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Abstract

The present thesis focuses on the problem of finding the optimal allocation strategy

in a financial portfolio, using an econometric point of view. Its main contribution is the

investigation of a new Bayesian approach for the portfolio choice. Markov Chain Monte

Carlo (MCMC) algorithm, recently proposed in the Bayesian literature, is introduced

and applied for a decision-theoretic approach of the optimal weight asset allocation

strategy. In particular, the Gibbs sampler proposed by Korobilis (2013) is used in order

to estimate the parameters of econometric models for finding the optimal portfolio of

an investor. The proposed approach, except for the parameter uncertainty, takes into

account the variable-selection uncertainty. More precisely, a computationally efficient

algorithm for variable selection is proposed and the approach is compared with the

ones in the relevant econometric literature for a managed decision-theoretic portfolio

construction.
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Design is not making beauty, beauty

emerges from selection, affinities,

integration, love

Louis Kahn
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1 Introduction

This paper aims to describe the problem of portfolio choice using an econometric view.

The research is focused on the choice of the optimal portfolio weights and the decision-

theoretic approach. The main contribution of the present thesis is the introduction of the

most recent techniques for the Bayesian estimation of a model, applied in the problem

of the optimal portfolio choice. The methods which are used are compared with existing

approaches in the literature and improvements are deduced for finding the optimal portfolio

allocation strategy. The model which serves as a basis is the vector autoregressive (VAR)

model. The state vector in the VAR may include asset returns and predictor variables

(financial and macroeconomics factors). Specifically, the managed portfolio approach is used,

in combination with conditional information based on some financial and macroeconomics

factors for future investment. Using conditional information based on some factors that have

significant explanatory power, the robustness and reliability of this portfolio can be tested

in several ways. In more detail, the parameters of the models used are estimated, taking

into account the parameter uncertainty, while a significant contribution of the thesis is the

additional use of computationally efficient algorithms for stochastic variable selection in the

model.

As documented by Brandt (2009), the economic theory underlying an investor’s optimal

portfolio choice, pioneered by Markowitz (1952), Merton (1969) and Merton (1971), Samuel-

son (1969), and Fama (1970), is by now well understood. Based on recent empirical financial

research, it is also well-known that there is substantial evidence for predictability of asset re-

turns (see, for example Keim and Stambaugh (1986), Campbell (1987), Campbell and Shiller

(1988), Fama and French (1988), and Campbell (1990)). As a result, it is now argued by

financial economists that asset return predictability can introduce a wedge between the asset

allocation strategies of short and long-term investors. Welch and Goyal (2008) highlight the

statement of Lettau and Ludvigson (2001):

”It is now widely accepted that excess returns are predictable by variables such as

dividend-price ratios, earnings-price ratios, dividend-earnings ratios, and an assortment of

other financial indicators.”

This statement summarizes the common findings in the finance literature that the dividend

price ratio and dividend yield, the earnings price ratio and dividend-earnings (payout) ratio,

various interest rates and spreads, the inflation rates, the book-to-market ratio, volatility,

the investment-capital ratio, the consumption, wealth, and income ratio, and aggregate net
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or equity issuing activity, are only some of the variables that can be used as predictors of

asset returns. Except for this evidence of predictability of asset returns the renewest interest,

of academic researchers, in the topic of practical portfolio advice, has been also fuelled by

realistic issues including model and parameter uncertainty, learning, background risks and

frictions. In this paper we also assume that there is a large number of predictor variables,

based on the aforementioned literature.

There are two common approaches in the finance literature of portfolio choice problems:

the plug-in estimation and the use of decision theory for calculating optimal portfolio weights.

However, it is well-documented in the finance literature (see for example Barberis (2000) and

Brandt (2009)), that the decision theoretic approach has many advantages compared with

plug-in estimation for the calculation optimal portfolio weights. The main research question

of the present thesis lies on the direction of decision theory. More precisely, previous efforts of

treating the portfolio choice problem are reviewed, using well-known results from the decision

theory. Finally, an alternative approach of choosing the optimal weights is proposed, using

recent results from the statistical literature of Bayesian analysis and is further compared

with existing approaches (Barberis (2000), Diris (2014)).

A common finding in the financial and econometric literature is the poor finite-sample

properties of plug-in estimates, as documented in Brandt (2009). One proposed solution by

Brandt (2009) to that problem is the use of factor models, where a significant dimension

reduction is achieved. An additional approach of treating the poor finite-sample properties

of plug-in estimations is the use of constraints on the portfolio weights, as fully analysed in

Frost and Savarino (1988). Some of the most popular constraints in the finance literature

are the portfolio constraints that limit short and long selling in risky assets. As noted by

Brandt (2009), constraints on the maximum position in a single security, on the maximum

exposure to a given industry or economic sector, on the liquidity of a security, or on the risk

characteristics of a security are constraints arising in realistic investment problems. Decision

theory gives an alternative way of treating the problem of portfolio choice. Applying this

approach, the investor chooses portfolio weights that are optimal with respect to her subjec-

tive belief about the true return distribution. Decision theory uses Bayesian rules in order to

update the posterior distribution of the model parameters and, thus, takes into account the

parameter uncertainty of the model. Consequently, a natural approach for the parameter

uncertainty incorporation is the Bayesian approach, as pointed out in Barberis (2000). The

main advantage of the Bayesian methods, as opposed to the frequentist approach, is the fact

that the Bayesian analysis of a model summarizes the uncertainty for the estimation of the
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model parameters into the posterior distribution of the parameters given the data-returns.

One of the most useful tools of the Bayesian analysis in the predictive distribution of future

returns which is the distribution of the future returns given the current returns without con-

ditioning on the fixed parameters (because they have been integrated out) of the model as

is the case in the frequentist approach (see, for example Gelman, Carlin, Stern, and Rubin

(2014) for a detailed introduction to Bayesian methods).

Considering estimation, one of the earliest attempts on treating the portfolio problem

using the Bayesian methods is the approach of Barberis (2000), where the parameters un-

certainty is accounted to construct optimal portfolios. In his paper, Barberis (2000) relies

on the posterior distribution of the parameters of his VAR model, given the data, in order

to construct the predictive distribution of the future returns. One of the main results in his

paper is that in both a static buy-and-hold problem and a dynamic problem with optimal

rebalancing, when parameter uncertainty is incorporated, the optimal allocation is signif-

icantly changed. In the case where parameter uncertainty is ignored, he points out that

predictability in asset returns leads to strong horizon effects, something which is explained

by the fact that time-variation in expected returns induces mean-reversion in returns, re-

ducing the variance of cumulative returns over long horizons. This seems to be the reason

why stocks appear less risky to long-horizon investors and leads them to allocate more to

equities than investors with shorter horizons would.

One of the most recent approaches in the decision-theoretic literature of incorporating

the parameter uncertainty in finding the optimal portfolio allocation strategy appears in the

paper of Diris (2014). In his paper, Diris (2014), apart from the inclusion of the parameter

uncertainty, undertakes the problem of incorporating model uncertainty in the optimal allo-

cation of the assets. In general, the terminology of ”model uncertainty” regards the problem

of predictor variables which are to be included in a model. As noted by Aı̈t-Sahalia and

Brandt (2001), looking beyond expected returns, it is not clear which selection or combi-

nation of predictive variables the investor should focus on. Diris (2014) develops a method

that includes model uncertainty w.r.t. asset returns and w.r.t. predictors. More precisely,

he incorporates model uncertainty over long-term predictions using the Bayesian Model Av-

eraging (BMA) and analyzes whether model uncertainty is present and relevant to investors

with investment horizons up to 30 years. Most importantly, Diris (2014) concludes that

the relevance of predictor variables depends on the horizon. For example, he notes that

model uncertainty is important at short horizons, while he concludes that all variables are

important at long horizons, either by predicting stock returns directly or the predictors of
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stock returns. Another interesting conclusion of his paper is that the incorporation of model

uncertainty leads to an upward sloping term structure of risk (in crisis periods) and, finally,

the incorporation of model uncertainty leads to a decreasing stock allocation when the in-

vestment horizon is sufficiently large. In the context of a comprehensive presentation of

the relative literature, it should be noted that some early attempts of incorporating model

uncertainty in the optimal portfolio allocation problem, using the Bayesian methods, are

presented in the papers of Avramov (2002) and Cremers (2002).

This thesis aims to test the performance of a financial portfolio, when both parameter

and variable selection uncertainty is taken into account. In the direction of the parameter

uncertainty, the Bayesian approach is used in order to infer the parameters of the models

through the posterior distribution of the parameters given the data-returns and to compute

the predictive distribution of future returns by integrating out the parameters from the

likelihood of the model. We use Markov Chain Monte Carlo (MCMC) methods and, in

particular, the Gibbs sampler (see, for example Gelfand and Smith (1990) and Dellaportas

and Roberts (2003) for a detailed presentation of MCMC methods and the Gibbs sampler)

for the Bayesian estimation of the model used. Furthermore, the model parameters are

estimated by using standard techniques from the Bayesian literature for the estimation of

VAR models. The crucial step in developing an efficient MCMC algorithm for the Bayesian

estimation of a VAR model is the choice of the prior distribution which summarizes the

researcher’s uncertainty over the model parameters. A well-known pitfall of VAR models

is the danger of overparametrization. The early response in this danger was the use of

shrinkage methods, like the so-called Minnesota prior (Doan, Litterman, and Sims (1984)),

while more recent approaches attempt to solve this problem by applying variable selection

priors or model selection priors.

Several approaches have been used in the literature to incorporate variable selection and

model uncertainty. Avramov (2002) notes, among others, that incorporating model uncer-

tainty in asset allocation decisions, through Bayesian methods, makes the allocation of the

portfolio weights robust at least within the class of linear forecasting models. More pre-

cisely, Avramov (2002), Cremers (2002), Garratt, Koop, Mise, and Vahey (2012) and Diris

(2014) use the Bayesian Model Averaging (BMA) technique to assign posterior probabilities

to a wide set of competing return-generating models and then they use the probabilities as

weights on the individual models to obtain a composite weighted model, for short and long

run predictions respectively. BMA, in finance, models the investor’s uncertainty for includ-

ing different predictor variables in a forecasting model. An alternative way to incorporate
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model uncertainty in forecasting models through factor models, where a set of observed or

unobserved factors are used to model the correlation between the series of log-returns, see

Stock and Watson (2002a) and Stock and Watson (2002b) for use of factor models in a

classical setting and Aguilar and West (2000) for a Bayesian perspective.

In this thesis we propose to incorporate model uncertainty in the problem of portfolio

analysis, using an approach which can be seen as complementary to the above approaches.

In the thesis we do not use model the uncertainty for including different predictor variables,

but in the spirit of the work of George, Sun, and Ni (2008) and Villani (2009) we propose

the use of a stochastic search algorithm to automatically select the variables included in a

Bayesian Vector Autoregressive (BVAR) model. In particular, we use the Gibbs sampler

proposed by Korobilis (2013). This Gibbs sampler does not rely on the estimation of all

the VAR model combinations to decide which variables have to be included in the model,

but decides for the more suitable variables with goodness of fit technique. This is achieved

with the γ Bernoulli random variables, with which the most probable models are visited in

stochastic manner, without using the less efficient method of estimating and enumerating all

the possible models. Finally, the problem of variable selection in VAR models is common in

the econometrician literature (see Villani (2009) for example), but this application of variable

selection in the Gibbs sampler proposed by Korobilis (2013), is the main contribution of our

thesis.

Korobilis (2013) introduces random variables (indicators), which indicate the variables

that are significant for the VAR model in an automatic way, during the MCMC algorithm.

Using this method, all possible VAR model combinations are avoided to be estimated, while

this method is independent of the prior assumptions about the coefficients of the VAR model.

In this sense, the contribution of the present thesis not only concerns the introduction of

this new application for the portfolio allocation problem with a decision-theoretic approach,

but in contrast to model uncertainty literature, the final posterior distribution of returns is

a product of continuous dynamic algorithmic selection, in the sense that in each simulation

the model updates, evaluates and selects.

In the empirical application, predictor variables are used from two different data-sets

in order to test differences in the predictability of the model. The first data-set that is

used arises from the approach of Stock and Watson (2002a). The major idea in Stock and

Watson (2002a) is to create predictors that can capture the shifts and the co-movements

of global financial and macroeconomic time series via principal component analysis. These

predictors could explain several assets classes. The lags of assets classes by themselves do
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not have such a predictability. The main reason is that the range of the cross-correlated

global financial and macroeconomic time series is quite wide and regards both financial time

series such as a) stocks, bonds, interest rates, real estate prices, exchange rates, commodities

and b) macroeconomics times series such as Inflation, consumer price index, GDP growth

and unemployment rate. As long as economies of several countries are highly interacted, this

range of cross-correlations does not have region-specific restrictions. Thus, Stock and Watson

also take into account various Financial and Macroeconomic time series of several countries.

Following Stock and Watson (2002a), the predictors are summarized by a dynamic factor

model with VAR dynamics. The second data-set of predictor variables is the one that uses

financial series and is proposed by Diris (2014), which is based on Welch and Goyal (2008).

These series include several asset specific characteristics such as the dividend-to-price ratio,

the book-to-market ratio, the price-earnings ratio, the detrended nominal yield, the yield

spread, the credit spread, the ratio of 12-month moving sums of net issues by NYSE stocks

and the total end-of-year market capitalization of these stocks and the stock return variance.

The main result of the present thesis is that, taking into account both parameter and

variable uncertainty when using the algorithm of Korobilis (2013), it is found that incor-

porating variable-selection uncertainty increases investor’s uncertainty and invests less to

risky assets such as stocks and bonds. This result is, also, comparable with the main re-

sult of Diris (2014), where model uncertainty is taken into account. To be more precise,

this phenomenon mainly appears if we use the data-set with financial series (cross-sectional

premiums, Treasury Bills, Long Term Yield, Corporate Bond Returns, Inflation, investment

to Capital Ratio etc.) as predictor variables, which is proposed by Diris (2014), based on

Welch and Goyal (2008). Finally, for each one of the data-sets with predictors that is used,

the matrix with the mean posterior selection-coefficients for including a predictor-factor in

the model is provided. This is possible due to the selection to use the method of Korobilis

(2013) for the (Bayesian) estimations and predictions.

The structure of the present thesis is as follows. In Section 2, the data that is to be used in

the thesis is described. More precisely, the content of the constructed portfolios is presented,

the data-sets of the factors that are to be used in the analysis, while there is also a description

of the way that the data-sets are used in order to achieve the best possible analysis. Section

3 presents the main models that will be used throughout the present thesis, as well as how

the model to perform the analysis is chosen. Section 3, presents the (Bayesian) methods

that the estimation and predictions will be based on, too. Finally, Section 4 includes the

main results and Section 5 concludes the thesis.
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2 Data

The constructed portfolios consists of monthly returns of a Treasury bill, one stock and

one bond. We have three asset classes on the constructed portfolios. Firstly, our benchmark

asset which will be the 3-Month real US Treasury bill log-return denoted as r1t at time t,

calculated by taking the difference of log return on the 3-month Treasury bill and the log

inflation. Moreover, our portfolios consist of the log excess stock return of SP&500 over the

risk-free return denoted as r2t and the log excess return of U.S. 10-Year Bond Yield over the

risk-free return denoted as r3t. From now on, we denote as rt the Kr × 1 vector (where here

Kr = 3) of the three aforementioned time series returns at time t, where rt = (r1t, r2t, r3t)
′.

Our goal is to built a dynamic factor model where those asset classes are explained by factors.

The first data-set of factors will be constructed, as Stock and Watson (2002b) proposed,

from principal components analysis of macroeconomic and financial time series from the

following countries: France, Germany, Italy, Japan, The Netherlands, Spain, The United

States of America and The United Kingdom. The intuition behind the use of data from

several countries is that we want to construct a data-set of factors that captures the the

co-movements of the global economy in order to explain several asset returns and then a

data-set of factors based on asset specific characteristics that could capture micro-movements

and trends of the asset returns (which correspond to the second data-set of factors). In that

sense we would also be able to test if there is bias of the performance of our several models,

given the type of state variables. All data is retrieved from the OECD and FRED databases,

combined with Bloomberg data on financial series.

The second data-set of factors is based on the factor data-set of Welch and Goyal (2008)

and it is constructed as Diris (2014) proposed, where several variables from Welch and Goyal

(2008) are used. The predictor variables will be assets’ specific characteristics, which will be:

the default risk premium, the log dividend-to-price ratio, the log book-to-market ratio, the

log price-earnings ratio, the detrended log nominal yield, the yield spread, the credit spread,

the ratio of 12-month moving sums of net issues by NYSE stocks and the total end-of-year

market capitalization of these stocks and the log of the stock return variance. All data is

retrieved from Professor Goyal’s website.

The first data-set, which will be denoted as S&W , starting from February 1970 until

December 2013. The second data-set, which will be denoted as G&W , starting from February

1950 until December 2013. The data will be split in three parts, where each subset will be

used from a different scope. The purpose of this data-handling is to achieve a more objective

view of how an investor could use and invest in reality, given this data. Thus, we assume that
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she uses a first part for model selection and a second part for parameters optimization. After

that, the only part that is left is the investing part. In other words, the training set will be

used at Subsection (3.1) for in-sample statistics. At Subsection (3.2.5), we use the Validation

set and the Training set of data for hyper-parameters optimization. Finally at Section (4),

we use the Training and Validation set and apply an expanding window for estimating the

various models at the Test set, where we obtain and interpret the final results.

