
A replication of: ’A variable neighborhood search

method for the orienteering problem with hotel

selection’ by Divsalar et al. (2013)

Erasmus University Rotterdam
Erasmus School of Economics

Bachelor thesis: Econometrics and Operational Research

Name Student: Ruud Moers

Student ID number: 370376

Supervisor: Dr. T.A.B. Dollevoet

Second Assessor: DR. F. Frasincar

July 4, 2016

Abstract

In this paper I tried to reproduce and improve the methods and results
by Divsalar et al. (2013) for solving numerous OPHS instances. I added
small adjustments to the metaheuristic algorithm proposed by Divsalar et
al. (2013) and implemented a new improvement method ”Trips-Shake”,
On average I was unfortunately unable to beat the results by Divsalar et
al. (2013), and also the computation times I generated greatly exceeded
those by Divsalar et al. (2013). However, on several OPHS instances I
was able to get better results, where in particular for the smaller OPHS
instances.

1 Introduction

The orienteering problem with hotel selection (OPHS) can be viewed as an
extension on the classic orienteering problem (OP). The OP can be described
as a tourist planning the most satisfying tour, knowing the hotel he leaves at the
start and the hotel he arrives at the end. The satisfaction of the traveler depends
on the tourist attractions, or hotspots, he visits during his tour. Obviously, the
total duration of the tour is limited. The traveler’s preferences differ per hotspot,
therefore optimizing the total number of hotspots visited is not per definition
coherent to finding the tour with the optimal utility. Various methods to solve
such an OP are offered by Vansteenwegen et al. (2011).

An OPHS can be described similarly to the OP. However, in an OPHS the
tour of the tourist is divided into day trips. At the end of each trip the tourist
has to arrive in a hotel, from which he will depart again the next day. Once

1

more only the hotels at which he will start and end his tour are specified. For
each day trip the tourist has a maximum amount of time he wants to travel. The
tourist is possible to spend the night in any hotel located in the traveling area,
which can be reached without violating his time constraints. Since visiting the
same hotspot for the second time in the tour does not increase the total utility of
the tourist, the optimal utility of each day trip depends on the other day trips.
Therefore it is unsatisfying to solely evaluate all day trips as individual OPs for
every possible hotel pair. This aspect makes an OPHS in general drastically
more complex than an classic OP.

Divsalar et al. (2013) found that solving an OPHS using established
optimizing techniques require long computation times, which increase rapidly
when the number of day trips, hotspots and hotels increase. Therefore they
introduced a metaheuristic algorithm to solve the OPHS faster. However, this
algorithm is unable to guarantee optimality. The algorithm was implemented in
preparated OPHSs. Computation times dropped greatly in comparison to the
established optimizing techniques and the number of times the actual optimal
solution was found was impressive. In this paper I replicated the metaheuristic
algorithm introduced by Divsalar et al. (2013) with some adjustments and
extensions and tried to reproduce similar results. Since I will refer multiple
times to the paper of Divsalar et al.(2013), I will refer to the paper as DVC in
the rest of the paper.

2 OPHS Formulation

To clearly explain an individual OPHS, a numerous amount of information needs
to be defined. This section clarifies all indices and parameters that are used to
discuss and finally solve an OPHS.

As described earlier, the tourist has the option to decide which hotels and
hotspots he visits during his tour. Obviously, these hotels and hotspots are
specified beforehand. Let H be the number of hotels and N be the number of
hotspots present in the traveling region. Both a hotel and a hotspot represent a
location and can both be observed as a vertex on a map. Let vertex i represent
a hotel for i = 1, ...,H, and a hotspot for i = H + 1, ...,H +N , where i = 1 and
i = 2 represent the first hotel and the last hotel in the tour respectively. The
tourist is allowed to visit these two hotel multiple times during his tour like the
other hotels. Each hotspot has its own score Si to reflect the preferences of the
tourist. The time it takes to travel from vertex i to vertex j is defined by tij .
Let D be the number of day trips the tourist plans to make and d represent the
day at which a trip takes place, where d = 1, ..., D. The total length of the tour
is bounded by T and each individual day trip by Td. The final utility of the
tour is measured by the sum of the scores of all hotspots that are included in
the tour. Each vertex is included at most once in the tour. The purpose of the
OPHS is to maximize this final utility.

3 Proposed Algorithms

In this section, multiple metaheuristic algorithms I used to solve the OPHS are
described. First, the skewed variable neighborhood search (SVNS), introduced

2

by DVC, is explained together with minor adjustments I implemented. This
search is used in the final step of the metaheuristic algorithm. Also new alter-
native SVNSs are offered. The other subsections are dedicated to the phases
that have to be executed prior to and within the SVNSs.

3.1 Structure of the algorithm

The main purpose behind a SVNS is just like an ordinary variable neighborhood
search (VNS) to start of with an initial solution for a problem and attempt to
improve this solution. Where the VNS only examines neighboring solutions of
the best solution found so far, the SVNS also considers neighboring solutions of
slightly worse solutions than the actual best found solution. This characteristic
of the SVNS allows it to also investigate the search space further away from the
initial solution and more extensively than the VNS does.

As stated above, before applying the SVNS, an initial solution is required.
To reduce the total computation time it is preferred to start the SVNS with
a good solution. The procedure from which I obtained the initial solution is
described in section 3.2.

The SVNS itself basically exists out of two phases: 1)The shaking phase,
in which a neighboring solution is found, and 2) the recentering phase, which
evaluates whether the neighboring solution is better than the current best found
solution or maybe good enough to serve as starting solution for the next iter-
ation. Within the initialization phase as well as in the shaking phase a Local
Search is applied to improve intermediate solutions. The Local Search algorithm
and the Local Search moves used are described in section 3.4.

Due to the recentering phase in the SVNS proposed by Divsalar et al.(2013),
the search tends to end up in an infinite loop. To strengthen this statement,
it is useful to first discuss the methods used in the shaking phase more explic-
itly. Therefore, further explanations on this matter are in section 3.5. To avoid
ending up in an infinite loop I slightly adjusted the SVNS by DVC and came
up with two SVNS methods, these will be referred to as SVNS1 and SVNS2.
Overviews of these SVNSs are presented in Algorithm 1 and Algorithm 2 re-
spectively. The actual name of Algorithm 1 is SVNS1-V, where ’-V’ refers to
the vertices shake that is used in the algorithm. The necessity of the additional
letter is elucidated in Section 3.3.

For the SVNS1, the maximum number of iterations without improving the
best found solution, NoImprovementMax, is set to 50 and the maximum percent-
age a solution is allowed to be lower than the prior solution to still be recentered
is 0.03, MaxPercentageWorse. The value for kMax differs for every OPHS. The
computation of this parameter is clarified in section 3.3. The values I used for
these parameters are based on DVC who tested for parameter sensitivity in their
paper.

For the SVNS2, the same values for kMax and MaxPercentageWorse are
used as for SVNS1. Due to the different structure of SNVS2, it is unnecessary
to have a evenly high value for NoImprovementMax, and is set to 3. Also further
explanation on this follows after the clarification of the shaking phase in section
3.5.

