.

41
53

.0
3

11
4.

58
45

.2
5

7.
33

6.
00

r1
0
3

91
5
.6

7
1
.1

2
92

2.
00

0.
43

41
7.

78
54

.6
1

12
0.

11
41

.8
2

9.
67

8.
67

r1
0
4

96
3
.3

3
0
.8

9
97

2.
00

0.
00

44
8.

15
56

.2
6

12
1.

78
39

.7
3

18
.0

0
17

.0
0

r1
0
5

77
3
.3

3
0
.6

0
77

8.
00

0.
00

36
6.

35
51

.5
8

12
8.

81
49

.2
4

4.
67

3.
67

r1
0
6

89
8
.6

7
0
.7

0
90

5.
00

0.
00

37
5.

74
53

.4
0

10
9.

41
43

.3
3

12
.0

0
11

.0
0

r1
0
7

93
7
.6

7
0
.7

8
93

9.
00

0.
63

42
2.

30
53

.2
5

12
4.

64
42

.1
2

12
.6

7
11

.0
0

r1
0
8

95
0
.3

3
4
.3

9
95

6.
00

3.
82

44
0.

23
53

.0
0

12
2.

62
39

.8
9

15
.3

3
14

.3
3

r1
0
9

88
4
.6

7
0
.0

4
88

5.
00

0.
00

36
7.

18
54

.9
2

11
2.

26
45

.5
3

12
.0

0
10

.6
7

r1
1
0

89
1
.0

0
2
.5

2
89

3.
00

2.
30

40
3.

11
52

.4
3

12
5.

82
44

.2
2

11
.3

3
10

.3
3

r1
1
1

93
9
.6

7
0
.9

8
94

3.
00

0.
63

41
5.

91
53

.5
5

12
5.

43
43

.0
4

11
.0

0
10

.0
0

rc
1
01

8
08

.0
0

0.
37

80
8.

00
0.

37
33

3.
77

53
.5

5
11

5.
20

50
.5

6
2.

33
1.

33
rc

1
02

9
06

.0
0

0.
22

90
8.

00
0.

00
37

7.
71

62
.3

0
11

4.
64

46
.8

5
6.

33
5.

00
rc

1
03

9
58

.0
0

1.
24

96
8.

00
0.

21
37

3.
91

46
.3

8
11

0.
97

42
.0

8
6.

67
5.

33
rc

1
05

8
75

.0
0

0.
00

87
5.

00
0.

00
35

9.
89

44
.8

7
11

6.
40

44
.8

1
4.

00
2.

00
rc

1
06

9
04

.0
0

0.
55

90
9.

00
0.

00
36

0.
25

48
.4

9
11

4.
66

45
.2

9
5.

67
4.

33
rc

1
07

9
71

.6
7

0.
85

97
5.

00
0.

51
39

1.
59

48
.9

8
11

9.
80

43
.1

0
6.

00
5.

00
rc

1
08

10
1
6.

00
0.

88
10

17
.0

0
0.

78
41

8.
96

49
.4

8
11

6.
67

39
.6

6
9.

67
8.

67

42

T
ab

le
27

:
D

et
ai

le
d

re
su

lt
s

of
u

si
n

g
S
p
o
o
l

=
50

00

N
am

e
A

P
G

ap
B

P
G

ap
A

T
A

T
R

R
A

T
P

o
ol

T
im

e
C

h
an

ge
s

R
R

ch
os

en
(%

)
(%

)
(s

)
(s

)
(s

)
(%

)
(#

)

c1
01

10
2
0
.0

0
0
.0

0
10

20
.0

0
0.

00
50

2.
27

57
.6

6
21

1.
99

53
.6

9
6.

00
4.

67
c1

02
11

4
6
.6

7
0
.2

9
11

50
.0

0
0.

00
47

0.
45

46
.9

8
17

0.
52

46
.2

3
9.

00
8.

00
c1

05
10

5
6
.6

7
1
.2

5
10

60
.0

0
0.

93
46

0.
93

66
.9

8
17

2.
97

52
.0

6
5.

67
4.

00
c1

06
10

6
0
.0

0
1
.8

5
10

60
.0

0
1.

85
44

9.
34

52
.9

3
17

7.
06

51
.1

8
6.

00
5.

00
c1

07
11

0
6
.6

7
1
.1

9
11

10
.0

0
0.

89
49

9.
53

63
.7

4
17

5.
90

47
.9

7
6.

33
4.

33
c1

08
11

2
6
.6

7
0
.2

9
11

30
.0

0
0.

00
47

0.
75

67
.4

9
16

1.
02

48
.5

4
9.

00
7.

67
c1

09
11

7
6
.6

7
1
.1

2
11

80
.0

0
0.

84
50

9.
29

68
.1

2
16

3.
82

45
.5

4
10

.0
0

8.
67

r1
0
1

60
8
.0

0
0
.4

9
60

8.
00

0.
49

31
5.

41
48

.5
7

14
2.

09
60

.4
5

3.
33

2.
33

r1
0
2

83
6
.3

3
0
.7

9
83

7.
00

0.
71

42
6.

