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1 INTRODUCTION 

With increasing demand for reliable and quick service, the need for efficient network planning is 

growing. Intermodal hinterland transportation of maritime containers also faces this problem, 

there is a need for development. In practice the operator of an inland transportation network has 

limited flexibility for integral optimisation: consignees often order for transportation with a fixed 

mode, route and time (Van Riessen et al., 2015). This makes it difficult to develop efficient 

transportation plans. Introducing different fare classes with other requirements of service, 

creates some room to implement an optimisation and increase the revenue. This paper focuses 

on the revenue management of the intermodal hinterland transportation of maritime containers.  

In this paper we study the model by Van Riessen et al (2015) which includes different fare classes. 

First we will reproduce their results. The model is based on a Cargo Fare Class Mix problem, with 

r routes, d destinations and p fare classes (CFCM(r,d,p)). In this paper a particular CFCM problem 

is investigated, the CFCM(1,1,2) problem, this is the model with one route, one destination and 

two fare classes. The classes are differentiated in price and time window of delivery. The different 

fare classes introduced for the model are the “Basic” class (B), where the delivery time is within 

two days, and the “Express” class (E), where the delivery time is within one day. The fare for the 

Express class is higher than for the Basic class.  

The challenge in the CFCM(1,1,2) problem is to find optimal booking limits for the different fare 

classes in order to maximise the revenue. A framework for the size of the booking limits will be 

provided in differentiated service portfolios with heterogeneous planning characteristics. This 

paper is based on the paper of Van Riessen et al (2015). 

For further research of the problem a parameter analysis will be provided in two different ways. 

The first parameter analysis is based on the one-factor-at-a-time (OFAT) approach, this means 

that one parameter will be changed while the other parameters are fixed at their nominal values. 

This is repeated for all the parameters. The booking limits are adjusted to the parameter change. 

The second parameter analysis is done where the booking limits are determined beforehand and 

the demand for the two different fare classes are changed. 

1.1 RESEARCH QUESTION 
What are the optimal booking limits using a CFCM(1,1,2) model in intermodal hinterland 

transportation, taken into account the maximization of the revenue? 

2 LITERATURE REVIEW 

2.1 INTERMODAL NETWORKS 
Multimodal freight transportation is defined as the transportation of goods by a sequence of at 

least two different modes of transportation (Steadiseifi et al., 2014). Intermodal transportation is 
a type of multimodal transportation where the cargo is transported in one and the same unit, for 

example a container. In SteadiSeafi et al (2014) an overview of intermodal planning papers from 

2005 and onwards is given. Also the definitions for the different transportation methods i.e. 

multimodal, intermodal, co-modal and synchromodal, are studied in this paper. It is explained 

that multimodal and intermodal in literature is used interchangeable.   
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2.2 REVENUE MANAGEMENT 
The revenue management with different fare classes for the cargo in intermodal hinterland 

transportation, is very similar to the revenue management of the fare class mix problem in the air 

transport industry. The amount of seats that should be available for every fare class in airline 

revenue management can be compared to the fare class booking limits in the intermodal 

hinterland transportation. Barnhart et al (2003) gives a good overview of the operations research 

in the aviation industry. In Belobaba (1989) a model for airline seat inventory control is 

described. The difference in the paper from the CFCM problem is that the booking limits become 

dynamic as the departure day approaches and the actual booking process is taken into account. 
Their approach is to find the amount of spots not to sell in the lower fare classes, so those spots 

can be sold to the higher fare classes. Therefore, the problem is to find the ‘protection levels’ for 

the higher fare classes and then determine the booking limits for the lower fare classes. 

In the paper of Pak and Dekker (2014) the cargo revenue management of the air transport is 

investigated. In the paper a booking request is accepted if the revenue for accepting the shipment 

is higher or equal to the estimated opportunity costs of the capacities of the shipment. In the air 

transport cargo, the capacity includes a weight and a volume, whereas in this paper only a 

capacity of the volume is taken into account. In Bartodziej et al (2007) a model is introduced for 

revenue management to evaluate the profitability of a request at a certain price. Also a simulation 

study is done to evaluate the approach. Again this paper is based on the cargo in air 

transportation, taken into account the weight of the cargo. 