3

Algorithm 1 SVNS1-V

Input Initial Solution; Ranked list with Used Feasible Hotels Combinations;
Kmax;

Initialize X, BestFound ← Initial Solution; NoImprovement ← 0;
NoImprovementMax ← 50; MaxPercentageWorse ← 0.03;

while NoImprovement < NoImprovementMax do
K ← 1;
while K ≤ Kmax do

X’ ← Vertices-Shake(X);
if X’ better than BestFound then

BestFound ← X’;
end if
X”← Hotels-Shake(X’);
Recenter or not?
if X” better than BestFound then

Recenter: X, BestFound ← X”;
NoImprovement ← 0; K ← 1;

else
NoImprovement+1; K+1;
if Score(X”) ≥ (1-MaxPercentageWorse) × Score(X) then

Recenter: X ← X”;
end if

end if
end while

end while
return BestFound;

4

Algorithm 2 SVNS2-V

Input Initial Solution; Ranked list with Used Feasible Hotels Combinations;
Kmax;

Initialize BestFound ← Initial Solution; K ← 1;
for K ← 1, Kmax do

NoImprovement ← 0;
X ← Initialize(K);
while NoImprovement < 3 do

X’ ← Vertices-Shake(X);
if X’ better than BestFound then

NoImprovement ← 0;
X, BestFound ← X’;

else
NoImprovement+1;
if Score(X’) ≥ 0.997 × Score(X) then

X ← X’;
end if

end if
end while

end for
return BestFound;

3.2 Initialization phase

The initialization phase can roughly be divided into two steps. The first step
focuses on determining the best feasible hotel combinations, being the hotels the
tourist spends his nights. In the second step, feasible tours for the best hotel
combinations are constructed.

Primarily, all feasible hotel combinations in the OPHS are determined, using
the pruning rule. Next, a score is assigned to every possible hotel pair, contain-
ing the starting hotel i and ending hotel j, for day d = 1, ..., D, by solving a
sub-OP (planning a trip between hotel i and j) heuristically with Td as the
maximum length and all hotspots in the OPHS being considered for insertion
for each trip. Since the tourist is possible to start and end a day trip at the
same hotel, each hotel also forms a pair with itself. If tij > Td, the score for
the hotel pair is set to −∞. Every sub-OP is solved by a simple Greedy sub-OP
Heuristic, see Algorithm 3, in which a newly obtained trip after an iteration
is assumed to be better when the total score of the trip has increased, or the
score has remained equal, but the length of the trip has decreased. The local
search methods used in the heuristic are described in section 3.4. All scores cor-
responding to the found solutions to the sub-OPs are stored in an H ×H ×D
matrix.

Now for every feasible hotel combination the heuristic estimated score (HES)
is calculated by summing the previously obtained scores from every hotel pair
that is present in the hotel combination on each day. The HES is only a rough
estimation of the score of the final solution, since within the tour corresponding
to the HES, the possibility exists that a hotspot is visited twice and therefore
also counted twice for the HES. On the other hand the sub-OPs were solved
heuristically and better sub-OPs might exist. So the optimal score of the is

5

Algorithm 3 Greedy Sub-OP Heuristic

Input Start hotel s; End hotel e; Day;
Initialize Y ← infeasible Trip; Y’ ← empty Trip with s and e;
while Y’ is better than Y do

Y ← Y’;
Insert(Y’);
Replacement(Y’);
Two-Opt(Y’);
Move-best(Y’);

end while
return Y;

possible to be higher than the highest obained HES. All hotel combinations are
ranked by their HES. Only a number of best hotel combinations based on the
HES is used in the next step. Let this number be: ’the number of used hotel
combinations’ (NUFC).

Next, three strategies are applied to the selected set of hotel combinations
to create feasible tours and finally also the initial solution for the SVNS.

1. Local Search is applied to a tour in which only the hotels are visited and
no hotspots.

2. The sub-OP greedy heuristic is used to design trips, day by day, starting
with the first day. Local Search is applied to improve the solution further.

3. The sub-OP greedy heuristic is used to design trips, day by day, starting
with the last day. Local Search is applied to improve the solution further.

In strategies 2 and 3 the hotspots considered for insertion in the sub-OP
greedy heuristic are only those which are not yet present in previous designed
day trips. Therefore the obtained tour are impossible to contain hotspots mul-
tiple times. The strategy which results in the tour with the highest score is
stored together with the tour itself. Next, the selected set of hotel combinations
is again ranked according to the score of the best found tour. This ranked list
existing out of NUFC hotel combinations is used again in the shaking phase
described in section 3.3. The tour found with the highest score is set as the
initial solution to start the SVNS.

3.3 Shaking Phase

The shaking phase proposed by DVC contains a Vertices-Shake and a
Hotels-Shake. Both ”shakes” are present in SVNS1. The SVNS2 contains the
initialize method instead of the Hotels-shake. I also introduced a trips-shake
method, a method to find different tours to attempt to improve the solution.
All methods are described in this section.

The Vertices-Shake does not guarantee an improvement of the prior solution
and might even lead to a slight decrease of the score. However, it possibly moves
away from the prior solution, and gets closer to a better or even the optimal
solution. The Vertices-Shake uses two strategies to adjust the current solution.

6

1. Remove the first halves of the hotspots for each day trip and improve the
remaining solution by applying Local Search.

2. Remove the second halves of the hotspots for each day trip and improve
the remaining solution by applying Local Search.

The SVNS then continues with the best solution obtained from one of the two
strategies. If this solution appears to be better than the best found solution
so far, the best found solution is immediately replaced by the new best found
solution.

In the Hotels-shake, the current hotels are replaced. This method is only
used in SVNS1. The hotel combination of the current solution is possibly not
the hotel combination corresponding with the optimal tour. Before the hotel
shake can be implemented a new hotel combination has to be specified. In the
SVNS this new hotel combination is indicated with an integer K corresponding
with the rank of the new hotel combination in the last ranked list obtained in the
initialization phase. Once the new hotel combination is specified, the hotel of the
current solution are replaced by those of the new hotel combination at exactly
the same position in the tour. This is most likely to end up in an infeasible tour.
Therefore hotspots are removed from the tour one by one based on the least
ratio score over time saved by removal. Hotspots are removed until the tour is
feasible. Then again Local Search is applied to further improve the solution. The
total number of alternative hotel combinations that are considered in the hotel
shake is limited by Kmax. Following the test results on parameter sensitivity
by DVC. (2013), I set NUFC to 250 and Kmax to be d0.25×NUFCe = 63. If
the total number of feasible combinations (TNFC) for the OPHS is lower than
NUFC, NUFC is set equal to TNFC and Kmax = min{TNFC, 63}.

Since the Hotels-Shake actually forces a hotel combination into a tour, which
was designed for another hotel combination, it appears inconvenient to find its
best tour starting from such an odd solution. Therefore in the SVNS2, the
initialize method is used which designs a starting solution for the Kth ranked
hotel combination using the best out of the three strategies offered in the ini-
tialization phase. The value for Kmax for the SVNS2 is still computed in the
same way as for the SVNS1.

The last shake method I introduced is the Trips-Shake and can be used as
a replacement of or in addition to the Vertices-Shake. The Trips-Shake designs
new trips, day by day, starting with the first day, using the sub-OP Greedy
Heuristic. In the sub-OP Greedy Heuristic, all currently inserted hotspots are
excluded from insertion, also the hotspots included in trip that is going to be
replaced. After having replaced a trip Local Search is applied to improve the
solution. Replacing the Vertices-Shake by the Trips-Shake results in two new
SVNSs, named SVNS1-T and SVNS2-T. For explicitness, the SVNSs in which
the Vertices-Shake is used and no Trips-Shake are now named SVNS1-V and
SVNS2-V.

Obviously, also the possibility exists to combine the Vertices-Shake and the
Trips-Shake. In that case, the best solution evolving from one of the two ’Shakes’
is used to continue the SVNS. This again result in two extra variants on the
original SVNS. These are named SVNS1-VT and SVNS2-VT.

7

3.4 Local Search

In this section the Local Search algorithm is described together with the Local
Search moves used in the Local Search and in the sub-OP Greedy Heuristic.

