
Erasmus University Rotterdam
Erasmus School of Economics

Performance Analysis of Online Algorithms for Logistics
Models with Online Customer Selection

Bachelor Thesis
Econometrics and Operations Research

Seong Ho Lee
384055

Supervised by
Dr. Wilco van den Heuvel

Second assessor
R. B. O. Kerkkamp, MSc

July, 2016

Abstract

In this thesis, we review and extend the results of the recent paper ”Supply Chain Management with
Online Custmoer Selection” by Elmachtoub and Levi (2016). The authors study online versions of four
logistics models with rejection option, where the supplier has a freedom to decide whether to serve or
reject a customer request without having any prior knowledge of the future customer arrivals. In order
to make the cost minimizing customer selections, they provide two unique online algorithms, CopyCat
Algorithm and StablePair Algorithm, that apply the concept of repeated reoptimization of corresponding
offline subproblems. They provide computational studies of both algorithms for two types of inventory
control problems, Economic Lot Sizing Problem and Joint Replenishment Problem, with online customer
selection (online ELSP-CS, online JRP-CS) as well as a Facility Location Problem with online customer
selection (online FLP-CS).

We first reproduce the computational results of the CopyCat and the StablePair for the online ELSP-
CS and the online JRP-CS. Then we consider three interesting applications of the CopyCat and the Sta-
blePair for (i) the online ELSP-CS and the online JRP-CS with production availability date, (ii) the online
JRP-CS with a submodular cost structure, and (iii) an online version of Prize Collecting Travelling Sales-
man Problem (online PCTSP). Using the well-known competitive ratio framework, we demonstrate that
our experiments for the online ELSP-CS and the online JRP-CS correctly reproduce the performance of
the benchmark results. Moreover, we observe that the inclusion of production availability date substan-
tially decreases the computation time of the CopyCat at a cost of increased competitive ratios. Also,
we show that associating the submodular cost structure to the online JRP-CS largely increases the com-
plexity for both CopyCat and StablePair. Finally, the CopyCat Algorithm on the online PCTSP show a
comparable strength to the J-L online algorithm provided by Jaillet and Lu (2013) for a small number of
requests, but significantly worse for large instances.

Contents

1 Introduction 1
1.1 Thesis Outline and Contributions . 1
1.2 Replication and Extensions . 2

I Problem Description 4

2 Literature Review and Problem Motivation 4

3 General Notation 4

4 Online Algorithms 5
4.1 CopyCat Algorithm . 5
4.2 StablePair Algorithm . 5
4.3 Production Step . 6

II Logistics Models and Solution Approaches 7

5 Economic Lot Sizing Problem with Online Customer Selection 7
5.1 MIP Formulation of the Offline ELSP-CS . 7
5.2 StablePair Algorithm for the Online ELSP-CS . 8
5.3 Online ELSP-CS with production availability date . 9

6 Joint Replenishment Problem with Online Customer Selection 10
6.1 MIP Formulation of the Offline JRP-CS . 10
6.2 StablePair Algorithm for the Online JRP-CS . 11
6.3 Online JRP-CS with production availability date . 11

7 Cardinality Joint Replenishment Problem with Online Customer Selection 12
7.1 MIP Formulation of the Offline CJRP-CS . 12
7.2 StablePair Algorithm for the Online CJRP-CS . 13

8 Prize Collecting Travelling Salesman Problem with Online Demand Selection 13
8.1 Flow Formulation of the Offline PCTSP . 13
8.2 Jaillet-Lu Online Algorithm for the Online PCTSP . 14

III Empirical Competitive Ratio 16

9 Online ELSP-CS 16
9.1 Online ELSP-CS with production availability date . 18

10 Online JRP-CS 18
10.1 Online JRP-CS with production availability date . 19

11 Online CJRP-CS 19

12 Online PCTSP 20

IV Conclusion 21

Appendices 22

A Algorithm 22

B Proofs 23

C Tables and Figures 24
C.1 Online ELSP-CS . 24

C.1.1 Onlin ELSP-CS with production availability date . 25
C.2 Online JRP-CS . 26

C.2.1 Onlin JRP-CS with production availability date . 27
C.3 Online CJRP-CS . 28
C.4 Online PCTSP . 29

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

1 Introduction

The biggest challenges facing modern logistics industry involve satisfying customer demands, providing
on-time delivery and minimizing operations cost. In order to alleviate these challenges, many practition-
ers and researchers attempt to model the logistics systems by forming appropriate optimization problems
with the goal of maximizing the profits by minimizing the total production costs and/or maximizing the
total sales revenues.

While most of classical optimization models require satisfying all market demands, the recent trend
is to account for a flexible decision on the supply side as well. That is, supplier selects which customer
to serve and matches its production capabilities. The freedom to accept or reject a customer’s request
extends the conventional logistics model to a model with customer selection (CS). The profit maximizing
supplier base his customer selection on his cost structure and the customer’s demand characteristics, such
as her order quantity and item type.

The goal of our thesis is to review and extend on the recent paper ”Supply Chain Management with
Online Custmoer Selection” by Elmachtoub and Levi (2016). Specifically, we consider their two inter-
esting algorithms, which are designed to solve online versions of the logistics models with customer
selection, where the supplier makes his accept/reject decision in real time. In the online setting, every
customer request arrives one after another, and whenever a new request arrives the supplier needs to
make an immediate accept/reject decision before receiving the next new request. This selection step is the
first step from the two-step process of the online algorithm. The selection step ends when the supplier
completes all his accept/reject decisions on every customer request. Then, the production step begins,
whereby the supplier serves his accepted customers with the minimum production costs. The goal of the
supplier is to increase his profits by minimizing the total cost from the customer rejection and the produc-
tion cost incurred from serving the accepted customers. In this thesis, we focus on the cost minimization
problems rather than the profit maximization problems since finding an optimal solution to the profit
maximization problems is proven to be intractable (Van den Heuvel et al. 2012).

1.1 Thesis Outline and Contributions

Our research objective is to obtain the empirical performance of the two novel online algorithms developed
by Elmachtoub and Levi (2016). To demonstrate their performance, we solve a class of different logistics
problems with the variant of online customer selection. In particular, we consider two types of logistics
problems, inventory control problem and vehicle routing problem, which we explain in more detail in
the next few paragraphs.

First, we refer to an online algorithm as a policy that allows a supplier to make efficient online decisions
in specific logistics models. Elmachtoub and Levi consider two such online algorithms, CopyCat and
StablePair, which are applications of repeated reoptimization. They assist the supplier’s accept/reject
decision for the customer that just arrived based on his past decisions. More specifically, these algorithms
make decisions for the online customer selection problem based on solving a problem with offline customer
selection, which we define in the next paragraph, with respect to all customers that arrived thus far and
assuming that no selection decisions have yet been made.

The performance of the two online algorithms is evaluated using the famous competitive ratio frame-
work. The competitive ratio summarizes the relative quality of the solution provided by the online al-
gorithms to the optimal offline solution that can be obtained if the supplier has all information about the
future customer arrivals before making his first selection decision. If we denote the optimal offline so-
lution as C∗ and the online solution as C, a competitive ratio of α means that the following inequality
holds: C ≤ αC∗, where α is a constant. The competitive ratio is most informative when the customer
arrivals are generated by a worst-case adversary, who aims to maximize the ratio between the cost of the
online and the optimal offline solution. That is, the competitive ratio of α guarantees that the cost of the
online policies is at most the α times the optimal offline cost for any sequence of customers and their
order quantities.

The first class of logistics models under our consideration is the inventory control model, which captures
the uncertainty of how much to order to meet the market demand in each time period. In this thesis,
we are interested in the uncapacitated inventory models whose cost structures have the economies of
scale. This way, the supplier becomes more generous with accepting future customers and less with
the current customer. Also, the economies of scale relate the marginal costs of accepting the current

1

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

customer to the customers accepted in the past, hence the supplier cannot separate one from another. For
demonstration, we consider three different cases of such inventory control problems and apply the online
customer selection framework to these problems.

Our first inventory control problem is the economic lot sizing problem with online customer selection (online
ELSP-CS). In the offline setting, the supplier must place production orders over a discrete planning hori-
zon and meet all sequence of demands over the horizon. Each customer request is satisfied by the latest
order prior to it due date. Placing an order requires a setup procedure, which incurs a constant setup cost
irrespective of the amount of order. Holding an order in the inventory until the due date incurs a per time
holding cost per every unit of order quantity. The offline ELSP-CS allows the supplier to reject customers
at a per unit rejection cost. In this thesis, we look at the application of online customer selection, where
the customers arrive one at a time with a due date and a demand quantity. The supplier either accepts or
rejects the request immediately upon its arrival before the beginning of the production step. This decision
is made without any prior knowledge about future customer arrivals. When all customers have arrived,
one proceeds to the production step where the supplier optimally serves all the accepted customers.

The second inventory control problem is the online variant of the multi-item joint replenishment problem
with customer selection (online JRP-CS). This is a generalization of the online ELSP-CS with multiple item
types. The setup costs consist of a joint setup cost and a type-specific setup cost. As with the online
ELSP-CS, holding the demand quantity until the due date incurs a per unit, per time holding cost and
rejecting a customer incurs the rejection cost. One can easily convert these costs into type-specific costs,
but we do not consider them in this thesis.

Our last inventory control problem is the cardinality joint replenishment problem with online customer
selection (online CJRP-CS). The classical CJRP is a generalization of the traditional JRP with a strictly sub-
modular joint setup cost with respect to the number of item types included in every order. We explain
the concept of submodularity in Section 7. Cheung et al.(2015) introduced this NP-hard problem and
provided an efficient algorithm with a constant approximation ratio. However, we are not aware of any
literature that provide the computational study on the online CJRP-CS.

The second class of logistics models that we consider in this thesis is a vehicle routing problem. The
single vehicle routing problem aims to plan an optimal route for a vehicle or a server to traverse all
customer locations and deliver the requested quantity. Here, we consider an online version of a famous
vehicle routing application known as travelling salesman problem (TSP). In this NP-hard problem, a server
begins his route from the origin, visit all customers located in a general metric space, and returns to the
origin with the shortest travelling distance. A customer-selection variant of the TSP is called the prize-
collecting travelling salesman problem (PCTSP). In the offline PCTSP, the server is aware of all customers
before he begins his tour. Rejecting to visit a customer incurs a penalty cost that represents the lost
revenue estimated from the rejection cost and the demand quantity. We consider the online version of
the PCTSP, which we refer as online PCTSP, where the requests arrive sequentially over time in a general
metric space and a server makes a real-time decision on which customer to visit and in what order to visit
them without prior knowledge of future requests.