The cargo fare class mix model of differentiated services with different planning statistics is not 

yet described in other literature then Van Riessen et al (2015). There are some similarities in the 

existing literature and the CFCM model, but in the CFCM model the operator must balance 

between two fare classes with different planning characteristics. Hence, this paper includes a new 

approach to the revenue management in the cargo industry.  

3 THE CFCM(1,1,2) MODEL 

3.1 MODELLING FRAMEWORK 
In this section we will describe the CFCM(1,1,2) model: the model with one route, one destination 

and two fare classes. The distribution of the number of daily transportation request for Express 

and Basic are denoted as NE(t) and NB(t). NE(t) and NB(t) are assumed to be independent and not 

identical. 

(𝑡)~𝑝(𝑘) = 𝑃(𝑁𝐸 = 𝑘), 𝑘 = 1,2,..., 

𝑁B(𝑡)~𝑝B(𝑘) = 𝑃(𝑁B = 𝑘), 𝑘 = 1,2,..., 

Where p(k) denotes the probability of receiving k transportation requests on a day. 

The requests for transportation of a fare class is accepted until the booking limit is reached. The 

booking limits, denoted by 𝐿𝐸  and 𝐿𝐵 for Express and Basic cargo, have to be determined. A daily 

capacity C can be used for the transportation of the cargo. The booking limits should be set with 

taken into account the capacity C. This means that the booking limit 𝐿𝐸  cannot exceed C (𝐿𝐸  ≤ C) 

and therefore all accepted Express cargo can be shipped. 
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The shipping cargo consists of three types, the demand of Express shipping today 𝐷𝐸, the demand 

of Basic shipping today 𝐷𝐵, or the remaining demand of Basic shipping from the day before RB. 

The transported goods can exist of three stages: 

1. The capacity is sufficient to transport 𝐷𝐸  and a part of 𝑅𝐵, a penalty is given for the part 

of RB that is not transported and a remainder is present for the next day. 

2. The capacity is sufficient to transport 𝐷𝐸  , 𝑅𝐵 and a part of 𝐷𝐵, no penalty is given, but 

there is still some remaining cargo that needs to be transported. 

3. The capacity is sufficient to transport 𝐷𝐸, 𝑅𝐵 and 𝐷𝐵, all demand is therefore transported.  

The distributions of the daily accepted demand for Express and Basic cargo become: 

D
E
(𝑡) = min(𝑁

E
(𝑡), L

E
), D

B
(𝑡) = min(𝑁

B
(𝑡), L

B
)   (1) 

(𝐷
E
(𝑡) = 𝑘) = 𝑝

E
(𝑘), 𝑘 = 1,2,...,𝐿

E  − 1                 (2) 

(𝐷
B
(𝑡) = 𝑘) = 𝑝

B
(𝑘), 𝑘 = 1,2,...,𝐿

B  − 1       (3) 

(𝐷
E
(𝑡) = 𝐿

E
) = 1 − ∑  𝑝𝐸(k)

𝐿𝐸−1
𝑘=0  

(𝐷
B
(𝑡) = 𝐿B) = 1− ∑  𝑝𝐵(k)

𝐿𝐵−1
𝑘=0  

With J the total revenue from the accepted demand, the objective function becomes: 

max
𝐿𝐸,𝐿𝐵

𝐽 = 𝑓E (𝐷𝐸) + 𝑓B (𝐷B) − 𝑝𝔼(EB)   (4) 

Where 𝑝 denotes the penalty for all excess demand 𝐸𝐵 . 

3.2 DERIVATION OF THE MODEL 
In the paper of Van Riessen et al (2015), the derivation of the equations can be found, however 

for the integrity of this paper the derivation will be repeated. 

