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Abstract

Screening for diseases is common practice in illness detection. The design of op-
timal, personalized screening intervals has received more attention as personalized
medicine has become more popular. In this work, we focus on the modeling of lon-
gitudinal biomarker measurements. We extend the framework of joint modeling in
the field of screening intervals of Rizopoulos et al. (2016) in two directions. First, we
consider a Bayesian model average specification. Second, we allow for the simulta-
neous scheduling of multiple screenings. We illustrate the use of our adaptions with
an application among heart failure patients and the NT-proBNP biomarker. We
find that (i) higher levels of the biomarker places the patient at greater risk for car-
diac events and (ii) that Bayesian model averaging allows for modeling non-standard
biomarker trajectories.
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1 Introduction

As detection of illnesses in time increases the life expectancy of patients through earlier
treatment, routinely screening for diseases such as breast cancer among older asymp-
tomatic women is nowadays common practice. The same holds for patients known to
have had prostate cancer: monitoring the prostate-specific antigen provides information
on the current prostate condition. Scheduling these screenings is part of the field of
medical decision making. This field has become more and more complex, due to an in-
creasing amount of data available from patients all over the world and the development
of different treatment options. As the Internet has become overgrown with uncensored
medical information, today’s patient has become more involved in his/her medical pro-
cess. This has led to shared decision making, where physicians and patients together
assess the desired treatment. Along with the popularization and effectiveness of tailor-
made treatments, or personalized medicine, (bio-)statisticians also play an important
role in medical decision making. The analysis of patient data leads to new optimal and
personalized medical screening strategies.

The statistical analysis of screening strategies and optimization thereof has been
subject of research in the last 20 years. Parmigiani (1993, 1998, 2002) and Lee and
Zelen (1998) use dynamical optimization and multi-state Markov-models. These models
can handle altering number of screenings to plan as well as different treatment options.
The optimal screening strategy provides the most information on disease progression at
acceptable costs: the chosen model is most cost-effective. Of course, cost is measured not
only in monetary terms but also in quality of life from a patients perspective. Recently,
the joint modeling of longitudinal and survival data (e.g. Tsiatis and Davidian (2004) and
Rizopoulos (2012)) has been used to optimally schedule an upcoming screening one-step
ahead (Rizopoulos et al., 2016). As joint models include a random effects specification
(Laird and Ware, 1982), the nature of these models is subject-specific. Modeling of
individual patient trajectories can help in obtaining personalized screening intervals
whereas usually, screening procedures are homogeneous over patients, with fixed time
intervals. Moreover, joint models take the whole history of measurements into account,
whilst many screening strategies are merely based on the latest available measurement.
Finally, Rizopoulos et al. (2016) use information theory quantities to define an optimal
model, bearing in mind the patient’s condition.

In this thesis, we will extend the work of Rizopoulos et al. (2014) and Rizopoulos
et al. (2016) in two directions. Firstly, instead of focusing on the best predictive model
as Rizopoulos et al. (2016), we combine different model specifications via Bayesian model
averaging, following Hoeting et al. (1999) and Rizopoulos et al. (2014). Thereupon, we
decide a new screening time. In this way, we do not limit ourselves in model choice.
Secondly, the framework of Rizopoulos et al. (2016) allows only for the planning of one
upcoming measurement. We will adapt their framework to fit simultaneous planning of
multiple screenings at once.

The bioSHiFT studies of the Department of Cardio-Thoracic Surgery of Erasmus
Medican Center (EMC) among 263 patients form the motivation of our thesis. These
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patients are diagnosed with possible coronary artery disease and/or chronic heart fail-
ure. Coronary artery disease (CAD) is an inflammatory disease of the endothelium of
the coronary arteries (Mueller, 2014). The inflammation may lead to ruptures of vulner-
able lesions and tissues. These ruptures induce intracoronary thrombus formation and
acute coronary syndrome (ACS), including myocardial infarction. Chronic heart failure
(CHF) is characterized by a malfunctioning cardiac muscle, resulting in a shortage of
blood flow throughout the body (Mueller, 2014). Heart failure (HF) is often the com-
mon result of the majority of heart diseases, as different underlying processes can lead to
pump failure. In 2012 in the Netherlands, CAD/ACS were responsible for 6.000 deaths
and 84.000 hospital admissions. HF was responsible for 6.800 deaths and 29.000 hos-
pital admissions (Hartstichting, 2014). Repeated measures of blood and urines samples
yield information on biomarker levels that could possibly indicate a primary endpoint:
re-operation, hospital admission or death. Biomarkers, or biochemical markers, that
we consider in this setting are (levels of) plasma proteins that reflect pathopysiologi-
cal mechanisms. Routinely, patients are screened for biomarkers to determine different
treatment options and health risks. As an earlier mentioned example, prostate-specific
antigen (PSA) levels are indicative of the status of prostate cancer in treated men. For
CAD/CHF patients, cardiac troponin-T (cTnT) and the N-terminal pro B-type natri-
uretic peptide (NT-proBNP) are relevant biomarkers on which clinical guidelines have
based patient management programmes (Libby, 2006). In this study, we limit ourselves
to investigate the relation between cardiac events and NT-proBNP, and schedule multiple
novel screenings.

The remainder of this thesis is organized as follows. Section 2 will give a conceptual
overview of the methods used. In Section 3, we will discuss the full joint model and its
derivation. Section 4 will focus on the theory of personalized screening intervals. Section
5 will discuss our extensions, the results of which are depicted in Section 6. In Section
7, we will shed a light on the idea and definition of optimality in the field of scheduling
screenings. Finally, Section 8 concludes.

2 Conceptual framework

Measurements of biomarkers and changes thereof provide physicians insight in the health
conditions of patients. Therefore, patients have to plan multiple visits to the hospital
to give blood or plasma samples. Biomarker levels fluctuate over these samples. This
fluctuation is partly due to between-subject differences such as age or gender, but the
levels of biomarkers usually do not remain constant within a patient either. Furthermore,
not every patient will have the same risks associated to similar biomarker values. We
will try to model the subject-specific trajectory of NT-proBNP and relate levels of the
biomarker to health risks. Health risks are measured in terms of an event. An event
is defined as death, operation and/or hospital admission. Figure 1 depicts NT-proBNP
levels of the event-group and the event-free group. Clearly, we observe a higher average
level of NT-proBNP in the event-group. We will make use of a mixed effects specification
(see Laird and Ware (1982) or Verbeke and Molenberghs (2000) for details) to model
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the longitudinal trajectory, in combination with a hazard-specification (Fleming and
Harrington, 1991) to model the risks of events occurring. The simultaneous estimation
of both results in the joint model. For details, we refer to Rizopoulos (2012).
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Figure 1: The trajectory of NT-proBNP in the event-group (left) and non-event group
(right). The red line shows a fitted average trajectory.

The joint model links a longitudinal path (biomarker measurements) to a risk-
describing process: hazard. The intuitive idea is depicted in Figure 2. Of course, a
variety of different relations between the longitudinal outcome and the hazard function
exists. We will consider multiple joint model specifications. Afterwards, we will pick
the optimal model(s) for each patient at every visit. Optimality will be assessed on
predictive power or standard Bayesian selection criteria, such as deviance information
criteria (DIC) or log pseudo-marginal likelihood (LPML). Finally, multiple models will
be combined in a Bayesian averaging framework.

The planning of screenings is crucial for patients. On the one hand, over-frequent
hospital visits are a burden for both patients and physicians, and health care costs rise.
On the other hand, when patients are barely examined, they suffer great risks of cardiac
events. Clearly, this involves a trade-off between burden/costs and risks. Another aspect
that has to be taken into account when planning screening intervals, is the information
gained by a new measurement. Measuring a patient multiple times per day will yield low
health risks, but due to low intra-day variation between these measurements, phsyicians
do not gain much insight into the global shape of the longitudinal trajectory. Ideally,
we would plan the next measurement such that we gain as much insight as possible,
whilst bearing in mind the health risks of every patient. Given the biomarker trajectory
at time t, we would like to plan a measurement within t + ∆t whilst ensuring that at
t+ ∆t, the chances of survival are still above a certain threshold κ. Figure 3 elucidates
the setting.
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Figure 2: Schematic exemplary overview of the joint model. The top panel displays the
path of the hazard function. The bottom panel shows the longitudinal trajectory of a
biomarker.
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Figure 3: Planning of a new measurement at timepoint t + ∆t. The left-hand panel
displays the longitudinal measurements of a biomarker, the solid line on the right-hand
side displays the survival function. The dashed red line depicts the threshold-survival
value.

3 Joint modeling framework

This section consists of three parts. In the first part, we will discuss the modeling of
the longitudinal trajectory. In the second part, we will elaborate on survival analysis.
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Based on the first two parts, we will introduce the resulting the joint model. We will
consider both maximum likelihood as Bayesian estimation techniques.

3.1 Longitudinal Analysis

The linear mixed-effects model is a standard framework for longitudinal data analysis,
see Verbeke and Molenberghs (2000). We denote yi the ni × 1 vector of follow-up
measurements for subject i, i = 1, . . . , N . yil denotes the outcome at timepoint til, l =
1, ..., ni. The linear mixed model entails:

yi(t) = mi(t) + εi(t) εi(t) ∼ N (0, σ2)

= xi(t)
ᵀβ + zi(t)

ᵀui + εi(t) ui ∼ N (0,D) (3.1)

where in (3.1) mi(t) is the true underlying value of the longitudinal outcome measured
with a normally distributed error εi(t) with mean 0 and variance σ2. xi(t) ∈ RK×1 and
zi(t) ∈ RQ×1 denote (time-varying) design matrices associated with the fixed effects β
and random effects ui, respectively. The random effects follow a multivariate normal
distribution with mean 0 and variance-covariance matrix D and are independent of both
the error terms εi(t) and the fixed effects. Implicitly, (3.1) accounts for correlation be-
tween measurements within the same subject through the random effects. An advantage
of the mixed-effects model is that it allows for estimation of parameters for the popula-
tion mean via the fixed effects, and additionally models the individual trajectory over
time via the random effects.

