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Abstract

The purpose of this thesis is to evaluate a new and advanced approach for solving Vehicle Routing
Problems (VRPs). This approach is based on an exact solution method, dynamic programming, and by
restricting its state space, it becomes a heuristic method which could be used in practice. We compared
this restricted dynamic programming (RDP) algorithm on both classical and more realistic VRPs with a
simple construction algorithm, the savings heuristic. We showed that, while the computation times of the
RDP algorithm were exceptionally higher, it did not always gave better solutions than fast construction
heuristics and that the claim that the RDP algorithm competes with state of the art local search solutions
when more realistic constraints are considered should be rejected. By using two k-opt local search methods
to improve the construction solutions, we also discovered that a better construction solution leads to better
solutions after the improvement phase. However, because the RDP algorithm could not provide us with
high quality construction solutions within reasonable computing time, we can conclude that this new and
advanced solution method cannot compete with other known solution methods for the VRP.
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1 Introduction

The Vehicle Routing Problem (VRP) is a well-known combinatorial optimization problem which has been
introduced over 50 years ago by Dantzig & Ramser (1959). In the VRP, a set of routes has to be determined
from several depots to a number of addresses while minimizing the total costs or travel distance. There is a
wide variety of different VRPs and a broad literature on this class of problems. This is due to the fact that
the VRP is widely used in practice and even the basic VRP is an NP-hard problem. This means that many
practical problems cannot be solved within reasonable computing time using exact solution methods. As
a consequence, many different heuristics and meta-heuristics are being used to reach high-quality solutions
within limited computing times.

Most heuristic methods are divided in two parts: a route construction phase and a route improvement
phase. The construction phase is often assumed to be simple and fast (Pisinger & Ropke, 2007; Tan et al.,
2001) and its sole purpose is to construct a reasonably good feasible set of routes which will be used as initial
solution for the improvement phase. During this improvement phase, routes can be modified or recreated to
improve the initial solution.

In the standard vehicle routing problem, there is only one depot, one vehicle and no extra constraints.
This problem is called the Travelling Salesman Problem (TSP). In practice, many different extensions of this
TSP exist. For example, one can think of capacity or time window constraints for the vehicles and the orders,
multiple depots, multiple routes, pickup and delivery within a route, different characteristics for the vehicles
and the orders and of course combinations of these extensions. Considering this extensive set of possible
VRPs and the fact that every heuristic can perform differently on different types of VRPs, the number of
different solution methods is very large, as can be seen in the surveys by Parragh et al. (2007, 2008).

1.1 Restricted Dynamic Programming

The basis of this research is the paper by Gromicho et al. (2012) in which they introduce and improve
a restricted dynamic programming (RDP) algorithm for solving realistic VRPs. We will fully explain this
algorithm in Section 3.1 by using the PHD Thesis of Kok (2010) as a guideline. Of all known exact algorithms
to solve the TSP, dynamic programming has the best complexity (Woeginger, 2003). For larger, more realistic
problems, the running time of all exact algorithms are still not fast enough. By restricting the number of
expansions in every dynamic programming stage, Gromicho et al. (2012) have found a reasonably good
performing framework which can be applied to all kinds of VRPs.

This RDP algorithm can be seen as an advanced construction method which allows for a trade-off between
computation time and quality of the solution. Of course, the less strict the restrictions in RDP, the longer it
takes to find a solution, but the better the solution will be. The given results in the paper for three different
types of VRPs show us that this framework performs quite well and is faster when the routing problem
becomes more extensive and thus more realistic. In comparison with results of some well-known construction
heuristics on the same instances, we can already see that the RDP construction algorithm performs slightly
better on average (Solomon, 1987). However, these simpler heuristics are exceptionally faster. Furthermore,
the RDP solutions are, based on the total distance, on average still 10% larger than the best found solutions.
So there is still some room for improvement.

1.2 Research Objective

Gromicho et al. (2012) already suggested that the solutions found may certainly be improved by local search
or other improvement algorithms. In practice, some fast steps of local search heuristics will always be
performed while finding a solution. We want to check whether it is worth to wait significantly longer for
the construction phase to finish before starting to improve the initial solution. So, we want to check if the
RDP construction method is useful to implement and outperforms other construction methods. In some
specific cases it is mentioned that an improved initial solution does have a positive effect for the final solution
(van Breedam, 1996), but this has never been thoroughly investigated. It is remarkable that most research
of the last years on VRPs is about developing improvement heuristics and there is almost no research on
improving the construction heuristics. We suspect that the latest heuristics are very robust and have such a
good performance that it does not matter how good the initial solution is.

If the RDP method does prove to be useful for solving realistic VRPs, as Gromicho et al. (2012) suggest,
it will be relevant to implement this or similar improved construction methods in new solution methods and
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to do more research on this advanced construction method. On the other hand, when it does not matter how
good the initial solution is, simple construction heuristics will be preferred over this extensive framework.

In order to evaluate the RDP framework, we first compare its solution with solutions of a simple con-
struction algorithm. For this purpose, we make use of some well-known benchmark instances for the VRP
with Time Windows, the Solomon instances. Its best-known solutions will be used for comparison of both
initial construction solutions. We also compare the solutions after the improvement phase for both initial
solutions. Finally, we compare the solutions of the RDP method and the simple construction algorithm on
some more realistic instances, the Goel instances.

The remainder of this thesis is structured as follows. In Section 2, the VRP, the VRPTW and the Solomon
and the Goel instances are formally introduced. Afterwards, the different solution methods that we use are
introduced in Section 3. In Section 4, the computational results to these methods are presented. Lastly, we
present our discussion and the final conclusions of our results in Section 5 and 6.