To solve the objective function (4), first an equation for the expected value of 𝐷𝐸, 𝐷𝐵and 𝐸𝐵is 

derived: 

(𝐷𝐸) = ∑ 𝑘𝑃(𝐷𝐸 = 𝑘) =
𝐿𝐸
𝑘=0 ∑ 𝑘𝑝𝐸(𝑘)

𝐿𝐸−1
𝑘=1 + 𝐿𝐸(1 − ∑ 𝑝𝐸(𝑘)

𝐿𝐸−1
𝑘=0 ) (5) 

(𝐷𝐵)= ∑ 𝑘𝑝𝐵(𝑘)
𝐿𝐵−1
𝑘=1 + 𝐿𝐵(1 − ∑ 𝑝𝐵(𝑘)

𝐿𝐵−1
𝑘=0 )   (6) 

𝐸𝐵 depends on 𝐷𝐸  and on 𝑅𝐵. 𝑅𝐵 needs to be determined to derive an equation for the expected 
value of 𝐸𝐵. Let 𝑅𝐵(𝑡) denote the number of containers from Basic demand that was not 

transported on day t-1, in short 𝑅𝐵
𝑡 . 𝐸𝐵(𝑡) then becomes: 

𝐸𝐵(𝑡) = max (𝑅𝐵
𝑡 + 𝐷𝐸(𝑡) − 𝐶, 0) 

𝑅𝐵
𝑡  has the Markov property: for a given day t, the state is fully described by 𝑅𝐵

𝑡  and is 

independent from previous states. Therefore, a Markov chain is used to derive the expected 

value of 𝑅𝐵. With this Markov chain, we can continue to determine the expected revenue for 

given fixed booking limits. 

The probability distribution of 𝐸𝐵 can be formulated as: 
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𝑃(𝐸𝐵 = 𝑚) = {
𝑃(𝐷𝐸 ≤ 𝐶 − 𝑅𝐵

𝑡 )                𝑚 = 0

𝑃(𝐷𝐸 = 𝐶 + 𝑚 − 𝑅𝐵
𝑡 )       𝑚 > 0

   (7) 

Take m > 0 to find the probability of having any excess demand: 

𝑃(𝐸𝐵 > 0) = 𝑃(𝐷𝐸 > 𝐶 − 𝑅𝐵
𝑡 )       (8) 

Subsequently, we determine the probability distribution of the remaining basic demand for the 

next day, given the remaining demand of the current day, 𝑃(𝑅𝐵
𝑡+1 = 𝑗|𝑅𝐵

𝑡 = 𝑖). We will denote 
this as 𝑝𝑅𝐵

(𝑖, 𝑗). Two situations can occur, with excess demand and without excess demand. The 

transition probabilities are: 

𝑝𝑅𝐵
(𝑖, 𝑗) = 𝑃(𝑅𝐵

𝑡+1 = 𝑗, 𝐸𝐵 > 0|𝑅𝐵
𝑡 = 𝑖) + 𝑃(𝑅𝐵

𝑡+1 = 𝑗, 𝐸𝐵 = 0|𝑅𝐵
𝑡 = 𝑖)      (9) 

In the situation that excess demand occurs, the new Basic demand is not transported. Therefore, 

the remaining demand of the next day is equal to the Basic demand of today: 

𝑝𝑅𝐵
(𝑖, 𝑗) = 𝑃(𝐷𝐵 = 𝑗)             𝐸𝐵 > 0    (10) 

This combined with the probability of the excess demand, we obtain: 

𝑃(𝑅𝐵
𝑡+1 = 𝑗, 𝐸𝐵 > 0|𝑅𝐵

𝑡 = 𝑖) = 𝑃((𝐷𝐵 = 𝑗)𝑃(𝐷𝐸 > 𝐶 − 𝑖)          (11) 

In the situation that there is no excess demand, either all demand is transported or some 

remaining demand is present for the next day: 

𝑝𝑅𝐵
(𝑖, 𝑗) = {

𝑃(𝐷𝐸 + 𝐷𝐵 + 𝑅𝐵
𝑡 < 𝐶)               𝑗 = 0

𝑃(𝐷𝐸 + 𝐷𝐵 + 𝑅𝐵
𝑡 − 𝐶 = 𝑗)        𝑗 > 0

          𝐸𝐵 = 0   (12) 

If there is no excess demand, all of 𝑅𝐵
𝑡  is transported. Let S be the number of slots left for 

transporting 𝐷𝐵. In the case that S ≥ 𝐷𝐵, all demand can be transported. Otherwise S can be denoted 

as:  