We present our work in four big Parts, each containing relevant Sections. In Part I, we identify and
describe the problem with literature review (Section 2), general notations (Section 3) and the idea of the
CopyCat and the StablePair online algorithms (Section 4). In Part II, we provide the formulations of the
relevant logistics models and provide the solution approaches using the CopyCat and the StablePair. In
Part III, we present our main computational results for the logistics models with those online algorithms.
We round our thesis with the conclusion in Part IV. In the next subsection, we explicitly describe what
results have been replicated from the original work of Elmachtoub and Levi (2016).

1.2 Replication and Extensions

We first outline the results replicated from the paper ”Supply Chain Management with Online Custmoer
Selection” written by Elmachtoub and Levi (2016). First, we use their theorems and lemmas in order to
use their online algorithms, CopyCat and StablePair. Next, we implement online algorithms to the same
set of online inventory control problems with customer selection, online ELSP-CS and the online JRP-
CS, to get as close results as theirs. We note that we therefore used the same experiment scenarios and
simulation parameters.

Beyond our replications, we consider three extensions to their work. Our first extension associates
the online ELSP-CS and the online JRP-CS with the production availability dates, where the supplier

2

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

can only setup an order between a specific time interval due to perishable products or semi-finished
products that require extra processing time before setting up an order. It was suggested by N. Absi et
al.(2011) in their study of uncapacitated lot sizing problem with production time window. Our second
extension is the online Cardinality JRP-CS, which was not contained in the original paper. However, the
authors do consider the submodular cost problems with online customer rejection. Our motivation comes
from merging those two models and demonstrating their effects on performance. Lastly, and perhaps
most interestingly, we consider the online PCTSP to experiment how their online algorithms perform in
comparison to the contemporary best online algorithm.

3

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

Part I

Problem Description

2 Literature Review and Problem Motivation

The most relevant paper to this thesis is the original paper written by Elmachtoub and Levi (2016), which
considers supply chain management with online customer selection. They prove that the CopyCat and
the StablePair Algorithm are 3-competitive for the online ELSP-CS, and 4-competitive and 3-competitive
for the online ELSP-CS and online JRP-CS, respectively.

In the offline context, there has been a stream of noteworthy literature on logistics models with cus-
tomer selection. Bienstock et al. (1993) study the offline prize-collecting travelling salesman problem,
providing an approximation algorithm with constant bound. Geunes et al. (2011) develop a general
linear programming rounding framework to approximately solve several supply chain problems with of-
fline market selection and stochastic demand. T’kindt and Croce (2012) consider two-machine flow-shop
scheduling problem with rejection and with due date assignment.

Interesting findings in the context of online optimization in operations research include the work by
Van den Heuvel and Wagelmans (2010), where they show the competitive ratio of the online economic
lot sizing problem has a lower bound of two. Jaillet and Lu (2013) study the online PCTSP and propose
an asymptotically best possible O(

√
log n) in a general metric space with prior knowledge about the total

number of requests n. Fotakis (2008) provides a lower and a customer-size-dependent upper bound for
the online facility location problem. Finally, Garg et al. (2008) provide O(log n) asymptotic bound for the
online Steiner tree problem.

The online algorithms, in general, have many real life applications. Unlike the classical approach of
assuming a demand distribution to anticipate the future customer arrivals, online policies do not base
their decisions on unknown future information, making it more robust to the demand volatility. Also,
under many logistics settings, the decisions have to be made quickly and precisely, since otherwise the
extra waiting time will incur a large sum of delay costs. It is especially severe in the case of multi-level
logistics systems, where multiple parties would suffer from the delay.

3 General Notation

The models discussed in this thesis involve decisions that are made in two steps. The first step is the
selection step, where the supplier decides on which customers to serve or reject. In stage k, customer
k is observed by the supplier. Each customer brings her specific requirements Ik and the components
of the requirements vary for different logistics problems. The requirements always include the demand
quantity dk, but may contain the due date tk, item type ik or location coordinates (xk, yk). Once a new
customer is observed, the supplier has to either accept or reject customer k, while he can only leverage the
information from the past customers until stage k. If customer k is rejected, a per unit cost of rk is incurred,
which corresponds with the lost revenues. If customer k is accepted, her requirements must be served in
the production step, which would incur relevant production costs. The selection step is complete when
the supplier does not observe any more new customers. At the end of the selection step, the customers
are partitioned into groups of accepted and rejected customers denoted by A and Ω, respectively. It holds
that for these sets defined over the first k customers, Ak and Ωk: Ak ∩ Ωk = ∅, Ak ∪ Ωk = Uk, Ak−1 ⊆ Ak

and Ωk−1 ⊆ Ωk. The total rejection cost from the selection step is denoted by R(Ω).
The second step of the procedure is the production step. LetQ ⊆ Q be the set of production options the

supplier can use to serve customers. The production options can represent various production settings.
In case of the inventory control problems, the production option is the set of potential order dates. Define
U = {1, ...,M} to be thee the production costs by P (B). In Sections 5-8 we specify the definitions for Ik,
rk and Q. set of all customers and Uk ⊆ U denote the first k customers. (For convenience, we drop the
subscript for stage M : UM = U) Then, for a nonempty set of production options Q and a set of customers
B ⊆ U , P (Q,B) denotes the minimum possible production costs incurred to serve all customers in B
by using the production options Q. When there is only one production option, such that |Q| = 1, omit
Q: P (Q,B) = P (B). The online problem defined on the production options Q and the customers Uk is
denoted by φ(Q,Uk), and as φ(Uk) when |Q| = 1.

4

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

If the supplier has a prior information of future customers, one can solve the offline customer selec-
tion problem defined over a set of production options Q ⊆ Q and a set of customers U : φ∗(Q,U) =
minA⊆U{P (Q,A) + R(Ω)}. If there is only one production option (|Q| = 1), then we denote the offline
problem as φ∗(U). The optimal offline cost with respect to first k stages is denoted by C∗(Uk), which
is equal to the sum of production and rejection costs of optimally chosen A∗ and Ω∗. For the first k
customers, we denote the sets as A∗k and Ω∗k, respectively.

4 Online Algorithms

In this section, we introduce the two online algorithms developed by Elmachtoub and Levi; CopyCat and
StablePair Algorithm. Also, we briefly present their relevant theoretical results.

4.1 CopyCat Algorithm

The idea behind the CopyCat Algorithm is fairly straightforward. The CopyCat gets its name as it
”copies” the optimal offline selection decision. It accepts the request from customer k if the respective
offline problem defined over all customer requests observed thus far (φ∗(Uk)) accepts the customer k
(k ∈ A∗k). If the respective offline problem rejects the customer k (k ∈ Ω∗k), then the CopyCat Algorithm
also rejects the customer k and incurs a per unit rejection cost r. Therefore, the selection process for
the CopyCat Algorithm involves solving a respective offline problem defined on all the observable set
of customers at stage k (φ∗(Uk)). The accepted and rejected customers by the CopyCat Algorithm are
partitioned into the sets ACC

k and ΩCC
k , respectively.

CopyCat Algorithm
Accept current customer k if and only if k ∈ A∗k.

The principle of the CopyCat Algorithm is intuitive and simple, and despite of its simple structure El-
machtoub and Levi show that the rejection cost for CopyCat will never be too large for any problem with
online customer selection as long as the production cost P (·) is monotonically non-decreasing. Hence, it
can be shown thatR(ΩCC) ≤ C∗(U) (Lemma 1, proof in the appendix). If the production costs of CopyCat
can be bounded by α times the optimal offline cost C∗, then CopyCat is (α+ 1)-competitive.

THEOREM 1
Let ACC be all the customers that the CopyCat Algorithm accepts and let α be a positive scalar.
If P (ACC) ≤ αC∗(U), then CopyCat is (α+ 1)-competitive.

The key feature of the CopyCat Algorithm is that in every new stage k, the policy solves the respective
offline problem φ∗(Uk) that does not consider the set of previously accepted customers by the CopyCat
Algorithm denoted by ACC

k−1 (i.e. we reoptimize the problem with the customers in Uk). If one fixes the
previously made decisions during the reoptimization, the CopyCat Algorithm would have rejected most
of the customers and result in poor performance.

A major drawback of the CopyCat Algorithm is that it requires solving the exact offline problem in
each stage, which may be difficult to achieve when the offline problem itself is already NP-hard. In-
deed, most of the problems considered in this thesis are NP-hard problems and CopyCat Algorithm may
show poor quality in such problems. Therefore, Elmachtoub and Levi present another algorithm that is
efficiently computable for a variety of inventory control problems.

4.2 StablePair Algorithm

The StablePair Algorithm requires finding a stable pair whenever a new customer arrives. A pair of
production options Q ⊆ Q and customers B ⊆ U, (Q,B), is a stable pair if there exists an optimal
solution to the respective offline customer selection problem defined on Q and B, denoted by φ∗(Q,B),
that accepts all customers in B. Then the StablePair accepts customer k if k ∈ B. The accepted and
rejected customers by the StablePair Algorithm are partitioned into the sets ASP

k and ΩSP
k , respectively.

5

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

StablePair Algorithm
Accept current customer k if and only if there exists a stable pair (Q,B) ⊆ (Q, Uk), such that
k ∈ B.

As with the CopyCat Algorithm, Elmachtoub and Levi provide the theoretical bound for the Stable-
Pair rejection cost: R(ΩSP) ≤ R(ΩSP ∩ Ω∗) + P (A∗) (Lemma 2, proof in the appendix). Then using the
above bound and a bound for the production cost, we can obtain strong competitive ratios that can be
strictly better than CopyCat.

THEOREM 2
Let ASP be all the customers that the StablePair Algorithm accepts and let α and γ be posi-
tive scalars. If there exists an optimal offline solution (A∗,Ω∗) such that the bound P (ASP) ≤
αP (A∗) + γR(ASP ∩Ω∗) +R(ASP ∩Ω∗) holds, then StablePair is max{α+ 1, γ + 1}-competitive.

Elmachtoub and Levi explain three main benefits of StablePair Algorithm over CopyCat Algorithm.
The first benefit is the stronger bound of StablePair Algorithm on the rejection costs, and the second
benefit is that the selection step takes polynomial time, supporting its computational efficiency compared
to the CopyCat Algorithm. Lastly, the StablePair Algorithm does not ”regret” its decision unlike the
CopyCat Algorithm. The CopyCat Algorithm regrets its decision if the optimal solution of the offline
subproblem φ∗(Uk) rejects any of the customers in ACC

k−1 at stage k. This is not true for the StablePair
Algorithm since once a customer is accepted the original stable pair always accepts the customer in later
stages.