Figure 1: Data split

This figure presents the data split in 3 parts for both data-sets S&W (based on Stock and Watson (2002b))

and G&W (based on Welch and Goyal (2008)). The usage of 3 parts of data aims to achieve the most

objective view of final results.

2.1 Stock and Watson factor construction

A set of global predictor variables based on Stock and Watson (2002b) is constructed

which will be denoted as S&W factors, where the predictability of several asset returns as

our asset classes was shown. We retrieve several Financial and Macroeconomic data such as:

output, employment, exchange rates, interest rates, monetary aggregates, stock prices, price

indices, exports and imports, housing-related series and commodity indices. The sampling is

done for several countries such as: France, Germany, Italy, Japan, The Netherlands, Spain,

The United States of America and The United Kingdom. It is worth mentioning that the

contribution of The United States of America is almost by 50% to our database. The final

database consists of 100 time series. More analytically, the list of series that are included in

our data-set can be found on Appendix in Table 32. Since a large portion of the gathered

time-series start around 1970, we only use series that are available from January 1970 through
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December 2013.

After collecting the data, our scope is to reduce dimensionality and create factors that

explain most of the variation in our Database via principal components Analysis. Firstly,

some potential data problems we have to deal with are: non-Stationary of time series, the

presence of outliers and missing observations. We are solving these problems in line with

Stock and Watson (2002b). We transform the non-Stationary series to Stationary. A de-

scription of these transformations can be found on Appendix in Table 6.1. We define outliers

as observations that are ten times greater in absolute value than the absolute value of the

sample median. We set outliers to missing observations. Finally, we forecast the missing

values by applying an EM-algorithm. The idea behind EM-algorithm to our set-up is to

have an iterated and interactive process where, firstly, the missing data is approximated

and, then, by using this approximation, we estimate the factors and so on. We repeat until

the change in estimated factor values is below some threshold. A Mathematical formulation

of this algorithm can be found on Appendix at 6.1.1.

After dealing with the aforementioned problem, we are ready to perform principal com-

ponent analysis. The question that remains to be answered is the number of factors to keep.

One perspective of this issue regards the time period, which means that the optimal num-

ber of factors to keep might vary over time. Another perspective of this issue concerns the

optimal selection of the initial series which would be used in each point in time to perform

principal component analysis. However, these tasks will make the modeling implementation

more complicated and time consuming. We choose to have a fixed number of factors in our

model which will make our already complicated calculations more simple, without having

any bias in our research question.

Finally, we base our selection of number of factors on a trade-off between the percentage

of explained variation1 and an empirical in-sample fit of the factor structure in full-sample

set. For five factors the percentage explained is 30%. This increases to 42% when we extend

the selection to ten factors. Moreover, we evaluate the R2 obtained by regressing each of the

macroeconomic series to each of the factors, as it can be seen at Figure 2. The first factor

captures most of the variation of US economy, whereas further than 5 factors we can see

that we do not obtain strong evidence of explanation. The percentage of explained variation

is hardly increased when we double up the number of selected factors, whereas in order to

achieve a percentage greater than 60%, we have to choose at least 15 factors. However, by

using a big amount of factors, we lose a lot of efficiency in our models and, as a matter of fact,

1Calculated as (λ1 + · · ·+ λk)/
∑N

i=1 λi, with λi the eigenvalue of the respective factor
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variable selection will tend to outperform against a model without variable selection which

could easily lead to wrong conclusions. Therefore, it is outside the scope of this research to

further investigate the optimal amount of factors’ selection. Consequently, we prefer to use

5 factors, as we are able to explain quite a lot without having dimensionality problems.
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Figure 2: R2 of series regressed on the factors
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Each of the 100 macroeconomic series is regressed upon each of the first 10 factors. The R2 is then graphed.

The macroeconomic series are grouped per country, one for GDP and one for commodities. (FR = France,

DE = Germany, IT = Italy, JP = Japan, NL = Netherlands, ES = Spain, UK = United Kingdom, USA =

United States, Com = Goldman Sachs commodity index)
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2.2 Goyal and Welch factor construction

For Goyal and Welch factor construction, the computations are straightforward. We

construct a set of predictor variables in line with Diris (2014), where several converted -and

not- variables from Welch and Goyal (2008) were used. The data-set of factors consists of: the

default risk premium (Defpr), the log dividend-to-price ratio (DP), the log book-to-market

ratio (BM), the log price-earnings ratio (PE), the detrended log nominal yield (Ynom), the

yield spread (Yspr), the credit spread (Crspr), the ratio of 12-month moving sums of net

issues by NYSE stocks and the total end-of-year market capitalization of these stocks (ntis)

and the log of the stock return variance (Var), which is calculated by Welch and Goyal (2008)

as the summation over every quarter of the squared daily returns on the S&P500. Below,

we describe in a Mathematical formulation some definitions of our predictor variables, where

following the same notation as Welch and Goyal (2008), we denote as tbl the Treasury Bill

(Risk-Free Short Rate), as corpr the High-Quality Corporate Bond Rate, as lty the long-

Term Treasury Yield, as D12 the S&P500 dividend yield, as E12 the S&P500 earnings yield,

as b/m the book-to-market ratio, as AAA the High-Quality Corporate Bond Yield (usually

long-term), as BAA the Mid-Quality Corporate Bond Yield (usually long-term) and as index

the S&P500 index.

• Defpr=corpr-lty

• DP=log(D12/Index)

• BM=log(b/m)

• PE=log(Index/E12)

• Ynom=log(1+tbl)-MovingAverage12[log(1+tbl)] 2

• Yspr=log(lty/tbl)

• Crspr=log(1+BAA)-log(1+AAA)

Finally in Table (1), we provide some summary statistics of the asset returns and the

factors. We calculate the mean, the standard deviation, the minimum value, the maximum

value and the AR(1) coefficient for each time series in the full sample.

2The abbreviation denotes the moving average of log(1 + tbl) in a rolling window of 12 months
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Table 1: Full-sample descriptive Statistics of returns, S&W factors and G&W factors

mean std min max AR(1)

r1 0,001 0,003 -0,011 0,019 0,561

r2 0,004 0,045 -0,248 0,149 0,060

r3 0,002 0,031 -0,119 0,135 0,042

factor(1) -0,004 2,942 -18,074 10,080 0,485

factor(2) -0,004 2,634 -8,423 14,099 -0,274

factor(3) 0,006 2,510 -13,814 7,067 0,442

factor(4) -0,007 2,218 -6,706 7,539 0,695

factor(5) 0,008 1,871 -7,293 5,882 0,498

Defpr 0,0001 0,015 -0,098 0,074 -0,066

DP -3,596 0,435 -4,524 -2,753 0,995

BM -0,846 0,590 -2,116 0,188 0,994

PE 2,816 0,479 1,899 4,836 0,990

Ynom -0,001 0,009 -0,037 0,037 0,899

Yspr 0,019 0,014 -0,032 0,044 0,951

Crspr 0,010 0,004 0,005 0,032 0,960

Ntis 0,010 0,020 -0,058 0,046 0,976

Var -6,507 0,854 -8,484 -2,646 0,701

This table presents the descriptive Statistics (the mean, the standard deviation, the minimum value, the

maximum value and the AR(1) coefficient for each time series) of our asset returns r1t, r2t and r3t, the

five factors obtained by principal component analysis of S&W (based on Stock and Watson (2002b)) and the

nine factors of G&W (based on Welch and Goyal (2008)). The descriptive statistics of asset returns have

been calculated in the time frame-work of S&W (starting from 1-2-1970, until 1-12-2013)

3 Model specification & Methodology

In this section, we are going to analyse the model specification that will be used for the

rest of the analysis. We are going to select the model formulation, the amount of lags within

our models and several input parameters for the Bayesian modeling. Moreover, we are going

to fully analyse the methodology that will be used for the execution and the evaluation of

our models. A contentious assumption that we apply here, is that we analyse and select

among the different models for Bayesian applications, by evaluating several statistics in a

Frequentist approach. However, the final model selection is quite strict with the factors’ and

17



lags’ selection and thus we are not giving an easy mission to variable selection, and this does

not -and should not- have a clear impact in our research.

In that section, all of our in-sample tests are performed in the Training set. The hyper-

parameters’ optimizations are implemented in the Training set and the Validation set, where

we apply an expanding window for estimation of our various models. The extension starts

from the beginning of the Validation set.

As a first step, we perform several tests to evaluate the fit of several factors. The crucial

question in that step was whether we should include the lags of the returns as additional

predictors, where we concluded to omit them from our factor data-set due to deterioration

in the performance. Next, we test which amount of lags is well-fitted for the given models.

Subsequently, we introduce our Bayesian methodology for the selected model. Lastly, having

concluded to the exact formula of the models that will be used, we calculate the optimal

hyper-parameters for the priors of the Bayesian approach used. Finally, after this section,

we will be ready for kick off on our Test set, where we will test the Statistical and Financial

out-of-sample performance of our models, by estimating the several variations by using an

expanding window and forecasting each point in time of the Test set. That is, we apply an

expanding window for the estimation of our models to obtain the results, which means that

in our estimation, we include observations from the Training and Validation set.

3.1 Model specification - factor selection

Let rt be the vector of our asset classes and Ft the vector of our factors from S&W or

G&W at time t. We are firstly testing for the robustness of the following three models, where

in the first case we assume that returns are autoregressive, in the second case we assume

that returns are autoregressive but they are also explained by lags of factors and in the third

case we assume that the returns are only explained by lagged factors:

rt = α + Πrt−1 + ξt (3.1)

rt = α + Πrt−1 + βFt−1 + ξt (3.2)

rt = α + βFt−1 + ξt (3.3)

To begin with, we are going to have an in-sample evaluation and test which of the three

models fit best in the training set. This evaluation will be based on BIC criterion, likelihood

ratio tests and F-tests between those models. The models implied by the three above-
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mentioned equations will be referred as models A, B and C.

Bellow we provide the results of these tests for the S&W factors.

Table 2: Log-likelihood and BIC values of each model

A B C

logL 1319.7 1380.3 1335.8

BIC -2578.5 -2623.5 -2580.2
Statistics for Models of (3.1), (3.2) and (3.3) for S&W factors

Table 3: LR test between models A-B and B-C
A-B B-C

LR-stat 121.2 89.04

p-value <0.001 <0.001
Statistics for Models of (3.1), (3.2) and (3.3) for S&W factors

Table 4: F test between models A-B and B-C
r1 r2 r3

A-B

F-stat 2.94 9.43 42.09

p-value 0.03 <0.001 <0.001

B-C

F-stat 9.55 0.34 9.06

p-value <0.001 0.89 <0.001
Statistics for Models of (3.1), (3.2) and (3.3) for S&W factors. Note here that r1, r2 and r3 are the three

asset classes we are using and thus we calculate the statistics per time series.

For the second data-set of factors by G&W same tests are applied.

Table 5: Log-likelihood and BIC values of each model

A B C

logL 1495.6 1518.6 1502.2

BIC -2930.4 -2839.3 -2852.1
Statistics for Models of (3.1), (3.2) and (3.3) for G&W factors

19



Table 6: LR test between models A-B and B-C
A-B B-C

LR-stat 45.92 32.90

p-value <0.001 <0.001
Statistics for Models of (3.1), (3.2) and (3.3) for G&W factors

Table 7: F test between models A-B and B-C
r1 r2 r3

A-B

F-stat 6.25 7.80 1.60

p-value <0.001 <0.001 0.19

B-C

F-stat 3.25 0.10 0.25

p-value 0.0012 0.99 0.98
Statistics for Models of (3.1), (3.2) and (3.3) for G&W factors. Note here that r1, r2 and r3 are the three

asset classes we are using and thus we calculate the statistics per time series.

In tables (2) and (5), we see that model B -which is the unrestricted- has the highest

log-likelihood. Moreover, in the same tables we see that the BIC values of model A indicate

a better fit compared to the other two models. One potential explanation could be that there

is high penalty for the number of parameters in models B and C. Continuing our analysis

and focusing on the comparison of models A and B, we see that in tables (3), (6), (4) and (7)

both the LR-test and F-test show us that the factors give significant additional explanatory

power. In addition, if we see this result in a financial perspective, we would strongly agree

that assets returns could not be explained by themselves (Lettau and Ludvigson (2001),Fama

and French (1988)). We conclude that we are not taking into account model A in our final

selection. Continuing with model selection analysis, we focus on the comparison of models

B and C. Although in tables (3) and (6) LR-test does not reject the null hypothesis that the

lags of the returns is an odd addition, we see in tables (4) and (7) that this is not the case,

which is a first indication that lags of returns might be odd for the explanation of returns.

On the other hand, apart from the F statistics we do not see any other statistic that indicate

that we should prefer model C. However, as it has already mentioned our research question

is whether variable selection will add value to our portfolio performance. We do not want to

use additional insignificant factors that will give advantages to the performance of variable

selection. Thus, we have no reason not to believe in model C. It looks that this set of factors
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contains a solid aggregation of the co-movement of the returns, whereas including the lags

of the returns turns out to be a quite ”heavy” choice.

A generalization of what have been already discussed could be described by the following

model:

rt = α + β1Ft−1 + ...+ βpFt−p + ξt (3.4)

Ft = µ+ Φ1Ft−1 + ...+ ΦqFt−q + ut (3.5)

Given the high persistence of factors which we could also see in the appendix at (6.2.1), a

question that remains to be answered is the number of lags we should include in the model.

We test the robustness of the model for different amounts of lags. In Table (8), we see that

the lowest BIC value is achieved for p = 1 and q = 2 for the corresponding Equations (3.4)

and (3.5) for S&W factors, whereas for G&W factors is achieved for p = 1 and q = 1.

Furthermore, by monitoring the BIC values for further amount of lags at (6.2.2), we see that

the optimum amount of lags remains the same. However, in most of the literature where

common approaches are allocated, the choice of the simple VAR(1) is regularly preferred.

In that sense, it would also be interesting to go in line with that ”choice” of literature, so

as to also have clearer comparisons. Last but not least, it should be pointed out that as

long as the research question is whether variable selection should be included in parameter

uncertainty approach, by adding many lags of factors in our model -which seems not to be

well-fitted-, we will arbitrarily guide our results, as long as variable selection will tend to

perform better when lots of close-to-insignificant factors are present. For these reasons, we

choose to test the lags combinations of p = 1,q = 1 for both sets of factors.

21



Table 8: log-likelihood and BIC values of Equations (3.4) and (3.5) for several lags and for

both sets of factors
S&W

lags logL-(3.4) logL-(3.5) BIC-(3.4) BIC-(3.5)

1 1335,765 -1638.83 -2580,18 3429.92

2 1355,438 -1562.76 -2543,4 3404.66

3 1364,273 -1535.63 -2484,94 3477.28

4 1371,804 -1511.83 -2423,87 3556.54

G&W

lags logL-(3.4) logL-(3.5) BIC-(3.4) BIC-(3.5)

1 1502.18 5158.08 -2852.11 -9859.40

2 1514.02 5294.20 -2738.75 -9720.55

3 1529.95 5365.26 -2633.59 -9451.58

4 1541.19 5422.25 -2519.03 -9154.47

This table presents the calculated Log-likelihood (logL) and Bayesian information criterion (BIC) statistics

for several lags of Models based on (3.4) and (3.5) for S&W and G&W factors. The calculations of the

statistics were done on the Training set.

Finally, after our conclusions for model and lag selection, we convert equations (3.4) and

(3.5) as follows and we provide the OLS coefficients of the following model, estimated on the

full data-set.

zt =

(
rt

Ft

)
, C =

(
α

µ

)
, Φ =

(
0 β1

0 Φ1

)
, εt =

(
ξt

ut

)
(3.6)

zt = C + Φzt−1 + εt (3.7)

In the following tables, we provide the OLS coefficients for both set of factors. We correct

for auto-correlation and heteroskedasticity on the residuals by calculating the heteroskedastic

and autocorrelation consistent (HAC) standards errors and, finally, we calculate the p-values

of t-statistic for each coefficient, where *, **, and *** stands for the significance level of < 0.1,

< 0.05, and < 0.01.
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Table 9: α and β1 for S&W

α β1

intercept factor (1) factor (2) factor (3) factor (4) factor (5)

0,000831 -0,00011 -0,00021 -3,43E-06 -0,00015 0,000591

r1 0,000238 9,12E-05 6,45E-05 0,000103 7,88E-05 0,000112

*** *** * ***

0,004249 -0,0012 0,000162 5,31E-03 -0,00381 0,000279

r2 0,001748 6,44E-04 7,40E-04 0,000906 9,24E-04 0,000973

** * *** ***

0,002677 -0,00446 -0,00287 2,21E-03 0,00014 0,001414

r3 0,000884 5,25E-04 5,87E-04 0,000606 4,59E-04 0,000578

*** *** *** *** **

Calculated OLS coefficients α and β1 for Equations (3.6) and (3.7) for S&W factors on the Training set.