An important feature of the mixed model is that the outcomes are marginally cor-
related through the random effects, but they are assumed to be independent given the
random effects:

p(yi | ui) =

ni∏
l=1

p(yil | ui) (3.2)

3.1.1 Estimation of the mixed model

Maximum likelihood (ML) estimators of the parameters above are most frequently used.
The marginal likelihood contribution of the ith subject is given by

p(yi) =

∫
ui

p(yi | ui)p(ui) dui. (3.3)

and the above has a closed-form solution, leading to

yi ∼ N (Xᵀ
iβ,ZiDZ

ᵀ
i + σ2Ini︸ ︷︷ ︸
V i

) (3.4)



3 JOINT MODELING FRAMEWORK 7

and hence the log-likelihood contribution of subject i equals

L(θ) =

N∑
i=1

log p(yi | θ)

=

N∑
i=1

log

[
(2π)−

ni
2

∣∣V i

∣∣− 1
2 exp{−1

2
(yi −Xiβ)ᵀV −1

i (yi −Xiβ)}
]

(3.5)

The corresponding maximum likelihood estimator of β is equal to the generalized least
squares estimator:

β̂ =

(
N∑
i=1

Xᵀ
iV
−1
i Xi

)−1 N∑
i=1

Xᵀ
iV
−1
i yi (3.6)

when V i is known. When only estimates V̂ i are available, the estimated variance-
covariance matrix can replace the true in (3.6), asymptotically yielding unbiased esti-
mates. In small samples, one often opts for restricted maximum likelihood (REML)
estimates (Harville, 1974). In this way, one obtains unbiased estimates of the vari-
ance/covariance components. The log-likelihood optimized via REML estimation is:

LRE(θ) = −N −K
2

log(2π) +
1

2
log

∣∣∣∣∣
N∑
i=1

Xᵀ
iXi

∣∣∣∣∣− 1

2
log

∣∣∣∣∣
N∑
i=1

Xᵀ
iV iXi

∣∣∣∣∣
− 1

2

N∑
i=1

{log
∣∣V i

∣∣+ (yi −Xiβ̂)ᵀV −1
i (yi −Xiβ̂)}

∝ −1

2
log

N∑
i=1

|V i| −
1

2

N∑
i=1

(yi −Xiβ̂)ᵀV −1
i (yi −Xiβ̂)

− 1

2
log

∣∣∣∣∣
N∑
i=1

Xᵀ
iV
−1
i Xi

∣∣∣∣∣ (3.7)

where in (3.7) β̂ is given by (3.6). Optimization of the latter will give estimates of
V i that account for the fact that β was estimated in (3.6). The restricted likelihood
resembles concentrated/profile likelihood approaches, but penalizes by the last term of
(3.7).

3.2 Survival Analysis

For the modeling of the time to re-operation/death/hospital admission, we make use of
basic concepts of survival analysis. For a detailed overview, we refer to Fleming and
Harrington (1991). We denote T ∗i the true event time of subject i, Ci the censoring
time and Ti = min(T ∗i , Ci) the observed event time. Hence, the observed event time
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equals true event time as long as the subject is still in our study. We denote the survival
function

Si(t) = Pr(T ∗i > t) =

∫ ∞
t

f(s) ds (3.8)

where f(s) is the probability density function of the event. The hazard function describes
the risk of an instantaneous event in the time frame ∆t, given that subject i is event-free
up to time t:

λi(t) = lim
∆t→0

Pr(t ≤ T ∗i < t+ ∆t | T ∗i ≥ t)
∆t

=
f(t)

S(t)
. (3.9)

By definition, the survival function (3.8) can be expressed by means of its corresponding
hazard (3.9) via:

Si(t) = exp

{
−
∫ t

0
λi(s) ds

}
(3.10)

where the bracketed term is known as the cumulative hazard function. Different speci-
fications for the hazard exist. In this thesis, we will make use of a proportional hazard
function:

λi(t) = λ0(t) exp{γᵀwi} (3.11)

where λ0(t) denotes the baseline hazard, wi denotes a vector of explanatory variables
and γ the associated parameters.

3.2.1 Parameter estimation of the survival process

Parameter estimation of the survival process is usually done via maximum likelihood.
For notation purposes, let the spell-indicator δi = I(T ∗i ≤ Ci) indicate whether the event
has occurred or not. Here, I(A) is the logical operator, equal to 1 when A is true, 0 else
wise. The log-likelihood is

L(θ) = log
N∏
i=1

p(Ti, di | θ)

=
N∑
i=1

log f(Ti | θ)δiS(Ti | θ)1−δi

=

N∑
i=1

δi log λi(Ti | θ)−
∫ Ti

0
λi(s | θ)ds. (3.12)
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3.3 Joint model

The joint model relates the longitudinal outcome to the survival process. By simul-
taneously modeling the longitudinal outcome and incorporating it in the time-to-event
model, one is able to measure the association between both outcomes. Let Mi(t) =
{mi(s), 0 ≤ s ≤ t} be the history of the true longitudinal process. We denote the set
of all available information Dn = {yi, Ti, δi; i = 1, . . . , N}. We will relate the survival
sub-model to the longitudinal outcome via the hazard function:

λi(t | Mi(t),wi) = λ0(t)exp{γᵀwi + f(mi(t),ui,α)} (3.13)

where in (3.13) α measures the association between the (functional form of the) lon-
gitudinal process mi(t), the random effects ui and the hazard. Following Rizopoulos
(2012), we consider different relations between the longitudinal process and the survival
outcome:

f(mi(t),ui, α) = αmi(t), f(mi(t),ui, α) = αm′i(t)

f(mi(t),ui, α) = α

∫ t

0
mi(s) ds, (3.14)

where m′i(t) = ∂mi(t)
∂t is the direction of the marker. The above relations either depend

on (i) the underlying value at point (t), (ii) the derivative of the longitudinal outcome,
or (iii) the accumulated survival process up to t. Of course, combinations of the above
can also be used. Note that the proportional lifetime model (3.14) (i) states that the
instantaneous risk of an event only depends upon the value of the process at time t.
This is not the case for the survival function, since

Si(t | Mi(t),wi) = p(T ∗i > t | Mi(t),wi)

= exp

(
−
∫ t

0
λ0(s)exp{γᵀwi + f(mi(s),ui,α)}ds

)
(3.15)

implies that the event-to-time process is related to the entire trajectoryMi(t). As mi(t)
is a time-varying variable, we need the integral of (3.15) to be proper. This is the case as
long as the time-varying process is bounded and predictable, for the proof see Fleming
and Harrington (1991), page 131. For the full joint distribution that describes both
the longitudinal and time-to-event processes, we will need one extra assumption next to
(3.2). Similarly for the survival process, we will assume that the random effects account
for all correlation between the longitudinal and survival outcomes. That is, the event
process and the longitudinal trajectory are assumed to be independent given ui:

p(Ti, δi,yi | ui;θ) = p(Ti, δi | ui;θ)p(yi | ui,θ) (3.16)

3.3.1 Maximum likelihood estimation

Previous research has proposed different estimation methods. A two-stage method based
on first estimating the longitudinal outcome via (3.7) and then using these estimates to
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obtain second-stage estimates of (3.13) does not take into account the uncertainty in the
first-stage regression. A full, joint-likelihood approach has been followed by Rizopoulos
(2011), Rizopoulos et al. (2009) and Faucett and Thomas (1996), among others. Under
the assumptions (3.2) and (3.16), we note the ith contribution to the full log-likelihood

log p(Ti, δi,yi | θ) = log

∫
ui

p(Ti, δi,yi | θ)dui

= log

∫
ui

p(Ti, δi | ui,θ)︸ ︷︷ ︸
survival

[
ni∏
l=1

p(yil | ui,θ)

]
p(ui | θ)︸ ︷︷ ︸

longitudinal

dui. (3.17)

The survival part of (3.17) follows from (3.13) and (3.15):

p(Ti, δi | ui,θ) =λi(Ti | Mi(Ti),θ)δiSi(Ti | Mi(Ti),θ), (3.18)

which is similar to the likelihood contribution of (3.12). For the longitudinal response,
we observe

p(yi | ui,θ)p(ui | θ) =

ni∏
l=1

p(yil | ui,θ)p(ui | θ)

= (2πσ2)−
ni
2 exp{−1

2
σ2||yi −Xiβ −Ziui||}

× (2π)−
q
2 |D|−

1
2 exp{−1

2
uᵀ
iD
−1ui}. (3.19)

The maximization of (3.17) requires the computation of numerous integrals. Since we
need to integrate out all random effects, the numerical computation can become a bur-
den. Therefore, we resort to Bayesian estimation techniques to overcome this problem.