2 Vehicle Routing Problem

In this section, we formally introduce the VRPTW and its notation which will be used throughout this thesis.
Besides that, the VRPTW Solomon benchmark instances and the VRPTW-EC Goel benchmark instances
are also defined.

The Vehicle Routing Problem with Time Windows can be defined as follows. We are given a set of vehicles
M = {1, 2, . . . ,m} and n addresses or nodes in the set V = {0, 1, . . . , n− 1}, in which 0 is the depot address.
Any address i > 0 represents a customer with its own demand di, service time qi and time window [ei, li]. ei
represents the earliest time on which the demand can be delivered and ei for the latest possible time. When
a vehicle gets to an address before the earliest time ei, the vehicle has to wait until it is ei. The depot address
also has its own time window [e0, l0] for when it is opened. The travel distance between each pair of nodes
i, j ∈ V is defined by cij , cij ≥ 0. The travel time between two nodes is tij , i, j ∈ V , tij ≥ 0. The goal of the
problem is to find a set of routes for the vehicles against minimal number of vehicles and minimum distance,
each vehicle starting and ending at the depot, such that the total demand in each route does not exceed the
capacity K of a vehicle and that each service at a customer starts in the given time window.

2.1 Solomon Instances

The Solomon instances (Solomon, 1987) are the standard reference in the VRP literature. This has the
consequence that the best known results for these instances are very valuable in comparing with our test
results. These benchmark instances consist of six problem sets (c1, c2, r1, r2, rc1 and rc2) and in total 56
instances. In the sets c1 and c2 the customers are clustered, in r1 and r2 these are randomly scattered and
in the rc1 and rc2 instances they are semi-clustered. The 2-instances have relatively larger vehicle capacities
and time horizon which allows vehicles to visit more customers in one route.

All instances contain 100 addresses and 1 depot which are all located in a 100 by 100 grid. The location
of address i is given by its x-coordinate xi and its y-coordinate yi. The travel distance between two addresses
is defined by the Euclidean distance. cij =

√
(xi − xj)2 + (yi − yj)2. In the Solomon instances, the travel

time tij is equal to the travel distance. The primary objective for all instances is to minimize the number of
vehicles and the secondary objective is to minimize the total travel distance and the total waiting time.

2.2 Goel Instances

Since the Solomon instances only contain a few realistic constraints and Gromicho et al. claim that the RDP
method is a promising approach for more practical applications, we also test our solution framework with the
Goel instances. These instances are benchmark instances for the VRPTW with the European Community
social legislation on driving and working hours (VRPTW-EC) which were proposed by Goel (2009). The EC
social legislation poses restrictions on the amount of driving and working times before a mandatory break
or rest is taken. For example, after each accumulated driving period of 4.5 hours, the driver needs to have a
break of at least 45 minutes. Also, the maximum daily and weekly driving and working time is taken into
account. For a full description of the legislation rules, we refer to Kok et al. (2010). We also implement the
basic break scheduling method which Kok et al. proposed to schedule breaks and rests in our construction
methods.
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The Goel instances are modifications of the Solomon instances. The depot opening time is considered as
a period of 144 hours, which corresponds to a weekly working period with Sunday as a rest day. The time
windows of the other addresses are scaled accordingly. Besides this, all service times are set to 1 hour and
the driving speed is 5 distance units per hour. However, due to these adjustments, it may be impossible to
reach a certain customer i before its latest possible time li or to return in time to the depot from ei. These
time windows need to be adapted such that every address can be reached from and to the depot.

3 Solution Methods

First, the Restricted Dynamic Programming (RDP) algorithm will be explained in Section 3.1 based on the
PHD Thesis of Kok (2010). After that a simple and fast construction algorithm, the saving algorithm, is
defined in Section 3.2 and finally two special k-opt improvement algorithms will be explained in Section 3.3.

3.1 Restricted Dynamic Programming

3.1.1 Dynamic programming for the TSP

The RDP algorithm is based on the exact dynamic programming algorithm for the TSP of Bellman (1962)
and Held & Karp (1962). A state (S, j), j ∈ S, S ⊆ V in dynamic programming represents a path starting
at address 0, visiting all addresses in S once and ending in city j. C(S, j) is the cost of the smallest
of all possible paths (S, j). The idea behind dynamic programming is that the final problem of all V
addresses is broken down into smaller and simpler subproblems. In order to end with an optimal solution
that includes all n addresses, ending in address j, which is state (V, j), one should minimize the following:
min{C(V \ {j}, k) + ckj : k ∈ V, k 6= j}. We are not able to solve this yet, because we first need to find
all optimal C(V \ {j}, k). This continues until C({h}, h) is reached, which is the initialization of the DP
algorithm and can easily be worked out: C({h}, h) = c0h.

So, in the first stage, the costs of the states C({h}, h) = c0h are set. Next, in each stage the costs of the
states are calculated with the recurrence relation C(S, j) = mini∈S\{j}{C(S \{j}, i) + cij} ∀S ⊆ V \ 0, j ∈ S.
Finally, when all addresses are visited, we should return to the depot address 0. The length of the optimal
TSP route is given by mini∈V \{0}{C(V \ {0}, i) + ci0}.

