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ABSTRACT Two metaheuristic solution approaches for the Orienteering Problem with Hotel Selection (OPHS) are
compared in this thesis. The goal of the OPHS is to select the best vertices and the right sequence of hotels, such
that the total score of the vertices is maximal and the trips along the selected vertices satisfy the time restrictions.
We implement the Skewed Variable Neighborhood Search (SVNS) algorithm of Divsalar et al. (2013) and show
that it is outperformed by a Tabu Search (TS) algorithm. Both algorithms have the same construction method for
the initial solution. We try to improve this solution with two shakes in the SVNS algorithm and apply these two
shakes with an additional Cross-over shake in the TS algorithm. Local Search or TS with nine moves is performed
after each shake. Next, the algorithms decide on the solution that is used in the following iteration, which can be
a solution with a better or a worse score. Concluding, this TS algorithm produced near-optimal solutions with an
average gap of 0.675%.
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1. Introduction

Composing a good journey of attractions and hotels
is important for tourist trip planning. The traveler
wants to visit many attractions, but copes with a
time restriction that makes it impossible to visit ev-
ery attraction. Therefore, we need to choose the best
attractions and find the shortest route along the cho-
sen sites. The problem is known to be challenging,
because there are many possible tours but more im-
portantly, estimating a good sequence of hotels is
difficult.

The attractions, which are called vertices, have
an associated score that represents the desirability
of that attraction. During the journey, the traveler
wants to find the route with the optimal score. The
tour consists of daily trips that start and end in a
hotel. As most attractions are only opened during the
day, each trip has a time restriction. In addition, the
distance between a hotel and an attraction might be
more than the available time for a trip, forcing us to
select the best-located hotel each day. By the selection
of a hotel each day, we are far more flexible than
with fixed hotels, which can cause a higher score.
We assume that the start hotel of the first trip, the
end hotel of the last trip and the number of trips are
fixed. Since there is a limited amount of hotels, the
chosen hotels have a huge impact on the possible
trips between the hotels.

Other applications of the Orienteering Problem
with Hotel Selection (OPHS) are for example subma-
rine surveillance activities for multiple missions and
the visitation of clients during a multi-day tour that
requires the selection of hotels (Divsalar et al. 2013).

As we aim to develop a fast and efficient algo-
rithm for the OPHS, the research question can be
formulated as follows: What is a good method to
select hotels and vertices that maximize the total
score within a reasonable amount of time, while the
tour along the selected points satisfies the time con-
straints? Divsalar et al. (2013) designed a Skewed
Variable Neighborhood Search (SVNS) algorithm
that produces good solutions for this problem. We
implement this algorithm and compare the results to
a Tabu Search (TS) algorithm.

In the remainder of this thesis, we give an
overview of the literature on the OPHS and re-
lated problems and a Mixed-Integer Linear Problem
(MILP) formulation (Section 2 and 3). In Section 4
the SVNS algorithm is described. In Section 5, we
present a TS algorithm that produces solutions with

a smaller average gap with the optimal solutions.
Next, the results of the SVNS and TS are compared
in Section 6. Lastly, we present our discussion and
conclusion in Section 7 and 8.

2. Literature

The OPHS is only considered recently in the litera-
ture. It is a generalization of the team orienteering
problem (TOP), which is a generalization of the orien-
teering problem (OP). Moreover, it is closely related
to the travelling salesperson problem with hotel se-
lection (TSPHS). Although these problems differ, it
might be useful to investigate some effective algo-
rithms that are used for these problems. Therefore,
we will briefly describe some solution approaches.

The OP aims to maximize the collected score, but
has the restrictions of a single trip and a fixed start
and end hotel. The problem is introduced by Tsiligiri-
des (1984) and studied widely in the literature. It is
as a combination of the knapsack problem that maxi-
mizes the collected score, and the travelling salesper-
son problem that minimizes the length of the route
along the selected vertices. Exact algorithms like
branch-and-cut are able to solve the OP for at most
500 vertices (Fischetti et al. 1998), but the problem is
known as NP-hard and heuristics are necessary to
solve larger problems. An overview of exact, heuris-
tic algorithms as well as additional constraints is
given in Feillet et al. (2005).

The variant of the OP with multiple tours is called
TOP. As this problem extends the OP, exact solutions
within reasonable time are only found for problems
that contain up to 100 vertices (Boussier et al. 2007).
While a broad range of heuristics is proposed, the
variable neighborhood search (VNS) (Archetti et al.
2007), greedy randomized adaptive search procedure
(GRASP) with path-relinking (Souffriau et al. 2010)
and ant colony optimization (Ke et al. 2008) have
the lowest optimality gap, as shown in an overview
of Vansteenwegen et al. (2011). A TS algorithm
also produces high-quality solutions (Tang & Miller-
Hooks 2005). Some of the heuristics, like the SVNS
of Vansteenwegen et al. (2009), focus on reducing the
computation time with the cost of a higher average
gap. An SVNS algorithm does also consider solu-
tions with a worse score than the best found solution.
This might be necessary to find an improvement in
the next iterations.

Most of these solution approaches are metaheuris-
tics, meaning that they guide an iterative search
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procedure to find efficiently near-optimal solutions.
Metaheuristics are especially used for the generaliza-
tion of the TOP that requires the selection of a hotel
each day: the OPHS.

A variant of the OPHS that includes visiting time
for vertices is introduced by (Zhu et al. 2012). Their
algorithm clusters the hotels, randomly picks a ho-
tel from each cluster and performs Local Search (LS)
to obtain trips between the hotels. A SVNS heuris-
tic that selects sequences of hotels with a good esti-
mated score provides good solutions for the OPHS
(Divsalar et al. 2013). The algorithm consists of a
shaking phase and LS. However, it is outperformed
by a population-based memetic algorithm (Divsalar
et al. 2014). Their sequences of hotels are based on a
Cross-over procedures that combine two solutions
and a Mutation procedure that transforms the cur-
rent solution. The main difference is the randomness
as this algorithm also uses LS to select vertices.

Although the TSPHS aims to minimize the length
of the tour and must visit all the vertices, it contains
vertices and hotels. It is introduced recently with a
multi-start heuristic that uses VNS (Vansteenwegen
et al. 2012). A GRASP with variable neighborhood
descent gives good solutions (Castro et al. 2012), but
a memetic algorithm with TS consistently finds the
optimal solution for small problems (Castro et al.
2013). This search is based on a list of vertices that
are not allowed to be inserted or deleted for a certain
number of iterations.

An overview of other combinatorial problems re-
garding intermediate facilities is presented by Di-
vsalar et al. (2014). Most algorithms use TS, but a
comparison with these algorithms is difficult as none
of those problems maximizes the collected score sub-
jected to a time restriction.

3. Problem formulation

The OPHS is defined on a complete graph G = (V, E)
with edges E between all the vertices (H

⋃
N) = V

with H = {h0, ..., hH} the set of hotels and N =
{n0, ..., nN} the set of vertices. The elements of H
and N contain coordinates of their location and a
non-negative score Sv with v ∈ V. Hotels have an as-
sociated score of zero. It is possible to stay in a hotel
for multiple nights or return to a hotel, but vertices
can be visited at most one time. In the remainder
of this proposal, a possible tour is often called a so-
lution for the OPHS and we refer to attractions as
vertices. A time restriction is imposed on each trip,

where a trip is defined as the route between two ho-
tels. The total time of a trip is equivalent to the length
of a trip, and is calculated according to the Euclidean
distance. Thus, we assume no time for visiting the
vertices. The maximal time for each trip is denoted
by Td, where d ∈ {d0...dD} the day (number) of the
tour.