Algorithm 4 Local Search

Local Search Methods: Insert(.)=Local[1](.); Move-Best(.)=Local[2](.);
Two-Opt(.)=Local[3](.); Swap-Trips(.)=Local[4](.);
Extract-Insert(.)=Local[5](.); Extract2-Insert(.)=Local[6](.);
Extract5-Insert(.)=Local[7](.); Extract-Move-Insert(.)=Local[8](.);

Input Initial Solution;
Initialize X ← Infeasible Solution; Level ← 1;

while Level ≤ 8 do
X’ ← Local[Level](X);
if X’ better than X then

X’ ← X; Level ← 1;
else

Level+1;
end if

end while
return BestFound;

An overview of the Local Search algorithm is presented in Algorithm 4. The
algorithm is used to improve feasible predefined solutions, The Local Search
moves are in general adapted from DVC, with two moves being small adjusted.
An important characteristic of the Local Search is that it stops as soon as the
solution cannot be improved anymore by one of the local search moves, and also
never worsens the predefined solution. Besides, the solution always remains
feasible after each move. Next each Local Search move is described briefly.

1. Insert: For every hotspot, that is currently excluded from the tour, the
optimal position of insertion is determined, meaning that for inserting
vertex i at position v in the tour, the tour remains feasible and the increase
in time length of the tour is minimized. The vertex with the maximum
ratio of score over increase in time is inserted.

2. Move-best: For each included hotspot, it is checked that whether moving
the hotspot to a different position in the tour leads to a decrease in time.
The movement which leads to the highest decrease in time is executed.
Hence, this move is slightly different from the way Move-best it is applied
by DVC.

3. Two-opt: For each hotspot, starting with the first hotspot in the tour, it
is examined whether inverting the hotspot with any other hotspot in the
same trip results in a decrease of the travel time. If any inversion results
in a decrease of the travel time the order between the vertices for which
an inversion leads to the highest time save are reversed. If an inversion
takes place, the procedure starts again from the first hotspot of the tour
in which the last inversion took place.

4. Swap-trips: It is very similar to the Two-opt move, but now it is examined
whether inverting two hotspots from two different trips reduces the total

8

travel time, starting from the first hotspot that is visited in the tour.
When swapping the two hotspots, both trips should remain feasible and
the total travel time must decrease. If there appear to be multiple options
to swap the current hotspot with another, the swap resulting in the largest
decrease in total travel time is made. If a swap occurred, the examination
starts from the first hotspot in the tour again

5. Extract-Insert: Starting from the first hotspot in the tour, a hotspot is
extracted from the tour, then Insert is applied until it is not possible any
longer. The excluded hotspot is not considered for insertion. The move is
only executed when the new solution is better than the previous one. If
a solution with a higher score is found, the first vertex of the tour is up
for the same procedure again, otherwise it moves on to the next hotspot
in the tour.

6. Extract2-Insert: Very similar to the previous move, but now two subse-
quent hotspots are extracted from the tour and both excluded vertices are
not considered for insertion again.

7. Extract5-Insert: Again similar to the two moves above, but this time five
subsequent hotspots are extracted. Note, this move is only applied when
the trip exists out of at least five hotspots.

8. Extract-Move-Insert: The first hotspot visited in the tour is extracted.
Then Move-best is applied, and at last Insert, where only excluded hotspots
with a higher score are considered for insertion. Only if a new insertion
takes place, the entire procedure is applied and the same process will start
from the first hotspot on again. Otherwise it moves on the next hotspot
in the tour. Also this move slightly diverges from the Extract-Move-Insert
described by Divsalar et al. (2013).

9. Replacement: It first tries to apply the Insert move. If it is not successful:
for each non-included hotspot, the best position of insertion is determined.
The hotspot is included the trip. The solution has now become infeasible.
Only if extracting one hotspot with a lower score than the inserted hotspot
results in a feasible trip again, the respective hotspots are inserted and
extracted. Nonetheless, it moves on to the next non-included vertex to
repeat the same procedure.

3.5 Recentering Phase

This section first clarifies the decision to diverge from the SVNS used in DVC.
Next the section describes the recentering phase in the SVNS1 as well as the
one in the SVNS2, together with their advantages and disadvantages.

The SVNS proposed by DVC is very similar to SVNS1. The main difference
between the two is that in the SVNS proposed by DVC, K is set back to 1 after
any recentering. Once a slightly worse solution is found, and is recentered, in the
next iteration, the hotel combination of this centered solution is replaced by the
best found hotel combination according to the initialization phase. It is probable
that the next new solution is better than the currently centered solution. Again
K is set to 1, as soon as a slightly worse solution is centered again, the same
process is likely to happen again, which results in the algorithm getting stuck in

9

the inner while-loop. One remark, unlike the algorithm presented in Algorithm
1, the SVNS proposed by DVC, does not recenter when a new solution after an
iteration is found with the same score the new solution is not recentered. This
prevents from recentering the same solution over and over again. However, this
does not prevent the algorithm from ending up in an infinite loop as described
earlier.

Within the SVNS1, the solution obtained at the end of an iteration is recen-
tered if the solution is at most 0.3 per cent worse than the currently centered
solution. K is only lowered when the best found solution has increased, or the
inner while-loop has been finished, but the number of iterations without im-
provement has not yet exceeded its maximum. Since the hotel combinations
change very quickly, it appears that the neighborhood of an individual hotel
combination is explored insufficiently. Definitely, if one recalls the fact that the
hotel combination is forced into a tour that was basically designed for a different
hotel c

To make sure that the neighborhood for every hotel combination that is con-
sidered is investigated sufficiently, I introduced the SVNS2. Instead of using the
Hotels-Shake to evaluate different hotel combinations. The initialization method
is used. The neighborhood search for each hotel combination with at most rank
Kmax after the initialization phase is similarly explored. The tour related to
the hotel combination is ’shaken’ at least three times, NoImprovementMax. If
the tour turns out better than the best found tour so far, the area around the
new best found tour is further explored. The value for NoImprovementMax is
kept so low to reduce the total computation time and because increasing it to
did not appear to improve the best found solution.

4 Experiments and results

This section is dedicated to the performances of the metaheuristic algorithm
with multiple variations of the SVNS, described in this paper. They are com-
pared to performances of the metaheuristic algorithm obtained by DVC. The
test instances that are used the same as the instances solved in DVC. A brief
description of the design of the test instances and how they were constructed is
given in section 4.1.

4.1 Test Instances

Since there were no OPHS test instances available for DVC, they designed four
different sets of benchmark instances to evaluate the performance of their meta-
heuristic algorithm. The first three sets of OPHS instances were derived from
existing OP instances used in Tsiligiridis (1984) and Chao et al. (1996), by an
ingenious technique . The major advantage of this technique is that the optimal
tour and the corresponding score for the OPHS instance is exactly the same as
the optimal tour for the OP instance. One consequence of the technique is that
the hotel combination in the optimal tour always contains D+1 different hotels,
in other words the tourist will, when doing the optimal tour, spend every night
in a different hotel.

For SET 1: in total 105 OPHS instances were designed. Where 35 test
instances, for which H=3 and D=2, 35 test instances for which H=4 and D=3,

10

and another 35 test instances for which H=5 and D=4.
The last 70 test instances are used construct more complex instances in SET

2. To each instance 3 extra hotels are added, which do not influence the optimal
tour. SET 2 consequently contains 35 test instances where H=7 and D=3 and
35 test instances where H=8 and D=4.

For SET 3, even more complex instances are designed. 22 instances where
H=12 and D=4 and 22 instances where H=14 and D=5. These instances are
designed similarly as in SET 1 and SET 2.

SET 4 contains 6 test instances where H=5 and D=2 and 6 test instances
where H=5 and D=3. For these test instances, the optimal solution is not known
in advance. The instance does evolve from an OP problem, but the hotels that
are added, are located randomly. To get a benchmark for these instances, a
sub-OP is solved up to optimality for each possible hotel pair. Like in the
initialization phase the HES is computed for each possible hotel combination.
The retrieved tour possibly includes hotspots that are visited twice. To obtain
an upper bound for the instances, the highest HES is chosen. If all hotspots
in the tour corresponding with the highest HES are visited only once, this tour
then obviously serves as optimal solution of the OPHS. However, if at least one
hotspot is visited twice in the tour, a lower bound to the OPHS is obtained by
removing the duplicated hotspots. The optimal solution for the 6 test instances
where D=2 are found without an exception. On the other hand, no optimal
solution was found for any of the instances where D=3.

