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Abstract

This bachelor thesis replicated and extended upon previous research
by Van Riessen et al (2015a) on the Cargo Fare Class Mix (CFCM) Prob-
lem, a proposed implementation of revenue management on intermodal
hinterland transport. Results of the replication confirmed the findings of
the aforementioned paper. The solution method of the case of the CFCM
Problem with one route, one destination, and two fare classes proposed
by said paper was found to yield higher revenue than other approaches
to the problem. Furthermore, this bachelor thesis proposed a solution
method for a slightly more complicated case of the CFCM Problem with
two routes differing in price and capacity, one destination, and two fare
classes.

1 Introduction

The ports of the Hamburg-Le-Havre range are constantly challenged to increase
the quality of its services. First of all, the eleven major ports and port groups in
this range (Hamburg, Bremen, Wilhelmshaven, Amsterdam, Rotterdam, Zee-
land Seaports, Antwerp, Gent, Zeebrugge, Dunkirk and Le-Havre) must com-
pete for their share of 97% of throughput going to the common hinterland of
North West Europe (De Langen, Van Meijeren, & Tavasszy, 2012). Secondly,
all of these ports face congestion problems, partially caused by the handling of
large container volumes from the port towards the hinterland (Van den Berg
& De Langen, 2014). Faced with these realities, a modal split of hinterland
transportation becomes a target of improvement for the port authorities in the
range, e.g. in Rotterdam (Havenbedrijf Rotterdam, 2011), Antwerp and Ham-
burg (Van den Berg & De Langen, 2014).

Achieving these modal shift targets is a complicated task, as an integrated
network approach is required (Veenstra, Zuidwijk, & van Asperen, 2012). As
such, there is renewed interest of the study of planning models for intermodal
hinterland transport in recent years (van Riessen, Negenborn, & Dekker, 2015b).

Van Riessen et al (2015a) contributed to this growing interest by imple-
menting revenue management as a means to optimize network logistics. They
propose that hinterland transportation network operators should operate under
a differentiated service portfolio, i.e. a portfolio where different services are
provided at different prices. The Cargo Fare Class Mix (CFCM) problem was
proposed, which seeks to decide the optimal limit of each offered transportation
service as to maximize revenue. There should be two or more services offered,
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each defined as a fare class. The classes differ only in price and lead time, and
it is assumed higher-priced services have less lead time.

A capacity variable is defined as well, corresponding to vehicles belonging
to the company. Additional costs are charged should accepted demand exceed
the capacity. This corresponds to a case where the company has to outsource
additional vehicles.

Here we introduce three dimensions of the CFCM problem. The problem
concerns the transportation of all cargo from a single deep sea port through
multiple possible routes r to destinations d. The third dimension is the afore-
mentioned fare classes p. Based on these dimensions, a CFCM problem can be
classified as a CFCM (r,d,p) problem.

Through our paper, we wish to reproduce and further extend the afore-
mentioned study on the CFCM Problem (van Riessen, Negenborn, & Dekker,
2015a). Thus, we aim to answer the following research question:

“How should the optimal fare class sizes in a hinterland transport differ-
entiated service portfolio with determined in the cases of one and two possible
transport routes?”

2 Literature Review

2.1 Intermodal Networks

Transportation network operators are required to continuously optimize the
transportation of containers to the hinterland. They have to allocate containers
to available inland services (train, barge, or truck) to achieve the optimal trans-
portation plan. A traditional approach in transportation is to optimize solely
on costs. However, this approach is incomplete as customers also value quality
of service (Crainic & Laporte, 1997).

As such, recent research restrict their optimization problems by a certain
standard to quality of service. One example of these restrictions is the service-
time requirements (Ishfaq & Sox, 2010; Ziliaskopoulos & Wardell, 2000). This
type of constraint is generally added to model the time pressure present in
freight transportation.

Van Riessen et al (2015b) noted the lack of literature in methods to create
planning flexibility in inland container transportation. As of yet, customers
are hesitant to delegate transport flexibility to network operators. One of the
reasons behind this unwillingness is the current pricing method, which does
not provide incentives for customers to delegate network operators. Thus, re-
search into the implementation of revenue management in intermodal networks
is required.

Nevertheless, several studies have been made on the pricing problem of inter-
modal transportation. One study proposed a programming model which jointly
obtains the design of transportation network and the price of the transporta-
tion products offered (Ypsilantis & Zuidwijk, 2013). Another study (Li, Lin,
Negenborn, & De Schutter, 2015) proposed a cost-plus-pricing strategy. Given
the current costs of the transportation network, a customer will be offered a
differentiated service portfolio to choose from, maximizing total profit.
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2.2 Revenue Management in Aviation

One notable example of revenue management in operations management can be
found in the aviation industry in the form of different fare classes for the same
flight. It is standard practice for an airline to charge customers for different
services on the same flight, such as for extra leg room or extra baggage. In the
aviation industry, revenue management models are mainly concerned with the
optimal fare mix, setting limits to the amount of demand of each fare class to
be accepted (Barnhart, Belobaba, & Odoni, 2003).

Indeed, revenue management benefits airlines in two ways. Firstly, it is es-
sentially a method for airlines to implement price discrimination on different
consumer groups (Zeni, 2001). This pricing strategy allows airlines to accrue
more revenue from customers with higher valuations of among other aspects,
time (Stavins, 2001). Secondly, it increases utilizations by incentivizing cus-
tomers to choose more flexible products at a lower price. Flexibility may help
producers increase the utilization of their limited capacity to handle demand
which is difficult to forecast (Petrick, Steinhardt, Gönsch, & Klein, 2012).