As the OPHS is a generalization of the OP, the
problem is NP-hard. Even with a small number of
attractions and hotels, there are many possible op-
tions to compose a tour. The main difficulty is the
selection of hotels, since (i) it is not clear which se-
quences of hotels are promising and (ii) a different
sequence of hotels changes the whole solution (Di-
vsalar et al. 2013). Divsalar et al. (2014) even claim
that it is impossible to predict the best sequence of
hotels. Because the problem is challenging, heuris-
tics are necessary to solve even small problems of
the OPHS within a reasonable amount of time. How-
ever, some problems can be solved with the following
MILP formulation:

max ∑
d∈D

∑
i∈V

∑
j∈V

Sixi,j,d

s.t. ∑
j∈V

x0,j,1 = 1 (1)

∑
i∈V

xi,1,D = 1 (2)

∑
h∈H

∑
j∈V

xh,j,d = 1 ∀d ∈ D (3)

∑
i∈V

∑
h∈H

xi,h,d = 1 ∀d ∈ D (4)

∑
i∈V

xi,h,d = ∑
j∈V

xh,j,d+1 ∀h ∈ H, d ∈ D\{dD} (5)

∑
i∈V

xi,n,d = ∑
j∈V

xn,j,d ∀n ∈ N, ∀d ∈ D (6)

∑
d∈D

∑
j∈V

xn,j,d ≤ 1 ∀n ∈ N (7)

∑
i∈V

∑
j∈V

ti,jxi,j,d ≤ Td ∀d ∈ D (8)

ui − uj + 1 ≤ ... ∀i, j ∈ N (9)
...(N − 1)(1− ∑

d∈D
xi,j,d)

xi,j,d ∈ {0, 1} ∀i, j ∈ V, i 6= j, ∀d ∈ D (10)

un ∈ {1...N} ∀n ∈ N (11)

In this formulation, xi,j,d = 1 if vertex i is visited
before vertex j in trip d and 0 otherwise, and ui de-
notes the position of vertex i in the tour. The goal
of the OPHS is to maximize the total score of the
selected vertices. The first constraint states that the
first trip has a fixed start hotel, 0, and the second con-

4



straint states that the last trip has a fixed end hotel,
1. The next two constraints make sure that each trip
starts and ends in a hotel. Constraint 5 ensures that
the end hotel of a trip is equal to the start hotel of the
next trip and constraint 6 ensures that when a trip
visits a vertex it should also leave the vertex. The
next constraint states that each vertex can be visited
at most once. Constraint 8 is necessary to model the
time restriction. Subtours are eliminated with the
Miller-Tucker-Zemlin connectivity constraint (con-
straint 9). The last constraints ensure that the deci-
sion variable x is binary and u is integer.

4. Skewed Variable Neighborhood Search

We describe the SVNS algorithm in this section. First,
we give an overview of the algorithm. Second, the ini-
tialization and main phase will be described. Third,
we explain the nine LS moves that are used in both
phases. Lastly, the parameters of the algorithm will
be described.

The main idea of SVNS is that it examines solu-
tions close and far from the incumbent (Hansen &
Mladenović 2001). We can break down the algorithm
in two phases: an initialization phase and an im-
provement and recentering phase as shown in Algo-
rithm 1. The first phase tries to find good feasible
solutions, while the second phase tries to improve
the initial solution. The improvement phase consists
of two Vertices- and a Hotels-shake and the recenter-
ing phase decides on the solution that will be used
in the next iteration. The algorithm can recenter to
a solution with a better score, but also to a solution
with a worse score in order to avoid being trapped in
a local optimum. After the shakes, a LS tries to find
the best tour with the current sequence of hotels.

4.1. Initialization
The first part of the algorithm aims to find a feasible,
good, initial solution in a small amount of time. The
initialization consists of the following steps: (i) create
a matrix with potential score between each pair of
hotels, (ii) determine all feasible sequences of hotels
and (iii) calculate a Heuristic Estimated Score (HES)
for the sequences of the second step. Afterwards, the
initial tour is one of the sequences of hotels that is
improved with LS.

In the first step, a sequence of four moves is re-
peated to obtain a score of each trip between each
pair of hotels. These moves (Insert, Replacement,
Two-opt and Move-best) are described in Subsection

4.4 and called Sub-Op. In contrast to LS, the Sub-Op
does not contain a level, but performs the moves in a
fixed order until the solution converges. The second
step investigates the time restriction for the trips. All
possible empty sequences of hotels including repe-
tition that satisfy the time restriction are placed in a
list. The third step combines the results of the first
and second step in a list with scores that is called
the HES. The scores of the trips are summed up for
each of the sequences of hotels, whereafter the so-
lutions are sorted based on the HES. The parameter
number of feasible combinations (NUFC) of hotels
decides how many different sequences will be used
in the remainder of the algorithm and have a chance
to become the initial solution. Only the sequences of
hotels with the highest HES are used.

Three strategies that make use of LS moves are ap-
plied to all of the NUFC sequences of hotels to create
an initial solution. The options that are performed
are listed below:

1. LS with nine moves for an empty sequence of
hotels;

2. Sub-Op for each trip between an empty se-
quence of hotels starting from the first trip and
LS afterwards;

3. Sub-Op for each trip between an empty se-
quence of hotels starting from the last trip and
LS afterwards.

After a Sub-Op is solved between two hotels in the
second and third option, the selected vertices are
placed in a list of vertices that cannot be inserted
to the other trips. As a result, each vertex can be
added at most once to the tour. The third step of the
initialization does not contain such a list, so that the
HES can be based on tours that visit some vertices
multiple times. The tour with the highest score of the
NUFC ∗ 3 options is used as the initial solution.

4.2. Improvement
The improvement phase handles the vertices and ho-
tels separately and investigates different tours to ex-
pand the solution space. The following two Vertices-
shakes and Hotels-shake are examined:

1. delete the first half of the vertices of each trip;
2. delete the last half of the vertices of each trip;
3. change the hotels to the next HES sequence of

hotels, while keeping the vertices fixed.
The Hotels-shake can give an unfeasible solution as
the tour along the vertices and hotels might exceed
the available time. Therefore, we remove the ver-
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Algorithm 1 Outline of the SVNS heuristic

Input: List of NUFC empty sequences of hotels; a feasible tour X with score SX
Output: Feasible tour with a higher score

1: noImprovement = 0; k = 1
2: while noImprovement < maxNoImprovment do
3: X1 = Remove first half of vertices and Local Search
4: X2 = Remove second half of vertices and Local Search
5: X3 = Hotels shake and Local Search with tour with score max{SX1, SX2}
6: if SX3 > SXbest then
7: X and Xbest = tour hotels shake with score SX3
8: noImprovement = 0
9: else

10: noImprovement + 1
11: if SX3 > percentageWorse * SXbest or k = maxK then
12: X = tour hotels shake with score SX3
13: k = 1
14: else
15: k + 1

tex with the lowest ratio of score over the decrease
in trip length by excluding that vertex. This move
is repeated until the solution is feasible and can be
seen as the opposite of Insert. Computational results
show that multiple vertices are removed in many
cases, due to the time restrictions. When all the se-
quences of hotels are considered, the Hotels-shake
starts again with the best HES sequence. After all the
shakes are done, LS is performed to improve each
solution and the solution with the highest score is
saved.