𝑆 = 𝐷𝐵 − 𝑅𝐵
𝑡+1               (13) 

with probability distribution: 

𝑃(𝑆 = 𝑠) = 𝑃(𝐷𝐸 + 𝑅𝐵
𝑡 = 𝐶 − 𝑠)          (14) 

where 0 ≤ 𝑠 ≤ 𝐶 − 𝑅𝐵
𝑡 . If this distribution is not zero, we have 𝐷𝐸 = 𝐶 − 𝑅𝐵

𝑡 − 𝑠 ≤ 𝐶 − 𝑅𝐵
𝑡 . From 

(7), it follows that in these cases there is no excess demand. Using equations (13) and (14) we 

can rewrite (12) as: 

𝑃(𝑅𝐵
𝑡+1 = 𝑗, 𝐸𝐵 = 0|𝑅𝐵

𝑡 = 𝑖) = {
∑ 𝑃(𝐷𝐸 + 𝑖 = 𝐶 − 𝑠)𝑃(𝐷𝐵 ≤ 𝑠)𝐶−𝑖

𝑠=0                  𝑗 = 0

∑ 𝑃(𝐷𝐸 + 𝑖 = 𝐶 − 𝑠)𝑃(𝐷𝐵 = 𝑠 + 𝑗)𝐶−𝑖
𝑠=0          𝑗 > 0

     (15) 

Substituting equations (11) and (15) in (9), we get the general transition probabilities: 

𝑝𝐵(𝑖, 𝑗) = 

{
𝑃(𝐷𝐵 = 0)𝑃(𝐷𝐸 > 𝐶 − 𝑖) + ∑ 𝑃(𝐷𝐸 + 𝑖 = 𝐶 − 𝑠)𝑃(𝐷𝐵 ≤ 𝑠)𝐶−𝑖

𝑠=0           𝑗 = 0

𝑃(𝐷𝐵 = 𝑗)𝑃(𝐷𝐸 > 𝐶 − 𝑖) + ∑ 𝑃(𝐷𝐸 + 𝑖 = 𝐶 − 𝑠)𝑃(𝐷𝐵 = 𝑠 + 𝑗)𝐶−𝑖
𝑠=0    𝑗 > 0

   (16) 

We denote the steady-state distribution of the Markov state 𝑅𝐵 as 𝜋(𝑗) = 𝑃(𝑅𝐵
∞ = 𝑗), where 𝜋(𝑗) 

denotes the probability of 𝐽 remaining demand for the next day on a day in the long run. To find 
the distribution of 𝜋(𝑗), a solution needs to be found for the Markov equilibrium equations: 
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𝜋𝑗 = ∑ 𝜋𝑖𝑝𝐵(𝑖, 𝑗)𝑖      (17) 

∑ 𝜋𝑖 = 1𝑖           (18) 

with 𝑝𝐵(𝑖, 𝑗) defined by equation (16). For fixed booking limits, this can be solved by finding a 

feasible solution to the set of linear equations (17) − (18). 

Using the steady state expression 𝜋𝑗 for the distribution of 𝑅𝐵 in equation (7), we can find the 

expected value of the excess demand (𝐸𝐵): 

𝑃(𝐸𝐵 = 𝑚) = {
∑ 𝑃

𝐿𝐵
𝑞=0 (𝐷𝐸 ≤ 𝐶 − 𝑞)𝜋𝑞                  𝑚 = 0

∑ 𝑃(𝐷𝐸 = 𝐶 + 𝑚 − 𝑞)𝜋𝑞
𝐿𝐵
𝑞=0          𝑚 > 0

        (19) 

(𝐸𝐵)= 𝑚𝑃(𝐸𝐵 = 𝑚) = ∑ 𝑚𝑃(𝐸𝐵 = 𝑚) = ∑ 𝑚 ∑ 𝑃(𝐷𝐸 = 𝐶 +
𝐿𝐵
𝑞=0 𝑚 − 𝑞)𝜋𝑞

𝐿𝐵
𝑚=1

𝐿𝐵
𝑚=1   (20) 

Finally, the expected revenue J for fixed booking limits 𝐿𝐸   and 𝐿𝐵 can be determined using the 

expressions for the expected demand (5) − (6) and the expected excess demand in the objective 

function (4).  

