
Using Lampposts to Provide Urban Areas with

Multiple Services

Master’s Thesis
Econometrics and Management Science

Operations Research and Quantitative Logistics

T.J.C. Vos∗

Supervisors:
Dr. W. van den Heuvel & Dr. F. Phillipson

Co-reader:
Dr. D. Huisman

Erasmus School of Economics

August 20, 2016

∗Email: vostjc@gmail.com

mailto:vostjc@gmail.com

Abstract

In this thesis the goal is to find an efficient method which is able to
assign services to each of the potential lampposts in a city such that all
services are distributed adequately (i.e. the coverage requirements are
met), against minimal costs. A two-step approach is proposed to find
a smart and cost efficient distribution. In the first step the services are
distributed over the available lampposts while taking into account the
required coverage and the costs for enabling a lamppost to be equipped
with services. A formulation of this problem, which is termed the Multi-
Service Location Set Covering Problem, is presented. Several heuristic
methods are proposed to solve this problem. A heuristic method based
on sequentially solving a Set Covering Problem for each of the services
is shown to obtain the best results. The quality of this heuristic can
in part be attributed to an efficient method which is implemented to
solve Set Covering Problems. The selected locations from the first step
are then taken as input to the second step, which can be seen as a cost
reduction step. In this step lampposts are selected which are enabled to
serve as a hub to at most a certain amount of lampposts which are within
a specified range. For this problem, termed the Wireless Network Problem
a formulation is presented. To solve the Wireless Network Problem several
metaheuristics are proposed. It is shown that the Iterated Local Search
metaheuristic is able to find the best solutions. The best solution methods
are used in the two-step approach to provide cities with multiple services.

Keywords: Set Covering, Facility Location, Capacitated Vertex Cover, Multi-
Service, Wireless Network.

Preface

This thesis is the culmination of my education at the Erasmus University Rot-
terdam and is submitted as a partial fulfillment of the requirements for the
degree of Master of Science in Econometrics and Management Science. The in-
spiration for the subject of this thesis originates from Dr. Frank Phillipson who
is affiliated with TNO and is active in the field of ICT/telecom and electricity
network planning. This thesis has therefore also been written at TNO under
the supervision of Frank and I would like to thank him for his guidance and
useful insights.

I also want to thank Dr. Wilco van den Heuvel who has been my supervisor
from the Erasmus University Rotterdam. Without exception Wilco’s observa-
tions and recommendations have found their way into this thesis in some form
or another.

Tim Vos
Rotterdam, August 2016

List of Abbreviations

BKSBest Known Solution
CFLP.Capacitated Facility Location Problem
CVCCapacitated Vertex Cover
GAGenetic Algorithm
GRASP.Greedy Randomized Adaptive Search Procedure
ILS Iterated Local Search
IoT Internet of Things
LB.Lower Bound
LSLocal Search
LLBP.Lagrangian Lower Bound Problem
LSCPLocation Set Covering Problem
LUBPLagrangian Upper Bound Problem
MCLPMaximal Covering Location Problem
MCSCMaximal Covering Location Problem with Survivability Constraints
MSLSCP.Multi-Service Location Set Covering Problem
SA. Simulated Annealing
SCP Set Covering Problem
SSC. Sequential Set Covering
UFLP.Uncapacitated Facility Location Problem
WNPWireless Network Problem

Contents

1 Introduction 1
1.1 Problem Setting . 1
1.2 Base Problem . 2
1.3 Extension on the Base Problem 3
1.4 Two-Step Approach . 4
1.5 Goal of this Research . 4
1.6 Structure of the Thesis . 5

2 Problem Formulations 7
2.1 The Multi-Service Location Set Covering Problem 7
2.2 The Wireless Network Problem 8

3 Literature Review 10
3.1 Facility Location Problems . 10
3.2 Set Covering Problems . 13
3.3 Capacitated Vertex Cover . 15

4 Solution Approach 18
4.1 MSLSCP Methods . 18

4.1.1 Exact Algorithm . 18
4.1.2 Sequential Set Covering Heuristic 18
4.1.3 Likelihood Heuristic . 19
4.1.4 Connection Heuristic . 21
4.1.5 Improvement Step . 22

4.2 Common Steps for Metaheuristics 22
4.2.1 Initial Solution . 23
4.2.2 Defining the Neighborhood 24
4.2.3 Perturbation of a Solution 25

