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Abstract

In this paper we propose two time series models for inflation modelling. In both
models the previous observation plays an important role for the dynamic structure.
In the first model we have time-varying autoregressive parameters, which are de-
pendent on the previous observation. The second model is a mixture model, where
the regime probabilities are dependent on the previous observation. We compare
the forecasts with a random walk model and a time-invariant autoregressive spec-
ification. Both models provide solid density forecasts. We find that combining
the two models with an equal-weighing scheme, significantly improves the forecast
quality.
Keywords: inflation, forecasting, Bayesian, time series, mixture modelling, time-

varying parameters.

1 Introduction

Maintaining price stability is considered the best monetary policy a central bank can do
to support long-term growth of the economy (Fischer et al., 1996). In order to keep the
prices stable, the federal reserve system (FED) sets an explicit target inflation rate for the
medium term1. In order to influence the inflation rate, the central bank will raise/lower
the interest rate. General belief is that a lower interest rate will lead to an acceleration of
the economy and hence an increase in inflation (Alvarez et al., 2001). Likewise, a higher
interest rate will cool the economy down and lower the inflation. Being able to model
and more importantly forecast inflation is of key importance to the central bank, so that
they can adapt their interest rate policy. Inflation is also an important variable for other
economic agents, such as pension funds and policy makers. A higher inflation leads to
a larger cost of borrowing, a falling real income and more uncertainty in business con-
fidence, since there is more uncertainty about prices and costs. Several contracts, such
as wages and pension, have agreements on price compensation. A higher inflation leads
to a higher compensation and hence it is important for the issuers of these contracts to

1See http://www.federalreserve.gov/faqs/economy_14400.htm. Accessed 18 July 2016.
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have good inflation forecasts.

Since inflation plays an important role for decision making of both central bankers
and other agents in the economy, being able to make a good inflation forecast is of great
importance. Furthermore, in academic literature, predicting inflation is seen as a manner
to get some grip on the characteristics of inflation dynamics.

The most obvious model to forecast inflation is an autoregressive (AR) model as de-
scribed in Cox et al. (1981). This is a model where the dependent variable depends
linearly on its own previous values and some residual term. Speed (1997) has used this
model to describe inflation. The biggest problem of this model in practice is that it
requires the parameters of the model to be constant over time, both the regression coef-
ficients and the variance of the residual.

However, recent research suggests that the properties of inflation time series have
changed over time, both in the mean and persistence of variance. The time-varying
mean and persistence of inflation have been shown by Cogley and Sargent (2005), Be-
nati (2004), O’Reilly and Whelan (2005) and Levin and Piger (2004) for respectively
the United States, the United Kingdom, the EURO-area and the twelve main OECD
economies. Sensier and Van Dijk (2004) found that for over 80% of 214 macroeconomic
time series for the U.S. in the time period 1959-1999 most of the observed reduction in
volatility is due to breaks in conditional volatility rather than conditional means. Fur-
thermore, Sims and Zha (2006) assert that the time-variation of the dynamics in U.S.
macroeconomic time series are entirely due to breaks in variance shocks. Hence, a good
extension to improve the basic AR model would be to add structural breaks to the model
to incorporate the changing properties of inflation time series. Bai and Perron (1998)
presented tests for the presence of multiple structural changes and for the determination
of the number of changes present.

For inflation data these structural break models have been estimated by several au-
thors, including Bai and Perron (2003), Levin and Piger (2004) and Culver and Papell
(1997). Allowing for a structural break is great for describing the data ex post, yet the
main goal is to be able to forecast the inflation. For this purpose these models are not
so useful, since one does not know when the next structural break will happen and hence
forecasting inflation will fail.

Hamilton (1989) suggested that a possible way to incorporate the switching to an-
other regime is by using a Markov-switching model. This allows one to have different
regimes for different behaviour of the inflation rate over time. This has been done by
Kim (1993), Simon (1996) and Bidarkota (2001) on inflation data. This way of modelling
inflation is good for describing data, yet the big downside is that the switching is an
independent random process. In these models the probability of a structural break is
constant, whereas research suggests that both the mean and variance are changing over
time, see, for example, Cogley and Sargent (2005), Benati (2004), O’Reilly and Whelan
(2005) and Levin and Piger (2004). This means that there is little information for predict-
ing in which regime one will be next period and this adds a lot of uncertainty to the model.
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To remove this independent random process in the Markov-switching model, Tong and
Lim (1980) proposed the threshold autoregressive (TAR) model. This model changes the
regimes not randomly, but the regime change is based on the past value of a certain
variable. Phiri (2013) has used this model type to describe the inflation in Zambia and
Koirala (2012) applied it to the inflation series of Nepal. By adding behaviour to the
regime switching, there is more certainty about the point forecasts made. One possible
downside is that there exists discontinuity around the threshold what makes forecasts
close to the threshold less certain.

Instead of this abrupt change, it is possible to propose a smoother transition function
to remove this discontinuity around the threshold. This is the so called smooth transi-
tion autoregressive (STAR) model. The two most often used transition functions are the
second order logistic function (LSTAR) and exponential function (ESTAR). This type of
modelling was first suggested by Chan and Tong (1986). Arango and Gonzalez (2001)
have used this model to describe the inflation in Colombia for the past decade. Another
way to allow for a more flexible model is by introducing time-varying parameters. This
is often done with a random walk for the parameters. Nadal-De Simone (2000) has made
use of this to forecast inflation in Chile.

In this paper we propose two non-linear time series models for predicting inflation.
In the first model we propose time-varying parameters in a similar fashion to Salimans
(2012), yet here we make the parameters dependent on the previous observation of the de-
pendent variable instead of some independent variable. This way of specifying our model
allows us to avoid the problem of forecasting in which regime we are and time-varying
parameters. The second model is a mixture model, where the mixture components are
dependent on the previous observation. This makes it easier to forecast in which regime
we are, so we have the advantage of having multiple regimes without the disadvantage
of having a lot of uncertainty about the forecasting the regime. Both models make good
point and density forecasts for inflation. We find that a linear combination of both mod-
els makes excellent point and density forecasts.