11

Table 1: SET1: H=3 and D=2

S - T OptVal DVC Init. 1-V 2-V 1-T 2-T 1-VT 2-VT
30-65 240 240 235 235 235 235 235 235 235
30-70 260 260 260 260 260 260 260 260 260
30-73 265 245 245 250 250 265 265 265 265
30-75 270 270 270 270 270 270 270 270 270
30-80 280 270 270 270 270 270 270 270 270
30-85 285 280 280 280 280 280 280 280 280
30-65 610 610 610 610 610 610 610 610 610
30-75 670 650 650 650 650 670 670 670 670
30-80 710 690 680 680 680 700 700 700 700
30-85 740 740 720 720 720 720 720 720 720
30-90 770 770 770 770 770 770 770 770 770
30-95 790 780 750 760 760 750 750 760 760
30-100 800 770 760 760 760 760 760 760 800
30-105 800 800 790 800 800 790 790 800 800
62-45 816 816 810 816 816 810 810 816 816
62-50 900 876 852 858 858 870 870 876 876
62-55 984 972 942 972 972 942 942 972 972
62-60 1062 1050 1044 1044 1044 1116 1116 1116 1116
62-65 1116 1116 1068 1116 1116 1068 1068 1116 1116
62-70 1188 1170 1164 1164 1164 1164 1164 1170 1170
62-75 1236 1236 1212 1230 1230 1212 1212 1230 1230
62-80 1284 1284 1272 1272 1272 1272 1272 1272 1272
64-40 575 570 550 570 570 550 550 570 570
64-45 650 645 625 645 645 625 625 645 645
64-50 730 715 690 700 700 690 690 700 700
64-55 825 805 805 805 805 805 805 805 805
64-60 915 860 840 890 890 840 840 890 890
64-125 1670 1665 1640 1640 1640 1640 1640 1640 1640
64-130 1680 1680 1675 1675 1675 1675 1675 1675 1675
99-30 173 173 173 173 173 173 173 173 173
99-35 241 241 241 241 241 241 241 241 241
99-40 299 299 299 299 299 299 299 299 299
99-45 367 367 367 367 367 367 367 367 367
101-50 181 181 181 181 181 181 181 181 181
101-60 243 243 243 243 243 243 243 243 243

4.2 Results

In this section, the solutions found by the various metaheuristic algorithms for
the different SETs of OPHS instances are presented. The outcomes are com-
pared to the outcomes produced by DVC. The ranks of the hotel combinations
of the best found solution by each SVNS described in this paper, are discussed.
Next to that the computation times are discussed and again compared to DVC.
Due to the size of the tables which show the obtained solutions, most of them
are only presented in the appendix.

All OPHS instances that are contained by SET1, SET2 and SET4 were
solved by the metaheuristic algorithm using SVNS1-V, SVNS2-V, SVNS1-T,

12

SVNS2-T, SVNS1-VT and SVNS2-VT. The instances in SET3 were only solved
using the SVNS1-V, SVNS2-V, SVNS1-T and SVNS2-T, due to high computa-
tion times when using the SVNS1-VT and SVNS2-VT.

Table 1 shows the highest score found by each solving method for each OPHS
instance in SET1, for which H=3 and D=2. The most left column denotes the
number of hotspots present in the traveling area and the maximum length of the
Tour. The second column shows the optimal value of each particular instance.
The third column presents the highest scores that were found by DVC. Every
value on the right hand of line were obtained in this research. The most left
column on the right side shows the highest score obtained after the initialization
phase. The remaining columns on the right side denote the best scores found
by the solving methods with a varying SVNS, When the score is in bold it
means that the particular solving method was able to find the optimal solution
of the OPHS. When the score is underlined, it means that even though the
optimal solution was not found, the solving method did perform the best for
that particular instance. The scores that were found for each solving method
for the other instances in SET1, SET2 and SET3 are present in Appendix A.

For every instance in SET1, SET2 and SET3 the optimal value is known.
Therefore it is easy to compute a measure for the results, named the optimality
gap. The optimality gap is defined as
(OptimalResult-BestFoundResult)/OptimalResult. The optimality gap is com-
puted for each instance for every solving method. The averages of these opti-
mality gaps per instance sort can be found in table 3.

As described earlier, the optimal results for the instances in SET4 are not all
known. The instances without a known optimal value have a an upper bound
and a lower bound. The results of the solving method for the instances in SET4
are presented in table 2. To compare the solving methods, the results found
by DVC are used as a benchmark. The gap for each solving method for each
instance in SET4 is calculated by (DVCResult-BestFoundResult)/DVCResult.
The average gaps for each solving method can also be found in table 3. The
’Best’ column in table 3 represents the gaps when for every instance the best
result of the six SVNSs is chosen.

Table 2: SET4 - H=5 and D=2/3

S - T - D OptVal LB UB DVC Init. 1-V 2-V 1-T 2-T 1-VT 2-VT
98-20-2 247 247 240 240 240 240 240 240 240
98-30-2 385 385 385 385 385 385 385 385 385
100-35-2 157 151 151 151 151 151 151 151 151
100-40-2 210 210 210 210 210 210 210 210 210
100-45-2 266 266 254 254 254 254 254 254 254
98-20-3 357 376 368 368 368 368 368 368 368 368
98-25-3 495 568 524 524 524 524 524 524 524 524
100-30-3 230 380 324 300 300 300 300 300 300 300
100-40-3 299 493 383 366 383 383 387 387 383 383
100-45-3 356 579 442 420 430 425 425 425 425 427

13

Table 3: The Average Gap (AG) for each test instance

H-D DVC Init. 1-V 2-V 1-T 2-T 1-VT 2-VT Best
SET1 3-2 1.22 2.61 1.71 1.71 1.91 1.91 1.15 1.00 1.00

4-3 0.93 1.90 1.42 1.31 1.90 1.63 1.42 1.15 1.15
5-4 0.92 1.88 1.56 1.50 1.75 1.75 1.47 1.41 1.23

SET2 7-3 0.98 1.56 1.17 1.15 1.56 1.37 1.17 0.98 0.93
8-4 1.22 1.89 1.48 1.58 1.68 1.74 1.39 1.48 1.24

SET3 12-4 2.61 4.32 3.10 3.43 4.15 4.15 - - 2.84
14-5 3.58 4.49 4.09 3.82 4.49 4.49 - - 3.69

SET4* 5-2/3 0.00 2.42 1.75 1.86 1.76 1.76 1.86 1.81 1.64

Overall AG** 1.46 2.46 1.90 1.89 1.86 1.79 1.32*** 1.20*** 1.54
*Not all optimal values in SET4, therefore the value presented is the average gap to
the solutions found by DVC
**The Overall AG only considers the instances in SET1, SET2 and SET3

***The Overall AG for this value is based only on the instances in SET1 and SET2

Also the computation times for solving the OPHS instances are often dis-
cussed by DVC. The average computation time for each solving method for each
test instance is presented in table 4 and can be compared to the computations
times stated in DVC.

