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Abstract

In order to improve customer experience companies can invest in recommendation systems.
Recommendation systems attempt to profile user preferences and provide users with good
personalized recommendations. We focus on the neighborhood-based methods for Collabora-
tive Filtering. Collaborative Filtering only relies on past user behavior. Neighborhood-based
methods select the most similar items or users (neighbors) and make predictions by determin-
ing interpolation weights for these neighbors. We implement the methods proposed by Bell
and Koren in [3]. Bell and Koren proposed an improved neighborhood-based Collaborative
Filtering method, which addresses some of the issues of previous neighborhood-based meth-
ods. This improved method consists of three main components, namely data normalization,
the selection of neighbors and the determination of interpolation weights. This method was
evaluated on the Netflix prize data [4]. The inclusion of global effects alone gives us a RMSE
of 0.9658. If we perform no data normalization the root mean squared error (RMSE) for Bell
and Koren’s neighborhood interpolation method is worse, around 0.975. For Double Center-
ing, the RMSE improves with approximately 0.05. We find the best RMSE by applying full
data normalization, which resulted in a RMSE of 0.9194. We extend the methods by Bell
and Koren by performing further data normalization. We remove the Genre effect and some
temporal effects, but this does not improve the RMSE much. Only the Genre effect lowers
the RMSE for the inclusion of global effects to 0.9655.
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1 Introduction

The growing popularity of e-commerce has increased the interest in recommendation systems. The
movement to e-commerce has provided customers with a greater variety of products. This informa-
tion overload has made it more difficult for customers to select products. For companies, it is not
easy to match customers to products. Recommendation systems help customers with this selection
by providing personalized suggestions of products. Over the years, recommendation systems have
changed the way customers behave. Examples of applications of recommendation systems include
books, movies, restaurants, fashion, music and webpages.

Recommendation systems consist of programs and algorithms that analyse patterns of user be-
havior. These systems attempt to profile user preferences and model the user-item relationships.
Good personalized recommendations can improve the overall customer experience and therefore
lead to retaining customers and attracting new customers. This economic potential led some of the
big e-commerce websites, like Netflix, Amazon, and Google, to invest in recommendation systems.
In 2006, Netflix even launched a competition to enhance its recommendation system. The winner
of the competition had to outperform Netflix's recommendation system and received an award of
$1,000,000 [4]. This competition has stimulated many researchers to improve and innovate algo-
rithms for recommendation systems.

Typically, recommendation systems are based on two different strategies, Collaborative Filtering
and Content-based Filtering. The difference between those two is that Content-based Filtering is
based on the profiling of users or items through the use of descriptive labels. Collaborative Filtering
(CF) only relies on past user behavior. The most successful approaches to CF are neighborhood-
based methods and latent factor models. In this paper, we will focus on neighborhood-based CF.
Since the dataset does not contain any descriptive labels needed for Content-based Filtering, we
will be focusing on CF. The advantages of the neighborhood-based approach for CF are its intu-
itiveness, its easy implementation and its ability to easily explain the user the reasoning behind a
recommendation [3].

The objective of this research is to predict user preferences for items by implementing and en-
hancing the neighborhood-based CF approach. The dataset contains ratings of the customers of
Netflix, a global media provider. This is the same dataset used for the competition of Netflix.
To examine the accuracy of the predictions of the ratings, we measure their RMSE. We compare
the RMSEs of various stages of preprocessing against varying sizes of neighbors to evaluate the
performance of the model. Additionally, we will extend the implemented neighborhood-based CF
approach by Bell and Koren by performing further data normalization steps.

The research question that will guide this research reads as follows:

How can we implement the neighborhood-based Collaborative Filtering approach by
Bell and Koren [3] to predict user preferences for items and extend this approach by
performing further data normalization?

In the next section of this paper we analyse the dataset and we focus on its important features.
After that, we describe the methods for the three components of the neighborhood-based approach
in detail. In section 4 we extend this approach by incorporating temporal effects and genre effects
during data normalization. This is followed by an evaluation of the results of the implemented
methods. We will conclude with a discussion of our results and several issues that arise from these
results.



1.1 Literature Review

In this section we will give an overview of the existing literature on Collaborative Filtering meth-
ods. A wide variety of algorithms has been developed for the purpose of recommending items to
users. We will focus on the differences between the algorithms, and discuss their advantages and
disadvantages.