2.3 Revenue Management in Intermodal Networks

Prior to the study by Van Riessen et al (2015a), no revenue management strat-
egy for intermodal hinterland transportation had yet been developed with the
exception of one study concerning rail freight transportation (Bilegan, Brot-
corne, Feillet, & Hayel, 2015). One explanation to this lack of literature is that
the high number of stakeholders deciding the prices of hinterland transporta-
tion complicates the construction of revenue management models (van Riessen
et al., 2015b). As such, Van Riessen et al (2015a) simplified the problem by
considering the case of only one route and one destination.

However difficult, there is much promise to revenue management for hin-
terland transportation. The two characteristics of the aviation industry which
benefit from revenue management is present in hinterland transportation as
well. First of all, it is possible to segment the consumers of the hinterland
transportation market into groups with different characteristics (van Riessen et
al., 2015b). However, Van Riessen et al (2015b) notes that so far, only qualita-
tive literature on the North-West European hinterland transportation market
exists. It is possible that in the future, we will know more about the market seg-
mentation of hinterland transportation, which enables the construction of better
revenue management models. Secondly, transportation orders to the hinterland
are agreed upon in long-term contracts. Thus, the decision of accepting demand
is taken in advance, at the tactical level (van Riessen et al., 2015a). Meanwhile,
the capacity of a network operator is fixed at the strategic level. Thus, network
operators may benefit from the increased utilization revenue management offers.

3 Cargo Fare Class Mix Problem

3.1 Modeling Framework

As mentioned in previous sections, this paper will not deviate from the definition
of the CFCM problem proposed in Van Riessen et al (2015a). The general idea
of this definition is already explained in the introduction of this paper.
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Aside from the dimensions r, d, and p previously introduced, the problem
can also be classified based on the timespan of the problem into two problems.
Firstly, the problem can be studied where demand is considered as long-term
commitments. Secondly, the problem can be simplified by considering demand
only for a specified planning horizon. Note that in the second case, the booking
limits are still determined on a tactical level. However, the second case yields
deterministic fare class limits as results to the problem. In both cases, demand
is stochastic.

Three decisions must be taken in the CFCM (r,d,p) problem: the balance
of booking limits for each offered service, the routing of each cargo transported,
and the schedule of when the goods will be sent to each destination.

In this paper, we will consider three cases of the CFCM problem with de-
terministic fare class limits. The planning horizon is defined to be daily for all
three cases.

Figure 1: : Schematic model of the CFCM(1,1,2) problem

We will first replicate the special case of CFCM (1,1,2), which was already
solved in Van Riessen et al (2015a). That is, the case with only one route, one
destination, and two fare classes, as described in Figure 1. We introduce the
two fare classes as Express, where the cargo is guaranteed to arrive within one
day, and Basic, where the cargo is guaranteed to arrive within two days. Thus,
the decision variable will be the fixed booking limits of each fare class.

Figure 2: : Schematic model of the CFCM(2,1,2) problem

Afterwards, our study wishes to build upon the findings of the original paper
and investigate a more complicated case of the problem, namely a CFCM (2,1,2)
Problem. That is, the case with two routes, one destination, and two fare
classes, as can be seen in Figure 2. This case expands from the aforementioned
CFCM(1,1,2) problem by an alternative route that the operator can take. Thus,
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aside from the fixed booking limits, routing is also a decision variable for this
case.

3.2 CFCM (1,1,2) Problem with Deterministic Daily Lim-
its

Firstly, we will derive an analytical model for the CFCM (1,1,2) problem for
the simplified case of daily planning horizons. The model will optimize revenue
from two fare classes, Express and Basic, on one route to one destination as such
that the capacity C is not violated. Thus, there are only two decision variables:
the deterministic daily booking limits for each fare class LE and LB .

Next, we will discuss demand. Cargo of Express customers must be trans-
ported within one day, while cargo of Basic customers must be transported in
two days or less. As mentioned in previous sections, demand is stochastic. The
number of daily demand for each service type is described by distributions NE(t)
and NB(t):

NE(t) pE(k) = P (NE = k), k = 1, 2, ...

NB(t) pB(k) = P (NB = k), k = 1, 2, ...

Demand of the same fare class for different days are assumed to be i.i.d.
Moreover, NE(t) and NB(t) are assumed to be independent, but not identical,
for all t.

Demand will always be accepted by the service provider as long as the book-
ing limit for its respective fare class has not been reached. The service provider
has a capacity C, which can be used to transport cargo for both fare classes. If
the total number of accepted demand exceeds C, then the service provider will
be forced to outsource additional vehicles.

Therefore, the distribution of daily accepted Express demand DE(t) is as
follows:

DE(t) = min(NE(t), LE) (1)

P (DE(t) = k) = pE(k), k = 1, 2, .., LE − 1 (2)

P (DE(t) = LE) = 1−
LE−1∑
k=0

pE(k) (3)

Similarly, the distribution of daily accepted Basic demand DE(t) is as fol-
lows:

DB(t) = min(NB(t), LB) (4)

P (DB(t) = k) = pB(k), k = 1, 2, .., LB − 1 (5)

P (DB(t) = LB) = 1−
LB−1∑
k=0

pB(k) (6)

For the rest of this study, the time indicator t is omitted, unless specifically
required for clarity.

The assumptions made for this model is as follows. First, since Express
demand cannot be postponed, it is prioritized over Basic Demand. Secondly,
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there is no reason to accept more Express demand than the capacity, based on
the same reasoning. Therefore, LE ≤ C is assumed.