Table 10: µ and Φ1 for S&W

µ Φ1

intercept factor (1) factor (2) factor (3) factor (4) factor (5)

-0,00528 0,487001 0,407367 0,241778 -0,11502 0,239597

factor (1) 0,097858 0,033067 0,037576 0,03885 0,04423 0,052211

*** *** *** *** ***

-0,00223 0,244529 -0,26728 0,070213 -0,04505 0,077141

factor (2) 0,105418 0,035622 0,040479 0,041852 0,047647 0,056245

*** *** *

0,003006 0,107914 -0,00503 0,445846 -0,2821 0,065221

factor (3) 0,094489 0,031929 0,036283 0,037512 0,042707 0,050413

*** *** ***

-0,01659 0,048167 -0,00693 -0,16965 0,697338 0,31605

factor (4) 0,06124 0,020694 0,023515 0,024313 0,027679 0,032674

** *** *** ***

0,008909 0,094362 -0,03118 0,092081 0,228194 0,501137

factor (5) 0,065835 0,022247 0,02528 0,026137 0,029756 0,035126

*** *** *** ***

Calculated OLS coefficients µ and Φ1 for Equations (3.6) and (3.7) for S&W factors on the Training set.
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Table 11: α and β1 for G&W

α Defpr DP BM PE Ynom Yspr Crspr Ntis Var

0.022546 -0.03599 0.005766 -0.006 -0.00231 -0.03235 -0.03165 0.181577 0.014376 0.000148

r1 0.005179 0.010101 0.001222 0.001175 0.001115 0.028755 0.021385 0.097835 0.016254 0.000297

*** *** *** *** ** *

0.075688 0.258017 0.024188 -0.02682 -0.01346 -0.29395 0.096122 0.786412 0.080459 -0.00304

r2 0.045472 0.203644 0.011384 0.010068 0.009555 0.273355 0.183287 0.894348 0.117144 0.003247

* ** ***

0.038989 0.005923 -0.00196 0.002246 -0.00541 0.196604 0.428706 -0.62775 -0.13024 0.004107

r3 0.032315 0.1245 0.008846 0.008081 0.005731 0.228656 0.132601 0.623269 0.083374 0.001915

*** **

Calculated OLS coefficients α and β1 for Equations (3.6) and (3.7) for G&W factors on the Training set.

Table 12: µ and Φ1 for G&W

µ Defpr DP BM PE Ynom Yspr Crspr Ntis Var

-0.00513 -0.10456 0.006271 -0.00326 0.004858 0.019081 -0.03131 0.623031 0.047659 -0.00077

Defpr 0.0161 0.044446 0.004289 0.003922 0.002767 0.087097 0.058183 0.253955 0.038651 0.000887

** * **

-0.09552 -0.26214 0.960323 0.032904 0.002586 0.366456 0.082195 -1.04559 -0.15858 0.002603

DP 0.048592 0.134143 0.012946 0.011838 0.008351 0.262868 0.175601 0.766461 0.116651 0.002676

** * *** ***

-0.00664 -0.05141 -0.01199 0.991641 -0.01608 0.593594 0.364901 0.175695 0.110023 0.001464

BM 0.068992 0.190459 0.018381 0.016808 0.011858 0.373226 0.249322 1.088239 0.165624 0.003799

***

0.186304 -0.19521 0.03236 -0.06082 0.953448 -1.62992 -0.69969 4.506753 -0.08194 0.003493

PE 0.06996 0.193132 0.018638 0.017043 0.012024 0.378464 0.252821 1.103511 0.167949 0.003852

*** * *** *** *** *** ***

-0.00734 0.011516 -0.00159 0.001758 0.000425 0.925997 0.060256 -0.08027 0.003599 -0.00023

Ynom 0.004323 0.011933 0.001152 0.001053 0.000743 0.023385 0.015621 0.068184 0.010377 0.000238

* * *** ***

0.001881 -0.01685 0.001755 -0.00193 0.000479 -0.06701 0.909365 0.190544 0.013684 -0.00017

Yspr 0.00461 0.012726 0.001228 0.001123 0.000792 0.024939 0.01666 0.072716 0.011067 0.000254

* *** *** ***

0.005028 -0.02144 0.000182 6.2E-06 -0.00038 0.002459 -0.00121 0.923725 -0.00432 0.000377

Crspr 0.001126 0.003107 0.0003 0.000274 0.000193 0.006089 0.004068 0.017755 0.002702 6.2E-05

*** *** * *** ***

-0.00532 0.016984 0.001372 0.000469 0.002588 -0.04127 -0.0044 -0.01047 0.972893 -0.00058

Ntis 0.004571 0.01262 0.001218 0.001114 0.000786 0.02473 0.01652 0.072106 0.010974 0.000252

*** * *** **

-3.74146 -5.56089 -0.18377 0.040482 0.143951 -0.37987 -3.324 24.733 -2.36451 0.609117

Var 0.646985 1.786074 0.172367 0.157617 0.111197 3.500009 2.338071 10.20519 1.553176 0.035627

*** *** ** ***

Calculated OLS coefficients µ and Φ1 for Equations (3.6) and (3.7) for G&W factors on the Training set.
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3.2 BVAR preliminaries

In this subsection, we are going to describe the BVAR process. We had from Equations

(3.4) and (3.5) that:

rt = α + β1Ft−1 + ...+ βpFt−p + ξt

Ft = µ+ Φ1Ft−1 + ...+ ΦpFt−q + ut

The investor wants to calculate moments of rt+h in order to allocate her wealth. Be-

low, we derive the analytical formulas of these moments. In order to calculate Et(rt+h) and

V art(rt+h), it would be helpful to convert the two equations of (3.4) and (3.5) and interpo-

late them both in one auto-regressive process, where the returns rt and the factors Ft are

simultaneously explained. Thus, given the matrix of parameters B we have:

B =

(
α β1 β2 · · · βp

µ Φ1 Φ2 · · · Φq

)
(3.8)

zt =



rt

Ft

Ft−1

...

Ft−max(p,q)+1


, C =


α

µ
...

0

 , Φ =



0 β1 β2 · · · βp

0 Φ1 Φ2 · · · Φq

0 I 0 · · · 0
...

. . .
...

0 0 0 I 0


, υt =



ξt

ut

0
...

0


(3.9)

Given these definitions, we are now ready to describe the process in one single equation,

which will make easier all future calculations:

zt = C + Φzt−1 + υt υt ∼ N(0, Q) Q =

(
Σ 0

0 0

)
Σ =

(
Σξξ Σξu

Σuξ Σuu

)
(3.10)

Here, Q is the covariance matrix of υt and Σ the covariance matrix of the vector that

contains both ξt and ut. Finally, we derive the moments for portfolio construction problem

following Campbell and Viceira (2005):
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Et(zt+h) =

[
h−1∑
i=0

Φi

]
C +

[
h∑
j=1

Φj

]
zt

V art(zt+h) = (I + Φ + · · ·+ Φh−1)Σ(I + Φ + · · ·+ Φh−1)′

(3.11)

It is now obvious how to take moments for rt+h, whereas if someone sets yt = (rt, Ft), she

can easily take the expectations Et(yt+h) from Et(zt+h) and V art(yt+h) from V art(zt+h).

However, in order to describe the BVAR process we transform Equations (3.4) and (3.5)

as:

yt =

(
rt

Ft

)
, B =

(
α β1 · · · βp

µ Φ1 · · · Φq

)
, Zt =


1

Ft−1

...

Ft−max(p,q)

 εt =

(
ξt

ut

)
(3.12)

yt = BZt + εt εt ∼ N(0,Σ) (3.13)

Let us assume that yt is an m× 1 vector of T times series observations and Σ the m×m
covariance matrix of εt. Finally, we rewrite the above equation to a seemingly unrelated

regressions (SUR), where n is the total number or parameters of matrix B and β is an n× 1

vector and the symbol ”⊗ ” is the Kronecker product :

β = vec(B′), zt = Im ⊗ Zt (3.14)

yt = ztβ + εt εt ∼ N(0,Σ) (3.15)

The simple BVAR version of our variations is based on Equation (3.15). However, the

BVAR with variable selection (BVAR-VS) is selecting which variables to include in the model.

This selection is indirectly undergone, multiplying each element of β with the corresponding

element of γ, which is also an n × 1 vector. Each element of γ could either equal to zero

or one. In that sense, the selection is forced. We define the symbol ”�” as the Hadamard

product.The BVAR-VS listens to:

yt = ztθ + εt εt ∼ N(0,Σ) θ = γ � β (3.16)

We are now ready to describe the BVAR procedure, based on the models of Equation
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(3.15) and (3.16). Firstly, we will describe the prior choice. Moreover, we will show how

a BVAR Gibbs sampler model draws from the posterior density of yt+1, yt+2, .., yt+h and

forecasts h periods ahead and how Korobilis BVAR Gibbs sampler with variable selection

model differentiate from this. Please note that having the posterior of yt+1,yt+2,...,yt+h, we

can isolate and use the MCMC simulations of rt+1,rt+2,...,rt+h, which means that having the

first posterior density, we also have the one of the returns.

3.2.1 Prior

We are going to use two kinds of priors for our parameters. We present the priors that

regard the parameters in both BVAR and the Bayesian VAR with variable selection (BVAR-

VS). Firstly the Ridge Regression prior, which could be written in the form: β = 0 with prior

parameter covariance matrix V = λ1 × I, where I is the n × n identical matrix. Secondly

the Minnesota prior which could be written as: βi = 1 if the ith parameter correspond to the

first own lag and βi = 0 otherwise. For the prior parameter covariance matrix we transform

properly the elements of the V m at (3.17) to a diagonal V n×n matrix, where each diagonal

element corresponds to the prior variance of each parameter. We denote as s2
j the variance

of the residuals of the AR(p) model of the jth time series and as r the corresponding lag of

jth parameter.3 Following we present the formula of prior covariance for each element B′ij of

(3.12):

V mij
r =

100si
2 if intercept

λ2/r
2 if i = j

λ3
si

2

r2sj2
if i 6=j

(3.17)

Moreover, we should note that the use of Minnesota prior is mainly done because it

gives a more ”fair” chance for less restrictions when variable selection is applied compared

to the Ridge OLS prior. As it was indicated in Korobilis (2013), Minnesota prior allows

for the diagonal parameters to fluctuate and shrinks more the non-diagonal parameters to

zero compared to the Ridge one and, as a matter of fact, this would highlight a more clear

”winner” in the comparison with the variable selection. In contrast, the Ridge OLS prior

will allow for more restrictions to be efficient when variable selection is applied -especially

when the number of parameters is getting bigger-, because of the fact that this prior shrinks

all parameters in the same magnitude.

Furthermore, in Equation (3.15), we presented a way that the processes of Equations

(3.4) and (3.5) could perform interactively in a single Equation. However, the prior use

3in our case r = 1, we do not use further lags
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and the hyper-parameter optimization of β will be done separately for the parameters that

correspond to (3.4) and (3.5). The reason is that the nature of the two Equations is different

and, in this way, we provide more efficient results. However, for a single horizon (h = 1)

we do not ”need” Equation (3.5) and, thus, we do not divide our models for the priors

that correspond to that Equation. All in all, we set the Ridge Regression prior to all of the

parameters that correspond to Equation (3.4) and we never apply a Minnesota prior for those

parameters, whereas for those that correspond to Equation (3.5), we apply both the Ridge

Regression prior and the Minnesota prior. The reason that we do not set a Minnesota prior

to the parameters that correspond to equation (3.4) is that this model is not Autoregressive.

Moreover, our prior beliefs concerns the prior covariance matrix Sp which is set to the

OLS covariance matrix of residuals εt of the corresponding rolling window and the prior

degrees of freedom vp which is set to the length of the vector yt (vp = m).

Moreover, when we apply variable selection, we also interpolate for our prior beliefs about

the exclusion of each parameter βi. This is the prior likelihood for the ith parameter β. We

denote this parameter as π0, which is the n×1 vector, where π0k is the prior probability that

the kth parameter will be included in the final model. Following Korobilis (2013), the prior

π0k does not need to be separately set for each of our parameters. In that sense, we could

set a a value π0 for all of our parameters. However, similarly to our prior use of β and V , we

split our prior beliefs about π0i separately depending on which Equation the ith parameter

corresponds to, as already analysed. For example, it might be the case that for (3.4) we need

to restrict less parameters than (3.5). One additional important implementation of Korobilis

(2013) was not to restrict parameters βc that are intercepts, which we also implement. In

practice, this could be done either by simply not running the variable selection algorithm

solely for these parameters, or by setting π0j = 1 when j = c. We modify our algorithm to

run over the selection on non-intercepts.

All in all, we have various models, where the standard set-up that we have selected

regards five different horizons (h = 1, 4, 6, 12, 24) and one kind of prior that corresponds to

Equation (3.4), which is the Ridge OLS. The variations of our models for a given selected

horizon and a given selected set of factors regards whether we apply variable selection or we

use Ridge OLS prior for Equation (3.5) or Minnesota. Thus, for each horizon we have four

different types of models, as shown in the following table.
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Table 13: Possible combinations of models for given horizon

Models
Variable

Selection

Ridge prior

for (3.4)

Ridge prior

for (3.5)

Minnesota prior

for (3.5)

BVARR 0 1 1 0

BVARRVS 1 1 1 0

BVARM 0 1 0 1

BVARMVS 1 1 0 1

This table defines the models M(·) by taking into account all the possible combinations of applying variable

selection and applying Minnesota prior on Equation (3.5). The values of 0 and 1 stand for the fact of

applying of not the function of the corresponding column for the model.

3.2.2 BVAR Gibbs sampler process

The joint posterior predictive distribution of yt+1, yt+2, .., yt+h follows from:

p(yt+1, yt+2, .., yt+h|Y ) =

∫
p(yt+1, yt+2, .., yt+h|Y, β,Σ)p(β,Σ|Y )dβdΣ =∫∫

β,Σ

p(yt+1, yt+2, .., yt+h|Y, β,Σ)p(β|Σ, Y )p(Σ|Y )dβdΣ

In order to approximate this integration, we apply Gibbs sampler. This technique is well-

known in the literature of Bayesian Econometrics techniques, where it is extensively shown

in Gelfand and Smith (1990) and Dellaportas and Roberts (2003). Thus, in order to draw

from the joint posterior density of yt+1, yt+2, .., yt+h, we follow the Monte Carlo Integration,

given the prior parameters which are: β, which is the n × 1 vector that corresponds to the

prior belief of β, V which is the n× n prior parameter covariance matrix and finally Sp and

vp which are the prior covariance matrix of εt and the prior degrees of freedom. We describe

the ith iteration of the process.

• Draw β̃i from the posterior density:

β|Σ, Y ∼ N(β̃, Ṽ )

where Ṽ = (V
−1

+
T∑
t=1

ztΣ
−1zt)

−1 and β̃ = Ṽ (V
−1
β +

T∑
t=1

ztΣ
−1yt)

• draw Σ̃i from the posterior density:

Σ|β, Y ∼ inverted Wishart(Sp + S, vp + T )
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where S =
T∑
t=1

(yt − ztβ̃i)′(yt − ztβ̃i)

• reshape β̃i to B̃i according to the definition of β in equation (3.14).

• Draw ˜yt+h
i from the posterior density:

yt+h|β,Σ, Y ∼ N(µi,Ωi)

where µi and Ωi are the Et( ˜yt+h
i) and V art( ˜yt+h

i) and taken from the forecast procedure

as described at (3.8),(3.9),(3.10) and (3.11) by setting B = B̃i and Σ = Σ̃i.

• repeat the process for N times and approximate Et(yt+h) ≈ 1
N

N∑
i=1

˜yt+h
i
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3.2.3 BVAR Gibbs sampler with variable selection

The joint posterior predictive distribution of yt+1, yt+2, .., yt+h follows from:

p(yt+1, yt+2, .., yt+h|Y ) =

∫
p(yt+1, yt+2, .., yt+h|Y, β, θ,Σ)p(β, θ,Σ|Y )dβdθdΣ =∫∫∫

β,θ,Σ

p(yt+1, yt+2, .., yt+h|Y, β, θ,Σ)p(β|θ,Σ, Y )p(θ|Σ, Y )p(Σ|Y )dβdθdΣ

Thus, in order to draw from the joint posterior density of yt+1, yt+2, .., yt+h we follow the

Monte Carlo Integration, given the prior parameters which are: β, V , Sp, vp, π0 which is the

n × 1 vector, where π0k is the prior probability that the kth parameter will be included in

the final model. We describe the ith iteration of the process.

• Draw β̃i from the posterior density:

β|γ,Σ, Y ∼ N(β̃, Ṽ )

where Ṽ = (V
−1

+
T∑
t=1

z∗t Σ
−1z∗t )

−1 , β̃ = Ṽ (V
−1
β+

T∑
t=1

z∗t Σ
−1yt) and z∗t = ztΓ̃i , where Γ̃i

is the n×n matrix that is equal to zero everywhere except from the diagonal elements

where : Γ̃ijj = γ̃ij

• Draw γ̃ij, j = 1, ..., n from the posterior density and j is taken in random order:

γj|γ|−j, β,Σ, Y ∼ Bernoulli(π̃j)

where π̃j =
l0j

l0j+l1j
and:

Define θ∗ = θ, but set the jth parameter θj = βj and

θ∗∗ = θ, but set the jth parameter θj = 0

l0j = log[p(y|θj.γ|−j, γj = 1)]π0j

Thus l0j ∝
(
− 1

2

T∑
t=1

(yt − ztθ∗)′Σ−1(yt − ztθ∗)
)
π0j

l1j = log[p(y|θj.γ|−j, γj = 0)](1− π0j)

Thus l1j ∝
(
− 1

2

T∑
t=2

(yt − ztθ∗∗)′Σ−1(yt − ztθ∗∗)
)

(1− π0j)
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Here, following Diris (2014), we differentiate from Korobilis (2013) and we use log

Marginal likelihood instead of Marginal likelihood in our procedure. The log-likelihood

itself is quite big in our set-up and, thus, might cause numerical issues in the calcu-

lation of Marginal likelihood. Moreover, note here that the the exact loj and l1j are

proportional to the formula given, because we ignore the integrating constant.