During the early 1990s, with the growing popularity of e-commerce, the first works in the field of
recommendation systems were published. Since then, recommendation systems became an inde-
pendent research area of machine learning. These recommendation systems enabled companies to
give customers good personalized recommendations and improve customer experience, therefore
many companies started to adapt recommendation systems. Recommendation systems are usually
classified in the following three categories, based on their recommendation techniques [2]:

e Content-based
e Collaborative Filtering
e Hybrid, a combination of Content-based and Collaborative Filtering methods

Since our paper focuses on Collaborative Filtering we will only be discussing existing literature on
this approach for recommendation systems.

The earliest CF system was the Tapestry system [10]. With this Tapestry system users could
annotate electronic messages and other users could use these annotations to filter messages. The
Tapestry system enabled users to collaborate to filter messages. GroupLens [13, 17], Ringo [21]
and Bellcore’s Video Recommender [12] were the first Automated Collaborative Filtering systems.
Instead of the user needing to find like-wised users manually, the user was now automatically
matched to users with similar opinions.

According to [5] CF algorithms can be divided into two main categories, memory-based and model-
based algorithms. Memory-based algorithms use the user-item ratings to directly predict new
ratings for items. This is done by calculating similarities. This approach can be user-oriented or
item-oriented. For the user-oriented approach, unknown ratings of an item are predicted based on
the weighted average of all the ratings of similar users on the item. For the item-oriented approach,
unknown ratings of an item are predicted based on the weighted-average of all the ratings of the
user on similar items. The similar users or items are called neighbors and they are selected by
using the similarities. According to [20] the item-based algorithms provide better performance and
more efficient computations. Most simply, the aggregation is a weighted average. However, this
approach does not take into account that users use a different rating scale. In [20] the authors
propose to deduct the mean rating of the user to overcome this problem. Other researchers pro-
posed preference-based filtering, where similarities are calculated based on relative ratings. The
most common choices for the similarity measure are the Pearson correlation coefficient [17] and
the cosine similarity [5]. Others have also used the mean squared difference between users or items
as similarity measure [21].

Most early CF system used memory-based algorithms. The advantages of the memory-based
algorithm are its simplicity (intuitiveness), its justifiability (users can easily be explained why they
received a certain recommendation), its efficiency (no costly training phases) and its stability [7].
However, the memory-based methods also has its shortcomings. When data is sparse, the similar-
ities between users or items are based on a small amount of neighbors. This will result in skewed
similarities. This can happen when there is a cold start problem, new items have not received many
ratings yet and new users have not made many ratings yet. Also, the memory-based methods grow
in size with the number of items or users, so there are scalability issues.

To overcome the shortcomings of memory-based algorithms, researchers started to investigate
model-based algorithms. These machine learning or data mining algorithms use the user-item
ratings to estimate or learn a model used to predict new ratings for items. The most popular



model-based CF models are Bayesian network models, clustering models and factorization based
models. Matrix factorization techniques have been successful at addressing the sparsity and scala-
bility issues of CF systems. These factorization based systems assume that data can be explained
by latent features and leave out less significant features of the data. These systems have as advan-
tage that dimensionality of the recommendation systems databases can be decreased. The most
important matrix factorization techniques are the Singular Value Decomposition (SVD) [19], Prin-
cipal Component Analysis [11] and Probabilistic matrix factorization [18].

Common clustering models cluster similar users or items into segments based on the rating data.
Then they estimate the probability that a user or an item is in a specific segment and compute
the conditional probability of a rating. In Bayesian network models, items are represented with
nodes in a Bayesian network. In [5] the authors have proven that this model is small, fast and
as accurate as neighborhood-methods. Model-based algorithms are better at dealing with sparsity
than memory-based algorithms. Also, model-based algorithms can better address scalability issues.
The issues with model-based algorithms are that they require expensive model building, that there
is a trade-off between prediction performance and scalability and that with the reduction of the
models useful information can be lost.

The Netflix prize competition launched in 2006 stimulated many researchers to improve and in-
novate algorithms for the recommendation systems. Especially since then, researchers started to
combine memory-based and model-based algorithms. By combining the algorithms it is possible
to overcome the shortcomings of the individual models. We will give an overview of the best and
most influential methods used during the Netflix prize competition.