4.3 Selected Metaheuristics for the WNP 26
4.3.1 Iterated Local Search . 26
4.3.2 GRASP . 27
4.3.3 Simulated Annealing . 28
4.3.4 Genetic Algorithm . 29

5 Solving Set Covering Problems 32
5.1 Solution Method . 32

5.1.1 Lagrangian Heuristic . 32
5.1.2 Defining the Core Problem 35

5.2 Performance of the Solution Method 38

6 Application and Test Instances 44
6.1 List of Services . 44
6.2 The Locations of Lampposts . 45
6.3 Regional Representation . 45
6.4 Places . 48

7 Computational Results 50
7.1 MSLSCP Results . 50
7.2 Wireless Network Problem . 51
7.3 Two-Step Approach Results . 57

8 Concluding Remarks 58
8.1 Future Research . 59

Bibliography 60

1 Introduction

In this section an introduction will be given to the problem which is considered
in this thesis. Some background information is presented which constitutes
the inspiration for this research. Subsequently the difficulties inherent to the
problem will be discussed and an approach to solve the problem will be proposed.
Finally, the goal of this research is summarized and a structure of the thesis will
be presented.

1.1 Problem Setting

In our society the information density is condensing more and more. Not only
the need for receiving information is increasing, but also the need for processing
information gathered by, for example, sensors is increasing. More condensed
networks are required to be able to satisfy these increasing needs and to process
all this data in an efficient way.

The mobile telecom industry can be taken as an example of the described
trend. Currently, there are base stations covering areas of several hundreds
or thousands of meters. With the increase in mobile communications the area
covered by a base station should decrease, which in effect condenses the network.

A benefit of dense networks is that higher transmission rates can be reached
as the distance to a connection point is smaller. This is especially interesting to
Internet Service Providers. Nowadays internet connectivity for houses is gener-
ally provided through a wired network, which has the drawback of cumbersome
maintenance and costly upgrades. A dense wireless network which is able to
provide internet connectivity of the same or improved quality might be a cost
efficient alternative.

Another development is the maturation of the Internet of Things (IoT).
The IoT can be seen as a network of devices which are able to collect and
exchange information. The thermostat in a house can be able to measure the
current temperature of a room and use this measurement to make a decision
on whether to heat the room or not. Jewelry might be equipped with a GPS
tracker which exchanges its location allowing it to be retrieved when lost. More
advanced implementations of the IoT concern devices which are able to make
autonomous decisions based on information received from other devices. A large
part of the exchange of information will be wireless, which the infrastructure
should be prepared for.

A network should be easily accessible to be useful. For example, for wireless
connections to replace wired connections, access points are required at close
range. Any network should also be able to offer reliable connections. Addition-
ally the network should cover the locations from where connectivity is requested.

1

A successful network design meets these requirements while preferably minimiz-
ing the costs of setting up the network.

It is interesting to investigate whether any existing infrastructure can be
utilized to save on the costs of setting up a network. Existing infrastructure is
useful for this purpose when it is able to meet the requirements of the network
design. An interesting infrastructure already in place which is able to provide
the required density and which can be found in places where a large part of
the population is located are lampposts. Lampposts will be taken as a starting
point for existing infrastructure in this research.

Lampposts have several additional properties which make them a useful
starting point for this research. For one they are managed by the local or central
government who might be interested in opening up the lampposts to additional
functionalities, especially when these are in the public interest. Lampposts also
are already provided with a power supply and their locations are likely to be
well documented. Moreover, everybody will agree on the necessity of lampposts
so making them even more useful is worth investigating.

Apart from internet connectivity there might be several other services which
might be provided using lampposts as a base location. Mainly sensory equip-
ment is interesting in this case. A lamppost can for example be equipped with
a motion detector, such that it can be switched on only when people are within
proximity of the lamppost, which saves on energy usage. Lampposts might be
able to recognize traffic jams which can be communicated with smart vehicles
such that they are rerouted, escaping the traffic jam. It might even be possible
to equip lampposts with an alarm for more accurate warnings in case of an
emergency. These applications might assist in the transition to ‘smart cities’ for
which the ultimate goal is to improve the quality of life in a city.

1.2 Base Problem

The base problem considered in this thesis is coming up with a network design
which specifies the way in which the services should be distributed over the
lampposts such that coverage is provided against minimal costs.