The rest of this paper is organized as follows. The proposed models are discussed in
Section 2, in Section 3 we will discuss the data, the chosen priors and the posterior results.
In Section 4 we use our proposed models to forecast inflation and compare these forecasts
with the forecasts of often used models in literature. Finally, Section 5 concludes.

2 Model specification

In Section 2.1, we will start by describing a time series model for inflation where the
autoregressive parameters evolve through time based on the level of the previous obser-
vation. Next, in Section 2.2 we will discuss an autoregressive mixture model where the
observations are assumed to follow a finite mixture of K autoregressive models. The
current mixture proportions are based on the level of the previous observation.
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2.1 AR model based on previous observation

In economies with an unstable banking policy, we often observe inflation levels that keep
on rising. To correct for this most models include some AR terms. Yet, often the be-
haviour of inflation levels seems to be non-linear. We correct for this non-linear behaviour
by proposing an AR model where the parameters are influenced by the previous obser-
vation.

To incorporate this into a model we will start first with a standard AR model. This
model has the observation equation

yt = α + β1,tyt−1 + . . .+ βp,tyt−p + εt with εt ∼ N (0, σ2) , (1)

where yt is the dependent variable at time t, for t = 1, . . . , T , α is the intercept,
{β1,t, . . . , βp,t} is a collection of p autoregressive coefficients (which can vary over time)
and εt is the error term.

Let
Bt = (α,B1,t, . . . , Bp,t) ,

Yt−1 = (y0, y1, . . . , yt−1) ,

and
Xt = (1, yt−1, . . . , yt−p) ,

then we can write the model as
yt = XtBt + εt .

We allow the parameter Bt to change based on the level of the previous observation
yt−1 in a non-linear way. We assume that the coefficients of Bt follow a normal distri-
bution where the mean and variance are both dependent on yt−1, with the assumption
that yt > 0 for all t. So we expect that if we had a large value for the observation at the
previous moment in time, the parameter value in the next period will be larger and more
volatile. With the larger parameter value we hope to capture the observed periods with
high inflation. Furthermore, in these high inflation periods we see that the inflation is
more volatile than normal, so we hope to capture this by allowing the parameter to be
more volatile. This leads to the transition equation

Bt ∼ N (Cyt−1 + β0, Dy
2
t−1) , (2)

where C and D are parameters that need to be estimated, with D ≥ 0. We can clearly
see that the mean and variance are heavily influenced by the previous observation of yt−1.
The initial state B0 can be given a fixed value or assumed to have a normal distribution
with known mean and variance. Another possibility for B0 is to condition on the first
observation and let t run from 2 to T . Since we are dealing with AR models, it is quite
likely that this observation would only be used as a independent variable anyway. We
call the model in (1) and (2) the PREVOBS-AR model.

Now we have proposed a specification where the behaviour of the inflation is non-
linear like we see in real-time data. One nice property of this specification is that we can
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estimate a non-linear model in a linear fashion. With this model, we hope to be able to
describe clusters of inflation. Usually inflation is stable, however there are time periods
where the inflation is large for a while. In such a time period, a normal AR model would
in general underestimate the inflation in the next period in such a cluster (as it should
slowly return to the average inflation), whereas our model should not have this issue since
we inflate our parameters. Another often used method in the literature is to propose a
random walk for βt. This is good for describing data, since a part of the variance of σ will
be captured through the βt. Yet when one wants to make forecasts, our model provides
more certainty about the value of βt through the dynamic structure in comparison with
this random walk method.

For inference we opt for the Bayesian approach in the next section.

2.1.1 Parameter Estimation

Posterior results will be obtained from the Gibbs sampler of Geman and Geman (1984).
For the Gibbs sampler we will first need the complete data likelihood function. First
we will derive the likelihood function for the observation equation and the transition
equation. The likelihood for the observation equation is

f(Y |Bt, Xtσ
2) ∝ (

1

σ2
)T/2

T∏
t=1

exp[− 1

2σ2
(yt −XtBt)

′(yt −XtBt)] (3)

and for the transition equation

f(Bt|C,D, yt) ∝
T∏
t=1

(
1

|Dy2t−1|
)1/2exp[−1

2
(Bt − Cyt−1)′D−1y−2t−1(Bt − Cyt−1)] . (4)

Now if we adapt standard priors for the remaining parameters: 1/σ2 ∼ Ga(α0/2, δ0/2),
C ∼ N (0, 1

c0
I) and D−1 ∼Wp(ν0, S0) then the joint posterior distribution is given by

π(Bt, C,D, σ
2|y,X) ∝ (

1

σ2
)T/2

T∏
t=1

exp[− 1

2σ2
(yt −XtBt)

′(yt −XtBt)]

×
T∏
t=1

(
1

|Dy2t−1|
)1/2exp[−1

2
(Bt − Cyt−1)′D−1y−2t−1(Bt − Cyt−1)]

× (
1

σ2
)α0/2−1exp[− δ0

2σ2
]

1

|D|(ν0−K−1)/2
exp[−1

2
tr(S−10 D−1)]

× 1

| 1
c0
I|

exp[−1

2
C ′c0IC] .

(5)
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This implies the following full conditional posterior distributions for the model pa-
rameters, which closely resemble to those used in Chib (2001):

Bt|yt, σ2, C,D ∝ N (β̄t, β̃t),

(1/σ2)|y,Bt ∝ Ga(α1/2, δ1/2),

C|y,Bt ∝ N (C̄, C̃),

D−1|y,Bt, C ∝Wp(ν1, S1),

(6)

where

β̃t = [(1/σ2)X ′tXt +D−1y−2t−1]
−1,

β̄t = β̃[(1/σ2)X ′tyt + C ′yt−1(D
−1y−2t−1)],

α1 = α0 + T ,

δ1 = δ0 +
T∑
t=1

(yt −XtBt)
′(yt −XtBt),

C̃ = (c0DI + Y ′t−1Yt−1)
−1,

C̄ = C̃Yt−1Bt,

ν1 = ν0 + T ,

S1 = [S−10 +
T∑
t=1

(Bt − yt−1C)(Bt − yt−1C)′]−1.