Bell and Koren found out that the removal of global effects can improve the estimation accu-
racy [3]. Most models work best when global effects have been accounted for. Bell and Koren also
proposed the combination of matrix factorization and neighborhood-based methods in this paper.
This combination leads to very good predictions. The top teams mostly formed variations on SVD
models or blended models to gain higher estimation accuracy. Simon Funk was the first to reveal
the use of SVD models using gradient descent [8]. Another important matrix factorization model
was the SVD++ model. This asymmetric model incorporates both implicit and explicit feedback
[14]. Also, Koren showed that in factorization models and in neighborhood models the inclusion
of temporal dynamics is very useful in improving quality of predictions [16]. In the end the Netflix
prize was won by the team 'BellKor’s Prachmatic Chaos’ by blending a number of SVD++ model
with Restricted Boltzmann machines [15]. Combinations of different methods have proven to give
the best results for Collaborative Filtering approaches.

2 Data

In this section, we describe the content of the dataset that served as the basis for this paper. We
will analyse the data and evaluate important features graphically. Furthermore, we elaborate on
some important notations used throughout the paper.

The dataset contains ratings of customers at the global media provider Netflix, offering a wide
assortment of movies and series. The rating is the number of stars given to a movie by a customer,
ranging from 1 (not interesting) to 5 (very interesting). There are over 100 million ratings in the
dataset, collected between October 1998 and December 2005. The dataset reflects the distribution
of all received ratings by Netflix during this period [4]. The dataset includes 480,189 anonymous
customers, each identified with a unique customer ID. There are 17,770 movies in the dataset, each
identified with a unique movie ID. Furthermore, there is also information on the title and release
year of the movie and the date of the rating. The data was released in a training-test set format.
Therefore, the data has been partitioned in two parts: a Training set and a Hold-out set. The
Hold-out set was created by the nine most recent ratings of the customers (or less if the customer
did not rate at least 18 movies over the examined period) and contains around 4.2 million ratings.
The remaining data formed the Training set. The Hold-out set is randomly split into subsets called



Probe, Quiz and Test, with the same statistical properties. The goal of the Netflix prize contest
was to predict ratings for the Quiz and Test set, also known as the Qualifying set. The ratings for
the Hold-out set are harder to predict, they contain more ratings of users that do not rate much.
The true ratings for the Probe set are given, for the Qualifying set the ratings are kept by Netflix
to evaluate the performance for the contest. The Probe set is attached to the Training set and its
main purpose is to evaluate the performance of algorithms by participants of the contest. Because
we can only evaluate the performance of our algorithm for the Probe set, we will only be reporting
results on this set.

The following three figures give more insights in the data of the Training set (including Probe).
From Figure 1 and Figure 2, we can see that the distribution for the ratings per user and the
distribution for the ratings per movie are both very skewed. The average number of ratings per
movie is 5654.5, the average number of ratings per user is 209.252. Most movies were rated under
1000 times while Miss Congeniality, the most rated movie, was rated by almost half the users in
the dataset. Likewise for the users, a few users rated over 10,000 movies, but a quarter of the
users rated under 36 movies. This wide variation makes it more difficult to estimate movie and
user parameters, but this is a typical characteristic for collaborative filtering data. From Figure
3 we can see an unexpected peak in the number of ratings on January 19 2005. Perhaps this
peak has to do with the introduction of profiles for Netflix accounts on January 18. With the pro-
files family members have their own sign-in name, ratings and recommendations [1]. Further we
would like to comment that the data is very sparse. About 99% of the possible ratings are unknown.
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Figure 1: Distribution User Ratings Training set (including Probe), both axes in log scale
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Figure 2: Distribution Movie Ratings Training set (including Probe), both axes in log scale
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Figure 3: Number of Ratings in Time (including Probe)

2.1 Notation

We will use he following notation throughout the paper:
1. w,v for users, taking values between 1,2,...U with U = 480, 189
2. 1,7,k for movies, taking values between 1,2, ...J with I = 17,770
3. 1y; the real rating of user u for movie %
4. 7; the estimated rating of user u for movie ¢
5. R(u) the set of all items rated by user u
6. R(i) the set of all users that rated item 4
7. N(i;u) the set of neighbors of movie i that have been rated by user u

For some formulas we will need extra definitions.



3 Methodology

The following section describes the algorithm for the neighborhood-based Collaborative Filtering
approach as proposed by Bell and Koren [3]. It covers the methods used for the three main compo-
nents of the algorithm, as well as a detailed description of the methodology for our extension.