Finally, it can be proved that the set of accepted customers for the CopyCat Algorithm is always
contained in the set of accepted customers for the StablePair Algorithm. Let ACC be the set of accepted
customers by the CopyCat Algorithm and ASP be that of the StablePair Algorithm. Then the accepted
set of customers by StablePair is at least that of CopyCat. That is, ACC ⊆ ASP (Lemma 3, proof in the
appendix).

Despite the strong benefits of StablePair Algorithm in both empirical applications and theoretical
bounds, implementing it to a general class of logistics models can be quite tricky. Elmachtoub and Levi
provide efficient implementation steps for StablePair on online ELSP-CS and online JRP-CS, but we are
not aware of efficient StablePair implementation steps for the online PCTSP or in any other variants
of inventory control problems that we consider. This difficulty arises due to the abstract definition of
production option Q. Hence, CopyCat Algorithm has a strict advantage over the StablePair Algorithm
with its simple implementation.

4.3 Production Step

At the end of the CopyCat and/or StablePair selection step, the selection process outputs the set of ac-
cepted customers over all arrived customers A ⊆ U . Hence, we obtain the rejection costs after the selec-
tion step but not the production costs, yet.

In the production step, one solves the traditional logistics problem without the rejection option de-
fined on the set of all accepted customers. For example, after completing the StablePair selection algo-
rithm on the online ELSP-CS (with ASP

ELSP-CS), the production costs are determined by solving the tradi-
tional ELSP defined on the set ASP

ELSP-CS.
In Part II, we consider four online versions of logistics models with customer selection and outline our

solution approaches based on the original work by Elmachtoub and Levi (2016). Note that in Part II, we
only discuss the offline formulations and the StablePair implementation of those models, and we do not
elaborate on CopyCat implementation or the production step. This is because one can easily implement
both CopyCat and production procedure by solving a respective offline problem.

6

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

Part II

Logistics Models and Solution Approaches

5 Economic Lot Sizing Problem with Online Customer Selection

The economic lot sizing problem (ELSP) is a discrete time inventory model with a single item type. The ob-
jective of the ELSP is to serve a set of customers, each with a specific demand requirement, by a sequence
of production orders over a planning horizon. Each order incurs a setup cost of K and the order date
must be placed before the due date of the customer being served by that order. Every customer request is
served by the latest order prior to its due date. After making an order, if the order date is strictly earlier
than the due date of the served customer, the supplier receives a per unit holding cost h. The objective of
ELSP without the customer selection is to minimize the total setup cost plus the total holding cost.

The ELSP with customer selection (ELSP-CS) allows the supplier to be more flexible with selecting
the set of customers to be served. The supplier can reject a request at a per unit rejection cost of r and
rejecting a customer k with demand quantity dk would incur the cost of lost revenue rdk. The goal of the
ELSP-CS is to minimize the total rejection costs plus the total production costs for serving the accepted
customers. This is known as the ELSP with offline customer selection (offline ELSP-CS).

Unlike in the offline setting, the online ELSP-CS requires the supplier to immediately accept or reject
a customer request without information about the future customer arrivals. This means that the supplier
can only observe the requirements of the customers who already arrived and not those to arrive. This
is different from the offline ELSP-CS where the supplier has all knowledge about the future customers
upfront. The objective of the online ELSP-CS is to minimize the total production cost P (A) and rejection
costs R(Ω). Note that for the online ELSP-CS, the set of production options Q ⊆ Q is defined to be the
potential order dates.

5.1 MIP Formulation of the Offline ELSP-CS

The exact optimal offline solution to the offline ELSP-CS is obtained from the mixed integer programming
(MIP) formulation introduced by Geunes et al. (2011). The objective of the MIP formulation is to minimize
the total production and the rejection costs throughout the discrete time horizon. In this section, we
present the MIP formulation for the offline ELSP-CS developed by Geunes et al. (2011).

For each customer j ∈ {1, ...,M}, she has a quantity of demand with the due date of t, which is
denoted by dtj . Setting up an order at time s incurs the fixed cost of Ks. The total holding cost associated
with satisfying the demand dtj by an order placed at time s with a per unit holding cost of hst is denoted
by Hstj . This value can be computed from Hstj = dtjhst.

For each time period s = {1, ..., T}, let xstj be a decision variable representing the proportion of
demand dtj satisfied from an order in period s. ys is a binary decision variable that equals 1 if an order
is placed at time s and 0 otherwise. Finally, the binary decision variable zj is equal to 1 if the customer is
selected and 0 otherwise.

The MIP formulation of the offline ELSP-CS is defined over a set of all customers with size M and it
is denoted by φELSP-CS(M).

7

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

Problem φELSP-CS(M)

minimize
T∑

t=1

M∑
j=1

(1− zj)rdtj +

T∑
s=1

Ksys +

M∑
j=1

T∑
t=1

t∑
s=1

Hstjxstj (1)

subject to
t∑

s=1

xstj = zj j = 1, ...,M ; t = 1, ..., T, (1.1)

xstj ≤ ys j = 1, ...,M ; t = 1, ..., T ; s = 1, ..., t, (1.2)

0 ≤ xstj ≤ 1 j = 1, ...,M ; t = 1, ..., T ; s = 1, ..., t, (1.3)

ys, zj ∈ {0, 1} j = 1, ...,M ; s = 1, ..., t. (1.4)

The objective function (1) minimizes the sum of total rejection costs, the setup costs, and the holding
costs. The first constraint (1.1) defines that if the customer j is accepted, then her demand must be com-
pletely satisfied. The constraint (1.2) imposes that if an order is set at time s, the binary decision variable
ys is equal to 1 as xstj will be larger than 0 for some s ∈ {1, ..., t}. The last two constraints (1.3) and (1.4)
define the range of the decision variables xstj , ys and zj .

5.2 StablePair Algorithm for the Online ELSP-CS

The StablePair algorithm accepts the customer k if there is a stable pair (Q,B) where Q is the set of
production options (the order dates) and B is a set of customers, such that k ∈ B. Algorithm 1 outlines
the selection process, which first identifies the stable pair for the online ELSP-CS and then make the
accept/reject decision for the current customer k. The idea of the StablePair is to reduce the search space
for stable pairs by only considering those with one production option, i.e. a single order date.

The StablePair implementation in Algorithm 1 applies the property of zero inventory ordering (ZIO)
and the results of two lemmas provided by Elmachtoub and Levi (2016). Wagner and Whitin (1958) show
that the optimal solution for the classical ELSP has a ZIO property and therefore the orders are placed
when the inventory level hits zero. Based on the ZIO property of the optimal offline ELSP solution, one
can see that every order serves all requests whose due dates are between the order date and the due date
of the last customer that is served by that order (”last due date”). The setup interval of the order is the
interval between the order date and the last due date for that order. Then, Elmachtoub and Levi prove
two lemmas stating that the maximum size of the setup interval is r/h (Lemma 4 in appendix) and that
the the setup intervals from the StablePair solution and the optimal offline solution intersect (Lemma 5
in appendix). Algorithm 1 uses these results.

8

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

Algorithm 1 Online ELSP-CS StablePair Selection Algorithm
Input: Order costs (K,h), rejection cost (r), a set of customers observable (Uk) and customer demand
(dk where k ∈ Uk)
Output: Binary decision variable zk that equals 1 if the customer k is accepted and 0 otherwise.

1: Initialize: zk = 0
2: Outer Loop:
3: for Every due date t of each customer in Uk do
4: Set Q = {t}
5: Define set D = {j ∈ Uk : tj ∈ [t, t+ r/h]}
6: Define condition A: R(D) ≥ K +

∑
j∈D

h(tj − t)dj

7: if condition A is true then
8: zk = 1
9: Exit Outer Loop

10: end if
11: end for
12: Output zk

Due to line 4, the production option Q contains a single due date t. Then line 5 defines a set of
customers D whose due dates are in the setup interval of the order at Q. Line 6 defines the condition to
accept customer k if serving all customers in D is cheaper than or equal to rejecting them. Finally, the
same process is repeated for every customer in Uk until the accepting condition is satisfied. If satisfied,
the algorithm outputs the binary variable zk that is equal to 1 and completes the algorithm.

The ZIO property implies that the potential production options (order dates) are the due dates of
Uk since the inventory level is equal to zero on some due dates of customers. This property effectively
reduces the search space for the stable pairs - there are at most N candidates of the stable pairs, and Al-
gorithm 1 takes O(N) time. Elmachtoub and Levi (2016) prove that both the StablePair and the CopyCat
for the online ELSP-CS are 3-competitive.

5.3 Online ELSP-CS with production availability date

An interesting extension of the ELSP-CS is to include the production availability date for serving customer k,
which is denoted by ek. The production availability date is the earliest date in which the supplier can set
an order to serve the customer k before her due date. In many real life settings, the logistics system applies
the framework of production availability dates. As suggested by N. Absi et al. (2011), the availability date
is implicitly and explicitly modelled for perishable products or items that involve semi-finished products
in their production. Although the availability date is not observable from information set Ik = {dk, tk}
that a customer specifies upon her arrival, one can assume that the experienced supplier can correctly
estimate the availability date from the customer’s information set. Indeed, under the lot-sizing model, the
supplier only receives demand requests of a single item type throughout the whole planning horizon. It is
likely to be that an experienced supplier can correctly estimate the availability date through his repeated
practices. This also implies that the size of interval [ek, tk] will be the same for all customers under the
single-item ELSP-CS model. In addition, we note that including the production availability date largely
improves the computation time of the CopyCat Algorithm as it effectively reduces the search space for
the optimal order dates by reducing the number of candidate order dates. For notational convenience,
we include the production availability date in the customer’s information set, Ik = (dk, ek, tk). Then, the
supplier can only serve customer k by an order placed on the interval [ek, tk].

The inclusion of production availability date can be modelled by replacing the constraint (1.2) by two
additional extra constraints (1.2.1) and (1.2.2):

xstj ≤ ys j = 1, ...,M ; t = 1, ..., T ; s = ej , ..., t, (1.2.1)
xstj = 0 j = 1, ...,M ; t = 1, ..., T ; s = 1, ..., (ej − 1). (1.2.2)

Two constraints ensure that the customer k is served by an order placed at or after the availability
date ek. Note that since we do not have an efficient implementation plan for the StablePair Algorithm,

9

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

we only demonstrate the performance of the CopyCat Algorithm for this variant.