• Set θ̃i = γ̃i � β̃i .

• draw Σ̃i from the posterior density:

Σ|β, Y ∼ inverted Wishart(Sp + S, vp + T )

where S =
T∑
t=1

(yt − ztθ)′(yt − ztθ)

• reshape β̃i to B̃i according to the definition of β in equation (3.14) and similarly

reshape θi to Θ̃i.

• Draw ˜yt+h
i from the posterior density:

yt+h|β, γ,Σ, Y ∼ N(µi,Ωi)

where µi and Ωi are the Et( ˜yt+h
i) and V art( ˜yt+h

i) and taken from the forecast procedure

as described at (3.8),(3.9),(3.10) and (3.11) by setting B = Θ̃i and Σ = Σ̃i.

• repeat the process for N times and approximate Et(yt+h) = 1
N

N∑
i=1

˜yt+h
i

The reader might find helpful the following visualization of draws of γ as we see in Figure

(3). In that figure we see the behavior of variable selection. We clearly see that there are

some variables that our algorithm almost always select to include, others that we almost

always exclude and some that switch over and over again.
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Figure 3: Draws of γ

This Figure plots the results of 10,000 simulations of drawn coefficients. We perform a BVAR-VS(1) of (3.5)

with q = 1 (only for the factors), including 90 parameters and we set for all of our parameters π0i = 0.5.

For each of the 10,000 simulations that we can see in vertical axis, we monitor the draws of γ on horizontal

axis and we set green = 1 and red = 0.

3.2.4 BVAR optimal weights

Let w(th) be the Kr × 1 vector (where here Kr = 3 as long as we have 3 assets), such

that the kth element of that vector is the optimal proportion of wealth that the investor

allocates to the kth asset at time t and expects to maximize the power Utility function at

time t+ h. Let us firstly assume the following:

U(·) the power utility function of the investor where U(x) = (1/γ)x1−γ.

r·t→t+h =
K∑
j=1

r·t+j.

Let cgr2(th) = (r2t→t+h + r1t→t+h) cgr3(th) = (r3t→t+h + r1t→t+h) and cgr1(th) =

r1t→t+h
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Then the cumulative Gross log-returns will be: cgr(th) =


cgr1(th)

cgr2(th)

cgr3(th)


The cumulative wealth: Wt→t+h = Wt × [w(th)′exp(cgr(th))]

In order to obtain the BVAR optimal weights for the buy-and-hold investor, we are solv-

ing the following problem:

maxw(th)Et[U(Wt→t+h)]

maxw(th)

∫∫∫
β,Σ,cgr(th)

U(Wt→t+h)p(cgr(th)|β,Σ, Y )p(β|Y )p(Σ|β, γ, Y )d(β)d(Σ)d(cgr(th))

Whereas, in order to obtain the BVAR optimal weights with variable selection for the

buy-and-hold investor, we are solving the following problem:

maxw(th)Et[U(Wt→t+h)]

maxw(th)

∫∫∫∫
β,Σ,θ,cgr(th)

U(·)p(cgr(th)|β,Σ, θ, Y )p(β|Y )p(θ|β, Y )p(Σ|β, θ, Y )d(β)d(Σ)d(θ)d(cgr(th))

In practice, the above equations mean that the optimal weights w(th) should be obtained

as the vector that maximizes the expected Utility at the simulated MCMC paths of the joint

posterior of rt+1,rt+2,...,rt+h. At subsection (3.2.3), we presented how to draw from this

density in both cases. Thus, we choose the weight w(th), so that it maximizes the expected

power Utility function h periods ahead and no sort selling is allowed, which in mathematical

form could be written as: 0 ≤ w(th) ≤ 1. Thus, our utility function is:

U(Wt→t+h) = Et

[
[w(th)′exp(cgr(th))]

1−γ

1− γ

]

A proxy of this expectation could be the following:
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U(Wt→t+h) ≈
1

N

N∑
i=1

(
[w(th)′exp(cgr(th))]

1−γ

1− γ

)

We simulate grid points, as possible values of w(th). Thus, we simulate values on the

linespace between 0 and 1 with a particular step and we take into account all possible com-

binations for our elements of our vector w(th) and we calculate realized utility for each of

our simulated paths as:

U i
w = [w(th)

′exp(cgri(th))]1−γ

1−γ

We approximate conditional expected utility for each combination of grid points w as:

CUw ≈ 1
N

N∑
i=1

U i
w

Finally, we select w(th) that maximizes the conditional expected utility for h periods ahead.

That will be the optimal portfolio weights for a buy-and-hold investor who invests h periods

ahead, whereas for the myopic investor who invest in a single period ahead, we can obtain

the optimal weights by setting h = 1.

3.2.5 Parameters and inputs handling on BVAR variations

We are now going to analyse the prior hyper-parameter optimization. This analysis will

be done for each horizon that we are interested in. Thus, for each horizon we simulate

different grid points from our hyper-parameters and we calculate for which combination of

simulated values we obtain the minimum average 4 mean squared prediction errors of cgr(th)

.

Finally, we perform the analysis that has been described for the prior parameter opti-

mization for our several models by simulating hyper-parameters from the corresponding grid

points of table (14) for each model and each horizon.

4note here that cgr(th) is a vector. We calculate the MSPE for each element and we optimize for the
average of those MSPE’s
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Table 14: Allowance of hyper-parameters’ grids

hyper-parameters grid

λr1 {10−4, 10−3, 0.01, 0.1, 1}
λF1 {10−3, 0.01, 0.1, 1, 10}
λr2 {10−3, 0.01, 0.1, 0.5, 1}
λF3 {10−3, 0.01, 0.1, 0.5, 1}
π0

r {0.5, 0.8}
π0

F {0.5, 0.8}

This table specifies under which values the hyper-parameters optimazation will be undergo. Note here that

λr and λF stands for the corresponding parameter of Equations (3.4) and (3.5) respectively.

Finally, we find the following optimal hyper-parameters for each data-set of factors and

for each horizon we are interested in. We present the result in Table (15).

Table 15: Optimal hyper-parameters for S&W factors.

1 4 6 12 24

BVARR λr1 = 10−3
λr1 = 0.01

λF1 = 0.01

λr1 = 0.01

λF1 = 0.1

λr1 = 0.01

λF1 = 0.1

λr1 = 0.01

λF1 = 0.1

BVARRVS
λr1 = 10−3

π0
r = 0.5

λr1 = 0.01

π0
r = 0.5

λF1 = 0.01

π0
F = 0.5

λr1 = 0.01

π0
r = 0.5

λF1 = 0.1

λ 4F = 0.5

λr1 = 0.01

π0
r = 0.8

λF1 = 0.1

λ 4F = 0.5

λr1 = 0.01

π0
r = 0.8

λF1 = 0.1

π0
F = 0.8

BVARM

λr1 = 0.01

λF2 = 0.1

λF3 = 0.01

λr1 = 0.01

λF2 = 0.1

λF3 = 0.1

λr1 = 0.01

λF2 = 1

λF3 = 0.1

λr1 = 0.01

λF2 = 1

λF3 = 0.1

BVARMVS

λr1 = 0.01

π0
r = 0.5

λF2 = 0.1

λF3 = 0.01

π0
F = 0.5

λr1 = 0.01

π0
r = 0.8

λF2 = 0.5

λF3 = 0.1

π0
F = 0.5

λr1 = 0.01

π0
r = 0.8

λF2 = 1

λF3 = 0.1

π0
F = 0.8

λr1 = 0.01

π0
r = 0.8

λF2 = 1

λF3 = 0.1

π0
F = 0.8

This table presents the results of optimal hyper-parametes optimazation of S&W factors, for each combina-

tion of our models and for each horizon we are interested in. Note here that the missing values from cells that

correspond to models BVARM and BVARMVS for horizon=1, are values that is meaningless to optimize,

since for horizon=1 we do not use Equation (3.5) and BVARR is identical to BVARM and BVARRVS is

identical to BVARMVS for a single horizon.
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Table 16: Optimal hyper-parameters for G&W factors

1 4 6 12 24

BVARR λr1 = 10−4
λr1 = 0.01

λF1 = 0.01

λr1 = 0.01

λF1 = 0.01

λr1 = 0.01

λF1 = 0.01

λr1 = 0.01

λF1 = 0.01

BVARRVS
λr1 = 10−4

π0
r = 0.5

λr1 = 0.01

π0
r = 0.8

λF1 = 0.01

π0
F = 0.5

λr1 = 0.01

π0
r = 0.8

λF1 = 0.01

π0
F = 0.8

λr1 = 0.01

π0
r = 0.8

λF1 = 0.01

π0
F = 0.8

λr1 = 0.01

π0
r = 0.8

λF1 = 0.1

π0
F = 0.8

BVARM

λr1 = 0.01

λF2 = 0.01

λF3 = 0.01

λr1 = 0.01

λF2 = 1

λF3 = 0.01

λr1 = 0.01

λF2 = 1

λF3 = 0.1

λr1 = 0.01

λF2 = 1

λF3 = 0.1

BVARMVS

λr1 = 0.01

π0
r = 0.8

λF2 = 0.01

λF3 = 0.01

π0
F = 0.8

λr1 = 0.01

π0
r = 0.8

λF2 = 1

λF3 = 0.01

π0
F = 0.8

λr1 = 0.01

π0
r = 0.8

λF2 = 1

λF3 = 0.1

π0
F = 0.8

λr1 = 0.01

π0
r = 0.8

λF2 = 1

λF3 = 0.1

π0
F = 0.8

This table presents the results of optimal hyper-parametes optimazation of G&W factors, for each combina-

tion of our models and for each horizon we are interested in. Note here that the missing values from cells that

correspond to models BVARM and BVARMVS for horizon=1, are values that is meaningless to optimize,

since for horizon=1 we do not use Equation (3.5) and BVARR is identical to BVARM and BVARRVS is

identical to BVARMVS for a single horizon.

It should be noted here that the compared approaches will be quite strict to the prior

beliefs, especially for a single horizon. In other words, this might be an additional reason

that even when we apply variable selection in our model, we do not expect huge differences,

also given that we are testing without using lags in the returns and with lagged one factors,

two features that probably affect the comparisons.

3.3 Comparison and Evaluation of the performance

Finally, after concluding on the model specification and parameter optimization, we are

ready to test the out of sample performance of our various models on the Test set. The first

comparison of the two approaches will be based on Statistical evaluation. We calculate the

mean squared prediction error (MSPE) between the actual cumulative gross returns cgr(th)

as defined at (3.2.4) and the forecasted ones ˆcgr(th), for each horizon h we are interested in
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and for each of our various models. We compare the performance of the two corresponding

models by dividing the mspe’s of BVAR-VS with BVAR and, finally, performing a Bayesian

variation of Diebold-Mariano following Garratt et al. (2012) to test even deeper if there is

significant forecasting improvement by including variable selection and we also perform our

own approach on Bayesian percentage of correct signs test.

Let t belong to the Test set and τ denote the number of observations in the Test set. For

the calculation of MSPE of each element j of ˆcgr(th), we use the following formula:

MSPEj =
1

τ − h+ 1

τ−h∑
t=1

( ˆcgrj(th)− cgrj(th))2

Next to it, we calculate the Bayesian version of Diebold-Mariano described at Garratt

et al. (2012). Enhancing to our application of this test, we test two models m = 1, 2, where

Model 1 is the one with variable selection and Model 2 is the one without. Let us denote

as yt the actual value and as ỹmit our posterior density of y for model m. We calculate the

density of forecast errors as: emi(t+h) = yt − ˜ymi(t+h). Furthermore, we calculate the density of

p(d(t+ h)), where d(t+ h) = (e1
i(t+h))

2− (e2
i(t+h))

2. Thus, for each point in time t+ h we can

calculate Pr(dt+h > 0 | Y ), which will give us which model has lower posterior residuals at

time t. Finally, we calculate the BDM test statistic , which will indicate which model has

consistently lower forecast error in the Test Set.:

BDM =
1

τ − h+ 1

τ−h∑
t=1

Pr(dt+h > 0 | Y )

The importance of non-parametric tests for the prediction of correct signs of returns, is

well known in the literature (see for example Pesaran and Timmermann (1992) or Dueker

and Neely (2007)). To that purpose, we introduce our Bayesian approach of percentage of

correctly predicted signs, similarly to the Bayesian version of Diebold-Mariano. We calculate

Prj(I(yt+h > 0)I(ỹj i(t+h) > 0) + I(yt+h < 0)I(ỹj i(t+h) < 0) | Y ) for each point in time t + h

and for both models j = 1, 2, which roughly speaking will indicate which model posterior

predictive distribution has more mass to the correct sign of the actual cumulative return at

time t+ h. We calculate the Bayesian percentage of correctly predicted signs as:

BPCS =
1

τ − h+ 1

τ−h∑
t=1

Prj(I(yt+h > 0)I(ỹj i(t+h) > 0) + I(yt+h < 0)I(ỹj i(t+h) < 0) | Y )
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Moreover, to test the actual portfolio performance and compare possible differences we

calculate the cumulative portfolio return of each portfolio as:

cprt→t+h = cprt + w(th)′cgr(th)

Finally we evaluate the maximum drawdowns of cumulative return of our portfolios over

a perior [t− p, t]

Max(Drawdownt) =
d− u
u

where : d = min(cprt1) : t1 ∈ [t− p, t]

and u = max(cprt2) : t2 ∈ [t1 − q, t1]

3.3.1 Illustrative example for using multiple metrics for statistical evaluation

We are now going to explain with several examples, why we are using those metrics

(MSPE, BDM, BPCS) and what they are actually measuring (let us denote here as MSPE

the mspe ration between two models).

A crucial point on evaluating the performance of predictive posterior distributions is that

we should not only see one perspective of performance. There is not one metric that will

make clear the actual fit of our predictive distributions.

In Figure (3.3.1), we see four cases of normal distributions, produced by two models. Let

us assume that we have four scenarios, where for each point in time the predictive posterior

distributions, generated by two models for an asset return, is the horizontal plots of (3.3.1)

and the actual return in each point in time is the same as the one indicated in the same

Figure. Each row of plots corresponds to a possible scenario for two models.

To begin with, it is obvious that in these hypothetical scenarios, Model 2 will have clearly

better performance compared to Model 1. In the first case, we can imagine that all three

metrics will indicate that Model 2 will have better performance. In the second scenario, the

MSPE will indicate that the first model will perform better, because on average the mean

of the predictive distribution of Model 1 will be closer to the actual return, compared to

the mean of Model 2, which will consistently be a bit further. In contrast, both BPCS and

BDM will indicate Model 2, as better. The BPCS will ”see” that there is great mass of the

distribution on the actual return’s sign, whereas BDM will ”see” that on average the forecast

errors are much lower for Model 2. In the third case, BPCS will indicate Model 1 as clear

winner as long as it contains more mass in the actual return’s sign, whereas the other two
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statistics will show us that Model 2 is better. Lastly, in the fourth case, BDM will show a

”draw” for the comparison of the two Models and we should obtain a statistics equals 0.5.

The reason is that on average, the distributions are skewed to the left and right of the actual

value, they are symmetric and they have the same standard deviation. In other words the

absolute errors would be exactly the same and the squared forecast errors on average should

be the same. Moreover, the MSPE will also indicate draw between the two models for the

same reason. Thus, we can proudly conclude, that only our BPCS statistic will indicate that

Model 2 performs better, in that case.

All in all, with these examples, we would like to show that the only way to have clear

indications for outperformance of a model to another, is only when all statistics agree. Thus,

we have to combine portfolio performance with all these statistics to have a better image of

what we actually forecast and how our forecasts ”behave”.

Figure 4: Four examples of posterior predictive distributions generated by two models.

This figure plots four cases of normal distributions, produced by two models. These distributions are products

of four hypothetical scenarios for the predictive posterior distributions for an asset return, generated by two

models. The red dot represents the actual return
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4 Results

In this Section, the main results of the thesis are presented. In subsection (4.1), the

results of the Gibbs sampler of Korobilis (2013) are also introduced. The approach of Stock

and Watson (2002a) is followed, where common factors have been used as predictors in order

for the shifts and the co-movements of global financial and macroeconomic time series to be

captured. Subsection (4.2) presents the corresponding results in the case where as predictor

variables the variable of Welch and Goyal (2008) have been used, where several asset specific

characteristics such as the dividend-to-price ratio, the book-to-market ratio and others have

been used. The risk aversion of the investor in all versions is assumed to be equal to five.

4.1 Results for Stock & Watson factors

In this subsection, the results of our algorithm is presented, Gibbs sampler with variable

selection for a VAR model (Korobilis (2013)). In the VAR model, the common factors have

been used as predictor variables, constructed by Stock and Watson (2002b). The allocation

of weights of our method is also compared with the simple Gibbs sampler for a VAR model

and with the frequentist approach of OLS estimation. For the conclusions, the portfolio

performance is also taken into account which could be considered as a financial evaluation

and can be seen in Appendix at (6.5.3) and (6.5.4)

To begin with, our first step into looking up our models is to provide with some end-

of-sample statistics, where our results are based on 100,000 iterations of the described pro-

cedures. Figure (4.1) presents the end-of-sample allocation of weights until 20 years ahead

for buy-and-hold strategy for three different assets a T-bill, a stock and a bond with our

approach, the BVAR model and the OLS approach. It should be noted that there are not sig-

nificant differences between the different BVAR approaches and the OLS. This is a surprising

result since taking into account the parameter uncertainty should had at least differentiate

the allocation of the investor in comparison to the OLS plug-in approach.
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Figure 5:

Figure 6: End-of-sample allocation of weights for S&W factors.

