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Abstract

Primary Biliary Cholangitis (PBC) is a chronic autoimmune disease of the liver. Currently,
there is no cure available for PBC and most patients are treated with Ursodeoxylic Acid
(UDCA) that slows down the course (Parés et al. (2006)). Retrieving measurable indicators
associated with the progression of the disease is important to evaluate the prognosis and
the effect of (new) medical therapies. This thesis shows the prognostic significance of two
biomarkers, Alkaline Phosphatase and Serum Bilirubin, in a joint modeling framework. Two
joint models are constructed, one for each marker. Relating the true levels of the biomarker
to the risk of an event (death or liver transplantation) through a weighted cumulative func-
tion shows the best fit and accuracy up to 15 years of follow-up, with exception of the joint
model regarding longitudinal measurements of Serum Bilirubin at 15 years of follow-up. To
validate the discriminative ability of the fitted joint model and its alternative association
structures for Alkaline Phosphatase and Serum Bilirubin, the Area Under the Curve (AUC)
of both models is computed. The accuracy of the fitted joint models regarding the prediction
of future events is quantified by an estimate of its Prediction Error (PE). The accuracy mea-
sures show that both models are performing considerably well in the discrimination between
patients and the prediction of future events.
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1 Introduction

Primary Biliary Cholangitis (PBC) is a relatively rare, chronic, autoimmune disease of the liver.
This slowly progressive disease will harm the liver permanently and can lead to cirrhosis of the
small bile ducts within the liver, which may cause liver cancer, liver failure or premature death
(Kaplan and Gershwin (2005)). PBC has only been determined in adults (Trivedi et al. (2015)),
especially women above the age of 40, where approximately 0.1% developes PBC (Selmi et al.
(2011)).

Currently, the only treatment according to the guidelines of the European Association for
the Study of the Liver (EASL) is Ursodeoxylic Acid (UDCA) (Lindor et al. (2009); Liver et al.
(2009)). Most patients are treated with this drug that is able to slow down the progression of the
disease and thereby extend patients’ lifes (Parés et al. (2006)). Although it is the only approved
therapy, the symptoms are not yet diminished as desired and UDCA is in particular effective
in an early stage of the disease. Up to 40 % of the patients have an ineffective reaction on their
treatment with UDCA and thereby an increased risk on serious liver damage, which eventually
can lead to liver transplantation or premature death (Lammers et al. (2014)). Therefore, it is
of great importance to identify patients in an early stage of this hepatobiliary disease. Patients
with an insufficient response to UDCA could take advantage of secondary treatments (Lammers
et al. (2015)). To evaluate the effect of (new) medical therapies, (early) measurable indicators
associated with the failure status of the patient are needed.

Recently, Lammers et al. (2014) performed a meta-analysis on the prognostic significance of
two biomarkes, Alkaline Phosphatase and Serum Bilirubin, regarding the risk of an event (death
or liver transplantation) for patients diagnosed with PBC. Biomarkers are repeatedly measured
indicators with a strong prognostic capability on time-to-event data. Lammers et al. (2014)
adopted the proportional hazards function to show whether levels of Alkaline Phophatase and
Serum Bilirubin are able to predict an event. An increase in the levels of these biomarkers is
associated with an increase in the hazard ratio and thereby a detoriated health status (Lammers
et al. (2014)). These meaningful changes associated with the patients’ failure status appear at
different times in the course of the disease. Alkaline Phosphatase already exhibits changes in an
early state of the hepatobiliary disease and is essential for the diagnosis of PBC (Lindor et al.
(2009)). Serum Bilirubin tends to increase in a more advanced stage of the disease.

To establish an appropriate prognosis, physicians often use risk scores based on the pa-
tients’ physical health condition and laboratory test results. Although, physicians measure the
biomarkers of the patients frequently, the risk scores are often based on the last available obser-
vation. This approach does not capture the rate of change in the biomarker levels, which not
only differs between patients, but also differs over time for the same patient (Rizopoulos et al.
(2013)). With the development of joint modeling frameworks for longitudinal and time-to-event
data, all available observations of the biomarker can be related to the time-to-event and the
probability of transplantation-free survival can be updated after each new measurement of the
biomarker (Sène et al. (2014)); in this context Alkaline Phophatase or Serum Bilirubin.

In this thesis, the repeatedly measured levels of Alkaline Phosphatase and Serum Bilirubin
are examined on their ability to predict the risk of experiencing an event (death or a liver
transplantation) using a joint modeling framework. The main aim of this thesis is to find an
accurate joint model in order to relate the longitudinal measurements of Alkaline Phosphatase or
Serum Bilirubin to the probability of survival for patients diagnosed with PBC. Due to the fact
that the two biomarkers, Alkaline Phosphatase and Serum Bilirubin, tend to show meaningful
changes in different stages of the disease (Lammers et al. (2015)), their predictive performance
is investigated at various points in time during follow-up. The study is conducted using the
database provided by the Global PBC Study Group, which represents the most comprehensive
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database regarding international PBC research.
In general sense, the joint model can be distinguished in two submodels, respectively a

model that describes the trajectory of Alkaline Phosphatase or Serum Bilirubin and a model
that analyses the survival process of the patient. The first model, to describe the complete
trajectory of the two biomarkers individually, is the linear mixed-effects model. Along with the
survival function and proportional hazards function to describe the analysis of time-to-event
data, it represents the two building blocks that constitute the joint model (Rizopoulos (2012b)).
The parameters of the joint models are estimated by Maximum likelihood (ML) estimation using
numerical optimization (EM and Quasi-Newton algorithm) and numerical integration (Gauss-
Kronrod rule and pseudo adaptive Gauss-Hermite rule). Different parameterizations of the
biomarkers’ trajectory and baseline covariates are incorporated in the joint model to improve
its fit and prognostic value (Rizopoulos (2012b)). Individual dynamic predictions are derived
from the fitted joint models using a Monte Carlo simulation scheme.

To develop a valid inference on the prognostic significance of Alkaline Phophatase and Serum
Bilirubin in the joint modeling framework, two accuracy measures have been adopted. The
Area Under the Curve (AUC) or C-statistic is computed to validate its discriminative ability
(Rizopoulos (2012b)). The AUC is an accuracy measure that indicates how well the fitted joint
model is able to discriminate patients between high and low risk in experiencing an event (death
or liver transplantation). How well the fitted model is able to predict future events is called
calibration. The Prediction Error (PE) is used to quantify the predictive ability of different
parameterizations of the joint model (Henderson et al. (2002)).

Recent studies of cancer recurrence (Proust-Lima and Taylor (2009)), oartic stenosis (An-
drinopoulou et al. (2015)) and treatment duration on HIV patients (Brilleman et al. (2016))
show the meaningful contribution of a joint modeling framework in the development of a prog-
nosis. The model is able to accomodate all available longitudinal observations of a biomarker
and update its survival probability at every new observation. In the context of Primary Biliary
Cholangitis (PBC), the prognostic significance of Alkaline Phosphatase and Serum Bilirubin
regarding the patients’ failure status (death or liver transplantation) is concluded using Cox
proportional hazards function (Lammers et al. (2014)). At different time points the last avail-
able biomarker observation is used to compute its association with the hazard ratio. Using only
the last available observation of the biomarker obviously discards useful information about the
biomarker and its trajectory. This is the first time the joint modeling framework is adopted
to estimate the risk of an event for patients diagnosed with PBC to include all available in-
formation of the two biomarkers. This study provides physicians a more flexible and dynamic
model to discriminate patients using Alkaline Phosphatase and Serum bilirubin. Improving the
knowledge about the course of PBC and its biomarkers is essential for the development and
approval of new therapies.

Corresponding to the literature, the fitted joint model is able to show the prognostic signifi-
cance of Alkaline Phosphatase and Serum Bilirubin and their ability to predict clinical outcomes
(death or liver transplantation). Increased levels of both biomarkers are associated with a higher
risk of an event. Including all available information in the Cox proportional hazards function by
using a weighted cumulative parameterization of the biomarker measurements provides the best
joint model up to 15 years of follow-up according to its goodness-of-fit statistics and accuracy
measures. Except for the joint model of Serum Bilirubin at 15 years of follow-up, where the
slope of the biomarker trajectory takes a more important role in the prediction of an event and
its discriminative ability. Due to the general incline of the biomarker values, the height of the
biomarker contains less prognostic strength regarding the patients failure status compared to
the biomarkers’ slope.

The accuracy of the fitted joint models of the two biomarkers, Alkaline Phosphatase and
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Serum Bilirubin, are declining over time. The general incline of the biomarker levels makes
it harder to discriminate between patients and to predict future events as time progresses.
The model involving levels of Alkaline Phosphatase is less accurate in both discimination and
calibration compared to the joint model of Serum Bilirubin. This is due to the fact that the levels
of Alkaline Phosphatase show meaningful changes during the whole spectrum of the disease,
while Serum Bilirubin exhibits elevated levels in a more advanced stage of the disease (Lammers
et al. (2015)).

In addition to the longitudinal data of the biomarkers, different baseline covariates are
included in the survival functions. In the joint model with the longitudinal measurements
of Serum Bilirubin, the level of Albumine times the Upper Limit of Normal (ULN) and the
platelet count per 109/L at 1 year of follow-up and the age at the beginning of the follow-up are
significant baseline covariates associated with the risk of an event. The levels of Albumine are
multiplied by the Upper Limit of Normal (ULN) to correct for different use of normal values in
various laboratories. The platelet count is reported following the standard measure of 109/L. A
decrease in Albumine and platelet count at 1 year of follow-up is associated with an increased
risk of having an event. In addition, older patients at the beginning of the follow-up tend to
experience an event earlier. The joint model including the trajectory of Alkaline Phosphatase
extends the set of significant baseline covariates with the logarithmic scaled level of Serum
Bilirubin at 1 year of follow-up. A higher logarithmic scaled level of Serum Bilirubin at 1
year of follow-up leads to an incline in risk of an event. The logarithmic scaled level of Serum
Bilirubin at 1 year of follow-up is uncorrelated with the trajectory of Alkaline Phosphatase due
to the later appearance of meaningful changes in Serum Bilirubin.

This thesis contributes the vast majority in literature in confirming the prognostic signif-
icance of Alkaline Phosphatase and Serum Bilirubin. The accuracy measures correspond to
earlier studies supporting the fact that elevated levels of Alkaline Phosphatase are spread over
the complete course of PBC, while Serum Bilirubin shows meaningful changes in an advanced
stage of the disease. The significant baseline covariates (Albumine times the ULN at 1 year
of follow-up, age at the beginning of the follow-up, logarithmic scaled Serum Bilirubin times
the ULN at 1 year of follow-up and platelet count per 109/L at 1 year of follow-up) are al-
ready frequently used as components of risk scores like the Globe score (Lammers et al. (2015)).
Levels of Alkaline Phosphatase and Serum Bilirubin could be used as surrogate end points in
research on new drugs as suggested by Lammers et al. (2014) and the selected joint model
provides physicicians a more dynamic and flexible model to develop a diagnosis for Primary
Biliary Cholangitis (PBC).

The outline of this paper is as follows. Section 2 gives a review of the relevant literature
regarding the joint modeling framework. In section 3, the methodology is presented, discussing
the components to formulate the joint log likelihood function, which is essential for estimating
the joint model parameters. In addition, it explains the different parameterizations and how
the fitted joint model is used to derive dynamic individual predictions. Section 3 ends with
the explanation of the accuracy measures. In Section 4, the data provided by the Global PBC
Study Group is explained in detail, followed by Section 5, where the estimation and validation
results are discussed. Section 6 concludes the thesis and provides a range of possible future
studies.

2 Literature Review

Alkaline Phosphatase is an early discovered biomarker used for the prediction of clinical out-
comes (death or liver transplantation) in hepatobiliary research (Warnes (1972)). Shapiro et al.
(1979) state that levels of Serum Bilirubin constitute a predictive indicator of the prognosis
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in Primary Biliary Cholangitis (PBC). Recently, the prognostic significance of Alkaline Phos-
phatase and Serum Bilirubin is evaluated in a meta-analysis conducted by Lammers et al.
(2014). They concluded both biomarkers to be correlated with the clinical outcomes of patients
diagnosed with PBC.

To link time-dependent endogenous covariates like Alkaline Phosphatase and Serum Biliru-
bin to the risk of an event, a joint model is developed and extensively decribed in literature
(Faucett and Thomas (1996); Wulfsohn and Tsiatis (1997); Henderson et al. (2000); Tsiatis and
Davidian (2004)). As described earlier in the introduction, the joint model consists of a longitu-
dinal process and a survival process. The correlated continuous observations of biomarkers are
captured by a linear mixed-effects model, where the correlation of the longitudinal responses
is assumed to be captured by their shared random effects (Harville (1977); Laird and Ware
(1982); Verbeke and Molenberghs (2009)). Because Maximum Likelihood (ML) estimation and
Restricted Maximum Likelihood (REML) in general lead to no closed-form solutions, Lindstrom
and Bates (1988) introduce the use of numerical optimization explaining the Expectation-
Maximization (EM) algorithm and the Quasi-Newton Algorithm in the context of the linear
mixed-effects model. The estimation of the random effects covariance matrix is at that moment
still a numerical burden. To ensure the optimization leads to a positive semi-definite matrix for
the random effects covariance matrix, Pinheiro and Bates (1996) introduced five unconstrained
parameterizations for the optimization of the covariance matrix, respectively Cholesky, Log-
Cholesky, Spherical, Matrix-Logarithm and the Givens parameterization. The Log-Cholesky
and Spherical parameterization lead to the best predictive performances. Problems occuring
when selecting the best linear mixed-effects model estimated with REML is examined by Gurka
(2006). Selection of linear mixed-effects models could benefit from comparing the likelihoods
using both REML and ML.

To relate time-independent covariates or time-dependent endogenous covariates, most statis-
ticians use the popular proportional hazards model, introduced by Cox (1972). The model
assumes these covariates have a multiplicative effect on its hazard ratio. Tsiatis et al. (1995)
proposed a framework to relate the proportional hazards function to the linear mixed-effects
model through shared random effects. However, every time an event occured the linear mixed-
effects model has to be estimated and incorporated in the joint model, computing the same
amount of linear mixed-effects models as events occured in the sample. To overcome this
computational burden numerical optimization methods are adopted to maximize a joint log
likelihood function (Wulfsohn and Tsiatis (1997)). Even then, the estimation of the complete
joint log likelihood often lead to no closed-form solution and it remained computational inten-
sive. Rizopoulos (2012b) developed a numerical integration technique to speed up convergence.
The pseudo adaptive Gauss-Hermite rule estimates the integrals of the joint log likelihood and
improves the computational intensive EM algorithm.

In contrast to the maximum likelihood estimation, Faucett and Thomas (1996) introduced a
Bayesian approach using Markov Chain Monte Carlo (MCMC). The specification of an appro-
priate joint log likelihood is the key component in the Bayesian approach as well. The literature
is inconclusive on the use of either two approaches.