There are several difficulties involved with the distribution of the services
over the lampposts. Not all services have the same coverage area. Some of
the services might have a larger coverage area than other services. Also, the
points which require coverage can differ per service. This indicates that not
every lamppost has to be equipped with all of the services. Rather, a smart
distribution is preferred. For each separate service the best distribution can be
reached by optimizing the distribution regardless of the distribution of the other
services. However, this need not lead to the least costly network design due to
an additional complexity.

For all of the services to be provided it is required that there is a connection
to an existing network. For example internet connectivity can only be provided
when the lamppost has internet connectivity. Also, the measurements from the
sensors should be exchanged through such a network.

2

It is inefficient to connect all lampposts to an existing network as this might
turn out to be very costly. It is more efficient to identify locations which should
be equipped with services first and to connect these identified locations later.
The costs of connecting a lamppost to an existing network are assumed to
be fixed, independent of the number of services which a lamppost is equipped
with. This directly contradicts the individual distribution of the services as now
services are preferably grouped together.

The right balance has to be found between both the goals of an individual
distribution of the services over the lampposts and the grouping together of
services on the lampposts. To achieve this it is best to make a distribution for
all services simultaneously.

1.3 Extension on the Base Problem

In the base problem it is assumed that all lampposts should be connected to
an existing network before they can be equipped with services. When solving
the base problem a selection from the initial lampposts will be made such that
coverage can be provided for the services from the selected lampposts.

Even though not all initial lampposts are to be connected to an existing
network it might still turn out to be a very costly endeavor to connect only
the selected lampposts. This makes it interesting to investigate whether it is
possible to connect only a small part of the lampposts to an existing network and
subsequently letting these connected lampposts act as a hub to other lampposts.
This way all selected lampposts can be equipped with services such that coverage
is provided.

The connection between a lamppost designated as a hub and another lamp-
post will be realized wirelessly. From the nature of wireless communication
it follows that there is a limitation on the distance within which the wireless
communication can exist. This limitation should be taken into account when
deciding on which lampposts to designate as a hub and which lampposts to
connect to the hub.

Connecting lampposts to a hub is no straightforward task. When a lamppost
is designated as a hub then this means that not only does the hub have to process
its own traffic, but also the traffic of the other lampposts which are connected to
the hub. Potential capacity limitations may impose a restriction on the number
of lampposts which can be connected to a hub lamppost.

The combined restriction on the maximum distance of wireless communica-
tions and the capacity make this problem difficult to solve. Consider for example
the situation in which there are ten lampposts within range of a lamppost des-
ignated as a hub which due to its capacity can be connected to at most four
other lampposts. Then a choice has to made on either connecting zero, one, two,
three or four lampposts to the hub as well as which of the lampposts out of the
ten these should be. Furthermore, the wireless connection of a lamppost to a
hub is assumed to be free, so there is no clear distinction as to which lampposts
to connect to the hub.

3

Now consider doing this for not one hub, but for a much larger amount of
hub lampposts. From the selected lampposts a designation of hubs has to be
made and additionally a choice on which lampposts to connect to each of the
hubs. This all has to be done while taking the restrictions into account and
designating hubs in such a way that the costs are minimized.

1.4 Two-Step Approach

It would be best to simultaneously determine a distribution of the services and
a selection from the lampposts which are to act as a hub and the respective
connections. However, as these problems are already rather difficult to solve on
their own, it is chosen to use a two-step approach to arrive at a sufficiently good
network design.

In the first step the problem is solved where the services are to be distributed
over the lampposts such that coverage is provided and assuming that all lamp-
posts need to be connected to an existing network. This results in a selection
from all the available lampposts to only the necessary lampposts to provide cov-
erage. The selected lampposts from the first problem are then taken as input to
the second step. In this step it will be attempted to identify lampposts which
should act as a hub to other lampposts. Ultimately this will result in a network
design where services are distributed efficiently and all locations are connected
to an existing network either directly or through another lamppost.

An impression of a final solution resulting from the two-step approach can
be sketched as in Figure 1.1. In this figure it is displayed that some lampposts
are connected to an existing network, while others are connected through an-
other lamppost. A connection is present for all lampposts which are equipped
with services. Additionally it can be seen that not all existing lampposts need
necessarily be used in a final solution.