3.1.2 Giant-tour representation

The dynamic programming algorithm only constructs one full route, so this method for the TSP cannot
immediately be applied to the VRP. To make sure that this algorithm can also be used for the VRP and
thus for multiple routes, the giant-tour representation (GTR) of vehicle routing solution introduced by Funke
et al. (2005) is used. In the GTR, we connect all distinct routes into one cycle where every node is visited
only once. For each route, we need to add one origin node and one destination node to the set of addresses,
which could represent the same location. If the number of routes is equal to m, 2m addresses need to be
added to the set V . In the GTR of a VRP, each destination node dv is connected to the next origin node
ov+1 and the cycle is closed by connecting dm with o1. The costs of connecting an origin and a destination
node is always zero.

To use this representation in dynamic programming, the number of total addresses and thus the available
vehicles must be known beforehand. If this is not given, we can use an upper bound on the required number
of vehicles. When a vehicle is not used in the final solution, its origin node and destination node are directly
connected. In Figure 1, an example of the GTR of a VRP solution is presented.

3.1.3 Dynamic progrmming for the VRP

The GTR can now be used to transform the VRP in a sequencing problem where we need to find one fully
connected route instead of multiple separate routes. We are now able to use the DP formulation of Section
3.1.1 to solve the VRP. In order to ensure that the final DP solution is a feasible VRP solution, we check the
feasibility of a partial solution while expanding a state. For example when there is a state (S, dv), its only
feasible expansion is ov+1.

We also need to perform several other feasibility checks to ensure that the time window and capacity
constraints are not violated. For the time and capacity constraints, extra state dimensions are added to the
algorithm. While expanding a state, we check if this expansion is feasible according to the capacity of the
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Figure 1: An example of a VRP solution (a) and its giant-tour representation (b).

vehicle and the time windows of the customer and the vehicle. To ensure that we do not lose the optimality
guarantee of the unrestricted DP algorithm, it is possible to make multiple copies of the state (S, j). For
example, consider two states (S, j)1 and (S, j)2. (S, j)1 can be better than (S, j)2 based on the total distance,
whereas (S, j)2 has more slack in time. Both states can possibly result in the optimal feasible solution and
we cannot claim that one state dominates the other.

3.1.4 Restricting the state space

As mentioned earlier, DP is not fast enough to solve VRPs in general. Therefore, Gromicho et al. (2012)
defined two parameters, H and E, on which the DP algorithm can be bounded. They proposed a restriction
on the number of states in each stage, based on Malandraki & Dial (1996). Due to this restrictions, we lose
the claim of finding the optimal solution with this algorithm. In each stage, only the best H states will be
expanded in the next stage. States with a lower distance are more likely to end in a better final solution than
states with a high distance. By increasing the value of H, the solutions will usually improve, but it will also
result in higher computation times. To determine the most promising H states, the following hierarchical
criteria are used: the minimum number of vehicles used, the minimum total distance traveled, the minimum
current time of the current vehicle and the maximal remaining capacity of the current vehicle.

The state space is even further restricted by expanding each state only to the nearest unvisited and feasible
nodes, until a maximum number of expansions E is reached. For the final solution, it is usually better when
an edge is between two nodes who are very close to each other. By only expanding to the nearest E feasible
nodes, we believe to exclude many states which will never result in a good solution. Setting H or E equal
to 1 results in the nearest neighbor heuristic and setting both H and E to infinity results in the original
unrestricted DP algorithm.

Besides H and E, we also bound the states in our RDP algorithm on the following. A vehicle is not
allowed to return empty if there are customers left and returning low filled vehicles is discouraged. A vehicle
can only return to a depot if the vehicle is not empty when there is some demand left and if the percentage
of demand delivered so far by all vehicles is higher than the percentages of vehicles used so far (Kok, 2010).
In contradiction to the restrictions H and E, this does not exclude the optimal solution, it only reduces
the number of states. This is because we can always arrange the order of the vehicles such that the empty
vehicles are at the end of the giant tour and the fullest vehicles are in front.

3.2 Saving Algorithm

The saving algorithm is one of the most well-known and easiest construction heuristics for the VRP. It was
originally developed for the classical VRP by Clarke & Wright (1964) and implemented for the VRPTW by
Solomon (1987). It begins with a solution of n distinct routes in which every route supplies one customer
and returns to the depot. From this point, two routes are combined in every iteration according to the cost
saving of combining those routes. Consider two customers i and j which are both in distinct routes and at
the start or at the end in their current route. When these routes are connected, the arcs (i,0) and (0,j) are
replaced by arc (i,j). This results in a cost saving Sij , which is defined as follows: Sij = ci0 + cj0 − cij .
Connecting the two routes is illustrated in Figure 2.

In more detail, the saving algorithm works as follows. After the initialization which constructed n distinct
routes, a list of cost savings is constructed. The savings list contains every pair of customers i and j, i 6= j and
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Figure 2: The saving algorithm. First, the customers i and j are in separate routes (a). These routes are
connected by adding edge (i, j) (b).

its corresponding cost savings Sij and the list is sorted such that the best saving is on top. In every iteration,
the next best candidate Sij is evaluated by doing some feasibility checks. First, capacity constraints could
be violated by joining the two routes. The same applies to time window constraints. In order to connect
the two routes with edge (i, j), it is possible that one or both of the routes should be reversed which could
make the newly formed route infeasible. Because of these time window constraints, it is also possible that
customer j can never be placed after customer i in a route which also makes the new route infeasible. For
the Goel instances, it is also checked if the new route is feasible with respect to the rest and break periods
which should be added. When it is feasible for the two routes to be connected, the partial routes can now
be combined into one route.