This figure plots the end-of-sample allocation of weights for S&W factors. The investment horizon that

is undetaken is each month until twenty years ahead, beggining from the end of our sample. The portfolio

investment strategy is a buy and hold strategy for the T-bill (top), for a stock (middle) and for a bond

(bottom). We apply the BVAR model (blue lines), the BVAR-VS method (red lines) and the OLS method

(yellow lines).

Table (17) presents the posterior means and the standard deviations of the posterior

distribution of the coefficients of the BVAR model that was selected for this end-of-sample

implementation. We do not observe any considerable difference with OLS estimates of Tables

(9) and (10). Most of the signs are in line with the OLS estimates. Table (18) presents the

posterior mean for the γ coefficients from which we can decide for the predictor variables

that have to be included in the model. Note here that variable selection seems to be forced

and our model does not have any preference on which coefficient to select. In other words,

it looks like it randomly selects the restricted factors.
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Table 17: Posterior mean and standard deviations of BVAR coefficients

factor(1) factor(2) factor(3) factor(4) factor(5)

r1 -0.0001061 -0.0002083 0.0000025 -0.0001601 0.0006059

0.0000488 0.0000557 0.0000575 0.0000653 0.0000778

r2 -0.0011049 0.0001779 0.0052299 -0.0038923 0.0000810

0.0006336 0.0007222 0.0007445 0.0008524 0.0010097

r3 -0.0043893 -0.0028975 0.0022325 0.0000089 0.0016225

0.0003941 0.0004525 0.0004639 0.0005311 0.0006265

factor(1) 0.4775899 0.4097199 0.2501671 -0.1138982 0.2495335

0.0331442 0.0379354 0.0390752 0.0445361 0.0523748

factor(2) 0.2387316 -0.2629316 0.0654096 -0.0467852 0.0707170

0.0360650 0.0411749 0.0422378 0.0481582 0.0569879

factor(3) 0.1133728 -0.0045780 0.4327157 -0.2973292 0.0603518

0.0323086 0.0367015 0.0377332 0.0430644 0.0510567

factor(4) 0.0491683 -0.0112873 -0.1710603 0.6925132 0.3092577

0.0212379 0.0241156 0.0249366 0.0282262 0.0335201

factor(5) 0.0960096 -0.0252434 0.0894832 0.2191982 0.5066257

0.0224525 0.0256100 0.0263646 0.0301102 0.0354854

This table presents the full sample posterior means and standard deviations of the BVAR coefficients that

correspond to Equations (3.4) and (3.5) for the S&W factors. Note here that we have selected p=1 and q=1.

These results are based on 100,000 draws from the posterior distribution.
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Table 18: Posterior mean of BVAR-VS γ coefficients

factor(1) factor(2) factor(3) factor(4) factor(5)

r1 0.0872 0.0972 0.1090 0.0359 0.9473

r2 0.5791 0.5540 0.6258 0.6524 0.5096

r3 0.7866 0.8382 0.4581 0.3123 0.6257

factor(1) 0.5960 0.5900 0.5373 0.3635 0.3836

factor(2) 0.4502 0.4652 0.4698 0.4060 0.4064

factor(3) 0.4818 0.4154 0.6192 0.2965 0.3927

factor(4) 0.3714 0.3413 0.5036 1.0000 0.9672

factor(5) 0.4861 0.3414 0.4188 0.8920 0.9991

This table presents the full sample posterior means of the BVAR-VS γ coefficients that correspond to Equa-

tions (3.4) and (3.5) for the S&W factors. Note here that we have selected p=1 and q=1. These results are

based on 100,000 draws from the posterior distribution.

We continue our analysis by evaluating the performance of our models in the Test set,

where the results are based on 20,000 iterations in each point in time.

Tables (19) and (20) present the Mspe’s ratios for the comparisons of the four models.

We do not observe any significant difference, since most of the values are close to one. The

only characteristic that we could highlight is that variable selection seems to have better

performance for forecasting cumulative portfolio returns of bonds on long horizons (12 and

24). Moreover, although for most horizons the predictability of factors is roughly the same,

we observe some indications of improvement for horizons of 12 and 24. This might also

make sense by looking the correlograms at (6.2.1), where we see that for longer horizons

only the fourth and the fifth factor are highly correlated. Thus, when variable selection is

undertaken, it might indeed produce better forecasts for those factors in longer horizons. This

result highlights here the importance of variable selection when some of our state variables

are highly cross-correlated.
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Table 19: Mspe’s ratios bewtween models BVARRVS and BVARR

horizons cgr1(th) cgr2(th) cgr3(th) factor(1) factor(2) factor(3) factor(4) factor(5)

h=1 1.0246 0.9930 1.0880 1.2117 1.0574 1.0254 1.0795 1.0568

h=4 0.9847 1.0274 1.0151 1.0692 0.9938 1.0289 1.0863 1.0362

h=6 0.9926 1.0656 1.0124 1.0004 0.9932 1.0169 1.0513 1.0042

h=12 1.0133 1.0724 0.9460 0.9828 0.9916 1.0046 0.9974 0.9806

h=24 1.0209 1.0754 0.8724 0.9983 0.9985 1.0022 0.9891 0.9941

This table presents the mean squared prediction errors between the BVARRVS model and the BVARR model

for the predictions of Test set observations of the time series of the cumulative gross returns and the factors,

where here we are using the S&W factors (also see Table (13) for definition of each model. In order to

predict each point in time of the Test set, for each horizon ahead, we use 20,000 draws from the posterior

distribution.

Table 20: Mspe’s ratios bewtween models BVARMVS and BVARM

horizons cgr1(th) cgr2(th) cgr3(th) factor(1) factor(2) factor(3) factor(4) factor(5)

h=1 - - - - - - - -

h=4 0.9764 1.0033 0.9836 1.0869 0.9918 1.0306 1.1740 1.0543

h=6 0.9814 1.0456 0.9795 0.9897 0.9899 1.0332 1.1532 1.0194

h=12 0.9985 1.0811 0.8811 0.9627 0.9990 1.0162 1.0678 0.9732

h=24 1.0010 1.1050 0.7894 1.0037 1.0035 1.0177 0.9769 0.9871

This table presents the mean squared prediction errors between the BVARMVS model and the BVARM model

for the predictions of Test set observations of the time series of the cumulative gross returns and the factors,

where here we are using the S&W factors (also see Table (13) for definition of each model. In order to

predict each point in time of the Test set, for each horizon ahead, we use 20,000 draws from the posterior

distribution.

The BDM statistics are given in Tables (21) and (22). We note here that the BVAR

model has on average the lower posterior forecast errors for the prediction of the factors.

In other words, we observe that BVAR-VS does not outperform in any horizon. However,

we do see here that BVAR deteriorates its performance as well for the cumulative portfolio

return of bond for longer horizons. However, we do not see an improvement of performance

of variable selection for the fourth and the fifth factor for longer horizons as the Mspe’s ratios

indicated previously and as a matter of fact we do not consider that this improvement was

significant. Lastly, we also observe in those two tables that when Minessota prior is applied,

the performance of variable selection becomes even worse.
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Table 21: BDM statistics bewtween models BVARRVS and BVARR

horizons cgr1(th) cgr2(th) cgr3(th) factor(1) factor(2) factor(3) factor(4) factor(5)

h=1 0.5090 0.5115 0.5192 0.5394 0.5213 0.5113 0.5184 0.5154

h=4 0.4976 0.5149 0.4911 0.5159 0.5042 0.5089 0.5202 0.5093

h=6 0.4865 0.5186 0.4996 0.5076 0.5039 0.5059 0.5183 0.5054

h=12 0.5011 0.5150 0.4696 0.5059 0.5037 0.5052 0.5095 0.5004

h=24 0.5121 0.5163 0.4556 0.5090 0.5055 0.5039 0.5081 0.5024

This table presents the Bayesian Diebold-Mariano statistics between the BVARRVS model and the BVARR

model for the predictions of Test set observations of the time series of the cumulative gross returns and the

factors, where here we are using the S&W factors (also see Table (13) for definition of each model. In order

to predict each point in time of the Test set, for each horizon ahead, we use 20,000 draws from the posterior

distribution.

Table 22: BDM statistics bewtween models BVARMVS and BVARM

horizons cgr1(th) cgr2(th) cgr3(th) factor(1) factor(2) factor(3) factor(4) factor(5)

h=1 - - - - - - - -

h=4 0.4963 0.5152 0.5006 0.5227 0.5097 0.5176 0.5367 0.5158

h=6 0.4934 0.5188 0.4997 0.5110 0.5085 0.5148 0.5370 0.5126

h=12 0.4953 0.5178 0.4886 0.5067 0.5097 0.5127 0.5301 0.5059

h=24 0.4982 0.5231 0.4863 0.5156 0.5100 0.5164 0.5244 0.5058

This table presents the Bayesian Diebold-Mariano statistics between the BVARMVS model and the BVARM

model for the predictions of Test set observations of the time series of the cumulative gross returns and the

factors, where here we are using the S&W factors (also see Table (13) for definition of each model. In order

to predict each point in time of the Test set, for each horizon ahead, we use 20,000 draws from the posterior

distribution.
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In Table (23), the corresponding BPCS are presented. When variable selection is applied

here as well, we see that on average the posterior predictive returns have roughly the same

proportion of correct sign as when the simple BVAR is undertaken. However, for the cumu-

lative return of bond in longer horizons, we see again that variable selection outperform of

BVAR. Note, also, that by applying Minessota prior, clearly increases the statistics of BPS.

Table 23: BPCS statistics for all models and all horizons
horizons Models cgr1(th) cgr2(th) cgr3(th)

h=1 BVARR 0.5557 0.5509 0.5879

BVARRVS 0.5494 0.5465 0.5672

BVARM - - -

BVARMVS - - -

h=4 BVARR 0.5287 0.5829 0.5410

BVARRVS 0.5351 0.5702 0.5354

BVARM 0.5323 0.5808 0.5444

BVARMVS 0.5393 0.5709 0.5388

h=6 BVARR 0.4927 0.5886 0.5334

BVARRVS 0.4964 0.5700 0.5283

BVARM 0.5012 0.5883 0.5361

BVARMVS 0.5062 0.5703 0.5318

h=12 BVARR 0.4682 0.6149 0.5797

BVARRVS 0.4667 0.5969 0.5983

BVARM 0.4854 0.6192 0.5802

BVARMVS 0.4827 0.5984 0.5979

h=24 BVARR 0.4277 0.5671 0.6629

BVARRVS 0.4268 0.5540 0.6902

BVARM 0.4386 0.5753 0.6551

BVARMVS 0.4387 0.5581 0.6804

This table presents the Bayesian percentage of correct signs statistics for all of our models for the predictions

of Test set observations of the time series of the cumulative gross returns and the factors, where here we are

using the S&W factors (also see Table (13) for definition of each model. In order to predict each point in

time of the Test set, for each horizon ahead, we use 20,000 draws from the posterior distribution.

To conclude, as far as the results of our algorithm are concerned, applied on the data

set with factors based in Stock and Watson (2002a), we note that this set of predictor
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variables seems to be a well-constructed set for the description of the connections between

the components of the portfolio. This fact is also reflected in the posterior means of γ

coefficients. Moreover, in the portfolio performance we hardly see any difference between

the two main approaches. Given also the above statistical analysis of our results, it seems

that the variable selection technique does not any advantage against the simple approach.

In conclusion, we do not observe any significant improvement in the results (allocation of

weights, significant variables, etc.) of our approach and of the existing in the literature

approaches.

4.2 Results for Goyal & Welch factors

In this subsection, we present the results of our algorithm, Gibbs sampler with variable

selection for a VAR model (Korobilis (2013)). In this VAR model, we use the predictor

variables that have been used in Diris (2014), based on Welch and Goyal (2008). We also

compare the allocation of weights of our method with the simple Gibbs sampler for a VAR

model and with the frequentist approach of OLS estimation. For once again, we also consider

the portfolio performance which could be seen in Appendix at (6.5.3) and (6.5.4).
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Figure 7: End-of-sample allocation of weights for G&W factors.

This figure plots the end-of-sample allocation of weights for G&W factors. The investment horizon that

is undetaken is each month until twenty years ahead, beggining from the end of our sample. The portfolio

investment strategy is a buy and hold strategy for the T-bill (top), for a stock (middle) and for a bond

(bottom). We apply the BVAR model (blue lines), the BVAR-VS method (red lines) and the OLS method

(yellow lines).

The initial step into looking up our models is to provide with some end-of-sample statis-

tics, where again the results are based on 100,000 iterations of the described procedures.

Figure (4.2) presents the allocation of weights up to 20 years ahead for buy and hold strat-

egy for three different assets, the T-bill, a stock and a bond with our approach, the BVAR

model and the OLS approach. It is clear that the allocation of the weights is quite different

for the three approaches. The allocation of the weights using our algorithm is in line with

the work of Diris (2014), where the model uncertainty is incorporated. More precisely, we

can see in Figure (4.2) that the investor’s uncertainty is increasing and, as a result, he invests

less to risky assets like stocks and bonds. We can also note in this Figure that, as expected,

as the time horizon grows, the differences among the three methods are becoming smaller.

Finally, in Figure 6 we can see that the main difference between our method and the method

of the simple Gibbs sampler for a VAR model is that the investment in riskless assets, such

as the T-bill, is taking place earlier.
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Table (24) presents the posterior mean and the standard deviation of the posterior dis-

tribution of the coefficients of the BVAR model that was selected for this end-of-sample

application. Most of the signs of our posterior means are in line with the OLS coefficients of

Tables (3.1) and (3.1), whereas the magnitude of the effects had shrunk. Table (25) presents

the posterior mean for the γ coefficients from which we can decide for the predictor variables

that have to be included in the model. Surprisingly, many of the popular predictors, such

as the divident-to-price ratio, are out of the preferences of our algorithm. Variable selection

tends to prefer the detrended log nominal yield (Ynom), the yield spread (Yspr) and the

credit spread (Crspr) as the most popular predictors in order to forecast the asset returns.

Taking into account both the results illustrated in Figure (4.2) and the mean posterior

selection-coefficients in Table (25), we note that our method in which the variable selection

uncertainty in a VAR model has been incorporated, converges towards an optimal model.

This result is in contrast with the results from the previous subsection where only some

variables have been picked up. Roughly speaking, in this case it looks that our model is

quite picky on factor selection.
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Table 24: Posterior mean and standard deviations of BVAR coefficients

Defpr DP BM PE Ynom Yspr Crspr Ntis Var

r1 -0.0259 0.0048 -0.0043 -0.0010 -0.0274 -0.0363 0.1034 0.0023 0.0000

0.0082 0.0008 0.0007 0.0005 0.0163 0.0103 0.0435 0.0073 0.0001

r2 0.1807 0.0238 -0.0213 -0.0101 -0.2834 0.1791 0.2602 -0.0036 -0.0026

0.1136 0.0115 0.0100 0.0064 0.2199 0.1420 0.5211 0.1000 0.0020

r3 -0.0120 0.0004 0.0007 -0.0040 0.2246 0.3764 -0.4836 -0.1113 0.0032

0.0758 0.0076 0.0066 0.0043 0.1487 0.0947 0.3760 0.0663 0.0014

Defpr -0.1062 0.0055 -0.0017 0.0057 -0.0088 -0.0380 0.5004 0.0359 -0.0007

0.0382 0.0038 0.0033 0.0022 0.0754 0.0480 0.1993 0.0337 0.0007

DP -0.1738 0.9628 0.0283 0.0017 0.3411 -0.0430 -0.7836 -0.0757 0.0021

0.1145 0.0115 0.0101 0.0065 0.2220 0.1432 0.5265 0.1009 0.0020

BM -0.0315 -0.0081 0.9919 -0.0093 0.4222 0.1026 0.0120 0.1856 -0.0002

0.1563 0.0157 0.0138 0.0089 0.3080 0.1962 0.7833 0.1383 0.0028

PE -0.2015 0.0343 -0.0432 0.9738 -1.8228 -0.8965 2.8817 -0.1890 0.0007

0.1585 0.0160 0.0140 0.0090 0.3138 0.1994 0.7999 0.1410 0.0029

Ynom 0.0112 -0.0015 0.0020 0.0006 0.9276 0.0621 -0.1241 0.0010 -0.0002

0.0097 0.0010 0.0009 0.0005 0.0193 0.0122 0.0515 0.0087 0.0002

Yspr -0.0144 0.0015 -0.0021 0.0001 -0.0663 0.9149 0.2233 0.0133 -0.0001

0.0103 0.0010 0.0009 0.0006 0.0204 0.0129 0.0545 0.0091 0.0002

Crspr -0.0188 0.0001 0.0000 -0.0003 0.0017 -0.0034 0.9317 -0.0042 0.0003

0.0025 0.0003 0.0002 0.0001 0.0050 0.0031 0.0133 0.0022 0.0000

Ntis 0.0160 0.0015 0.0002 0.0023 -0.0205 0.0006 -0.0053 0.9725 -0.0004

0.0108 0.0011 0.0009 0.0006 0.0214 0.0136 0.0574 0.0096 0.0002

Var -4.7232 -0.1408 -0.1850 -0.0752 2.3409 -0.8944 42.7131 -0.8132 0.6174

1.6799 0.1702 0.1486 0.0957 3.3283 2.1138 8.8794 1.4876 0.0308

This table presents the full sample posterior means and standard deviations of the BVAR coefficients that

correspond to Equations (3.4) and (3.5) for the G&W factors. Note here that we have selected p=1 and

q=1. These results are based on 100,000 draws from the posterior distribution.
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Table 25: Posterior mean of BVAR-VS γ coefficients

Defpr DP BM PE Ynom Yspr Crspr Ntis Var

r1 0.4302 0.0294 0.0176 0.0549 0.7930 0.6002 0.6307 0.2005 0.0127

r2 0.7303 0.1258 0.1537 0.3853 0.8041 0.7998 0.7961 0.7048 0.0787

r3 0.6446 0.0733 0.0991 0.2822 0.8063 0.6573 0.8012 0.5775 0.0635

Defpr 0.1617 0.0831 0.1373 0.2845 0.4993 0.2509 0.4317 0.1519 0.5950

DP 0.3065 1.0000 0.0885 0.2325 0.4882 0.1664 0.2078 0.0984 0.3364

BM 0.2843 0.0880 1.0000 0.2591 0.4928 0.1919 0.1999 0.1004 0.3520

PE 0.2633 0.0545 0.0907 1.0000 0.4745 0.1477 0.2515 0.1296 0.3332

Ynom 0.3794 0.1008 0.1455 0.3142 0.3563 0.2553 0.2893 0.1325 0.4218

Yspr 0.3515 0.0667 0.1167 0.3314 0.4925 1.0000 0.2101 0.1077 0.3962

Crspr 0.2878 0.0712 0.1151 0.3412 0.4896 0.2177 1.0000 0.0985 0.6251

Ntis 0.4074 0.0730 0.1087 0.3977 0.4957 0.2441 0.3466 1.0000 0.4427

Var 0.5249 0.0869 0.1292 0.3315 0.4957 0.2599 0.2628 0.1303 0.1160

This table presents the full sample posterior means of the BVAR-VS γ coefficients that correspond to Equa-

tions (3.4) and (3.5) for the G&W factors. Note here that we have selected p=1 and q=1. These results are

based on 100,000 draws from the posterior distribution.