6 Joint Replenishment Problem with Online Customer Selection

The joint replenishment problem (JRP) is a variant of the ELSP with multiple item types i indexed from 1 to
N . The information set of customer k includes the item type ik. Each order incurs a joint setup cost of K0

and for each item type i ordered, an item setup cost of Ki is incurred. Unlike the ELSP, each customer
can only be served by orders that contain her item type and the order date must be placed before her
due date. Again, each customer is served by the last order prior to her due date. After an order is made,
there is a per unit holding cost h for all types of items to carry in inventory from the order date to the
due date of the customer that is served by the order. The objective of JRP without the rejection option is
to minimize the total ordering cost plus the holding cost. Arkin et al. (1989) show that this problem is
NP-hard.

The JRP with customer selection (JRP-CS) enables the supplier to reject a request with any type of
item at a per unit rejection cost of r and rejecting a customer k with demand quantity dk would incur
the cost of lost revenue: rdk. The objective of the JRP-CS is to minimize the total rejection costs plus the
cost of serving the accepted customers. This is known as the offline JRP-CS. This problem was studied
by Geunes et al. (2011) and they further gave a 2.35-approximation algorithm that works efficiently for a
large problem instance.

The online JRP-CS is the multi-item online ELSP-CS. The objective of the online JRP-CS is to minimize
the total production cost of accepted customers P (A) and the total rejection costsR(Ω). As with the online
ELSP-CS, the production options Q are defined to be the order dates.

6.1 MIP Formulation of the Offline JRP-CS

The exact optimal offline solution to the JRP is obtained from the mixed integer programming (MIP)
formulation provided by Geunes et al. (2011).

For each customer j = 1, ...,M , she has a quantity of demand for item of type i with the due date of t,
which is denoted by ditj . Setting up an order for all types of items at time s incurs the fixed cost of K0s

as well as a type-specific setup cost of Kis. The total holding cost associated with satisfying the demand
ditj by an order placed at time s with the per unit holding cost of hst is denoted by Histj : Histj = ditjhst.
Rejecting a customer incurs a per unit rejection cost of r.

For each time point s = 1, ..., T , let xistj be the proportion of demand ditj satisfied from an order
in period s. Let y0s be the binary variable that equals 1 if an order is placed at time s and 0 otherwise.
Similarly, let the binary variable yis equal to 1 if a type i item is order is placed at time s. Finally, the
binary decision variable zj is equal to 1 if customer j is accepted and 0 otherwise.

The MIP formulation of the offline JRP-CS is defined over a set of all customers with size M and it is
denoted by φJRP-CS(M).

10

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

Problem φJRP-CS(M)

minimize
T∑

t=1

N∑
i=1

M∑
j=1

(1− zj)rditj +

T∑
s=1

K0sy0s +

N∑
i=1

T∑
s=1

Kisyis

+
M∑
j=1

N∑
i=1

T∑
t=1

t∑
s=1

Histjxistj (2)

subject to
t∑

s=1

xistj = zj j = 1, ...,M ; i = 1, ..., N ; t = 1, ..., T, s = 1, ..., t (2.1)

xistj ≤ yis j = 1, ...,M ; i = 1, ..., N ; t = 1, ..., T ; s = 1, ..., t, (2.2)

xistj ≤ y0s j = 1, ...,M ; i = 1, ..., N ; t = 1, ..., T ; s = 1, ..., t, (2.3)

0 ≤ xistj ≤ 1 j = 1, ...,M ; i = 1, ..., N ; t = 1, ..., T ; s = 1, ..., t, (2.4)

yis, zj ∈ {0, 1} i = 0, ..., N ; j = 1, ...,M ; s = 1, ..., t. (2.5)

The objective function (2) minimizes the sum of total rejection costs, the joint and the type-dependent
setup costs, and the holding costs. The first constraint (2.1) defines that if the customer j is accepted, then
her demand must be completely satisfied. The constraints (2.2) and (2.3) impose that if a type i order is
made at time s, yis and y0s must equal to 1. The last two constraints (2.4) and (2.5) define the range of the
decision variables xistj , yis and zj .

6.2 StablePair Algorithm for the Online JRP-CS

The StablePair algorithm accepts the customer k if there is a stable pair (Q,B) where Q is the set of
production options (the order dates) andB is a set of customers, such that k ∈ B. Algorithm 3 in appendix
outlines the selection process, which first identifies the stable pair for the online JRP-CS and then make
the accept/reject decision for the current customer k. It also uses the ZIO property and the results of
Lemma 4 and Lemma 5 as with the online ELS-CS - Elmachtoub and Levi (2016) show that both lemmas
also hold for the online JRP-CS.

Again, the ZIO property implies that the potential production options (order dates). The set of poten-
tial stable pairs is at most N and the algorithm takes O(MN) time. Elmachtoub and Levi (2016) prove
that the StablePair is 3-competitive and the CopyCat is 4-competitive for the online JRP-CS.

6.3 Online JRP-CS with production availability date

Again, we consider the extension of associating the production availability date to customer demands
for the online JRP-CS. This means that the information set for customer k will be Ik = (ik, dk, tk, ek)
with the availability date ek for every customer. The supplier can only serve type i customer k by a type
i order placed in the interval [ek, tk]. However, we note that our earlier assumption on the supplier’s
”correct estimation” of the production availability date for any demand requests is less plausible for the
multi-item JRP-CS model. When the supplier deals with a large number of item types N , the supplier’s
estimation is less likely to be correct in the real life scenario. However, we believe that our framework is
still plausible when the number of item types are kept at a moderate size. We further note that the the
size of the interval [ek, tk] is the same for all customers with the same item type, while the interval for
different item types needs not be the same. Again, one of the motivations for including the production
availability date is to improve the computation time of the CopyCat Algorithm by reducing the number
of candidate order dates.

The inclusion of production availability date can be modelled by replacing the constraint (2.2) by two
additional extra constraints (2.2.1) and (2.2.2):

11

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

xistj ≤ yis j = 1, ...,M ; i = 1, ..., N ; t = 1, ..., T ; s = ej , ..., t, (2.2.1)
xistj = 0 j = 1, ...,M ; i = 1, ..., N ; t = 1, ..., T ; s = 1, ..., (ej − 1). (2.2.2)

Two constraints ensure that the type i order to serve the type i customer k must be at or after the
arrival time of the customer ek.

7 Cardinality Joint Replenishment Problem with Online Customer
Selection

The cardinality joint replenishment problem (CJRP) is a generalization of classical JRP that assumes for a
submodular cost structure. A function g(·) is submodular if for all S, T ⊆ U , g(S)+g(T) ≥ g(S∩T)+g(S∪T).
For the CJRP, the joint setup cost is a submodular function of the cardinality of the subset of item types
being ordered (Cheung et al. 2015). Simply put, the submodular joint order setup cost function models
the decreasing marginal cost as the order contains more item types - capturing the economies of scale
in containing more item types in orders. The CJRP formulation is identical to the JRP formulation with
its joint setup cost K0 replaced by a nondecreasing, nonnegative and submodular function g(·) of the
number of item types included in an order. Arkin et al. (1989) show that the cardinality JRP is NP-hard.

7.1 MIP Formulation of the Offline CJRP-CS

The MIP formulation of offline CJRP-CS is defined over a set of all customers with size M , which is de-
noted by φCJRP-CS(M). The MIP formulation uses the same notation for the sets, parameters and decision
variables as those defined for offline JRP-CS in Section 6.

Based on the formulation provided by Cheung et al.(2015), we introduce new notation for the offline
CJRP-CS. Recall that the index for item type i belongs to the set {1, ..., N}. Then, let b ∈ {0, ..., N} indicate
the number of item types within an order and let qsb denote a strictly submodular function of the number
of item types b. Without loss of generality, assume that g(0) = 0. Also, we define a new binary decision
variable qsb that equals to 1 if the number of item types in an order placed at time s is larger than or equal
to b and 0 otherwise.

Problem φCJRP-CS(M)

minimize
T∑

t=1

N∑
i=1

M∑
j=1

(1− zj)rditj +

T∑
s=1

N∑
b=1

(g(b)− g(b− 1))qsb +

N∑
i=1

T∑
s=1

Kisyis

+
M∑
j=1

N∑
i=1

T∑
t=1

t∑
s=1

Histjxistj (3)

subject to
t∑

s=1

xistj = zj j = 1, ...,M ; i = 1, ..., N ; t = 1, ..., T, (3.1)

xistj ≤ yis j = 1, ...,M ; i = 1, ..., N ; t = 1, ..., T ; s = 1, ..., t, (3.2)

qs(b+1) ≤ qsb s = 1, ..., t; b = 0, ..., (N − 1), (3.3)

N∑
i=1

yis =
N∑
b=1

qsb s = 1, ..., t, (3.4)

0 ≤ xistj ≤ 1 j = 1, ...,M ; i = 1, ..., N ; t = 1, ..., T ; s = 1, ..., t, (3.5)

xistj , yis, zj , qsb ∈ {0, 1} i = 1, ..., N ; b = 0, ..., N ; j = 1, ...,M ; s = 1, ..., t,

t = 1, ..., T. (3.6)

12

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

The second component of the objective function (3) sums up the marginal costs for including an ad-
ditional item type in an order at time s. The constraints (3.3) and (3.4) define the variable qs,b. (3.3) states
that when an order contains N − 1 item types, qsb for every b ∈ {0, N − 1} is equal to 1 but 0 for b = N .
(3.4) relates yis to qsb.

7.2 StablePair Algorithm for the Online CJRP-CS

One can use the StablePair Algorithm for the online JRP-CS (Algorithm 3) for the online CJRP-CS after
making following adjustments: (i) input the submodular function g(b) instead of K0 in Algorithm 3, (ii)
replace the condition B in line 13 withR(D) ≥ g(|X|)+

∑
i∈X

(Ki +
∑

j∈Di

h(tj− t)dj). These two steps simply

replace the initial joint set up cost K0 by a submodular function with respect to the number of item types
within an order g(b).

8 Prize Collecting Travelling Salesman Problem with Online Demand
Selection

The prize collecting travelling salesman problem (PCTSP) is a type of vehicle routing problem where the
goal is to find the shortest route, which begins and ends at the origin, that visits a set of selected cus-
tomers. Each customer j specifies demand quantity and her location in 2-dimensional Euclidean co-
ordinates ((x, y)-coordinate). In the offline setting, the server who begins his route from the origin O
has all information about the customers upfront and selects a set of customers to serve. Moving from
the location of customer j1 (we also use j1 to denote the location of j1 for convenience) to the loca-
tion of j2 incurs a travelling cost vj1,j2 that is equal to the Euclidean distance between the two locations
(vj1,j2 =

√
(xj1 − xj2)2 + (yj1 − yj2)2). Rejecting a customer incurs a per unit rejection cost r on the de-

mand quantity dj . Bienstock et al. (1993) show that the offline PCTSP is an NP-hard problem.
As with the previous models, the online version of PCTSP assumes that customers are released one by

one and must be either accepted or rejected by the server immediately. When a customer k is observed,
her requirements Ik = (dk, xk, yk) are revealed to the server, where dk is the demand quantity, xk and yk
are her x and y-coordinates.