3.3.2 Bayesian estimation

For a Bayesian approach, we observe that the full posterior is of the form:

p(θ,ui | Dn) ∝
N∏
i=1

ni∏
l=1

p(yil | ui,θ)p(Ti, δi | ui,θ)p(ui | θ)p(θ). (3.20)

Clearly, we still need to specify the exact form of the baseline hazard. Following Rizopou-
los et al. (2016), we opt for a flexible spline specification. For details on splines, we refer
to Eilers and Marx (1996). The full conditional likelihood contribution of subject i is of
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the form:

p(yi,Ti, δi | ui,θ) =

ni∏
l=1

p(yil | ui,θ)p(Ti, δi | ui,θ)p(ui | θ)p(θ)

∝ (2πσ2)−
ni
2 exp{−1

2
σ2||yi −Xiβ −Ziui||}

× (2π)−
q
2 |D|−

1
2 exp{−1

2
uᵀ
iD
−1ui}

×

[
exp

{∑
q

Bq(Ti,v) + γᵀwi + f(mi(Ti),ui,α)

}]δi

× exp

[
−exp(γᵀwi)

∫ Ti

0
exp

{∑
q

Bq(s,v) + γᵀwi + f(mi(s),ui,α)

}
ds

]
× p(θ). (3.21)

The prior distribution of parameters θ is left unspecified above. We specify diffuse proper
priors for all regression coefficients, parametrization is discussed in the Results Section.
The conditional posterior distribution of all terms including ui are not of a known form.
Realizations are obtained via a random walk Metropolis-Hastings sampler, and tuned
via scaling the variance-covariance matrix V i of (3.4). For the (cumulative) hazard,
Bq(Ti, v) denotes the q-the basis of a B-spline. Using a flexible spline specification for
the baseline hazard is common practice, see Rizopoulos (2012) or Eilers and Marx (1996).

4 Personalized screening intervals

This section will be dedicated to the planning of a new measurement within the frame-
work of joint models. More precisely, how do we plan the next measurement of patient j,
given his previous biomarker levels. First, the appropriate model is selected for patient
j. The models will differ in association structure, as in (3.14). Thereafter, we determine
a quantity that yields the best next measurement time. Notation is based on the work
of Rizopoulos et al. (2016).

4.1 Model selection

To choose the correct personalized screening interval for the individual subject j at time
t, one has to choose an appropriate model. The joint model entails both specification
of the mixed and survival model. Standard Bayesian evaluation is based on deviance
information criterion (DIC) or Bayes-factors, taking into account both the fit for the
longitudinal as time-to-event outcomes. For a personalized screening interval however,
one might be inclined to favor the model that predicts future events best, given that
subject j is event-free up to time t. Let M = {M1, . . . ,Mk} be the set of possible
models, and M∗ the true data generating model. To address the predictive power for
the survival outcome per model, we make use of the cross-validatory posterior predictive
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conditional density of the time-to-event process. For the kth model, this is equal to
p(T ∗i | T ∗i > t,Yi(t),Dn−i,Mk) where Dn−i denotes the full dataset when subject i
is left out and Yi(t) = {yi(til); 0 ≤ til ≤ t, l = 1, . . . , ni} the history of longitudinal
measurements for subject i. Rizopoulos et al. (2016) choose the modelMk that minimizes
the cross-entropy (Cover and Thomas, 1991)

CEk(t) = E {− log [p(T ∗i | T ∗i > t, yi(t),Dn−i,Mk)]} . (4.1)

The expectation is taken with respect to the predictive conditional density under the
true model, i.e. p(T ∗i | T ∗i > t,Yi(t),Dn−i,M∗). Rizopoulos et al. (2016) estimate (4.1)
by the cross-validated Dynamic Conditional Likelihood :

cvDCLk(t) =
1

nt

N∑
i=1

−I(Ti > t) log p(Ti, δi | Ti > t,Yi(t),Dn−i,Mk), (4.2)

whilst taking the absence of subject i and possible censoring into account. In (4.2), nt
equals the number of subjects that have survived up to time t, nt =

∑
i I(Ti > t). An

MCMC-sample of the equation above can be drawn by use of importance sampling:

[p(Ti, δi | Ti > t,Yi(t),Dn−i)]−1 =
p(Dn−i, Ti > t,Yi(t))

p(Ti, δi, Ti > t,Yi(t),Dn−i)

=

∫
θ

p(Dn−i | θ)p(Ti > t,Yi(t) | θ)p(θ)

p(Dn)
dθ

=

∫
θ

p(Ti > t,Yi(t) | θ)

p(Ti, δi,Yi(t) | θ)

p(Dn) | θ)p(θ)

p(Dn)
dθ

=

∫
θ

1

p(Ti, δi | Ti > t,Yi(t),θ)
p(θ | Dn)dθ (4.3)

And hence Monte Carlo estimates of (4.2) can be found via:

cvD̂CL(t) =
1

nt

N∑
i=1

I(Ti > t) log

 1

G

G∑
g=1

1

p(Ti, δi | Ti > t, yi(t),θ
(g))

 , (4.4)

where θ(g) denotes the gth draw of the posterior distribution p(θ | Dn), derived from
(3.20). Finally, we choose the model that maximizes the estimate (4.4). Note that this
is a harmonic mean estimator (Newton and Raftery, 1994) for which the central limit
theorem need not hold. The variances of the weights need to be checked for stability of
the estimator. For a detailed reference on limit conditions, see Wolpert and Schmidler
(2011).

4.2 Scheduling of the next measurement

For the scheduling of the next measurement for subject j, we will rely upon the observed
data of this patient {T ∗j > t,Yj(t)} combined with the model selected in the previous
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Section for this patient at time point t . The scheduling of the next measurement at
timepoint u, u > t involves a risk/gain-tradeoff. On the one hand, we would like to
maximize the information gain obtained by a new measurement yj(u), given that the
patient did not experience the event up to timepoint u. On the other hand, if the event
actually occurs before u, there will be no information gain. Therefore, we also take into
account the risk of event occurrence. Rizopoulos et al. (2016) make use of concepts in
Bayesian optimal designs (Clyde and Chaloner, 1996) to model the risk/gain tradeoff in
choosing the optimal u. The utility function considered equals

U(u | t) = E

λ1 log
p(T ∗j | T ∗j > u, {Yj(t), yj(u)},Dn)

p(T ∗j | T ∗j > u,Yj(t),Dn)︸ ︷︷ ︸
Information ratio

−λ2 I(T ∗j > u)︸ ︷︷ ︸
Risk term

 , (4.5)

where the first information ratio is equal to the expected Kullback-Leibner divergence,
i.e. the difference between the posterior predictive conditional distribution with a mea-
surement at timepoint u and without. As we condition on the measurement yj(u), it
makes sense to condition on T ∗j > u, as measurements are only possible as long as the
patient is alive. Formally, the Kullback-Leibner divergence equals

EKL(u | t) = EY

[
ET ∗|Y

{
log

p(T ∗j | T ∗j > u, {Yj(t), yj(u)},Dn)

p(T ∗j | T ∗j > u,Yj(t),Dn)

}]

=

∫
yj(u)

{∫
T ∗
j

log
p(T ∗j | T ∗j > u, {Yj(t), yj(u)},Dn)

p(T ∗j | T ∗j > u,Yj(t),Dn)
p(T ∗j | T ∗j > t, {Yj(t), yj(u)},Dn)dT ∗j

}
× p(yj(u) | T ∗j > t,Yj(t),Dn)dyj(u). (4.6)

An increase in this ratio adheres to an increase in information gain. If the event takes
place before u, then p(T ∗j | T ∗j > u, {Yj(t), yj(u)},Dn) simplifies to p(T ∗j | T ∗j >
u,Yj(t),Dn) and we set EKL(u | t) = 0: no information acquired. This is a matter
of choice, as (4.6) cannot be evaluated for t < T ∗j < u. On the other hand, when the
event has not occurred up to u, the most information can be gained by setting u further
away from the last measurement at t. The second term in (4.5) is a penalty term. Not
only did EKL(u | t) already penalize for scheduling measurement u > T ∗j , the risk term
also bears in mind that the patients have to wait until u, thereby increasing the risk
of an event. From a medical point of view, physicians would rather not wait until it is
too late. The expectation of the indicator function yields the conditional probability of
surviving up to u, given that the subject has already survived past t:

πj(u | t) = p[T ∗j > u | T ∗j > t,Yj(t),Dn]. (4.7)

Predictions of conditional survival probabilities have been subject of research in Rizopou-
los (2011). Estimates are based upon the posterior expectation of (4.7) and a detailed
overview is given in the Appendix A.1.
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As a matter of choice, the user can specify the non-negative weights λ1 and λ2,
favoring either more information gain or heavier penalizing the risk function. Different
choices of these weights will yield different optimal u. Clyde and Chaloner (1996) have
shown that maximization of EKL(ut) for any pair (λ1, λ2), ∃κ ∈ [0, 1] such that the
above is equivalent to maximizing EKL(u | t) subject to πj(u | t) ≥ κ. Now, we need
to specify a threshold k. Under this specification, κ could be set equal to the maximum
risk of an event that the physician is willing to take. Now, we can search for the optimal
value of u, where we maximize EKL(u | t) in the interval (t, tup], where tup is the ’limit
time’ of the survival process for threshold κ, i.e. tup = min{u : πj(u | t) = κ}. If, on
medical grounds, the physician necessarily wants to see patient j before time tmax, then
tup needs to be censored by tmax.