Continuing with the statistical and financial performance of our models in the Test set,

where the results are based on 20,000 iterations in each point in time, Tables (26)-(30)

present the Mspe’s ratios, the BDM statistics and the BPCS statistics for the comparisons

of the four models.

It is clear that the Mspe’s ratios in Tables (26) and (27) are smaller or close to one

for short horizons, indicating that the variable selection technique is more advantageous

compared to the simple approach. We do observe any improvement for the BVAR-VS, but

this is the case only for a single horizon and a quarter horizon of investment. We also see

this trend on the prediction of the factors. For example, it seems that variable selection does

a good job for predicting one of the most important predictors which is the detrended log

nominal yield (Ynom), but only for short horizons (h = 1, 4). For once again by looking the

correlograms at (6.2.1), this result makes perfectly sense because we see that these factors

are strongly correlated. Again it is clear, that, variable selection is is specialist on detecting

when some of our state variables are highly cross-correlated.
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Table 26: Mspe’s ratios bewtween models BVARRVS and BVARR

horizons cgr1(th) cgr2(th) cgr3(th) Defpr DP BM PE Ynom Yspr Crspr Ntis Var

h=1 0.9908 0.9871 0.9852 1.0007 0.9973 1.0041 0.9989 0.9860 1.0004 0.9979 1.0016 0.9715

h=4 0.9880 0.9820 0.9693 0.9970 0.9759 1.0193 0.9970 0.9484 0.9938 1.0122 1.0446 0.9263

h=6 0.9955 1.0062 0.9873 1.0104 0.9995 1.0178 0.9838 0.9802 0.9969 1.0137 1.0870 0.9313

h=12 1.0029 1.0232 0.9881 1.0121 1.0477 1.0449 1.0531 0.9889 1.0236 0.9758 1.0162 0.9701

h=24 0.9635 1.2241 1.0197 0.9743 1.0575 1.0916 0.9773 1.0196 0.9723 1.0326 1.1096 0.9590

This table presents the mean squared prediction errors between the BVARRVS model and the BVARR model

for the predictions of Test set observations of the time series of the cumulative gross returns and the factors,

where here we are using the G&W factors (also see Table (13) for definition of each model. In order to

predict each point in time of the Test set, for each horizon ahead, we use 20,000 draws from the posterior

distribution.

Table 27: Mspe’s ratios bewtween models BVARMVS and BVARM

horizons cgr1(th) cgr2(th) cgr3(th) Defpr DP BM PE Ynom Yspr Crspr Ntis Var

h=1 - - - - - - - - - - - -

h=4 0.9864 0.9977 0.9640 0.9961 0.9714 1.0218 0.9985 0.9534 0.9955 0.9917 1.0438 0.9363

h=6 1.0062 1.0042 1.0151 1.0065 1.0035 1.0379 0.9841 0.9825 0.9983 1.0081 1.1089 0.9601

h=12 1.0036 1.0064 0.9222 1.0245 1.0477 1.0407 0.9787 0.9645 0.9959 1.0268 1.0383 0.9805

h=24 0.9956 1.2195 1.0166 1.0471 1.0118 1.0730 0.9820 0.9761 0.9979 1.0098 1.3731 0.9619

This table presents the mean squared prediction errors between the BVARMVS model and the BVARM model

for the predictions of Test set observations of the time series of the cumulative gross returns and the factors,

where here we are using the G&W factors (also see Table (13) for definition of each model. In order to

predict each point in time of the Test set, for each horizon ahead, we use 20,000 draws from the posterior

distribution.

Continuing our analysis and looking at the BDM statistics in Tables (28) and (29),

we note that the BVAR-VS model produces on average the lower posterior residuals and it

performs better, as documented in the aforementioned description, only for horizons h = 1, 4.

Moreover, the BVAR-VS has a great performance on predicting some important predictors

(Ynom and Yspr) and this is directly reflected on the accurate prediction of cumulative asset

returns for short horizons. Here, the predictive power of variable selection is also confirmed

by the BDM statistics.
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Table 28: BDM statistics bewtween models BVARRVS and BVARR

cgr1(th) cgr2(th) cgr3(th) Defpr DP BM PE Ynom Yspr Crspr Ntis Var

h=1 0.4914 0.4986 0.4985 0.4949 0.4949 0.5182 0.5041 0.4627 0.497 0.5036 0.5063 0.4883

h=4 0.4826 0.4908 0.4739 0.4941 0.4766 0.5278 0.5031 0.4547 0.5191 0.5034 0.5123 0.4466

h=6 0.4969 0.4962 0.5068 0.5092 0.5006 0.5211 0.5037 0.4830 0.4951 0.5076 0.5363 0.4681

h=12 0.5018 0.5106 0.5017 0.5025 0.4949 0.5229 0.4959 0.4924 0.5006 0.5087 0.5194 0.4875

h=24 0.4948 0.5449 0.5015 0.5027 0.5079 0.4966 0.5038 0.5073 0.4972 0.5008 0.5103 0.5045

This table presents the Bayesian Diebold-Mariano statistics between the BVARRVS model and the BVARR

model for the predictions of Test set observations of the time series of the cumulative gross returns and the

factors, where here we are using the G&W factors (also see Table (13) for definition of each model. In order

to predict each point in time of the Test set, for each horizon ahead, we use 20,000 draws from the posterior

distribution.

Table 29: BDM statistics bewtween models BVARMVS and BVARM

r1 r2 r3 Defpr DP BM PE Ynom Yspr Crspr Ntis Var

h=1 - - - - - - - - - - - -

h=4 0.4873 0.4908 0.4781 0.4967 0.4789 0.5299 0.4949 0.4576 0.5047 0.5091 0.5212 0.4444

h=6 0.5026 0.5095 0.5162 0.5144 0.5036 0.5233 0.5071 0.4914 0.4963 0.5095 0.5422 0.4656

h=12 0.4945 0.5295 0.5067 0.5195 0.5086 0.5198 0.5006 0.4954 0.5033 0.4948 0.5216 0.4886

h=24 0.4985 0.5475 0.5045 0.5089 0.5022 0.5088 0.5023 0.5044 0.4991 0.4999 0.5163 0.5056

This table presents the Bayesian Diebold-Mariano statistics between the BVARMVS model and the BVARM

model for the predictions of Test set observations of the time series of the cumulative gross returns and the

factors, where here we are using the G&W factors (also see Table (13) for definition of each model. In order

to predict each point in time of the Test set, for each horizon ahead, we use 20,000 draws from the posterior

distribution.

Finally, the BPCS statistics are provided in Table (30). Although the previous two

metrics had shown the variable selection as a clear winner for short horizons, this is roughly

the case here, since the differences are rather small. However, we still see here some small

advanced performance of variable selection for predicting all asset classes at short horizons.

As a matter of fact, we consider that this advanced performance of variable selection is

significant. Moreover, once more we notice that the Minessota prior gives a great boost to

the BPCS statistics.

54



Table 30: BPCS statistics for all models and all horizons
horizons Models cgr1(th) cgr2(th) cgr3(th)

h=1 BVARR 0.5280 0.5008 0.5154

BVARRVS 0.5232 0.5187 0.5185

BVARM - - -

BVARMVS - - -

h=4 BVARR 0.5309 0.5027 0.5225

BVARRVS 0.5310 0.5172 0.5272

BVARM 0.5309 0.5048 0.5232

BVARMVS 0.5311 0.5176 0.5279

h=6 BVARR 0.5134 0.4720 0.5288

BVARRVS 0.5103 0.4648 0.5290

BVARM 0.5185 0.4809 0.5289

BVARMVS 0.5186 0.4761 0.5293

h=12 BVARR 0.5041 0.4648 0.6281

BVARRVS 0.5099 0.4421 0.6288

BVARM 0.5084 0.4669 0.6241

BVARMVS 0.5099 0.4474 0.6330

h=24 BVARR 0.5036 0.4175 0.7129

BVARRVS 0.5040 0.3952 0.6766

BVARM 0.5054 0.4348 0.6879

BVARMVS 0.5049 0.4069 0.6581

This table presents the Bayesian percentage of correct signs statistics for all of our models for the predictions

of Test set observations of the time series of the cumulative gross returns and the factors, where here we are

using the G&W factors (also see Table (13) for definition of each model. In order to predict each point in

time of the Test set, for each horizon ahead, we use 20,000 draws from the posterior distribution.

Concluding this subsection, we note that for h=1 and h=4, most statistics and the port-

folio performance indicate that incorporating variable selection in a Gibbs sampler for a VAR

model improves the results. This result is, probably, due to the fact that for short horizons

not all the predictor variables are necessary, while the posterior predictive distribution is

affected by the ineffective predictor variables. Therefore, taking into account the variable

uncertainty, we might come out with predictive distribution with narrow credible intervals.

It seems that the Gibbs sampler with Variable selection produces predictive distributions

with narrow credible intervals with mean which is closer to the real value in short time
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horizons, while for longer horizons the mean is quite different from the real value. We end

up with this conclusion, since it is clear from the Tables above that all statistics are better

for the returns and for the factors for short horizons. The most important result in this

subsection, and in general in the present thesis, is the Gibbs sampler which incorporates

the variable selection technique, improves the prediction of very important factors for h=4,

resulting in improved prediction of the returns. More importantly, this result is also reflected

by the actual portfolio perfomance, where in our back-test portfolio perfomance we see at

(6.5.3) and (6.5.4), that variable selection again outperforms. Finally, we note that variable

selection is a useful contribution, since it generates biased but efficient estimations which

in practice predicts better both our return and the factor for short horizons. For longer

horizons, we either need all factors or both models loose their predictive power.

4.3 Conclusion remarks of results

All in all, in this Section we tested the out of sample performance of two algorithms.

The Gibbs sampler and the Gibbs sampler with variable selection applied on a vector auto-

regressive model (VAR). We also applied for the same set-ups of the two algorithms with a

Minnesota prior. All of our methods applied in two sets of factors (S&W and G&W ) and

at five different horizons ahead (1,4,6,12,24). We evaluate the performance of our BVAR

and BVAR-VS by several statistics and by the portfolio performance. The evaluation of

the models for the S&W factors indicates a clear draw between the two approaches in all

versions. None of the two algorithms succeeds on consistently outperform in any horizon and

with any kind of prior. This feature could also be observed on the allocation of the weights of

the two approaches and on the portfolio performance. On the other hand, the evaluation of

the two models for the G&W factors indicates that in all versions, variable selection is a clear

winner for short horizons (h=1,4). This contradicting result between the two data-sets might

be caused for several reasons. Firstly, the S&W is a small data-set (5 factors) compared to

G&W (9 factors) and thus BVAR underperforms only when over-parametrization is a big

problem. Secondly, S&W factors is a product of principal component analysis. This might

affect the variable selection, if by construction these factors are very solid. Both of these

comments are reflected also in Table (18), where variable selection seems not to be able

to consistently pick up which factors to include. On the other hand, G&W seems to be a

bigger and more vivacious data-set of factors, with many cross-correlations and eventually

variable selection does a good job on converging which are really usefull. However, for the

G&W factors we see that this advantage is lost for longer horizons, where is seems that all
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factors are needed. Finally, in all versions we see that when we apply the Minessota prior

in both of our algorithms, the relative performance of the BVAR to BVAR-VS compared to

the relative performance of the BVAR to BVAR-VS when we do not apply Minessota prior,

is almost always improved. This result is also in line with Korobilis (2013) and it seems that

Minessota prior shrinks the BVAR coefficients and improves the performance in a bigger

magnitude compared to the pre-shrunk BVAR-VS coefficients.

5 Conclusion

The present thesis contributes to the problem of portfolio choice. It proposes an alter-

native approach of choosing the optimal weights, using recent results from the statistical

literature of Bayesian analysis, while the approach is compared with existing ones. More

precisely, the use of computationally efficient algorithms for stochastic variable selection is

suggested. Using the proposed algorithms, the estimations and predictions for the optimal

portfolio weights are taking into account both the parameter and the variable selection un-

certainty, working in line with the work in Diris (2014) where both parameter and model

uncertainty is taken into account.

In particular, Markov Chain Monte Carlo (MCMC) methods are used, and more precisely,

an efficient Gibbs sampler for the Bayesian estimation of a VAR model which includes

predictor variables related to two different approaches in the literature (Stock and Watson

(2002a) and Welch and Goyal (2008)). The main contribution of this thesis is the use of

a technique for automatic selection of variables in Bayesian VAR models using the Gibbs

sampler, which is proposed by Korobilis (2013). The algorithm of Korobilis (2013) does

not rely on estimation of all the possible VAR model combinations with a method which is

independent of the prior assumptions about the coefficients of the VAR model, as in the case

of the traditional Gibbs sampler. In contrast, this algorithm decides for the most suitable

variables to be included in the model with goodness-of-fit techniques. In other words, the

algorithm used, visits only the most probable models in a stochastic manner rather than

enumerating and estimating all possible models. A nice and useful feature of the algorithm

of Korobilis (2013) is the introduction of random variables (indicators) which indicate the

variables that are significant for the VAR model in an automatic way, during the MCMC

algorithm.

This thesis evaluates the performance of our two approaches from a statistical and a
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financial perspective. The main results can be summarized as follows. Using the data set

with predictor variables which is constructed as in the paper of Stock and Watson (2002a),

we do not view any significant differences on the allocation of the portfolio weights using

our method for the estimation of the model and the usual Gibbs sampler for the estimation

of a VAR model. The most significant result of the thesis is noted when the data set

of predictor variables is used, constructed by Diris (2014) and based on Welch and Goyal

(2008). In this case, with our method and using the Gibbs sampler proposed by Korobilis

(2013), we have found that incorporating variable-selection uncertainty increases investor’s

uncertainty and invests less to stocks and bonds when the time horizon goes further and

further. More precisely, for this data-set of predictor variables, we have found significant

improvement both in factor and returns predictability for a single horizon’s investments and

four horizon’s investments. This improvement is, also, observed in the final financial portfolio

evaluation, whereas for longer horizons, we have found that all the variables are significant

for improved returns and/or factor predictability. This is a result which is in line with the

result of Diris (2014), where both parameter and model uncertainty is taken into account in

the proposed estimation procedure. The big advantage of our proposed method, compared

with the existing Gibbs samplers for the estimation of VAR models, is the provision of

the matrix with the posterior means of restricted variables, which could be interpreted as

the mean posterior selection-coefficients for including a predictor variable in the final VAR

model. Visual comparison of the factor’s correlograms and the estimated mean posterior

selection-coefficients of including a specific factor in our model give a lot of evidence for the

practical use of our method. We further note that for small time horizons, our posterior

distributions have smaller range than the posteriors of the usual Gibbs sampler for a VAR

model, based on our statistical results.

Thus, concluding the present thesis, we would like to highlight the trade off between effi-

ciency and bias that variable selection techniques introduce to the estimation and prediction

procedures in the problem of choosing the optimal weights in financial portfolios.