4.3. Recentering
The goal of the recentering phase is to choose the
solution that will be used in the next iteration. When
the score of the shaking phase is higher than the
score of the tour before the shaking phase, the tour
is changed. As the algorithm uses the framework
of SVNS and not VNS, tours with a score within a
maximum percentage worse (percentageWorse) from
the score of the tour before the shaking part are also
accepted. We define solutions as different if the se-
quence of vertices and hotels is different, so the score
or time of the tour is different. The definition affects
the recentering, because computational results show
that there are multiple tours with the same score in
many problems.

4.4. Local Search
Nine moves are considered in the LS that have shown
to be effective for the TOP (Vansteenwegen et al.
2011). As the hotels are fixed during this procedure
and the OPHS without the selection of hotels is equiv-
alent to the TOP. Some of the moves aim to reduce
the tour time, while others focus on increasing the
total score. The search involves intra-trip as well as
inter-trip moves. LS starts with insertion as the level
is predefined as 1 and the maximum level is equal to
the number of possible moves (Algorithm 2).

The first moves, Insert and Move-Best, effect a
single vertex every time. In Insert, the non-included
vertex with the highest ratio of score over increase in
trip length by including that vertex is included, when
the solution remains feasible. In Move-Best each
included vertex is moved to the best feasible position
in the tour, such that the tour length is minimal.

Next, Two-Opt and Swap-Trips have an impact
on two vertices or the part of the trip between two
vertices. In Two-Opt, two crossing edges within each
trip are exchanged. When there are multiple feasi-
ble possibilities, the move that leads to the smallest
trip length is executed. Swap-Trips considers the
exchange of two vertices from different trips, that
minimizes the trip lengths. The move is executed if
the total length of the tour decreases.

The following moves are a combination of multi-
ple moves. In Extract-Insert one vertex is considered
for exclusion, whereafter non-included vertices are

6



Algorithm 2 Local Search heuristic

Input: X = feasible tour with score SX
Output: Feasible tour with a higher score

1: Neighborhoods: 1 = Insert; 2 = Move-Best; 3 = Two-Opt; 4 = Swap-Trips; 5 = Extract-Insert; 6 = Ex-
tract2Insert; 7 = Extract5Insert; 8 = Extract-Move-Insert; 9 = Replacement; level = 1; maxLevel = 9

2: while level < maxLevel do
3: X1 = tour after performing move of that level
4: if SX1 > SX then
5: X = X1
6: level = 1
7: else
8: level + 1

added by Insert in the current trip as long as the tour
is feasible. The move is executed for each vertex of
the tour, that leads to an increase of the total score.
Extract2Insert and Extract5Insert are similar moves,
but consider the removal of respectively two and five
consecutive vertices.

Extract-Move-Insert is a combination of Extract-
Insert and Move-Best. First, we look at the removal
of a vertex. Second, we try to exchange two vertices,
not necessarily of a different trip, that minimize the
length of the tour. Lastly, if there is feasible exchange,
non-included vertices are considered for insertion
in the trip of the removed vertex if the tour remains
feasible. When the score of the inserted vertex is
higher than the score before the removal, the move
is executed.

The last move, Replacement, is roughly the op-
posite of Extract-Insert. All non-included vertices
are considered for insertion to the place in the tour
with the smallest increase in the trip length. If the
solution is still feasible after the insertion of a vertex,
the move is executed. Otherwise, if deleting a ver-
tex with a lower score makes the tour feasible, it is
deleted and the move is executed.

4.5. Stopping criterion
The algorithm keeps track of two variables that deter-
mine the stopping criterion: k and noImprovement
(Algorithm 1). If the score of the shaking part is
worse than the score of the best-found tour, the vari-
able noImprovement is increased until the maximum
number of consecutive iterations without improve-
ment (maxNoImprovement) is met. If the score is
worse than percentageWorse times the score of the
previous solution, k is increased. Therefore, a recen-
tering will always happen within maxK iterations.

Our implementation of the algorithm differs from
the algorithm of Divsalar et al. (2013) as we use one
while-loop instead of two. This choice was based
on computational results, which showed that the
solutions after the Hotels-shake are often within
percentageWorse (as an indication, the HES of T1_65
is 200, 235 and 205). As a result, k does not increase
much and the main phase gets trapped inside the
second while-loop that terminates if k is equal to the
parameter maxK.

4.6. Parameters
Four parameters are necessary for the algorithm. One
by one Divsalar et al. (2013) tested three different
values for all of these parameters and concluded
that the values NUFC=250, maxNoImprovement=50,
maxK≈0.25∗NUFC and percentageWorse=0.3 give
the best results. Our implementation uses a differ-
ent value for maxK, because maxK can only affect
the solution if it is lower than maxNoImprovement.
MaxK= b0.25∗maxNoImprovementc is used and gives
a lowerbound on the number of times that the algo-
rithm recenters.

5. Tabu Search

In this section, we propose a simple and fast TS al-
gorithm for the OPHS, that uses TS instead of LS
to select vertices after the shakes. The algorithm
uses random numbers and an additional Cross-over
shake. First, we will describe the outline of the algo-
rithm. Thereafter, we describe the main phase, the TS,
the stopping criterion and the involved parameters.

The TS uses the same outline as the SVNS as
shown in Algorithm 3. Therefore, we can break down
the algorithm in two phases. The first phase is the
initialization. We use the same initialization as the

Tabu Search for the Orienteering Problem with Hotel Selection 7



Algorithm 3 Outline of the TS heuristic

Input: List of NUFC empty sequences of hotels; a feasible tour X with score SX
Output: Feasible tour with a higher score

1: noImprovement = 0; k = 1; history = empty;
2: while noImprovement < maxNoImprovment do
3: X1 = Remove first half of vertices and Local Search
4: X2 = Remove second half of vertices and Local Search
5: X3 = Hotels shake and Local Search with tour with score max{SX1, SX2}
6: X4 = Cross-over shake and Local Search between X3 and best found tour
7: for Xi = X1 to X4 do
8: if Xi ∈ history then
9: SXi = 0

10: if max{ SX1 SX2 SX3 SX4 } > SXbest then
11: X and Xbest = tour hotels shake with score max { SX1 SX2 SX3 SX4 }
12: Add X to history
13: noImprovement = 0
14: else
15: noImprovement + 1
16: if k = maxK then
17: X = tour hotels shake with score { SX1 SX2 SX3 SX4 }
18: Add X to history
19: k = 1
20: else
21: k + 1

SVNS, because it leads to solutions with a low aver-
age optimality gap. The second phase, or main phase,
works iteratively and consists of two similar Vertices-
shakes, a Hotels-shake and a Cross-over. After each
shake, a TS that embeds the nine moves is performed
to improve the solution. Next to that, we decide on
the solution that is used in the next iteration. Just as
the SVNS, the algorithm can recenter to a solution
that is worse. The stopping criterion is based on the
number of consecutive iterations without improve-
ment.