This thesis uses the joint modeling framework that is proposed by Tsiatis et al. (1995) in
combination with the numerical optimization technique developed by Rizopoulos (2012b). The
Monte Carlo scheme used to develop the individual dynamic predictions and to validate the two
models of Alkaline Phosphatase and Serum Bilirubin is recently introduced by Proust-Lima and
Taylor (2009) and extended to compute accuracy measures for the joint modeling framework
(Rizopoulos (2012b)). These methods and techniques are conducted to select a joint model
for both Alkaline Phosphatase and Serum Bilirubin and to create a more dynamic and flexible
environment for physicicians to develop a diagnosis and to test new medicines regarding Primary
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Biliary Cholangitis (PBC).

3 Methods

3.1 Joint Model

The joint model is a framework that relates the longitudinal measurements of the biomarkers,
Alkaline Phosphatase and Serum Bilirubin, to the time-to-event data through shared random
effects that capture the association between the two processes. A linear mixed-effects model is
used to describe the longitudinal trajectory of the biomarkers, while the time-to-event process
is captured by the Cox proportional hazards function and the survival function. However, the
Cox proportional hazards function is not able to incorporate the observed levels of the two
biomarkers directly, because they represent time-dependent endogenous covariates (Rizopoulos
(2012b)). To relate the two time-dependent endogenous covariates, Alkaline Phosphatase and
Serum Bilirubin, to the hazard ratio, the model should accomodate for the special features of
these prognostic biochemical variables.

The joint modeling framework for longitudinal and time-to-event data accounts for three
features of the biomarkers. First of all, time-dependent endogenous biomarkers are conditionally
depending on the existence of the patient. Logically, no measurements of Alkaline Phosphatase
and Serum Bilirubin are obtained after the patient is deceased. So, the model should account
for censoring. Secondly, the proportional hazards model assumes covariates to contain no error
term, while the observed responses of the biomarkers in the dataset contain measurement errors.
In addition, the complete longitudinal history is not known due to the irregular visits of the
patients and the absence of continuous time-series of the biomarkers. To reconstuct the complete
history of the biomarker and to find the true and unobserved biomarker value without an error,
a linear mixed-effects model is adopted (Laird and Ware (1982); Harville (1977); Verbeke and
Molenberghs (2009)). The linear mixed-effects model constitutes the first building block of the
joint model and allows one to model the patient-specific trajectory of the biomarkers Alkaline
Phosphatase and Serum Bilirubin.

The survival process is captured by the survival function and the Cox proportional hazards
function and constitute the second building block of the joint model. This process analyses the
time until a patient experiences an event. In the context of this study, an event has occured if a
patient is deceased or received a transplant of the liver; these are considered clinical endpoints.
The time-to-event is unknown if the patient is still alive after follow-up or if the patient is
dropped out earlier. In this case, the time-to-event is censored and no event has occured. The
association between the two building blocks, the longitudinal and survival process, is described
by their shared random effects. The shared random effects approach allows to estimate the
parameters of a joint log likelihood function using full Maximum Likelihood (ML).

The rest of the methodology is organized as follows. In the next subsection, the linear
mixed-effects model is discussed regarding the analysis of the longitudinal responses and to find
its continuous trajectory, followed by an explanation of missingness in the longitudinal data of
the two biomarkers. Section 3.1.3 explains the second building block of the joint model, where
the true and unobserved levels of Alkaline Phosphatase and Serum Bilirubin are introduced
in the survival submodel. Section 3.1.4 discusses the involvement of censoring in the survival
process and how this thesis accomodates for this feature. Section 3.2 shows how the joint model
parameters are estimated using Maximum Likelihood (ML) estimation and describes alternative
association structures between the two biomarkers and its corresponding hazard ratio. Section
3.3 shows the ability of deriving dynamic individual predictions from the fitted joint model.
Finally, two accuracy measures are put forth to validate the prognostic significance of the joint
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models for Alkaline Phosphatase and Serum Bilirubin.

3.1.1 Longitudinal Submodel

The trajectory of the time-dependent endogenous covariates, Alkaline Phosphatase and Serum
Bilirubin, is analysed with a linear mixed-effects model. The observed longitudinal measure-
ments of the biomarkers, denoted by yi, are expected to be correlated for the same patient. When
the longitudinal observations are correlated, standard statistical tools like a t-test or a simple lin-
ear regression are not appropriate to use (Rizopoulos (2012b)). The linear mixed-effects model
accomodates for correlated data through its random effects bi (Rizopoulos (2012b)). Given the
random effects, the observed levels of the biomarkers yi are assumed to be independent and
allows one to conduct a longitudinal data analysis with standard statistical tools. This is called
the conditional independence assumption and is given by

p(yi|bi) =

ni∏
j=1

p(yi(tij)|bi), (1)

where j denotes the number of observations j = 1, 2, ..., ni for patient i. The time in years is
denoted by t and start at the beginning of the follow-up study.

The linear mixed-effects model is not only capable of deriving the average changes in the pop-
ulation, but also allows one to obtain the patient-specific response trajectory in the biomarker
levels. This is one of main reasons to adopt the linear mixed-effects model. The patient-specific
mean response profile over time for each patient in the population is descibed by the fixed
effects, denoted by β, and the random effects, denoted by bi. The fixed effects β are the av-
erage elevation in the observed biomarker values in the population, caused when one of the
corresponding covariates has increased ceteris paribus by one. The random effects bi indicate
the patient-specific discrepancy with a subset of the fixed effects parameters. Hence, the linear
mixed-effects model is able to capture predictions for the population with β and the individual
patients through (β + bi) and is given by

yi(t) = mi(t) + εi(t); (2)

mi(t) = xTi (t)β + zTi (t)bi; (3)

bi ∼ N(0, D); (4)

εi(t) ∼ N(0, σ2Ini), (5)

where yi(t) are the observed levels of the biomarker Alkaline Phosphatase or Serum Bilirubin
for patient i at time point t, which denotes the time in years that starts at the beginning of
follow-up. xTi (t) and zTi (t) are the independent design vectors of respectively the fixed effects
and the random effects for patient i = 1, 2, ..., N . In this thesis different parameterizations
of time are used for the vectors xTi (t) and zTi (t). The patients are assumed to be randomly
sampled from the population, what implies that the patient-specific regression parameters bi
are randomly sampled as well. The random effects coefficient vector bi is therefor assumed to be
normally distributed with a mean zero and a covariance matrix D. This assumption becomes
more robust, when the number of observations per patient increases (Rizopoulos et al. (2008)).
mi(t) are the true and unobserved levels of the biomarkers without a measurement error. In
addition, the error terms are denoted by εi and are assumed to be normally distributed with
a mean zero and a covariance matrix σ2Ini , where ni is the patient-specific total number of
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observations j = 1, 2, ..., ni. The random effects and the error terms are assumed to be uncor-
related. The linear mixed-effects model reconstructs the continuous response trajectory of the
two biomarkers, Alkaline Phosphatase and Serum Bilirubin, assuming the marker values not to
be constant between visits.

In section 3.2, the maximization of the joint log likelihood function is discussed. It is shown
that the maximization is conducted using a numerical optimization method; the Expectation-
Maximization (EM) algorithm. To obtain initial parameters for this iterative optimization
method, the linear mixed-effects model and the Cox proportional hazards model are estimated
individually. So, both models are first estimated seperately, not in a joint modeling framework,
to compute the initial parameter values for the EM algorithm.

For the estimation of the initial parameter values for the EM algorithm, the linear mixed-
effects model is estimated using Restricted Maximum Likelihood (REML). The general Maxi-
mum Likelihood (ML) estimation leads to biased estimates of the variance components, because
it does not account for the fact β is estimated (Harville (1977)). The basic idea of Restricted
Maximum Likelihood (REML) estimation is that the likelihood function is adapted in a way
the function is not depending on the estimated β̂ and its log likelihood is based on n−p degrees
of freedom.

`(θb, σ
2) = −n− p

2
log(2π) +

1

2
log

∣∣∣∣ n∑
i=1

XT
i Xi

∣∣∣∣− 1

2
log

∣∣∣∣ n∑
i=1

XT
i V
−1
i Xi

∣∣∣∣
−1

2

n∑
i=1

{log|Vi|+ (yi −Xiβ̂)TV −1i (yi −Xiβ̂)}, (6)

where β̂ is replaced by the Generalized Least Squares (GLS) estimator:

β̂ =

( n∑
i=1

XT
i V
−1
i Xi

) n∑
i=1

XT
i V
−1
i yi, (7)

where n is the number of observed measures of Alkaline Phosphatase or Serum Bilirubin. p is
the dimensionality of vector xi, which represents a patient-specific vector of the design matrix
Xi. Vi is the covariance matrix of the marginal model1, where Vi = ZiDZ

T
i + σ2Ini . β̂ is the

estimated value of the fixed effects coefficient.
In general, the maximization of the log likelihood function is not leading to a closed-form

solution. To maximize the log likelihood function (6), one needs to use numerical optimization.
Here, the Quasi-Newton method is used to obtain the optimization of equation (6) (Lindstrom
and Bates (1988)). Once covariance matrix Vi is estimated, fixed effects coefficient β could be
obtained by the Generalized Least Squares (GLS) estimator. The inverse covariance matrix
V −1 is replaced by its estimate. The variances of the fixed effects parameters are derived by the
computation of the variance equation of the Generalized Least Squares (GLS) estimator, given
by

ˆvar(β̂) =

( n∑
i=1

XT
i V̂
−1
i XT

i

)
. (8)

1Marginal model is written by yi = Xiβ + εi, where εi ∼ N(0, ZiDZ
T
i + σ2Ini)
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To ensure the covariance matrix to be positive semi-definite, the log Cholesky parame-
terization is applied to estimate the covariance matrix D (Pinheiro and Bates (1996)). This
unconstrained estimation requires the logarithmic values of the diagonals of the Cholesky de-
composition matrix2, denoted by L, to be positive. This results in a uniquely defined upper
triangle matrix L and a positive semi-definite covariance matrix D. Positive semi-definite is
defined by ZTDZ ≥ 0.

In order to capture the trajectory of the biomarkers, eight different parameterizations of the
linear mixed-effect model are proposed and described in section 5.1. The models are compared
using the log likelihood statistic when they are nested, otherwise the information criteria AIC
and BIC are used to determine the model with the best fit. However, comparing models
with different specifications of the fixed effects is not appropriate under Resticted Maximum
Likelihood (REML) estimation (Gurka (2006)). Models with different fixed effects parameters
are not based on the same amount of observations due to its loss in degrees of freedom n − p.
Likelihood functions with abberrant number of observations are not comparable. Because a
likelihood ratio test is not longer valid under restricted likelihood functions, full Maximum
Likelihood (ML) is adopted as well to compare the models. If both ML and REML indicate a
specific linear mixed-effects model, it is assumed to be the best performing model compared to
the others.

To summarize the linear mixed-effects model, the initial longitudinal parameter values for the
EM algorithm of the joint model are estimated by a Restricted Maximum Likelihood (REML)
estimation procedure, assuming the random effects to accomodate for the patient-specific cor-
relation within the observed levels of Alkaline Phosphatase and Serum Bilirubin. The Quasi-
Newton algorithm is adopted to maximize the log likelihood function. To ensure a positive
semi-definite covariance matrix of the random effects, the covariance matrix D is decomposed
by a log Cholesky parameterization. Finally, the different parameterizations of the linear mixed-
effects model are compared using the log likelihood statistic when models are nested, otherwise
the information criteria AIC and BIC are applied. Both ML and REML are applied to determine
the fitted linear mixed-effects model.

In the next subsection, different types of missingness of the observed biomarker values,
denoted by yi, are discussed. In addition, it explains the use of a logistic regression to find a
possible explanation for the missing data.

3.1.2 Missing Data

A problem involving the analysis of the longitudinal responses of the biomarkers is the presence
of missing values. Missing data occur when a measurement is not reported, not performed or
failed during a planned visit. In literature, three types of missing data are described, respec-
tively Missing Completely At Random (MCAR), Missing At Random (MAR) and Missing Not
At Random (MNAR).

If the missing data are labeled Missing Completely At Random (MCAR), they are missing
independent from the observed values yoi and the values the missing observations should have
obtained ymi .

p(ri|yoi , ymi ; θr) = p(ri; θr), (9)

where θr is the vector of parameters corresponding to the indicator variable ri, which takes
a value of 1 if the observation is missing and 0 otherwise. When patients are dismissed from
the follow-up study after a predetermined number of visits or a patient is missing a visit not

2Cholesky decomposition: D = LtL, where L is an upper triangle matrix
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related to the status of its disease, the missing data can be defined as Missing Completely At
Random (MCAR) and the observed levels can be treated as a random sample of the population.

If the missing data mechanism is Missing At Random (MAR), the missing observations are
related to the observed observations.

p(ri|yoi , ymi ; θr) = p(ri|yoi ; θr). (10)

If patients are extracted from the follow-up study for secondary treatment or when they
exceed a predetermined threshold, it is called Missing At Random (MAR). However, MAR is
impossible to verify statistically (Little and Rubin (2014)).

The last category of missing data is called Missing Not At Random (MNAR). This means
the missing value is related to the possible value it might have taken when it was not missing.
If it is related to both observed and missing values it is also determined as MNAR.

p(ri|yoi , ymi ; θr) = p(ri|ymi ; θr) or p(ri|yoi , ymi ; θr). (11)

MNAR appears when patients are not able to visit the consultation due to their deteriorated
health condition.

To verify if our missing values can be ignored, a logistic regression is used to explain the
missing data regarding Alkaline Phosphatase and Serum Bilirubin by other available variables.
The logistic regression is able to relate variables to a dependent categorical variable, in this case
the indicator variable for missingness, and is given by

p(ri = 1|XT
i ) =

1

1 + exp(−(XT
i β)

, (12)

where Xi is the design matrix of the available covariates, that the logistic regression is using
to explain the categorical variable of missingness, denoted by ri. The corresponding vector of
coefficients is denoted by β.

The logistic regression is estimated with numerical optimization using the Fisher Scoring
algorithm. When the logistic regression is able to clarify the missing values by its design matrix
of available covariates, the missing data are not Missing Completely At Random (MCAR) and
the dataset cannot be used as a random sample of the population. However, when a dataset is
substantially large, a significant relationship can be found quiet easily and it is recommended
to reason if the association is related to the disease. The latter statement basically means that
the association has to be different for PBC patients and subjects that are not diagnosed with
the disease. In addition, different cities are observed by their missingness to find discrepancies
in missing percentages of the two biomarkers. For instance, if one specific city is always missing
Alkaline Phosphatase due to the fact they simply do not report this biomarker for PBC patients.
In Appendix A.1, the results of various logistic regressions are discussed in order to clarify the
missing values of the two biomarkers. As can be observed in Appendix A.1, there are some
variables able to explain missing data, but it is assumed that this significant association is mainly
determined by the size of the dataset and not associated with the clinical outcomes (death or
liver transplantation). Therefor, the missing longitudinal measurements of Alkaline Phosphatase
and Serum Bilirubin are discarded from the dataset and treated as Missing Completely At
Random (MNAR).
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3.1.3 Survival Submodel

In the second building block, the time until a specified event occurs, in this case death or
liver transplantation, is analyzed using a Cox proportional hazards function and its correspond-
ing survival function. To accomodate for the special features of the biomarkers, the true and
unobserved levels of Alkaline Phosphatase and Serum Bilirubin are introduced in both the
Cox proportional hazards function and the survival function. When the features of the two
biomarkers are ignored and the observed biomarker levels are directly implemented in the sur-
vival functions, the parameter estimates are biased towards zero (Prentice (1982)). To overcome
this problem, the true complete history of Alkaline Phosphatase and Serum Bilirubin, denoted
by Mi, is obtained by the linear mixed-effects model.