4.3 Estimation of the Kullback-Leibner divergence

The estimation of EKL(u | t) makes use of the assumptions (3.2) and (3.16), in com-
bination with the likelihood specification (3.20). The predictive distribution for the
event-time T ∗j is

p(T ∗j | T ∗j > t, {Yj(t), yj(u)},Dn) =

∫
θ
p(T ∗j | T ∗j > t, {Yj(t), yj(u)},θ)p(θ | Dn)dθ

(4.8)

where the part under the integral is equal to

p(T ∗j | T ∗j > t, {Yj(t), yj(u)},θ) =∫
uj

p(T ∗j | T ∗j > t,uj ,θ)p(uj | T ∗j > t, {Yj(t), yj(u)},θ)duj (4.9)

and for the new longitudinal measurement at time u.

p(yj(u) | T ∗j > t,Yj(t),Dn) =

∫
θ
p(yj(u) | T ∗j > t,Yj(t),θ)p(θ | Dn)dθ (4.10)

which is simply the prediction of the biomarker at time u. When we now look at the
same distribution but for T ∗j > u, we merely plug in the above for u. Concisely, the
predictive distribution of an event later than u is given by

p(T ∗j | T ∗j > u, {Yj(t), yj(u)},Dn)

=

∫
θ

∫
uj

p(T ∗j | T ∗j > u,uj ,θ)p(uj | T ∗j > u, {Yj(t), yj(u)},θ)dujdθ (4.11)

and the risk-process under the integral above is given by

p(T ∗j | T ∗j > u,uj ,θ) =
λj(T

∗
j | Mj(t),uj ,θ)Sj(T

∗
j | Mj(t),uj ,θ)

Sj(u | Mj(t),uj ,θ)
. (4.12)

Based on the equations above, we obtain the following Monte Carlo simulation scheme
to estimate EKL(u | t) in (4.6):
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1. Simulate θ̃, θ̇ and {θ(l), l = 1, . . . , L} ∼ p(θ|Dn)

2. Draw ũj ∼ p(uj | T ∗j > t,Yj(t), θ̃)

3. Draw ỹj(u) ∼ p(yj(u) | ũj , θ̃)

4. Simulate u̇j from p(uj | T ∗j > t, {Yj(t), ỹj(u)}, θ̇) and {u(l)
j+, l = 1, . . . , L} from

p(uj | T ∗j > u, {Yj(t), ỹj(u)}, ˙
θ(l)) and {u(l)

j−, l = 1, . . . , L} from p(uj | T ∗j >

u,Yj(t), ˙
θ(l)).

5. Simulate Ṫ ∗j from p(T ∗j | T ∗j > t, u̇j , θ̇)

6. When Ṫ ∗j > u we obtain estimates from EKL(q)(u | t) = log

{
1

L

L∑
l=1

A(l)
n

A(l)
d

/
B(l)
n

B(l)
d

}
A(l)
n = λj(Ṫ

∗
j | Mj(Ṫ

∗
j ),u

(l)
j+,θ

(l))S(Ṫ ∗j | Mj ,u
(l)
j+,θ

(l)),

A(l)
d = S(u | Mj ,u

(l)
j+,θ

(l)).

B(l)
n = λj(Ṫ

∗
j | Mj(Ṫ

∗
j ),u

(l)
j−,θ

(l))S(Ṫ ∗j | Mj ,u
(l)
j−,θ

(l)),

B(l)
d = S(u | Mj ,u

(l)
j−,θ

(l)).

When Ṫ ∗j < u, EKL(q)(u | t) = 0.

7. ÊKL(u | t) =
1

Q

Q∑
q=1

EKL(q)(u | t)

For the model parameters in θ and ui in Step 1, Step 2 and Step 4, we will sam-
ple from the posterior distribution given in (3.20). Since these distributions are non-
standard, we propose a Metropolis-Hastings algorithm based on a multivariate Student’s
t-distribution, with mean û = arg maxu{log p(u | T ∗j > t,Yj(t), θ̂}. The variance-

covariance matrix V is approximated by the Hessian {∂2 log p(u | T ∗j > t,Yj(t), θ̂)/∂uᵀ∂u|u=û}.
The posterior mean of the parameters θ is denoted by θ̂. In the third step, we merely
make a prediction via the mixed model at time u. To draw an event time Ṫ ∗j after t, we

use the cumulative density distribution Sj(Ṫ
∗
j , u̇i, θ̇)/Sj(t, u̇i, θ̇) for inversion sampling.

After having drawn v ∼ U(0, 1), we compute Ṫ ∗j for which the above CDF is equal to
v. An estimate of the survival probabilities π(u | t) helps us to find the optimal u:

uopt = arg maxu ÊKL(u | t) subject to π̂(u | t) ≥ κ. In practice, we will assess a finite
grid {u1, . . . , umax} in the interval (t, tmax]. We will propose different new scheduling
times and choose the appointment time that yields highest information gain.

5 Extensions

Our extension of the work of Rizopoulos et al. (2016) is two-fold. First, we explore a
Bayesian model averaged counterpart of EKL(u | t). Essentially, we adopt the previous
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framework with ideas from Rizopoulos et al. (2014). Second, we extend the setting to
allow for scheduling multiple screenings at once.

5.1 Bayesian model averaging

A possible drawback of the model selection routine based on the cvDCL (4.2) is that
we fully focus our attention to one model: the highest-ranking in terms of cvDCL. The
expected information ratio is hence also based solely on one model. As discussed by
Hoeting et al. (1999), this approach does not take model uncertainty into account. To
relax this restriction, we could apply the ideas of Bayesian model averaging (BMA) in a
joint model framework. Following Hoeting et al. (1999), for a given quantity of interest
∆, the posterior distribution given the data equals

p(∆ | D) =
K∑
k=1

p(∆ | D,Mk)p(Mk | D). (5.1)

In our application, the quantity of interest is EKL(u | t). We combine the ideas of
Rizopoulos et al. (2014) and Rizopoulos et al. (2016) to come up with a relaxation of
(4.6). Let subject j be a new subject in our dataset. The model average conditional
survival probabilities of surviving up to time u > t equal:

p(T ∗j > u | Dj(t),Dn) =
K∑
k=1

p(T ∗j > u |Mk,Dj(t),Dn)︸ ︷︷ ︸
Model-specific survival probabilities

p(Mk | Dj(t),Dn)︸ ︷︷ ︸
Posterior weights

. (5.2)

The weights in the equation above still maintain a cross-validatory flavor, since they
depend not only on the dataset Dn, but also on the newly observed data of subject j,
Dj(t). This results in subject and time-specific model selection, whereas the cvDCL
indicates only time-specific model preference. In usual BMA parlance, the posterior
weights can be obtained via:

p(Mk | Dj(t),Dn) =
p(Dj(t) |Mk)p(Dn |Mk)p(Mk)

K∑
m=1

p(Dj(t) |Mm)p(Dn |Mm)p(Mm)

, (5.3)

where

p(Dj(t) |Mk) =

∫
θk

p(Dj(t) | θk)p(θk |Mk)dθk (5.4)

and the same holds for p(Dn |Mk). We note that

p(Dn,ui,θk |Mk) =

N∏
i=1

p(yi, Ti, δi,ui,θk |Mk)

=
N∏
i=1

p(yi | ui,θk)p(Ti, δi | ui,θ)p(ui | θk)p(θk |Mk) (5.5)
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and by integrating out the random effects ui and the model parameters θk, we obtain
p(Dn | Mk). The likelihood p(Dn | θk) is the same as (3.21), i.e. just the likelihood
evaluated under model k. For p(Dj(t) | θk) holds

p(Dj(t) | θk) = p(Yj(t)|uj ,θk)Sj(t | uj ,θk)p(uj | θk) (5.6)

and we explicitly state that θk is fully estimated based on the dataset without subject
j. We assume the a-priori model probabilities to be equal, i.e p(Mk) = 1

K∀k. Approxi-
mations of (5.5) and (5.6) and are obtained via Laplace approximations. For technical
details, we refer to and Rizopoulos et al. (2014) and Rizopoulos et al. (2009).

To use the above in the context of personalized screening, we now adjust the Kullback-
Leibner divergence accordingly. We will maximize

U(u | t) =
K∑
m=1

E
{

log
p(T ∗j |Mm, T

∗
j > u, {Yj(t), yj(u)},Dj(t),Dn)

p(T ∗j |Mm, T
∗
j > u,Yj(t),Dj(t),Dn))

}
p(Mm | Dj(t),Dn)

s.t. πj(u | t) =
K∑
m=1

p(T ∗j > u |Mm, T
∗
j > t,Yj(t),Dj(t),Dn)p(Mm | Dj(t),Dn) ≥ κ.

(5.7)

The restriction above is the averaged counterpart of (4.7). Similarly, the chance of an
event occurring can not exceed κ, yet we now base the probability of occurrence on
several models. To compute the above, we have to apply the sampling scheme of Section
4.3 for model k = 1, . . . ,K times. Computationally, this might become a burden.

5.2 Scheduling multiple screenings

The ideas of Rizopoulos et al. (2016) can be extended to a setting with multiple screen-
ings. The planning of multiple measurements is attractive from a time-management
point of view, since the date(s) of the upcoming visits are known well in advance. We
assume that the number of measurements to plan is decided upon by the physician and
predetermined. Here, we will work out the simultaneous planning of two measurements:
an extension to S measurements is straightforward and given in the Appendix A.2.

We again consider patient j at time point t, with history Dj(t). For this patient, we
would like to plan two measurements at timepoints s1, s2. Without loss of generality,
we assume s1 < s2. We will now look at the predictive posterior distribution with
measurements yj(s1), yj(s2). Since the physician decided to plan two measurements, we
would ideally observe that the event-time T ∗j is later than s2. We will adjust the utility
function (4.5) to

U(s1, s2 | t) = E

{
λ1 log

p(T ∗j | T ∗j > s2, {Yj(t), yj(s1), yj(s2)},Dn)

p(T ∗j | T ∗j > s2,Yj(t),Dn)
− λ2I(T ∗j > s2)

}
.