Table 4: The Average Computation Time (ACPU) for each instance set

H-D DVC Init. 1-V 2-V 1-T 2-T 1-VT 2-VT
SET1 3-2 0.18 0.20 2.21 0.45 1.75 0.32 4.87 0.79

4-3 0.21 0.63 3.08 1.31 2.74 1.13 5.77 2.93
5-4 0.65 3.76 5.94 6.24 5.64 5.59 8.71 10.11

SET2 7-3 0.34 2.06 6.05 4.55 5.64 3.69 10.18 8.15
8-4 1.39 9.02 11.22 11.86 11.16 10.97 14.19 16.55

SET3 12-4 8.20 56.68 75.72 79.38 74.96 71.40 - -
14-5 6.77 50.05 64.67 73.48 71.14 70.00 - -

SET4 3-2/3 0.24 0.47 2.57 0.91 2.62 0.89 6.55 1.96

Overall ACPU 1.95 13.23 18.66 19.26 11.45 10.50 8.74* 7.71*
*The Overall ACPU is only based on the computation times of the instances in

SET1, SET2 and SET4

14

Table 5: The number of Best Found solutions without the highest ranked hotel
combination after the initialization phase

H - D 1-V 2-V 1-T 2-T 1-VT 2-VT
SET1 3-2 0 0 0 0 0 1

4-3 1 1 0 1 1 2
5-4 1 2 0 0 1 2

SET2 7-3 1 2 0 1 1 3
8-4 3 3 1 1 3 4

SET3 12-4 8 6 2 3 - -
14-5 2 7 0 1 - -

SET4 5-2/3 1 0 0 0 0 0

Total 17 21 3 7 6 12

The reason to introduce the SVNS2 was to make sure, also the neighborhood
of solutions with a lower ranked hotel combination are investigated sufficient.
Table 5 shows the number of times the highest ranked hotel combination is not
used in the best found solution for each subset of OPHS instances. The ranks
of the actual hotel combinations used in the best found solutions can be found
in the tables in Apppendix B.

5 Conclusion

The varying solving methods that I introduced resulted in different best found
solution. Only for the instances of SET1 where H=3 and D=2, two individual
solving methods, SVNS-1VT and SVNS-2VT, performed better than the SVNS
by DVC. Jointly the solution methods I introduced also performed better for
the instances in SET2 where H=7 and D=3. Also in several individual instances
the SVNS by DVC is outperformed by one of other solving. In general, however
DVC were able to find better solutions to the OPHS instances which is shown by
table 3. Also the efficiency of the SVNS by DVC is impressive when comparing
the computation times I obtained.

About the differences between the SVNSs introduced in this paper. Overall
the SVNSs only using the Vertices-Shake outperform the SVNSs only using
the Trips-Shake. When used together however the average optimality gap is
significantly decreased. The disadvantage of using both ’Shakes’ is a rise in the
average computation time.

The differences between the SVNS1 and the SVNS2 are smaller than I ex-
pected. Table 5 shows that the SVNS2 slightly more often leads to a best found
solution with a hotel combination that was ranked second or lower after the
initialization phase, the difference in number times however is negligible. Both
methods do regularly end up with a different best solution and can therefore
complement each other.

15

References

[1] Chao, I.-M., Golden, B.L., Wasil, E.A., 1996. Theory and methodology-a
fast and effective heuristic for the orienteering problem. European Journal
of Operational Research 88 (3), 475-489.

[2] Divsalar, A., Vansteenwegen, P., Cattrysse, D. 2013, A variable neighboor-
hood search method for the orienteering problem with hotel selection. Int.
J. Production Economics 145, 150-160.

[3] Tsiligirides, T., 1984. Heuristic methods applied to orienteering. Journal of
the Operational Research Society 35 (9), 797-809.

[4] Vansteenwegen, P., Souffriau, W., Berghe, G., Oudheusen, D., 2009. Meta-
heuristics for tourist trip planning. Lecture Notes in Economics and Math-
ematical Systems 624, 15-31.

16

A Scores of the Best Found Solution per
Instance per SVNS

These tables show the highest score found by each solving method for each
OPHS instance. The most left column denotes the number of hotspots present
in the traveling area and the maximum length of the Tour. The second column
shows the optimal value of each particular instance. The third column presents
the highest scores that were found by DVC. Every value on the right hand of line
were obtained in this research. The most left column on the right side shows the
highest score obtained after the initialization phase. The remaining columns on
the right denote the best scores found by the solving methods with a varying
SVNS, When the score is in bold it means that the particular SVNS was able to
find the optimal solution of the OPHS. When the score is underlined, it means
that even though the optimal solution was not found, the solving method did
perform the best for that particular instance.

17

Table 6: SET1 - H=3 and D=2

S-T OptVal DVC Init. 1-V 2-V 1-T 2-T 1-VT 2-VT
30-65 240 240 235 235 235 235 235 235 235
30-70 260 260 260 260 260 260 260 260 260
30-73 265 245 245 250 250 265 265 265 265
30-75 270 270 270 270 270 270 270 270 270
30-80 280 270 270 270 270 270 270 270 270
30-85 285 280 280 280 280 280 280 280 280
30-65 610 610 610 610 610 610 610 610 610
30-75 670 650 650 650 650 670 670 670 670
30-80 710 690 680 680 680 700 700 700 700
30-85 740 740 720 720 720 720 720 720 720
30-90 770 770 770 770 770 770 770 770 770
30-95 790 780 750 760 760 750 750 760 760
30-100 800 770 760 760 760 760 760 760 800
30-105 800 800 790 800 800 790 790 800 800
62-45 816 816 810 816 816 810 810 816 816
62-50 900 876 852 858 858 870 870 876 876
62-55 984 972 942 972 972 942 942 972 972
62-60 1062 1050 1044 1044 1044 1116 1116 1116 1116
62-65 1116 1116 1068 1116 1116 1068 1068 1116 1116
62-70 1188 1170 1164 1164 1164 1164 1164 1170 1170
62-75 1236 1236 1212 1230 1230 1212 1212 1230 1230
62-80 1284 1284 1272 1272 1272 1272 1272 1272 1272
64-40 575 570 550 570 570 550 550 570 570
64-45 650 645 625 645 645 625 625 645 645
64-50 730 715 690 700 700 690 690 700 700
64-55 825 805 805 805 805 805 805 805 805
64-60 915 860 840 890 890 840 840 890 890
64-125 1670 1665 1640 1640 1640 1640 1640 1640 1640
64-130 1680 1680 1675 1675 1675 1675 1675 1675 1675
99-30 173 173 173 173 173 173 173 173 173
99-35 241 241 241 241 241 241 241 241 241
99-40 299 299 299 299 299 299 299 299 299
99-45 367 367 367 367 367 367 367 367 367
101-50 181 181 181 181 181 181 181 181 181
101-60 243 243 243 243 243 243 243 243 243

18

Table 7: SET1 - H=4 and D=3

S-T OptVal DVC Init. 1-V 2-V 1-T 2-T 1-VT 2-VT
30-65 240 240 240 240 240 240 240 240 240
30-70 260 260 260 260 260 260 260 260 260
30-73 265 265 265 265 265 265 265 265 265
30-75 270 270 260 260 260 260 260 260 260
30-80 280 280 275 280 280 275 275 280 280
30-85 285 285 280 280 280 280 280 280 280
30-65 610 610 610 610 610 610 610 610 610
30-75 670 650 650 650 650 650 650 650 650
30-80 710 710 710 710 710 710 710 710 710
30-85 740 740 670 680 700 670 740 680 740
30-90 770 730 730 730 730 730 730 730 730
30-95 790 790 790 790 790 790 790 790 790
30-100 800 800 800 800 800 800 800 800 800
30-105 800 790 780 790 790 780 780 790 790
62-45 816 816 804 804 804 804 804 804 804
62-50 900 876 870 870 870 870 870 870 870
62-55 984 954 948 954 954 948 948 954 954
62-60 1062 1038 996 1026 1026 996 996 1026 1026
62-65 1116 1092 1080 1080 1092 1080 1080 1080 1098
62-70 1188 1170 1158 1170 1170 1158 1158 1170 1170
62-75 1236 1212 1200 1200 1200 1200 1200 1200 1200
62-80 1284 1260 1260 1260 1260 1260 1260 1260 1260
64-40 575 570 570 570 570 570 570 570 570
64-45 650 645 645 645 645 645 645 645 645
64-50 730 715 690 715 715 690 690 715 715
64-55 825 805 805 825 825 805 805 825 825
64-60 915 910 890 910 910 890 890 910 910
64-125 1670 1670 1645 1645 1645 1645 1645 1645 1645
64-130 1680 1665 1675 1675 1675 1675 1675 1675 1675
99-30 173 173 173 173 173 173 173 173 173
99-35 241 241 241 241 241 241 241 241 241
99-40 299 299 299 299 299 299 299 299 299
99-45 367 367 367 367 367 367 367 367 367
101-50 181 181 181 181 181 181 181 181 181
101-60 243 243 243 243 243 243 243 243 243