1.5 Goal of this Research

At this point in time the transition to smart cities is still in its infancy. In
this research it is intended to prepare for further advances in this area. It is
investigated which problems need to be addressed in order to be able to set up
a network of services using existing infrastructure. This is done by considering
multiple use cases where several services are distributed over the lampposts in
a city. The services are distributed in such a way that they provide adequate
coverage against the least amount of costs.

The goal of this research is summarized as follows.

Find an efficient method which is able to assign services to each of the po-
tential lampposts in a city such that all services are distributed adequately (i.e.
the coverage requirements are met), against minimal costs.

4

Wi-Fi
Air Quality
Motion Detection
Network Connection
Wireless Connection

Figure 1.1: Sketch of outcome.

Both problems in the two-step approach will follow a similar definition for-
mat. First the problem is mathematically formulated and based on this formu-
lation several solution methods will be devised. These solutions methods will
then be compared to see which yields the best results for the specific problems.
The models are general descriptions of the problems described and might even
be usable for other problems of a similar nature.

1.6 Structure of the Thesis

The remainder of this thesis consists of the following sections. First, in section 2,
the mathematical formulation for each of the problems in the two-step approach
will be presented. In section 3 a literature review will be given of the Facility
Location Problem, the Set Covering Problem and the Capacitated Vertex Cover,
as these are the problems related to the formulations in this research. In section
4 several solution methods are proposed specifically designed to solve either
the first or the second step in the two-step approach. One of the methods
proposed in this section is based on repeatedly solving a Set Covering Problem.
To quickly solve Set Covering Problems a method has been implemented which
is described in section 5. In this thesis the two-step approach is applied to the
problem where a set of services should be distributed over the lampposts in a
city such that adequate coverage is provided. The design of the test instances

5

for this problem is discussed in section 6. In section 7 computational results for
each of the proposed solution methods on the test instances will be presented.
Finally, in section 8 there will be some concluding remarks and suggestions for
future research.

6

2 Problem Formulations

In the two-step approach two distinct problems are considered. First there is the
problem where the services should be distributed over the lampposts to provide
coverage. Secondly, several lampposts should be designated as a hub to other
lampposts to save on the costs required to enable a lamppost to be equipped
with services. For both these problems a mathematical formulation is presented
in this section.

2.1 The Multi-Service Location Set Covering Prob-
lem

The first step in the two-step approach is the distribution of the services over the
lampposts such that coverage is provided against minimal costs. The introduced
mathematical formulation is termed the Multi-Service Location Set Covering
Problem (MSLSCP).

In the MSLSCP the problem is to distribute a set of services F = {1, . . . , F}
over a set of locations L = {1, . . . , L} such that the demand points in Gu =
{gu, . . . , Gu} for each service u ∈ F are covered against minimal costs. There are
fixed costs fj > 0 associated with enabling a location j ∈ L to be equipped with
services. For the problem considered in this research this refers to connecting a
lamppost to an existing network. Consequently, there are costs cuj > 0 associated
with equipping the enabled location j ∈ L with service u ∈ F . The information
on whether a demand point i ∈ Gu can be covered from location j ∈ L for
service u ∈ F is stored in the binary auij matrix. In this matrix auij = 1 when
demand point i ∈ Gu can be covered from location j ∈ L for service u ∈ F and
auij = 0 otherwise. The mathematical formulation is as follows.

Min
∑
j∈L

∑
u∈F

cuj x
u
j +

∑
j∈L

fjyj (2.1)

s.t.
∑
j∈L

auijx
u
j ≥ 1 ∀i ∈ Gu, u ∈ F (2.2)

xuj ≤ yj ∀j ∈ L, u ∈ F (2.3)

xuj ∈ {0, 1} ∀j ∈ L, u ∈ F (2.4)

yj ∈ {0, 1} ∀j ∈ L (2.5)

Costs fj are incurred when the decision is made to enable location j ∈ L to
be equipped with services. These are so-called ‘connection costs’. Subsequently
costs cuj are incurred by determining with which services u ∈ F location j ∈ L

7

should be equipped, so-called ‘equipment costs’. The goal is to minimize the
total costs (2.1), represented as the sum of equipment costs and connection costs.
The objective function is minimized while satisfying all constraints. Coverage
requirements are represented by constraint set (2.2). A demand point i ∈ Gu
should be covered by at least one location for service u ∈ F . Constraint set (2.3)
represents the restriction that a location can only be equipped with services
when it is enabled to be equipped with services. Finally, the decision variables
are binary. In the formulation yj = 1 if it chosen to enable location j ∈ L to be
equipped with services and yj = 0 otherwise. When an enabled location j ∈ L
is equipped with service u ∈ F , xuj = 1 and xuj = 0 otherwise.