The main disadvantage of the saving algorithm when working with time windows is that it easily connects
two nodes which are very close to each other while the time windows are not adjacent. This results in a
vehicle waiting a long time between serving both nodes and that the algorithm is not able to join many more
customers into this route. This makes sure that the final outcome will probably not be optimal, because a
larger number of vehicles is being used.

3.3 Improvement Algorithms

To improve VRP solutions, the k-opt heuristic which is a simple local search algorithm can be used. In this
algorithm, k edges are deleted from the route and subsequently the full tour is reconnected in all possible
ways to find a better route. In practice, only k = 2 and k = 3 are used due to the enormous run times
of k > 3. We only look at restricted versions of 2-opt and 3-opt specialized for multiple routes and time
windows. Here, not every case of 2 or 3 edges is being considered. These special forms are called 2-opt* and
Or-opt.

3.3.1 2-opt* Heuristic

The 2-opt* heuristic was introduced by Potvin & Rousseau (1995). They adapt the classical 2-opt method,
because this method is not well suited for problems with multiple routes and time windows. The 2-opt
method does normally reverse the direction of a part of the routes. For example, in Figure 3, when the edges
(i, i + 1) en (j, j + 1) are deleted and replaced by edges (i, j) en (i + 1, j + 1), a part of the newly formed
route is reversed. When the time windows are quite strict, it is very unlikely for the new route to be feasible
due to the reversion. Besides that, when i and j are in different routes, it is even more unlikely that the new
route is feasible, because two partial routes need to be reversed.

Especially for multiple routes, we can look at another way of reconnecting the tour which preserves the
orientation of the route. When the edges (i, i + 1) en (j, j + 1) are in different routes, one can make sure
that the time window constraints are probably not conflicted by replacing those edges with edges (i, j+1) en
(j, i + 1) and by keeping all other routes the same. Basically, the first customers of the first route are linked
to the last customers of the second route and vice versa. This is a 2-opt* iteration. An example is shown in
Figure 4.

The 2-opt* heuristic combines the 2-opt* method and the 2-opt method. Starting with the current
solution, the heuristic evaluates all pairs of links. When two links are in the same route, the classical 2-opt
method is performed. If not, the 2-opt* method is used. After forming a new solution or set of routes, it is
checked whether the new set of routes is feasible according to the capacity and time window constraints. If
this is true, the new solution is compared to the current one according to the number of vehicles and total
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Figure 3: A classical 2-opt iteration within a route by replacing links (i, j) and (l,m) in (a) by links (i, l)
and (j,m) in (b). As can be seen, a part of the route is reversed.
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Figure 4: A 2-opt* iteration by replacing links (i, q) and (p, j) in (a) by links (i, j) and (p, q) in (b). As can
be seen, the orientation of the route stays the same.

distance of the current solution. When the newly composed solution is better than the current one, this new
solution is set as the current solution and the whole algorithm starts again. This procedure is called First
Improvement (FI). After the first found improvement on the current solution, the new route is chosen and
the heuristic starts again.

Another procedure is the Best Improvement (BI) procedure. All possible pairs of links are first evaluated
in BI and the route with the best improvement of all these pairs is picked and set as the current route. In
both procedures, when the 2-opt* heuristic is not able to find an improvement after evaluating all pairs of
links, the current route is returned. The current route is now 2-opt* optimal. In our research we implement
both the BI and the FI procedure and simply pick the best of the resulting two routes as our solution. FI
can give a better solution, because BI might get trapped in a local optima sooner.

3.3.2 Or-opt Heuristic

As explained before, 3-opt generally deletes three links and reconnect the routes in every possible way. Or-
opt, introduced by Or (1976), reduces the number of sets of links to inspect drastically. Again, this reduced
subset of changes always makes sure that the orientation of the routes is preserved.

The main idea behind Or-opt is to move a small sequence of adjacent customers to another place. The
number of moved customers in this small sequence is equal to m, with m ∈ {1, 2, 3}. The link before and
after the small sequence and the link on the place of insertion are deleted and replaced by three new links.
This is illustrated in Figure 5 with an example for m = 2. In contradiction to 2-opt*, Or-opt can be used for
both inter-route and intra-route improvements. The sequence of m customer could also be placed somewhere
else in the same route.

In the Or-opt algorithm, m = 3 is first evaluated, thereafter m = 2 and finally m = 1, which only moves
one customer. Again, every move needs to be checked according to the capacity and time window constraints.
We can also apply FI and BI to Or-opt to find a better solution, which is now Or-opt optimal. It is also
possible to use both the 2-opt* heuristic and the Or-opt heuristic to improve a solution. A 2-opt* optimal
tour could still be improved by the Or-opt heuristic and vice versa. Both heuristics are executed one after
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Figure 5: An Or-opt iteration. Here, m = 2 and customers i and j are placed into another route.

another until the tour is both 2-opt* optimal and Or-opt optimal. Since the order of the heuristics could be
important, we execute the heuristic twice, once starting with the 2-opt* heuristic and once starting with the
Or-opt heuristic. Again, the best final solution will be picked. This last Or-opt/2-opt* heuristic will be used
to improve our initial solutions.

4 Computational Results

4.1 VRPTW

4.1.1 Construction Heuristic Results

In this section, we compare the solutions obtained via the saving heuristic and the RDP algorithm. For the
RDP algorithm, we set H = 10.000 and E = 20. In Table 1, the results for both construction heuristics
are presented. The results are averaged for all instances in each set of instances. We implemented all the
algorithms in Java 8 and ran our experiments on a PC with a Core i7-3612QM, 2.10 GHz CPU and 8 GB of
RAM.

Table 1: Construction heuristic solutions and its computation time for the RDP and the saving algorithm.