19

Table 8: SET1 - H=5 and D=4

S-T OptVal DVC Init. 1-V 2-V 1-T 2-T 1-VT 2-VT
30-65 240 240 240 240 240 240 240 240 240
30-70 260 260 260 260 260 260 260 260 260
30-73 265 265 265 265 265 265 265 265 265
30-75 270 270 270 270 270 270 270 270 270
30-80 280 275 270 270 270 270 270 270 270
30-85 285 285 285 285 285 285 285 285 285
30-65 610 610 610 610 610 610 610 610 610
30-75 670 650 650 650 650 650 650 650 650
30-80 710 710 710 710 710 710 710 710 710
30-85 740 740 700 700 700 700 700 700 700
30-90 770 770 720 720 720 720 720 720 720
30-95 790 790 750 750 790 750 750 750 790
30-100 800 760 750 800 750 750 750 800 750
30-105 800 800 770 770 790 770 770 770 790
62-45 816 816 798 810 810 816 816 816 816
62-50 900 870 846 852 852 846 846 852 852
62-55 984 978 972 972 972 972 972 972 972
62-60 1062 1038 1044 1044 1044 1044 1044 1044 1044
62-65 1116 1104 1110 1116 1116 1110 1110 1116 1116
62-70 1188 1170 1122 1152 1152 1122 1122 1152 1152
62-75 1236 1200 1200 1200 1200 1200 1200 1200 1200
62-80 1284 1266 1254 1254 1254 1254 1254 1254 1254
64-40 575 570 570 570 570 570 570 570 570
64-45 650 645 645 645 645 645 645 645 645
64-50 730 715 715 715 715 715 715 715 715
64-55 825 805 805 805 805 825 825 825 825
64-60 915 910 910 910 910 910 910 910 910
64-125 1670 1635 1635 1635 1645 1635 1635 1635 1645
64-130 1680 1670 1660 1660 1660 1660 1660 1660 1660
99-30 173 173 173 173 173 173 173 173 173
99-35 241 241 241 241 241 241 241 241 241
99-40 299 299 299 299 299 299 299 299 299
99-45 367 367 367 367 367 367 367 367 367
101-50 181 181 181 181 181 181 181 181 181
101-60 243 243 243 243 243 243 243 243 243

20

Table 9: SET2 - H=7 and D=3

S-T OptVal DVC Init. 1-V 2-V 1-T 2-T 1-VT 2-VT
30-65 240 240 240 240 240 240 240 240 240
30-70 260 260 260 260 260 260 260 260 260
30-73 265 265 265 265 265 265 265 265 265
30-75 270 270 260 260 260 260 260 260 260
30-80 280 275 275 280 280 275 275 280 280
30-85 285 285 280 285 280 280 280 285 280
30-65 610 610 610 610 610 610 610 610 610
30-75 670 650 650 650 650 650 650 650 650
30-80 710 710 710 710 710 710 710 710 710
30-85 740 710 690 690 700 690 740 690 740
30-90 770 740 730 730 730 730 730 730 730
30-95 790 790 790 790 790 790 790 790 790
30-100 800 800 800 800 800 800 800 800 800
30-105 800 800 800 800 800 800 800 800 800
62-45 816 816 804 804 804 804 804 804 804
62-50 900 870 870 870 870 870 870 870 870
62-55 984 954 948 954 954 948 948 954 954
62-60 1062 1056 1056 1056 1056 1056 1056 1056 1056
62-65 1116 1092 1080 1080 1092 1080 1080 1080 1098
62-70 1188 1170 1158 1170 1170 1158 1158 1170 1170
62-75 1236 1218 1206 1212 1212 1206 1206 1212 1212
62-80 1284 1260 1260 1260 1260 1260 1260 1260 1260
64-40 575 570 570 570 570 570 570 570 570
64-45 650 645 645 645 645 645 645 645 645
64-50 730 715 690 715 715 690 690 715 715
64-55 825 825 805 825 825 805 805 825 825
64-60 915 890 890 910 910 890 890 910 910
64-125 1670 1655 1655 1655 1655 1655 1655 1655 1655
64-130 1680 1675 1675 1675 1675 1675 1675 1675 1675
99-30 173 173 173 173 173 173 173 173 173
99-35 241 241 241 241 241 241 241 241 241
99-40 299 299 299 299 299 299 299 299 299
99-45 367 367 367 367 367 367 367 367 367
101-50 181 181 181 181 181 181 181 181 181
101-60 243 243 243 243 243 243 243 243 243

21

Table 10: SET2 - H=8 and D=4

S-T OptVal DVC Init. 1-V 2-V 1-T 2-T 1-VT 2-VT
30-65 240 240 240 240 240 240 240 240 240
30-70 260 260 260 260 260 260 260 260 260
30-73 265 265 265 265 265 265 265 265 265
30-75 270 270 270 270 270 270 270 270 270
30-80 280 280 275 275 275 275 275 275 275
30-85 285 285 285 285 285 285 285 285 285
30-65 610 610 610 610 610 610 610 610 610
30-75 670 650 650 650 650 650 650 650 650
30-80 710 710 660 660 660 660 660 660 660
30-85 740 740 710 740 710 710 710 740 710
30-90 770 730 720 720 720 720 720 720 720
30-95 790 750 750 790 790 750 750 790 790
30-100 800 760 740 760 740 740 740 760 740
30-105 800 800 770 770 790 770 770 770 790
62-45 816 792 798 810 810 816 816 816 816
62-50 900 870 846 852 852 870 852 852 852
62-55 984 972 972 972 972 972 972 972 972
62-60 1062 1044 1044 1044 1044 1044 1044 1044 1044
62-65 1116 1116 1110 1116 1116 1110 1110 1116 1116
62-70 1188 1164 1152 1152 1152 1152 1152 1152 1152
62-75 1236 1200 1200 1200 1200 1200 1200 1200 1200
62-80 1284 1266 1266 1266 1272 1266 1266 1266 1272
64-40 575 570 570 570 570 570 570 570 570
64-45 650 645 645 645 645 645 645 645 645
64-50 730 715 715 715 715 715 715 715 715
64-55 825 805 805 805 805 825 825 825 825
64-60 915 910 910 910 910 910 910 910 910
64-125 1670 1645 1645 1645 1650 1645 1645 1645 1650
64-130 1680 1670 1675 1675 1675 1675 1675 1675 1675
99-30 173 173 173 173 173 173 173 173 173
99-35 241 241 241 241 241 241 241 241 241
99-40 299 299 299 299 299 299 299 299 299
99-45 367 367 367 367 367 367 367 367 367
101-50 181 181 181 181 181 181 181 181 181
101-60 243 243 243 243 243 243 243 243 243