8.1 Flow Formulation of the Offline PCTSP

The exact optimal offline solution to the PCTSP is obtained from the Single Commodity Flow formulation
provided by Garvish et al. (1978). Note, however, that their formulation is designed for the asymmetric
TSP (ATSP). In this section, we present the PCTSP-adjusted flow formulation.

Let j1 and j2 be two different indices for customers j1, j2 ∈ {1, ...,M}, where j1 6= j2. Each customer
j has information set Ij = {dj , xxj , yyj}, where dj is the demand quantity, xxj and yyj are the x, y-
coordinates of the customer j (we use double x and y to avoid confusion with the decision variables). For
convenience, we also use j1 and j2 to represent the locations of customer j1 and j2. Then, vj1,j2 is the
Euclidean distance between j1 and j2. Let xj1,j2 be a binary variable that equals to 1 if the route visits
customers j1 and j2, 0 otherwise. yj1 is a binary variable that equals to 0 if customer j1 is served, and 1
otherwise. Finally, fj1,j2 denotes the flow variable that represents the flow in the arc between customer
j1 and j2. The flow variable also represents the number of remaining customers that the server needs to
visit.

The IP flow formulation of the offline PCTSP is defined over a set of all customers with size M , which
we denote by φPCTSP(M). We denote the origin by the index j = 0, with d0 = 0.

13

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

Problem φPCTSP(M)

minimize
M∑

j1=0

M∑
j2=0
j2 6=j1

vj1,j2xj1,j2 +

M∑
j1=1

rdj1yj1 (4)

subject to
M∑

j1=0
j1 6=j2

xj1,j2 = 1− yj1 j1, j2 = 1, ...,M, (4.1)

M∑
j2=0
j2 6=j1

xj1,j2 = 1− yj2 j1, j2 = 1, ...,M, (4.2)

fj1,j2 ≤M − 1 j1, j2 = 1, ...,M, (4.3)

M∑
j2=1

f0,j2 =
M∑

j1=1

(1− yj1) j1, j2 = 1, ...,M, (4.4)

M∑
j1=1
j1 6=j2

fj1,j2 −
M∑
k=1
k 6=j2

fj2,k = (1− yj2) j1, j2, k = 1, ...,M, (4.5)

fj1,j2 ≥ xj1,j2 j1, j2 = 1, ...,M, (4.6)

xj1,j2 , yj1 ∈ {0, 1} j1, j2 = 1, ...,M. (4.7)

y0 = 0 (4.8)

The objective function (4) minimizes the sum of travelling costs and the rejection costs. The constraints
(4.1) and (4.2) implement that the route visits every selected customer.

Perhaps the most important set of constraints in this formulation are the constraints (4.3)-(4.6). They
are subtour elimination constraints (SEC), which prevent the optimal tour from creating routes among a
strict subset of all selected customers. In other words, it ensures that there is only one tour that begins and
ends at the origin and visits all the accepted customers exactly once. The main role of the flow variables
in the SEC is to countdown the number of remaining customers who were accepted but not visited yet.
Constraint (4.3) defines the upper bound value for the flow variable. (4.4) ensures that the flow from the
origin to all the accepted customers (or the number of accepted but not yet visited customers when the
server is at the origin) is exactly equal to the number of accepted customers. (4.5) states that every visited
customer deducts a unit of flow from the amount of flow in. This way, the subtour can be eliminated as
the flow value must equal to 0 when the server returns to the origin. Constraint (4.6) ensures that the
value of the flow variable in the travelled arc must be larger than or equal to 1. (4.7) defines the binaary
decision variables and (4.8) ensures that the origin is always accepted by default.

8.2 Jaillet-Lu Online Algorithm for the Online PCTSP

While the implementation of the CopyCat Algorithm to the online PCTSP is straightforward, we do not
know how to implement the StablePair Algorithm for the online PCTSP. For the purpose of performance
comparison, we implemented the best known online algorithm for the online PCTSP that is provided by
Jaillet and Lu (2013). In this thesis, we call this algorithm as J-L Algorithm.

A necessary assumption for the J-L algorithm to work is that the decision maker has a priori knowl-
edge on the total number requests M . Although this assumption may appear to be unrealistic, it is still
plausible as a travelling server may (at least roughly) be aware of the total number of customers that he
needs to visit, while not knowing their exact locations and demand quantities.

The original J-L Algorithm provided by Jaillet and Lu (2013) is composed of two steps: decision mak-
ing and route construction step. However, as we have different problem settings from theirs, our im-
plementation is slightly different. In particular, the original J-L Algorithm assumes that the server can

14

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

revert all its previously made online decisions (i.e., AJ-L
k−1 ⊆ AJ-L

k may not hold at some stage k). Then, it
constructs a new route with the updated online decisions. As this is not applicable under our problem
setting, we remove the possibility of reverting online decisions and replace the route construction step
by solving a respective offline TSP defined on set of accepted customers until stage k, AJ-L

k . These adjust-
ments are modifications of the original J-L Algorithm and the resulting algorithm is still the J-L algorithm
as it does not violate the necessary conditions for the original J-L Algorithm.

Algorithm 2 outlines the selection process of the J-L Algorithm.

Algorithm 2 Online PCTSP J-L Selection Algorithm
Input: Euclidean coordinates of customer location (xxk, yyk), the number of customers known a priori
(M), and a per unit rejection cost (r).
Output: The set of accepted customers (AM) and rejected customers (ΩM).

1: Initialize: Ω0 = ∅, A0 = {0}, and k = 1.
2: while k < M do
3: Compute v({k}, Vk−1) = inf{

√
(xxk − xxj)2 + (yyk − yyj)2) : j ∈ Vk−1}

4: Accept request k if and only if v({k}, Vk−1) ≤ r
√

logM
5: if Request k is accepted then
6: Ωk = Ωk−1
7: Ak = Ak−1 ∪ {k}.
8: else
9: Ωk = Ωk−1 ∪ {k}

10: Ak = Ak−1.
11: end if
12: k ← k + 1
13: end while
14: Output ΩM and AM

Line 1 initializes the set of accepted and rejected customers. Line 3 computes the shortest distance
from the location of current customer k to the set of accepted customers until stage k − 1. Then, line 4
specifies the condition for selecting customer k. Lines from 5 to 12 update the sets and the customer.
When all selection decisions have been made, the algorithm outputs the set of accepted and rejected cus-
tomers. Jaillet and Lu prove that the above selection algorithm is the best possibleO(

√
logM)-competitive

algorithm in a general metric space without release dates of the customers.
In Part 3, we demonstrate the empirical performance of the two online algorithms on the defined set

of logistics models in Part 2.

15

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

Part III

Empirical Competitive Ratio
In Part III, we present our computational results for the CopyCat and StablePair Algorithms. In addi-
tion, we consider the StablePair Algorithm with a scaling factor of two. This means that we apply the
StablePair selection policy with a per unit rejection cost r multiplied by the factor of two. The scaling
technique is based on the idea of hedging against the future by using a higher rejection cost, softening the
condition for accepting a request. The empirical performances of these three algorithms were evaluated
for every logistics model described in PartII with the competitive ratio framework. That is, whenever a
new customer k arrives, we calculated the performance ratio: C(Uk)/C∗(Uk) which compares the online
cost to the optimal offline cost that is impossible to achieve in the online setting. For all three algorithms,
we conducted the experiments using three different scenarios, where in each scenario the sequence of
arriving customers have different characteristics. The first scenario is “Conservative” scenario where all
requests have a unit demand quantity (dk = 1). It is conservative in the sense that all arriving requests
have the homogeneous demand quantity. The second “More Demands” scenario simulates the demand
quantity by an integer value drawn uniformly at random between 1 and 10 (dk ∼ UNI(1, 10)). The last
“Large Orders First” scenario also draws the demand quantity from a uniform random distribution be-
tween 1 and 10, but the first two orders are very large orders with due dates placed at times 1 and 15
(dk = 100 for k = 1, 2). It simulates the situation where the supplier has two regular customers making
large orders, and hence rejecting their requests is extremely expensive. For all of the three scenarios, the
due dates of the customers are drawn from a uniform distribution over the discrete time horizon from 1
to 30. We used uniformly random due dates since the supplier cannot make a logical guess on when the
next request will arrive.

For each logistics model, we present our outcome in three figures, each containing the average perfor-
mance ratios for each scenario, and in three tables containing the maximum performance ratio, average
final performance ratio and the average computation times (in seconds) during the selection and pro-
duction step, over all runs. We made these runs with a computer using Intel Core(TM) i7-3610QM CPU
2.30GHz with 8.00 GB RAM.

9 Online ELSP-CS

For all three scenarios, we used the following simulation parameters to simulate an instance of the online
ELSP-CS. We set the fixed setup cost K = 100, a per unit time holding cost h = 1 and a per unit rejection
cost r = 5. The discrete planning horizon is a month in days: [1, 30]. Note that these parameters are equal
to the parameters used in the paper by Elmachtoub and Levi, which means we expect to achieve nearly
identical empirical competitive ratios for all three online algorithms. We performed the analysis for 100
independent runs, each with 300 simulated customer arrivals.

The outcomes from the experiments are contained in three figures and three tables. Figure 1, 2 and
3 contain the average competitive ratios over 100 runs for all three online algorithms, for each scenario.
Tables from 1 to 3 contain the maximum ratios, average final ratios and average computational times over
all runs.