(7)

This sampling scheme is given in Figure 1.
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Initialize all parameters.

Draw Bt from
P(Bt|yt, σ2, C,D)

Draw (1/σ2) from
P((1/σ2)|y,Bt)

Draw C from P(C|y,Bt)

Draw D−1 from
P(D−1|y,Bt, C)

if g larger than M , then
collect the simulated results

Simulation output:
{Bt, (1/σ

2), C,D−1}g=g+1

Normal Distribution

Gamma Distribution

Normal Distribution

Wishart Distribution

11

Figure 1: The sampling scheme for PREVOBS-AR. The order of steps is arbitrary, all nodes
can be interchanged.

2.2 The mixture of autoregressive models

Gaussian mixture models are often used in statistics to represent the different groups
within a population, see for example Kurita et al. (1992) and Yang and Ahuja (1998).
Because the general version of this model has a lot of uncertainty in its forecasts due to
the uncertainty about in what group we are, this model is not often used for modelling
inflation. To remove the regime randomness, we will propose a special behaviour on the
mixing probabilities. We believe that the previous observation often contains information
on what kind of regime we are, hence we will use that as a proxy to determine in what
component we are. This use of a Gaussian mixture gives the possibility to have a smooth
transition between the different regions, like a STAR model.

Consider again an univariate, real valued time series yt, which is observed at equally
spaced moments in time t = 1, 2, . . . , T . We are mostly interested in the forecasting of
the next observation, so that is p(yt|Yt−1).
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We assume that there are K > 0 different possible linear models from what yt is gen-
erated, which are characterised by θk = (φk0, φk1, . . . , φkpk , σk, µk) with k = 1, 2, . . . , K.
For identifiability we use the restriction µ1 < . . . < µk. The selected model is denoted by
mt = k. We assume

yt|(Ft−1,mt = k, θk) = φk0 + φk1yt−1 + . . .+ φkpkyt−pk + εt with εt ∼ N (0, σ2
k) , (8)

where mt is selected from the different possible models k = 1, . . . , K and Ft−1 is the
information set up to time t− 1. For the chance of model k being selected, we choose a
structure that yields odds similar to a probit model, such that

p(mt = k|θ1, . . . , θn, yt−1) ∝ Φ(−|yt−1 − µk|) , (9)

where Φ(x) is the cumulative Distribution Function of the standard normal distribution.
Observe that this specification is symmetrical in µk. Now we define

αkt =
p(mt = k|θ1, . . . , θn, yt−1)
K∑
k=1

p(mt = k|θ1, . . . , θn, yt−1)
, (10)

such that the total probability sums to one (
K∑
k=1

αkt = 1). Combining (8), (9), (10) gives

the K-component mixture autoregressive model

F (yt|Ft−1) =
K∑
k=1

αktΦ(
yt − φk0 − φk1yt−1 − . . .− φkpkyt−pk

σk
) . (11)

Observe that the AR order can be different across the mixture components. Now let
p = max(p1, . . . , pk).

The model has several interesting properties. The model has a conditional distribution
that changes over time, since the conditional means of the different components depend
on the previous observations. The conditional expectation of yt is given by

E(yt|Ft−1) =
K∑
k=1

αkt(φk0 + φk1yt−1 + . . .+ φkpkyt−pk) =
K∑
k=1

αktλkt . (12)

Furthermore, the model is able to account for changing conditional variance, since it
depends on the conditional means of the components. The conditional variance of yt is
given by

var(yt|Ft−1) =
K∑
k=1

αktσ
2
k +

K∑
k=1

αktλ
2
kt − (

K∑
k=1

αktλkt)
2 . (13)

Observe that
K∑
k=1

αktλ
2
kt−(

K∑
k=1

αktλkt)
2 is non-negative and 0 only if λ1t = λ2t = . . . = λKt.

If the λkt differ greatly, the variance of yt is large and the model might be multimodal
instead of unimodal.
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Now we have a mixture model what is able to describe the different clusters we observe
for inflation. In contrast to a normal mixture model, our model is able to make better
forecasts on what component we are in and hence reduce the uncertainty. Furthermore,
the model should be able to capture the in practice observed changing mean and variance
of inflation, since the components allow for this.

For inference we opt for the Bayesian approach. First, in the next section we will
discuss the used priors.

2.2.1 Priors

To be able to use the model for forecasting, we need to estimate several parameters. For
each component we need to estimate φk0, φk1, . . . , φkpk , σk and µk for k = 1, . . . , K.

We take for φk as a prior the Zellners G-prior distribution from Marin and Robert
(2007). This corresponds to N (0, cσ2

k(X
′
pXp)

−1), where c = n and

Xp =


1 yP yP−1 . . . yP−p−1
1 yP+1 yP . . . yP−p−2
...

...
...

...
1 yT−1 yT−2 . . . yT−p

 .

For σ2
k we take the inverse gamma distributions as priors, with parameters a and b.

This choice of variance is to show that we have very vague knowledge on σ2
k. Since we

have little knowledge about the means of the clusters, the priors for µk are N (0, τ).

2.2.2 Parameter Estimation

To estimate the model we will use an algorithm similar to the EM algorithm from Demp-
ster et al. (1977). Suppose that the observations Y = (y1, . . . , yT ) are generated from (11).
Let Z = (Z1, . . . , ZT ) be the unobserved random variable, where Zt is a K-dimensional
vector with the kth element equal to 1 if yt is generated from component k and 0 otherwise.