The formulation reduces to a Set Covering Problem when the number of
services which is considered is equal to one. This is true as no location will
be enabled to be equipped with services when it is not equipped with the sole
service which is considered. From this follows that the decision for yj and xuj
is the same. Hence, a valid formulation when considering only one service is
taking the costs of a location to be cuj +fj and finding a subset of locations such
that the total costs are minimized while all demand points are covered.

This leads to the conclusion that the MSLSCP is at least as hard as the Set
Covering Problem. The complexity of the Set Covering Problem is known to
be NP-hard from Bernhard et al. [9] and thus the complexity of the MSLSCP
is also NP-hard.

2.2 The Wireless Network Problem

In the second step of the two-step approach the goal is to identify lampposts
which are to act as a hub for other lampposts. In this way each of the lampposts
has internet connectivity, either directly or through another lamppost. This
allows all selected lampposts to be equipped with services while not all have to
be connected to an existing network.

Some constraints should be taken into account when implementing this ex-
tension. Namely, lampposts are unlikely to be able to communicate with one
another when the range between them is too large. In this case a wireless con-
nection between the two lampposts can not exist. Another constraint is that a
lamppost which services as a hub for other lampposts is subject to bandwidth
restrictions. This can be expressed by a maximum number of lampposts which
are able to communicate with the lamppost acting as a hub.

Again, let fj be the costs of connecting lamppost j ∈ L to an existing
network. Each lamppost j ∈ L which is connected to an existing network can
service as a hub for at most kj other lampposts, the so-called capacity. Between
each lamppost i ∈ L and lamppost j ∈ L a distance can be calculated. When the
calculated distance is less than the range of wireless communication, a wireless
connection can exist between the lampposts. This information is represented
by the parameter aij for which aij = 1 when lamppost i ∈ L is within range
of lamppost j ∈ L and aij = 0 otherwise. When each lamppost has the same
range, the aij matrix is symmetric.

8

In the mathematical formulation, termed the Wireless Network Problem
(WNP), a choice should be made on which lampposts to use as a hub for other
lampposts and which lampposts are then connected to the hub. The choice to
connect a lamppost to an existing network is indicated by the decision variable
yj which is set to 1 when lamppost j ∈ L is connected to an existing network
and to 0 otherwise. The choice to have lamppost j ∈ L act as a hub for lamppost
i ∈ L is made by setting xij = 1 and xij = 0, otherwise.

Min
∑
j∈L

fjyj (2.6)

s.t.
∑
i∈L

xji + yj = 1 ∀j ∈ L (2.7)∑
i∈L

xij ≤ kjyj ∀j ∈ L (2.8)

xij ≤ aijyj ∀i, j ∈ L (2.9)

xij ∈ {0, 1} ∀i, j ∈ L (2.10)

yj ∈ {0, 1} j ∈ L (2.11)

The goal is to minimize the total costs of connecting lampposts to an exist-
ing network (2.6) while taking the following into account. First, each lamppost
should be either connected to a lamppost which is connected to an existing net-
work, or it should be connected to an existing network directly (2.7). Secondly,
constraint set (2.8) states that a connected lamppost can service as a hub to
at most a pre-specified number of other lampposts. The constraint set (2.9)
represents the requirement that a connection between lampposts can only exist
when they are in range of one another. Finally, the decision variables are binary.

9

3 Literature Review

For the problem formulations which are proposed in this research there are sev-
eral problems in the literature which should be discussed. For the MSLSCP
these are the Facility Location Problems and the Set Covering Problem. For
the WNP the interesting problems in the literature are the Capacitated Vertex
Cover and the Single-Source Capacitated Facility Location Problem. In this
section a literature review on these problems will be presented and the simi-
larities as well as the differences between the problems and the models in this
research will be discussed.