The baseline survival covariates wi and the continuous true and unobserved levels of the
biomarker mi(t) are assumed to have a multiplicative effect on the hazard ratio (Breslow (1975)).
The proportional hazards function including the true levels of the biomarker is given by

hi(t|Mi(t), wi) = lim
dt→0

P(t ≤ T ∗i < t+ dt|T ∗i ≥ t,Mi(t), wi)/dt

= h0(t) exp(γ
Twi + αmi(t)), t ≥ 0 (13)

where h0(·) represents the baseline hazards function; the hazard ratio when γTwi +αmi(t) = 0.
wi is the vector of baseline covariates, assumed to be associated with the hazard ratio, and
γT is its corresponding vector of coefficients. α represents the coefficient of the true levels
of Alkaline Phosphatase or Serum Bilirubin mi. The true time-to-event is written as T ∗i and
Mi = {mi(s), 0 ≤ s < t} describes the complete longitudinal history of the true biomarker
values up to time t. The analysis starts at the beginning of the follow-up study.

Specification of the baseline hazard function h0(·) is required to avoid underestimated stan-
dard errors of the parameters estimates (Hsieh et al. (2006)). The range of the baseline hazard
function is restricted if explicit distributions like the Weibull distribution or exponential dis-
tribution are adopted to describe the function. To avoid underestimated standard errors and
maintain flexibility, the baseline hazard function is determined using a piecewise-constant model
(Rizopoulos (2012b)). The baseline hazard function using a piecewise-constant model is given
by

h0(t) =

Q∑
q−1

ξqI(vq−1 < t ≤ vq) (14)

where 0 = v0 < v1 < ... < vQ is the partition of time in years, where vQ is the larger than the
largest observed time. ξq is the hazard ratio during the interval of (vq−1, vq]. Q denotes the
number of knots and determines the flexibility of the baseline hazard function.

The hazard ratio of the proportional hazards function is only related to the current value of
mi at time point t. To incorporate the true complete history of Alkaline Phosphatase or Serum
Bilirubin, the survival function is derived from the proportional hazards function. The survival
function including Mi is given by

Si(t|Mi(t), wi) = P(T ∗i > t|Mi(t), wi)

= exp

(
−
∫ t

0
h0(s)exp{γTwi + αmi(s)} ds

)
. (15)
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The main objective of these two functions is to develop a valid inference about the true event
times T ∗i using the observed event times Ti and the event indicator variable δi. The observed
event times are given by the minimum value of the true event time T ∗i and censoring time Ci,
Ti = min(T ∗i , Ci). The indicator variable δi takes the value of 1 if the patient is deceased or
received a liver transplantation, and 0 otherwise. The indicator variable δi plays a prominent
role in the joint log likelihood to capture censoring. The Cox proportional hazards function and
the survival function explain the survival process and constitute the distribution of T ∗i and δi
in the joint log likelihood function described in section 3.2.

The longitudinal submodel of section 3.1.1 and the survival model are jointly modeled us-
ing shared random effects bi to capture the association between the two processes. Different
parameterizations of the proportional hazards model regarding its baseline covariates wi are
used to find the model with the best fit. Baseline covariates have previously been extensively
studied. Recently, a risk score (the GLOBE score) was developed by Lammers et al. (2015).
Components of this GLOBE score are mainly used as the cross-sectional baseline covariates in
the joint modeling framework. To obtain initial parameter estimates for the EM algorithm of
the joint log likelihood, the Cox proportional hazards function is first computed with a partial
log likelihood.

In section 3.2, the optimization of the joint log likelihood is discussed using Maximum
likelihood (ML) estimation. When models are nested the log likelihood statistics determine the
model with the best fit using a likelihood ratio test, otherwise the information criteria AIC and
BIC are used to compare the models in their goodness-of-fit. In the next subsection, censoring
of the time-to-event data is discussed. Not all patients experience an event during the follow-up
and their true event time is thereby not available in the dataset.

3.1.4 Censoring

Censoring is an important feature regarding the analysis of a survival process. During the
follow-up study not every patient experience an event time, because the event has not occured
yet or the patient has dropped out of the study. This thesis concentrates on non-informative
right censoring. Right censoring means the event can only be obtained after the end of the
follow-up or drop out. When the patient’s drop out is not related to its health condition, it is
determined a random drop out or non-informative drop out. Non-informative drop out can be
interpreted as Missing Completely At Random (MCAR) and benefits from the same features.
Appendix A.2 shows the parameter estimates of the fitted joint models without the 184 drop
outs. Excluding the patients who dropped out of follow-up shows no large differences and
inferences remain the same. Hence, it is assumed that they have no considerable influence on
the distribution of the event times and they are handled as if the follow-up has ended normally.

3.2 Maximum Likelihood Estimation of the Joint Model

The idea behind the joint model is that the longitudinal process of a biomarker and the survival
process are estimated simultaniously. Computing the longitudinal evolutions of the biomarker
(Alkaline Phosphatase or Serum Bilirubin) and the survival process simultaniously uses the
available information more optimal (Wulfsohn and Tsiatis (1997)). The association between
these two is captured by their shared random effects, denoted by bi. In this section the two
building blocks are linked with these shared random effects to formulate the joint log likeli-
hood. Next to the joint log likelihood, several alternative association structures of the true and
unobserved levels of Alkaline Phophatase and Serum Bilirubin are explained.
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3.2.1 Joint Log Likelihood

Now both the submodels have been specified, the parameters are obtained using Maximum
Likelihood (ML) estimation (Wulfsohn and Tsiatis (1997); Henderson et al. (2000); Hsieh et al.
(2006)). The joint log likelihood function is derived from the joint distribution of the time-to-
event Ti, the event indicator δi and the observed biomarker value yi. The joint distribution is
defined using the shared random effects to link the longitudinal data of the two biomarkers, Al-
kaline Phosphatase and Serum Bilirubin, to the survival submodel. So, besides the assumption
that the random effects ensure the observations of Alkaline Phosphatase and Serum Bilirubin
of each patient yi to be independent, they also account for the relationship between the lon-
gitudinal process and the time-to-event likelihoods (Rizopoulos (2012b)). This full conditional
independence assumption is denoted by the following two equations

p(yi|bi; θ) =

ni∏
j=1

p(yi(tij)|bi; θ) (16)

p(yi, Ti, δi|bi; θ) = p(yi|bi; θ)p(Ti, δi|bi; θ), (17)

where the conditional independence of the observed measurements of a patient yi is described
by the first equation and the conditional independence between the longitudinal process and
the survival outcomes by the latter equation.

In addition, it is assumed that levels of Alkaline Phosphatase and Serum Bilirubin are not
constant between visits and that the missing data and censoring is non-informative. The latter
assumption means that the missing values of the two biomarkers and the censored values due
to drop outs are assumed to be unrelated to the prognosis of PBC patients. Under these
assumptions, the joint log likelihood function is given by

`i(θ) =
∑
i

log p(Ti, δi, yi; θ) =
∑
i

log

∫
p(Ti, δi, yi, bi; θ) dbi

=
∑
i

log

∫
p(Ti, δi|bi; θt, β)

[∏
j

p{yi(tij)|bi; θy}
]
p(bi; θb) dbi,

(18)

where θ = (θTt , θ
T
y , θ

T
b ) is the vector of unknown parameters with θt = (γT , α, θTh0)T represents

the parameters associated with the survival process and θh0 are the parameters of the piece-
wise constant function specifying the baseline hazards function h0. θy = (βT , σ2)T denotes the
parameters of the observed longitudinal measurements and θb = vech(D) indicates the vector-
ization of the covariance matrix of the random effects D.

The event times density function, denoted by p(Ti, δi|bi; θt, β), and the longitudinal compo-
nent of the joint log likelihood, denoted by p(yi|bi; θ)p(bi; θ), are given by
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p(Ti, δi|bi; θt, β) = hi(Ti|Mi(Ti), θt, β)δiSi(Ti), θt, β)

=

[
h0(Ti) exp{γTwi + αmi(Ti)}

]δi
× exp

(
−
∫ Ti

0
h0(s) exp{γTwi + αmi(s)}ds

)
;

(19)

p(yi|bi; θ)p(bi; θ) =
∏
j

p{yi(tij)|bi; θy}p(bi; θbi)

= (2πσ2)ni/2 exp
{
− ‖yi −Xiβ − Zibi‖2/2σ2

}
× (2π)−qb/2det(D)−1/2exp(−bTi D−1bi/2),

(20)

where qb is the dimensionality of the random effects vector bi and || · || is the Euclidean norm.

Optimizing the joint log likelihood function generally leads to no closed-form solution. To
maximize the joint log likelihood function with respect to its parameters, it is recommended to
estimate the parameters using a numerical optimization method. In this thesis, the Expectation-
Maximization (EM) algorithm is adopted to conduct a full Maximum Likelihood (ML) estima-
tion, where the random effects are treated as missing data. The EM algorithm for the joint
modeling framework is described in detail in Appendix A.3.

The gradient of the joint log likelihood function plays an essential rol in the iterative EM
algorithm and thereby in the estimation of the parameters and its corresponding standard
deviations. The gradient of this joint log likelihood function is called the score vector and
represents the sensitivity of the likelihood function with respect to the vector of parameters θ
(Rizopoulos (2012b)). The score vector is given by

S(θ) =
∑
i

∂

∂θT
log

∫
p(Ti, δi|bi; θ)p(yi|bi; θ)p(bi; θ)dbi

=
∑
i

∫ [
∂

∂θT
log{p(Ti, δi|bi; θ) p(yi|bi; θ)p(bi|θ)}

]
× p(Ti, δi|bi; θ) p(yi|bi; θ)p(bi|θ)

p(Ti, δi, yi; θ)

=
∑
i

∫
A(θ, bi)p(bi|Ti, δi, yi; θ)dbi, (21)

where A(θ, bi) = ∂{log p(Ti, δi|bi; θ) + log p(yi|bi; θ) + log p(bi|θ)}/∂θT is called the complete
data score vector. When the score vector equation (21) is computed, considering the fact that
p(bi|Ti, δi, yi; θ) has the parameter estimates θ of the previous iteration, equation (21) coincides
with an Expectation-Maximization (EM) algorithm of the joint log likelihood function.

The EM algorithm iteratively alternates between the Estimation of the complete log likeli-
hood function (E-step) and the Maximization of the estimated complete log likelihood function
(M-step) untill the algorithm has converged. The E-step involves two integrals, the integral with
respect to time of the survival function (15) and the one with respect to the random effects (21).
In general, the integral of the survival function (15) and the integral with respect to the random
effects (21) do not provide closed-form solutions. Therefor, numerical integration techniques
are needed to approximate these integrals in order to obtain the maximum likelihood estimates.

The integral of the survival function (15) with resprect to time is approximated using the
15-point Gauss-Kronrod rule (Press (2007)). The integral with respect to the random effects
is more challenging to approximate. Conventional numerical integration techniques like Monte
Carlo sampling or Gaussian quadrature rules (Wulfsohn and Tsiatis (1997); Henderson et al.
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(2000); Song et al. (2002)) are computational very intensive. That is why Rizopoulos (2012a)
developed a alternative approximation technique called the pseudo adaptive Gauss-Hermite
rule, a variant of the adaptive Gauss-Hermite rule, to reduce this computational burden. Using
the pseudo adaptive Gauss-Hermite rule to estimate the expected score vector with respect to
the parameters θ, improves the speed of convergence. The pseudo adaptive Gauss-Hermite rule
approximates the score vector of the joint log likelihood by the following equation

E
{
A(θ, bi)|Ti, δi, yi; θ

}
≈ 2q/2

∣∣B̃i∣∣−1 ∑
t1...tq

πtA(θ, r̃t)p(r̃t|Ti, δi, yi; θ)exp(||bt||2), (22)

where r̃t = b̃i +
√

2 ˜B−1bt. b̃i
3 and B̃i

4 are estimated using Restricted Maximum Likelihood
(REML) on the linear mixed-effects model. bt are the abscissas, where πt constitutes its weights.
The pseudo adaptive Gauss-Hermite rule has the advantage that it needs less quadrature points
than the standard Gauss-Hermite rule and it does not need to relocate the points, which makes
the estimation process more adequate and less computational (Rizopoulos (2012b)).

In the M-step the parameters are updated by maximizing the expected complete data log
likelihood of the E-step. Once the parameters have been updated the process starts over again
with the estimation of the complete log likelihood with the updated parameters and with the
new expected log likelihood function the parameters are again updated. Some criteria have
been established to know when the EM algorithm has converged. These criteria check whether
the parameter values are converging to a stable point and are given by

max
{
|θ(it) − θ(it−1)|/(|θ(it−1) + 10−3)} < 10−4; (23)

`(θ(it))− `(θ(it−1)) < 10−8
{
|`(θ(it−1))|+ 10−8

}
, (24)

where θ(it) is the iterative parameter value with it indicating the number of times the algorithm
has iterated.

Besides the fact that the score vector contributes in the realization of the EM algorithm, it
is convenient in finding the standard errors of the desired parameters θ. The derivative of the
score vector with respect to θ is equal to the Hessian matrix of the joint log likelihood function.
Subsequently, the inverse of the negative Hessian matrix is taken to obtain the standard errors
of its parameters

ˆvar(θ̂) =

{
−H(θ̂)

}−1
=

{
−

n∑
i=1

∂Si(θ)
∂θ

∣∣∣∣
θ=θ̂

}−1
, (25)

where H is the Hessian matrix and θ̂ are the parameter estimates of the joint model. The
Hessian matrix is the partial derivative of the score vector with respect to its parameters.
To summarize the estimation process of the joint model parameters and the maximization of
its joint log likelihood, an enumeration of the steps has been written below

3b̃i = arg maxb{logp(yi, b; θ̃y)}, where θ̃y is the parameter vector of the linear mixed-effects model
4Choleski factor of H̃i = −∂2logp(yi, b; θ̃y)/∂b∂bT
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Step 1: Estimate the linear mixed-effects model with REML

Step 2: Estimate the proportional hazards model with partial log likelihood

Step 3: Use the parameter estimates of step 1 and step 2 as initial values of the EM
algorithm

E-step:
Compute expected complete data log likelihood using the 15-point Gauss-Kronrod
rule and the pseudo adaptive Gauss-Hermite rule to approximate the two integrals

Q(θ|θ(it)) = E
{∑

i

logp(Ti, δi, yi; θ)|Ti, δi, yi; θ(it)
}

=
∑
i

∫
logp(Ti, δi, yi, bi; θ)p(bi|Ti, δi, yi; θ(it)) (26)

M-step:
Maximize the Q(θ|θ(it)) in order to update the parameter vector θ

Step 4: Iterate till the algorithm has convergenced (satisfying either of two criteria (23 or
24))

Relating the hazard ratio to the current value of the true levels of the two biomarkers, Alkaline
Phosphatase and Serum Bilirubin, provides not always the most appropriate association. In the
next subsection, four alternative association stuctures are explained to improve the prognostic
significance of the two biomarkers in the context of the joint model.