The (conditional) likelihood is given by

L ∝
T∏

t=p+1

Lt

∝
T∏

t=p+1

K∑
k=1

zktαkt
1√

2πσk
exp

[
− 1

2σ2
k

(yt − φk0 − φk1yt−1 − . . .− φkpkyt−pk)2
]

.

(14)

Observe that the likelihood consists of three parts. The first part zkt is a latent variable
for the regime. The second part αkt is the chance that the regime k is selected at time t.
The last part is the observation equation.

9



2.2.3 Sampling

The algorithm produces estimates for the parameters using a sampling scheme what
comes quite close to the EM algorithm. The sampling scheme and estimators are similar
to those used by Wood et al. (2011). The scheme consists of the following steps.

• Initialize Z, such that
K∑
k=1

zkt = 1.

• Draw the lag p from the multinomial distribution P (p|y,K, Z).

• For k = 1, . . . , K draw σ2
k from the inverse gamma distribution P (σ2

k|y, z,K, p).

• For k = 1, . . . , K draw φk from the multivariate normal distribution P (φk|σ2
k, z, y, p).

• For k = 1, . . . , K sample µk using the slice sampling.

• Draw zkt from the multinomial distribution P (zkt|φk, σ2
k, µk, K, p), for k = 1, . . . , K,

t = 1, . . . , T ,

where

• p(p|y,K, Z) ∝ c−K(p+1)/2|X ′pXp|K/2
K∏
k=1

|X ′pZkXp + c−1X ′pXp|−1/2b−akk , where Zk =

diag(zt, t = p + 1, . . . , T ), aj = 1
2

T∑
t=p+1

zt + α and bj = 1
2
yMky + β, where Mk =

Zk − ZkXp(X
′
pZkXp + c−1X ′pXp)

−1X ′pZk,

• p(σ2
k|y, z,K, p) ∝ Ig(

K∑
k=1

T∑
t=1

ztk + α, 1
2
y′Mky + β),

• p(φk|σ2
k, z, y, p) ∝ N ((X ′pZkXp + c−1X ′pXp)X

′
pZky, σ

2
k(X

′
pZkXp + c−1X ′pXp)),

• Let pkt = p(yt|xt−1;φk, σ2
k), where xt−1 = (yt−1, . . . , yt−p)

′. Draw the indicators for
zkt with p(zkt = 1|yt, xt−1;φk, µk, σ2

k) ∝
αktpkt

K∑
k=1

αktpkt

for k = 1, . . . , K, t = 1, . . . , T .

The full conditional posterior of µkt is of an unknown form. Finding an appropriate
candidate density for a Metropolis Hastings sampler is not straightforward. Therefore we
opt for the slice sampler of Neal (2003).

The idea of this technique is to draw uniformly under the curve of the distribution
f(x). This is done as follows: first one chooses a starting value x0 for which f(x0) > 0.
Next one should draw a value yi uniformly on the interval 0 to f(x0). The next step is
to draw a horizontal line across the curve at this yi value. Across this horizontal line one
should sample the next xi uniformly within the curve. The sample point is now xi. Now
one should use the new xi as a starting point to generate the next yi and xi+1. For a
more detailed explanation see Neal (2003). The sampling scheme is shown in Figure 2.
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Now we have a full sampling scheme, only we need to find a way to choose for how
many components we allow in the final model. This will be done by cutting the sample
in two parts, a training sample and a forecasting sample. We use the training sample
to do parameter estimations for all possible K. Now we look at which K gives the best
forecasts in the forecasting sample and chose the optimal K according to the forecasts.
Note that one could also use a reversible-jump MCMC to estimate K. Since we believe
that we can best use the out-of-sample data to choose K, we opt for the forecasting
approach .

Initialize Z, with
K∑
k=1

zkt = 1.

Draw p from
P(p|y,K, Z)

Draw σ2
k from

P((σ2
k|y, z,K, p)

for k = 1, . . . , K

Draw φk from
P(φk|σ2

k, z, y, p)
for k = 1, . . . , K

Draw µk from P(µk|z)
for k = 1, . . . , K

Draw zkt from
P(zkt|φk, σ2

k, µk, K, p) for
k = 1, . . . , K, t = 1, . . . , T

if g larger than M , then
collect the simulated results

Simulation output:
{p, σ2

k, φk, µk, zkt}
g=g+1

Multinomial Distribution

Inverse Gamma Distribution

Multivariate Normal Distribution

Slice Sampling

Multinomial Distribution

12

Figure 2: The sampling scheme for the mixture model.

11



3 Data, Priors, Posterior Results and implied Char-

acteristics

In this section we will discuss how we will operationalize the models on our dataset with
an aim to describe the post-WWII behaviour of inflation measures in the US. We discuss
the data in Section 3.1, whereas in Section 3.2 we report our prior choices. In Section
3.3 we will review the posterior results. Last in Section 3.4 we will discuss some of the
implied characteristics according to the models.

3.1 Data

We will consider a quarterly observed seasonally unadjusted US inflation series for the
period 1960Q1-2015Q4. As a proxy for the inflation we use the gross domestic product
(GDP) deflator from the Real-Time Data Set for Macroeconomists (RTDSM) of the
Federal Reserve Bank of Philadelphia. This is the same dataset as used by Groen et al.
(2013), where we use a longer horizon of the dataset. Since for inflation the relative change
in the deflator is the most interesting (levels do not really have a clear interpretation),
we will model the quarterly log change. Since we are mostly interested in forecasting in
real time, we will use the first releases to form the time series and hence revisions are
ignored.

(a) Level of deflator (b) Ln difference

Figure 3: A graph of the quarterly absolute values and relative change of GDP Deflator
from 1960Q1 to 2015Q4.