16

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

Figure 1: ELSP-Conservative scenario

Figure 2: ELSP-More Demands scenario

Figure 3: ELSP-Large Orders First scenario

The results from the Conservative scenario give us an impression that the CopyCat and the StablePair
algorithms tend towards the upper bound of 1.5. For the first 80 requests, both online algorithms and
offline solution reject all customers since there are not enough requests to encourage production. That is,
due to the small number of requests the supplier is better to reject all of them, than to incur an expen-
sive setup cost. Then the ratio begins to increase for the StablePair from around 100 customer arrivals
(around 125 requests for the CopyCat) as the offline solution starts to accept some requests. The ratios
further increase at a moderate slope as more customers arrive and the effect of economies of scale begins
to visualize. Finally, the ratios stabilize as the offline solution, CopyCat and StablePair algorithms accept
every new request when the requests are in abundance – the marginal cost of serving a customer became
small with the economies of scale. Notice that the StablePair ratio gets below the CopyCat ratio at around
270 customer arrivals. It is because all customers who are accepted by the CopyCat are also accepted by
the StablePair according to Lemma 1, explaining its winning performance as the number of customers
becomes large. A more dramatic behavior occurs with the ratios for StablePair with scaling. In the Con-
servative scenario, it begins to accept requests at the early stage of 25 customer arrivals, causing the sharp
rise in the ratios until the 60th customer arrival. But in later stages its ratios are significantly lower than

17

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

for the other two algorithms, supporting the effect of hedging for the future customer arrivals. For More
Demands scenario, the CopyCat and the StablePair accept customers at earlier stages than in the Con-
servative scenario, therefore having their peaks at around stage 50. Lastly, the Large Orders First graph
shows that the gap between CopyCat and StablePair is noticeably large, indicating the poor performance
of CopyCat in coping with large orders under online ELSP-CS model.

The maximum performance ratios in Table 1 show that the CopyCat and StablePair achieve similar
upper bound ratios, which are below 2 for all three scenarios. This is much lower than the theoretical
bound of 3 as suggested by Elmachtoub and Levi (2016). However, their average computation times
through all 100 runs are the key differentiators between the two algorithms. In the Conservative scenario,
the CopyCat requires nearly 8 times longer run time than the StablePair. This makes the StablePair much
more appealing in practice.

Comparing our results to the results of Elmachtoub and Levi, the peaks are placed at around the same
height (1.7 for Conservative scenario) and CopyCat/StablePair ratios begin to increase from 1 at around
the same stage. However, one can see that the graph for the Large Orders First scenario show remarkably
different outcomes. Our graph has the peaks and the final ratios which are substantially higher than their
graph (by 0.05). Also, one can see that in our graph, StablePair takes the performance ratio different from
1 when there are 3 customer arrivals. This is certainly not the case in the graph of Elmachtoub and Levi,
because in their graph, the StablePair ratios depart from 1 at around the same number of requests as the
CopyCat Algorithm. The maximum performance ratios are different by at most a factor of 0.20, which is,
although large, explainable by the randomness of the simulated demand quantities.

9.1 Online ELSP-CS with production availability date

A natural extension of online ELSP-CS is to associate each request with a production availability date.
We simulate the availability date ek for customer k by setting it equal to 10 days prior to the due date tk.
That is, ek = max{tk − 10, 0}.

Figure 4 in the appendix show the CopyCat performance ratios for all three scenarios. The graphs of
More Demands and Large Orders First show that the CopyCat ratios stabilize at a higher value than the
graphs without availability date (by a factor of 0.16 at most). It also achieves higher maximum ratios, but
much faster computations. The direct effect of including the availability dates is that the supplier is more
restricted for his choice of possible order dates. Therefore, the search space is reduced, which brings
the substantial reduction of the computation times (the computation time halved for the Conservative
scenario). However, one can clearly see that the performance ratios became worse. Therefore, at the cost
of the increasing performance ratios, one can significantly reduce the computation time for the CopyCat
Algorithm by making use of extra information that the supplier can infer from customers (production
availability date in this case).

10 Online JRP-CS

For all three scenarios, we used the following simulation parameters to simulate an instance of the online
JRP-CS. We set the fixed joint setup cost K0 = 100, N = 3 item types which are drawn at uniformly
random, type-specific setup costs K1 = K2 = K3 = 20, a per unit time holding cost h = 1 and a per unit
rejection cost r = 10. The discrete planning horizon is a month in days: [1, 30]. Note that these parameters
are equal to the parameters used in the paper by Elmachtoub and Levi, which means we expect to achieve
nearly identical empirical competitive ratios for all three online algorithms. We performed the analysis
for 100 independent runs, each with M = 300 simulated customer arrivals.

The outcomes from the experiments are contained in three figures and three tables. Figure 5, 6 and 7 in
the appendix contain the average competitive ratios over 100 runs for all three online algorithms, for each
scenario. Tables from 5 to 7 contain the maximum ratios, average final ratios and average computational
times over all runs.

The Conservative graph suggests that the CopyCat and StablePair have an upper bound of 1.5, while
the StablePair with scaling has much stronger peak at the ratio of 2. As with the online ELSP-CS, the
CopyCat/StablePair ratios begin to increase from a certain number of requests (50 in this scenario) and
stabilize at around stage 125. The scaling technique shows an extremely poor performance in the early
stage of customer arrivals, but it quickly recovers to a substantially lower competitive ratios than the

18

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

CopyCat/StablePair. For the More Demands and Large Orders First scenarios, one can see the similar
trends as with the online ELSP-CS. However, the StablePair with scaling shows a very high performance
at later stages, which is nearly equal the optimal ratio of 1.

The maximum performance ratios in Table 5 show that the CopyCat and StablePair achieve similar up-
per bound ratios, which are below 1.65 for all three scenarios. It is much lower than the theoretical bound
of 3 (for StablePair) and 4 (for CopyCat) as suggested by Elmachtoub and Levi (2016). However, their
average computation times through all 100 runs were the key differentiators between the two algorithms.
In Conservative scenario, the CopyCat required almost 8 times longer run time than the StablePair. This
made the StablePair much more appealing in practice.

Comparing our results to the results of Elmachtoub and Levi, the peaks are placed at around the same
height for all three scenarios and CopyCat/StablePair ratios begin to increase from 1 at around the same
number of requests. However, one must observe that the Large Orders First graph show remarkably dif-
ferent outcomes. Notice that in our graph the peak for the StablePair lies at around 25 number of requests,
which is to the right of the peak at the StablePair with scaling (which lies at 6 requests). However the
graph from Elmachtoub and Levi have both peaks at around 6 requests and the StablePair behaves almost
exactly like the StablePair with scaling with an upward shift. This difference may have occurred because
Elmachtoub and Levi fixed the two large orders to be type 1 orders. On the contrary, we simulated their
item types uniformly at random between 1 and N . Seeing from this perspective, our StablePair would
accept more requests at early stages as the first two large orders may be of different type. Once the type-
specific setup costs are incurred, it is good for the StablePair to accept the requests with the same item
types as the setup costs are already sunk. This is not the case with the Elmachtoub and Levi’s StablePair,
likely to be causing the difference. The maximum ratios from our experiments are significantly lower
than those of Elmachtoub and Levi (with the largest difference of 0.17 in Large Orders First Scenario).
Again, such a big gap may have been due to the difference in the simulation parameter.

10.1 Online JRP-CS with production availability date

We can also associate each request with an individual availability date. With N = 3, we simulate the
availability dates of type 1, 2, 3 items differently. For type 1 customer, the availability date is at most 10
days before her due date. For type 2 customer, the availability date is at most 6 days before her due date.
Finally, for type 3 customer, the availability date is at most 4 days before her due date. This simulates
when the different types of perishable products perish at different rates (e.g., type 1 products perish at
the lowest rate, type 3 products perish at the fastest rate).

Figure 8 in the appendix shows the CopyCat performance ratios for all three scenarios. The ratios are
higher in average when compared to Figure 5-7. What is noticeable in this figure is that unlike in Figure 7,
the average ratio for the Large Orders First scenario significantly became higher and intersects the graph
of More Demands scenario. Hence, considering the availability date severely affects the CopyCat perfor-
mance when the supplier receives large size orders. In general, when the supplier deals with multiple
item types, the cost of reduced number of order dates (from to the availability date) is much more severe
than in the single-type ELSP-CS. Seeing from Table 8, this variant of the online JRP-CS achieves much
faster computations than in Table 5-7. However, even though the computation times nearly halved, the
maximum ratio and the final ratio increased by a large fraction for Conservative and Large Orders First
scenarios (largest increase of 0.20 for max. ratio). Hence, one must be more careful with including the
availability date for the multi-item inventory control problems.

11 Online CJRP-CS

For the online CJRP-CS, the simulation parameters were set as follows. The joint order set up cost was
set as a strictly concave function of the number of item types that are included in an order. This concave
function was set to be a ceiling of a natural logarithm: K0,s(|S|) = dlog(|S|+ 1) ∗ 100e, with |S| being the
number of item types included in an order placed at time s. For example, if an order includes only 1 item
type, then it is equal to 70. If an order includes two item types, it is equal to 110, and 139 for three item
types and so on. We expanded on the number of item types in this simulation to N = 5. The individual
set up costs were equal to 20 for every type of item and the rest of the parameters such as rejection costs
and holding costs were set as r = 10 per unit, h = 1 per time unit. Also, due to the extremely long

19

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

computation times, we simulated the instance for thee total number of customers equal to 200 and the
total number of repetitions equal to 50. Figures 9 - 11 show the plots for all three scenarios, and Table 9-11
show the relevant statistics.

Seeing from Figure 9-11, the results may appear to be the same as with the online JRP-CS in Figure 5-7.
Indeed, since the CJRP-CS is a generalization of the JRP-CS, it is not bizarre to find similarities between
Figure 9-11 and Figure 5-7. However, one can observe that for the Conservative scenario, the peaks for all
three graphs are located at later stages than in Figure 5. This is due to the submodularity of the setup cost
function as the optimal offline solution and the online solutions attempt to capture as many item types
as possible in their orders - making them to reject customers at early stages and wait until a sufficient
number of customers with various item types are observed.

From Table 9, the maximum performance ratios are safely below 1.6 for all scenarios, for CopyCat
and StablePair. This is in line with the finding by Elmachtoub and Levi, where they prove that the Copy-
Cat and StablePair attain the competitive ratios of 2 for submodular problems. Interestingly enough,
the merge of submodularity to the joint replenishment problem does not appear to increase the compet-
itive ratios in multiplication of their respective competitive ratios (e.g., CopyCat is 2-competitive for the
submodular cost problem and 4-competitive for the online JRP-CS; but the submodular JRP-CS is not
2× 4-competitive)

Another striking observation was that solving the online CJRP-CS with simulated 200 customer ar-
rivals with 50 repetitions for the Conservative Scenario took over 7 hours to get the complete results
from all three algorithms. Therefore, this shows that even a simple tweak to the classical logistics models
can substantially complicate the problem and make it impossible to solve exactly. Furthermore, it sug-
gests that the CopyCat Algorithm is not as flexible as with the StablePair Algorithm for general class of
inventory control problems.