3.2.2 Alternative Association Structures of the Biomarkers

The proportional hazards function introduced in section 3.1.3 shows the relation between the
true and unobserved biomarker value at time t and its hazard ratio at the same point in
time. α represents the strength of this relationship. Time-dependent covariates like Alkaline
Phosphatase and Serum Bilirubin are often handled in a different manor than the baseline
covariates. In this thesis, four alternative association stuctures of the time-dependent covariates
are presented in order to improve the association between the true biomarker levels and the
patient’s clinical outcome.

The first extention is the substitution of mi with a lagged parameter of the true longitudinal
response. Sometimes the current measurement of the biomarker is not directly related to the
hazard ratio of that point in time. In that case, the association between the true biomarker value
and the risk of an event could lead to incorrect conclusions (Vacek (1997)). The parameterization
of the hazards function concerning a lagged parameter is given by

hi(t) = h0(t)exp
[
γTwi + αTmi{max(t− c, 0)}

]
. (27)

where t denotes the time in years and c is the lag in years. max is the maximum operator
that ensures the time point to be bigger or equal to 0, which represents the beginning of the
follow-up study.

Because the biomarkers are time-dependent, the association between the biomarker and the
risk of an event can be based on different characteristics of their movements over time. The
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second parameterization is thereby the addition of the slope or derivative of the true biomarker
level, denoted by m

′
i, and is given by

hi(t) = h0(t)exp
{
γTwi + αT1mi(t) + αT2m

′
i(t)
}
, (28)

where

m
′
i(t) =

d

dt
mi(t) =

d

dt
{xTi (t)β + zTi (t)bi}. (29)

By adding the slope, the hazard ratio is still only depending on the features of the longi-
tudinal response at time t. To directly relate the hazard ratio to the complete history of the
biomarker Mi, one can replace the true observed response by its definite integral over time

hi(t) = h0(t)exp

{
γTwi + αT

∫ t

0
mi(s)ds

}
. (30)

The downside of the cumulative parameterization above, is that it gives the same weight to
all available responses of the two biomarkers, Alkaline Phosphatase and Serum Bilirubin. Ideally,
there is placed more weight on the recent observation than on the observations further in the
past. To capture this discrepancy in weights over time, a weighted cumulative parameterization
in the functional form of a standard normal density is introduced, given by

hi(t) = h0(t)exp

{
γTwi + αT

∫ t

0
ω̄(t− s)mi(s)ds

}
. (31)

where ω̄(t − s) is the weight function. The standard normal density as a weight function is
specified as exp{−(t− s)2/2}. This integral is approximated using a Gauss-Kronrod rule.

Structuring the thesis, first the linear mixed-effects model and the Cox proportional hazards
model are estimated individually to obtain the initial parameter values for the EM algorithm
to receive the maximum likelihood estimates. Thereafter, different parameterizations of the
baseline covariates are compared using goodness-of-fit statistics of its corresponding joint mod-
els. The model with the best fit in combination with significant parameters is extended with
the four alternative association structures of true biomarker values. The standard fitted joint
model and its parameterization in the form of the suggested alternative association structures
are compared with goodness-of-fit statistics and with two accuracy measures, respectively the
Area Under the Curve (AUC) and its Prediction Error (PE). The log likelihood ratio test is
conducted when the models are nested, otherwise the information criteria AIC and BIC are
used to conclude. Concerning its accuracy measures, the model with the highest AUC and the
smallest PE is characterized as the most accurate.

In section 3.4, the two accuracy measures are discussed to compare the different parameter-
izations based on their ability of discrimination and calibration. But first, the derivation of the
dynamic individual predictions is explained in the next subsection.

3.3 Dynamic Individual Predictions

The patient-specific predictions of survival probabilities have a dynamic feature as they can be
updated at each new biomarker observation. When the joint model parameters are estimated
based on a sample of the PBC population, denoted by Dn, interest lies in the ability of the fitted
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joint model to obtain predictions of a new patient with a considerable number of observations.
Although it is already possible with one observation of the biomarker (Rizopoulos (2012b)).
The patient-specific new set of observations is denoted by y∗i . Due to the fact that biomarker
values are only available when the patient is still alive, focus lies on the computation of a
patient-specific conditional survival probability. This conditional survival probability for some
future point in time, denoted by u, is computed given the available information up to time t
(the patient is still alive at time t, otherwise the probability is equal to zero) and is given by

πi(u | t) = p(T ∗i ≥ u | T ∗i > t, y∗i ,Dn), (32)

where Dn is the sample used to fit the joint model and u > t. T ∗i is the patient-specific true time-
to-event and y∗i denotes the set of observations for whom the conditional survival probability is
estimated.

To derive the conditional survival probabilities πi(u | t), a Monte Carlo simulation is con-
ducted developed by Proust-Lima and Taylor (2009) and Rizopoulos and Ghosh (2011). There-
for, an asymptotic Bayesian approach has to be adopted in order to formulate a posterior
expectation of the conditional survival probability (32). This posterior expectation is given by

p(T ∗i ≥ u|T ∗i > t, y∗i ,Dn) =

∫
p(T ∗i ≥ u|T ∗i > t, y∗i ; θ)p(θ|Dn) dθ. (33)

where θ denotes the vector of parameters.
Based on the conditional independence assumption given in section 3.2.1, the first component

of the integral in equation (33) can be written as

p(T ∗i ≥ u|T ∗i > t, y∗i ; θ) =

∫
Si{u|Mi(u, bi, θ); θ}
Si{t|Mi(t, bi, θ); θ}

p(bi|T ∗i > t, y∗i ; θ) dbi, (34)

where

Si
{
t | Mi(t, bi), θ

}
= exp

{∫ t

0
h0(s)exp{γTwi + αmi(s)}

}
ds, (35)

denotes the patient-specific survival function. p(bi|T ∗i > t,Yi(t); θ) is the posterior distribu-
tion of the random effects, which is essential in the Monte Carlo simulation to obtain the
conditional survival probability. Dividing the product of the conditional likelihood, denoted by
p(Ti, δi | bi; θ)p(yi | bi; θ), and the prior distribution of the random effects, denoted by p(bi; θ), by
the joint distribution of the time-to-event Ti, the event indicator variable δi and the longitudinal
marker observations yi provides the posterior distribution of the random effects

p(bi | Ti, δi, yi; θ) =
p(Ti, δi | bi; θ)p(yi | bi; θ)p(bi; θ)

p(Ti, δi, yi; θ)

∝ p(Ti, δi | bi; θ)p(yi | bi; θ)p(bi; θ). (36)

where in this context yi and Ti are respectively substituted by the new set of observations y∗i
and (T ∗i > t).

The second component p(θ|Dn) is the posterior distribution of the parameters conditional on
the used sample to fit the joint model. Considered the sample of patients in the dataset is suffi-
ciently large, it is assumed that the posterior distribution of θ approaches an asymptotic normal
distribution. This taken into account, a Monte Carlo simulation scheme is proposed to estimate
the conditional survival probability πi(u | t) (Proust-Lima and Taylor (2009); Rizopoulos and
Ghosh (2011)).
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1. Simulate the parameter values θ:

Draw θ` ∼ N{θ̂, ˆvar(θ̂)}.

2. Simulate the random effect parameters from the posterior distribution of the random ef-
fects conditional on the available longitudinal observations y∗i and the simulated parameter
values:

Draw b`i ∼ p(bi|T ∗i > t, y∗i (t), θ
` ∝

{∏ni
j p(yij | bi, θ`)

}
Si
{
t | Mi(t, bi), θ

`
}
p(bi, θ

`).

3. Compute the predictive survival probability:

Calculate π`i (u | t) = Si{u|Mi(u, b
`
i , θ

`; θ); θ`}
/
Si{t|Mi(t, b

`
i , θ

`); θ`}.

b`i is simulated from its posterior distribution using a Metropolis-Hasting algorithm with mul-
tivariate t distributed proposals. The Monte Carlo simulation scheme is repeated L times
(` = 1, ..., L) wherefrom the median and mean is taken to provide a value for the conditional
survival probability πi(u | t). This Monte Carlo simulation scheme computes the first-order es-
timate of πi(u | t). Uncertainty in the Maximum Likelihood (ML) estimates of θ and Bayesian
estimates of bi is spread by using the simulated values (θ` and b`i) instead of their expected
values (θ̂ and b̂i).

In this thesis, the Monte Carlo simulation iterates 200 times and thereafter takes both the
mean and median of the computed conditional survival probabilities. In section 5.3.3, individual
dynamic predictions are discussed of three patients, one who is deceased before the end of follow-
up, one who received a liver transplantation before the end of follow-up and one who is still
alive at the end of follow-up. Predictions are made at four different points in time. Conditional
survival probabilities constitute an essential component in both accuracy measures as becomes
clear in the next section.

3.4 Accuracy

Besides the goodness-of-fit statistics used to compare the joint model and its parameterizations,
two accuracy measures have been adopted to determine the models ability to discriminate
between patients having a high or low risk of having an event and how well the the fitted model
and its alternative association structures of the biomarkers are able to predict a future event.

3.4.1 Discrimination in a Joint Modeling Framework

The Receiver Operating Characteristic (ROC) or ROC curve is a statistical tool to find out
how well the biomarker can discriminate between patients in having an event or not. The
curve plots the true positive rate (TPR) against the false positive rate (FPR) for different
biomarker threshold values. True positive is called the sensitivity of the model and appears
when a biomarker threshold c correctly predicts that a patient is having an event. Specificity is
the rate which the biomarker threshold correctly specifies the absence of an event. Hence the
false positive rate is obtained by substracting the specificity from one. In context of the joint
modeling framework the sensitivity and specificity are given by
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p{πi(t+ ∆t|t) ≤ c | T ∗i ∈ (t, t+ ∆t]}, (37)

and

p{πi(t+ ∆t|t) > c | T ∗i > t+ ∆t}, (38)

where c is the biomarkers’ threshold.

In order to measure the accuracy in discrimination, the Area Under the Curve (AUC) or
C-statistic of the fitted model is calculated. This is the area under the ROC-curve. The
prognostic survival probabilities πi(t+ ∆t|t) are computed for two randomly selected patients i
and f , based on the methods of section 3.3. Patient i has experienced an event (death or liver
transplantation) during (t + ∆t) and the time-to-event of patient f is unknown at time point
(t+ ∆t) due to the absence of an event. The discriminative ability of the fitted joint model for
these randomly selected patients {i, f} is specified by the following equation

AUC(t,∆t) = p
[
πi(t+ ∆t|t) < πf (t+ ∆t|t) | { T ∗i ∈ (t, t+ ∆t]} ∩ { T ∗f > t+ ∆t}

]
, (39)

where ∩ means that both conditions hold. The formula essentially gives the probability that
the future survival probability of patient i is smaller than patient f given the fact patient i
experienced an event and patient f does not.

In order to extend this for the whole dataset, this is applied to all possible pairs. This leads
to a proportion, where the numerator represents the number of pairs that correspond to the
condition and the denominator is the total number of possible randomly chosen pairs. To give
an example of the interpretation of the AUC, a value of 1 is equal to perfect discrimination
and a value of 0.5 is given when the model discriminates randomly. The estimated AUC of the
fitted joint model is given by

ÂUC(t,∆t) =

∑n
i=1

∑n
f=0;f 6=i I{πi(t+ ∆t|t) < πf (t+ ∆t|t) ∗ I{Ωif (t)}∑n

i=1

∑n
f=0;f 6=i I{Ωif (t)}

, (40)

where I{Ωif} denotes the condition to determine the randomly selected pairs. This condition
can be elaborated as follows

Ωif (t) =
[
{Ti ∈ (t, t+ ∆t]} ∩ {δi = 1}

]
∩
[
{Tf > t+ ∆t}{δi = 0}

]
(41)

where δ is the event indicator that is equal to 1 if the event has occured, otherwise it is equal
to 0. When patient i experiences an event and patient f did not experience an event before
(t + ∆t), the condition holds and its indicator function I{Ωif} has the value 1, otherwise it is
0.

The estimation of the AUC is computed at four different points in time with a time interval
∆t to compare the accuracy of the joint models at different moments of follow-up. This is done
to conclude if the model is able to discriminate accurately between patients with high risk and
low risk of having an event during the whole spectrum of the disease. In the next subsection,
the accuracy measure of calibration is explained to find out how well the fitted joint model is
able to predict a future event.
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3.4.2 Calibration

The expected error of prediction, denoted by PE(·), is a calibration measure that determines
the predictive ability of the fitted joint models of the two biomarkers, Alkaline Phosphatase and
Serum Bilirubin. It is important to accomodate for censoring when calculating the Prediction
Error (PE). Henderson et al. (2002) introduced an estimation technique that accounts for this
feature, where the sample is divided into three kinds of patients: (a) patient that are still alive at
time point u, denoted by I(Ti ≥ u)L{1− π̂i(u|t)}, (b) patient who experienced an event before
u, denoted by δiI(Ti < u)L{0− π̂i(u|t)} and (c) patients that are censored before u, denoted by
(1− δi)I(Ti < u)

[
π̂i(u|Ti)L{1− π̂i(u|t)}+ {1− π̂i(u|Ti)}L{0− π̂i(u|t)}. The Prediction Errors

(PE) of the three groups are added and divided by the total number of patients who are at risk
at time t to obtain the estimated Prediction Error (PE) of the joint model. The formula of
Henderson et al. (2002) is given by

P̂E(u|t) = {R(t)}−1
∑
i:Ti≥t

I(Ti ≥ u)L{1− π̂i(u|t)} + δiI(Ti < u)L{0− π̂i(u|t)} +

(1− δi)I(Ti < u)
[
π̂i(u|Ti)L{1− π̂i(u|t)}+ {1− π̂i(u|Ti)}L{0− π̂i(u|t)}

]
, (42)

where π̂i(u|t) = p̂(T ∗i ≥ u|T ∗i > t,Yi(t),Dn) and δi is the indicator variable taking the value of
1 if an event has occured, otherwise it is equal to zero. L{·} denotes the absolute loss function,
i.e. L{1− π̂i(u|t)} gives |1− π̂i(u|t)|. R(t) shows the number of patients who are at risk at time
t. I(·) is an indicator function that takes on the value of 1 if the condition is true, otherwise it
is equal to zero. u is a predetermined future point in time, where the prediction is based on.

When models are nested a measure of explained variation, denoted by R2
PE(·), can be

computed to determine whether a model improves the accuracy. In the equation below, model
B2 is compared to B1

R2
PE(u | t;B1, B2) = 1− P̂EB2(u|t)

P̂EB1(u|t)
(43)

In the next section, the thesis is prosecuted with a description of the used dataset, followed
by a discussion on the results.

4 Data

The clinical and laboratory dataset is collected from 15 liver centers spread over eight countries
in North America and Europe provided by the Global PBC Study Group. The dataset was
earlier described in detail by Lammers et al. (2014) in their article on the predictive power
of the biomarkers Alkaline phosphatase and Serum Bilirubin on death or liver transplantation
regarding patients diagnosed with PBC. All patients in the database are identified with an
authorized diagnosis of PBC in conformity with the guidelines of Europe and the United States.