The prediction of user preferences is performed with the neighborhood-based approach (also known
as k Nearest Neighbors or kNN). Usually the neighborhood-based approach computes the similari-
ties between users and items and using these similarities to predict unknown ratings. We will follow
the algorithm by Bell and Koren presented in [3]. Bell and Koren have extended the common kNN
by adding a preprocessing step, namely data normalization by the removal of global effects. They
have also proposed an alternative for the determination of interpolation weights. Therefore, this
algorithm consists of three main components:

1. Data Normalization
2. Neighbor Selection

3. Determination of Interpolation Weights

The unknown rating by using an item-based kNN is predicted by:

Fui = ZjeN(i;u) WijT; (1)

with w;; the interpolation weight between item ¢ and item j, #,; the estimate for the unknown
rating of user u of item ¢ and N (i;u) the set of neighbors of item ¢ which have been rated by user
u. We use the item-based kNN in this paper because according to [20] item-based algorithms pro-
vide dramatically better performance than user-based algorithms. The computations of user-based
algorithms are more complex and inefficient compared to item-based algorithms.

3.1 Data Normalization

The first step is to normalize the rating data by eliminating global effects. In Table 1, we list all
global effects that we are going to eliminate. Without normalization, these global effects could
bias the predictions for the ratings. By data normalization the ratings become more comparable
and this improves the estimation accuracy. This is because some users tend to give higher or lower
ratings to items with respect to their average rating (User effect) and some items tend to receive
higher or lower ratings with respect to other items (Item effect).

Besides user and item effects, there could also be other factors influencing the rating data. We
will also take into account influences of the date of the rating. Time effects can explain addi-
tional variability in the ratings. For example, a movie could go in and out of popularity over
time and similarly a user’s taste could change over time. We will look at the following time effects:
User x Time(user)1/2, User x Time(movie)l/z, Movie x Time(movie)l/2 and Movie x Time(user)1/2.
The first effect allows the rating of the user to change linearly with the square root of the num-
bers of days elapsed for the rating since the first rating of the user. The second effect allows the
rating of the user to change linearly with the square root of the number of days elapsed since the
first rating of the movie by any user. Movie X Time(movie)l/ % allows the rating of the movie to
change linearly with the square root of the number of days elapsed for the rating since the first
rating of the movie. Movie x Time(user)l/ % allows the rating of the movie to change linearly with
the square root of the number of days elapsed since the first rating of the user that rated the movie.

Furthermore, we will incorporate effects for users with movie characteristics (the average movie
rating and the movie support). These effects tell us how a user is affected by the popularity and



the public opinion of a movie. Finally, we also incorporate effects for movies with the user char-
acteristics average rating and support. We can easily derive these user and movie characteristics
from the data.

We will sequentially estimate and incorporate one global effect at a time. By doing this, we
can analyse the effect for incorporating the global effect one by one. We estimate the user and
item specific parameters over the Training set excluding the Probe, to not overfit the data. We will
describe the method for user specific parameters (6,,), but the method for item specific parameters
(0;) is exactly the same. Since we remove one global effect at a time, the dependent variable at
each step is the residual from the previous step. So after the first step, r,; refer to the residuals.
The regression is given by:

Tui = 0Ty + error (2)

Hence, the residuals will be ry;(1) = r,; — effect; after the removal of the first effect, r,;(2) =
rui(1) — effecta for the second, until we have r,;(n) = ry(n — 1) — effect,,, with n the number
of incorporated global effects. The effect in each step is equal to 6,x,;, with x,; the explanatory
variable. For the main effects (Overall mean, Movie effect and User effect), the x,;’s are identically
1, for the other effects we center x,; by subtracting the mean of x,; for that user. For example,
for the User x Time(user)l/2 effect, z,; is equal tov/days — avgl/days). For this effect, days refers
to the number of days elapsed since the first rating by user u till the time of rating r,;. In Table
1 we list all sequentially incorporated global effects with their corresponding explanatory variable
Lyi-

# Effect Tui

1 Overall mean 1

2 Movie effect 1

3 User effect 1

4 User x Time(user)?- Vdays — avgl/days)

5 User x Time(movie)®- Vdays — avgl/days)

6 | Movie x Time(movie)®-® Vdays — avgly/days)

7 Movie x Time(user)®-? Vdays — avgl/days)

8 User x Movie average avg(rating)movie — avg(rating)
9 User x Movie support SUPPOTt movie — avg(support)
10 Movie x User average avg(rating)yser — avg(rating)
11 Movie x User support supportyser — avg(support)

Table 1: Global effects and their corresponding x,;’s

An unbiased OLS coefficient estimator for 8, is given by:

5 D ie R(u) Tuitui
Op = —<—""35— (3)
ZieR(u) Lui

where the sum is taken over all items rated by user #,,. However, for sparse data this may give
an unreliable estimate due to large variance. Following the approach by Bell and Koren in [3] we
solve this sparsity problem by performing Bayesian shrinkage. The idea behind shrinkage is to give
a penalty to the parameters with sparse data, so to the items with less ratings. With shrinkage
we prevent overfitting on the dataset. This leads to the best estimator for 6, being its posterior
mean, E(0,]0,) [6]. We will use a simplified version of the estimator for 6, by Bell and Koren as
used in [3] given by:

Ny by
Ny +

(4)

where n,, is the number of ratings by user v and « is a constant, determined by cross validation.
After the removal of each effect, we will measure the accuracy of the predictions for the ratings



with their root mean squared error (RMSE). The RMSE for a specific dataset is given by:

RMSE = iv: (7 —75)° (5)

j=1

2|~

where 7; is the estimated rating for r; and N is the number of ratings in the dataset. Note that
j includes all combinations for u and 4 in the dataset. An estimated rating 7,; is equal to the
inclusion of all removed global effects. For example, after the removal of the User effect, 7,; =
Overall mean effect + (Movie effect), + (User effect),,. By calculating the RMSE’s sequentially
after the removal of a global effect, we are able to measure how the removal of a global effects
improves the estimation accuracy.

3.2 Neighbor Selection

Now we have removed the global effects, our goal is to predict the unknown rating of user u of item
1. If we refer to a rating, we now assume global effects have been removed. However, the methods
that will follow could also be applied to ratings without removed global effects. For the prediction
of an unknown rating, we use formula (1). For this formula we need to determine the neighbors
for item 4. In order to identify the closest neighbors of item ¢, similarities are required. In [3] Bell
and Koren propose to use the following formula, based on the mean squared error between items:

L U, j)
=
! ZuGU(i,j)(rW —Tuj)? + B

where U(i, ) is the set of users who rated both items ¢ and j and § a small constant, added to
avoid division by zero. Previous approaches took s;; as the Pearson correlation coeflicient or the
cosine similarity function, but the formula given in (6) works similarly well according to Bell and
Koren [3]. The values of s;; are precomputed once. Note that we only need to store the values of
s;; where i > j because of symmetry. The total size of the similarities matrix is I x (I +1)/2, so for
the Netflix data with I equal to 17,770 this results in 157,895,335. Then, the top K items with the
highest similarity are selected as the neighbors. We will consider different sizes of neighborhoods
(K = 20, 35, 50) to compare their accuracy.

(6)

3.3 Interpolation Weights

To derive predictions for the ratings with formula (1), we need to determine the interpolation
weights. The optimal interpolation weights can be found by solving the following least-squares

problem:
2

Irgnz Toi — Z WijToj (7)

vEU JEN (i;u)
This leads to the solving a system of linear equations Aw = b, where A is a KxK matrix, such
that Aj, = > TyjTuk, and b is a vector of size K, such that b; = > Ty;Tvi- However, now we
vHEU vFEU

have assumed that all users but u rated both i and all its neighbors N(i;u). This is often not
the case, since we have a sparsity problem in our data. Even if there are users that have rated
both ¢ and all its neighbors, we would ignore lots of information on relationships between items
by using the above formulas. To not ignore these relationships between items we estimate A and
b by normalizing them by dividing by the number of users that rated both ¢ and j. This leads to
the following adjusted formulas:
i ZvGU(j,k) TvjTvk (8)

g o= =) T

! U (5, k)|
o ZueU(m’) TvjTvi
I TG, )

(el

(9)



There is still a sparseness problem because there are many item combinations with small values
for |U(j,k)|. To further solve the sparseness problem, Bell and Koren [3] use Bayesian shrinkage
by giving penalties to values with small |U(j, k)|. We shrink the values towards a common mean,
the baseline value. This value is calculated by precomputing the I x I matrix A. We denote the
baseline value by avg and this is the average of the entries of the matrix A. We will use two
different values for avg, one for the diagonal by averaging over the diagonal entries and one for the
non-diagonal by averaging over the non-diagonal entries. This is because the diagonal entries are
non-negative and therefore they are expected to be higher. Similarly as with the similarities, this
matrix A is symmetric, so we only need to store the values for item i > j. After shrinkage, our
estimates for A and b will be:

UG, k)| - Aji + - avg

A = : 10
" 0GR+ 10)
7 |U(ivj)|'l_)j+7'avg

= .. 11
! Ui, 5)| +~ ()

Now, we will derive the interpolation weights by solving the linear system:
Aw =b (12)

To solve this system the interpolation weights are constrained to be non-negative, following Bell
and Koren, and we solve this linear system as a nonnegative least-squares constraint problem. Bell
and Koren found out that restricting the interpolation weights to be non-negative results in better
estimation accuracy.