Based on these assumptions, we can identify three types of demand being
served on a particular day: First, there is the Express demand accepted that
day, DE . Secondly, there is Basic demand accepted that day, DB . Thirdly, there
is Basic demand accepted the day before today, which was not yet transported,
RB . Likewise, the portion of DB which is not transported is denoted as RB(t+
1), and will be considered the following day. The portion of RB(t + 1) which
still cannot be transported the following day, is denoted as EB .

As such, three situations can arise in a particular day:

1. The service provider can only transport Express demand accepted that
day and part of the Basic demand accepted the day before still remaining.
All DE , no DB , and part of RB are transported. All of DB is assigned to
RB(t + 1), and the portion of RB that is not transported is assigned to
EB .

2. The service provider can only transport Express demand accepted that
day, Basic demand accepted the day before still remaining, and part of
the Basic demand accepted the day before. All DE , part of DB , and all
RB are transported. The portion of DB not yet transported is assigned
to RB(t+ 1).

3. The service provider can transport all demand. All DE , all DB , and all
RB are transported.

Finally, the objective function CFCM (1,1,2) problem can be formally de-
fined as follows:

max
LE ,LB

J = fEE(DE) + fBE(DB)− pE(EB) (7)

Where fE and fB are fares received by the service provider for each accepted
Express and Basic demand, respectively, and p is the penalty on having excess
Basic demand not being transported using the available capacity.

This objective is subject to constraints for the expected accepted demand
E(DE) and E(DB), and the expected excess demand E(EB). These constraints
depend on limits LE , LB , and will be presented along with the solution method.

3.3 CFCM (2,1,2) Problem with Deterministic Daily Lim-
its

The CFCM (2,1,2) model is an expansion to the CFCM (1,1,2) model described
in previous sections. The CFCM (1,1,2) model only has a single route r0 con-
necting the origin with the destination with capacity C. We now add an alter-
native route rA with capacity Ca, which is costlier than r0 to operate.

The existence of a costlier alternative route has two consequences. Firstly,
the service provider can now accept more Express demand, as overall capacity
has increased. This introduces a new tradeoff between receiving additional
revenue from Express and incurring additional costs from the alternative route.
Secondly, the remainder of Basic accepted demand RB can be transported via
rA, as opposed to being postponed to the next day. A second additional tradeoff
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is therefore introduced, between additional costs from transporting the same day
and the risk of the postponed demand not being transported.

To model these two tradeoffs, we introduce a new decision variable LA which
is the limit to the amount of cargo that will be transported via rA. Following
the other two decision variables, we assume that the service provider determines
LA at the tactical level. If the total amount of the three demand types being
served on a particular day exceeds C + LA, then only C + LA demand will be
transported, even if it is still possible to send additional cargo via rA.

Furthermore, we distinguish served demand transported via rA of a partic-
ular day as three different parameters: AE , AP , and AB , for Express demand,
postponed Basic demand from the previous day, and accepted Basic demand
from the same day, respectively.

As such, unlike the CFCM (1,1,2) problem, the CFCM (2,1,2) problem is
a profit maximization problem. The objective function of the CFCM(2,1,2)
problem is as follows:

max
LE ,LB ,LA

J = fEE(DE)+fBE(DB)−ρ(E(AE)+E(AP )+E(AB))−pE(EB) (8)

Instead of fares, fE and fB here denote the profits received by the service
provider for each accepted Express and Basic demand, respectively if it was
transported via r0. The parameter ρ denotes the additional cost incurred for
transporting a unit of demand via rA, and p is the penalty on having excess
Basic demand not being transported using the available capacity.

In addition to the expected accepted demand E(DE) and E(DB), and the
expected excess demand E(EB), the objective function is also constrained by
the expected amount of demand transported via rA, AE , AP , and AB . These
constraints depend on limits LE , LB , LA and will be presented along with the
solution method.

4 Solution Method for CFCM (1,1,2)

In this section we attempt to reproduce the solution method proposed in the
original paper. The objective function (7) involves the expected values of DE ,
DB , and EB . We are therefore required to describe these expected values as
a function of the decision variables LE and LB , and the fixed parameter C.
The expected values of accepted demand DE and DB is derived in section 4.1,
section 4.2 derives the expected value of EB , and finally a formulation for the
problem will be presented in section 4.3.

4.1 Expected Accepted Demand

According to (1) and (4), the distribution of accepted demand DE and DB

depend only on the unlimited demand distributions, NE and NB , respectively.
Since we assume that the demand distributions are known, we can derive explicit
formulations of E(DE) and E(DB) from equations (1) – (7):

P (DE(t) = LE) =

LE−1∑
k=0

kpE(k) + LE(1−
LE−1∑
k=0

pE(k)) (9)
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P (DB(t) = LB) =

LB−1∑
k=0

kpB(k) + LB(1−
LB−1∑
k=0

pB(k)) (10)

4.2 Expected Excess Accepted Demand

Derivation of the distribution of excess accepted demand EB is more complicated
than the distribution of accepted demand. This is because the distribution of
EB depends not only on DE , but also on basic demand which was accepted
the previous day not yet transported, RB . As explained previously, RB is
determined by the situation which arose the previous day.