(5.8)

In the setting of multiple measurements, we can trichotomize the real event time, T ∗j .
The event occurs (i) before any measurement has taken place, in which case T ∗j < s1
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and we set EKL(s1, s2 | t) = 0, or (ii) after s1, but before the second measurement s2:
s1 < T ∗j < s2, in which case we put EKL(s1, s2 | t) = EKL(s1 | t), or the event can take
place (iii) after both measurements, i.e. T ∗j > s2. In this way, the first term takes into
account the true event time.

The last term again arises as a penalizing term, accounting for the risk of having to
wait up till s2. Via similar reasoning as in the previous section, we will optimize the
information gain subject to a predetermined survival constraint based on the penalty
term:

πj(s2 | t) = p(T ∗j > s2 | T ∗j > t,Yj(t),Dn) (5.9)

where again, πj(s2 | t) ≥ κ is a necessary condition. To obtain a sampling scheme, we first
look at the individual parts of the joint density p(T ∗j , yj(s1), yj(s2) | T ∗j > t,Yj(t),Dn).
For T ∗j :

p(T ∗j | T ∗j > t, {Yj(t), yj(s1), yj(s2)},Dn) =∫
θ
p(T ∗j | T ∗j > t, {Yj(t), yj(s1), yj(s2)},θ)p(θ | Dn)dθ (5.10)

where the part under the integral is equal to

p(T ∗j | T ∗j > t, {Yj(t), yj(s1), yj(s2)},θ) =∫
uj

p(T ∗j | T ∗j > t,uj ,θ)p(uj | T ∗j > t, {Yj(t), yj(s1), yj(s2)},θ)duj . (5.11)

For the two new measurements holds:

p(yj(s1), yj(s2) | T ∗j > t,Yj(t),Dn) =

∫
θ
p(yj(s1), yj(s2) | T ∗j > t,Yj(t),θ)p(θ | Dn)dθ

(5.12)

And the joint conditional distribution p(yj(s1), yj(s2) | T ∗j > t,Yj(t),θ) can be written
as

p(yj(s1), yj(s2) | T ∗j > t,Yj(t),θ) =∫
uj

p(yj(s1), yj(s2) | uj ,θ)p(uj | T ∗j > t,Yj(t),θ)duj =∫
uj

p(yj(s1) | uj ,θ)p(yj(s2) | uj ,θ︸ ︷︷ ︸
Conditional independence (3.2)

)p(uj | T ∗j > t,Yj(t),θ)duj (5.13)

where the last step follows from the independence of longitudinal measurements, given
the random effects. Now, the rest of the sampling scheme follows exactly the route from
Section 4.3, with the only difference that we draw two longitudinal measurements at
times s1 and s2.
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1. Simulate θ̃
1
, θ̃

2
, θ̇ and {θ(l), l = 1, . . . , L} ∼ p(θ|Dn)

2. Draw ũj
1 ∼ p(uj | T ∗j > t,Yj(t), θ̃1) and ũj

2 ∼ p(uj | T ∗j > t,Yj(t), θ̃
2
)

3. Draw ỹj(s1) ∼ p(yj(s1) | ũj1, θ̃
1
) and ỹj(s2) ∼ p(yj(s2) | ũj2, θ̃

2
)

4. Simulate u̇j from p(uj | T ∗j > t, {Yj(t), ỹj(s1), ỹj(s2)}, θ̇) and {u(l)
j+, l = 1, . . . , L}

from p(uj | T ∗j > u, {Yj(t), ỹj(s1), ỹj(s2}, ˙
θ(l)) and {u(l)

j−, l = 1, . . . , L} from p(uj |

T ∗j > u,Yj(t), ˙
θ(l))

5. Simulate Ṫ ∗j from p(T ∗j | T ∗j > t, u̇i, θ̇)

6. When Ṫ ∗j > s2 we obtain estimates from EKL(q)(s1, s2 | t) = log

{
1

L

L∑
l=1

A(l)
n

A(l)
d

/
B(l)
n

B(l)
d

}
A(l)
n = λj(Ṫ

∗
j | Mj(Ṫ

∗
j ),u

(l)
j+,θ

(l))S(Ṫ ∗j | Mj ,u
(l)
j+,θ

(l)),

A(l)
d = S(u | Mj ,u

(l)
j+,θ

(l)).

B(l)
n = λj(Ṫ

∗
j | Mj(Ṫ

∗
j ),u

(l)
j−,θ

(l))S(Ṫ ∗j | Mj ,u
(l)
j−,θ

(l)),

B(l)
d = S(u | Mj ,u

(l)
j−,θ

(l)).

When Ṫ ∗j < s1, EKL(q)(s1, s2 | t) = 0.

When s1 < Ṫ ∗j < s2, EKL(q)(s1, s2 | t) = EKL(q)(s1 | t), see Section 4.3.

7. Repeat the above q = 1, . . . , Q times: ÊKL(s1, s2 | t) =
1

Q

Q∑
q=1

EKL(q)(s1, s2 | t)

6 Results

We now go back to the coronary disease dataset from the bioSHiFT studies in Section
1. Out of the 263 patients in bioSHiFT, 189 were males and 74 females. 70 (27 %)
reached their primary endpoint: 53 (28%) men and 17(23%) women. The median age
was 67 years and the median follow-up time was 2.17 years. Up to this point, 1929 blood
samples were taken. We are interested in possible differences between men/women and
or younger/older patients. Afterwards, we will plan new measurements for new patients.

We will start by introducing the set of joint models tested in our analysis. To
model the longitudinal outcome, we included age, gender, and their interaction effect
as explanatory variables. Agei is the age of patient i at baseline, centered around the
median age of 67 years. Femalei is a dummy variable for females measured at baseline,
and FemAgei denotes the age/gender interaction. We made use of 2 flexible B-splines,
denoted by Bn(t, {1, 2}).

yi(t) =(β0 + ui0) + (β1 + ui1)Bn(t, 1) + (β2 + ui2)Bn(t, 2)

+ β3Agei + β4Femalei + β5FemAgei + εi(t)
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Following (3.13), we consider different postulations for the baseline hazards of the sur-
vival model:

M1 : λi(t) = λ0(t) exp{γ1Agei + γ2Femalei + γ3FemAgei + α1mi(t)}

M2 : λi(t) = λ0(t) exp{γ1Agei + γ2Femalei + γ3FemAgei + α2m
′
i(t)}

M3 : λi(t) = λ0(t) exp{γ1Agei + γ2Femalei + γ3FemAgei + α1mi(t) + α2m
′
i(t)}

M4 : λi(t) = λ0(t) exp{γ1Agei + γ2Femalei + γ3FemAgei + α3

∫ t

0
mi(s)ds}

M5 : λi(t) = λ0(t) exp{γ1Agei + γ2Femalei + γ3FemAgei + α1mi(t) + α3

∫ t

0
mi(s)ds

and we will consider M1 to be the standard model.
As parametrization, we specify diffuse priors for all regression coefficients, i.e. we

take normal priors for the fixed effects β, for the association parameter α and for the
parameters in the survival process γ. All have mean 0 and variance 100. Rizopoulos
et al. (2009) have shown that, as the number of longitudinal measurements increases,
the mixed model contribution predominates the likelihood. For the variance σ2 in the
longitudinal outcome, we specify an inverse-Gamma 2 distribution with shape 6.1 from
(3.1) and rate 0.78, for the variance-covariance matrix of the random effectsD we specify
an inverse-Wishart distribution with parameters D̂: the estimated variance-covariance
matrix of only the longitudinal process (3.1) and 3 degrees of freedom.

6.1 Comparison of cvDCL and BMA

The cross-validated dynamical likelihoods (4.2) have been computed at 6 equidistant
timepoints, and are displayed alongside the standard Bayesian model diagnostics DIC
and LPML in Table 1. We choose to continue our analysis with the three best performing
models. In the beginning, M1 and M5 rival as best performing models, with M3 closing
in in further measurements. All three perform comparable based on the cvDCL. Models
M2 and M4 both underperform compared to the other three models. Furthermore, M3

performs best according to DIC and LMPL criteria. Concludingly, we opt to work with
M1,M3 and M5.
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Table 1: Comparison of ĉvDCL(t) at 6 equidistant timepoints,
DIC and LPML for fitted joint models

M1 M2 M3 M4 M5

t = 0.0 -182.23 -221.67 -191.26 -363.65 -137.63
t = 0.5 -143.92 -170.10 -148.55 -276.11 -111.18
t = 1.0 -100.68 -122.28 -104.62 -172.78 -83.65
t = 1.5 -66.90 -83.03 -69.02 -103.13 -58.59
t = 2.0 -29.45 -37.28 -30.15 -40.14 -27.67
t = 2.5 -6.42 -7.82 -6.22 -8.59 -6.11

DIC 5000.95 5044.49 5002.106 5028.392 5004.374
LPML -2666.02 -2678.45 -2644.88 -2668.53 -2657.31

M5 has the lowest ĉvDCL(t) at all timepoints.

Parameter estimates of M1 are depicted in Table 2. The posterior means of the parame-
ters as well as 95% HPD-regions are shown. The association between the biomarker level
α1 and the log hazard function is 0.73. This implies that a unit change in biomarker level
will, on average, result in a 2-fold (exp(0.73)) increase in hazard rate, thereby reduc-
ing the chances of survival. This is in line with earlier observations: high NT-proBNP
levels for the patients who suffered an event. We observe that gender has no influence
on the biomarker levels, as zero is contained in its 95% HPD-region. Every extra year
aged from 67 increases the NT-proBNP by 0.05 on average. For the influence on the
hazard we obtain: ∂ λi(t)

∂Agei
= γAgei +α×βAgei . We assess the latter by the joint posterior

distribution, giving a mean estimate of 0.067 with a 95% HPD region of (0.038, 0.011).