Set
RDP Saving Best known

distance
Best known

# veh.Distance # Veh. cpu (s) Distance # Veh. cpu (s)

c1 881.31 10.33 296.00 911.77 11.44 0.0482 828.38 10.00
c2 656.94 3.13 369.72 704.39 4.88 0.0320 589.86 3.00
r1 1396.30 15.58 260.63 1371.91 18.00 0.0685 1210.34 11.92
r2 1168.83 5.45 320.02 1055.94 11.09 0.0474 951.03 2.73
rc1 1620.54 15.38 252.87 1583.62 17.38 0.0721 1384.16 11.50
rc2 1380.14 6.13 423.15 1279.23 11.88 0.0658 1119.24 3.25

As can be seen, the RDP algorithm with these parameters obtains better solutions based on the number
of vehicles and the distance than the saving method for the c1 and c2 instances. For the other four sets, the
distance obtained with the saving algorithm is better than the RDP algorithm, but the number of vehicles
used is larger. The large number of used vehicles for the saving algorithm is mainly due to its disadvantage
which we explained in Section 3.2: the algorithm can easily connect two addresses very close in distance but
far apart in time.

It is still quite remarkable that, based on distance, only 21 out of the 56 problem instances got a better
solution for the RDP algorithm than the saving algorithm. This could be due to the low values of H and E.
However, Gromicho et al. (2012) also did not obtain better solutions than our distance found with the saving
solutions for the r2 and rc2 sets with H set to 100.000 and E set to n. The computation times for H = 10.000
and E = 20 in our implementation were approximately 6000 times as large than the computation time of the
saving algorithm. So, similar solutions with slightly more vehicles can be constructed within 0.1 seconds with
the most simple construction algorithm for the VRPTW. And as Solomon (1987) already showed, the saving
algorithm is not even the best performing construction algorithm. They showed that other fast construction
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algorithms could obtain solutions on which both the distance and especially the number of vehicles was better
than the saving algorithm. For example, the Push Forward Insertion Heuristic (PFIH or I1) obtained better
solutions based on the number of vehicles than the RDP method for all instance sets in only 10 times the
computation time of the saving algorithm.

Gromicho et al. stated that their RDP algorithm could not compete with state of the art methods for the
VRPTW. We can even conclude on top of this that this RDP algorithm can also not compete with simple
and fast construction methods for the VRP, especially given the enormous computation times.

4.1.2 Improvement Heuristic Results

We use the solutions obtained in the previous section, to improve them in this section with the improvement
heuristics as explained in Section 3.3. These initial solutions will be improved with the 2-opt* algorithm
and the Or-opt/2-opt* algorithm. The solutions averaged per set of instances can be seen in Table 2 for the
2-opt* algorithm and in Table 3 for the Or-opt/2-opt* algorithm.

Table 2: Construction heuristic solutions and the 2-opt* improvement for the RDP and the saving algorithm.

Set
RDP Saving Best known solutions

Constr. #Veh. 2-opt* #Veh. Constr. #Veh. 2-opt* #Veh. Distance #Veh.

c1 881.31 10.33 835.64 10.00 911.77 11.44 905.43 11.44 828.38 10.00
c2 656.94 3.13 616.35 3.13 704.39 4.88 671.91 4.50 589.86 3.00
r1 1396.30 15.58 1299.20 15.25 1371.91 18.00 1352.84 17.83 1210.34 11.92
r2 1168.83 5.45 1054.36 4.91 1055.94 11.09 1033.48 10.73 951.03 2.73

rc1 1620.54 15.38 1497.39 14.75 1583.62 17.38 1572.26 17.25 1384.16 11.50
rc2 1380.14 6.13 1202.11 5.50 1279.23 11.88 1267.94 11.75 1119.24 3.25

Table 3: Construction heuristic solutions and the Or-opt/2-opt* improvement for the RDP and the saving
algorithm.

Set
RDP Saving Best known solutions

Constr. #Veh. Or/2* #Veh. Constr. #Veh. Or/2* #Veh. Distance #Veh.

c1 881.31 10.33 829.68 10.00 911.77 11.44 856.45 10.67 828.38 10.00
c2 656.94 3.13 596.72 3.00 704.39 4.88 603.36 3.25 589.86 3.00
r1 1396.30 15.58 1248.65 14.50 1371.91 18.00 1275.24 15.58 1210.34 11.92
r2 1168.83 5.45 956.87 4.73 1055.94 11.09 968.74 8.27 951.03 2.73

rc1 1620.54 15.38 1446.58 14.00 1583.62 17.38 1459.26 15.13 1384.16 11.50
rc2 1380.14 6.13 1096.94 5.38 1279.23 11.88 1130.79 9.13 1119.24 3.25

After executing both improvement algorithms, the improved solutions are in almost each set on average
better for the RDP construction solution than the saving construction solution. On 35 of the 56 instances
with 2-opt* and on 40 instances with Or-opt/2-opt*, the final solution obtained with the RDP construction
solution outperforms the solution with the saving construction solution on both the number of vehicles and
the total distance. We can conclude that these local search k-opt heuristics perform on average better with
an initial solution which has a fewer number of vehicles. So, a construction heuristic which can obtain a
solution with a low number of vehicles, such as the fast PFIH algorithm, will be preferred for the VRPTW.