93
67

.8
8

15
3.

77
51

.9
2

8.
67

7.
00

r1
0
3

91
3
.3

3
1
.3

7
92

2.
00

0.
43

46
5.

77
68

.4
1

15
7.

63
48

.5
3

11
.0

0
9.

67
r1

0
4

95
1
.6

7
2
.0

9
95

7.
00

1.
54

50
6.

06
77

.2
3

15
6.

39
46

.1
6

12
.3

3
11

.3
3

r1
0
5

77
6
.0

0
0
.2

6
77

8.
00

0.
00

37
8.

59
64

.4
6

14
8.

75
56

.3
2

5.
33

4.
33

r1
0
6

89
6
.0

0
0
.9

9
89

9.
00

0.
66

43
3.

04
72

.7
5

14
5.

42
50

.3
8

10
.6

7
9.

33
r1

0
7

94
1
.0

0
0
.4

2
95

0.
00

-0
.5

3
47

7.
31

69
.1

0
16

3.
98

48
.8

3
15

.6
7

14
.3

3
r1

0
8

95
0
.0

0
4
.4

3
95

7.
00

3.
72

49
7.

86
68

.7
5

16
2.

23
46

.3
9

15
.6

7
14

.6
7

r1
0
9

88
2
.6

7
0
.2

6
88

5.
00

0.
00

51
0.

67
79

.9
1

14
2.

80
43

.6
1

12
.6

7
11

.6
7

r1
1
0

88
4
.3

3
3
.2

5
88

6.
00

3.
06

47
7.

80
70

.9
2

17
3.

00
51

.0
5

9.
00

8.
00

r1
1
1

94
0
.6

7
0
.8

8
94

6.
00

0.
32

48
4.

00
72

.8
0

16
9.

39
50

.0
4

13
.0

0
12

.0
0

rc
1
01

8
08

.0
0

0.
37

80
8.

00
0.

37
43

9.
17

83
.7

7
17

5.
95

59
.1

4
2.

33
1.

33
rc

1
02

9
06

.3
3

0.
18

90
9.

00
-0

.1
1

62
4.

18
99

.9
9

14
6.

01
39

.4
1

7.
67

6.
33

rc
1
03

9
54

.6
7

1.
58

96
7.

00
0.

31
42

3.
96

63
.0

8
14

4.
90

49
.0

6
7.

33
6.

33
rc

1
05

8
75

.0
0

0.
00

87
5.

00
0.

00
53

9.
26

69
.0

1
14

4.
61

39
.6

1
4.

00
2.

67
rc

1
06

9
08

.6
7

0.
04

90
9.

00
0.

00
41

0.
35

69
.4

6
14

7.
76

52
.9

3
6.

67
5.

67
rc

1
07

9
75

.0
0

0.
51

98
0.

00
0.

00
44

5.
77

65
.7

9
15

5.
83

49
.7

2
6.

33
5.

33
rc

1
08

10
1
2.

67
1.

20
10

20
.0

0
0.

49
63

1.
70

75
.5

1
14

7.
34

35
.2

8
9.

33
8.

33

43

9.5 Routes of the new Best Known Solutions

For two instances we obtained new best known solutions. There corresponding solutions are given
below.

c108
Objective value of 1140
r1 = {0, 12, 14, 11, 15, 16, 9, 10, 60, 7, 2, 0}
r2 = {0, 65, 82, 69, 88, 79, 6, 4, 5, 3, 1, 70, 0}
r3 = {0, 42, 39, 36, 40, 38, 41, 43, 35, 37, 96, 0}
r4 = {0, 48, 21, 23, 19, 22, 57, 83, 66, 91, 94, 80, 0}

rc102
Objective value of 909
r1 = {0, 98, 95, 81, 70, 82, 84, 85, 88, 89, 91, 47, 0}
r2 = {0, 13, 18, 17, 15, 16, 93, 97, 100, 99, 2, 1, 75, 0}
r3 = {0, 33, 32, 25, 46, 37, 38, 39, 36, 34, 50, 52, 0}
r4 = {0, 57, 54, 63, 74, 56, 58, 60, 6, 22, 21, 49, 0}

44

10 References

[1] I-Ming Chao, Bruce L Golden, and Edward A Wasil. A fast and effective heuristic for the
orienteering problem. European Journal of Operational Research, 88(3):475–489, 1996.

[2] I-Ming Chao, Bruce L Golden, and Edward A Wasil. The team orienteering problem. European
journal of operational research, 88(3):464–474, 1996.

[3] N Christofides, A Mingozzi, P Toth, and C Sandi. Combinatorial optimization. 1979.

[4] Jean-François Cordeau, Michel Gendreau, and Gilbert Laporte. A tabu search heuristic for
periodic and multi-depot vehicle routing problems. Networks, 30(2):105–119, 1997.

[5] Tunchan Cura. An artificial bee colony algorithm approach for the team orienteering problem
with time windows. Computers & Industrial Engineering, 74:270–290, 2014.