In total there were 4, 845 patients in the database provided by the Global PBC Study Group
with in total 65, 642 visits. Due to following inclusion criteria, some patients are discarded from
the dataset to estimate the joint model. First, based on Appendix A.1 and A.2 it is assumed
the missing data of both biomarkers, Alkaline Phosphatase and Serum Bilirubin, and censoring
due to drop outs have no considerable impact. Therefor, the missing values are removed from
the dataset. 345 patients were lost due to this criterion. When patients are treated with UDCA
and the therapy is observed to be effective, a major drop in the values of Alkaline Phosphatase
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and Serum Bilirubin can be observed in the first year of treatment. Therefor, values before
one year of follow-up are discarded from the dataset to ensure the decrease has no influence on
the slope of the linear mixed-effects model, only on its starting point (Lammers et al. (2015)).
Currently, almost all PBC patients are treated with UDCA, unless the patient is intolerant to
the acid. Therefor, only patients treated with UDCA are included in the sample to fit the joint
model, which provides a sample of 3, 599 patients with in total 36, 782 visits.

The dataset contains a large amount of clinical and laboratory information of the patients
who are diagnosed with PBC between 1959 and 2012 including gender, age, type of medication,
duration and last date of the follow-up, levels of biochemical variables (Serum Bilirubin, Alkaline
Phosphatase, Albumine, Platelets, etc.), clinical outcomes (death or liver transplantion) and
reasons of ending the follow-up (drop out, death, liver transplantation, end of follow-up).

Verification of the completeness, plausibility and validity of the data are thoroughly checked
by members of the Global PBC Study Group. To ensure this, medical charts were extensively
reviewed to recover missing data (Lammers et al. (2014)).

5 Results

5.1 Linear Mixed-Effects Model Selection

The objective of the linear mixed-effects model was to estimate the complete longitudinal history
of the true levels of the two biomarkers, Alkaline Phosphatase and Serum Bilirubin, denoted by
Mi. To correct for nonlinearity, the natural logarithm of the two biomarkers has been taken
(Lammers et al. (2015)).

In this thesis, eight specifications of the linear mixed-effects model are proposed to describe
the evolutions of the two biomarkers. Different polynomials of time are chosen to describe the
evolutions of the biomarker levels. Based on some patient-specific biomarker trajectories, these
parameterizations seem to be the most eligible. Only UDCA treated patients diagnosed with
PBC were included in the model using levels of Alkaline Phosphatase and Serum Bilirubin after
one year of follow-up. After one year of treatment, one can identify patients with a sufficient
response to treatment (Lammers et al. (2015)). UDCA has in particular a major impact in the
early stage of the disease and in the beginning of the treatment (Lammers et al. (2014)). The
eight parameterizations of the linear mixed-effects model are given by

1. ln(yi) = β0 + β1 ∗ t+ b0 + b1 ∗ t+ εi;

2. ln(yi) = β0 + β1 ∗ t+ β2 ∗ t2 + b0 + b1 ∗ t+ b2 ∗ t2 + εi;

3. ln(yi) = β0 + β1 ∗ t+ β2 ∗ t4 + b0 + b1 ∗ t+ b2 ∗ t4 + εi;

4. ln(yi) = β0 + β1 ∗ t+ β2 ∗ t2 + β3 ∗ t4 + b0 + b1 ∗ t+ b2 ∗ t2 + b3 ∗ t4 + εi;

5. ln(yi) = β0 + β1 ∗ t+ β2 ∗ t3 + b0 + b1 ∗ t+ b2 ∗ t3 + εi;

6. ln(yi) = β0 + β1 ∗ t+ β2 ∗ t6 + b0 + b1 ∗ t+ b2 ∗ t6 + εi;

7. ln(yi) = β0 + β1 ∗ t+ b0 + b1 ∗ t+ b2 ∗ t2 + εi;

8. ln(yi) = β0 + β2 ∗ t2 + b0 + b2 ∗ t2 + εi,

where ln(yi) is the natural logarithm of the biomarker. β = {β1, ..., βk} is the vector of coeffi-
cients of the fixed effects and b = {b1, ..., bh} is the vector of coefficients for the random effects.
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The independent design vectors xTi (t) and zTi (t), described in section 3.1.1, are containing dif-
ferent functional forms of time t corresponding to respectively the fixed effects and the random
effects. The error terms of the linear mixed-effects model are denoted by εi. The time in years
is denoted by t and starts at one year of follow-up.

As explained in the methodology section, the specifications of the biomarker trajectory are
estimated using Restricted Maximum Likelihood (REML). Due to the loss in the degrees of
freedom using REML and thereby the discrepancy of the number of observations, it is not
appropriate to compare their likelihood statistics directly. In order to account for this feature,
all models were estimated using both full Maximum Likelihood (ML) and REML. The log
likelihood statistics are used to compare when the models are nested, otherwise the information
criteria AIC and BIC are used.

Estimation of the linear mixed-effects models concerning the trajectory of Serum Bilirubin
is summarized in table 1, for both ML and REML. Starting with Maximum Likelihood (ML)
estimation, model 2 seems to have the best fit based on its log likelihood statistic. The restricted
model 7 shows slightly better information criteria under ML. A likelihood ratio test points out
that model 2 and 7 are significantly indifferent with a likelihood ratio of respectively 0.3660 and
a p-value of 0.5468. When the goodness-of-fit statistics obtained by REML are used to compare
the models, model 7 suggests to be the model with the best fit. Again, the goodness-of-fit
statistics of model 7 and 2 are relatively close. Although model 2 provides an insignificant value
for the fixed effects coefficient β2, it has a slightly higher log likelihood statistic under ML and
it is unlikely that β2 is exactly equal to zero as model 7 suggests. So, the continuous logarithmic
scaled levels of Serum Bilirubin are defined by model 2.

(a) LME models using Maximum Likelihood (ML)

Model L AIC BIC

1 -19719.86 39451.73 39502.80
2 -19383.71 38787.43 38872.55
3 -19609.59 39239.19 39324.31
4 -20432.53 40654.92 40823.39
5 -19517.03 39054.06 39139.19
6 -19644.86 39309.73 39394.86
7 -19383.89 38785.79 38862.40
8 -20114.06 40240.12 40291.19

(b) LME models using Restricted Maximum Likelihood (REML)

Model L AIC BIC

1 -19728.73 39469.46 39520.54
2 -19399.81 38819.62 38904.75
3 -19586.90 39193.80 39278.93
4 -25803.64 51637.29 51768.12
5 -19536.55 39093.09 39178.22
6 -19673.77 39367.54 39452.67
7 -19392.70 38803.40 38880.01
8 -20125.41 40262.81 40313.89

Table 1: Goodness-of-fit statistics of different linear mixed-effects models
for Serum Bilirubin
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In order to select a linear mixed-effects model for the logarithmic scaled levels of Alkaline
Phosphatase, the same approach is conducted. The full Maximum Likelihood (ML) estimation
directly leads to model 2 using the goodness-of-fit statistics provided in table 2. A likelihood
ratio test between model 7 and model 2 provides a likelihood ratio of 2.8610 and a p-value of
0.0908, which indicates no substantial gain in fit. When REML is used to estimate the trajectory
of the biomarker Alkaline Phosphatase, model 7 provides the best log likelihood statistic and
information criteria. Using the same argument as stated above, that it is unlikely for the β2
coefficient of model 2 to be exactly equal to zero, combined with the fact that both models show
no significant difference in fit, it is suggested to use model 2 in the joint modeling framework.

The other parameterizations of the linear mixed-effects model suggest a substantially lower
fit for the trajectory of both Serum Bilirubin and Alkaline Phosphatase based on their goodness-
of-fit statistics. So, model 2 is adopted in the joint modeling framework for both biomarkers.
Model 2 describes the trajectory of the biomarkers by a second degree polynomial of time for
both the fixed effects as the random effects.

(a) LME models using Maximum Likelihood (ML)

Model L AIC BIC

1 -10689.21 21390.42 21441.50
2 -9555.89 19131.78 19216.91
3 -10096.2 20212.29 20297.42
4 -9698.933 19327.87 19455.56
5 -9857.96 19735.91 19821.04
6 -10388.73 20797.45 20882.58
7 -9557.32 19132.64 19209.26
8 -11516.12 23044.25 23095.33

(b) LME models using Restricted Maximum Likelihood (REML)

Model L AIC BIC

1 -10698.57 21409.14 21460.22
2 -9572.64 19165.3 19250.4
3 -10119.3 20258.7 20343.8
4 -9699.148 20088.3 20115.99
5 -9860.75 19741.51 19826.63
6 -10359.34 20738.67 20823.80
7 -9566.70 19151.40 19228.02
8 -11528.02 23068.04 23119.12

Table 2: Goodness-of-fit statistics of different linear mixed-effects models
for Alkaline Phosphatase

5.2 Selection of the Joint Model

5.2.1 Different Parameterizations of the Baseline Covariates

There are considered twelve different parameterizations of the baseline covariates of the pro-
portional hazards function, mainly based on the components of the GLOBE score (Lammers
et al. (2015)). The GLOBE score is a risk score to support physicians in their development
of a diagnosis for PBC patients. This risk score consists of logarithmic scaled values of Alka-
line Phosphatase and Serum Bilirubin times the Upper Limit of Normal (ULN) at 1 year of
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follow-up, age at the beginning of the UDCA treatment, Albumine times the ULN at 1 year
of follow-up and the patients’ platelet count per 109/L at 1 year of follow-up (Lammers et al.
(2015)). To summarize the different models, an enumeration is given below.

1. h0(t) exp(αmi(t));

2. h0(t) exp(γ0i ∗ FUstartAge+ αmi(t));

3. h0(t) exp(γ0i ∗AgeDiagnosed+ αmi(t));

4. h0(t) exp(γ0i ∗AgeDiagnosed+ γ1i ∗ ln(bili12) + γ2i ∗ ln(alp12) + αmi(t));

5. h0(t) exp(γ0i ∗ FUstartAge+ γ1i ∗ ln(bili12) + γ2i ∗ ln(alp12) + αmi(t));

6. h0(t) exp(γ0i∗AgeDiagnosed+γ1i∗FUstartAge+γ2i∗ln(bili12)+γ3i∗ln(alp12)+αmi(t));

7. h0(t) exp(γ0i ∗ FUstartAge+ γ1i ∗ ln(bili12) + γ2i ∗ ln(alp12) + γ3i ∗ alb12 + αmi(t));

8. h0(t) exp(γ0i ∗ FUstartAge+ γ1i ∗ ln(bili12) + γ2i ∗ ln(alp12) + γ3i ∗ alb12 + γ4i ∗ Sex+
γ5i ∗AMA+ γ6i ∗ plat12 + αmi(t));

9. h0(t) exp(γ0i ∗ FUstartAge+ γ1i ∗ alb12 + γ2i ∗ plat12 + αmi(t));

10. h0(t) exp(γ0i ∗FUstartAge+ I[yi = alp]γ1i ∗ ln(bili12) + I[yi = bili]γ2i ∗ ln(alp12) + γ3i ∗
alb12 + γ4i ∗ plat12 + αmi(t));

11. h0(t) exp(γ0i ∗ FUstartAge+ γ1i ∗ alb12 + αmi(t));

12. h0(t) exp(γ0i ∗ alb12 + αmi(t)),

where the first model contains no baseline covariates, only the patient-specific current value
of the biomarker without its error term, denoted by mi(t). In the rest of the models, this
current value of the biomarker is accompanied by baseline covariates with their corresponding
coefficients, denoted by γpi, where p is the amount of baseline covariates. The baseline covariates
FUstartAge and AgeDiagnosed are respectively the age at the beginning of the follow-up
study and the age at diagnosis of PBC. ln(bili12), ln(alp12) and alb12 are the biomarker values
times the Upper Limit of Normal (ULN) at 1 year of follow-up, where the two biomarkers,
Alkaline Phosphatase and Serum Bilirubin, are scaled logarithmic to correct for nonlinearity
and Albumine is not. Sex and AMA are categorical variables to indicate the patients’ gender
and presence of the Anti-mitochondrial antibodies (AMA). AMA are autoantibodies, found in
approximately 90-95% of the patients diagnosed with PBC (Gershwin et al. (1987)). AMA could
be observed when the liver results are normal and the patient shows no signs or symptoms. The
problem is that 0.5% of the population not diagnosed with PBC also exhibits positive test results
on AMA. So, a positive test result on AMA is not able to indicate PBC on its own. plat12 is the
platelet count per 109/L at 1 year of follow-up. Model 10 uses the logarithmic scaled levels of
Alkaline Phosphatase times the ULN at 1 year of follow-up, when mi(t) represents the current
value of Serum Bilirubin. This condition is denoted by the indicator function I[·]. When the
interest lies in the relation between the levels of Alkaline Phosphatase without an error mi and
the hazard ratio, the logarithmic scaled level of Serum Bilirubin times the ULN at 1 year of
follow-up is used in model 10 as baseline covariate.

Table 4 shows the goodness-of-fit statistics regarding the joint models including the true
values mi(t) of Serum Bilirubin. The first model B1 contains no baseline covariates and its
goodness-of-fit statistics indicates the least fit compared to the other joint models. Adding
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the age at the beginning of the follow-up, denoted by FUstartAge, provides an substantially
improved fit compared to B1. Model B2 is significantly preferred to model B1 with a likelihood
ratio of 270.7 and a p-value smaller than 0.0001. The age at diagnosis of PBC is used in model
B3, indicating a less improved fit compared to model B2. In models B4 and B5 the logarithmic
scaled levels of Serum Bilirubin and Alkaline Phosphatase times the ULN at 1 year of follow-up
are included, but they show no significant relation with the hazard ratio. This insignificance
is probably due to the multicollinearity with the levels of Serum Bilirubin mi(t). To test the
added value of the age at diagnosis, model B5 and B6 are compared using the likelihood ratio
test. The fit of the two models are expected to be significantly indifferent with a likelihood
ratio of 1.28 and a p-value of 0.2587. The second substantial improvement in fit is provided by
the addition of Albumine times the ULN at 1 year of follow-up, shown in the models B7 up to
B11. These goodness-of-fit statistics and the likelihood ratio’s of the models B7 up to B11 show
no significant difference between their fit. In order to choose between these five models, the
significance and thereby clinical relevance has been examined. Only the level of Albumine times
the ULN at 1 year of follow-up and the platelets at 1 year of follow-up are determined with a
significant relation towards the hazard ratio. Excluding the follow-up start age from model B11
diminishes its fit as can be observed by the goodness-of-fit statistics of B12. Thereby, model
9 is suggested to use in case of a joint modeling framework where the longitudinal submodel
contains the biomarker values of Serum Bilirubin. Parameter estimates of model B9 are shown
in Appendix A.4.