In this section, we will assume that the booking limits are fixed. Thus, given
the fixed booking limits and the distribution of demand as described in previous
sections, the situation which arises on a certain day can be fully described by
RB . As such, RB exhibits the following Markov property: for a given day t,
the state is fully described by RB(t), and is independent from states other than
t− 1. For simplicity, the state RB(t) will be further denoted as Rt

B .
Based on the three situations presented in section 3.2, we can describe EB(t)

as a function of Rt
B as follows:

EB(t) = max (Rt
B +DE(t)− C, 0)

Afterwards, we can formulate the probability distribution for excess demand
EB(t) based on the Markov state Rt

B as follows:

P (EB(t) = m) =

{
P (DE(t) ≤ C −Rt

B) if m = 0

P (DE(t) = C +m−Rt
B) if m > 0

(11)

Therefore, the probability of having excess demand can be summed up as
follows:

P (EB > 0) = 1− P (DE(t) ≤ C −Rt
B)

P (EB > 0) = P (DE(t) > C −Rt
B) (12)

Furthermore, the transition probabilities, that is the distribution of the re-

maining demand for the next day, R
(
Bt + 1), given the remaining demand of

the current day Rt
B , is denoted as pRB

(i, j). We distinguish between the situ-
ation with excess demand (Situation 1 in section 3) and the situations without
(Situation 2 and Situation 3). Thus, the transition probabilities is as follows:

pRB
(i, j) = P (R

(
Bt+ 1) = j | Rt

B = i)

pRB
(i, j) = P (R

(
Bt+1) = j, EB > 0 | Rt

B = i)+P (R
(
Bt+1) = j, EB = 0 | Rt

B = i)

As described previously, when Situation 1 occurs, all Basic demand accepted
that day will be assigned to RB . Thus for EB > 0:

pRB
(i, j) = P (DB = j)

In other words,

P (R
(
Bt+ 1) = j, EB > 0 | Rt

B = i) = P (DB = j)P (DE > C − i) (13)
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For Situation 2 (j > 0) and Situation 3 (j = 0), there are no excess accepted
demand. Therefore for EB = 0 the following transition probability holds:

pRB
(i, j) =

{
P (DE +DB +Rt

B − C = j) if j > 0

P (DE +DB +Rt
B < C) if j = 0

(14)

Note that for Situation 2 and Situation 3, all of Rt
B is transported. DB is

then assigned to the remaining slots S, where:

S = C −DE −Rt
B

P (S = s) = P (DE +Rt
B = C − s) (15)

Where 0 ≤ s ≤ C −Rt
B . Note that for all cases where (15) is non-zero,

DE = C −Rt
B − s ≤ C −Rt

B

For the case of Situation 2, we can also define S in terms of accepted basic

demand of that day DB and the state of R
(
Bt+ 1) tomorrow, as follows:

S = DB −R(
Bt+ 1) (16)

Meanwhile, situation 3 suggests that

S ≥ DB (17)

Using the expressions (15) – (17) we can rewrite (14) as follows:

pRB
(i, j) =

{ ∑C−i
s=0 P (DE + i = C − s)P (DB = s+ j) if j > 0∑C−i
s=0 P (DE +DB +Rt

B < C) if j = 0
(18)

Thus from (13) and (18) we can provide a general formulation of pRB
(i, j)

as follows:

pRB
(i, j) = P (DB = j)P (DE > C − i)

+

C−i∑
s=0

P (DE + i = C − s)P (DB = s+ j) if j > 0

pRB
(i, j) = P (DB = 0)P (DE > C − i)

+

C−i∑
s=0

P (DE +DB +Rt
B < C) if j = 0

(19)

Given pRB
(i, j) has been calculated, we can derive the steady-state distri-

bution of the Markov state RB , πj for fixed booking limits. In other words,
πj denotes the long-run probability of postponing j accepted Basic demand or-
ders to the next day. The derivation can be found by finding a solution to the
following Markov equilibrium equations.
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πj =
∑
i

πipRB
(i, j) (20)

∑
i

πi = 1 (21)

Finally, we can substitute the steady-state probabilities πj to expression (11),
yielding the distribution and expected value of excess accepted Basic demand
as follows:

P (EB = m) =

{ ∑LB

q=0 P (DE ≤ C − q)πq if m = 0∑LB

q=0 P (DE = C +m− q)πq if m > 0

E(EB) =

LB∑
m=0

mP (EB = m) =

LB∑
m=1

mP (EB = m)

E(EB) =

LB∑
m=0

m

LB∑
q=0

P (DE = C +m− q)πq (22)

4.3 Formulation of the CFCM (1,1,2) Model

By using expressions (9) – (10) for expected accepted demand and expression
(22) denoting the expected value of excess accepted Basic demand, we can de-
scribe the objective function (7) for given values of LE and LB . Furthermore,
the model is constrained by the Markov equilibrium equations provided in the
previous section. As such, we can now provide a formulation of the CFCM
(1,1,2) model.

max
LE ,LB

J = fEE(DE) + fBE(DB)− pE(EB)

Where

E(DE) =

LE−1∑
k=0

kpE(k) + LE(1−
LE−1∑
k=0

pE(k))

E(DB) =

LB−1∑
k=0

kpB(k) + LB(1−
LB−1∑
k=0

pB(k))

E(EB) =

LB∑
m=0

m

LB∑
q=0

P (DE = C +m− q)πq

Subject to:

π0 =

LB∑
i=0

πi[P (DB = 0)P (DE > C − i) +

C−i∑
s=0

P (DE + i = C − s)P (DB ≤ s)]

πj,j>0 =

LB∑
i=0

πi[P (DB = j)P (DE > C−i)+

C−i∑
s=0

P (DE+i = C−s)P (DB = s+j]
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LB∑
i

πi = 1

LE , LB ∈ N

πq ≥ 0

4.4 Solution Method for the CFCM (1,1,2) Model

The CFCM (1,1,2) Model as formulated in the previous section cannot be solved
in a straight-forward manner. Firstly, the objective function as a function of the
decision variables LE and LB is in general not convex. The decision variables
determine the probabilities of accepted demand, DE and DB . Since the decision
variables are present as parameters for the summation functions, the model
becomes non-linear. Secondly, the decision variables themselves have integer
values. Therefore, it is not possible to solve the problem with fast solution
methods such as the simplex method.