4 METHODOLOGY 

With the derivation in the previous section, the CFCM(1,1,2) model becomes: 

max
𝐿𝐸,𝐿𝐵

𝐽 = 𝑓E (𝐷𝐸) + 𝑓B (𝐷B) − 𝑝𝔼(EB) 

where 

𝔼(𝐷𝐸) = ∑ 𝑘𝑝𝐸(𝑘)
𝐿𝐸−1
𝑘=1 + 𝐿𝐸(1 − ∑ 𝑝𝐸(𝑘)

𝐿𝐸−1
𝑘=0 ) 

𝔼(𝐷𝐵)= ∑ 𝑙𝑝𝐵(𝑙)
𝐿𝐵−1
𝑙=1 + 𝐿𝐵(1 − ∑ 𝑝𝐵(𝑙)

𝐿𝐵−1
𝑙=0 ) 

𝔼(𝐸𝐵) = ∑ 𝑚
𝐿𝐵
𝑚=1 ∑ 𝑃(𝐷𝐸 = 𝐶 + 𝑚 − 𝑞)𝜋𝑞

𝐿𝐵
𝑞=0  

subject to:  

𝜋0 = ∑ 𝜋𝑖[𝑃(𝐷𝐵 =  0)𝑃(𝐷𝐸 >  𝐶 − 𝑖)  + ∑ 𝑃(𝐷𝐸 +  𝑖 =  𝐶 −  𝑠)𝑃(𝐷𝐵 ≤ 𝑠)]

𝐶−𝑖

𝑠=0

𝐿𝐵

𝑖=0

 

𝜋𝑗 = ∑ 𝜋𝑖[𝑃(𝐷𝐵 = 𝑗)𝑃(𝐷𝐸 > 𝐶 − 𝑖) + ∑ 𝑃(𝐷𝐸 + 𝑖 = 𝐶 − 𝑠)𝑃(𝐷𝐵 = 𝑠 + 𝑗)], (𝑗 > 0)

𝐶−𝑖

𝑠=0

 

𝐿𝐵

𝑖=0

 

∑ 𝜋𝑖 = 1
𝐿𝐵

𝑖=0
 

𝐿𝐸 , 𝐿𝐵 ∈ ℕ 

𝜋𝑞 ≥ 0 

Using these formulas, a grid search will be done to determine the booking limits where the 
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revenue is maximized. With fixed booking limits 𝐿𝐸  and 𝐿𝐵 the problem reduces to solving a 
linear programming problem with equations (17) - (18). The maximum expected revenue J is 
then easy to determine, leading to the optimal set of booking limits. 

A sensitivity analysis will be applied to determine which parameters have a big influence on the 
outcome of the model. The analysis will be done in two ways, one analysis where the booking 
limits are adjusted by the change of the parameters and one where the booking limits are set 
beforehand. The first approach, where the booking limits are adjusted, will show what the 
influence in the revenue would be in multiple cases with different parameters. This analysis will 
be done by using the one-factor-at-a-time (OFAT) approach, as is described in Van Griensven et 
al (2006). This method consists of changing one parameter at a time while the rest of the 
parameters are fixed. This will be repeated for every parameter. The second, with fixed booking 
limits, will be done with differentiating the demand of Express and Basic. This analysis shows 
the influence on the expected revenue if the demand is different than initially expected. Here 
both the change in demand for Express and Basic are taken into account. 

In the next section the framework of the different outcomes will be provided for multiple cases 
of the problem. The revenue will be compared to cases where the CFCM problem is not used. 
For example a case of the problem will be, instead of using CFCM(1,1,2), only basic or only 
express transportation is provided. Thereafter, the sensitivity analysis will be applied. 

5 CASE STUDY AND RESULTS 

In this section the results of different CFCM(1,1,2) scenarios are presented. First, the CFCM 

model is compared to traditional methods, where the results of the methods are studied. 

Thereafter, more CFCM problems with other capacities will be compared to a traditional 

method. Last, the sensitivity analysis is done that consists of two parts.  