4.2 VRPTW-EC

As expected, the RDP framework is not preferred as a construction heuristic for the common VRPTW. Many
good performing heuristics are especially created for the VRPTW and the Solomon instances. However, due
to the flexibility of the RDP method, the RDP method is very easy to use when extra constraints such as the
EC social legislations comes in. The same applies for the saving algorithm. The solutions obtained for the
VRPTW-EC with both construction heuristics, can be seen in Table 4. We compare our solutions with the
solutions obtained by Prescott-Gagnon et al. (2010) in which they use a state of the art local search method
and an average computation time of approximately 90 minutes. Again, we set H = 10.000 and E = 20 for
the RDP method.
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Table 4: Construction heuristic solutions for the VRPTW-EC.

Set
RDP Saving Prescott-Gagnon solutions

Distance #Veh. cpu (s) Distance #Veh. cpu (s) Distance #Veh.

c1 950.07 10.67 161.92 934.45 11.44 0.06 847.61 10.00
c2 893.88 7.00 270.39 912.11 7.75 0.05 692.47 4.63
r1 1214.38 11.08 307.11 1178.82 13.58 0.09 948.61 8.08
r2 1145.10 8.82 278.46 1103.20 12.36 0.07 933.93 5.45

rc1 1384.23 11.38 189.89 1296.92 13.00 0.05 1107.33 9.00
rc2 1322.12 9.38 178.30 1393.88 13.88 0.05 1090.80 6.13

Just as for the VRPTW, the RDP algorithm outperforms the saving algorithm based on the number of
vehicles and, most of the times, not on the total distance. When we consider the Prescott-Gagnon solutions
to be the best known solutions, we can compare these results to the construction heuristic results for the
VRPTW. The solutions obtained with the RDP algorithm for the VRPTW-EC are not closer to the best
known results than they were for the VRPTW. For the Goel instances, the RDP algorithm with our parameter
settings used 35% more vehicles and had 23% more distance whereas for the Solomon instances, these values
were respectively 33% and 17%. The claim by Gromicho et al. (2012) that the framework competes with
state of the art local search solutions when more realistic constraints are considered can therefore be rejected.

5 Discussion

This section compares our results of the RDP algorithm with the results of Gromicho et al. (2012). Next,
some possible suggestions for further research are given.

Although we use the same RDP algorithm as Gromicho et al. (2012), the results differ a little. The
main difference can be found in the computation times. Their implementation of the RDP algorithm was
much faster in comparison with ours. This could be due to the way states were saved and compared in our
implementation. However, as we could have seen, their implementation was still not fast enough to get quite
good results within reasonable computing time. Also, in an attempt to reduce the number of states, we
discouraged the return of low-filled trucks and . In further research, other methods to reduce the number of
states without worsening the results can be examined.

We only considered the simple saving algorithm which could not outperform the RDP method based on
its solutions. However, we showed that the PFIH construction method could potentially outperform the
RDP algorithm. This could be formally investigated in further research. Next to this, we only implemented
two simple local search methods which quickly get trapped in local optima. We found out a better initial
solution is important for these simple local search methods. RDP could in the long run produce better initial
solutions, but you should wonder if it is worth it. For other improvement algorithms, for example more
advanced metaheuristics like tabu search, the initial construction solution would probably matter less. This
could also be examined in further research.

Finally, it is clear that restricted dynamic programming is not the best solving method for VRPs. Re-
stricted Dynamic Programming can however be useful for other applications as it can be applied to most
problems in operations research.

6 Conclusions

In this thesis, we evaluated the restricted dynamic programming framework for VRPs, which was described by
Gromicho et al. (2012). We determined that the RDP algorithm, despite its exceptionally longer computation
times, does not always outperform simple construction algorithms as the saving algorithm or the PFIH. Next
to this, the solutions obtained with the RDP algorithm for the more realistic VRPTW-EC are not closer to
the best known results than they were for the VRPTW. The claim by Gromicho et al. that the framework
competes with state of the art local search solutions when more realistic constraints are considered can
therefore be rejected.

By using two k-opt local search methods to improve the construction solutions, we also discovered that
a better construction solution leads to better solutions after the improvement phase. For more advanced

11



metaheuristics, this effect will probably be much smaller. However, the RDP algorithm could not provide us
with high quality construction solutions within reasonable computing time. Therefore we can conclude that
this new and advanced solution method cannot compete with other known solution methods for the VRP.
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Appendix

Table 5: All solutions for the Solomon instances with the saving method for the construction phase and after
the 2-opt* and Or-opt/2-opt* methods.