12 Online PCTSP

For the PCTSP, the total of 50 customers were simulated over 100 independent runs. The customer lo-
cations were simulated uniformly at random on a discrete metric space with symmetric vertical range
[−30, 30] and horizontal range [−30, 30]. For the purpose of our simulation, the rejection cost was set
equal to 10 and the variable cost was set to be equal to the Euclidean distance between two locations.

It turns out that solving an offline PCTSP requires nearly 12 times more computation times than solv-
ing an ELSP with the similar settings. Indeed, it is because the classical TSP is NP-hard but the classical
ELSP can be solved efficiently. More specifically, one should note that the final solution of the PCTSP also
depends on the ordering of customer satisfaction. Unlike the inventory control problems where serving a
customer does not require an ordering of all accepted customers, the PCTSP with online customer selec-
tion requires a strict ordering among the customers, which leads to a significant expansion in search space
and an expensive reoptimization. Another remark regarding the simulation time is that the per-iteration
computation time was highly volatile and heavily dependent on the simulated locations; in the Conser-
vative scenario, the maximum run time among the 100 runs was 1433.29 seconds, while the minimum
run time was 73.13 seconds.

In Figure 12 - 14, we plot the competitive ratios for both CopyCat and the J-L Algorithm introduced in
Section 8.2. Note that the J-L approach makes an active use of the prior knowledge on the total number
of requests M . This may have brought the following substantial differences between the two online
algorithms. In the Conservative scenario, the competitive ratio for the CopyCat Algorithm appears to
reach to 1.5, which is similar to that of comparable inventory control problems. However, one can notice
that the CopyCat ratio departs from 1 at an early stage. This is possibly due to the absence of (fixed) setup
cost, which encourages the supplier to accept customer more generously. For two remaining scenarios
the similar trends hold.

The CopyCat algorithm attains a comparable empirical competitive ratio to the J-L Algorithm when
the total number of customers is small. Especially in the Conservative Scenario, the CopyCat significantly
outperforms the J-L Algorithm because the J-L Algorithm start to accept customers at early stages while
the optimal offline solution rejects them. As the number of requests becomes larger and larger, the J-
L Algorithm becomes even more generous and accepts a new customer more easily (due to the factor√

logM in the acceptance condition). In consequence, the optimal offline solution reaches at a point
where the most of the customers at Uk are accepted (that is, it reverts its previously made accept/reject

20

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

decisions) and become closer to the J-L solution. On the contrary, the CopyCat regrets its decisions at
later stages, causing the large values for the competitive ratios.

Part IV

Conclusion
In this thesis, we studied and extended the results of the original paper written by Elmachtoub and
Levi (2016). Specifically, we evaluate the empirical performance of their two novel online algorithms,
CopyCat and StablePair, for a variety of logistics models with online customer selection. Our analysis
confirms that for the online ELSP-CS and the online JRP-CS, the empirical competitive ratios for the
CopyCat and StablePair are very close to the benchmark values. In all scenarios, their worst (maximum)
competitive ratios are much below the theoretical guarantees, making them much more appealing in
practice. We also observe that when the number of customers gets large, the StablePair, with and without
scaling technique, begins to outperform the CopyCat both in performance ratios and in computation,
which follows the computational results from Elmachtoub and Levi. Furthermore, we continue with
our analysis by considering three different types of logistics problems with online customer selection:
(i) online ELSP-CS and JRP-CS with production availability dates, (ii) online Cardinality JRP-CS, and
(iii) online PCTSP. Introducing the production availability dates to the online ELSP-CS and JRP-CS nearly
halved the CopyCat computation times, but significantly increased its performance ratio. On the contrary,
the CopyCat for the online CJRP-CS took a tremendous amount of computation time, which was almost
8 times longer than the StablePair, clearly indicates that the quality of the CopyCat solution is highly
vulnerable to the complexity of the model under consideration. It even suggests that the CopyCat is
inappropriate to solve a general class of complex optimization models. Finally, we study the online
version of the PCTSP and compare the performance of the CopyCat to the asymptotically best possible
J-L online algorithm. For a large number of customers, the J-L clearly outperforms the CopyCat but it
shows a comparable weakness when the number of customers is small.

Now, we outline two interesting points that are worth a discussion. First point concerns the relative
performance of the CopyCat Algorithm to the J-L Algorithm for the online PCTSP. Although the J-L
Algorithm showed strictly better performance ratios for a large number of customers, we do not think
that the CopyCat is strictly worse than the J-L Algorithm. One should keep in mind that the J-L Algorithm
requires the server to know the total number of customers exactly prior to his departure, which is often
difficult to achieve in real life settings due to the stochastic demand fluctuations and the customer’s
option to cancel the delivery. Also, for More Demands and Large Orders First scenarios, the gap between
the graphs of CopyCat and J-L is not large in absolute term (Figure 13, Figure 14). It is absolutely large
for the Conservative scenario (Figure 12), but in that scenario the CopyCat strictly outperforms the J-
L Algorithm for the first 25 stages. Hence, we find it difficult to say that the J-L Algorithm is always
preferred to the CopyCat. Another point concerns the asymptotic behavior of CopyCat for the online
PCTSP. Since our simulation ends at stage 50, we cannot tell if the CopyCat will always remain worse
than the J-L for later stages. There is always a possibility that the CopyCat graph converges to 1 at a
faster rate for the large number of customers. Hence, it is worth considering the asymptotic ratios for the
CopyCat by implementing an efficient approximation algorithm for the offline PCTSP.

From a theoretical viewpoint, it is interesting to further consider the online PCTSP with demand time
window, where every customer needs to be visited within a reasonable time interval. It has many real
life applications since customers have limited patience unlike in our experiments. Another interesting
topic concerns the online JRP-CS with online production, whereby the production step overlaps with
the selection step. Elmachtoub and Levi (2016) already showed that the online ELSP-CS with online
production is intractable, but including the online production option in inventory control problems with
online customer selection is useful in many real world applications.

21

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

Appendices

A Algorithm

Algorithm 3 Online JRP-CS StablePair Selection Algorithm
Input: Order costs (K0,Ki, h), rejection cost (r), a set of customers observable at stage k (Uk) and
demands (dk)
Output: Binary decision variable zk that equals 1 if customer k is accepted and 0 otherwise.

1: Initialize: zk = 0
2: Outer Loop:
3: for Every due date t for each customer in Uk do
4: Set Q = {t}
5: for Every i ∈ {1, ..., N} do
6: Define set Di = {j ∈ Uk : tj ∈ [t, t+ r/h] and ij = i}
7: end for
8: Define set X = {i : R(Di) ≥ Ki +

∑
j∈Di

h(tj − t)dj , i ∈ {1, ..., N}}

9: Define set D =
⋃
i∈X

Di.

10: if k /∈ D then
11: Continue Outer Loop with the next due date
12: end if
13: Define condition B: R(D) ≥ K0 +

∑
i∈X

(Ki +
∑

j∈Di

h(tj − t)dj)

14: if Condition B is true then
15: zk = 1
16: Exit Outer Loop
17: end if
18: end for
19: Output zk

Line 4 sets the production option Q to contain a single due date t. Then the loop from line 5 to 7 defines a
set of type i customersDi whose due dates are in the setup interval of the type i order atQ, for every type
of item. Line 8 defines a set of item types X whose corresponding set Di has lower or equal production
costs for accepting all customers in the set than their rejection costs. Line 9 unites all Di for the item types
in X , and form a customer set for the potential stable pair. The loop from line 10 to 12 continues to the
next due date if customer k is not in the set D. Finally, the same process is repeated for every customer in
Uk until the accepting condition is satisfied. If satisfied, the algorithm outputs the binary variable zk that
is equal to 1 and completes the algorithm.

22

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

B Proofs

Lemma 1
Assume that P (·) is nondecreasing. Then the total rejection costs of the CopyCat Algorithm at
each stage k is at most the respective optimal offline cost, i.e.,R(ΩCC

k) ≤ R(Ω∗k)+P (A∗k) = C∗(Uk)
for all k. Specifically, the final rejection cost R(ΩCC

k) ≤ C∗(Uk).

PROOF:
Proof by induction. Start with the base case k = 1, where R(ΩCC

1) = R(Ω∗1) ≤ R(Ω∗1) + P (A∗1) =
C∗(U1). The first equality is from ΩCC

1 ≤ Ω∗1 since the selection decision made by φ∗(U1) is
copied. The inequality follows from the nonnegativity of P (·). The last equality follows directly
from the definition of C∗. Now assume the inductive hypothesis that Ω∗k−1 ≤ C∗(Uk−1).
Consider the following two cases depending on whether customer k was accepted or rejected
in the solution of φ∗(Uk).
Case (1). If customer k is accepted in the solution of φ∗(Uk) (i.e., k ∈ A∗k), then R(ΩCC

k) =
R(Ω∗k−1) ≤ C∗(Uk−1) ≤ C∗(Uk). The first equality holds because k ∈ A∗, which implies that
Copycat accepted k, and thus ΩCC

k = ΩCC
k−1. The inequality follows from the inductive hypoth-

esis. The last inequality follows from the fact that any solution to φ∗(Uk) induces a solution to
φ∗(Uk−1) with cost at least C∗(Uk−1).
Case (2). If customer k is rejected in the solution of φ∗(Uk) (i.e., k ∈ Ω∗k), then R(ΩCC

k) =
R(Ω∗k−1) + rk ≤ C∗(Uk−1) + rk = C∗(Uk). The first equality holds since k ∈ Ω∗k, which im-
plies that Copycat also rejected k. The inequality follows from the inductive hypothesis. The
last equality holds by the linearity of R(·) and the fact that there is an optimal solution to φ∗(Uk)
that rejected customer k.

Lemma 2
Assume that P (·) is nondecreasing. Then the total rejection costs of the StablePair Algorithm is
R(ΩSP) ≤ R(Ω∗ ∩ ΩSP) + P (ΩSP ∩ A∗) ≤ R(Ω∗ ∩ ΩSP) + P (A∗) for any offline optimal solution
(A∗,Ω∗).

PROOF:
We first show that for all X ⊆ ΩSP, R(X) ≤ P (X). Let X ⊆ ΩSP and assume for contradiction
R(X) > P (Q, X) = P (X). (1)
Let k be the last arriving customer in X. Since k was rejected by StablePair, it follows that (Q, X)
is not a stable pair for customer k. Thus, by the equation of the stable pair there exists a set
S ⊆ X such that
R(S) < P (Q,X)− P (Q,X \ S) = P (X)− P (X \ S). (2)
Note that S 6= ∅ or else 0 < 0. Subtracting (2) from (1) yields
R(X \ S) > P (X \ S). (3)
Now reset X ← X \ S and repeat the analysis above until X = ∅. This will eventually give a
contradiction that 0 > 0. Now let (A∗,Ω∗) be any optimal offline solution and let X = ΩSP ∩A∗.
From the previous argument, it follows that
R(ΩSP ∩A∗) ≤ P (ΩSP ∩A∗). (4)
Adding R(ΩSP ∩ Ω∗) to both sides of (4) completes the proof.