Table 2: Posterior means and 95% HPD-regions of joint model M1

Survival Longitudinal

Variable Mean 2.5% 97.5% Mean 2.5% 97.5%

Female -0.145 -0.40 0.75 Intercept 4.71 4.56 4.86
Age 0.03 -0.01 0.07 Bn(t, 1) 0.05 -0.12 0.21
FemAge -0.03 -0.07 -0.01 Bn(t, 2) 0.25 0.11 0.39
α1 0.73 0.53 0.93 Female -0.07 -0.39 0.26

Age 0.05 0.03 0.08
FemAge 0.02 -0.04 0.04
σ 0.36 0.34 0.37

As an illustration, we will further investigate the model outcomes for patient 23. We
have chosen this patient, as the biomarker trajectory of patient 23 shows an interesting
pattern. Patient 23 is a 48 year-old male that entered the screening process due to
angina pectoris (chest pain). At the first screenings, the patient showed decreasing
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levels of NT-proBNP. Later, NT-proBNP levels rise, indicating the deterioration of the
patient’s health. Based upon M1, we show updated conditional survival probabilities in
Figure 4. As the biomarker level decreases during the first 6 measurements, the curve of
the mean conditional survival probabilities becomes more horizontal. From measurement
7 until 10 the level of NT-proBNP in the blood increases, resulting in a steep decrease of
survival probability. Unfortunately for this patient, his chances of remaining event-free
until 2.5 years after the start of the follow-up dropped from 90% at 1.1 years, to 50% at
the last measurement within a year time.
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Figure 4: Dynamic conditional survival probabilities of patient 23. The longitudinal
trajectory is displayed on the left. On the right, the mean survival is plotted in green.
The dashed lines are 95% empirical confidence regions.

We will now continue to plan next measurements for patient 23. We compare the schedul-
ing of the upcoming visits based on the model with the highest cvDCL and the Bayesian
averaged counterpart. The cvDCL’s and the posterior model probabilities can be found
in Table 3. For every visit, M5 is the best model according to the cvDCL. The dif-
ferences between the cvDCL(t)’s are rather small, certainly if we compare this to the
non-selected models M2 and M4 in Table 1. The posterior model probabilities tell an-
other story. Here, we observe that M3 most often has the highest posterior probability,
although we observe shocks at 6 and 9. This is caused by the unexpected measurements
at these times: NT-proBNP levels suddenly rose steeply. This shift indicates that for
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this patient, the trajectory can perhaps not be modeled by one model alone. As a com-
parison, we have shown the results for a steady longitudinal trajectory of patient 19 in
Appendix B.1. There, we observe no sudden shocks in model probabilities, indicating
that one sole model in that case is sufficient to plan new measurements. The difference
in choice of the two methods is partly based on the inclusion of longitudinal history of
patient 23 in the BMA-procedure. Furthermore, the cvDCL accounts mainly for fit of
the survival path, whereas BMA also assesses the modeling accuracy of the longitudinal
trajectory.

Table 3: For every visit of patient 23, ĉvDCL(t) on the
left-hand side of the panel. The right-hand side depicts
the posterior model probabilities.

ĉvDCL(t) Probability
M1 M3 M5 M1 M3 M5

t = 0.00 -182.23 -191.26 -137.63 0.13 0.48 0.39
t = 0.18 -174.70 -182.30 -130.93 0.12 0.55 0.33
t = 0.41 -148.11 -153.36 -113.44 0.32 0.59 0.09
t = 0.58 -135.22 -139.37 -105.52 0.00 0.93 0.07
t = 0.79 -115.96 -119.00 -92.99 0.00 0.97 0.03
t = 1.14 -91.81 -94.59 -77.13 0.00 0.97 0.03
t = 1.42 -69.00 -71.25 -59.64 0.02 0.06 0.92
t = 1.66 -51.61 -52.81 -45.66 0.16 0.65 0.19
t = 1.89 -37.37 -38.44 -34.35 0.90 0.03 0.07
t = 2.15 -15.11 -15.40 -14.96 0.58 0.16 0.26

For every visit, M5 has the lowest ĉvDCL(t).

We now compare the scheduling results based upon the best-performing model in
terms of cvDCL, model M5, to a scheduling based upon the posterior model probabilities.
We first simulate survival chances π23(u | t) of patient 23. The doctor wants to see the
patient yearly and hence the largest time frame allowed for the next measurement, called
tmax, is equal to 1 year. As Rizopoulos et al. (2016), we do not want chances of survival
dropping below 80%, and hence we set κ = 0.8. Within the assessed time frame, we
compute EKL(u | t) for 5 different u. The timepoint u with the highest EKL(u | t) is
then selected as the new measurement time.

The outcomes are depicted in Table 4. For the first six measurements, both models
roughly predict the same survival probabilities and the interval for the next possible
meeting is equal to the largest interval the physician is willing to wait. We observe
similar selected times for the upcoming measurements, although the times selected by
the model-averaged EKL(u | t) seems to be more conservative. In particular for the last
3 visits, where the deterioration of patient 23 is also indicated by the shortening of the
scheduling interval.
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Table 4: On the left, we find the values of EKL(u | t) and π(u | t) for patient 23, based
on M5. On the right hand side, we find the model-averaged EKL(u | t) and π(u | t) of
Section 5.1. The upper limit of the planning interval is tmax. The optimal next screening
time uopt is denoted by ∗.

cvDCL(t) Bayesian Model Average
t tmax times EKL(u | t) πj(u | t) * tmax times EKL(u | t) πj(u | t) *

0 1 0.20 -0.07 0.96 0.96 0.19 0.23 0.97
0.40 1.01 0.92 ∗ 0.38 0.07 0.93
0.60 0.43 0.88 0.57 0.29 0.89 ∗

0.80 0.65 0.83 0.77 0.24 0.85
1.00 0.13 0.79 0.96 0.21 0.81

0.18 1 0.38 0.34 0.97 1 0.38 0.08 0.97
0.58 0.18 0.94 0.58 -0.10 0.92
0.78 0.30 0.90 0.78 0.29 0.88 ∗

0.98 0.35 0.88 ∗ 0.98 0.14 0.84
1.18 0.21 0.85 1.18 0.24 0.80

0.41 1 0.61 0.18 0.98 1 0.61 0.38 0.97
0.81 0.35 0.97 0.81 0.37 0.92
1.01 0.33 0.96 1.01 0.40 0.88 ∗

1.21 0.17 0.95 1.21 0.31 0.84
1.41 0.35 0.94 ∗ 1.41 0.18 0.80

0.58 1 0.78 0.28 0.98 1 0.78 0.41 0.97
0.98 0.29 0.97 0.98 0.31 0.92
1.18 0.48 0.96 ∗ 1.18 0.44 0.88 ∗

1.38 0.28 0.95 1.38 0.20 0.84
1.58 -0.08 0.94 1.58 0.25 0.80

0.79 1 0.99 0.42 0.99 1 0.99 0.38 0.97
1.19 0.23 0.98 1.19 0.27 0.92
1.39 0.35 0.97 1.39 0.26 0.88
1.59 0.44 0.96 ∗ 1.59 0.45 0.84 ∗

1.79 0.42 0.95 1.79 0.44 0.80

1.14 1 1.34 0.36 0.99 1 1.34 0.30 0.97
1.54 0.15 0.98 1.54 0.59 0.92
1.74 0.39 0.98 1.74 0.60 0.88 ∗

1.94 0.03 0.96 1.94 0.27 0.84
2.14 0.55 0.95 ∗ 2.14 0.36 0.80

1.42 1 1.62 0.33 0.99 1 1.62 0.31 0.97
1.82 0.52 0.97 ∗ 1.82 0.35 0.92
2.02 0.34 0.95 2.02 0.52 0.88 ∗

2.22 0.28 0.93 2.22 0.19 0.84
2.42 0.43 0.90 2.42 0.51 0.80

1.66 0.95 1.85 0.23 0.98 0.78 1.81 0.47 0.97 ∗

2.04 0.36 0.95 ∗ 1.97 0.42 0.92
2.23 0.22 0.91 2.12 0.43 0.88
2.42 0.24 0.87 2.28 0.33 0.84
2.61 0.32 0.81 2.44 0.30 0.80

1.89 0.45 1.98 0.12 0.97 0.34 1.93 0.22 0.97
2.07 0.02 0.94 1.98 0.24 0.92
2.16 0.01 0.90 2.03 0.15 0.88
2.25 0.15 0.86 ∗ 2.08 0.35 0.84 ∗

2.34 0.02 0.81 2.13 0.18 0.80

2.15 0.28 2.21 0.18 0.97 ∗ 0.13 2.18 0.18 0.97
2.26 0.14 0.93 2.20 0.06 0.92
2.32 0.13 0.89 2.23 0.15 0.88
2.37 0.11 0.85 2.26 0.23 0.84 ∗

2.43 0.01 0.81 2.28 0.22 0.80

To compare the two methods, we need to revert to the theoretical framework. The
cvDCL is based on posterior predictive power, thereby focusing mainly on the time-
to-event outcome. Robustness is ensured by the cross-validatory aspect. A possible



6 RESULTS 25

drawback is the fact that the model choice is time - yet not patient-specific. For the
Bayesian model averaging, we take the full model fit as a measure, and need not restrict
ourselves to the selection of one sole model. As one of the steps in the sampling scheme
of Section 4.3 is a realization from the mixed model, the use of the whole model fit
is intuitive. A negative aspect is that the posterior model odds are very subjective
to perturbation, i.e. a slight altering of the data for patient j causes a large shift in
posterior model probabilities. Arguably, the method of choice is a matter of taste. For
this particular patient 23, we see the benefits of using multiple models as there does
not seem to be one model that accurately captures his trajectory. Computationally, the
cvDCL-based selection is preferred to the Bayesian model averaging. For patient 23 with
10 visits, the computation time for the first method was approximately 25.3 minutes,
where the BMA took 58.9 minutes on a computer with 16GB RAM and Intel Core i7
processor.