22

Table 11: SET3: H=12 and D=4

S-T OptVal DVC Init. 1-V 2-V 1-T 2-T
62-75 1236 1224 1200 1206 1218 1200 1200
62-80 1284 1278 1266 1266 1272 1266 1266
64-125 1670 1670 1655 1655 1660 1655 1655
64-130 1680 1675 1665 1665 1675 1665 1665
98-50 412 408 408 408 408 408 408
98-60 504 504 488 504 504 488 488
98-70 590 575 575 575 575 575 575
98-80 652 641 626 652 626 626 626
98-90 725 706 706 725 706 725 725
98-100 782 766 756 764 756 756 756
98-110 835 835 792 805 795 792 792
98-120 894 886 827 861 855 837 837
98-130 956 909 884 918 885 884 884
98-140 1013 954 930 948 948 930 930
98-150 1057 1042 1025 1025 1025 1025 1025
98-160 1114 1023 1018 1018 1022 1018 1018
98-170 1164 1077 1070 1070 1078 1070 1070
98-180 1201 1142 1126 1167 1167 1126 1126
98-190 1234 1176 1155 1155 1155 1155 1155
98-200 1261 1220 1193 1210 1213 1193 1193
98-210 1284 1235 1218 1220 1235 1218 1218
98-240 1306 1299 1292 1292 1303 1292 1292

23

Table 12: SET3 - H=14 and D=5

S-T OptVal DVC Init. 1-V 2-V 1-T 2-T
62-75 1236 1224 1200 1206 1218 1200 1200
62-80 1284 1278 1266 1266 1272 1266 1266
64-125 1670 1670 1655 1655 1660 1655 1655
64-130 1680 1675 1665 1665 1675 1665 1665
98-50 412 408 408 408 408 408 408
98-60 504 504 488 504 504 488 488
98-70 590 575 575 575 575 575 575
98-80 652 641 626 652 626 626 626
98-90 725 706 706 725 706 725 725
98-100 782 766 756 764 756 756 756
98-110 835 835 792 805 795 792 792
98-120 894 886 827 861 855 837 837
98-130 956 909 884 918 885 884 884
98-140 1013 954 930 948 948 930 930
98-150 1057 1042 1025 1025 1025 1025 1025
98-160 1114 1023 1018 1018 1022 1018 1018
98-170 1164 1077 1070 1070 1078 1070 1070
98-180 1201 1142 1126 1167 1167 1126 1126
98-190 1234 1176 1155 1155 1155 1155 1155
98-200 1261 1220 1193 1210 1213 1193 1193
98-210 1284 1235 1218 1220 1235 1218 1218
98-240 1306 1299 1292 1292 1303 1292 1292

Table 13: SET4 - H=5 and D=2/3

S - T - D OptVal LB UB DVC Init. 1-V 2-V 1-T 2-T 1-VT 2-VT
98-20-2 247 247 240 240 240 240 240 240 240
98-30-2 385 385 385 385 385 385 385 385 385
100-35-2 157 151 151 151 151 151 151 151 151
100-40-2 210 210 210 210 210 210 210 210 210
100-45-2 266 266 254 254 254 254 254 254 254
98-20-3 357 376 368 368 368 368 368 368 368 368
98-25-3 495 568 524 524 524 524 524 524 524 524
100-30-3 230 380 324 300 300 300 300 300 300 300
100-40-3 299 493 383 366 383 383 387 387 383 383
100-45-3 356 579 442 420 430 425 425 425 425 427

24

B Rank of the Hotel Combinations of the Best
Found Solutions

These tables show for each test instance and each solving method the rank of
the hotel combination of the best found solution, which was determined after
the initialization phase.

Table 14: SET1 - H=3 D=2

S - T TNFC kMax 1-V 2-V 1-T 2-T 1-VT 2-VT
30-65 3 3 1 1 1 1 1 1
30-70 3 3 1 1 1 1 1 1
30-73 3 3 1 1 1 1 1 1
30-75 3 3 1 1 1 1 1 1
30-80 3 3 1 1 1 1 1 1
30-85 3 3 1 1 1 1 1 1
30-65 3 3 1 1 1 1 1 1
30-75 3 3 1 1 1 1 1 1
30-80 3 3 1 1 1 1 1 1
30-85 3 3 1 1 1 1 1 1
30-90 3 3 1 1 1 1 1 1
30-95 3 3 1 1 1 1 1 1
30-100 3 3 1 1 1 1 1 1
30-105 3 3 1 1 1 1 1 1
62-45 3 3 1 1 1 1 1 1
62-50 3 3 1 1 1 1 1 1
62-55 3 3 1 1 1 1 1 1
62-60 3 3 1 1 1 1 1 1
62-65 3 3 1 1 1 1 1 1
62-70 3 3 1 1 1 1 1 1
62-75 3 3 1 1 1 1 1 1
62-80 3 3 1 1 1 1 1 1
64-40 3 3 1 1 1 1 1 1
64-45 3 3 1 1 1 1 1 1
64-50 3 3 1 1 1 1 1 1
64-55 3 3 1 1 1 1 1 1
64-60 3 3 1 1 1 1 1 1
64-125 3 3 1 1 1 1 1 1
64-130 3 3 1 1 1 1 1 1
99-30 2 2 1 1 1 1 1 1
99-35 1 1 1 1 1 1 1 1
99-40 2 2 1 1 1 1 1 1
99-45 3 3 1 1 1 1 1 1
101-50 3 3 1 1 1 1 1 1
101-60 3 3 1 1 1 1 1 1

25

Table 15: SET1 - H=4 and D=3

S - T TNFC kMax 1-V 2-V 1-T 2-T 1-VT 2-VT
30-65 16 16 1 1 1 1 1 1
30-70 16 16 1 1 1 1 1 1
30-73 16 16 1 1 1 1 1 1
30-75 16 16 1 1 1 1 1 1
30-80 16 16 1 1 1 1 1 1
30-85 16 16 1 1 1 1 1 1
30-65 16 16 1 1 1 1 1 1
30-75 16 16 1 1 1 1 1 1
30-80 16 16 1 1 1 1 1 1
30-85 16 16 5 3 1 3 5 3
30-90 16 16 1 1 1 1 1 1
30-95 16 16 1 1 1 1 1 1
30-100 16 16 1 1 1 1 1 1
30-105 16 16 1 1 1 1 1 1
62-45 12 12 1 1 1 1 1 1
62-50 16 16 1 1 1 1 1 1
62-55 16 16 1 1 1 1 1 1
62-60 16 16 1 1 1 1 1 1
62-65 16 16 1 1 1 1 1 8
62-70 16 16 1 1 1 1 1 1
62-75 16 16 1 1 1 1 1 1
62-80 16 16 1 1 1 1 1 1
64-40 16 16 1 1 1 1 1 1
64-45 16 16 1 1 1 1 1 1
64-50 16 16 1 1 1 1 1 1
64-55 16 16 1 1 1 1 1 1
64-60 16 16 1 1 1 1 1 1
64-125 16 16 1 1 1 1 1 1
64-130 16 16 1 1 1 1 1 1
99-30 1 1 1 1 1 1 1 1
99-35 2 2 1 1 1 1 1 1
99-40 2 2 1 1 1 1 1 1
99-45 2 2 1 1 1 1 1 1
101-50 12 12 1 1 1 1 1 1
101-60 12 12 1 1 1 1 1 1