However, it is possible to solve the problem iteratively. As shown in previous
sections, fixing the values of LE and LB leaves only the Markov equilibrium
equations to be solved. These equations are linear. As previously proposed by
Van Riessen et al (2015a), the problem can be solved using a grid search over
all possible combinations (LE ,LB).

The number of feasible combinations can be made finite using upper bounds
for LE and LB . When p > fE is assumed, it is possible to conclude that
LE ≤ C since accepting more Express demand than the capacity will result in
a penalty. Moreover, when p > fB is assumed, it is possible to conclude that
LB ≤ 2C. Since it is possible to transport Basic cargo within two days, there are
at most twice as many cargo that can be accepted without a guaranteed penalty.
These upper bounds ensures the grid search needs to examine 2C2 combinations
(LE ,LB ). In each iteration, the model is reduced to an LP problem with fixed
(LE ,LB ) with a unique feasible solution.

5 Case Study for CFCM (1,1,2)

In this section, we aim to measure the performance of the CFCM (1,1,2). Specif-
ically, we are interested in two comparisons. The first comparison is between
the CFCM (1,1,2) model and other methods to determine the best feasible fare
class mix, and the second comparison is between CFCM (1,1,2) with different
parameters. To do so, three parameters was calculated apart from the expected
revenue (J): expected excess Basic demand E(EB), expected capacity utiliza-
tion η, and computation time T . Expected capacity utilization is calculated as
follows:

η =
E(DE) + E(DB)− E(EB)

C

Computation time is documented based on execution of the solution method
using a CPU with a clock speed of 3400 MHz.
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5.1 Alternative Methods for the CFCM Problem

Van Riessen et al (2015a) described an additional five methods to determine
the best feasible fare class mix. These are:

1. Only offer Express service. In this approach Basic demand is ignored as
Express service is not considered as a substitute for Basic service.

2. Only offer Basic service. In this approach Express demand is ignored as
Basic service is not considered as a substitute for Express service.

3. Only offer Basic service with substitution. In this approach it is assumed
that Express service can be perfectly substituted by Basic Service, i.e.
when Express service is unavailable, all express demand arrivals become
Basic demand arrivals.

4. Offer both services, but putting no limit on Express service. In this ap-
proach all Express up to capacity C is accepted.

5. Offer both services, but putting no limit on Basic service. In this approach
all Basic demand up to capacity 2C is accepted.

An experiment was done to compare the CFCM (1,1,2) problem solution with
the solutions from the aforementioned approaches under parameters described
by Table 1.

Case C DE DB (fE , fB) Penalty
CFCM (1,1,2) 20 Poisson(15) Poisson(15) 110; 95 175
Express Only 20 Poisson(15) 0 110; 95 175
Basic Only 20 0 Poisson(15) 110; 95 175
Basic w/ Substitution 20 0 Poisson(30) 110; 95 175
No limit on Express 20 Poisson(15) Poisson(15) 110; 95 175
No limit on Basic 20 Poisson(15) Poisson(15) 110; 95 175

Table 1: Experiment parameters of the CFCM (1,1,2) Problem and its alterna-
tives

The results of the experiments are as follows:

Case (LE , LB) J η E(EB) T
CFCM (1,1,2) 14;7 2063 98.9% 0.13 20.5 s
Express Only 20;- 1627 73.9% 0 1.2 s
Basic Only -;40 1425 75.0% 0 1.8 s
Basic w/ Substitution -;20 1895 99.8% 0 1.8 s
No limit on Express (20);6 2005 98.5% 1.09 2.0 s
No limit on Basic 5;(40) 1908 98.1% 0.38 1.4 s

Table 2: Results of the CFCM (1,1,2) Problem and its alternatives

These results confirm the findings of Van Riessen et al (2015a). From these
results, it is apparent that the results of CFCM (1,1,2) has the highest revenue.
That is, revenue can be increased by combining Basic and Express services, and
by setting limits on both services. From all alternatives, setting no limits on
Express services has the closest results to the CFCM (1,1,2) problem.
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5.2 Comparison of CFCM (1,1,2) Problem with Different
Parameters

We are also interested in the behavior of CFCM (1,1,2) problem. While a com-
plete parameter analysis is required to describe the effects of different parameters
on the CFCM problem, a simple comparison of CFCM (1,1,2) problems with
different parameters may still provide some insight on the performance of the
model. Thus, we conducted an experiment using four sets of parameters, as
described in Table 3:

Case C DE DB (fE , fB) Penalty
Case 1 50 Poisson(10) Poisson(40) 110; 95 175
Case 2 50 Poisson(40) Poisson(10) 110; 95 175
Case 3 50 Poisson(40) Poisson(60) 110; 95 175
Case 4 80 Poisson(40) Poisson(60) 110; 95 175

Table 3: Four sets of parameters for the CFCM (1,1,2) Problem

We will also compare the results of these cases with the alternative approach
of setting no limits on Express, which was the best alternative for the CFCM
(1,1,2) Problem in the previous experiment. The results are as follows:

Case (LE , LB) J η E(EB) T
Case 1 23;48 4815.67 99.31% 0.29 238.1 s

(50);48 4815.67 99.31% 0.29 5.6 s
Case 2 44;15 5146.29 97.71% 0.45 214.8 s

(50);13 5126.40 98.99% 0.99 5.0 s
Case 3 36;15 5251.40 100% 0.15 218.9s

(50);11 5167.86 100% 1.47 5.4 s
Case 4 58;24 8394.29 99.79% 0.15 1088.0s

(80);21 8320.99 100% 1.55 15.8 s

Table 4: Results of the CFCM (1,1,2) Problems

These results also confirm the findings of Van Riessen et al (2015a). This
section concludes the replication part of this paper.