Instance Constr. #Veh. 2-Opt* #Veh. Or/2* #Veh. Best known solutions
c101 860.58 11 828.94 10 828.94 10 828.94 10
c102 861.78 10 835.60 10 828.94 10 828.94 10
c103 1004.83 10 866.16 10 828.06 10 828.06 10
c104 1028.30 11 845.38 10 836.46 10 824.78 10
c105 860.58 11 828.94 10 828.94 10 828.94 10
c106 828.94 10 828.94 10 828.94 10 828.94 10
c107 828.94 10 828.94 10 828.94 10 828.94 10
c108 828.94 10 828.94 10 828.94 10 828.94 10
c109 828.94 10 828.94 10 828.94 10 828.94 10
c201 591.56 3 591.56 3 591.56 3 591.56 3
c202 629.26 3 624.41 3 591.56 3 591.56 3
c203 629.42 3 629.42 3 622.27 3 591.17 3
c204 862.72 4 731.26 4 614.38 3 590.60 3
c205 627.21 3 588.88 3 588.88 3 588.88 3
c206 637.19 3 588.49 3 588.49 3 588.49 3
c207 637.39 3 588.29 3 588.29 3 588.29 3
c208 640.80 3 588.49 3 588.32 3 588.32 3
r101 1742.55 21 1680.89 21 1669.36 21 1650.80 19
r102 1666.88 19 1547.08 18 1479.02 18 1486.12 17
r103 1521.39 19 1359.65 17 1292.81 16 1292.68 13
r104 1225.15 14 1127.62 14 1088.46 13 1007.31 9
r105 1539.02 17 1444.42 17 1443.37 17 1377.11 14
r106 1510.31 17 1415.55 17 1312.16 14 1252.03 12
r107 1361.29 14 1254.40 13 1159.07 12 1104.66 10
r108 1189.41 12 1076.65 12 1001.62 11 960.88 9
r109 1385.45 16 1295.81 16 1237.45 15 1194.73 11
r110 1256.78 13 1176.34 13 1163.80 13 1118.84 10
r111 1262.67 14 1178.54 14 1118.22 13 1096.72 10
r112 1094.70 11 1033.41 11 1018.43 11 982.14 9
r201 1519.82 7 1249.99 6 1216.44 6 1252.37 4
r202 1276.30 7 1162.37 7 1088.38 7 1191.70 3
r203 1208.14 6 1094.60 6 930.68 5 939.50 3
r204 985.49 4 939.58 4 813.50 4 825.52 2
r205 1253.25 6 1173.77 5 1084.50 5 994.42 3
r206 1189.18 6 1077.72 5 989.98 5 906.14 3
r207 1057.13 5 983.92 4 848.98 4 890.61 2
r208 894.77 3 796.63 3 746.18 3 726.82 2
r209 1194.43 5 1056.89 5 967.70 4 909.16 3
r210 1243.22 6 1122.51 5 969.49 5 939.37 3
r211 1035.40 5 939.98 4 869.75 4 885.71 2
rc101 1902.29 19 1739.52 18 1688.16 17 1696.94 14
rc102 1754.53 17 1597.06 16 1549.85 16 1554.75 12
rc103 1621.96 15 1479.76 15 1450.88 14 1261.67 11
rc104 1351.30 12 1296.15 12 1225.50 11 1135.48 10
rc105 1889.98 18 1699.92 18 1589.88 16 1629.44 13
rc106 1601.30 15 1471.69 14 1470.43 14 1424.73 11
rc107 1466.96 14 1372.70 13 1362.54 13 1230.48 11
rc108 1375.97 13 1322.30 12 1235.41 11 1139.82 10
rc201 1669.82 8 1450.15 8 1418.23 7 1406.94 4
rc202 1547.11 6 1346.88 6 1140.55 6 1365.65 3
rc203 1398.89 7 1158.79 5 1040.80 5 1049.62 3
rc204 1039.61 5 959.42 4 806.30 4 798.46 3
rc205 1556.85 8 1389.71 7 1283.30 7 1297.65 4
rc206 1390.42 5 1261.67 5 1191.45 5 1146.32 3
rc207 1308.38 6 1133.96 5 1068.83 5 1061.14 3
rc208 1130.04 4 916.30 4 826.09 4 828.14 3



Table 6: All solutions for the Solomon instances with the RDP method for the construction phase and after
the 2-opt* and Or-opt/2-opt* methods.

Instance Constr. #Veh. 2-Opt* #Veh. Or/2* #Veh. Best known solutions
c101 930.12 12 930.12 12 866.00 11 828.94 10
c102 931.05 12 931.05 12 866.00 11 828.94 10
c103 903.35 11 863.29 11 828.07 10 828.06 10
c104 872.88 10 867.97 10 839.48 10 824.78 10
c105 930.12 12 930.12 12 866.00 11 828.94 10
c106 930.12 12 930.12 12 866.00 11 828.94 10
c107 930.12 12 930.12 12 866.00 11 828.94 10
c108 893.97 11 886.77 11 861.24 11 828.94 10
c109 884.24 11 879.33 11 849.25 10 828.94 10
c201 751.82 6 714.77 5 591.56 3 591.56 3
c202 789.55 7 781.50 6 620.29 3 591.56 3
c203 742.94 5 713.88 5 620.30 4 591.17 3
c204 701.01 4 647.27 4 620.30 4 590.6 3
c205 651.85 4 627.19 4 609.36 3 588.88 3
c206 644.66 4 620.65 4 588.49 3 588.49 3
c207 672.56 4 627.45 4 588.29 3 588.29 3
c208 680.75 5 642.53 4 588.32 3 588.32 3
r101 2002.40 31 1929.86 30 1740.81 23 1650.8 19
r102 1748.55 25 1727.37 25 1571.62 21 1486.12 17
r103 1438.82 20 1432.44 20 1322.47 16 1292.68 13
r104 1121.01 14 1119.84 14 1023.98 12 1007.31 9
r105 1654.54 23 1616.53 23 1543.48 21 1377.11 14
r106 1458.44 19 1410.82 18 1363.17 17 1252.03 12
r107 1246.48 16 1235.65 16 1166.10 13 1104.66 10
r108 1082.62 12 1068.07 12 1013.46 11 960.88 9
r109 1315.13 17 1308.95 17 1254.31 16 1194.73 11
r110 1179.79 14 1173.93 14 1165.28 14 1118.84 10
r111 1180.15 14 1178.78 14 1111.35 12 1096.72 10
r112 1035.00 11 1031.78 11 1026.91 11 982.14 9
r201 1460.52 19 1410.97 18 1213.21 11 1252.37 4
r202 1256.64 14 1234.75 13 1132.80 9 1191.7 3
r203 1061.09 12 1038.61 12 935.21 7 939.5 3
r204 821.21 7 816.81 7 800.66 5 825.52 2
r205 1175.89 13 1138.70 13 1071.63 11 994.42 3
r206 1124.79 13 1080.48 12 1062.37 11 906.14 3
r207 963.94 9 927.41 8 900.88 7 890.61 2
r208 766.78 4 757.96 4 748.12 4 726.82 2
r209 1092.56 13 1090.33 13 949.97 9 909.16 3
r210 1013.65 10 1010.65 10 992.96 9 939.37 3
r211 878.33 8 861.63 8 848.29 8 885.71 2
rc101 2081.59 25 2067.51 25 1722.28 18 1696.94 14
rc102 1784.05 20 1770.82 20 1562.25 16 1554.75 12
rc103 1546.56 16 1523.11 16 1408.29 14 1261.67 11
rc104 1226.21 12 1225.77 12 1213.37 12 1135.48 10
rc105 1853.77 22 1841.23 22 1646.99 18 1629.44 13
rc106 1592.14 17 1586.47 17 1573.17 17 1424.73 11
rc107 1383.80 15 1369.77 14 1367.27 14 1230.48 11
rc108 1200.82 12 1193.42 12 1180.44 12 1139.82 10
rc201 1763.65 18 1762.11 18 1378.88 10 1406.94 4
rc202 1440.52 15 1436.88 15 1210.19 10 1365.65 3
rc203 1134.29 10 1123.39 10 1033.00 9 1049.62 3
rc204 931.49 8 930.57 8 901.01 7 798.46 3
rc205 1524.31 15 1522.04 15 1361.42 12 1297.65 4
rc206 1424.88 13 1419.05 13 1278.51 11 1146.32 3
rc207 1185.68 11 1142.21 10 1091.44 9 1061.14 3
rc208 828.99 5 807.28 5 791.87 5 828.14 3
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Table 7: All solutions for the Goel instances with the RDP method and the saving method for the construction
phase.