6.2 Illustration of two upcoming measurements

We now shift our focus to the simultaneous planning of 2 measurements, an illustration
of the extension of Section 5.2. We assess a grid of 5 possible timepoints for the first
measurement and 5 for the second measurement, thereby considering 25 combinations
of treatment times. Again, we do not want the patient’s estimated survival probabilities
to drop below 80% before the last treatment, hence π(s2|t) > κ = 0.80. The combina-
tion of highest estimated EKL(s1, s2 | t) under the latter restriction is then scheduled.
Computations are performed under M5. The results are depicted in Table 5. The
two measurements are scheduled at times (0.38, 0.77). This means that, given the first
biomarker measurement, we expect to gain the most insight in the trajectory at these
given timepoints. In real-life, already 4 measurements had taken place at timepoint 0.79.

Table 5: EKL(s1, s2 | t) of two measurements
for patient 23 at his first visit.

t = 0 s2 0.57 0.67 0.77 0.86 0.96

s1

0.10 0.06 0.09 0.08 -0.12 -0.13
0.19 0.13 0.13 0.15 -0.02 0.32
0.29 -0.04 0.41 0.11 -0.07 0.01
0.38 0.54 0.33 0.51 0.64 0.21
0.48 -0.01 0.34 0.73 0.37 0.28

The rows of the tabular correspond to the
first measurement time s1, the columns to the
second measurement time s2. The highest
EKL(s1, s2 | t) is depicted in bold.

To compare our results, we now look at a visit near the end of our follow-up for patient 23
in Table 6. At the seventh visit, NT-proBNP level has quickly started to rise, indicative
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of health worsening. The EKL appears to show a certain pattern across the screening
times. We observe that the left upper triangular part of the EKL-matrix roughly has
higher values than the lower triangle: the model favors two screenings at short notice.
Of course, investigating 25 different screening time combinations in less than half a year
seems futile. The results, however, seem to draw similar conclusions as the planning of
only one screening for this timepoint: the patient should be screened early.

Table 6: EKL(s1, s2 | t) of two measurements for
patient 23 at his seventh visit.

t=1.66 s2 2.23 2.33 2.42 2.52 2.61

s1

1.75 0.07 0.05 0.29 -0.05 -0.45
1.85 0.17 0.31 0.33 0.33 0.13
2.94 0.10 0.27 0.30 -0.20 0.05
2.04 0.10 0.15 -0.17 -0.03 -0.19
2.13 -0.26 -0.19 -0.10 -0.25 -0.50

The rows of the tabular correspond to the first mea-
surement time s1, the columns to the second mea-
surement time s2. The highest EKL(s1, s2 | t) is
depicted in bold.

The computation time of planning of two measurements, for all visits for patient 23,
with a 5 × 5 grid was 33.1 minutes. The remaining results can be found in Table 8 of
Appendix B.2 . Not all visits display a similar structure as the seventh visit, where early
screening was preferred. On the contrary, the exact optimal scheduling times are vague.
This is partly perhaps due to over-planning: 25 possible measurements is a lot in a short
time period of one year. In theory, we could also combine the Bayesian framework in
a multiple screening setting. However, computing time will rise exponentially as the
number of grid-points and models increases.

7 Discussion

We made an attempt to provide optimized personalized screening intervals. Optimality,
however, is not uniquely defined. In this thesis, we considered a model to be optimal if
it maximized the utility function (4.5), based on an information criterion. The choice of
utility function therefore determines the best performing model - subject to the utility
of choice. Different concepts of optimality, or utility functions to be optimized, lead
to different optimal models. This raises a more philosophical question: how should
optimality in screening procedures be defined?

The main purpose of screenings is to reduce morbidity and mortality, whilst bearing
in mind the patient’s burden and health care cost (Parmigiani, 1993). This requires a
careful balance between both sides - all parties want to reassure early disease detection,
but have different views of burden. Breast cancer screenings are not patient-friendly,
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but patients do not want to be at great risk of breast cancer either. Moreover, there
ought to be an incentive to perform screenings from a medical point of view, expressed
in adjusted-quality of life years and treatment cost. One is most sure about a biomarker
trajectory when measured as often as possible, but the cost of these measurements
is simply too high - let alone the patient’s cost to travel to the hospital every day.
Furthermore, chances of detection need to be reasonably high: breast cancer screenings
are only performed for 50+-year old women. Disease detection for women younger than
50 years does not outweigh the cost and unpleasantness of screenings (Lee and Zelen,
1998). A cost-effectiveness study weighs all advantages and disadvantages mentioned
above. For an exemplary study in the field of screening for cervical cancer, see Rosmalen
et al. (2012).

Ideally, we would optimize a criterion that takes all of the above into account - a
cost-effective measure. Our criterion takes a reasonable shot and could be adjusted to
take into account screening cost - that is simply penalizing for the number of screenings.
The number of screenings itself should, however, also be subject to optimization. To
perfection, we would optimize over the screening times and the number of screenings
dynamically. Dynamically, since we would use all planned measurements over time and
not jointly plan multiple measurements. When working with Markov-models, Parmi-
giani (1993) has shown that, via Bellman equations, this can lead to analytically solvable
problems. Unfortunately, the transitions probabilities and states do not incorporate the
unique feature of the joint modeling framework: jointly, personalized modeling longitu-
dinal and survival outcomes. To derive a stochastic dynamical optimization routine in
the field of joint models and personalized screening would be ideal, but is beyond the
scope of this thesis.

8 Conclusion

In this thesis, we have taken a closer look at the biomarker NT-proBNP for heart failure
patients. By jointly modeling both the trajectory of NT-proBNP levels in blood plasma
and the effect of this trajectory on the patient’s health status, we attempted to opti-
mally plan a new measurement. We found that higher levels of NT-proBNP resulted
in a risk-increase of cardiac events. The framework of personalized screening intervals
of Rizopoulos et al. (2016) was the starting point to define optimality and thereupon
investigate future screening times. We have focused on two limitations of their frame-
work: (i) the model selection procedure that was based on one model solely and (ii) the
planning of only one measurement ahead.

For the former limitation, we assessed a Bayesian model averaging framework to
allow for combinations of models to specify the biomarker trajectory. Especially for
patients with a non-standard evolution of biomarker levels, more flexibility arises to
model the progression of NT-proBNP. In a real-life case for such a patient, we have seen
the advantages of Bayesian model averaging in the joint modeling framework. A possible
drawback for this method is the computational burden.

For the latter limitation, we extended the existing screening planning procedure for
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one screening to a setting with possible S screenings. We opted to simultaneously plan
these measurements, leading to S-step ahead screenings. We illustrated this specification
with an exemplary patient, where we planned two upcoming visits. The joint planning
of multiple screenings yields scheduling advantages for both patient and physician. A
disadvantage is that this method is not always able to discriminate between measurement
combinations, i.e. there does not always seem to be a clear preference regarding the exact
optimal screening times.

In both cases, we worked with optimality as defined by Rizopoulos et al. (2016). As
discussed in the previous section, it is in this direction that we feel lies the most room
for future research. For example, by combining this thesis, Rizopoulos et al. (2016)
and Parmigiani (1993, 1998, 2002). To us, this would result in adapting the existing
framework for optimality in cost-effective ways and thereafter planning new screenings
in a dynamical manner.

In the end, statisticians are no physicians - but physicians are no statisticians either.
The field of personalized medicine requires a combination of both forms of expertise. As
more and more patient information is registered and stored, statisticians can help physi-
cians with data-analysis. This is not only helpful within hospitals, but nationwide or
even internationally. We hope that this thesis is an example of an application of statis-
tics/econometrics in the field of medicine. Of course, whether statistician or physician,
the final goal is always the improvement of life quality for patients.
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A Appendix I

A.1 Predicted survival probabilities

Estimates of πj(u | t) are based upon the posterior distribution:

Pr[T ∗j > u | T ∗j > t,Yj(t),Dn]

=

∫
θ

Pr[T ∗j > u | T ∗j > t,Yj(t),θ]p(θ | Dn)dθ (A.1)

where the first part of the integral can be worked out as

Pr[T ∗j > u | T ∗j > t,Yj(t),Dn]

=

∫
uj

Pr[T ∗j > u | T ∗j > t,uj ,θ]p(uj | T ∗j > t,Yj(t),θ)dui

=

∫
uj

Sj(u | Mj(u),uj ,θ)

Sj(t | Mj(t),uj ,θ)
p(uj | T ∗j > t,Yj(t),θ)duj . (A.2)

Now we can base our estimates on a Monte Carlo scheme, where we can draw from
p(θ | Dn) as given in (3.20). The Monte Carlo scheme to estimate πj(u | t) is

1. Draw θ(l) ∼ p(θ | Dn).

2. Draw u
(l)
j ∼ p(uj | T ∗j > t,Yj(t),θ(l)).

3. Compute π̂
(l)
j (u | t) =

Sj(u|Mj(u),u
(l)
j ,θ(l))

Sj(t|Mj(t),u
(l)
j ,θ(l))

.