Model L AIC BIC

B1 -22332.72 44701.43 44812.82
B2 -22197.37 44432.74 44550.32
B3 -22226.93 44491.86 44609.44
B4 -22226.94 44495.87 44625.83
B5 -22197.41 44436.83 44566.78
B6 -22196.41 44436.82 44572.97
B7 -22175.08 44394.17 44530.31
B8 -22174.25 44398.5 44553.21
B9 -22173.21 44388.42 44518.38

B10 -22173.12 44390.24 44526.38
B11 -22175.81 44391.62 44515.38
B12 -22295.70 44629.39 44746.97

Table 3: Goodness-to-fit statistics of
the different joint models for Serum Bilirubin

Next, the joint model concerning the longitudinal measurements of Alkaline Phosphatase is
discussed. The parameterizations 1 till 12 are corresponding to the earlier described enumera-
tion. Table 5 summarizes the goodness-of-fit statistics corresponding to its joint models.

In the joint models of Alkaline Phosphatase, it can be observed that the effects of the age at
the beginning of the follow-up and the age at diagnosis are similar to those in the models where
the true levels of Serum Bilirubin are included. A likelihood ratio test exhibits a significant
improved fit in model A2 compared to A1 with a likehood ratio of 209.89 and a p-value smaller
than 0.0001. Again, A3 has a smaller log likelihood statistic than A2.

Adding both logarithmic scaled biomarker levels times the ULN at 1 year of follow-up
improves the fit substantially, shown in model A4 and A5. The likelihood ratio test between
A5 and A6 indicate no significant difference in fit, wherefrom it is concluded that the added
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value of the age at diagnosis is of minor importance than the age at the beginning of the follow-
up. Albumine times the ULN at 1 year of follow-up shows just like the model with Serum
Bilirubin a substanstial improvement in the fit in model A7. Model A7 is significantly favored
over model A5 with a likelihood ratio of 81.62 and a p-value smaller than 0.0001. Model A8
shows an increase in its log likelihood statistic compared to A7 and A9. Its high log likelihood
statistic is probably due to its large number of baseline covariates, where some covariates show
highly insignificant results. The presence of the auto-antibody AMA and the patients’ gender
show no significant association, with p-values of 0.2712 and 0.2592. Their association with
the hazard ratio is assumed to be of less medical relevance. The logarithmic scaled level of
Alkaline Phosphatase at 1 year of follow-up is less significant than the other parameters due to
its correlation with the true level of the Alkaline Phosphatase, denoted by mi(t). Hence, model
A10 is preferred due to it parsimonious feature, highly significant parameters and high value of
its log likelihood statistic. The logarithmic scaled level of Serum Bilirubin times the ULN at
1 year of follow-up shows no multicollinearity with the true levels of Alkaline Phophatase and
improves the fit substantially, next to alb12, FUstartAge and the number of platelets at 1 year
of follow-up. Parameter estimates of joint model A10 are shown in the Appendix A.4. The fact
Serum Bilirubin is not correlated with levels of Alkaline Phosphatase is due to its later evolving
changes compared to Alkaline Phosphatase. Exluding the age at the beginning of the follow-up
is not recommended as shown by the major drop in the log likelihood statistic of model A12.

Model L AIC BIC

A1 -13024.97 26085.95 26197.34
A2 -12920.07 25878.14 25995.72
A3 -12946.94 25931.88 26049.46
A4 -12699.86 25441.72 25571.68
A5 -12678.19 25398.38 25528.34
A6 -12676.8 25397.59 25533.74
A7 -12637.38 25318.76 25454.9
A8 -12615.29 25280.58 25435.29
A9 -12756.22 25554.45 25684.41

A10 -12620.59 25285.18 25421.33
A11 -12821.47 25682.95 25806.72
A12 -12903.29 25844.57 25962.15

Table 4: Goodness-to-fit statistics of
the different joint models for Alkaline Phosphatase

So, models B9 and A10 are recommended based on the goodness-of-fit statistics, the log
likelihood ratio test, the significance of the covariates and the amount of parameters.

In the next section, different association structures between the biomarkers and the hazard
ratio are discussed using goodness-of-fit statistics to compare their fit. Thereafter, individual
dynamic predictions are derived from the fitted model with the association structure that has
the best fit, followed by the accuracy measures of the fitted model and its alternative structure
associations.

5.2.2 Parameterizations of the Longitudinal Data

The different parameterizations of the longitudinal data represent alternative association struc-
tures between the risk of an event and the true trajectory of the two biomarkers. In this thesis,
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four alternative association structures of the biomarker trajectory are suggested: (1) a two
years lagged value of the true current value of Alkaline Phophatase or Serum Bilirubin, (2)
the addition of the slope of the biomarkers’ trajectory, (3) the inclusion of the true complete
history of the biomarker by an equally weighted cumulative function and (4) the addition of the
weighted cumulative function to allocate different weight to the available true biomarker levels.
The weights are determined by a standard normal density as explained in section 3.2.2.

In table 5 and 6, the goodness-of-fit statistics recarding the longitudinal parameterizations of
the fitted models B9 and A10 are shown. Among the alternative association structures to relate
Serum Bilirubin to the risk of an event, a 2 years lagged parameter value of Serum Bilirubin
shows no gain in fit compared to the joint model with the current value. Adding the slope
of the current value of Serum Bilirubin improves the fit significantly with a likelihood ratio
test statistic of 7.48 and a p-value of 0.0062. When all available information of the biomarker
is related to the hazard ratio in the functional form of a cumulative function, the weighted
cumulative function is preferred and substantially improves the fit compared to the model with
the current value of Serum Bilirubin. A likelihood ratio test prefers this parameterization
significantly above that of only its current value with a likelihood ratio statistic of 28.19 and a
p-value smaller than 0.0001. Based on the goodness-to-fit statistics, Serum Bilirubin is related
in the best way to the hazard ratio through a weighted cumulative function.

For the fitted joint model including all available observations of Alkaline Phosphatase, linking
the risk of an event to the weighted integral of the trajectory of Alkaline Phosphatase (earlier
described in section 3.2.2), provides the largest gain in fit. Likelihood ratio test for comparing
the basic fitted model with the weighted cumulative parameterization leads to a likelihood ratio
of 47.68 with a p-value smaller than 0.0001. In case of Alkaline Phosphatase, the addition
of a slope results in a significant improved fit as well with a likelihood ratio of 7.32 and a
p-value 0.0068. Relating the hazard ratio to the two year lagged marker value or the equally
weighted cumulative function show no improvements in fit. Including all available information
with carefully determined weights improves the fit of the joint model the most.

In the end both biomarkers are showing a significant improved fit when they are related
to the hazard ratio through a weighted cumulative function. This indicates that the inclusion
of all available information of the biomarkers in the proportional hazards function improves
the performance of the joint model. In the next subsection, the result recarding the dynamic
individual predictions of three different patient is discussed.

Model L AIC BIC

B9 current value -22173.21 44388.42 44518.38
B9 lagged -22234.03 44510.07 44640.02
B9 value + slope -22169.47 44382.94 44519.08
B9 cumulative -22426.31 44894.62 45024.58
B9 weighted cumulative -22159.12 44360.23 44490.19

Table 5: Goodness-to-fit statistics of the fitted joint model of Serum Bilirubin and its four alternative association
structures of mi
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Model L AIC BIC

A10 current value -12620.59 25285.18 25421.33
A10 lagged -12625.23 25294.46 25430.6
A10 value + slope -12616.93 25279.86 25422.2
A10 cumulative -12634.33 25312.67 25448.81
A10 weighted cumulative -12596.75 25237.5 25373.64

Table 6: Goodness-to-fit statistics of the fitted joint model of Alkaline Phosphatase and its four alternative
association structures of mi

5.2.3 Individual Dynamic Predication

To illustrate the ability to derive individual dynamic predictions using the Monte Carlo scheme
explained in section 3.3, several plots are shown in Appendix A.5. The plots are created using
model B9 and A10 with the weighted cumulative parameterization for three different patients
at four different points in time (2 years, 5 years, 10 years and 15 years). The first patient is
still alive at the end of follow-up, the second has been deceased before the end of the follow-up
and the last one received a liver transplantation before the end of the follow-up.

In figure 1, the individual dynamic predictions of the patient who is still alive at the end
of follow-up show for both biomarkers almost the same predicted survival curves. The log-
arithmic scaled levels of Serum Bilirubin seems to be considerably constant, while the levels
Alkaline Phosphatase exhibit a small decrease. These graphs provide no aberrant results with
the literature in the sense the biomarker levels are constant or decreasing as well as its survival
curve.

Figure 2 shows more aberrant prognoses. The levels of Serum Bilirubin exhibit an increase
over time, which leads to more steep survival curves. However, just before 10 years of follow-
up a sudden decrease is observed, what improves the patients predictive survival probability.
Thereafter, the status of the patient is detoriated, which can be observed by the increase in
Serum Bilirubin. Shortly after this increase the patient is deceased. The Alkaline Phosphatase
levels show an opposite trend, what results in too optimistic survival curves. This indicates the
importance of the use of both biomarkers.

In figure 3, the individual dynamic predictions of a patient who received a liver transplan-
tation is shown. The situation is worse than for the patient who is deceased before the end of
follow-up. Both levels of Alkaline Phosphatase and Serum Bilirubin are high, which indicates
steeper survival curves. In the beginning of the follow-up study, individual dynamic predic-
tions using the joint model of Serum Bilirubin provide too optimistic survival curves compared
to the situation indicated by the joint model of Alkaline Phosphatase. This shows again the
importance of using both biomarkers for the prognosis of the PBC patient and corresponds
to literature in the sense Serum Bilirubin generally demonstrate meaningful changes in a later
stadium of PBC (Lammers et al. (2015)).

As can be observed in the individual dynamic prediction plots, it is of great importance to
use both biomarkers to obtain a prognosis for the patient. As earlier explained in literature,
Serum Bilirubin demonstrates mostly significant changes in a later stage of the disease compared
to Alkaline Phophatase, which shows meaningfull changes during the whole spectrum of PBC
(Lammers et al. (2015)). Changes of Alkaline Phosphatase levels are assumed to be more spread
over the course of the disease and are more important for the diagnosis of PBC. In a later stage,
it could be harder to discriminate between patient due to the incline of the overall biomarker
level. As Serum Bilirubin only shows meaningfull changes in a further developed stage of the
disease, it is expected that its prognostic strength is better in a later stage of disease than
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Alkaline Phosphatase. To confirm this hypothesis and to compare the alternative association
structures of the biomarkers in discrimination and calibration, accuracy measures are discussed
in the next two subsections.

5.2.4 Discrimination

For the comparison in terms of discriminitive strength in identifying patients with an high risk of
having an event or a low risk, the 10-fold cross validated estimates of the Area Under the Curve
(AUC) are calculated for the fitted models and its parameterizations of the true biomarker level
explained in Section 3.2.2. To determine whether the ranking of Alkaline Phosphatase or Serum
Bilirubin correspond with their health status, the AUC is computed at four different points in
time, respectively at 2, 5, 10 and 15 years of follow-up. The length of its prediction interval is
in this case two years.

The best predictive performance within the different parameterizations are not necessarily
corresponding to the model with the best goodness-of-fit statistic (Proust-Lima and Taylor
(2009)). The accuracy measures are based on a part of the used sample to make a dynamic
prediction up to a predetermined point in time, while the goodness-of-fit statistics are based on
all information of the complete sample.

In table 8 and 9, the AUC values are summarized for both fitted joint models at four different
points in time. The joint model with the longitudinal observations of Serum Bilirubin is fitted
using three baseline covariates, respectively the age at starting the follow-up, Albumine times
the ULN at 1 year of follow-up and platelet count 109/L at 1 year of follow-up. For the joint
model of Alkaline Phosphatase, a fourth baseline covariate is added in the form of the logarithmic
scaled Serum Bilirubin level times the ULN at 1 year of follow-up. Next to the relation between
the current value of the biomarker and its hazard ratio, the four different association structures
described in section 3.2.2 are conducted to find out which has the best discrimination. As can
be observed, the AUC values tend to decrease over time for both biomarkers. The explanation
for this decrease is due to the fact that the biomarker values rise over time, while the number
of patients decreases. In the beginning of the follow-up study, many patients show relatively
low levels of the markers. If a patient experiences an event in the beginning of the follow-up
and shows increased values of Alkaline Phosphatase or Serum Bilirubin, it is much easier to
identify the patient. In a later stage of the follow-up, marker levels have increased over time
for all patients, what makes it harder to discriminate between patients.

In general, the joint model involving the levels of Alkaline Phosphatase show lower AUC
values than the models with Serum Bilirubin. This has to do with the fact that the levels of
Alkaline Phosphatase exhibit changes across the whole spectrum of the disease, while the Serum
Bilirubin shows meaningfull changes in a later stage of the hepatobiliary disease.

The accuracy measures for discrimination show for both biomarker models and its parame-
terizations no remarkable differences cross sectionally, although the equally weighted cumulative
is consequently lower than the other parameterizations. This indicates that the equally weighted
cumulative parameterization of the joint model has an overall worse performance than the other
models. For both biomarkers the weighted cumulative parameterization shows the best discrim-
inative performance at all points in time, with exception of the AUC at 15 years of follow-up
for the joint model involving the longitudinal values of Serum Bilirubin. Here, the AUC leads
to the model with the slope of the biomarkers’ trajectory. In a later stage of the disease, the
biomarker levels have all gone up and thereby the slope of the true and unobserved biomarker
levels constitute a more important role.

In Section 5.3.2, the addition of the slope of the marker trajectory already showed a sub-
stantial gain in fit. Based on the goodness-of-fit statistics of Section 5.3.2 and the values of
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the AUC, the weighted cumulative parameterization is preferred up to 10 years of follow-up
for Serum Bilirubin and thereafter the slope parameterization. For Alkaline Phosphatase the
weighted cumulative parameterization is recommended at all predetermined points in time.

In the next Section, the prediction error is computed to discuss the ability whether the
model is accurate in the prediction of a future event.

model ÂUC(4|2) ÂUC(7|5) ÂUC(12|10) ÂUC(17|15)

B9 value 0.8381 0.8246 0.8095 0.7569
B9 lagged value 0.8378 0.8172 0.8017 0.7324
B9 value + slope 0.8376 0.8213 0.8115 0.7628
B9 cumulative 0.7952 0.7875 0.7844 0.7229
B9 weigted cumulative 0.8385 0.8248 0.8118 0.7572

Number of patients at risk 3,392 2,592 1,378 525

Table 7: Discrimination measures of different parameterizations of the fitted joint model of Serum Bilirubin

model ÂUC(4|2) ÂUC(7|5) ÂUC(12|10) ÂUC(17|15)

A10 value 0.8373 0.7901 0.7602 0.6914
A10 lagged value 0.8369 0.7873 0.7581 0.6896
A10 value + slope 0.8375 0.7908 0.761 0.6928
A10 cumulative 0.7776 0.7776 0.7561 0.6746
A10 weigted cumulative 0.8376 0.7929 0.7637 0.6949

Number of patients at risk 3,392 2,592 1,378 525

Table 8: Discrimination measures of different parameterizations of the fitted joint model of Alkaline Phophatase

5.2.5 Calibration

Calibration measures are computed using a 10-fold cross validation as well. The situation at
time points 2, 5, 10 and 15 are again examined with an prediction interval of two years. Just
like the AUC values, the prediction errors are computed with a subset of the complete sample,
which means it does not necessarily leads to the same model as the goodness-of-fit statistics.