6 Solution Method for CFCM (2,1,2)

The objective function (8) involves expected values of DE , DB and EB , which
is present in the CFCM (1,1,2) model, as well as expected values of AE , AP ,
and AB . In this section, we will describe these expected values as a function of
the decision variables LE , LB , LA, and the fixed parameter C.

Of the expected values already defined for the CFCM (1,1,2) model, E(DE)
and E(DB) do not depend on the capacity. Thus, the additional capacity intro-
duced along with the new route does not alter the formulation of the expected
values described by equations (9) and (10) In contrast, the expected value of
EB depends on the Markov steady-state probabilities which no longer holds in
the CFCM (2,1,2) problem.
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Thus, a new formulation of the Markov equations is derived in section 6.1
and the expected value of EB is derived in section 6.2. Afterwards, sections
6.3, 6.4, and 6.5 derives the expected values of AE , AP , and AB , respectively.
Finally, a formulation for the CFCM (2,1,2) problem will be proposed in section
6.6.

6.1 Markov Steady-State Probabilities

In the CFCM (1,1,2) method, the entirety of the remainder of accepted Ba-
sic demand Rt+1

B is postponed to the next day. As mentioned previously, an
alternative route allows the service provider to send part of Rt+1

B through the
alternative route (At

B), and postponing the rest (P t+1
B ). In other words:

Rt+1
B = At

B + P t+1
B

As such, RB no longer exhibits the Markov property. Instead, the property
can be observed on PB : for a given day t, the state is fully described by PB(t),
and is independent from states other than t− 1. For simplicity, the state PB(t)
will be further denoted as P t

B .
The transition probabilities is still quite similar to that of RB in the CFCM

(1,1,2). The only change made is the capacity, since now it is possible to trans-
port at most an additional LA units of cargo. In the previous section we in-
troduced the variable S for the CFCM (1,1,2) problem. In the CFCM (2,1,2)
problem, the variable S denotes the remaining slots in r0 to transport Basic
Demand when all of yesterday’s postponed demand is transported via r0. Thus,
for all DE + P t

B < C the variable S is now calculated as:

S = C + LA −DE − P t
B

P (S = s) = P (DE + P t
B = C − s) (23)

Moreover, note that the maximum amount of slots S given P
(
Bt) = i is

C + LA − i.
Therefore, the general formulation of the transitional probabilities pPB

(i, j)
is as follows:

pPB
(i, j) = P (DB = j)P (DE > C + LA − i)

+

C+LA−i∑
s=0

P (DE + i = C + LA − s)P (DB = s+ j) if j > 0

pPB
(i, j) = P (DB = 0)P (DE > C + LA − i)

+

C+LA−i∑
s=0

P (DE + i = C + LA − s)P (DB ≤ s) if j = 0

As such, for fixed LE , LB , and LA, it is possible to derive the long run
probability of postponing j accepted Basic demand orders to the next day, πj
by finding a solution to the following Markov equilibrium equations:

πj =
∑
i

πipRB
(i, j) (24)
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∑
i

πi = 1 (25)

6.2 Expected Excess Basic Demand

To derive the expected excess Basic demand, E(EB), we describe EB(t) as a
function of P t

B as follows:

EB(t) = max (P t
B +DE(t)− C − LA, 0)

Based on the markov state P t
B , we can then define the probability distribu-

tion for excess demand EB(t) as follows:

P (EB(t) = m) =

{
P (DE(t) ≤ C + LA − P t

B) if m = 0

P (DE(t) = C + LA +m− P t
B) if m > 0

(26)

Finally, we substitute the steady-state probabilities found by solving equa-
tions (24) – (25), πj to expression (26) to obtain the distribution and expected
value of excess accepted Basic demand:

P (EB(t) = m) =

{ ∑LB

q=0 P (DE ≤ C + LA − q)πq if m = 0∑LB

q=0 P (DE = C + LA +m− q)πq if m > 0

E(EB) =

LB∑
m=0

mP (EB = m) =

LB∑
m=1

mP (EB = m)

E(EB) =

LB∑
m=0

m

LB∑
q=0

P (DE = C + LA +m− q)πq (27)

6.3 Expected Express Demand Transported Via rA

As mentioned previously, the introduction of an alternative route allows the
service provider to accept more Express demand than C by paying additional
costs ρ for each unit of demand that has to be transported via rA, AE . Thus to
investigate the distribution of AE , we distinguish between two cases: where the
service provider decides to set a limit on Express demand that is higher than C
(C < LE < C + LA), and where they do not (LE ≤ C).

In the first case, two situations may occur based on the amount of Express
demand accepted on a particular day:

1. AE = 0, if DE ≤ C

2. AE = DE − C, if DE > C

Thus, given LE where C < LE < C + LA holds, the expected Express
demand transported via the alternative route is given as follows:

E(AE) =

LE−1∑
k=C+1

(k − C)pE(k) + (LE − C)(1−
LE−1∑
k=0

pE(k)) (28)

In the first case, DE never exceeds C. Thus, AE = 0 always holds.
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Note that substituting a value of LE lower than C will result in a negative
number. We can exploit this outcome to derive a general formulation for the
expected Express demand transported via rA:

E(AE) = max [

LE−1∑
k=C+1

(k − C)pE(k) + (LE − C)(1−
LE−1∑
k=0

pE(k)), 0] (29)

6.4 Expected Postponed Demand Transported Via rA

Given that transporting through the alternative route is more expensive, a ser-
vice provider may choose to postpone Basic demand to the next day in the hopes
that said demand can be transported through the cheaper route. However, this
is not always possible. Express demand holds priority over all other types of
demand. Thus, the amount of postponed demand transported via the main
route depends on accepted Express demand DE . By extension, the amount of
postponed demand transported via rA, AP , also depends on accepted Express
demand DE .