5.1 COMPARISON WITH TRADITIONAL METHODS 
First, we will compare the CFCM(1,1,2) model with alternative methods. Some of the alternative 

methods that can be used by transportation providers are: 

 Offering only one kind of service. 

 Offering Basic service with the possibility that the Basic service can be substituted with 
Express service. 

 Offering both, but putting no booking limit on Express, the Express demand will be 

accepted up to the capacity C. 

 Offering both, but putting no booking limit on Basic, the Basic demand will be accepted 
up to the capacity 2*C. 

In table 1 the overview of the different case studies are provided, where the CFCM(1,1,2) model 

can be compared to the alternative methods. 

For a reference of the transport costs per container, in the paper of Luo (2002) costs of $200 are 

used, this is equivalent to approximately €170. Assuming this is for Basic service, the fare for 

Express service is chosen to be €200. The penalty should always be higher than the tariff, hence 

an amount of €275 is selected. 

In the paper of Woodburn (2011) an analysis is done on the mean capacity of container trains in 

Great Britain. The mean of the capacity is around 60 slots. Therefore, in the calculation we will 

use this number.  
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The demand is not certain, but it is chosen in a way that the average daily demand is higher than 

the capacity. In this case the model needs to find a trade-off between the two fare classes. 

Table 1 Case studies of CFCM(1,1,2) model compared with alternative methods 

Case 

Capacity 

C 

Demand 

Express 

Demand 

Basic 

Fare 

(𝒇𝑬; 𝒇𝑩) 

Penalty 

𝑝 

CFCM(1,1,2) 60 Poisson(45) Poisson(45) 200;170 275 

Basic service only 60 0 Poisson(45) 200;170 275 

Express service only 60 Poisson(45) 0 200;170 275 

Basic service with 

substitution 60 0 Poisson(90) 200;170 275 

No limit on Express 60 Poisson(45) Poisson(45) 200;170 275 

No limit on basic 60 Poisson(45) Poisson(45) 200;170 275 

 

In table 2 an overview of the results is shown. The table contains for each of the experiments the 

optimal booking limits, the expected revenue, the capacity utilisation, the expected excess and 

the computing time. The expected capacity utilisation 𝜂 is computed by: 

𝜂 =
𝐸(𝐷𝐸) + 𝐸(𝐷𝐵)

𝐶
 

Table 2 Results of case studies in table 1 

Case 

 

Booking 

limits 

𝑳𝑬; 𝑳𝑩 

Expected 

revenue 

𝑱 

Capacity 

utilisation 

𝜼 [%] 

Expected 

excess 

E(𝑬𝑩)   

Comp. 

Time 

T[m] 

CFCM(1,1,2) 45;18 11377.8 100.0 0.5 19.8 

Basic service only -;120 7650.0 75.0 0.0 0.3 

Express service 

only 60;- 8991.6 74.9 0.0 

 

0.1 

Basic service with 

substitution -;120 10199.9 100.0 0.0 

 

0.2 

No limit on Express (60);16 11304.9 101.6 1.5 0.6 

No limit on basic 16;(120) 10545.5 101.7 1.1 0.5 

 

The results show that the CFCM(1,1,2) model can significantly increase the expected revenue in 

comparison to the traditional methods. Also in the cases that only one of the services is 

provided, the capacity utilisation drops significantly. 
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Figure 1: 3D plot of grid search for CFCM(1,1,2) model 

Figure 1 shows a 3D plot of the revenues of the grid search for the CFCM(1,1,2) problem stated 

in table 1. This figure shows the expected revenue for every combination of booking limits. For 

high booking limits of 𝐿𝐸  and 𝐿𝐵 the revenue drops. The reason for this is if the accepted 

demand is higher than the amount of demand that can be shipped, a penalty needs to be paid for 

every excess demand. 

To verify whether the expected revenue of the CFCM model is also higher than the expected 

revenue of other traditional methods with other capacities, we will look at multiple cases of the 

CFCM(1,1,2) model. The mean of the demand for Express and the mean of the demand for Basic 

will be denoted as 𝜇𝐸  and 𝜇𝐵. Because the expected revenue for no limit on express is the highest 

of the traditional alternatives for CFCM in table 2, the next cases will be compared to the cases 

where there is no limit on express to check whether the expected revenue for CFCM will still be 

higher. The setup of this experiment is stated in table 3 and the results in table 4.  