Instance RDP #Veh. Saving #Veh. Prescott-Gagnon solutions
ECc101 986.85 12 1083.35 13 931.37 10
ECc102 1025.56 11 1104.97 13 904.25 10
ECc103 1121.00 12 998.86 12 833.19 10
ECc104 1005.98 10 834.31 10 819.81 10
ECc105 828.94 10 895.89 11 828.94 10
ECc106 970.05 11 930.12 12 828.94 10
ECc107 828.94 10 865.99 11 828.94 10
ECc108 877.53 10 860.71 11 827.38 10
ECc109 905.76 10 835.88 10 825.65 10
ECc201 1061.20 8 1252.28 10 810.05 5
ECc202 961.15 7 1140.36 10 695.75 5
ECc203 902.21 7 936.89 8 661.84 4
ECc204 928.46 7 804.92 6 649.70 4
ECc205 798.75 7 768.51 7 678.70 5
ECc206 830.75 7 765.68 7 676.57 5
ECc207 893.53 7 884.33 8 674.67 5
ECc208 775.03 6 743.91 6 672.30 4
ECr101 1592.58 17 1700.81 23 1319.88 9
ECr102 1640.19 17 1519.41 20 1177.31 8
ECr103 1271.41 12 1275.58 17 967.96 8
ECr104 1090.42 9 983.42 10 855.72 8
ECr105 1342.96 12 1351.50 16 1090.69 8
ECr106 1233.53 11 1283.45 16 998.35 8
ECr107 1108.33 10 1132.02 13 892.90 8
ECr108 1056.17 9 920.70 8 840.95 8
ECr109 1103.40 10 1062.89 11 923.28 8
ECr110 1085.12 9 1026.01 11 880.19 8
ECr111 1080.59 9 983.58 10 881.27 8
ECr112 967.91 8 906.48 8 831.13 8
ECr201 1421.47 12 1475.88 19 1220.86 7
ECr202 1320.73 11 1351.56 17 1093.46 6
ECr203 1119.79 9 1102.26 13 957.70 5
ECr204 1014.41 8 875.18 8 770.21 5
ECr205 1162.05 9 1224.09 14 1000.40 6
ECr206 1174.81 9 1156.12 13 958.17 5
ECr207 1067.16 8 970.53 9 840.61 5
ECr208 968.25 7 821.66 7 754.21 5
ECr209 1113.03 8 1139.40 14 950.53 5
ECr210 1189.77 9 1087.82 12 938.69 6
ECr211 1044.68 7 930.70 10 788.35 5
ECrc101 1551.48 13 1810.57 19 1293.82 9
ECrc102 1524.33 13 1485.26 16 1177.51 9
ECrc103 1368.30 11 1153.40 11 1085.66 9
ECrc104 1263.51 10 1058.49 10 993.66 9
ECrc105 1575.17 13 1458.56 15 1203.34 9
ECrc106 1342.60 11 1226.22 12 1093.96 9
ECrc107 1273.73 10 1108.18 11 1028.11 9
ECrc108 1174.77 10 1074.66 10 982.59 9
ECrc201 1555.01 11 1876.61 21 1395.15 7
ECrc202 1445.17 10 1619.04 17 1153.45 7
ECrc203 1296.03 9 1188.30 10 1016.92 6
ECrc204 1003.66 8 976.40 9 863.22 5
ECrc205 1470.66 10 1672.62 18 1270.78 7
ECrc206 1316.89 10 1545.78 16 1129.39 6
ECrc207 1388.38 10 1338.67 13 1046.83 6
ECrc208 1101.17 7 933.66 7 850.63 5
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