Future work in the context of the present thesis could be related to the exploration of the

properties of the Gibbs sampler proposed, in more complicated models, where the number

of factors that are used is an unknown parameter to be estimated. Specifically, future

research could focus on the impact of recent advances in the Bayesian literature of dynamic

factor models in the optimal portfolio choice problem. Moreover, methods of relaxing the

identifiability constraints of the models (invariance under rotation of the factors and label and

sign switching of the factor loadings) could be investigated in the future, while a method for
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choosing the number of factors used could also be proposed. Moreover, one starting point for

further investigation could be the sensitivity analysis of lags of factor selection for the final

performance of variable selection. Additionally, another perspective of further sensitivity

analysis of this research regards the range of portfolio constrains and the risk-aversion γ (in

our version we do not allow for sort selling and we also set γ = 5 which might had been too

strict for the final portfolio evaluation). In summary, future work in the problem of finding

the optimal allocation strategy could be in the direction of investigating recent advances

of Bayesian dynamic factor models, where also the paper of Aßmann, Boysen-Hogrefe, and

Pape (2016) could be used as a starting point.
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6 Appendix

6.1 Stock and Watson factor construction details

To deal with stationary problems, we transform the original time series to non-stationary,

when it is needed. To go in line with Stock and Watson (2002b) we use various methods of

transformations for each type of time series. These transformations are indicated as T-codes

in Table 6.1. We apply these defined transformations in our final database. You can find the

analytical description of variables used in Table 32. Other abbreviations that are used are:

SA stands for seasonal adjustment; if the data is seasonally adjusted the value is 1, otherwise

it is 0. The sources we use are: FRED = Federal Reserve Economic Data, ECB = European

Central Bank, OECD = Organization of Economic Cooperation and Development, IMF =

International Monetary Fund, BB = Bloomberg, BIS = Bank for International Settlements,

BoJ = Bank of Japan, BLS = U.S. Bureau of Labor Statistics, S&W = Database of Stock

and Watson (2002b). Used indicates whether or not the variable is used (1) or not (0) in

factor construction.

Table 31: Transformations

T-code Transformation Formula

1 No transformation

2 First difference Yt = ∆Xt,t−1

3 Second difference Yt = ∆Xt,t−1 −∆Xt−1,t−2

4 Logarithm Yt = lnXt

5 First difference of the logarithms Yt = ∆lnXt,t−1

6 Second difference of the logarithms Yt = ∆lnXt,t−1 −∆lnXt−1,t−2

7 Log growth rates Yt = ln(1 + Xt
100

)

This table presents the transformations of time series for the corresponding T-codes for the constructions of

initials data-set proposed by Stock and Watson (2002a). Yt is the transformed variable. Xt is the raw data.
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6.1.1 EM-algorithm for PCA factor construction

Let us denote X̂{j} is the j-th iteration estimate of the full data. X is the entire observed

data-set with missing values.

1. Create an initial (naive) estimate of X̂{0}. Such that X̂
{0}
t,i = Xt,i if observed. We set

the normal missing observations equal to the unconditional mean of their respective

series. We set the missing observations for the monthly GDP growth rate equal to the

quarterly GDP growth rate divided by 3 for those columns i that are the GDP series:

X̂
{0}
t,i = Xq

τ,i/3

where Xq
τ,i is the observed quarterly growth series, and τ = 3 for t = 1, 2, 3, τ = 6 for

t = 4, 5, 6, etc. We calculate the first h estimated principal components F̂ {0} and their

loadings Λ̂{0} with PCA on X̂{0}.

2. E-step: For iteration j we use the estimates F̂ {j−1} and Λ̂{j−1} from the last iteration

to update our estimate of the data X̂{j}. Where:

X̂
{j}
t,i = Xt,i If Xt,i observed

X̂
{j}
t,i = λ̂

{j−1}′
i F̂

{j−1}
t If Xt,i is a normal missing value

X̂
{j}
t,i = λ̂

{j−1}′
i F̂

{j−1}
t + êt,i If i is a GDP series

where: êt,i =
(
Xq
τ,i − λ̂

{j−1}′
i (F̂ {j−1}

τ + F̂
{j−1}
τ−1 + F̂

{j−1}
τ−2 )

)
/3

τ = 3 for t = 1, 2, 3, τ = 6 for t = 4, 5, 6, etc.

3. M-step: The updated X̂{j} is used to calculate the new estimates for F̂ {j} and Λ̂{j} via

PCA. The algorithm goes back to (2).

This is repeated until the change in factor values per iteration is below some threshold

value, or the algorithm exceeds some preset number of iterations. The factors from the last

iteration are taken as the estimated factors: F̂ = F̂ {J}.

A big advantage of the robustness of the above EM-algorithm in creating the factors

is that we make use of the underlying factor structure of the data to estimate the missing

values. This takes cross-sectional as well time interdependence into account. This as opposed
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to, for example, a simple interpolation of the values which only take the observations close

to the missing value of the same series into account.

6.2 Factors’ characteristics

6.2.1 Factors’ correlograms

Below we monitor the absolute values of the cross-autocorrelations of both set of factors

that we are using. The insignificant correlation have been set to zero.

Figure 8: Autocorrelation function of S&W factors. Each figure plots the absolute values of

cross autocorrelations between a factor highlighted and all 5 S&W factors. The correlations

have been corrected for significance, i.e. a (cross)correlation of 0 indicates that the value

was not significantly different from 0.
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Figure 9: Autocorrelation function of S&W factors. Each figure plots the absolute values of

cross autocorrelations between a factor highlighted and all 5 S&W factors. The correlations

have been corrected for significance, i.e. a (cross)correlation of 0 indicates that the value

was not significantly different from 0.
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Figure 10: Autocorrelation function of G&W factors. Each figure plots the absolute values of

cross autocorrelations between a factor highlighted and all 5 S&W factors. The correlations

have been corrected for significance, i.e. a (cross)correlation of 0 indicates that the value

was not significantly different from 0.
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Figure 11: Autocorrelation function of G&W factors. Each figure plots the absolute values of

cross autocorrelations between a factor highlighted and all 5 S&W factors. The correlations

have been corrected for significance, i.e. a (cross)correlation of 0 indicates that the value

was not significantly different from 0.
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Figure 12: Autocorrelation function of G&W factors. Each figure plots the absolute values of

cross autocorrelations between a factor highlighted and all 5 S&W factors. The correlations

have been corrected for significance, i.e. a (cross)correlation of 0 indicates that the value

was not significantly different from 0.

6.2.2 BIC and log-likelihood values for various lags

Below we monitor the BIC values and the log-likelihood values of (3.4) and (3.5) for

several amount of lags p and q and for both set of factors.
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Figure 13: BIC values for models (3.4) & (3.5) of S&W factors. Each figure plots the

Bayesian information criterion statistics for a given amount of lag that correspond to p and

q on Equations (3.4) & (3.5) respectively.
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Figure 14: Log-likelihood values for models (3.4) & (3.5) of S&W factors. Each figure plots

the Bayesian information criterion statistics for a given amount of lag that correspond to p

and q on Equations (3.4) & (3.5) respectively.
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Figure 15: BIC values for models (3.4) & (3.5) of G&W factors. Each figure plots the

Bayesian information criterion statistics for a given amount of lag that correspond to p and

q on Equations (3.4) & (3.5) respectively.
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Figure 16: Log-likelihood values for models (3.4) & (3.5) of G&W factors. Each figure plots

the Bayesian information criterion statistics for a given amount of lag that correspond to p

and q on Equations (3.4) & (3.5) respectively.

6.3 Vector Autoregressive - Frequentist Plug-in Approach with

simulation techniques and portfolio constrains -Ignore param-

eter uncertainty

Using the set-up Equation (3.7), we estimate Ĉ,Φ̂ and Σ̂. That is performed in any point

of time by a looking back period of several months. In other words, we are using a rolling

window to estimate those parameters. Then, we simulate N paths of h periods for asset
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returns and predictor variables. The algorithm of this iterated process is described below.

We repeat N times the following procedure.

• Assume that we are in the ith iteration.

• Draw εit+1 from N(0, Σ̂) and set: zit+1 = Ĉ + Φ̂zt + εit+1

• Draw εit+2 from N(0, Σ̂) and set: zit+2 = Ĉ + Φ̂zit+1 + εit+2

• Keep on in the same logic until you come to the Kth iteration.

• Draw εit+h from N(0, Σ̂) and set: zit+h = Ĉ + Φ̂zit+h−1 + εit+h

Having these simulated paths of zt+1,zt+2,...,zt+h, we isolate and use only the Monte Caro

simulations of rt+1,rt+2,...,rt+h
5.

6.4 Additional statistical results

6.4.1 Additional statistical results for S&W factors

Table 33: BVAR posterior means of covariance matrix Σ
r1 r2 r3 factor(1) factor(2) factor(3) factor(4) factor(5)

r1 1.07E-05 5.83E-06 7.71E-06 -1.82E-03 1.11E-03 3.93E-04 -7.19E-04 8.41E-04

r2 5.83E-06 1.78E-03 6.17E-05 6.65E-03 8.05E-03 4.22E-03 -1.13E-02 7.92E-03

r3 7.71E-06 6.17E-05 6.98E-04 -2.14E-02 -1.17E-02 1.97E-02 -6.30E-05 7.37E-03

factor(1) -1.82E-03 6.65E-03 -2.14E-02 4.99E+00 -4.32E-01 -1.40E+00 2.19E-01 -8.25E-01

factor(2) 1.11E-03 8.05E-03 -1.17E-02 -4.32E-01 5.89E+00 -5.74E-01 4.89E-02 -4.21E-01

factor(3) 3.93E-04 4.22E-03 1.97E-02 -1.40E+00 -5.74E-01 4.68E+00 1.40E+00 -2.15E-01

factor(4) -7.19E-04 -1.13E-02 -6.30E-05 2.19E-01 4.89E-02 1.40E+00 2.01E+00 -1.26E+00

factor(5) 8.41E-04 7.92E-03 7.37E-03 -8.25E-01 -4.21E-01 -2.15E-01 -1.26E+00 2.26E+00

This table presents the full sample posterior means of the covariance matrix of errors that correspond

to Equation (3.14), for the S&W factors. These results are based on 100,000 draws from the posterior

distribution.

5Bare in mind that zt =


rt
Ft

Ft−1

...
Ft−p+1

 , C =


α
µ
...
0
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Table 34: BVAR-VS posterior means of covariance matrix Σ

r1 r2 r3 factor(1) factor(2) factor(3) factor(4) factor(5)

r1 1.15E-05 7.84E-06 9.34E-06 -2.31E-03 1.22E-03 5.78E-04 -6.77E-04 8.29E-04

r2 7.84E-06 2.19E-03 1.02E-04 9.62E-03 9.93E-03 1.06E-02 -1.25E-02 9.91E-03

r3 9.34E-06 1.02E-04 8.92E-04 -2.39E-02 -1.24E-02 2.23E-02 -1.35E-03 8.65E-03

factor(1) -2.31E-03 9.62E-03 -2.39E-02 7.50E+00 -2.32E-01 -9.66E-01 2.30E-01 -7.60E-01

factor(2) 1.22E-03 9.93E-03 -1.24E-02 -2.32E-01 7.06E+00 -3.63E-01 1.34E-01 -3.15E-01

factor(3) 5.78E-04 1.06E-02 2.23E-02 -9.66E-01 -3.63E-01 6.12E+00 1.43E+00 -7.99E-02

factor(4) -6.77E-04 -1.25E-02 -1.35E-03 2.30E-01 1.34E-01 1.43E+00 2.31E+00 -1.35E+00

factor(5) 8.29E-04 9.91E-03 8.65E-03 -7.60E-01 -3.15E-01 -7.99E-02 -1.35E+00 2.60E+00

This table presents the full sample posterior means of the covariance matrix of errors that correspond

to Equation (3.16), for the S&W factors. These results are based on 100,000 draws from the posterior

distribution.
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Table 35: Mean squared prediction errors for all models and all horizons S&W factors

horizons Models cgr1(th) cgr2(th) cgr3(th) factor(1) factor(2) factor(3) factor(4) factor(5)

h=1 BVARR 0.0000152 0.0018515 0.0008121 2.4780628 3.0109949 3.9033522 1.8893461 2.2836298

BVARRVS 0.0000156 0.0018385 0.0008835 3.0026844 3.1837936 4.0026573 2.0394749 2.4133514

BVARM - - - - - - - -

BVARMVS - - - - - - - -

h=4 BVARR 0.0001391 0.0082027 0.0035680 5.4688908 3.3459556 6.4259593 2.9586063 3.8047037

BVARRVS 0.0001370 0.0084277 0.0036218 5.8471038 3.3252292 6.6118076 3.2140365 3.9425313

BVARM 0.0001405 0.0086155 0.0037169 5.3035675 3.3936630 6.5356235 2.8070079 3.6000967

BVARMVS 0.0001371 0.0086438 0.0036561 5.7645616 3.3657758 6.7355987 3.2954611 3.7956861

h=6 BVARR 0.0002323 0.0148404 0.0056497 6.1827698 3.3991290 7.2272588 3.7139339 4.4040754

BVARRVS 0.0002306 0.0158140 0.0057200 6.1853073 3.3759299 7.3493821 3.9043005 4.4227180

BVARM 0.0002340 0.0160349 0.0060685 6.5754805 3.4707043 7.6889509 3.5102038 4.1976025

BVARMVS 0.0002297 0.0167655 0.0059442 6.5076339 3.4355100 7.9443661 4.0480379 4.2791126

h=12 BVARR 0.0005845 0.0382027 0.0086883 6.1698208 3.4274169 7.4126907 4.6647947 5.2620621

BVARRVS 0.0005923 0.0409698 0.0082189 6.0639807 3.3986432 7.4465993 4.6526211 5.1598495

BVARM 0.0005824 0.0434203 0.0105319 6.6385844 3.4647733 7.7967946 4.4483709 5.3181260

BVARMVS 0.0005815 0.0469437 0.0092800 6.3911363 3.4612596 7.9232936 4.7498744 5.1757681

h=24 BVARR 0.0023390 0.0879081 0.0112774 6.3102661 3.3580349 7.6973063 5.1551257 5.7961327

BVARRVS 0.0023879 0.0945354 0.0098383 6.2995256 3.3529847 7.7144725 5.0989580 5.7616644

BVARM 0.0023592 0.0978627 0.0147770 6.4095077 3.3593750 7.8004223 4.8905037 6.0777417

BVARMVS 0.0023615 0.1081403 0.0116655 6.4335114 3.3711560 7.9382013 4.7774244 5.9993214

This table presents the mean squared prediction errors of all of our models for the predictions of Test set

observations of the time series of the cumulative gross returns and the factors, where here we are using the

S&W factors (also see Table (13) for definition of each model. In order to predict each point in time of the

Test set, for each horizon ahead, we use 20,000 draws from the posterior distribution.
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6.4.2 Additional statistical results for G&W factors

Table 36: BVAR posterior mean of covariance matrix Σ

r1 r2 r3 Defpr DP BM PE Ynom Yspr Crspr Ntis Var

r1 9.07E-06 5.13E-06 1.51E-05 -1.75E-06 -5.59E-06 -2.15E-05 1.54E-05 4.82E-07 -1.77E-06 3.58E-07 -1.19E-07 -1.59E-04

r2 5.13E-06 1.81E-03 1.40E-04 1.23E-04 -1.81E-03 -1.64E-03 1.60E-03 -2.06E-05 5.82E-06 -8.97E-07 -1.15E-05 -8.45E-03

r3 1.51E-05 1.40E-04 7.80E-04 -1.78E-04 -1.42E-04 -2.02E-04 3.22E-04 -3.36E-05 -3.46E-05 6.70E-06 -1.17E-06 9.20E-04

Defpr -1.75E-06 1.23E-04 -1.78E-04 1.97E-04 -1.24E-04 -5.67E-05 3.97E-05 2.57E-06 1.23E-05 -7.81E-07 5.88E-06 -1.74E-03

DP -5.59E-06 -1.81E-03 -1.42E-04 -1.24E-04 1.84E-03 1.65E-03 -1.56E-03 1.90E-05 -3.95E-06 7.65E-07 1.12E-05 8.37E-03

BM -2.15E-05 -1.64E-03 -2.02E-04 -5.67E-05 1.65E-03 3.39E-03 -1.56E-03 2.03E-05 -1.98E-06 -4.69E-07 3.45E-05 5.88E-03

PE 1.54E-05 1.60E-03 3.22E-04 3.97E-05 -1.56E-03 -1.56E-03 3.47E-03 -1.86E-05 -9.39E-06 7.29E-06 -6.51E-06 -7.51E-03

Ynom 4.82E-07 -2.06E-05 -3.36E-05 2.57E-06 1.90E-05 2.03E-05 -1.86E-05 1.29E-05 -1.03E-05 -8.11E-07 1.12E-06 -2.41E-06

Yspr -1.77E-06 5.82E-06 -3.46E-05 1.23E-05 -3.95E-06 -1.98E-06 -9.39E-06 -1.03E-05 1.45E-05 2.28E-07 -8.85E-07 -5.67E-05

Crspr 3.58E-07 -8.97E-07 6.70E-06 -7.81E-07 7.65E-07 -4.69E-07 7.29E-06 -8.11E-07 2.28E-07 8.51E-07 -5.76E-08 5.94E-05

Ntis -1.19E-07 -1.15E-05 -1.17E-06 5.88E-06 1.12E-05 3.45E-05 -6.51E-06 1.12E-06 -8.85E-07 -5.76E-08 1.57E-05 2.17E-05

Var -1.59E-04 -8.45E-03 9.20E-04 -1.74E-03 8.37E-03 5.88E-03 -7.51E-03 -2.41E-06 -5.67E-05 5.94E-05 2.17E-05 3.87E-01

This table presents the full sample posterior means of the covariance matrix of errors that correspond

to Equation (3.14), for the G&W factors. These results are based on 100,000 draws from the posterior

distribution.