23

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

Lemma 3
The accepted set of customers by StablePair is at least that of CopyCat, i.e., ACC

k ⊆ ASP
k .

PROOF:
Consider a customer k ∈ ACC and let A∗k be the optimal solution induced by φ∗(Q,Uk). Since
k was accepted by the Copycat Algorithm, then k ∈ A∗k. This implies that (Q,A∗k) is a stable
pair for k since there is a solution to φ∗(Q,Uk) that accepts all of A∗k. Therefore k ∈ ASP and
ACC ⊆ ASP.

Lemma 4
Let (Q,B) ⊆ (Q, U) be a stable pair. Each setup interval induced by the ELS solution to P (Q,B)
must have a length of at most r/h periods.

PROOF:
Assume there is a setup interval [a, b] in the solution to P (Q,T) such that b − a > r/h. By the
ZIO property, there must be an order at a. This means there exists a customer k with due date at
time b that pays a per unit holding cost greater than r. This implies that the optimal solution of
φ∗(Q,Uk) is better off rejecting k and keeping everything else the same, which is a contradiction
to the stability of (Q,T)

Lemma 5
Let (Q,B) ⊆ (Q, U) be a stable pair and let [a, b] be a setup interval from the ELS solution for
P (Q,B). Then the interval [a, b] must contain the due date of a customer in A∗. Therefore, [a, b]
must intersect a setup interval from the ELS solution for P (A∗).

PROOF:
Assume that [a, b] does not contain the due date of any customers in A∗. By the stability
of (Q,T), the rejection cost of the customers served by the order at a are greater than the
production costs incurred in the interval [a, b]. This implies that A∗ could be augmented to
include all customers having due dates in [a, b] without increasing the overall cost. Since we
chose A∗ to be maximal, then this is a contradiction.

C Tables and Figures

C.1 Online ELSP-CS

Table 1: ELSP-maximum performance ratio
Maximum performance ratio

Scenarios CopyCat StablePair StablePair with scaling (2)
Conservative 1.492 1.476 1.984

More Demands 1.757 1.595 2.133
Large Orders First 1.329 1.304 1.365

24

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

Table 2: ELSP-final performance ratio
Final performance ratio

Scenarios CopyCat StablePair StablePair with scaling (2)
Conservative 1.423 1.413 1.111

More Demands 1.280 1.225 1.038
Large Orders First 1.176 1.098 1.006

Table 3: ELSP-average computation time in seconds
selection & production Average computation time (sec)

Scenarios CopyCat StablePair StablePair with scaling (2)
Conservative 8,349 2,293 2,064

More Demands 7,272 1,138 909
Large Orders First 6,281 785 706

C.1.1 Onlin ELSP-CS with production availability date

Figure 4: ELSP with production availability date - all scenarios

Table 4: ELSP with production availability dates - CopyCat
CopyCat Algorithm

Scenarios Maximum ratio Final ratio Avg. computation time (sec)
Conservative 1.479 1.426 4,102

More Demands 1.504 1.282 4,697
Large Orders First 1.423 1.224 4,202

25

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

C.2 Online JRP-CS

Figure 5: JRP - Conservative scenario

Figure 6: JRP - More Demands scenario

Figure 7: JRP - Large Orders First scenario

Table 5: JRP - maximum performance ratio
Maximum performance ratio

Scenarios CopyCat StablePair StablePair with scaling (2)
Conservative 1.515 1.502 2.642

More Demands 1.611 1.611 2.950
Large Orders First 1.294 1.276 1.505

26

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

Table 6: JRP - final performance ratio
Final performance ratio

Scenarios CopyCat StablePair StablePair with scaling (2)
Conservative 1.405 1.358 1.088

More Demands 1.143 1.108 1.021
Large Orders First 1.075 1.031 1.000

Table 7: JRP - average computation time in seconds
selection & production Average computation time (sec)

Scenarios CopyCat StablePair StablePair with scaling (2)
Conservative 16,846 2,106 1,895

More Demands 7,461 932 914
Large Orders First 10,541 1,317 1,265

C.2.1 Onlin JRP-CS with production availability date

Figure 8: JRP with production availability date - all scenarios

Table 8: JRP with production availability dates - CopyCat Algorithm
CopyCat Algorithm

Scenarios Maximum ratio Final ratio Avg. computation time (sec)
Conservative 1.729 1.528 7,009

More Demands 1.657 1.176 6,906
Large Orders First 1.463 1.150 5,820

27

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

C.3 Online CJRP-CS

Figure 9: CJRP - Conservative scenario

Figure 10: CJRP - More Demands scenario

Figure 11: CJRP - Large Orders First scenario

Table 9: CJRP - maximum performance ratio
Maximum performance ratio

Scenarios CopyCat StablePair StablePair with scaling (2)
Conservative 1.434 1.448 1.924

More Demands 1.579 1.579 2.000
Large Orders First 1.309 1.500 1.515

28

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

Table 10: CJRP - final performance ratio
Final performance ratio

Scenarios CopyCat StablePair StablePair with scaling (2)
Conservative 1.376 1.388 1.120

More Demands 1.156 1.108 1.009
Large Orders First 1.115 1.028 1.001

Table 11: CJRP - average computation time in seconds
selection & production Average computation time (sec)

Scenarios CopyCat StablePair StablePair with scaling (2)
Conservative 25,179 3,147 2,958

More Demands 20,191 2,523 2,297
Large Orders First 29,888 3,736 3,399

C.4 Online PCTSP

Figure 12: PCTSP - Conservative scenario

Figure 13: PCTSP - More Demands scenario

29

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

Figure 14: PCTSP - Large Orders scenario

Table 12: PCTSP - maximum performance ratio
Maximum performance ratio

Scenarios CopyCat JL
Conservative 1.654 2.313

More Demands 1.617 1.737
Large Orders First 1.506 1.510

Table 13: PCTSP - final performance ratio
Final performance ratio

Scenarios CopyCat JL
Conservative 1.473 1.145

More Demands 1.134 1.010
Large Orders First 1.061 1.007

Table 14: PCTSP - average computation times in seconds
selection & production Average computation times (sec)

Scenarios CopyCat JL
Conservative 11,909 5,760

More Demands 17,344 2,181
Large Orders First 18,595 2,833

30

Performance Analysis of Online Algorithms Seong Ho Lee Erasmus School of Economics

References

[1] Arkin E, Joneja D, Roundy R, ”Computational complexity of uncapacitated multi-echelon production plan-
ning problems” Oper. Res. Lett. 8(2): 61-66, 1989.

[2] BienStock D, Goesmans MX, Simchi-Levi D. Williamson D ”A note on the prize collecting traveling sales-
man problem.” Math. Programming 59(1):413-420, 1993.

[3] Cheung M, Elmachtoub AN, Levi R, Shmoys DB ”The submodular joint replenishment problem.” Math.
Programming 158(1):207-233, 2015.

[4] Elmachtoub AN, Levi R ”Supply chain management with online customer selection.” Oper. Res. 64(2):458-
473, 2016.

[5] Fotakis D ”On the competitive ratio for online facility location.” Algorithmica 50(1):1-57, 2008.

[6] Gavish, B. and S.C. Graves ”The travelling salesman problem and related problems.” Operations Research
Center, MIT, Cambridge, MA, 1978.

[7] Geunes. J, Levi. R, Edwin Romeijn. H., Shmoys. D. B., ”Approximation algorithms for supply chain plan-
ning and logistics problems with market choice.” Math. Program., Ser.A 130: 85-106, 2011.

[8] Jaillet P, Lu X ”Online traveling salesman problems with rejection options.” Networks 64(2):84-85, 2014.

[9] N. Absi, S. Kedad-Sidhoum, S. Dauzère-Pérès, ”Uncapacitated lot-sizing problem with production time
windows, early production, backlog and lost sale.” International Journal of Production Research 49(9):
2551-2566, 2011.

[10] Van den Heuvel W, Kundakcioglu OE, Geunes J, Romeijn HE, Sharkey TC, Wagelmans APM ”Inte-
grated market selection and production planning: Complexity and solution approaches.” Math. Programming
134(2):395-424, 2012.

[11] Van den Heuvel W, Wagelmans APM ”Worst-case analysis for a general class of online lot-sizing heuris-
tics.” Oper. Res. 58(1):59-67, 2010.

[12] V. T’kindt, Croce. F.D. ”A note on ”Two-machine flow-shop scheduling with rejection” and its link with flow-
shop scheduling and common due date assignment.” Computers and Oper. Res. 39(12):3244-3246, 2012.

[13] Wagner H.M., Whitin T.M., ”Dynamic version of the economic lot size model.” Management Sci. 5(1):
89-96, 1958.

31

	Introduction
	Thesis Outline and Contributions
	Replication and Extensions

	I Problem Description
	Literature Review and Problem Motivation
	General Notation
	Online Algorithms
	CopyCat Algorithm
	StablePair Algorithm
	Production Step

	II Logistics Models and Solution Approaches
	Economic Lot Sizing Problem with Online Customer Selection
	MIP Formulation of the Offline ELSP-CS
	StablePair Algorithm for the Online ELSP-CS
	Online ELSP-CS with production availability date

	Joint Replenishment Problem with Online Customer Selection
	MIP Formulation of the Offline JRP-CS
	StablePair Algorithm for the Online JRP-CS
	Online JRP-CS with production availability date

	Cardinality Joint Replenishment Problem with Online Customer Selection
	MIP Formulation of the Offline CJRP-CS
	StablePair Algorithm for the Online CJRP-CS

	Prize Collecting Travelling Salesman Problem with Online Demand Selection
	Flow Formulation of the Offline PCTSP
	Jaillet-Lu Online Algorithm for the Online PCTSP

	III Empirical Competitive Ratio
	Online ELSP-CS
	Online ELSP-CS with production availability date

	Online JRP-CS
	Online JRP-CS with production availability date

	Online CJRP-CS
	Online PCTSP

	IV Conclusion
	Appendices
	Algorithm
	Proofs
	Tables and Figures
	Online ELSP-CS
	Onlin ELSP-CS with production availability date

	Online JRP-CS
	Onlin JRP-CS with production availability date

	Online CJRP-CS
	Online PCTSP