4. Repeat steps 1-3 L times for each subject j.

A.2 Scheduling S screenings

We extend the planning of 2 screenings to a setting of S = s1, . . . , sS screening times.
This is a straightforward modification of Section 5.2. Let, without loss of generality,
s1 < s2 < . . . < sS and let Sq, q ∈ 1, . . . , S = {s1, . . . sq} and S−q = {sq+1, sq+2, . . . , sS}.
We aim to plain S screenings, so we want our patient to live at least up to time sS . Our
utility function becomes:

U(S | t) = E

{
λ1 log

p(T ∗j | T ∗j > sS , {Yj(t),yj(S)},Dn)

p(T ∗j | T ∗j > ss,Yj(t),Dn)
− λ2I(T ∗j > ss)

}
, (A.3)

where in (A.3) yj(S) = {∪Ss=1yj(ss)}. Again, this is the information with all new
measurements S, compared to no measurement planned. Similar to the planning of two
measurements, the patient could not survive up to sS , i.e T ∗j < sq, q ∈ S. Let, in this
case, inspect the event time T ∗j . We adjust EKL(S | t), as when T ∗j < s1 no screening
has occurred and we set the information ratio to 0. When sq < T ∗j < sq+1q ∈ S, we
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set EKL(S | t) = EKL(Sq | t). In doing so, we account for the fact that although
the patient did not live up to sS , we still have information based on the measurements
s1, . . . , sq. Therefore, we do not have zero information gain, which is the case when the
patient does not live until the planning of the first measurement.

For the sampling scheme, we will have to adjust the joint distribution of the screening
outcomes:

p(yj(S) | T ∗j > t,Yj(t),Dn) =

∫
θ
p(yj(S) | T ∗j > t,Yj(t),θ)p(θ | Dn)dθ (A.4)

And the joint conditional distribution p(yj(S) | T ∗j > t,Yj(t),θ) can be written as

p(yj(S) | T ∗j > t,Yj(t),θ) =∫
uj

p(yj(S) | uj ,θ)p(uj | T ∗j > t,Yj(t),θ)duj =

∫
uj

[
S∏
s=1

p(yj(ss) | uj ,θ)

]
︸ ︷︷ ︸

Conditional independence (3.2)

p(uj | T ∗j > t,Yj(t),θ)duj . (A.5)

The above is an immediate result of (5.12). The sampling scheme now becomes:

1. Simulate θ̃
s
, s = 1, . . . , S, θ̇ and {θ(l), l = 1, . . . , L} ∼ p(θ|Dn)

2. Draw ũj
s ∼ p(uj | T ∗j > t,Yj(t), θ̃s) for every measurement s.

3. Draw ỹj(ss) ∼ p(yj(ss) | ũjs, θ̃
s
)∀s ∈ S

4. Simulate u̇j from p(uj | T ∗j > t, {Yj(t), ỹj(S), θ̇) and {u(l)
j+, l = 1, . . . , L} from

p(uj | T ∗j > u, {Yj(t), ỹj(S)}, ˙
θ(l)) and {u(l)

j−, l = 1, . . . , L} from p(uj | T ∗j >

u,Yj(t), ˙
θ(l))

5. Simulate Ṫ ∗j from p(T ∗j | T ∗j > t, u̇i, θ̇)

6. When Ṫ ∗j > sS we obtain estimates from EKL(m)(S | t) = log

{
1

L

L∑
l=1

A(l)
n

A(l)
d

/
B(l)
n

B(l)
d

}
A(l)
n = λj(Ṫ

∗
j | Mj(Ṫ

∗
j ),u

(l)
j+,θ

(l))S(Ṫ ∗j | Mj ,u
(l)
j+,θ

(l)),

A(l)
d = S(u | Mj ,u

(l)
j+,θ

(l)).

B(l)
n = λj(Ṫ

∗
j | Mj(Ṫ

∗
j ),u

(l)
j−,θ

(l))S(Ṫ ∗j | Mj ,u
(l)
j−,θ

(l)),

B(l)
d = S(u | Mj ,u

(l)
j−,θ

(l)).

When Ṫ ∗j < s1, EKL(m)(S | t) = 0.

When sq < Ṫ ∗j < sq+1, EKL(m)(S | t) = EKL(q)(Sq | t), see above.

7. Repeat the above m = 1, . . . ,M times: ÊKL(S | t) =
1

M

M∑
m=1

EKL(m)(S | t).
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B Appendix II

B.1 Results of patient 19

The fitted longitudinal trajectory of the biomarker and the actual measurements of
patient 19 are depicted in Figure 5. Similar to the results of patient 23, we have also
displayed the conditional survival probabilities.
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Figure 5: Dynamic conditional survival probabilities of patient 19. The longitudinal trajectory
is displayed on the left. On the right, the mean survival is plotted in green. The dashed lines
are 95% empirical confidence regions.

The posterior model probabilities are depicted in Table 7. At every visit, M3 has the
highest posterior probability. This is explained by the relatively stable trajectory of log
NT-proBNP as depicted in Figure 5.

Table 7: Posterior model probabilities of patient 19, for every visit.

M1 M3 M5

t = 0.00 0.11 0.62 0.28
t = 0.18 0.01 0.60 0.39
t = 0.41 0.09 0.59 0.32
t = 0.77 0.08 0.59 0.33
t = 1.26 0.04 0.74 0.22
t = 1.51 0.09 0.70 0.21
t = 1.79 0.08 0.69 0.24
t = 2.00 0.08 0.75 0.17
t = 2.34 0.14 0.72 0.14
t = 2.59 0.00 0.82 0.18
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B.2 EKL(s1, s2 | t) for patient 23

Table 8: EKL(s1, s2 | t) for patient 23, computed under M5. All but visit 1 and 7 are
displayed. At every visit, we considered 25 (5 × 5) screening time combinations, under
the restriction that π23(s1, s2) > 0.8. The rows of the tabular correspond to the first
measurement time s1, the columns to the second measurement time s2. The upcoming
scheduled screening is depicted in bold.

t=0.18 s2 0.78 0.88 0.98 1.08 1.18 t=0.41 s2 1.01 1.11 1.21 1.31 1.41

s1 s1

0.28 0.14 0.49 0.72 0.15 0.32 0.51 0.28 0.37 -0.13 0.31 -0.57
0.38 0.49 0.37 0.23 0.62 0.13 0.61 0.33 -0.10 -0.38 -0.11 0.06
0.48 0.21 0.34 0.44 0.21 0.12 0.71 -0.07 0.54 0.19 0.00 0.53
0.58 0.40 0.14 -0.03 0.22 0.13 0.81 0.20 0.18 0.25 0.23 -0.02
0.68 0.61 0.30 0.34 0.01 -0.03 0.91 0.33 0.51 -0.07 0.13 0.66

t=0.58 s2 1.18 1.28 1.38 1.48 .158 t=0.79 s2 1.39 1.49 1.59 1.69 1.79

s1 s1

0.68 -0.32 -0.13 0.08 -0.43 -0.14 0.89 -0.21 -0.52 -0.53 -0.11 -0.25
0.78 -0.01 -0.02 0.05 0.02 0.16 0.99 -0.23 -0.41 -0.21 -0.69 -0.49
0.88 0.12 0.36 0.45 -0.26 -0.06 1.09 -0.41 0.04 -0.06 0.30 -0.53
0.98 0.30 0.15 -0.50 0.49 0.60 1.19 -0.09 -0.09 0.25 -0.18 -0.60
1.08 -0.00 -0.29 0.15 0.57 -0.34 1.29 0.10 -0.12 -1.01 0.42 -0.42

t=1.14 s2 1.74 1.84 1.94 2.04 2.14 t=1.42 s2 2.23 2.33 2.42 2.52 1.61

s1 s1

1.24 0.36 0.12 -0.29 -0.48 -0.66 1.75 -0.17 -0.15 -0.28 -0.01 -0.08
1.34 -0.23 -0.39 -0.38 -0.60 -0.33 1.85 0.22 -0.01 0.06 -0.35 -0.27
1.44 -0.54 -0.09 -0.59 -0.35 0.26 1.94 -0.16 -0.20 0.16 -0.12 -0.18
1.54 -0.78 -0.23 -0.51 -0.38 -0.68 2.04 -0.86 -0.10 -0.06 -0.13 0.04
1.64 -0.20 -0.03 -0.58 -0.64 -0.24 2.13 0.05 0.26 -0.11 -0.37 0.14

t=1.89 s2 2.16 2.21 2.25 2.30 2.34 t=2.15 s2 2.30 2.33 2.35 2.38 2.40

s1 s1

1.93 -0.00 0.05 0.17 0.07 -0.50 2.18 0.00 -0.06 -0.08 -0.08 0.22
1.98 -0.02 -0.12 -0.34 -0.21 -0.15 2.20 0.36 0.31 0.01 0.08 0.04
2.02 -0.17 -0.23 -0.11 -0.03 0.11 2.23 0.03 0.13 0.10 0.28 -0.02
2.07 -0.43 -0.27 0.14 -0.09 -0.16 2.25 0.31 0.21 0.04 -0.02 0.25
2.12 -0.07 0.08 0.29 0.05 0.13 2.28 0.10 0.26 -0.03 0.14 0.01