Table 37: BVAR-VS posterior mean of covariance matrix Σ

r1 r2 r3 Defpr DP BM PE Ynom Yspr Crspr Ntis Var

r1 2.78E-05 8.27E-06 1.71E-05 -2.42E-06 -1.07E-05 -2.34E-05 2.81E-05 -1.76E-06 -8.81E-07 4.97E-07 1.40E-07 1.13E-04

r2 8.27E-06 2.12E-03 1.35E-04 1.26E-04 -1.82E-03 -1.64E-03 1.63E-03 -3.34E-05 8.85E-06 -1.36E-06 -8.92E-06 -9.89E-03

r3 1.71E-05 1.35E-04 1.00E-03 -1.91E-04 -1.59E-04 -2.12E-04 3.51E-04 -5.29E-05 -3.35E-05 7.06E-06 -2.14E-06 3.00E-03

Defpr -2.42E-06 1.26E-04 -1.91E-04 2.87E-04 -1.20E-04 -5.20E-05 2.54E-05 7.67E-06 1.21E-05 -1.00E-06 6.47E-06 -3.47E-03

DP -1.07E-05 -1.82E-03 -1.59E-04 -1.20E-04 2.30E-03 1.67E-03 -1.62E-03 4.78E-05 -7.85E-06 1.32E-06 9.44E-06 7.07E-03

BM -2.34E-05 -1.64E-03 -2.12E-04 -5.20E-05 1.67E-03 4.20E-03 -1.62E-03 4.01E-05 -4.37E-06 -6.38E-07 3.40E-05 5.20E-03

PE 2.81E-05 1.63E-03 3.51E-04 2.54E-05 -1.62E-03 -1.62E-03 4.50E-03 -1.00E-04 7.88E-06 9.59E-06 -2.86E-06 -2.64E-03

Ynom -1.76E-06 -3.34E-05 -5.29E-05 7.67E-06 4.78E-05 4.01E-05 -1.00E-04 6.49E-05 -1.47E-05 -9.93E-07 1.76E-07 -9.08E-04

Yspr -8.81E-07 8.85E-06 -3.35E-05 1.21E-05 -7.85E-06 -4.37E-06 7.88E-06 -1.47E-05 2.13E-05 3.80E-07 -4.91E-07 2.37E-04

Crspr 4.97E-07 -1.36E-06 7.06E-06 -1.00E-06 1.32E-06 -6.38E-07 9.59E-06 -9.93E-07 3.80E-07 1.28E-06 -7.55E-08 1.62E-04

Ntis 1.40E-07 -8.92E-06 -2.14E-06 6.47E-06 9.44E-06 3.40E-05 -2.86E-06 1.76E-07 -4.91E-07 -7.55E-08 2.45E-05 -9.10E-06

Var 1.13E-04 -9.89E-03 3.00E-03 -3.47E-03 7.07E-03 5.20E-03 -2.64E-03 -9.08E-04 2.37E-04 1.62E-04 -9.10E-06 1.04E+00

This table presents the full sample posterior means of the covariance matrix of errors that correspond

to Equation (3.16), for the G&W factors. These results are based on 100,000 draws from the posterior

distribution.
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Table 38: Mean squared prediction errors for all models and all horizons for G & W factors

horizons Models cgr1(th) cgr2(th) cgr3(th) Defpr DP BM PE Ynom Yspr Crspr Ntis Var

h=1 BVARR 1.80E-05 2.13E-03 1.14E-03 3.99E-04 2.16E-03 7.53E-03 8.53E-03 3.59E-06 9.46E-06 1.14E-06 2.57E-05 4.24E-01

BVARRVS 1.78E-05 2.11E-03 1.12E-03 3.99E-04 2.15E-03 7.56E-03 8.52E-03 3.54E-06 9.47E-06 1.13E-06 2.58E-05 4.12E-01

BVARM - - - - - - - - - - - -

BVARMVS - - - - - - - - - - - -

h=4 BVARR 1.71E-04 1.17E-02 4.53E-03 3.88E-04 1.41E-02 3.51E-02 8.69E-02 2.61E-05 5.46E-05 1.10E-05 1.28E-04 8.25E-01

BVARRVS 1.69E-04 1.15E-02 4.39E-03 3.87E-04 1.37E-02 3.58E-02 8.66E-02 2.48E-05 5.43E-05 1.11E-05 1.34E-04 7.64E-01

BVARM 1.70E-04 1.17E-02 4.49E-03 3.86E-04 1.39E-02 3.50E-02 8.65E-02 2.58E-05 5.45E-05 1.09E-05 1.26E-04 8.07E-01

BVARMVS 1.68E-04 1.16E-02 4.33E-03 3.85E-04 1.35E-02 3.58E-02 8.64E-02 2.46E-05 5.43E-05 1.08E-05 1.31E-04 7.55E-01

h=6 BVARR 3.03E-04 2.24E-02 6.77E-03 3.99E-04 2.65E-02 6.01E-02 1.83E-01 3.82E-05 9.54E-05 1.80E-05 1.76E-04 8.77E-01

BVARRVS 3.02E-04 2.25E-02 6.68E-03 4.03E-04 2.64E-02 6.12E-02 1.80E-01 3.74E-05 9.51E-05 1.83E-05 1.91E-04 8.17E-01

BVARM 3.01E-04 2.24E-02 6.57E-03 3.97E-04 2.64E-02 5.88E-02 1.81E-01 3.81E-05 9.52E-05 1.82E-05 1.67E-04 8.82E-01

BVARMVS 3.03E-04 2.25E-02 6.66E-03 3.99E-04 2.65E-02 6.10E-02 1.79E-01 3.74E-05 9.50E-05 1.84E-05 1.85E-04 8.46E-01

h=12 BVARR 6.83E-04 6.00E-02 1.23E-02 4.34E-04 6.72E-02 1.30E-01 5.92E-01 4.92E-05 2.29E-04 3.39E-05 4.49E-04 1.26E+00

BVARRVS 6.85E-04 6.14E-02 1.22E-02 4.39E-04 7.04E-02 1.36E-01 6.23E-01 4.86E-05 2.34E-04 3.31E-05 4.56E-04 1.22E+00

BVARM 6.83E-04 5.97E-02 1.31E-02 4.35E-04 6.61E-02 1.39E-01 6.06E-01 5.13E-05 2.28E-04 3.14E-05 4.46E-04 1.23E+00

BVARMVS 6.85E-04 6.01E-02 1.21E-02 4.45E-04 6.92E-02 1.45E-01 5.93E-01 4.95E-05 2.27E-04 3.22E-05 4.63E-04 1.20E+00

h=24 BVARR 2.91E-03 1.94E-01 2.55E-02 4.55E-04 2.40E-01 2.42E-01 1.39E+00 8.07E-05 4.21E-04 4.23E-05 1.61E-03 1.51E+00

BVARRVS 2.80E-03 2.37E-01 2.60E-02 4.43E-04 2.54E-01 2.64E-01 1.36E+00 8.22E-05 4.09E-04 4.37E-05 1.78E-03 1.44E+00

BVARM 2.91E-03 1.83E-01 2.49E-02 4.35E-04 2.40E-01 2.18E-01 1.43E+00 8.49E-05 4.11E-04 4.32E-05 1.58E-03 1.50E+00

BVARMVS 2.90E-03 2.23E-01 2.53E-02 4.56E-04 2.43E-01 2.34E-01 1.41E+00 8.28E-05 4.10E-04 4.36E-05 2.17E-03 1.44E+00

This table presents the mean squared prediction errors of all of our models for the predictions of Test set

observations of the time series of the cumulative gross returns and the factors, where here we are using the

G&W factors (also see Table (13) for definition of each model. In order to predict each point in time of the

Test set, for each horizon ahead, we use 20,000 draws from the posterior distribution.

6.5 Cumulative portfolio returns and maximum drawdowns

Below, we monitor the cumulative portfolio returns of the two models (with and without

variable selection) for each horizon and for each set of factors.

86



Figure 17:

6.5.1 Cumulative portfolio returns and maximum drawdowns for BVARR and

BVARRVS models and for S&W factors

Figure 18: Cumulative portfolio returns with Ridge prior for Equation (3.5) and h=1. This

figure plots the cumulative portfolio returns of our two models BVARR and BVARRVS (also

see Table (13) for definition of each model, for S&W factors. The investment strategy is a

buy-and-hold strategy for an investor that optimizes her power utility functions one month

ahead. Each point in time for this portfolio construction belongs to the Test set. In order to

predict each point in time of the Test set, we use 20,000 draws from the posterior distribution.
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Figure 19: Cumulative portfolio returns with Ridge prior and h=4. This figure plots the

cumulative portfolio returns of our two models BVARR and BVARRVS (also see Table (13)

for definition of each model, for S&W factors. The investment strategy is a buy-and-hold

strategy for an investor that optimizes her power utility functions four months ahead. Each

point in time for this portfolio construction belongs to the Test set. In order to predict each

point in time of the Test set, we use 20,000 draws from the posterior distribution.
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Figure 20: Cumulative portfolio returns with Ridge prior and h=6. This figure plots the

cumulative portfolio returns of our two models BVARR and BVARRVS (also see Table (13)

for definition of each model, for S&W factors. The investment strategy is a buy-and-hold

strategy for an investor that optimizes her power utility functions six months ahead. Each

point in time for this portfolio construction belongs to the Test set. In order to predict each

point in time of the Test set, we use 20,000 draws from the posterior distribution.
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Figure 21: Cumulative portfolio returns with Ridge prior and h=12. This figure plots the

cumulative portfolio returns of our two models BVARR and BVARRVS (also see Table (13)

for definition of each model, for S&W factors. The investment strategy is a buy-and-hold

strategy for an investor that optimizes her power utility functions twelve months ahead.

Each point in time for this portfolio construction belongs to the Test set. In order to predict

each point in time of the Test set, we use 20,000 draws from the posterior distribution.
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Figure 22: Cumulative portfolio returns with Ridge prior and h=24. This figure plots the

cumulative portfolio returns of our two models BVARR and BVARRVS (also see Table (13)

for definition of each model, for S&W factors. The investment strategy is a buy-and-hold

strategy for an investor that optimizes her power utility functions twenty four months ahead.

Each point in time for this portfolio construction belongs to the Test set. In order to predict

each point in time of the Test set, we use 20,000 draws from the posterior distribution.
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6.5.2 Cumulative portfolio returns and maximum drawdowns for BVARM and

BVARMVS models and for S&W factors

Figure 23: Cumulative portfolio returns with Minnesota prior and h=1. This figure plots the

cumulative portfolio returns of our two models BVARM and BVARMVS (also see Table (13)

for definition of each model, for S&W factors. The investment strategy is a buy-and-hold

strategy for an investor that optimizes her power utility functions one month ahead. Each

point in time for this portfolio construction belongs to the Test set. In order to predict each

point in time of the Test set, we use 20,000 draws from the posterior distribution.
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Figure 24: Cumulative portfolio returns with Minnesota prior and h=4. This figure plots the

cumulative portfolio returns of our two models BVARM and BVARMVS (also see Table (13)

for definition of each model, for S&W factors. The investment strategy is a buy-and-hold

strategy for an investor that optimizes her power utility functions four months ahead. Each

point in time for this portfolio construction belongs to the Test set. In order to predict each

point in time of the Test set, we use 20,000 draws from the posterior distribution.
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Figure 25: Cumulative portfolio returns with Minnesota prior and h=6. This figure plots the

cumulative portfolio returns of our two models BVARM and BVARMVS (also see Table (13)

for definition of each model, for S&W factors. The investment strategy is a buy-and-hold

strategy for an investor that optimizes her power utility functions six months ahead. Each

point in time for this portfolio construction belongs to the Test set. In order to predict each

point in time of the Test set, we use 20,000 draws from the posterior distribution.
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Figure 26: Cumulative portfolio returns with Minnesota prior and h=12. This figure plots

the cumulative portfolio returns of our two models BVARM and BVARMVS (also, see Table

(13) for definition of each model, for S&W factors. The investment strategy is a buy-and-

hold strategy for an investor that optimizes her power utility functions twelve months ahead.

Each point in time for this portfolio construction belongs to the Test set. In order to predict

each point in time of the Test set, we use 20,000 draws from the posterior distribution.
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Figure 27: Cumulative portfolio returns with Minnesota prior and h=24. This figure plots

the cumulative portfolio returns of our two models BVARM and BVARMVS (also see Table

(13) for definition of each model, for S&W factors. The investment strategy is a buy-and-

hold strategy for an investor that optimizes her power utility functions twenty four months

ahead. Each point in time for this portfolio construction belongs to the Test set. In order to

predict each point in time of the Test set, we use 20,000 draws from the posterior distribution.
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6.5.3 Cumulative portfolio returns and maximum drawdowns for BVARR and

BVARRVS models and for G&W factors

Figure 28: Cumulative portfolio returns with Ridge prior and h=1. This figure plots the

cumulative portfolio returns of our two models BVARR and BVARRVS (also, see Table (13)

for definition of each model, for G&W factors. The investment strategy is a buy-and-hold

strategy for an investor that optimizes her power utility functions one month ahead. Each

point in time for this portfolio construction belongs to the Test set. In order to predict each

point in time of the Test set, we use 20,000 draws from the posterior distribution.
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Figure 29: Cumulative portfolio returns with Ridge prior and h=4. This figure plots the

cumulative portfolio returns of our two models BVARR and BVARRVS (also, see Table (13)

for definition of each model, for G&W factors. The investment strategy is a buy-and-hold

strategy for an investor that optimizes her power utility functions four months ahead. Each

point in time for this portfolio construction belongs to the Test set. In order to predict each

point in time of the Test set, we use 20,000 draws from the posterior distribution.
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Figure 30: Cumulative portfolio returns with Ridge prior and h=6. This figure plots the

cumulative portfolio returns of our two models BVARR and BVARRVS (also, see Table (13)

for definition of each model, for G&W factors. The investment strategy is a buy-and-hold

strategy for an investor that optimizes her power utility functions six months ahead. Each

point in time for this portfolio construction belongs to the Test set. In order to predict each

point in time of the Test set, we use 20,000 draws from the posterior distribution.
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Figure 31: Cumulative portfolio returns with Ridge prior and h=12. This figure plots the

cumulative portfolio returns of our two models BVARR and BVARRVS (also, see Table (13)

for definition of each model, for G&W factors. The investment strategy is a buy-and-hold

strategy for an investor that optimizes her power utility functions twelve months ahead.

Each point in time for this portfolio construction belongs to the Test set. In order to predict

each point in time of the Test set, we use 20,000 draws from the posterior distribution.
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Figure 32: Cumulative portfolio returns with Ridge prior and h=24. This figure plots the

cumulative portfolio returns of our two models BVARR and BVARRVS (also see Table (13)

for definition of each model, for G&W factors. The investment strategy is a buy-and-hold

strategy for an investor that optimizes her power utility functions twenty four months ahead.

Each point in time for this portfolio construction belong to the Test set. In order to predict

each point in time of the Test set, we use 20,000 draws from the posterior distribution.
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6.5.4 Cumulative portfolio returns and maximum drawdowns for BVARM and

BVARMVS models and for G&W factors

Figure 33: Cumulative portfolio returns with Minnesota prior and h=1. This figure plots the

cumulative portfolio returns of our two models BVARM and BVARMVS (also, see Table (13)

for definition of each model, for G&W factors. The investment strategy is a buy-and-hold

strategy for an investor that optimizes her power utility functions one month ahead. Each

point in time for this portfolio construction belongs to the Test set. In order to predict each

point in time of the Test set, we use 20,000 draws from the posterior distribution.

102



Figure 34: Cumulative portfolio returns with Minnesota prior and h=4. This figure plots the

cumulative portfolio returns of our two models BVARM and BVARMVS (also, see Table (13)

for definition of each model, for G&W factors. The investment strategy is a buy-and-hold

strategy for an investor that optimizes her power utility functions four months ahead. Each

point in time for this portfolio construction belongs to the Test set. In order to predict each

point in time of the Test set, we use 20,000 draws from the posterior distribution.
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Figure 35: Cumulative portfolio returns with Minnesota prior and h=6. This figure plots the

cumulative portfolio returns of our two models BVARM and BVARMVS (also, see Table (13)

for definition of each model, for G&W factors. The investment strategy is a buy-and-hold

strategy for an investor that optimizes her power utility functions six months ahead. Each

point in time for this portfolio construction belongs to the Test set. In order to predict each

point in time of the Test set, we use 20,000 draws from the posterior distribution.
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Figure 36: Cumulative portfolio returns with Minnesota prior and h=12. This figure plots

the cumulative portfolio returns of our two models BVARM and BVARMVS (also, see Table

(13) for definition of each model, for G&W factors. The investment strategy is a buy-and-

hold strategy for an investor that optimizes her power utility functions twelve months ahead.

Each point in time for this portfolio construction belongs to the Test set. In order to predict

each point in time of the Test set, we use 20,000 draws from the posterior distribution.
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Figure 37: Cumulative portfolio returns with Minnesota prior and h=24. This figure plots

the cumulative portfolio returns of our two models BVARM and BVARMVS (also, see Table

(13) for definition of each model, for G&W factors. The investment strategy is a buy-and-

hold strategy for an investor that optimizes her power utility functions twenty four months

ahead. Each point in time for this portfolio construction belongs to the Test set. In order to

predict each point in time of the Test set, we use 20,000 draws from the posterior distribution.
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