Table 3 Case studies of different CFCM(1,1,2) models 

Case 

Capacity 

C 

Demand 

Express 

Demand 

Basic 

Fare 

(𝒇𝑬; 𝒇𝑩) 

Penalty 

𝑝 

C=10; 𝝁𝑬 = 𝟖; 𝝁𝑩 = 𝟓 10 Poisson(8) Poisson(5) 200;170 275 

C=30; 𝝁𝑬 = 𝟏𝟓; 𝝁𝑩 = 𝟐𝟎 30 Poisson(15) Poisson(20) 200;170 275 

C=50; 𝝁𝑬 = 𝟒𝟎; 𝝁𝑩 = 𝟐𝟎 50 Poisson(40) Poisson(20) 200;170 275 

C=80; 𝝁𝑬 = 𝟔𝟎; 𝝁𝑩 = 𝟒𝟎 80 Poisson(60) Poisson(40) 200;170 275 
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Table 4 Results of case studies in table 3 

Case 

 

Booking 

limits 

𝑳𝑬; 𝑳𝑩 

Expected 

revenue 

𝑱 

Capacity 

utilisation 

𝜼 [%] 

Expected 

excess 

E(𝑬𝑩)   

Comp. 

Time 

T[m] 

C=10; 𝝁𝑬 = 𝟖; 𝝁𝑩 = 𝟓 

No limit on Express 

7;4 

10;3 

1834.7 

1799.1 

99.0 

104.0 

0.1 

0.7 

0.1 

0.04 

C=30; 𝝁𝑬 = 𝟏𝟓; 𝝁𝑩 =

𝟐𝟎 

No limit on Express 

18;16 

30;16 

5459.0 

5440.5 

100.3 

102.0 

0.3 

0.8 

 

2.1 

0.16 

C=50; 𝝁𝑬 = 𝟒𝟎; 𝝁𝑩 =

𝟐𝟎 

No limit on Express 

39;13 

50;11 

9519.7 

9429.1 

99.8 

101.6 

0.3 

1.5 

 

10.4 

0.40 

C=80; 𝝁𝑬 = 𝟔𝟎; 𝝁𝑩 =

𝟒𝟎 

No limit on Express 

60;23 

80;21 

15210.4 

15138.9 

99.9 

101.2 

0.3 

1.6 

 

57.1 

1.14 

 

Looking at the results of the comparison to the no limit on express method, the expected revenue 

of the CFCM model is always higher. In the first case, the expected revenue is increased by 2.0%. 

The expected excess for the CFCM model is also lower than for the no limit on express method. 

Therefore, the cargo for the Basic transport customers are more often not able to be shipped. 

5.2 SENSITIVITY ANALYSIS 
In the original research of Van Riessen et al (2015) the use of variation in input parameters is 

limited. In this section a parameter analysis of the model will be performed. In the analysis we 

recalculate the model with multiple parameters. With the analysis we check which parameters 

of the model have a big influence on the output of the model. If parameters might differ in real-

life cases, the analysis will show the effect it has on the revenue. The analysis will be done using 

two different approaches.  

5.2.1 Sensitivity Analysis Approach One 

A sensitivity analyses is done based on the one-factor-at-a-time (OFAT) approach, changing one 

parameter at a time while the rest of the parameters are fixed. The booking limits are not set 

beforehand in this analyses. Most parameters are fixed and known, for example the capacity. 

Therefor, there is no need to take other values into account when determining the optimal 

booking limits. The capacity, the demands for the different transport methods, the fares and the 

penalty will be varied. The variation is based on a percentage deviation from the nominal 

values.  

In figure 2 and figure 3 spiderplots are shown for a capacity of 30 and 60. The spiderplots, as 

described in Eschenbach (1992), show the relationship between the parameters and the output, 

with a percentage deviation of the parameters. The center of the spiderplot is the base case, 

where the nominal values of the parameters are used. The nominal values for the parameters 

are shown in table 5. 
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The booking limits are not fixed, for every change in a parameter the model has been run to find 

the optimal booking limits.  