With this three step algorithm, Bell and Koren are trying to overcome some issues that arise
with the common form of kNN. These issues are:

1. Different CF algorithms use different similarity functions. Previous approaches derive the
interpolation weights directly from the similarities, but this improved approach derives the
interpolation weights directly from the ratings.

2. Common kNN ignores the similarities between neighbors. The improved interpolation weights
take these interactions among neighbors into account (formula (10)).

3. The interpolation weights are not restricted to sum up to one. Items with uninformative
neighbors may cause overfitting if the interpolation weights are restricted to sum up to one.

4. If there is lots of variation in the data among neighbors, kNN does not work well. This
improved algorithm adjusts for these variations among neighbors.

4 Extension

This section describes our extension of the implemented neighorhood-based Collaborative Filtering
approach by Bell and Koren. The extension consists of incorporating the Genre effect and incor-
porating temporal effects at the data normalization step.

We extend the neighborhood-based Collaborative Filtering approach by Bell and Koren by per-
forming further data normalization. We begin with eliminating the effect for the genre of a movie,
the Genre effect. In Table 2 there is an overview of the movie genres of the Netflix prize data [9].
These genres were obtained by analyzing the movie synopses on the Netflix website.
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# Genre

1 ! Uncensored

2 Action & Adventure
3 Anime & Animation
4 Children & Family
) Classics

6 Comedy

7 Documentary

8 Drama

9 Faith & Spirituality
10 Foreign

11 Gay & Lesbian
12 Horror

13 Independent

14 Music & Musicals
15 NA

16 Romance

17 Sci-Fi & Fantasy
18 Special Interest
19 Sports & Fitness
20 Television

21 Thrillers

Table 2: Movie Genres

For each genre we will calculate a specific parameter using forumulas (1),(2) and (3). The z,,;’s for
the Genre effect are identically 1. We also use the Training set excluding Probe to estimate the
parameters. By incorporating the Genre effect we hope to eliminate the fact that some genres tend
to receive higher or lower ratings with respect to other genres. For example, it could be possible
that the genre Classics tends to receive higher ratings.

Furthermore, we will incorporate temporal effects. We will distinguish between ratings on a spe-
cific day of the week, ratings during weekdays and weekend, ratings during a specific season and
ratings on holidays and non-holidays in the United States of America. The table below lists all
the holiday days in the United States that we will take into account. These are a combination of
holidays that most people celebrate and during which most people have paid time off.

Holiday
New Year’s Eve & New Year’s Day
Easter
Memorial Day
Independence Day
Labor Day
Halloween
Thanksgiving
Christmas

SIS I NG INNGJUR ORI B S

Table 3: Holidays in the United States of America

For these four temporal effects we will also use formulas (1), (2) and (3). By incorporating these
temporal effects we want to eliminate the fact that ratings tend to be higher or lower during a
specific time. For example, it could be possible that during holidays or during the weekend people
tend to give higher ratings compared to non-holidays and weekdays respectively.
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5 Results

In the following section we analyse the results of the implemented neighborhood-based Collaborative
Filtering approach by Bell and Koren and our extension. First, we report the RMSFEs on the Probe
set with the inclusion of global effects. Then we report the RMSFEs on the Probe set after varying
stages of preprocessing the data and for varying neighbor sizes. After this we give the results for
our extension.

5.1 Data Normalization

Table 5 lists all our incorporated global effects, the RMSE after their inclusion, the improvement
of the RMSE after their inclusion and the shrinkage parameter used in formula (4). We use the
shrinkage parameters used by Bell and Koren in [3]. Note that these RMSEs are calculated on
the Probe set, with parameters trained on the Training set excluding Probe. The RMSEs for the
inclusion of the global effects match with the results of Bell and Koren, until the effect Movie x
User average. The RMSE for this effect is 0.9679, which deviates from the results of Bell and
Koren of 0.9670. A possible explanation for this is that for the calculation of the Movie and User
average we have taken the average over the raw ratings. Perhaps Bell and Koren have taken the
average over the residuals for these effects. To get to the RMSE of 0.9657 by Bell and Koren
after including all effects, we calculate the effect Movie x v/User support instead of Movie x User
support. After the inclusion of this effect, we lower the RMSE to 0.9658. This is a close match to
the results of Bell and Koren. Therefore, in the further process we will continue with the Movie x
+/User support effect if we remove all global effects.