Table 10 and 11 show the estimated prediction errors for the different fitted models. The
estimated errors increase over time due to the fact that the number of patients has decreased
and the overall level of the biomarker has inclined, what makes it harder to predict events
accurately. Hence, an increase in the estimated prediction errors over time is observed.

At two and five years of follow-up, the weighted cumulative parameterization has the small-
est prediction error regarding the joint model of Serum Bilirubin. At 10 years of follow-up
the slope parameterization leads to the smallest prediction error for Serum Bilirubin. How-
ever, if the measure of explained variation R2 is used to compute how much the accuracy has
increased for the weighted cumulative parameterization and the slope parameterization, both
parameterizations are not resulting in a considerable different gain in accuracy. Both models
are resulting in a gain of explained variation of approximately 0.01 relative to the model with
the current value of Serum Bilirubin. So, based on the AUC and goodness-of-fit statistics the
weighted cumulative parameterization can be used as well at 10 years of follow-up without a
substantial difference in calibration. The last time point at 15 years of follow-up leads to the
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equally weighted cumulative parameterization. This is probably a random call due to the fact
the model is not performing well in general at 15 years of follow-up. Combining the goodness-
of-fit statistics, the AUC values and the prediction errors, the slope parameterization of model
B9 is recommended at 15 years of follow-up.

In case of the joint models regarding Alkaline Phosphatase, the estimated prediction errors
designate the model with the slope parameterization at 2 years of follow-up. However, this
model gains in accuracy by approximately 0.0018 of explained variance, while the weighted
cumulative parameterization declines in accuracy by 0.01. This difference is quite small and
thereby the weighted cumulative parameterization is still recommended based on its AUC value
and goodness-of-fit statistics. At time point 5 and 10, joint model A10 of Alkaline Phosphatase
with the weighted cumulative parameterization has the smallest prediction error for Alkaline
Phosphatase. Again, the equally weighted cumulative function has the smallest prediction error
at 15 years of follow-up. However, if the goodness-of-fit statistics, AUC values and prediction
errors are again combined, the weighted cumulative parameterization has the preference above
the other.

model P̂E(4|2) P̂E(7|5) P̂E(12|10) P̂E(17|15)

B9 value 0.0509 0.0642 0.0813 0.1006
B9 lagged value 0.0514 0.0672 0.0863 0.1117
B9 value + slope 0.0508 0.064 0.0803 0.1011
B9 cumulative 0.0596 0.0723 0.0828 0.0996
B9 weigted cumulative 0.0504 0.0629 0.0807 0.1043

# of patients at Risk 3,392 2,592 1,378 525

Table 9: Calibration measures of different parameterizations of the fitted model of Serum Bilirubin

model P̂E(4|2) P̂E(7|5) P̂E(12|10) P̂E(17|15)

A10 value 0.0558 0.0729 0.0933 0.1272
A10 lagged value 0.0559 0.0732 0.0935 0.1282
A10 value + slope 0.0557 0.0726 0.093 0.1261
A10 cumulative 0.0567 0.0734 0.0929 0.1227
A10 weigted cumulative 0.0564 0.0721 0.0924 0.1273

# of patients at Risk 3,392 2,592 1,378 525

Table 10: Calibration measures of different parameterizations of the fitted model of Alkaline Phophatase

When the goodness-of-fit, the AUC’s and the prediction errors are combined to designate a
model, the weighted cumulative parameterization of model B9 and A10 is suggested up to and
including time point 15, excluding the joint model of Serum Bilirubin at 15 years of follow-up.
Joint model B9 leads to a preference of the slope parameterization at 15 years of follow-up.

6 Conclusion

In this thesis, the selection of a joint model is examined to discuss the discriminative ability
of the biomarkers Alkaline Phosphatase and Serum Bilirubin over time to the risk of an event
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(death or liver transplantation). Upon fitting it to the most comprehensive database regarding
patients diagnosed with PBC, it is revealed that the trajectory of the biomarkers is captured by
a linear mixed-effects model where both the random effects as the fixed effects are determined
by a second degree polynomial of time. Alkaline Posphatase and Serum Bilirubin were analyzed
in their natural logarithmic values to correct for nonlinearity. The focus has been on patients
treated exclusively with Ursodeoxycholic acid (UDCA) because this constitutes the current
standard.

To know the dependence between the trajectory of the two biomarkers and its risk of ex-
periencing an event, the linear mixed-effects model has been related to the survival process
using a shared random effects approach. This means the random effects explain the interde-
pendencies between the longitudinal data and the time-to-event data. The clinical outcomes
(death or liver transplantation) of the patient are depending on two types of covariates, the
time-independent baseline covariates and the time-dependent endogenous covariates (Alkaline
Phophatase and Serum Bilirubin). To test the baseline covariates, different parameterizations
of the joint model are estimated in combination with the non parameterized true current value
of Alkaline Phophatase or Serum Bilirubin. Goodness-of-fit statistics shows a substantially im-
proved fit, when the level of Albumine times the Upper Limit of Normal (ULN) at one year
of follow-up, the platelet count per 109/L at 1 year of follow-up and the age at the beginning
of the follow-up are included as baseline covariates. All are highly significant. In case of the
jointly modeled levels of Alkaline Phosphatase, the logarithmic scaled level of Serum Bilirubin
times the ULN at 1 year of follow-up gains the fit substantially next to the latter three baseline
covariates. The other less parsimonious joint models including these baseline covariates show a
similar fit, but contain insignificant parameters presumably due to multicollinearity or medical
irrelevance.

To extend the possibilities of relating the longitudinal trajectory to the clinical outcomes
(death or liver tranplantation), four alternative association structures of the true levels of Al-
kaline Phophatase and Serum Bilirubin are suggested. The use of lagged parameters and the
inclusion of the slope and (weighted) cumulative effects have been examined. For both Alka-
line Phosphatase and Serum Bilirubin, a substantially improved fit can be observed using the
weighted cumulative parameterization of the true marker levels. This is due to the inclusion
of the complete true history of Alkaline Phophatase and Serum Bilirubin. In a more general
sense, the preference that is found in the joint model with the weighted cumulative parameteri-
zation points out that the inclusion of the complete true history of the biomarkers through the
proportional hazards function indicates a more efficient use of the available information.

To determine the predictive ability of the fitted joint model and its different association
structures of the true marker levels, a 10-fold cross validated estimate of the Area Under the
Curve (AUC) and the Prediction Error (PE) are computed in this thesis. Although the weighted
cumulative parameterization shows a substantially improved fit, its validated accuracy measure
is not so different from the other parameterizations. The difference of designation of a model
between the goodness-of-fit statistics and the accuracy measures are explained by their use
of information. The accuracy measures are based on a part of the used sample to make a
dynamic prediction up to a predetermined point in time, while the goodness-of-fit statistics are
based on all information of the complete sample. Up to 15 years of follow-up the weighted
cumulative parameterization shows for both biomarkers the best discriminative strength using
the Area Under the Curve (AUC) with exception of the joint model of Serum Bilirubin at 15
years of follow-up, where the slope seems to contain more importance. In addition, the slope
parameterization shows an improved fit as well by the goodness-of-fit statistics, which indicate
increased importance of the trajectory slope over time. This is due to the incline of the overall
biomarker values over time.

34



How well the model can predict an event is quantified by the estimated prediction error of
the fitted model and its alternative association stuctures. Generally, the estimated prediction
errors have the smallest values with the weighted cumulative parameterization up to 10 years
of follow-up for both biomarkers. Thereafter, it leads to the equally weighted cumulative pa-
rameterization, which is assumed to be associated with the detoriated accuracy in general of
the model. Combining the goodness-of-fit statistics with the accuracy measures designates the
model with the second smallest prediction error at 15 years of follow-up for the joint model with
Serum Bilirubin; the model with the slope parameterization. For the model with longitudinal
measurements of Alkaline Phosphatase, the weighted cumulative parameterization remains the
preferred model.

So, when the goodness-of-fit statistics, the AUC’s and the prediction errors (PE) are com-
bined to designate a model, the weighted cumulative parameterization of both biomarkers can
predict clinical outcomes (death or liver transplantation) in the most accurate way up to 15
years of follow-up; with exclusion of the joint model involving longitudinal measurements of
Serum Bilirubin at 15 years of follow-up. This model benefits from the slope parameterization
at 15 years of follow-up. Both biomarkers are accompanied by three baseline covariates, respec-
tively Albumine times the ULN at 1 year of follow-up, platelet count per 109/L at 1 year of
follow-up and the age at the beginning of the follow-up. In case of the joint model regarding
Alkaline Phosphatase, the logarithmic scaled levels of Serum Bilirubin times the ULN at 1 year
of follow-up improve the performance of the model significantly next to the other three earlier
mentioned. Although the joint model of Serum Bilirubin generally indicates more accuracy over
time, it is recommended to use both models to develop a diagnosis for the remaining course of
Primary Biliary Cholangitis (PBC) as both biomarkers are able to predict clinical outcomes.

There are various suggestions for further research. Currently, there are many applied risk scores
to provide physicians an appropriate prognosis, like the Paris-1 or the GLOBE score. It would
be interesting to compare the fitted joint model with these widely used scoring systems by
their accuracy or to adopt a risk score into the joint modeling framework. In this thesis, the
biomarker levels of Alkaline Phosphatase and Serum Bilirubin are individually related to the
risk of an event. Further research could relate both markers simultaniously to the risk of an
event. The importance of the use of both biomarker is already observed in the individual dy-
namic predictions of this thesis. Hence, relating both simultaniously could provide a better
prognosis.

The research on the predictive performance of Alkaline Phosphatase and Serum Bilirubin
in the context of a joint modeling framework might show improved results using a Bayesian
approach, although literature is still inconclusive about both methods. But since the dynamic
individual predictions and the accuracy measures make use of Bayesian theorem, it seems rea-
sonable to use a Bayesian approach for the estimation of the joint model.

There exists a classification method based on the levels of Serum Bilirubin and Albumine,
dividing the course of the disease in four different stages. Normal levels of Serum Bilirubin
and Albumine are associated with stage one. If both Serum Bilirubin and Albumine show
abnormal levels, the disease is in the fourth stage (ter Borg et al. (2006)). In this thesis,
Albumine times the ULN at 1 year of follow-up shows a substantially improve in fit for the joint
model. Examine the prognostic significance of Albumine as a longitudinal biomarker might be
an interesting study in the future.
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A Appendix

A.1 Missing data

In order to clarify the missing data by a logistic regression, the biomarker values are transformed
into categorical variables. When an observation is available, it takes the value of zero and when
the observation is missing, it gets the value of 1. With the logistic regression and several other
available covariates, an attempt is made to explain the categorical variable of missingness in
the biomarker values.

The age over time and the age at the beginning of the follow-up show a significant (p-values
of 0.001 and 0.0001) relation with the missingness of respectively 0.0033 and 0.0086. However,
the association is considerably small and is expected to be more related to elderness than with
a deteriorated health condition due to PBC.

If the missing values of Alkaline Phosphatase are used to explain the missing data of Serum
Bilirubin and vice versa, the model shows opposite relations. The missing values related to
the Serum Bilirubin are significantly negatively correlated (−0.13120 with p-value smaller than
2e − 16) with the levels of Alkaline Phosphatase. The missing data of Alkaline Phosphatase
show a small positive relation with levels of Serum Bilirubin (0.03482 with a p-value smaller
than 2e − 16). The negative relationship of Alkaline Phosphatase and the considerably small
association with Serum Bilirubin are not corresponding to the current literature. This indicates
that it is not related to the clinical outcomes, corresponding to non-informative missingness or
Missing Completely At Random (MCAR).

If the missingness of the biomarker is stratified by City only two cities show large differ-
ences in percentages of missing values of Serum Bilirubin and Alkaline Phosphatase. This
concerns the two Italian cities Padova and Milan as shown in table 3. The other cities show
similar percentages, suggesting simultanious missing biomarker values. To extend the research
of missingness, the missing values of Serum Bilirubin are regressed on Alkaline Phosphatase for
the city of Padova and the missing values of Alkaline Phosphatase are regressed on the levels
of Serum Bilirubin for the city of Milan. In the city of Milan, the levels of Serum Bilirubin
show no significant relation with the missing values of Alkaline Phosphatase. For Padova, the
missing values of Serum Bilirubin are again negatively associated with the levels of Alkaline
Phosphatase. Although, higher levels of Alkaline Phosphatase are associated with a higher haz-
ard ratio (Lammers et al. (2014)). Thereby, it is assumed that the missingness of both Alkaline
Phospatase and Serum Bilirubin is not associated with increased levels of each other.
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City Missing Bili (%) Missing Alp (%)

The Netherlands, Rotterdam 16 6
Belgium, Leuven 21 8
Spain, Barcelona 9 6

French, Paris 17 16
Italia, Padova 35 14

Italia, Milan 9 47
UK, London 2 2

Canada, Toronto 33 19
USA, Texas 3 3

USA, Rochester 16 17
USA, Seattle 24 13

Canada, Edmonton 17 9
UK, Birmingham 15 15

Table 11: Percentage missing data of the total number of observations for the biomarkers Alkaline Phosphatase
and Serum Bilirubin

Albumine is not a significant regression parameter for the missing data of Serum Bilirubin
or Alkaline Phosphatase with p-values of respectively 0.951 and 0.989. It is assumed that
the significant association between the missing data and other available covariates are mainly
determined by the size of the dataset and not associated with the clinical outcomes (death or
liver transplantation). Hence, the missing values of the two biomarkers, Alkaline Phosphatase
and Serum Bilirubin, are discarded from the dataset and not included in the sample to fit the
joint model.

A.2 Censoring

During follow-up a total of 184 drop outs have occured. The fitted models B9 and A10 are com-
puted without the patients that drop out to illustrate their influence on the inference regarding
the fitted joint model. Discarding the drop outs does not lead to another inference about the
joint models. The tables below show no large differences in the parameter estimates between
the fitted models (shown in appendix A.5) with or without the drop outs.