5.1. Improvement
The TS algorithm contains three kinds of shakes that
focus on changing and improving the tour. The first
aspect is necessary in order to recenter and possibly
improve the tour in the next iteration. The shakes
consist of the same characteristics:

1. change the tour by removing or replacing ver-
tices, hotels or both;

2. make the trips feasible;
3. perform TS to improve the solution.

The shakes start with destructing the solution to
escape from a local optimum and to diversify the

search. The TS is used to intensify the search and
improve the solution with fixed hotels.

Next to the shakes of the SVNS algorithm, we
added the Cross-over shake for three reasons. First,
Cross-over has the capability to go beyond the HES
sequences of hotels, due to combinations of tours.
This feature is especially advantageous if the total,
feasible number of sequences of hotels is larger than
the parameter NUFC. As a result of the shake, the
main phase is less dependent on the initialization.
Second, while the Hotels-shake produces completely
different solutions, this shake is based on the idea
that a better solution might be close to the best-found
solution. This idea seems promising, since a genetic
algorithm that includes this shake produces near-
optimal solutions (Divsalar et al. 2014). Third, the
shake has the advantage that the relation between
the vertices and hotels is not damaged. At most a few
vertices are removed to make the solution feasible
and the trips between the hotels have a high score.

The Vertices-shake is based on the idea that remov-
ing vertices and performing a TS can lead to a better
solution. While the SVNS algorithm always removes
half of the vertices in the improvement phase, the
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TS algorithm uses a random number to split up the
current solution. All trips are split according to the
same number and at least one of the vertices remains
in each trips. After the shakes, the removed vertices
are added to the tabu list. TS is performed for the
two tours: one with the vertices before and the other
with vertices after the split. Adding these vertices
to the tabu list is very important for the success of
the TS. It helps to get a different and possibly better
solution after the shake.

The difference of the Hotels-shake between the TS
and SVNS is that TS is used to improve the solution
instead of LS. The vertices that are removed due to
the time restriction, are placed in the tabu list.

The fourth shake, Cross-over, combines the best-
found solution with the current solution after the
Hotels-shake. The procedure makes uses of two ran-
dom numbers: to split up the tours and to determine
the solution that is used as the start of the new tour.
We consider only one tour for improvement, as TS
is the most computationally expensive part of the
Cross-over. The move is only considered if the dis-
tance between the two hotels that form the new trip is
less than the time that is available for the trip. When
the time between the hotels exceeds the time restric-
tion, other splits are investigated. In the unusual
occasion that all splits lead to unfeasible trips, the
Cross-over shake is not applied. It is possible that the
best-found and the current solution have the same
sequence of hotels. In this case, the shake combines
the vertices of the tours. Thereafter, duplicated ver-
tices are removed and the vertices are removed until
the trips satisfy the time restriction. Afterwards, the
removed vertices are added to the tabu list and TS is
performed.

An example of the shake is shown in Figure 1,
where the left graphs represent the best found and
current tour and the right graphs the two possible
tours when the split is after the second trip. The
second random number decides whether we use the
upper-right or bottom-right tour. The shake is ap-
plied is the distance from from hotel two to four and
hotel four to three do not violate the time restriction
of the trip.

5.2. Recentering
In the recentering part the algorithm recenters to a
solution of the shaking phase. In more detail, the
solution that is used in the next iteration can be the
result of the Vertices-, Hotels-shake and Cross-over

0 2 3 1

0 4 4 1

0 2 4 1

0 4 3 1

Figure 1 Cross-over with split after the second trip.

shake. Despite the tabu list, the Vertices-shake finds
the same solution in many iterations. As a result,
the algorithm recenters to a solution that is already
considered. To diversify the search space, we allow
the algorithm to recenter at most once to a specific
solution. Only in the unlikely case when all shakes
produce a solution that is already used, the algorithm
can recenter to a solution that is already used. The
idea behind the history is based on the same argu-
ment as the tabu list: although the score of some
solutions might decrease, the probability of finding
the global instead of a local optimum increases.

To simplify the algorithm, the parameter
MaxPercentageWorse in the recentering phase is
removed. Although improvements are likely to be
found within solutions that are close to the current
solution, there is also the risk of getting trapped
in a local optimum. Recentering to another worse
solution can be necessary for such a situation to
finally reach the optimal solution. Moreover, most
solutions of the improvement phase are within
MaxPercentageWorse, such that the influence of
this parameter is small. We choose to keep the
algorithm simple and recenter after a fixed number
of iterations: maxK. This gives the possibility to
perform multiple Vertices-shakes for the same
solution. In order to consider many solutions, we
decrease the value of maxK.

5.3. Tabu Search
Many algorithms for problems that cope with in-
termediate facilities apply TS (Divsalar et al. 2014).
For example, Castro et al. (2013) show that it can
provide a good solution for many instances of the
related TSPHS and Tang & Miller-Hooks (2005) ap-
ply TS to the TOP. It is designed to find the global
optimum. The main idea is to explore a large part of
the search space and avoid premature convergence.
As the OPHS is a challenging problem it might be
worthwhile to use TS and consider a lot of different
solutions.

The structure of our TS is different than the pre-
ceding LS algorithm that uses levels (Algorithm 4).
The LS goes to the next move if the solution is the
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Algorithm 4 Tabu Search heuristic

Input: X = feasible initial solution with score SX; tabu list
Output: Feasible tour with a higher score

1: iteration = 0;
2: while noImprovement < maxNoImprovement do
3: while Insertion is possible do
4: Insert a vertex, so change X and SX
5: Add move to tabu list
6: for Move-Best; Two-Opt; Swap-Trips; Extract-Insert; Extract2Insert; Extract5Insert; Extract-Move-Insert;

Replacement do
7: Execute the move
8: if There is an improvement then
9: Change X and SX

10: Add move to tabu list
11: Update the tabu list
12: if The solution is not improved then
13: noImprovement + 1

same and does not consider the move again when the
following levels also do not lead to a better solution.
The TS always investigates every move in every iter-
ation. When a move does not result in improvements
in the current iteration, it can lead to an improved
solution in the next iteration due to a tabu list. We
will show in Section 6 that Insert is the most impor-
tant move. Therefore, TS repeats the move Insert in
each iteration until a feasible insertion is not possible
anymore.

The key element of the TS is a tabu list of moves
that are not possible for a specific duration. In most
algorithms for problems that cope with intermediate
facilities the tabu list is defined as a set of vertices
in a specific trip (Castro et al. 2013). However, we
define the tabu list as a set of vertices that cannot
be moved, inserted or deleted. Hence, more moves
are tabu and the probability of achieving a different
solution increases. When a move is executed, the
involved vertex or vertices are added to the tabu list.
At the start of the TS, the list contains vertices that
are removed in the Vertices- or Hotels-shake.

The number of iterations that a move is unfeasible,
the length of the tabu, is a random number of TS
iterations. For example, if a vertex is inserted in iter-
ation i, then changing the vertex is impossible until
iteration i + j, where j is a randomly chosen from the
pre-specified tabu length interval. This variable tabu
length leads to good solutions and helps to explore a
larger part of the search space (Tang & Miller-Hooks
2005; Castro et al. 2013).