Figure 3a displays the GDP deflator is shown over the full sample period. We use
the first releases of the variable, such that we have data up to 2015Q4. Since we are
interested in the relative change of the inflation, we take the difference of logarithm of
the series multiplied by 100 to get the percentage change2. The resulting series is shown
in Figure 3b. In this figure different regimes of the inflation can be noticed. For much of
the 1960s the inflation is stable. In 1958, Phillips (1958) came up with the now-infamous
‘Philliphs Curve’. This paper linked a high inflation to a low unemployment. The Federal
Reserve used this curve to adapt their monetary policy, what caused a period with stable
inflation. After this stable period, we see that the inflation rates are fluctuating more or
less out of control. The short term relation between the inflation and unemployment is

2So the value we use in our models from now on will be yt = 100(ln(inflationt)− ln(inflationt−1)).
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not observed in the long run, so the economists at the FED did not know how to properly
adapt their interest policy. We observe that after 1980 the economy enters a period of low
and stable inflation. This sudden decrease in inflation is caused by the raise of interest
rates to 20% by the FED chairman. From here up to the financial crisis in 2007, we
see a very stable inflation. In 2007 we observe some deflation due to the crisis. Next
we see that in the final year of the data, we have an inflation rate close to zero. So our
sample can be divided in roughly five periods: first a stable period, next a high inflation
period, than another stable period followed by a large drop, than another stable period
and finally a near-zero inflation period.

3.2 Priors

To describe the inflation series we perform a Bayesian analysis on the two time series
models discussed in Section 2.1 and 2.2. Before conducing Bayesian approach we need
to specify our prior settings. In the PREVOBS-AR model we used α0 = 2.001, δ0 = 1,
which is rather uninformative about σ2. For c0, we set the prior at 0.5, which is a rather
vague prior. Since we also lack clear information about D, we set v0 = 2 and S0 = 10. In
the mixture model we also have very vague information about σ2, such that we choose
priors a = b = 0.05. For the cluster means µk we set τ = 2.

The influence of the chosen priors turns out to be relatively small, since the prior
means of most parameters were a priori set at 0 and the prior variance was chosen large.
This makes the parameter estimate shrink towards 0 unless the data strongly suggests it
to be different from 0. Of course we could have made the variances smaller to get even
closer to zero. Unreported results show that this has little effect on the posterior results
(we only find little shrinkage effect towards 0). Hence, the information of the data seems
to dominate the posterior results.

3.3 Posterior Results

We estimate the PREVOBS-AR model for p = 1, . . . , 4 for the data up to 1999Q4 and
with posterior results we construct predictive forecasts for 2000Q1 up to 2009Q4. It turns
out that for p = 2 both the one quarter and one year ahead forecasts are best using the
root mean squared forecast error to evaluate means as point forecasts. We estimate the
model with a time varying αt. However, it turns out that there is no significant evidence
that αt is influenced by yt−1. Furthermore, if we include this into the model the forecast
are less accurate. Hence, we did not include this into our model. We also propose to add
yt−1 to the model in order to capture the non-linear effect. Both β0 and C for this term
are not significant. The inclusion does not improve our forecasts and since we prefer a
simple model over a more complicated one, we do not include this term into the model.

Now we re-estimated the models for up to 2009Q4. The posterior means for the pa-
rameter estimates are given in Table 1. The small standard deviations exhibited in Table
1 indicate that ergodicity is a reliable paradigm for 5000 iterations (following burn-in of
500 iterations).
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In Table 1 we observe that α and both β0,1 and β0,1 are positive. This suggest that a
large shock will be followed by above average values in the next periods too. What is in-
teresting to see is that C1 is positive, meaning that if we get a large previous observation,
the parameter in the next period will be larger, since we get a bigger βt,1. Furthermore
observe that D1 is positive, meaning that a large inflation will also lead to a more volatile
βt,1. For βt,2, we see that the average value β0,2 is positive yet smaller than β0,1 and the
coefficient C2 is also smaller than C1. This suggests that the past observation contains
more information than the observation from two periods ago. We see that for the variance
of βt,2 there is basically no influence by the previous observation. Observe that the sum
of βt,1 and βt,2 is close to one, what suggests that there is persistence of inflation.

In Figure 4a and 4b, the average posterior values and 95% HPD for β1,t and β2,t are
shown. We observe that the parameter values are relatively constant, yet in the turbulent
years between 1973 and 1983, they have much larger values, especially β1,t.

Table 1: The posterior mean, the upper
and lower bound for the 95% HPD of the
variables for the PREVOBS-AR model
using data up to 2009Q4.

Mean HPDlower HPDupper

α 0.2484∗∗∗ 0.2295 0.2673
β0,1 0.6082∗∗∗ 0.5313 0.6851
β0,2 0.2275∗∗∗ 0.2153 0.2379
C1 0.0100∗∗∗ 0.0061 0.0182
C2 0.0006∗∗ 0.0001 0.0018
D1 0.0053∗∗∗ 0.0039 0.0083
D2 0.0008 0 0.000879

Note: *,** and *** respectively mean
0 is not included in the 90%, 95% and
99% HPD region.
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(a) β1,t (b) β2,t

Figure 4: The graphs of the posterior means and the 95% HPD of β1,t and β2,t in the
PREVOBS-AR model over the estimation period 1961Q3 up to 2009Q4.

For the mixture model we apply the same procedure with estimating posterior coef-
ficients for data up to 1999Q4 and forecasting for 2000Q1 up to 2009Q4 for p = 1, . . . , 4
and k = 1, . . . , 4. This suggests two clusters and two lags, so k = 2 and p = 2.

Now we again re-estimated the model for up to 2009Q4. The posterior results are
shown in Table 2. The small standard deviations exhibited in Table 2 indicate that er-
godicity is a reliable paradigm for 5000 iterations (following burn-in of 500 iterations).