The longitudinal process is captured by a second degree polynomial, where the fixed effects
are denoted by βp. β0 is the intercept, β1 the fixed coefficient corresponding to the time in
years t (0 denotes the starting point of follow-up) and β2 is corresponding to the squared time
in years t2. The individual parameter deviations, the co-called random effects, are denoted
by bp, where b0 denotes the random effects of the intercept, b1 and b2 are the random effect
related to respectively β1 and β2. In the tables below are the standard deviations and correlation
structures presented. The event process is described by the coefficients of the baseline covariates,
denoted by γ, the coefficient corresponding to the longitudinal measurment of the biomarker,
denoted by α, and the values of the log(ξq) are the estimated hazard ratios for the seven intervals
determined by the seven knots of the piecewise-constant model. γ0 is coefficient related to the
age at the beginning of follow-up, γ1 corresponds to the Albumine level times the Upper Limit
of Normal (ULN) at 1 year of follow-up, γ2 is associated with the platelet count per 109/L at
1 year of follow-up and γ4 represents the logarithmic scaled level of Serum Bilirubin times the
ULN at 1 year of follow-up.
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Longitudinal Process Variance Components Event Process

parameter value st. error Z-value p-value parameter st. dev. Corr parameter value st. error Z-value p-value
β0 −0.4992 0.0138 −36.1361 < 0.0001 b0 0.7294 b0 b1 γ0 0.0475 0.0037 12.8921 < 0.0001
β1 0.0210 0.0037 5.6304 < 0.0001 b1 0.1538 −0.3800 γ1 −2.1955 0.2757 −7.9621 < 0.0001
β2 0.0001 0.0002 0.6893 0.4906 b2 0.0091 0.4065 −0.8817 γ3 −0.0012 0.0004 −2.7157 0.0066

εi 0.3218 α 1.4954 0.0459 32.5756 < 0.0001
log(ξ1) −4.4378 0.3921 −11.3183
log(ξ2) −3.6609 0.3976 −9.2080
log(ξ3) −3.4668 0.4005 −8.6553
log(ξ4) −3.1889 0.4024 −7.9248
log(ξ5) −3.1223 0.4078 −7.6562
log(ξ6) −2.8960 0.4073 −7.1104
log(ξ7) −2.6829 0.4140 −6.4801

Table 12: Parameter estimates of joint model B9 discarding patients that drop out from the follow-up study

Longitudinal Process Variance Components Event Process

parameter value st. error Z-value p-value parameter st. dev. Corr parameter value st. error Z-value p-value
β0 0.4126 0.0139 29.7141 < 0.0001 b0 0.7212 b0 b1 γ0 0.0415 0.0035 11.9868 < 0.0001
β1 −0.0194 0.0035 −5.6074 < 0.0001 b1 0.1526 −0.5299 γ1 −2.0095 0.2686 −7.4818 < 0.0001
β2 0.0005 0.0002 2.2464 0.0247 b2 0.0096 0.3415 −0.9309 γ2 −0.0030 0.0005 −6.6475 < 0.0001

εi 0.2404 γ3 0.8805 0.0512 17.1979 < 0.0001
α 0.7189 0.0689 10.4290 < 0.0001
log(ξ1) −4.1484 0.3880 −10.6927
log(ξ2) −3.2612 0.3862 −8.4442
log(ξ3) −3.0421 0.3864 −7.8736
log(ξ4) −2.7303 0.3863 −7.0676
log(ξ5) −2.6639 0.3896 −6.8379
log(ξ6) −2.3874 0.3879 −6.1539
log(ξ7) −2.1160 0.3912 −5.4088

Table 13: Parameter estimates of joint model A10 discarding patients that drop out from the follow-up study

A.3 EM Algorithm

In the context of the joint modeling framework, the EM algorithm represents an iterative method
to optimize the joint log likelihood function. In this section of the appendix, the numerical
optimization technique is explained for the joint model with the current value of the true and
unobserved levels of the biomarker. The longitudinal and survival submodel are in this context
illustrated by

yi = XT
i β + ZTi bi + εi,

hi(t|Mi(t), wi) = h0(t) exp(γ
Twi + αmi(t)),

bi ∼ N (0, D), εi ∼ N (0, σ2).

The EM algorithm alternates between the so-called E-step and M-step to find the parameter
estimates. After each iteration, the log likelihood function increases handling the random effects
bi as if it are missing data, i.e. log p(yi, Ti, δi; θ

(it+1)) > log p(yi, Ti, δi; θ
(it)). The E-step

computes the expected complete data log likelihood, denoted by Q(θ|θit). In case of the joint
model this is given by

Q(θ|θ(it)) = E
{∑

i

logp(Ti, δi, yi; θ)|Ti, δi, yi; θ(it)
}

=
∑
i

∫
logp(Ti, δi, yi, bi; θ)p(bi|Ti, δi, yi; θ(it))

=
∑
i

∫ {
logp(Ti, δi|bi; θt, β) + logp(yi|bi; θy) + logp(bi; θb)

}
p(bi|Ti, δi, yi; θ(it)) dbi
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The integrals to estimate the complete data log likelihood Q(θ|θ(it)) involves two integrals
that generally lead to no closed-form solution. This are the integrals regarding the survival
function and the random effects. These two are approximated by the pseudo adaptive Gauss
Hermite rule. After the E-step, the estimated complete data log likelihood function is maximized
in the M-step to find parameter estimates, i.e. the values of θt = (γT , α, θTh0)T , θy = (βT , σ2)T

and θb = vech(D).
The computation of the covariance matrices regarding the measurement errors and random

effects have closed-form solutions and are given by

σ̂2 =
1

N

∑
i

∫
(yi −Xiβ − Zibi)T (yi −Xiβ − Zibi)p(bi|Ti, δi, yi; θ),

=
1

N

∑
i

∫
(yi −Xiβ)T (yi −Xiβ − 2Zib̃i) + tr(ZTi Ziṽbi) + b̃i

T
ZTi Zib̃i,

D̂ =
1

n

∑
i

ṽbi + b̃ib̃
T
i ,

whereN =
∑

i ni, b̃i = E(bi|Ti, δi, yi; θ(it)) =
∫
bip(bi|Ti, δi, yi; θ(it)) dbi, and v̂bi = var(bi|Ti, δi, yi; θ(it)) =∫

(bi − b̃i)2p(bi|Ti, δi, yi; θ(it)) dbi.
The other parameters’ optimization do not have closed-form solutions. Hence, the score

vectors of β, γ, α and θh0 are obtained using a one-step Newton-Raphson update mechanism,
given by

θ̂
(it+1)
t = θ̂

(it)
t −

{
∂S(θ̂t

(it)
)/∂θt

}
S(θ̂

(it)
t )

where θ
(it)
t is the parameter value at the current iteration. The one-step Newton-Raphson

update is using the Hessian matrix of the score vectors and the score vectors to obtain the new
parameter estimates. The Hessian matrices ∂S(θ)/∂θ) are calculated with the central difference
approximation technique (Press (2007)). The score vectors of β, γ, α and θh0 are computed as
follows

s(β) =
∑
i

XT
i {yi −Xiβ − Zib̂i}/σ2 + αδixi(Ti)

− exp(γTwi)
∫ ∫ Ti

0
h0(s)αxiexp

[
α{xTi (s)β + zTi (s)bi}

]
∗ p(bi|Ti, δi, yi; θ) ds dbi

S(γ) =
∑
i

wi

[
δi − exp(γTwi)

∫ ∫ Ti

0
h0(s)αxiexp

[
α{xTi (s)β + zTi (s)bi}

]
∗ p(bi|Ti, δi, yi; θ) ds dbi

]
S(α) =

∑
i

δi{xTi (Ti)β + zTi (Ti)b̃i} − exp(γTwi)
∫ ∫ Ti

0
h0(s)αxiexp

[
α{xTi (s)β + zTi (s)bi}

]
∗ p(bi|Ti, δi, yi; θ) ds dbi

S(θh0) =
∑
i

δ
∂h0(Ti; θh0)

∂hT0
exp(γTwi)

∫ ∫ Ti

0
h0(s)αxiexp

[
α{xTi (s)β + zTi (s)bi}

]
∗ p(bi|Ti, δi, yi; θ) ds dbi

The EM algorithm alternates between the E-step and M-step untill the parameter estimates
or likelihood function satisfies one of the two criteria stated in Section 3.2.1.
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A.4 Parameter Estimates Joint Models

This section of the appendix contain table 14 up to table 16, which summarize the parameter
estimates of the joint models (B9 and A10) with the current value parameterization of the
longitudinal process and the weighted cumulative parameterization. The longitudinal process
is captured by a second degree polynomial, where the fixed effects are denoted by βp. β0 is the
intercept, β1 the fixed coefficient corresponding to the time in years t (0 denotes the starting
point of follow-up) and β2 is corresponding to the squared time in years t2. The individual
parameter deviations, the co-called random effects, are denoted by bp, where b0 denotes the
random effects of the intercept, b1 and b2 are the random effect related to respectively β1
and β2. In the tables below are the standard deviations and correlation structures presented.
The event process is described by the coefficients of the baseline covariates, denoted by γ, the
coefficient corresponding to the longitudinal measurment of the biomarker, denoted by α, and
the values of the log(ξq) are the estimated hazard ratios for the seven intervals determined
by the seven knots of the piecewise-constant model. γ0 is coefficient related to the age at the
beginning of follow-up, γ1 corresponds to the Albumine level times the Upper Limit of Normal
(ULN) at 1 year of follow-up, γ2 is associated with the platelet count per 109/L at 1 year of
follow-up and γ4 represents the logarithmic scaled level of Serum Bilirubin times the ULN at 1
year of follow-up.

The tables show that increased levels of Alkaline Phosphatase and Serum Bilirubin are
associated with an increased hazard ratio. Hence, increased levels indicate an increased risk
of experiencing an event. Lower levels of Albumine and platelet counts at 1 year of follow-
up are associated with an increased risk of having an event. Being older at the beginning of
follow-up increases the patients’ risk of having an event. The logarithmic scaled hazard ratios
of the piecewise-constant model exhibit an incline over time and their summation constitutes
the baseline hazard function.

Longitudinal Process Variance Components Event Process

parameter value st. error Z-value p-value parameter st. dev. corr parameter value st. error Z-value p-value
β0 −0.4945 0.0134 −36.7860 < 0.0001 b0 0.7223 b0 b1 γ0 0.0527 0.0037 14.1309 < 0.0001
β1 0.0198 0.0036 5.5059 < 0.0001 b1 0.1516 −0.3717 γ1 −1.6630 0.2763 −6.0192 < 0.0001
β2 0.0001 0.0002 0.6823 0.4950 b2 0.0091 0.3782 −0.8796 γ2 −0.0010 0.0004 −2.3498 0.0188

εi 0.3212 α 1.5675 0.0467 33.5879 < 0.0001
log(ξ1) −5.4292 0.3987 −13.6179
log(ξ2) −4.6403 0.4032 −11.5088
log(ξ3) −4.4311 0.4055 −10.9279
log(ξ4) −4.1784 0.4072 −10.2606
log(ξ5) −4.0763 0.4122 −9.8893
log(ξ6) −3.8960 0.4124 −9.4466
log(ξ7) −3.6975 0.4194 −8.8163

Table 14: Parameter estimates of joint model B9

Longitudinal Process Variance Components Event Process

parameter value st. error Z-value p-value parameter st. dev. corr parameter value st. error Z-value p-value
β0 0.4078 0.0135 30.1148 < 0.0001 b0 0.7196 b0 b1 γ0 0.0414 0.0035 11.9872 < 0.0001
β1 −0.0185 0.0034 −5.4289 < 0.0001 b1 0.1515 −0.5308 γ1 −1.9409 0.2660 −7.2956 < 0.0001
β2 0.0004 0.0002 1.9316 0.0534 b2 0.0095 0.3436 −0.9312 γ2 −0.0030 0.0004 −6.6828 < 0.0001

εi 0.2404 γ3 0.9012 0.0514 17.5430 < 0.0001
α 0.7183 0.0691 10.3965 < 0.0001
log(ξ1) −4.2779 0.3845 −11.1265
log(ξ2) −3.3849 0.3824 −8.8511
log(ξ3) −3.1409 0.3817 −8.2281
log(ξ4) −2.8655 0.3818 −7.5055
log(ξ5) −2.7482 0.3843 −7.1508
log(ξ6) −2.5104 0.3832 −6.5515
log(ξ7) −2.1932 0.3863 −5.6776

Table 15: Parameter estimates of joint model A10
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Longitudinal Process Variance Components Event Process

parameter value st. error Z-value p-value parameter st. dev. corr parameter value st. error Z-value p-value
β0 −0.4932 0.0136 −36.2952 < 0.0001 b0 0.7316 b0 b1 γ0 0.0507 0.0037 13.6833 < 0.0001
β1 0.0186 0.0036 5.2057 < 0.0001 b1 0.1526 −0.3947 γ1 −1.8980 0.2705 −7.0161 < 0.0001
β2 0.0002 0.0002 0.8963 0.3701 b2 0.0092 0.4038 −0.8836 γ2 −0.0012 0.0004 −2.8585 0.0043

εi 0.3213 α 3.4344 0.1035 33.1692 < 0.0001
log(ξ1) −4.7534 0.3942 −12.0587
log(ξ2) −4.0941 0.3975 −10.2996
log(ξ3) −3.8637 0.4005 −9.6473
log(ξ4) −3.5903 0.4028 −8.9123
log(ξ5) −3.4540 0.4081 −8.4635
log(ξ6) −3.2264 0.4102 −7.8647
log(ξ7) −2.9192 0.4225 −6.9089

Table 16: Parameter estimates of joint model B9 with the cumulative parameterization

Longitudinal Process Variance Components Event Process

parameter value st. error Z-value p-value parameter st. dev. corr parameter value st. error Z-value p-value
β0 0.4068 0.0137 29.6204 < 0.0001 b0 0.7204 b0 b1 γ0 0.0435 0.0035 12.5127 < 0.0001
β1 −0.0180 0.0036 −4.9998 < 0.0001 b1 0.1518 −0.5336 γ1 −1.9382 0.2671 −7.2561 < 0.0001
β2 0.0004 0.0002 1.5393 0.1237 b2 0.0095 0.3468 −0.9314 γ2 −0.0032 0.0004 −7.0135 < 0.0001

εi 0.2404 γ3 0.8901 0.0513 17.3573 < 0.0001
α 1.7867 0.1408 12.6902 < 0.0001
log(ξ1) −4.3321 0.3831 −11.3072
log(ξ2) −3.6108 0.3851 −9.3774
log(ξ3) −3.3382 0.3841 −8.6913
log(ξ4) −3.0387 0.3838 −7.9173
log(ξ5) −2.8972 0.3864 −7.4983
log(ξ6) −2.6215 0.3857 −6.7973
log(ξ7) −2.2489 0.3913 −5.7472

Table 17: Parameter estimates of joint model A10 with the cumulative parameterization
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A.5 Plots of the Dynamic Individual Predictions

The individual dynamic predictions are obtained by the Monte Carlo simulation scheme de-
scribed in section 3.3. The red line represents the mean of the 200 Monte Carlo simulations
and the green line the median. The dashed line represents the 95 % confidence interval of the
predicted survival curve. The time on the x-axis is in years. The left y-axis denotes the values
of the logarithmic scaled biomarkers, while the right y-axis denotes the survival probabilities.
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(a) Individual Dynamic Predictions based on joint model B9 of Serum Bilirubin
with weighted cumulative parameterization
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(b) Individual Dynamic Predictions based on joint model A10 of Alkaline Phos-
phatase with weighted cumulative parameterization

Figure 1: Individual dynamic predictions for a patient who is still alive at the end of follow-up
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(a) Individual Dynamic Predictions based on joint model B9 of Serum Bilirubin
with weighted cumulative parameterization
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(b) Individual Dynamic Predictions based on joint model A10 of Alkaline Phos-
phatase with weighted cumulative parameterization

Figure 2: Individual dynamic predictions for a patient who is deceased before the end of follow-up
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(a) Individual Dynamic Predictions based on joint model B9 of Serum Bilirubin
with weighted cumulative parameterization
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(b) Individual Dynamic Predictions based on joint model A10 of Alkaline Phos-
phatase with weighted cumulative parameterization

Figure 3: Individual dynamic predictions for a patient who received a liver transplantation before the end of
follow-up
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