5.4. Stopping criterion
The simple stopping criterion of the main phase is
defined as maxNoImprovement successive iterations
of the main phase with the same best solution. The
value of the parameter maxNoImprovement is low,
because most improvements are found in the first
iterations and the algorithm should be fast. The TS
also uses a stopping criterion based on the number of
successive iterations without improvement: always
one more than the maximum tabu length. As a result,
each vertex has the chance to be moved and the TS
cannot improve the solution anymore.

5.5. Parameters
The TS algorithm contains five parameters. Differ-
ent values of the parameters minimum and maxi-
mum tabu length as well as maxK, the maximum
number of iterations without recentering, will be
tested in Section 6. Moreover, the algorithm uses
maxNoImprovement as a stopping criterion and
NUFC for the number of sequences of hotels that
are considered in the main phase.

6. Results

In this section, four data set with test problems are
described. Next, the implications of different param-
eter values for the TS algorithm is described and the
results of the SVNS and TS algorithm for these in-
stances are compared. A few solutions are compared
with the exact solutions and the impact of the nine
moves and the shakes are described.
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6.1. Data
The test instances of set I, II, III and IV are avail-
able at www.mech.kuleuven.be/en/cib/op. These
instances contain minimal 32 and maximal 102 ver-
tices and 1 to 15 hotels next to the fixed start and
end hotel. The instances with the least number of
vertices and most strict time restrictions are much
easier to solve, but the instances with a name that
begins with 64 and 66 need more computation time.
Set I and II require few computation time, as the
number of hotels and trips is low. Set III is the most
computationally intensive, due to the relatively high
number of hotels. As a consequence, we were not
able to obtain results for the instances with 12 hotels
and 5 trips within the available time for this thesis.
The scores of both algorithms are compared with the
optimal scores of the instances that are solved by Di-
vsalar et al. (2013). For the instances of set IV with
three trips, there were no optimal values available.
However, it was possible to find the optimal value
for each trip between two hotels. They summed up
these score for each sequence of hotels. As a result,
some vertices might be included multiple times in
the tour and the obtained score is an upper bound
rather than the optimal score for the problems with
duplicate vertices.

The results for the set I with three hotels and two
trips are shown in Table 1. The second column gives
the optimal score and the third column the score of
the initialization. TNFC means total number of feasi-
ble combinations of hotels and gives a first impres-
sion of the difficulty of the instances. The maximum
value of TNFC can be calculated by h(D−1), where h
denotes the number of hotels and D the number of
trips. The actual value of TNFC is sometimes lower,
as not all sequences of hotels are feasible. The gap
shows the difference between the score of SVNS (and
TS) and the optimal score and can be calculated by
(optimal score - SVNS score)/optimal score * 100. Un-
less states differently, these 35 instance of set I with
two hotels and three trips are used for the results in
the remainder of this section.

6.2. Parameter tuning
The TS uses the parameters minimum and maximum
length of the tabu. Different values for these parame-
ters and the maximal number of iterations without
recentering, maxK, are given in Table 2. The algo-
rithm also contains the parameters NUFC for the
initialization and maxNoImprovement for stopping

criterion. We use the same values for these param-
eters as the SVNS algorithm, because Divsalar et al.
(2013) concluded that these parameters do not signif-
icantly affect the quality of the solutions.

The average gap is not very sensitive to changes
in the tabu length. The computation time, however,
increases with average tabu length. The tabu length
between 3 and 6 is chosen, because the speed of the
algorithm is important for applications of the OPHS.
The influence of the parameter maxK appears to be
small compared to the tabu length. The value 10 is
used, as the computation time is a little lower and
the gaps are similar. The solutions of all parameter
values except tabu length in [3, 6] and maxK=5 are
based on performing the algorithm once.

6.3. TS and SVNS
The reproduction of the SVNS algorithm finds the
optimal score for 17 out of the 35 instances. The score
of the best-found solution differs from the score of
the initialization phase for 7 out of these 17 instances.
The average score of the TS algorithm is optimal for
24 out of the 35 instances and leads to an average
gap with the optimal solution of 0.394% (Table 1). It
is remarkable that the intermediate hotels of the TS
and SNVS solutions are similar to the hotels of the
initial solution for all instances except one. This can
be due to a good initial solution, but can also indicate
that the Hotel-shake and Cross-over shake are not
capable to find good solutions with other sequences
of hotels.

Vansteenwegen et al. (2009) show that TS produces
good solutions for small instances of the TOP. The
average scores of the TS algorithm, based on per-
forming the algorithm three times, are better than
the SVNS for all sets (Table 5, 6, 7 and 8 in Appendix
A). A summary of the results is given in Table 3. The
third column represents the number of problems and
the third column gives the number of problems that
are solved optimally. This number in not restricted to
be an integer, as the algorithm is performed multiple
times. The TS algorithm consistently finds higher
scores with a lower maximal gap for the sets. The
average gap for set I to IV is respectively 0.498%,
0.397%, 0.876% and 1.469% better.

To understand the impact of the randomness in the
algorithm, we performed the TS three times for the
first 35 instances of set I. The difference between the
average gaps for the 35 instances is at most 0.143%
with a maximal gap of 3.750% that occurred for
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Table 1 Score, minimal and average gap of TS and gap of SVNS for set I with three hotels and two trips.
SVNS TS TS

Instance Opt. Init. TNFC Gap (%) Av. (%) Min. (%)
T1_65 240 235 3 2.083 0 0
T1_70 260 260 3 0 0 0
T1_73 265 260 3 0 0 0
T1_75 270 270 3 0 0 0
T1_80 280 275 3 0 0 0
T1_85 285 280 3 0 0 0
T3_65 610 610 3 0 0 0
T3_75 670 650 3 2.985 0 0
T3_80 710 660 3 4.225 0 0
T3_85 740 720 3 2.703 0 0
T3_90 770 740 3 3.896 0 0
T3_95 790 750 3 3.797 0.844 0
T3_100 800 770 3 3.750 1.250 0
T3_105 800 800 3 0 0 0
64_45 816 804 3 1.471 0 0
64_50 900 852 3 2.667 2.667 2.667
64_55 984 960 3 1.220 1.829 1.220
64_60 1062 1020 3 1.130 1.130 1.130
64_65 1116 1080 3 0 0 0
64_70 1188 1140 3 1.515 1.151 1.515
64_75 1236 1224 3 0 0 0
64_80 1284 1260 3 0 0 0
66_40 575 570 3 0.870 0.870 0.870
66_45 650 625 3 0.769 0.769 0.769
66_50 730 690 3 2.055 2.055 2.055
66_55 825 805 3 2.424 0 0
66_60 915 890 3 0.546 0.546 0.546
66_125 1670 1655 3 0.599 0.299 0
66_130 1680 1675 3 0 0 0
100_30 173 173 2 0 0 0
100_35 241 241 1 0 0 0
100_40 299 299 2 0 0 0
100_45 367 367 3 0 0 0
102_50 181 181 3 0 0 0
102_60 243 243 3 0 0 0
Average 1.106 0.394 0.308
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Table 2 Average gap with optimal solution and
computation time of set I with three hotels and two
trips for different parameter values.