[6] Racha El-Hajj, Aziz Moukrim, B Chebaro, and M Kobeissi. A column generation algorithm
for the team orienteering problem with time windows. In The 45th International Conference
on Computers & Industrial Engineering (CIE45), 2015.

[7] Matteo Fischetti, Juan Jose Salazar Gonzalez, and Paolo Toth. Solving the orienteering prob-
lem through branch-and-cut. INFORMS Journal on Computing, 10(2):133–148, 1998.

[8] Luca Maria Gambardella, Roberto Montemanni, and Dennis Weyland. Coupling ant colony
systems with strong local searches. European Journal of Operational Research, 220(3):831–843,
2012.

[9] Damianos Gavalas, Charalampos Konstantopoulos, Konstantinos Mastakas, and Grammati
Pantziou. A survey on algorithmic approaches for solving tourist trip design problems. Journal
of Heuristics, 20(3):291–328, 2014.

[10] Bruce L Golden, Larry Levy, and Rakesh Vohra. The orienteering problem. Naval research
logistics, 34(3):307–318, 1987.

[11] Aldy GUNAWAN, LAU Hoong Chuin, and LU Kun. The latest best known solutions for the
team orienteering problem with time windows (toptw) benchmark instances. 2015.

[12] Aldy Gunawan, Hoong Chuin Lau, and Kun Lu. Sails: Hybrid algorithm for the team orien-
teering problem with time windows. In Proceedings of the 7th Multidisciplinary International
Scheduling Conference (MISTA 2015), 2015.

[13] Qian Hu and Andrew Lim. An iterative three-component heuristic for the team orienteering
problem with time windows. European Journal of Operational Research, 232(2):276–286, 2014.

[14] Marisa G Kantor and Moshe B Rosenwein. The orienteering problem with time windows.
Journal of the Operational Research Society, pages 629–635, 1992.

45

[15] Nacima Labadie, Jan Melechovskỳ, and Roberto Wolfler Calvo. Hybridized evolutionary local
search algorithm for the team orienteering problem with time windows. Journal of Heuristics,
17(6):729–753, 2011.

[16] Nacima Labadie, Renata Mansini, Jan Melechovskỳ, and Roberto Wolfler Calvo. The team
orienteering problem with time windows: An lp-based granular variable neighborhood search.
European Journal of Operational Research, 220(1):15–27, 2012.

[17] Gilbert Laporte and Silvano Martello. The selective travelling salesman problem. Discrete
applied mathematics, 26(2-3):193–207, 1990.

[18] Shih-Wei Lin and F Yu Vincent. A simulated annealing heuristic for the team orienteering
problem with time windows. European Journal of Operational Research, 217(1):94–107, 2012.

[19] R Montemanni and LM Gambardella. An ant colony system for team orienteering problems
with time windows. Foundations of computing and Decision Sciences, 34:287–306, 2009.

[20] R Montemanni, D Weyland, and LM Gambardella. An enhanced ant colony system for the
team orienteering problem with time windows. In Computer Science and Society (ISCCS),
2011 International Symposium on, pages 381–384. IEEE, 2011.

[21] Giovanni Righini and Matteo Salani. Decremental state space relaxation strategies and ini-
tialization heuristics for solving the orienteering problem with time windows with dynamic
programming. Computers & Operations Research, 36(4):1191–1203, 2009.

[22] Michael Schilde, Karl F Doerner, Richard F Hartl, and Guenter Kiechle. Metaheuristics for
the bi-objective orienteering problem. Swarm Intelligence, 3(3):179–201, 2009.

[23] Marius M Solomon. Algorithms for the vehicle routing and scheduling problems with time
window constraints. Operations research, 35(2):254–265, 1987.

[24] Fabien Tricoire, Martin Romauch, Karl F Doerner, and Richard F Hartl. Heuristics for the
multi-period orienteering problem with multiple time windows. Computers & Operations Re-
search, 37(2):351–367, 2010.

[25] Theodore Tsiligirides. Heuristic methods applied to orienteering. Journal of the Operational
Research Society, pages 797–809, 1984.

[26] Pieter Vansteenwegen, Wouter Souffriau, Greet Vanden Berghe, and Dirk Van Oudheusden.
Iterated local search for the team orienteering problem with time windows. Computers &
Operations Research, 36(12):3281–3290, 2009.

[27] Pieter Vansteenwegen, Wouter Souffriau, and Dirk Van Oudheusden. The orienteering prob-
lem: A survey. European Journal of Operational Research, 209(1):1–10, 2011.

46

	Introduction
	Literature Review
	Problem Definition
	Methodology
	Neighbourhood Operators
	Route Pool
	Local Search
	Simulated Annealing
	Route Recombination
	Iterative Framework
	Extensions
	Multi-Threading
	Size of POOL

	Data Description
	Results
	Extensions
	Multi-Thread
	Size of POOL

	New Best Known Solutions
	Conclusion
	Appendix
	Algorithms
	Detailed results of our implementation of I3CH
	Detailed results of using Multi-Threading (Extension)
	Detailed results of changing the POOL size (Extension)
	Routes of the new Best Known Solutions

	References