3.1 Facility Location Problems

Facility Location Problems are typically applied when a decision has to be made
on where to locate a set of facilities, such as industry plants or warehouses, such
that the demand for a certain commodity can be satisfied against minimal costs.
Generally, fixed costs are associated with placing a facility at a certain location
and transportation costs are incurred when servicing a client from a facility.
Usually, the transportation costs are assumed to be metric, which means they
are symmetric and satisfy the triangle inequality.

The Facility Location Problem is an extensively studied problem for which
mainly two versions are distinguished. There is the Uncapacitated Facility Lo-
cation Problem (UFLP) [23] and the Capacitated Facility Location Problem
(CFLP) [49]. The CFLP is defined as follows.

Given is a set D = {1, . . . , D} of demand locations which need to be serviced
and a set F = {1, . . . , F} of locations such that opening a facility at location
j ∈ F incurs cost fj > 0. Servicing customer i ∈ D from the opened facility
j ∈ F incurs a transportation cost of cij > 0. The objective is to open a subset
of facilities in F and satisfy all demand from this subset of facilities such that
the total costs are minimized and all demand is satisfied. The mathematical
formulation of this problem is as follows.

10

Min
∑
i∈D

∑
j∈F

cijxij +
∑
j∈F

fjyj (3.1)

s.t.
∑
j∈F

xij = 1 ∀i ∈ D (3.2)

∑
i∈D

dixij ≤ sjyj ∀j ∈ F (3.3)

0 ≤ xij ≤ 1 ∀i ∈ D, j ∈ F (3.4)

yj ∈ {0, 1} ∀j ∈ F (3.5)

In this formulation the demand of customer i ∈ D is represented by di and
the capacity of facility j ∈ F , represented by sj , may not be exceeded. The
difference between the UFLP and the CFLP is the fact that for the UFLP there
is no restriction on the throughput of a facility. The mathematical formulation
of the UFL can easily be derived from the mathematical formulation of CFLP
by setting the capacity sj in constraint set (3.3) sufficiently large. Both the
UFLP and the CFLP have been found to be NP-hard by Rosenwein [50].

For the MSLSCP there also is a fixed cost associated with enabling a loca-
tion to be equipped with services. This makes literature on Facility Location
Problems interesting as these might inspire solution methods.

Due to the NP-hardness of the Facility Location Problems, a lot of work has
been done to come up with good approximation algorithms. An approximation
algorithm is an algorithm which returns in polynomial time a solution which
is at most a known factor larger than the optimal solution. Shmoys et al. [51]
were the first to arrive at a constant factor approximation algorithm for the
UFLP. Recently, an approximation algorithm was found of factor 1.448 by Li
[42]. In between these two results many other approximation algorithms have
been proposed. One of those is presented in the paper by Mahdian et al. [44]
in which the authors come up with an approximation algorithm for both the
UFLP and CFLP. They propose an algorithm which is used to achieve a 1.52-
approximation for the UFLP and a 2-approximation for the CFLP. An overview
of other solution methods for the CFLP is presented by Sridharan [52].

For many applications of Facility Location Problems in general, the reader
is referred to the paper by Hamacher and Drezner [34].

A problem showing resemblance to the WNP is the SSCFLP. The SSCFLP
is an extension of the CFLP. In the SSCFLP the variable xij is restricted to
be binary, whereas in the CFLP it can be any number in the interval [0,1].
This means that in the SSCFLP all demand of a customer has to be satisfied
from exactly one facility. To the formulation of the SSCFLP sometimes the
constraint (3.6) is added. From Yang et al. [56] it follows that this results in a
tighter linear relaxation.

xij ≤ yj ∀i ∈ D, j ∈ L (3.6)

11

When xij is chosen freely in the interval [0,1] this means that, given a set of
opened facilities, assigning customers to these facilities in the CFLP results in
a LP-formulation. This is easily solved to optimality using the simplex method.
Given a set of opened facilities in the SSCFLP, where xij is restricted to be
binary, assigning customers to a set of opened facilities results in the NP-hard
Generalized Assignment Problem (see Fisher et al. [28]). This makes the SS-
CFLP significantly harder to solve.