26

Table 16: SET1 - H=5 and D=4

S - T TNFC kMax 1-V 2-V 1-T 2-T 1-VT 2-VT
30-65 107 63 1 1 1 1 1 1
30-70 107 63 1 1 1 1 1 1
30-73 107 63 1 1 1 1 1 1
30-75 107 63 1 1 1 1 1 1
30-80 125 63 1 1 1 1 1 1
30-85 125 63 1 1 1 1 1 1
30-65 100 63 1 1 1 1 1 1
30-75 125 63 1 1 1 1 1 1
30-80 107 63 1 1 1 1 1 1
30-85 107 63 1 1 1 1 1 1
30-90 100 63 1 1 1 1 1 1
30-95 100 63 1 6 1 1 1 5
30-100 125 63 14 1 1 1 14 1
30-105 125 63 1 3 1 1 1 3
62-45 44 44 1 1 1 1 1 1
62-50 72 63 1 1 1 1 1 1
62-55 100 63 1 1 1 1 1 1
62-60 100 63 1 1 1 1 1 1
62-65 125 63 1 1 1 1 1 1
62-70 125 63 1 1 1 1 1 1
62-75 125 63 1 1 1 1 1 1
62-80 125 63 1 1 1 1 1 1
64-40 107 63 1 1 1 1 1 1
64-45 88 63 1 1 1 1 1 1
64-50 107 63 1 1 1 1 1 1
64-55 107 63 1 1 1 1 1 1
64-60 107 63 1 1 1 1 1 1
64-125 125 63 1 1 1 1 1 1
64-130 125 63 1 1 1 1 1 1
99-30 2 2 1 1 1 1 1 1
99-35 1 1 1 1 1 1 1 1
99-40 1 1 1 1 1 1 1 1
99-45 2 2 1 1 1 1 1 1
101-50 33 33 1 1 1 1 1 1
101-60 60 60 1 1 1 1 1 1

27

Table 17: SET2 - H=7 and D=3

S - T TNFC kMax 1-V 2-V 1-T 2-T 1-VT 2-VT
30-65 49 49 1 1 1 1 1 1
30-70 49 49 1 1 1 1 1 1
30-73 49 49 1 1 1 1 1 1
30-75 49 49 1 1 1 1 1 1
30-80 49 49 1 1 1 1 1 1
30-85 49 49 1 1 1 1 1 1
30-65 49 49 1 1 1 1 1 1
30-75 49 49 1 1 1 1 1 1
30-80 49 49 1 1 1 1 1 1
30-85 49 49 1 12 1 13 1 12
30-90 49 49 1 1 1 1 1 1
30-95 49 49 1 1 1 1 1 1
30-100 49 49 1 1 1 1 1 1
30-105 49 49 1 1 1 1 1 1
62-45 42 42 1 1 1 1 1 1
62-50 49 49 1 1 1 1 1 1
62-55 49 49 1 1 1 1 1 1
62-60 49 49 1 1 1 1 1 1
62-65 49 49 1 1 1 1 1 26
62-70 49 49 1 1 1 1 1 1
62-75 49 49 4 15 1 1 4 15
62-80 49 49 1 1 1 1 1 1
64-40 45 45 1 1 1 1 1 1
64-45 47 47 1 1 1 1 1 1
64-50 49 49 1 1 1 1 1 1
64-55 49 49 1 1 1 1 1 1
64-60 49 49 1 1 1 1 1 1
64-125 49 49 1 1 1 1 1 1
64-130 49 49 1 1 1 1 1 1
99-30 1 1 1 1 1 1 1 1
99-35 2 2 1 1 1 1 1 1
99-40 2 2 1 1 1 1 1 1
99-45 2 2 1 1 1 1 1 1
101-50 14 14 1 1 1 1 1 1
101-60 17 17 1 1 1 1 1 1

28

Table 18: SET2 - H=8 and D=4

S - T TNFC kMax 1-V 2-V 1-T 2-T 1-VT 2-VT
30-65 482 63 1 1 1 1 1 1
30-70 482 63 1 1 1 1 1 1
30-73 482 63 1 1 1 1 1 1
30-75 482 63 1 1 1 1 1 1
30-80 512 63 1 1 1 1 1 1
30-85 512 63 1 1 1 1 1 1
30-65 448 63 1 1 1 1 1 1
30-75 512 63 1 1 1 1 1 1
30-80 482 63 1 1 1 1 1 1
30-85 482 63 2 1 1 1 2 1
30-90 448 63 1 1 1 1 1 1
30-95 448 63 11 11 1 1 11 11
30-100 512 63 21 1 1 1 21 1
30-105 512 63 1 7 1 1 1 7
62-45 252 63 1 1 1 1 1 1
62-50 378 63 1 1 2 7 1 1
62-55 448 63 1 1 1 1 1 1
62-60 448 63 1 1 1 1 1 1
62-65 512 63 1 1 1 1 1 1
62-70 512 63 1 1 1 1 1 1
62-75 512 63 1 1 1 1 1 1
62-80 512 63 1 2 1 1 1 2
64-40 302 63 1 1 1 1 1 1
64-45 228 63 1 1 1 1 1 1
64-50 357 63 1 1 1 1 1 1
64-55 400 63 1 1 1 1 1 1
64-60 424 63 1 1 1 1 1 1
64-125 512 63 1 7 1 1 1 7
64-130 512 63 1 1 1 1 1 1
99-30 2 2 1 1 1 1 1 1
99-35 1 1 1 1 1 1 1 1
99-40 1 1 1 1 1 1 1 1
99-45 2 2 1 1 1 1 1 1
101-50 60 60 1 1 1 1 1 1
101-60 105 63 1 1 1 1 1 1

29

Table 19: SET3 - H=12 and D=4

S - T TNFC kMax 1-V 2-V 1-T 2-T
62-75 1728 63 24 42 1 1
62-80 1728 63 1 11 1 1
64-125 1728 63 1 3 1 1
64-130 1728 63 1 13 1 1
98-50 39 39 1 1 1 1
98-60 161 63 1 1 1 1
98-70 276 63 1 1 1 1
98-80 892 63 7 1 1 7
98-90 1220 63 2 1 2 2
98-100 1296 63 11 1 1 1
98-110 1728 63 2 1 1 1
98-120 1728 63 36 1 12 1
98-130 1551 63 55 3 1 51
98-140 1551 63 1 1 1 1
98-150 1728 63 1 1 1 1
98-160 1728 63 1 11 1 1
98-170 1728 63 1 1 1 1
98-180 1728 63 1 1 1 1
98-190 1728 63 1 1 1 1
98-200 1728 63 25 1 1 1
98-210 1728 63 1 12 1 1
98-240 1728 63 1 1 1 1

30

Table 20: SET3 - H=14 and D=5

S-T TNFC kMax 1-V 2-V 1-T 2-T
62-75 32928 63 7 1 1 14
62-80 32928 63 1 11 1 1
64-125 38416 63 1 1 1 1
64-130 38416 63 1 1 1 1
98-50 26 26 1 1 1 1
98-60 442 63 1 1 1 1
98-70 1273 63 1 1 1 1
98-80 3053 63 1 1 1 1
98-90 5240 63 1 1 1 1
98-100 15272 63 2 1 1 1
98-110 10991 63 1 1 1 1
98-120 15423 63 1 1 1 1
98-130 24210 63 1 2 1 1
98-140 27440 63 1 31 1 1
98-150 38416 63 1 1 1 1
98-160 35672 63 1 1 1 1
98-170 38416 63 1 1 1 1
98-180 38416 63 1 6 1 1
98-190 38416 63 1 2 1 1
98-200 38416 63 1 1 1 1
98-210 38416 63 1 23 1 1
98-240 38416 63 1 21 1 1

Table 21: SET4 - H=5 and D=2/3

S - T TNFC kMax 1-V 2-V 1-T 2-T 1-VT 2-VT
98-20 4 4 1 1 1 1 1 1
98-25 5 5 1 1 1 1 1 1
100-35 2 2 1 1 1 1 1 1
100-40 2 2 1 1 1 1 1 1
100-45 2 2 1 1 1 1 1 1
98-20 19 19 1 1 1 1 1 1
98-25 25 25 1 1 1 1 1 1
100-30 7 7 1 1 1 1 1 1
100-40 7 7 1 1 1 1 1 1
100-45 7 7 2 1 1 1 1 1

31