Tabu length maxK Gap (%) Time (min.)
[3, 6] 5 0.394 2.006
[5, 10] 5 0.482 2.733
[3, 6] 10 0.360 2.008
[5, 10] 10 0.521 4.601
[10, 20] 10 0.414 5.838

Table 3 Summary of the results with known opti-
mal solutions.

Set Alg. # Prob. # Opt. Max. (%) Av. (%)

I
SVNS 105 55 6.494 0.937
TS 105 71.666 3.750 0.440

II
SVNS 70 38 6.494 0.936
TS 70 46.000 5.000 0.539

III
SVNS 22 4 8.259 3.089
TS 22 5.333 8.259 2.213

IV
SVNS 5 2 4.511 2.233
TS 5 4.000 3.822 0.764

T3_100. Although the scores of the TS algorithm
differ quite much, the average score is still higher
than the SVNS algorithm.

The computation times of the two algorithms are
similar. The SVNS algorithm takes on average 2.354
minutes, compared to on average 2.006 minutes for
the TS algorithm. Even with larger instances the com-
putation times is similar (respectively 7.811 and 7.498
minutes for set II with eight hotels and four trips).
These higher computation times are mainly due to
the initialization. For example, the initialization of
100_160 from set III takes 5 hours and 30.069 min-
utes, while the main phase needs less than 16.234
minutes. The computation time of the main phase
is dependent on two things. First, the time is de-
pendent on the number of times that the algorithm
recenters as shown in Algorithm 1 and the number
of improvements that are found in the TS. Second, it
is dependent on the speed of the convergence. The
tabu list prevents premature convergence and, hence,
increases the computation time. On the other side,
the TS has a different structure and stopping criterion
than the LS.

6.4. Exact solutions
Solving some instances exact by means of the MILP
formulation shows the difficulty of the OPHS. The
instances of set I with three hotels and two trips are
considered with the CPLEX implementation for Java.
While instance T1_70 was solved in 8.138 seconds,
instance T3_105 took 38.253 minutes. 20 of the 35
instances can be solved within one hour. This enables
us to compare the optimal tour and the tours of the
SVNS algorithm.

The SVNS algorithm was not able to solve 6 out
of these 20 instances. Only T3_100 has the wrong
sequence of intermediate hotels. This indicates that
most improvements in the algorithm are possible on
the second level of selecting the vertices for small
instances. Parts of the trips should be reversed, ver-
tices of the trips have to be switched completely or
just a few vertices have to be removed or inserted.
Moreover, the number of vertices is not equal for 12
of the 14 trips. The optimal and SVNS tour of T3_75
are shown in Figure 2 and 3 respectively. The order
of the trips is different: the optimal route starts with
vertex 26, while the SVNS tour starts with vertex
number 25.

6.5. Selection of moves
An example of a test instance where the SVNS algo-
rithm is not able to find the right trips is T1_65 with
score 235. In order to reach the optimal score, 240,
two vertices have to be removed and one vertex has
to be inserted. Note that the sum of the two vertices
that should be removed is lower than the score of the
inserted vertex. Hence, a Replacement move which
considers removing multiple vertices would lead to
the optimal solution.

A version of Replacement that considers removing
up to three vertices with a lower sum of score indeed
gave a score of 240 for T1_65. The SVNS algorithm
with this move is able to find an improved score for
the instances T1_65 and T3_85 out of the 35 instances,
but does also lead to 10 worse solutions. The worse
solutions indicate that the SVNS algorithm is sensi-
tive to changes in the search path. The move did not
result in any changed scores for the TS. Therefore,
we choose not to adjust Replacement and keep the
move simple.

The downside of the extended Replacement is the
additional computation time, as each combination of
vertices has to be considered until an improvement
is found. However, by (i) only considering combina-
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Figure 2 Optimal route of instance T3_75 with score
670. The hotels are red and vertices black.
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Figure 3 Route from SVNS algorithm of
instance T3_75 with score 650.

tions of vertices with a lower score than the inserted
vertex and (ii) directly executing the move if a combi-
nation of vertices is found that no longer violates the
restrictions, the average computation time does not
differ a lot. The average running time of the SVNS
algorithm was 2.354 minutes, which is similar to the
running time of the original SVNS algorithm (2.350
minutes).

An analysis of the nine moves showed that In-
sert is the most important move, as it is used in
49.677% of the moves. The next moves (Move-Best,
Two-Opt, Swap-Trips, Extract-Insert, Extract2Insert,
Exact5Insert, Extract-Move-Insert and Replacement)
are used 33.367%, 8.187%, 4.097%, 2.573%, 2.093%,
0.005% 0.000% and 0.000% respectively. These de-
creasing percentages give an indication that the order
of the moves is correct, as it converges quickly. How-
ever, this is difficult to state as the percentages can be
dependent of the order. On average 674 moves are
performed during the main phase. The main phase
needed a little more than 50 iterations, so that the
average number of moves per LS is equal to 4.451.
As the instances with more trips and hotels might
need the last two moves and the computation time
of the TS algorithm is quite low, we decide to keep
the nine moves.

6.6. Performance of shakes
The effect of the Cross-over in the TS algorithm has
two sides. On the one hand, it increases the flexibil-
ity. On the other hand, hotels that are not present
in the NUFC sequences of hotels are still not consid-

Table 4 Gap with the optimal solution for TS and
TS without Cross-over (TS-C) for set I and II.

Set (# hot., # tr.) TS-C (%) TS (%)
I (3, 2) 0.357 0.394
I (4, 3) 0.329 0.442
I (5, 4) 0.677 0.483
II (7, 3) 0.415 0.370
II (8, 4) 0.717 0.709

ered and the shake increases the computation time.
The shake results in a higher average gap for the in-
stances with a small number of trips and a smaller
gap for more difficult instances (Table 4). As many
practical problems (like the planning of a holiday)
contain more trips, we have chosen to include Cross-
over. Note that the average differences for set I and II,
0.015% and 0.027% respectively, are relatively small
compared to the influence of the randomness (Table
1). Therefore, these differences can also be due to the
effect of random numbers.

Most genetic algorithms contain two procedures:
Cross-over and Mutation. The last procedure ensures
that the solutions are diverse enough. The genetic al-
gorithm of Divsalar et al. (2014) produces very good
solutions for the OPHS. Therefore, we implemented
the Mutation procedure that uses a random number
to select the hotel that will be replaced. If changing
the tour into a sequence of hotels results in one or
more of the NUFC sequences of hotels, the hotel is
changed to one of these new hotels with a probability
proportional to the HES. Otherwise, a random num-
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Figure 4 Search path of the TS algorithm with and
without the search history for instance T3_75 of set
I with two trips and three hotels.

ber is used to determine the new hotel. Thereafter,
vertices are removed to make the tour feasible to the
time restrictions and TS is performed. Due to com-
putation time, the Hotels-Shake is removed during
this analysis.

The algorithm with the Mutation shake leads to
an average gap of 0.514%, based on performing the
algorithm three times. As the gap is higher than gap
of the algorithm with the Hotels-shake, we decided
to keep the Hotels-shake.