We observe that the first regime with lower values of yt−1 has a smaller φ1 and a larger
φ2. The σk is smaller. These facts together suggest that it is a more stable regime. The
second regime has larger φ1, a smaller φ2 and a larger σk. This suggests that when we
have large inflation in the previous quarter, the next quarter will probably also have a
larger inflation. Hence, we have a stable cluster 1, characterized by low inflations, and a
more extreme cluster 2, characterized by high inflations.

In Figure 5 the posterior probability of each component is shown. We see that in-
deed the first mixture component is for the stable periods and the second mixture is
for the more volatile periods. This can especially be noticed by inspecting the mixture
probabilities between 1973 and 1980. In this period the inflation was high and posterior
probability of being in cluster 1 is most of the time very close to 0.
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Table 2: The posterior means, the upper
and lower bound for the 95% HPD of
the parameters for the mixture model.
*** means significant at 1 % significance
level.

Mean HPDlower HPDupper

µ1 0.647 0.635 0.659
µ2 1.313 1.301 1.325
φ1,0 0.1579∗∗∗ 0.1570 0.1588
φ1,1 0.5251∗∗∗ 0.5244 0.5258
φ1,2 0.2440∗∗∗ 0.2433 0.2447
φ2,0 0.3140∗∗∗ 0.3131 0.3149
φ2,1 0.7302∗∗∗ 0.7292 0.7313
φ2,2 0.0615∗∗∗ 0.0605 0.0626
σ1 0.304 0.299 0.309
σ2 0.851 0.844 0.858

Note: *** means 0 is not included in
the 99% HPD region.

(a) Mixture 1 (b) Mixture 2

Figure 5: The posterior probability for mixture component 1 and 2 for time period 1960Q4
to 2009Q4.

3.4 Implied Characteristics

The PREVOBS-AR model suggests that the parameter values are influenced by the pre-
vious observation in a positive direction. With this we mean that on average a large value
will lead to larger parameters and hence a larger observation in the next period. This is
can be seen in the data in Figure 3b by the clusters of large inflation and small inflations.
So this might be a explanation for the inflation clustering we have.

The mixture model suggests that we have two kinds of regimes. First of all we have
a stable regime, where inflation over time is quite constant. This can also be observed
from Figure 3b. Most of the time the inflation levels are quite stable. The second regime
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is characterised by very large inflation levels with large variance. According to Figure 3b,
this corresponds to the regime of large inflation rates in the 1970s.

4 Real-Time Prediction of U.S. Inflation Rates

The main goal of our paper is to forecast inflation. In this section we will focus on
making out-of-sample forecasts. We will make current quarter forecasts and one year
ahead forecasts, so that is for t + 1 and t + 5. First in Section 4.1, we will discuss some
simple models which will serve as a benchmark for the performance of our models. The
PREVOBS-AR and mixture model seem to perform well in different periods. Hence
we will combine the forecasts of the PREVOBS-AR and mixture model. The different
ways of combining will be discussed in Section 4.2. There are several ways of producing
multiple step ahead forecasts, this will be discussed in Section 4.3. Next in Section 4.4 the
methods used to evaluate the methods will be discussed. In Section 4.5 we will compare
the forecasting performance of our developed models and the benchmark models.

4.1 Forecast models

As a starting point, we will use the models discussed in Section 2.1 and 2.2. Here we will
use the specification of the models which were best according to Section 3.3.

Since we are not only interested in how the models work in comparison with each
other, we will also include a random walk (RW) model. Since this model is often hard to
beat, this model will serve as a benchmark. We will use the specification from Atkeson
and Ohanian (2001). This model assumes that the best forecast in the next period is the
average over the past 4 quarters, such that

yt+1 =
1

4

3∑
j=0

yt−j + εt+1 with εt+1 ∼ N (0, σ2) . (15)

Another model used as benchmark will be the time-invariant autoregressive specifica-
tion for inflation, where we use the lag orders between 1 and 4:

yt+1 = β0 +

p∗∑
j=0

βjyt−j + εt+1 with εt+1 ∼ N (0, σ2) , (16)

where p∗ is the optimal lag order according to the Bayesian-Schwarz information criterion
(BIC) across lag orders up till 4. We will call this model the AR-BIC model. Both bench-
mark model parameters will be estimated so we can compare them with the other models.

4.2 Combining forecasts

In this section we will discuss the two different methods we use to forecast. We will use
the equal-weighted forecast (Equal-Combination) and the time-varying weights approach
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by Hoogerheide et al. (2010) (TVW-Combination).

The equal-weighted forecast combines the density forecasts of models 1, . . . ,M and
gives weight 1

M
to the forecast of each model. This can be written as

pequal−combination(yt+h|Ft) =
M∑
m=1

1

M
pm(yt+h|Ft) , (17)

where pm(yt+h|Ft) is the density forecast of model m for yt+h with information up to time
t.

The time-varying weights approach combines the density forecasts of models 1, . . . ,M
and gives weight time-varying weights to each model. These weights wm are chosen such
that they minimize the distance between the vector of observed values y1:T and the space
spanned by the constant vector and the vectors of ‘predicted’ values ŷ1:T,m for model m.
The weights are assumed to evolve over time in the following fashion:

wt = wt−1 + ψt with ψt ∼ N (0, σ) .

This leads to the predictive density equation:

pTVW−combined(yt+h|Ft) = wt+h,0

M∑
m=1

wt+h,mpm(yt+h|Ft) . (18)

To estimate the weights in (18) the Kalman filter is used, see Hoogerheide et al. (2010)
for further details.

4.3 Forecasting Approaches

In this section we will discuss forecasting with the models. The one-step ahead predictive
distribution F (yt+1|Ft) is easy to compute using the observation equations.

However, the m-step ahead predictive distribution is not that easy to calculate.
Granger and Terasvirta (1993) gave some fruitful ideas for the m-step forecast. We
will discuss three different approaches for the m-step density forecast, the direct, the
exact and the Monte Carlo approach.