Therefore, we distinguish between two cases: where accepted Express de-
mand exceeds the capacity of the main route (DE > C), and where it does not
(DE ≤ C).

In the first case (DE ≥ C), no postponed demand is transported through
the main route. As such, two situations may occur based on the amount of
postponed demand needs to be transported that particular day:

1. AP = P t
B , all postponed demand is transported via rA. This occurs when

there is enough capacity to transport all express demand and postponed
demand. In other words,

P t
B < C + LA −DE

2. AP = LA − C, part of postponed demand is transported via rA, while
the rest becomes excess demand. This situation occurs when there is
exactly enough or not enough capacity to transport all express demand
and postponed demand. In other words,

P t
B ≥ C + LA −DE

Therefore given DE = i ≥ C, the expected postponed Basic demand trans-
ported through the alternative route is as follows:

E(AP | DE = i, i ≥ C) =

C+LA−i−1∑
k=1

kπi +

LB∑
k=C+LA−i

(C + LA − i)πi (30)

In the second case (DE ≤ C), at least part of the postponed demand is
transported through the main route. As such, three situations may occur based
on the amount of postponed demand needs to be transported that particular
day:

16



1. AP = 0, all postponed demand is transported via r0. This occurs when
there is enough capacity in r0 to transport all express demand and post-
poned demand. In other words,

P t
B ≤ C −DE

2. AP = DE + P t
B − C, all postponed demand is transported, and part of it

via rA. This occurs when there is enough overall capacity to transport all
express demand. In other words,

C −DE < P t
B < C + LA −DE

3. AP = LA, all cargo transported via rA are postponed demand. This
situation occurs when there is not enough capacity in rA to transport all
postponed demand. In other words,

P t
B ≥ C + LA −DE

Thus, given DE = i < C, the expected postponed demand transported
through the alternative route is as follows:

E(AP | DE = i, i ≥ C) =

C+LA−i−1∑
k=C−i+1

(i+ k − C)πi +

LB∑
k=C+LA−i

LAπi (31)

Based on equations (30) – (31), we can derive the expected postponed de-
mand transported via rA as follows:

E(AP ) =

C−i∑
i=0

P (DE = i)E(AP | DE = i, i < C)

+

LB∑
i=C

P (DE = i)E(AP | DE = i, i ≥ C)

E(AP ) =

C−i∑
i=0

P (DE = i)(

C+LA−i−1∑
k=C−i+1

(i+ k − C)πi +

LB∑
k=C+LA−i

LAπi)

+

LB∑
i=C

P (DE = i)(

C+LA−i−1∑
k=1

kπi +

LB∑
k=C+LA−i

(C + LA − i)πi)

(32)

6.5 Expected Basic Demand Transported Via the Alter-
native Route

Given the amount of postponed demand needs to be transported that particular
day (P t

B = i), three situations may occur based on the amount of slots left as
described in equation (23) and the amount of accepted Basic demand DB :

In the first situation (At
B = 0), no Basic demand accepted in that particular

day is transported via rA. This occurs in one of two cases:
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1. No slots are available, the sum of accepted Express demand and postponed
demand is at least equal to the overall capacity. In other words,

DE + P t
B ≥ C + LA

2. There are slots available to transport Basic demand (DE+P t
B = C+LA−s,

s > 0). However, no Basic demand is accepted (DB = 0)

Therefore, we can calculate the probability that no Basic demand accepted
in that particular day is transported via rA as follows:

P (At
B = 0 | P t

B = i) = P (DE + i ≥ C + LA)

+

C+LA−i∑
s=1

P (DE + i = C + LA − s)P (DB = 0)

P (At
B = 0) =

LB∑
i=1

πi[P (DE + i ≥ C + LA)

+

C+LA−i∑
s=1

P (DE + i = C + LA − s)P (DB = 0)]

(33)

In the second situation (At
B = j, 0 < j < LA), some Basic demand accepted

in that particular day is transported via rA. This occurs in one of two cases:

1. There are j slots available (DE + P t
B = C + LA − j) and at least j Basic

demand is accepted (DB ≥ j).

2. There are more than j slots available (DE +P t
B ≥ C+LA−j) and exactly

j Basic demand is accepted (DB = j).

Therefore, we can calculate the probability that j (0 < j < LA) accepted
Basic demand is transported via rA as follows:

P (At
B = j | P t

B = i) = P (DE + i = C + LA − j)P (DB ≥ j)

+

C+LA−i∑
s=1

P (DE + i = C + LA − s)P (DB = j)

P (At
B = j) =

LB∑
i=1

πi[P (DE + i = C + LA − j)P (DB ≥ j)

+

C+LA−i∑
s=1

P (DE + i = C + LA − s)P (DB = j)]

(34)
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In the third situation (At
B = LA), all cargo transported via rA are accepted

Basic demand from the same day. This occurs only when there are at least
LA slots available, that is all Express demand and postponed demand can be
transported via r0 (DE + P t

B ≤ C), and at least LA Basic demand is accepted
(DB ≥ LA)