6.7. Search path diversification
The recentering phase of the SVNS and TS algorithm
differ as the TS algorithm uses the search history.
The algorithm can recenter at most maxK times to a
specific solution. A comparison between the score
in each iteration of the TS algorithm with and with-
out this history of instance T3_75 is shown in Figure
4. The TS algorithm finds solutions with 10 unique
scores, while the same TS algorithm without the his-
tory only finds solutions with four distinct scores.
Although the parameter maxPercentageWorse is re-
moved in both versions of the TS algorithm, the TS
without history cannot find solutions with a lower
score than 640. The search history of other instances
follows a similar pattern, confirming that the TS al-
gorithm with history is indeed able to diversify the
search. It is important to note that multiple solutions
can give the same score.

7. Discussion

This section compares the results of the two algo-
rithm with the results of Divsalar et al. (2013) and
Divsalar et al. (2014). Next, some implications of the
SVNS and TS algorithm are described.

Although we use the same SVNS algorithm as
Divsalar et al. (2013), the results differ a little bit. On
average our implementation of the SVNS algorithm
performs 0.086% better for set I and 0.134% better
for set II. The results for the instances of set III were
0.479% worse and set IV 1.473% worse. The total
number of feasible sequences of hotels is the same,
but the score of the initial solution is different for
some of the instances. Therefore, our implementation
of the LS or Greedy Sub-Op is different.

The different results can be due to a other imple-
mentation of the moves, for example, Extract-Insert.
We save the tour at the beginning of the move and
only consider the vertices of this tour for insertion.
A different implementation would also consider the
move for vertices that are inserted during the move.
Also, our results differ as we only have one while-
loop and we recenter when the score is the same, but
the total time of the tour is reduced.

To the knowledge of the author, the population-
based memetic algorithm of Divsalar et al. (2014)
produces the best results for the OPHS. The com-
putation time of their algorithm is lower than our
computation time and they reach solutions with a
lower gap for the difficult instances of set III. How-
ever, our results for set I and II show a lower gap
and an equal gap for set IV. Their algorithm also uses
random numbers and a Cross-over operator, but con-
tains a LS of six instead of nine moves, a Mutation
procedure and a different construction phase. There-
fore, it is difficult to compare the effectiveness of the
main phases.

When comparing the TS and SVNS algorithm, the
tabu list is the main advantage of the TS algorithm.
Also the ability to recenter to a solution with a worse
score is an advantage. The tabu list guides the al-
gorithm towards new solutions to explore a wider
part of the search space. The additional Cross-over
shake leads to a higher score. Although determining
promising sequences of hotels is difficult, this result
indicates that an improved solution might be close
to the best-found solution.

A disadvantage of the algorithms is the high com-
putation time of the initialization phase for instances
with many possible, feasible sequences of hotels. A
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Sub-Op need to be solved for each sequence, in order
to obtain the HES. However, it is difficult to rank the
sequences without performing time-consuming algo-
rithms like Sub-Op, LS or TS. We performed the TS
for the first 35 instances of set I with the sequence of
hotels that has the second highest has to investigate
robustness of our algorithm. These initial solutions
resulted in an average gap of 0.955%, which is still
low. Therefore, a faster construction heuristic for the
initial solution might be useful for difficult problems,
as it requires less computation time and results in
good solutions. The analysis of the moves showed
that we can possibly reduce the computation time by
deleting some moves like Extract-Move-Insert and
Replacement. Moreover, it takes only a little addi-
tional time to perform the TS algorithm multiple
times, due to the absence of randomness in the ini-
tialization.

Unlike many other TS algorithms with intermedi-
ate facilities for the TSPHS and TOP, our algorithm
does not include an aspiration condition (Tang &
Miller-Hooks 2005; Castro et al. 2013). Such a con-
dition considers whether moves that are present in
tabu list but lead to a substantial increase in the score,
can nonetheless be executed. Tang & Miller-Hooks
(2005) claim that it helps to find the global instead
of a local optimum. Our algorithm recenters at least
once in the maxK iterations and has three kinds of
shakes, so the probability of being trapped in a local
optimum is already small. Therefore, we expect that
an aspiration condition will not have a big effect on
the score.

8. Conclusion

In this thesis, we compared two algorithms for the
OPHS. The presence of intermediate facility leads
to an algorithm that consists of two levels: the level
of selecting the correct sequence of hotels and the
level of selecting the best vertices in each trip. The
chosen sequence of hotels is of great importance for
the quality of the solutions. The MILP formulation al-
lowed us to solve only a few instances within a hour,
indicating indeed that this problem is challenging.

The algorithm of Divsalar et al. (2013) contains
a SVNS framework and uses a short version of LS,
called Sub-op, to obtain a ranking for the each trips
between each pair of hotels and LS to find a feasible
initial solution. Next, the improvement and recenter-
ing phase changes the vertices and hotels and per-
forms an extensive LS with nine moves. To diversify

the search, the algorithm recenters to solutions with
a worse score.

The second algorithm is based on TS to find tours
with a good score. The key element of this algorithm
is a tabu list of vertices that cannot be moved during
a certain number of iterations. Random numbers are
used for the tabu length and three kinds of shakes
are applied to find more and better solutions.

While our implementation of the SVNS has an
average gap of 1.203%, the TS algorithm can find
tours with an average gap of 0.675% and the optimal
score is found for 62.871% of the test instances.

Although the TS algorithm produces near-optimal
solutions, more research would be useful. It would
be interesting to see whether an aspiration criterion
does affect the quality of the solutions. More research
is also necessary for the construction of initial solu-
tions with low computation times. Studying exten-
sions of the OPHS like scores for beautiful routes,
time windows or hotel costs does also add value.

All in all, the proposed TS algorithm has a simple
structure with five parameters. The algorithm pro-
duces high-quality solutions for a low computation
time and clearly outperforms the SVNS algorithm.
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A. Appendix

Table 5 Optimal value and gap of the SVNS and TS of set I, with 4 and 5 hotels and 3 and 4 trips.
3 trips, 4 hotels 4 trips, 5 hotels