Table 5 Nominal values for parameter analysis 

Case Capacity 

C 

Demand 

Express 

Demand 

Basic 

Fare 

(𝒇𝑬; 𝒇𝑩) 

Penalty 

𝑝 

1. 60 Poisson(40) Poisson(40) 200;170 275 

2. 30 Poisson(20) Poisson(20) 200;170 275 

 

 

Figure 2: Spiderplot for capacity of 30 

 

Figure 3: Spiderplot for capacity of 60 

In the spiderplots it is shown that the revenue is not very sensitive to changes in 𝜇𝐸  and 𝜇𝐵. Also 

changes in the penalty will not influence the revenue very much. The fares for E and B will 
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influence the revenue on a linear level. The capacity will also change the revenue on a linear 

level, but after a big increase of the capacity, the revenue does not increase anymore. This is 

expected, because if the capacity is too high, the demand for transportation is not big enough to 

fill all the slots.  

5.2.2 Sensitivity Analysis Approach Two 

Because the distribution of the demand is uncertain and can differ from the expected demand, a 

risk analysis should be performed for this parameter. The optimal booking limits are 

determined beforehand. In this case the analyses are done based on the optimal booking limits 

for the case in table 5 with a capacity of 30. The optimal booking limits are 20 for Express and 

12 for Basic and the expected revenue is around 3080 euros. In figure 4 the outcomes are shown 

for this analysis. The demand of Basic and Express is varied between Poisson(5) and 

Poisson(30).  

 

Figure 4 Sensitivity analysis with fixed booking limits for C=30 

Looking at these graphs, the expected revenue with fixed booking limits is not very sensitive to 

the demand of Basic. The revenue is on the other hand sensitive to decrease of the demand of 

Express. The revenue drops significantly if the demand of Express drops. For a high demand of 

Express and a high demand of Basic, the revenue also drops slightly. This is due to the penalty of 

the expected excess. The booking limits in this case are set for a 𝜇𝐸  and 𝜇𝐵 of 20, where the 

limits are chosen higher than the capacity, because the demand for Basic can also be shipped on 

the second day. If the demand is higher, the expected excess will increase, which causes in a 

higher penalty. In figure 5 the expected excess is shown for the analysis.  

 

Figure 5 Expected excess for sensitivity analysis for C=30 
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6 SUMMARY AND RECOMMENDATIONS 

In this paper the Cargo Fare Class Mix (CFCM) problem of Van Riessen et al (2015) is studied. 

The CFCM(1,1,2) model considers one route, one destination and two fare classes. This model 

can be used for intermodal networks for container transportation where multiple services with 

different delivery deadlines are offered. The paper focuses on the revenue management of the 

transportation. The main goal of the problem is to find the correct balance between offering one 

fare class against the other so that the revenue can be increased.  

In the results section it is shown that for the case studies the expected revenue for the CFCM 

approach is higher than the expected revenues in other traditional methods. The no limit on 

express method seems to compete with the CFCM method, but comparing multiple scenarios 

with the two methods, the expected revenue for the CFCM model stays higher than the one of no 

limit on express method.  

Two parameter sensitivity analyses are applied to the model. The first analysis is based on the 

one-factor-at-a-time (OFAT) approach where one parameter will be changed while the other 

parameters are fixed at their nominal values. This is repeated for all the parameters. The analysis 

shows that for changes in 𝜇𝐸  and 𝜇𝐵 the revenue will not change much if the booking limits can 

be matched to the changes in the 𝜇’s. In the second analyses it shows that when the booking limits 

are set beforehand and the demand of Express service is less than expected, there will be a 

significant decrease in the revenue. From these results it seems that it is better to therefor 

underestimate the demand for Express than to overestimate it. 

In further research it will be useful to provide a model that is applicable for more routes, 

destinations and fare classes. Also the sensitivity analyses can be extended: instead of using a 

one-factor-at-a-time method, a method can be used that handles multiple factors simultaneously. 

In this way the sensitivity can be checked in a case that multiple parameters are changing.  The 

correlation of the different parameters can cause a different sensitivity, which is not checked with 

the OFAT method. 
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