Therefore, we can calculate the probability that j (0 < j < LA) accepted
Basic demand is transported via rA as follows:

P (At
B = LA | P t

B = i) =

C+LA−i∑
s=LA

(DE + i = C + LA − s)P (DB ≥ LA)

P (At
B = LA) =

LB∑
i=1

πi[

C+LA−i∑
s=LA

(DE + i = C + LA − s)P (DB ≥ LA)] (35)

Based on equations (33) – (35), we can derive the expected Accepted Basic
demand transported via rA as follows:

E(AB) =

LA∑
j=1

LB∑
i=0

πi[P (DE + i = C + LA − j)P (DB ≥ j)

+

C+LA−i∑
s=1

P (DE + i = C + LA − s)P (DB = j)]

+ LA

LB∑
i=1

πi[

C+LA−i∑
s=LA

(DE + i = C + LA − s)P (DB ≥ LA)]

(36)

6.6 Formulation of the CFCM (2,1,2) Model

In previous sections we have derived the expressions for expected accepted de-
mand (9) – (10), expected excess Basic demand (27), expected Express (29),
postponed (32), and Basic (36) demand transported via rA. These expressions
allow us to describe the objective function (8) as a function of the decision
variables LE , LB , LA and the parameter C. Furthermore, we have defined the
Markov equilibrium equations (24) – (25) which constrains the model. There-
fore, we can now provide a formulation of the CFCM (2,1,2) Model.

max
LE ,LB ,LA

J = fEE(DE) + fBE(DB)− ρ(E(AE) + E(AP ) + E(AB))− pE(EB)

Where

E(DE) =

LE−1∑
k=0

kpE(k) + LE(1−
LE−1∑
k=0

pE(k))

E(DB) =

LB−1∑
k=0

kpB(k) + LB(1−
LB−1∑
k=0

pB(k))
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E(EB) =

LB∑
m=0

m

LB∑
q=0

P (DE = C + LA +m− q)πq

E(AE) = max [

LE−1∑
k=C+1

(k − C)pE(k) + (LE − C)(1−
LE−1∑
k=0

pE(k)), 0]

E(AP ) =

C−i∑
i=0

P (DE = i)(

C+LA−i−1∑
k=C−i+1

(i+ k − C)πi +

LB∑
k=C+LA−i

LAπi)

+

LB∑
i=C

P (DE = i)(

C+LA−i−1∑
k=1

kπi +

LB∑
k=C+LA−i

(C + LA − i)πi)

E(AB) =

LA∑
j=1

LB∑
i=0

πi[P (DE + i = C + LA − j)P (DB ≥ j)

+

C+LA−i∑
s=1

P (DE + i = C + LA − s)P (DB = j)]

+ LA

LB∑
i=1

πi[

C+LA−i∑
s=LA

(DE + i = C + LA − s)P (DB ≥ LA)]

Subject to:

π0 =

LB∑
i=0

πi[P (DB = 0)P (DE > C + LA − i)

+

C+LA−i∑
s=0

P (DE + i = C + LA − s)P (DB ≤ s)]

πj,j>0 =

LB∑
i=0

πi[P (DB = j)P (DE > C + LA − i)

+

C+LA−i∑
s=0

P (DE + i = C + LA − s)P (DB = s+ j)]

LB∑
i

πi = 1

LE , LB , LA ∈ N

πq ≥ 0
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6.7 Solution Method for the CFCM (2,1,2) Model

The CFCM (2,1,2) Model as formulated in the previous section suffers from
the same drawbacks as the CFCM (1,1,2) Model: it is non-linear, generally not
convex, and has integer decision variables. Therefore, the CFCM (2,1,2) should
also be solved iteratively using a grid-search over all possible combinations (LE ,
LB , LA).

It is important to note that the added decision variables increases the number
of combinations to search over. To be precise, for given capacities C and CA, a
total of 2

∑CA

LA=0(C+LA)2 combinations, significantly more than 2C2. As such,
it may be advisable to resort to heuristics. For example, instead of a grid search,
the problem can search over most, instead of all combinations in a systematic
manner to determine the feasible solution.

7 Conclusion

In this study, we replicated the CFCM Problem as proposed by Van Riessen et
al (2015a). The results of our replication confirmed the findings of said paper.
We found that the solution method proposed in the original work yields higher
revenue than other approached towards solving the CFCM (1,1,2) Problem. As
such, we have confirmed the key insight of the aforementioned study that revenue
is best increased by finding the optimal balance between offered services.

We then extended the study by analyzing the CFCM (2,1,2) Problem. That
is, a case of the CFCM Problem with two one destination, two fare classes,
and two routes which differ only in cost and capacity. This study succeeded in
finding a solution method for the CFCM (2,1,2) Problem.

7.1 Limitations and Future Research

There are three limitations to our study. Firstly, we are limited in our ability
to implement the findings of our extension by solving a case study. Therefore,
we wish to see our findings implemented and tested in a future study. Secondly,
we assumed that the two routes differ only in capacity and price. However, this
is not the only way to model a CFCM (2,1,2) problem. Thus, we hope that a
future study will attempt to model and solve other forms of the CFCM (2,1,2)
Problem. Thirdly, we assumed that LA is decided at the tactical level. This
assumption made it possible for the CFCM (2,1,2) Problem to be described
by a single optimization problem. However, by not allowing flexibility at the
operational level, there might be lost revenue.

Furthermore, we hope to see the findings of our research employed for the
formulation of a general CFCM (r,1,2) Problem. In general, the CFCM Problem
is still a young topic. The four topics of future research that we have proposed
will shed even more light on the potential of revenue management in hinterland
transport.
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