SVNS TS TS SVNS TS TS
Instances Opt. Init. TNFC Gap (%) Av. (%) Min (%) Init. TNFC Gap (%) Av. (%) Min (%)
T1_65 240 235 16 2.083 0 0 240 107 0 0 0
T1_70 260 260 16 0 0 0 260 107 0 0 0
T1_73 265 265 16 0 0 0 265 107 0 0 0
T1_75 270 270 16 0 0 0 270 107 0 0 0
T1_80 280 280 16 0 0 0 280 125 0 0 0
T1_85 285 280 16 0 0 0 285 125 0 0 0
T3_65 610 610 16 0 0 0 610 100 0 0 0
T3_75 670 650 16 2.985 0 0 650 125 2.985 0 0
T3_80 710 710 16 0 0 0 710 107 0 0 0
T3_85 740 710 16 0 0 0 730 107 0 0 0
T3_90 770 770 16 0 0 0 720 100 6.494 0 0
T3_95 790 790 16 0 0 0 760 100 0 0 0
T3_100 800 800 16 0 1.667 0 770 125 3.750 2.500 2.500
T3_105 800 790 16 1.250 0.833 0 750 125 1.250 0 0
64_45 816 816 12 0 0 0 816 44 0 0 0
64_50 900 870 16 2.667 2.667 2.667 870 72 3.333 3.333 3.333
64_55 984 966 16 1.829 1.423 1.220 978 100 0.610 0.610 0.610
64_60 1062 990 16 1.695 0 0 1044 100 1.695 0 0
64_65 1116 1104 16 0 0 0 1116 125 0 0 0
64_70 1188 1164 16 2.020 1.515 1.515 1140 125 4.040 1.515 1.515
64_75 1236 1194 16 0.971 0.971 0.971 1206 125 1.942 1.456 1.456
64_80 1284 1260 16 1.402 1.869 1.869 1254 125 0.467 0.156 0
66_40 575 570 16 0.870 0.870 0.870 570 107 0.870 0.870 0.870
66_45 650 645 16 0.769 0.769 0.769 645 88 0.769 0.769 0.769
66_50 730 690 16 4.110 2.055 2.055 715 107 2.055 2.055 2.055
66_55 825 805 16 0 0 0 805 107 2.424 0 0
66_60 915 890 16 0.546 0.546 0.546 890 107 0.546 0.546 0.546
66_125 1670 1655 16 0.898 0 0 1635 125 0.898 0.898 0.898
66_130 1680 1675 16 0.298 0.298 0.298 1660 125 1.190 1.190 1.190
100_30 173 173 1 0 0 0 173 2 0 0 0
100_35 241 241 2 0 0 0 241 1 0 0 0
100_40 299 299 2 0 0 0 299 1 0 0 0
100_45 367 367 2 0 0 0 367 2 0 0 0
102_50 181 181 12 0 0 0 181 33 0 0 0
102_60 243 243 12 0 0 0 243 60 0 0 0
Average 0.697 0.442 0.365 1.009 0.483 0.450
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Table 6 Optimal value and gap of the SVNS and TS of set II.
3 trips, 7 hotels 4 trips, 8 hotels

SVNS TS TS SVNS TS TS
Instances Opt. Init. TNFC Gap (%) Av. (%) Min. (%) Init. TNFC Gap (%) Av. (%) Min. (%)
T1_65 240 240 49 0 0 0 240 482 0 0 0
T1_70 260 260 49 0 0 0 260 482 0 0 0
T1_73 265 265 49 0 0 0 265 482 0 0 0
T1_75 270 270 49 0 0 0 270 482 0 0 0
T1_80 280 280 49 0 0 0 280 512 0 0 0
T1_85 285 280 49 0 0 0 285 512 0 0 0
T3_65 610 610 49 0 0 0 610 448 0 0 0
T3_75 670 650 49 2.985 0 0 650 512 2.985 0 0
T3_80 710 710 49 0 0 0 710 482 0 0 0
T3_85 740 710 49 0 0 0 730 482 0 0 0
T3_90 770 740 49 3.896 0 0 720 448 6.494 0 0
T3_95 790 790 49 0 0 0 760 448 3.797 3.797 3.797
T3_100 800 800 49 0 0 0 770 512 3.750 2.500 2.500
T3_105 800 800 49 0 0 0 760 512 5.000 5.000 5.000
64_45 816 816 42 0 0 0 816 252 0 0 0
64_50 900 870 49 2.667 2.667 2.667 870 378 3.333 2.667 2.667
64_55 984 966 49 1.829 1.219 1.219 978 448 0.610 0.610 0.610
64_60 1062 1020 49 3.390 0 0 1044 448 1.695 0.188 0
64_65 1116 1104 49 0 0 0 1116 512 0 0 0
64_70 1188 1164 49 2.020 1.515 1.515 1152 512 2.525 2.694 2.020
64_75 1236 1206 49 1.456 1.133 0.971 1212 512 1.942 1.295 0.971
64_80 1284 1194 49 0.935 1.869 1.869 1260 512 0.935 0.623 0
66_40 575 570 45 0.870 0.870 0.870 570 302 0.870 0.870 0.870
66_45 650 645 47 0.769 0.769 0.769 645 228 0.769 0.769 0.769
66_50 730 690 49 2.055 2.055 2.055 715 357 2.055 2.055 2.055
66_55 825 805 49 0 0 0 805 400 2.424 0 0
66_60 915 890 49 0.546 0.546 0.546 890 424 0.546 0.546 0.546
66_125 1670 1655 49 0.898 0 0 1655 512 0.898 0.898 0.898
66_130 1680 1675 49 0.298 0.298 0.298 1675 512 0.298 0.298 0.298
100_30 173 173 1 0 0 0 173 2 0 0 0
100_35 241 241 2 0 0 0 241 1 0 0 0
100_40 299 299 2 0 0 0 299 1 0 0 0
100_45 367 367 2 0 0 0 367 2 0 0 0
102_50 181 181 14 0 0 0 181 60 0 0 0
102_60 243 243 17 0 0 0 243 105 0 0 0
Average 0.703 0.370 0.365 1.169 0.709 0.657
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Table 7 Optimal value and gap of the SVNS and TS of set III with 4 trips and 12 hotels.
SVNS TS TS

Instances Opt Init TNFC Gap (%) Av. (%) Min. (%)
64_75 1236 1224 1728 0.971 0.971 0.971
64_80 1284 1272 1728 0.935 0.312 0
66_125 1670 1670 1728 0 0 0
66_130 1680 1675 1728 0.298 0.298 0.298
100_50 412 408 39 0.971 0.971 0.971
100_60 504 504 161 0 0 0
100_70 590 575 276 2.542 0 0
100_80 652 652 892 0 0 0
100_90 725 706 1220 0 0 0
100_100 782 774 1296 1.023 1.023 1.023
100_110 835 798 1728 4.072 4.072 4.072
100_120 894 845 1728 5.369 4.064 3.691
100_130 956 884 1551 7.531 2.510 0.314
100_140 1013 928 1551 7.009 3.356 3.356
100_150 1057 1027 1728 2.838 1.987 1.987
100_160 1114 1022 1728 8.259 8.259 8.259
100_170 1164 1082 1728 7.045 5.441 4.983
100_180 1201 1103 1728 6.911 6.106 5.995
100_190 1234 1159 1728 3.890 3.485 2.836
100_200 1261 1201 1728 3.013 2.776 2.538
100_210 1284 1222 1728 4.595 2.882 2.648
100_240 1306 1296 1728 0.689 0.179 0.077
Average 3.089 2.213 2.001

Table 8 Optimal value and gap of the SVNS and TS of set IV.
2 trips, 5 hotels 3 trips, 5 hotels

SVNS TS TS SVNS TS TS
Instance Opt. Init. TNFC Gap (%) Av. (%) Min. (%) UB Init. TNFC Gap (%) Av. (%) Min. (%)
100_20 247 240 4 2.834 0 0 376 368 19 2.128 2.128 2.128
100_25 385 385 5 0 0 0 568 524 25 7.746 7.746 7.746
102_35 157 151 2 3.822 3.822 3.822 380 324 7 14.737 14.737 14.737
102_40 210 210 2 0 0 0 493 385 7 21.907 21.095 21.095
102_45 266 254 2 4.511 0 0 579 430 7 25.734 23.143 22.798
Average 2.233 0.764 0.764 14.450 13.629 13.560
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