Effect RMSE Improvement| Shrinkage
Parameter
Overall mean 1.1296 - -
Movie effect 1.0527 0.0769 25
User effect 0.9840 0.0687 7
User x Time(user)%? 0.9809 0.0031 550
User x Time(movie)%-? 0.9785 0.0024 150
Movie x Time(movie)®-> 0.9766 0.0019 4000
Movie x Time(user)®-? 0.9758 0.0008 500
User x Movie average 0.9718 0.0040 90
User x Movie support 0.9689 0.0029 90
Movie x User average 0.9679 0.0010 50
Movie x User support 0.9667 0.0012 50

Table 4: RMSEs for the Probe set after the inclusion of global effects

From Table 5 we can see that the inclusion of the Movie effect and User effect give the largest
improvement in RMSE. This is not a surprise, since these are the main global effects. This con-
firms that some users tend to give higher or lower ratings to movies compared to their average and
that some movies tend to receive higher or lower ratings compared to other movies. The next two
effects interact users with the time passed since the first rating of the user and the first rating of
the movie. These effects improve the RMSE with 0.0031 and 0.0024 respectively. The effects for
time for movies provide smaller improvements in RMSE compared to these effects for users, telling
us that the ratings of the users change more over time compared to the ratings for the movies.
The last four effects interact users and movies with their characteristics average and support. The
RMSE after the inclusion of the interaction of the user with the movie average and movie support
improves with 0.0040 and 0.0029 respectively. From these results we can conclude that users are
definitely affected by the popularity of a movie. The last two effects provide a smaller decrease in
RMSE. If we include the interaction of movies with the square root of user support, the RMSE
improves with 0.0021 instead of 0.0012. So, performing data normalization without any interpola-
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tion can deliver us a RMSE of 0.9658.

5.2 Neighbor Selection & Interpolation Weights

After the precomputing of all similarities s;; and all A;; values we are able to compute the matrix
A and b by using formulas (10) and (11). By solving formula (12) we derive the interpolation
weights. Table 6 gives the RMSEs of our implemented neighborhood-based method for different
sizes of neighbors (K) and after varying stages of data normalization. These are the RMSE values
on the Probe set. First we applied our methods on the raw ratings. For the raw ratings we have
not performed any data normalization. For this stage we used shrinkage parameter v equal to
50,000 in formula (10) and (11), determined by cross validation. Then we applied our methods on
the ratings for which the Overall Mean, Movie and User effect have been removed. These effects
are comparable to Double Centering. For the stage Global Effects we applied our methods on the
ratings for which all global effects have been removed. For the last two stages of data normalization
we used a shrinkage parameter v equal to 500, the same value used by Bell and Koren as stated
in [3].

Data Normalization K=20 K=35 K=50
None (raw ratings) 0.9752 0.9746 0.9764
Double Centering 0.9253 0.9211 0.9221
Global Effects 0.9233 0.9194 0.9216

Table 5: RMSEs for varying stages of data normalization and varying sizes of neighbors (20,35,50)

The values for the RMSEs for the raw ratings are around 0.9750. These RMSEs are higher than the
RMSE for the inclusion of all global effects of 0.9658, during which no neighborhood interpolation
has been applied. The removal of the Overall Mean, Movie and User effect lower the RMSEs to
0.9253, 0.9211 and 0.9221. This improves the RMSEs with approximately 0.05. After applying the
methods on the ratings for which all global effects have been removed, the RMSEs are equal to
0.9233, 0.9194 and 0.9216 for the different sizes of K. This stage improves the RMSEs with 0.0020,
0.0017 and 0.0005. These improvements are very small compared to the previous improvements.
From this table we can conclude that Double Centering improves the predictions for ratings a lot
compared to predictions for ratings without any data normalization. Removing more global effects,
although providing a much better RMSE without neighborhood interpolation, does not improve
the RMSE much compared to Double Centering. For the varying sizes of neighbors K we see that
K = 35 provides the lowest RMSE.