For the direct density forecast, we pretend that the h step point forecast ŷt+h is the
true value of yt+h. So we get

F(yt+h|Ft) = F(yt+h|Ft, yt+h−1 = ŷt+h−1, . . . , yt+1 = ŷt+1) .

This is a very easy to compute forecast, yet some crucial information from the shape
of the predictive distribution F(yt+h−1|Ft) is not included in the forecast of yt+h. This is
mostly a problem when F(yt+h|Ft) is multimodal.
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To include this missed information, we get to the exact approach. This approach
calculates the exact distribution using an integral. The exact predictive distribution is
given by

F(yt+h|Ft) =

∫
F(yt+h|Ft, yt+h−1, . . . , yt+1) dF(yt+h−1, . . . , yt+1|Ft) .

We might not be able to exactly calculate this integral, yet we can still use numerical
methods to evaluate it.

Alternatively, one could take the Monte Carlo approximation. The results from this
method are often almost exactly the same as if one would take the exact distribution.
The predictive distribution is given by

F(yt+h|Ft) =
1

M

M∑
i=1

F(yt+h|Ft, {yt+h−1, . . . , yt+1})(i)) ,

where {yt+h−1, . . . , yt+1})(i) are sampled from F(yt+h−1, . . . , yt+1|Ft).

In this paper we opt for the Monte Carlo approach, since the exact method is very
hard to compute. Although Marcellino et al. (2006) states that it is still unclear if direct
or indirect forecasts give more accurate forecasts. Since we are interested in density
forecasts, we believe that the Monte Carlo approach is the best way to evaluate the
forecasts from each model.

4.4 Evaluation methods

We will use the models described in the previous subsection to make and evaluate one-
quarter and one year ahead forecasts for the GDP deflator in the United states for time
period 2010Q1 up to 2015Q4. We will use several measures to evaluate the accuracy of
our predictions. First of all we will use the square root of the mean squared forecast error
(RMSE) and the mean of the absolute forecast errors (MAE). These can be written down
as

RMSE =
√

MSE =

√√√√ 1

T − t0 − h

T−h∑
s=s0−1

ε̂2s+h , (19)

and

MAE =
1

T − t0 − h

T−h∑
s=s0−1

|ε̂s+h| , (20)

where ε̂s+1 is the out-of-sample forecast error of a model for yt+h. Gneiting (2011) found
that MAE is only a consistent measure when the point forecast is equal to the median
of the distribution of forecasts and for the RMSE only when the forecast is equal ot the
mean of the distribution of the forecast.

For some distributions, such as the RW and AR-BIC model, the median and mean are
equal. Yet for other models, such as those where forecasts are based upon the posterior

19



draws of the Gibbs sampler, this is not the case. There we will base the RMSE and MAE
on the mean and median of the distribution of inflation predictions.

One big downside of point forecasts is that they do not incorporate how certain we are
about our forecasts. To evaluate how certain we are about our forecasts and how good
models are to predict extreme events, we will use density forecast evaluations. There
are several possibilities to measure this. The most often used density forecast evaluation
method is the log score, since this approximates the likelihood function of a model. One
big drawback of this method is that it is sensitive to outliers and does not reward values
that are close but not equal to the realization (as shown in Gneiting and Raftery (2007)).

Gneiting and Raftery (2007) and Gneiting and Ranjan (2011) therefore propose the
continuous ranked probability score (CRPS), which does not have the drawbacks men-
tioned for the log score. Therefore we will use this measure to evaluate our density
forecasts. The CRPS is defined as:

CRPS(t+ h, l) =

∞∫
−∞

(F (z)− I{yt+h ≤ z})2dz

= Ef |Yt+h,l − yt+h| −
1

2
Ef |Yt+h,l − Y ′t+h,l| ,

(21)

where F is the cumulative density function (CDF) that corresponds to the predictive
density f of model l at time t, I(.) takes the value 1 if yt+h 5 z and 0 otherwise. Ef is
the expectation of predictive density f , Yt+h,l and Y ′t+h,l are independent random variables
with sampling density for both equal to posterior predictive density of model l for yt+1

at time t.

As can be seen from (21), the CRPS measures the distance between the CDF implied
by the model and the CDF of the realization. A higher CRPS means a worse forecast
density and a lower CRPS means a better forecast density. According to the second equa-
tion we can see the CRPS as two parts. The first part is the average absolute distance
between the empirical CDF of yt+h seen as a step function and the empirical CDF that
is associated with the predictive density of model l. The second part is a measure of the
variance of the prediction. This can easily be obtained by random resampling the draws
from the MCMC sampler or analytically when we use a Gaussian approximation.

(21) concerns only the evaluation of a single forecast. If we want to see how our CRPS
is over the whole forecasting horizon we take the average of them all, which is given by

avCRPSl =
1

T − t0 − h

T−h∑
s=t0−1

ˆCRPS(s+ h, l) . (22)

4.5 Out-of-sample results

With the models discussed in Section 4.1 forecasts are made for the GDP deflator for the
current quarter and one year ahead. The forecasts are made for the period 2010Q1 up to
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2015Q4. These forecasts are evaluated using the methods discussed in Section 4.4. In this
time period we can see two different periods, the years of recovery up to 2014Q4 and the
zero inflation period afterwards. Since there is such a difference in inflation behaviour,
we will also calculate the evaluation measures for these two time periods. First we will
discuss the full sample, than 2010Q1-2013Q4 and last 2014Q1-2015Q4.

In Table 3 the RMSE, MAE and CRPS for the RW,BIC-AR, PREVOBS-AR, mixture,
Equal-Combination and TVW-Combination model are shown for time periods 2010Q1-
2015Q4, 2010Q1-2013Q4 and 2014Q1-2015Q2. These are for both the one quarter ahead
(h = 1) and the one year ahead (h = 5). First we inspect the full sample one quarter
ahead for each model which is not a combination. We observe that the BIC-AR model
is the best performing, whereas it it not significantly better than the RW model3. The
mixture model is performing quite fine, yet the benchmark models are doing a slightly
better job. The PREVOBS-AR model is not performing well, since it has higher scores.
For the one year ahead the PREVOBS-AR model is still the worst model. Yet we see that
the mixture model has the lowest value for the avCRPS and is not significantly worse
than the RW model. The performance of the RW model might be worse here since it is
puts a lot of emphasis on the last observation for the forecasting and is very subject to
outliers. The mixture model is more controlled and thus less subject to this.

If we now consider the time period 2010Q1-2013Q4, we see that the forecasts are
better for every model except the PREVOBS-AR model than for the full sample. The
better results are expected, since this is a relatively stable period, just like most of the
testing sample.

Now if we focus on 2014Q1-2015Q4, we observe an interesting change. The PREVOBS-
AR model is doing not significantly worse than the other models, if we consider RMSE
and MAE. This is due to the fact that the PREVOBS-AR model is a model that works
the best in more extreme areas of the model. What we notice furthermore is that in this
period of low inflation, the mixture model is performing not so good if we take the one
quarter ahead forecast. In the sampling period, the mixture model did not have many
low inflations/deflation periods and hence the forecasts for this period are not accurate.
It might be wise to include a third cluster for these low inflations values for the future,
in order to be able to better forecast such low inflation periods.

3We use a t-test based upon the DM-statistic as used by Groen et al. (2013). This statistic is based
upon the Diebold and Mariano (1995) statistic with the correction from Harvey et al. (1997)
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Table 3: The RMSE, MAE and CRPS for the RW,BIC-AR, PREVOBS-AR, mixture,
Equal-Combination and TVW-Combination model for time periods 2010Q1-2015Q4,
2010Q1-2013Q4 and 2014Q1-2015Q2. These are based upon the forecasts for one pe-
riod ahead and one year ahead.

One quarter ahead (h = 1) One year ahead (h = 5)

RMSE MAE avCRPS RMSE MAE avCRPS

Forecast evaluation sample 2010Q1-2015Q4
RW 0.311 0.242 0.189 0.309 0.246 0.424
BIC-AR 0.304 0.238 0.184 0.356 0.291 0.328
PREVOBS-AR 0.526 0.476 0.574 0.452 0.402 0.567
Mixture 0.360 0.298 0.213 0.331 0.278 0.277
Equal-Combination 0.170 0.142 0.148 0.178 0.145 0.159
TVW-Combination 0.280 0.215 0.192 0.302 0.256 0.283

Forecast evaluation sample 2010Q1-2013Q4
RW 0.264 0.210 0.158 0.254 0.209 0.413
BIC-AR 0.244 0.208 0.152 0.292 0.247 0.284
PREVOBS-AR 0.577 0.536 0.593 0.483 0.430 0.575
Mixture 0.289 0.249 0.173 0.264 0.236 0.226
Equal-Combination 0.165 0.203 0.146 0.166 0.132 0.156
TVW-Combination 0.270 0.133 0.191 0.261 0.224 0.236

Forecast evaluation sample 2014Q1-2015Q4
RW 0.388 0.307 0.250 0.396 0.319 0.446
BIC-AR 0.397 0.299 0.246 0.457 0.380 0.416
PREVOBS-AR 0.402 0.356 0.561 0.384 0.346 0.553
Mixture 0.470 0.396 0.293 0.435 0.363 0.381
Equal-Combination 0.180 0.159 0.154 0.199 0.173 0.165
TVW-Combination 0.300 0.239 0.193 0.384 0.290 0.377

The results of the PREVOBS-AR model are not as good as expected. This model
flourishes in extreme periods, but in stable time periods the results are below standard.
This model might be better to use at a more volatile dataset. Our recommendation is to
only use this model when one is in a volatile period of a time series. The performance of
the mixture model is quite good. The forecasts are of the same accuracy as the random
walk and BIC-AR model for a quarter ahead forecast. For larger horizons, that is when
this model has really good density forecasts. It seems that this model is more useful for
forecasting in the longer run. Furthermore it might be worthwhile to include another
mixture component to capture the low inflation periods.

Now if we look at the combination models, we observe that the TVW-Combination
model makes forecasts of equal quality as the RW model in the one quarter ahead fore-
casts. For the one year ahead forecasts, they are of similar quality, yet the density is
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captured much better. The Equal-Combination model makes really good forecasts, being
significant better than all the other models in every measure and at every time horizon.
We found after a closer inspection that the TVW-Combination was always too late with
adjusting the weights and overcompensated the weights, what resulted in larger errors.

5 Conclusion

In this paper we propose two models for predicting inflation. In both models the previ-
ous observation plays an important role for the dynamic pattern. The first model is an
autoregressive model with time-varying parameters which are dependent on the previous
observation. In the second model is a mixture of autoregressive models, where the regime
probabilities are dependent on the previous observation.

The real time inflation forecasting performance of the two models is evaluated using
MAE, RMSE and avCRPS. We use a random walk model and a time-invariant autore-
gressive specification as benchmarks. We find that both models provided accurate density
forecasts. We notice that the time-varying AR model is most fruitful in times of extreme
inflations. The mixture model has the best performance during stable inflation periods,
yet it fails to make good forecasts in the low inflation periods, since there was no low
inflation in the training sample. We find that combining the two models with an equal-
weighing scheme, drastically improves the forecasts in all the used measures.

A suggestion for further research might be to use the AR model with time varying
parameters where we include more predictors for the inflation, such as short-term interest
rates and the unemployment ratio. Another idea might be to make a model that switches
between the mixture model for the stable periods and the time varying AR model in the
more extreme periods.
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