Our RMSEs do not completely match with the RMSEs of Bell and Koren in [3]. An explana-
tion for this could be that Bell and Koren allocated one byte for each individual value of the
precomputed s;; and A;; values. We store these values as doubles (8 bytes), to not loose any
precision. Therefore, our values for the similarities and A matrix could differ a lot. Another expla-
nation could be that we use a different algorithm to solve the system of linear equations given in
formula (12). Bell and Koren use the algorithm in Figure 1 in [3], based on the Gradient Projec-
tion method. We solve (12) as a nonnegative least-squares constraint problem with the MATLAB
function lsqnonneg. Also, we probably use a different shrinkage parameter in formula (11) and
(12) for the neighborhood interpolation on the raw ratings.

5.3 Extension

For our extension we perform further data normalization by removing the Genre effect and some
temporal effects. We begin with eliminating the Genre effect. In Figure 8 the number of ratings
per genre are visible. Genres 2, 6 and 8 have received many ratings compared to genres 3, 9, 11,
14, 15, 18 and 19. We estimate the Genre effect on the residuals after the removal of the Overall
Mean, Movie and User effect. For this effect we have used a shrinkage parameter equal to 200,
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determined by cross validation. This gives us a RMSE of 0.9834, and thus lowers the RMSE with
0.0006. This is a smaller improvement than we expected.
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Figure 4: Number of Ratings per Genre

After the incorporating of the Genre effect we try the eliminate some temporal effects. More
specifically, we try to eliminate the effect for Day of Week, Weekend, Season and Holiday. The below
figures give information about the number of ratings for these specified times. All four temporal
effects did not lower the RMSE of 0.9834 after the inclusion of the Genre effect. Therefore we
conclude that ratings do not tend to be higher or lower during different days of the week, weekend
and weekdays, seasons and holidays and non-holidays. Table 6 lists the months taken into account

per season.
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# Season Months
1 Dec, Jan, Feb
2 Mar, Apr, May
3 June, July, Aug
4 Sep, Oct, Nov

Table 6: Months per Season

Since the Genre effect is the only effect of our extension that lowers the RMSE after the removal
of the overall Mean, Movie and User effect, we also remove the Genre effect after the removal of
the 11 Global effects stated in Table 1. This gives us a RMSE of 0.9655. The improvement of the
Genre effect is 0.0003. Since this improvement is very small, we do not expect that removing the
Genre effect will further lower the RMSEs when applying the neighborhood interpolation methods.
Therefore, we do not perform these methods for our extension.

6 Conclusion and Discussion

In order to make recommendations Bell and Koren proposed an improved neighborhood-based
Collaborative Filtering method [3]. In this paper we have implemented these methods by Bell and
Koren. Neighborhood-based methods make predictions by determining interpolation weights for
similar items or users. Advantages of neighborhood-based methods are its easy implementation, its
ability to easily explain the user the reasoning behind a recommendation and its intuitiveness. The
improved methods by Bell and Koren overcome some of the issues of previous neighborhood-based
methods. We used the item-oriented approach, since this approach provides better performance
and more efficient computations [20]. We have evaluated the performance of the proposed methods
on the Netflix prize dataset.

The approach by Bell and Koren consists of three main components. The first component is
data normalization. We perform data normalization by sequentially eliminating global effects. By
performing this normalization, we remove variability in the data and make the ratings more com-
parable. The data normalization step proofs to be very successful and an important component of
neighborhood-based methods. The inclusion of global effects alone can lower the RMSE to 0.9658
(and 0.9655 with removal of the Genre effect). Data normalization definitely improves estimation
accuracy.

The next two components are the selection of neighbors and determination of interpolation weights.
For the selection of neighbors we have used a similarity function proposed by Bell and Koren, which
is based on the mean squared error of items. This function seems to work good. By applying the
neighborhood interpolation implemented by Bell and Koren, we can get to a RMSE of 0.9194.
Our implementation of the methods do not seem to work very good on the raw ratings. These
give higher RMSE values than the RMSE of the inclusion of all global effects. Adding data nor-
malization improves the RMSE for the neighborhood interpolation a lot. However, the difference
between the Double Centering and Global effects stage is very small. With the inclusion of full
global effects, so without the neighborhood interpolation, the improvement was larger between
these two stages. Therefore, we believe that performing further data normalization will not lower
the RMSE much when applying the neighborhood interpolation methods by Bell and Koren.

For our extension we have performed further data normalization by incorporating a Genre ef-
fect and four temporal effects. However, only the Genre effect improved the RMSE a little bit.
Therefore, ratings do not seem to be affected by these specified times (specific days of the week,
weekend, seasons and holidays).

For future research we would propose performing further data normalization based on charac-

teristics of the users. For example, it would be interesting to look at the difference in ratings by
men and women, age classes and addresses or nationalities.
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