The SSCFLP can be linked to the WNP as follows. Let the set of customers
and locations be the same set L. Let fj be the costs of connecting location j ∈ L
to an existing network. The parameter cij represents the costs of wirelessly
connecting location i ∈ L to location j ∈ L. These costs can either be cij = 0
when location i ∈ L is within range of location j ∈ L or cij = fi+M otherwise.
Here M is a sufficiently large number. This ensures that, in an optimal solution,
it is always more efficient to open a new location than to connect a location which
is out of range, which should not occur.

As the SSCFLP is a NP-hard problem most solution methods have focused
on finding good approximations of an optimal solution. Among the heuristics
Lagrangian relaxation is used most often. The applications of Lagrangian re-
laxation to the SSCFLP differ in which constraint is relaxed. A choice can be
made to either relax the assignment constraint (3.2), the capacity constraint
(3.3) or both. Additionally, Lagrangian relaxation methods differ in the way a
feasible solution is generated from the solution to the relaxed problem.

One of the first to propose a Lagrangian relaxation were Klincewicz and
Luss [40]. In their approach they relax the capacity constraint. The resulting
problem now is a UFLP, which they solve using a dual ascent algorithm. The
solution to the relaxed problem is then made feasible by using a so-called add
heuristic. A final adjustment heuristic is used to improve the best solution
generated.

An early Lagrangian relaxation of the assignment constraint is presented by
Barceló and Casanovas [3]. Relaxing this constraint results in several knapsack
subproblems which are solved to obtain feasible solutions. Hindi and Pieńkosz
[35] also relax the assignment constraint. They combine a greedy heuristic and
restricted neighborhood search to obtain feasibility.

A Lagrangian relaxation of both the assignment and capacity constraints is
presented by Beasley [7]. In the paper extensive computational results can be
found for the Lagrangian relaxations.

Chen and Ting [16] implement a Multiple Ant Colony System as well as a
hybrid algorithm of both Lagrangian relaxation and an Ant Colony System to
solve the SSCFLP.

Recently several heuristic methods have been proposed which use methods
other than Lagrangian relaxation to obtain solutions to the SSCFLP. In Ahuja
et al. [1] a Very Largescale Neighborhood Search is applied to the SSCFLP. Con-
treras and Dı́az [20] use scatter search to solve the SSCFLP. Ho [36] presents a
simple iterated tabu search algorithm, which is shown to result in high quality
solutions while requiring little computational effort. Guastaroba and Speranza
[32] extend the Kernel Search heuristic to general Binary Integer Linear Pro-

12

gramming problems. They show the effectiveness of the extended Kernel Search
heuristic by applying it to the SSCFLP.

Several exact solution approaches have been proposed as well. Holmberg
et al. [38] propose a branch and bound method where in each iteration they
calculate a lower bound using a Lagrangian heuristic and an upper bound using a
strong primal heuristic. Diaz and Fernández [22] implement a column generation
procedure in a branch and price framework. The column generation procedure is
used to find upper and lower bounds. The most recent exact solution approach is
proposed by Yang et al. [56]. They present a cut-and-solve based algorithm. In
each iteration of the algorithm two problems are considered. A sparse problem
with a limited solution space is solved using a commercial MIP solver to obtain
an upper bound. In the dense problem a linear relaxation is solved to obtain a
lower bound. The obtained lower bound is subsequently strengthened using a
cutting plane method.

When the WNP is formulated as a SSCFLP only for optimal solutions a
guarantee of feasibility to the WNP can be given. However, as the SSCFLP is
known to be an NP-hard problem it might be particularly difficult to obtain an
optimal solution. Hence, in some cases no guarantee of feasibility to the WNP
can be given.

3.2 Set Covering Problems

Set Covering Problems arise in various practical applications, among which
are crew scheduling, vehicle routing and location problems. The Set Covering
Problem (SCP) has been around for a long time [54].

Formally, the SCP is defined as follows. Let aij be a M ×N binary matrix.
Let N = {1, . . . , N} be the set of columns andM = {1, . . . ,M} the set of rows.
A column j ∈ N is said to cover row i ∈ M if aij = 1. For the SCP to be
defined properly it is assumed that each row i ∈ M can be covered by at least
one column j ∈ N . Let cj > 0 be the costs of column j ∈ N . The goal of the
SCP is to find a subset of columns S ⊆ N , such that the columns in S cover all
rows inM against minimal costs. The mathematical formulation of the SCP is
as follows.

Min
∑
j∈N

cjxj (3.7)

s.t.
∑
j∈N

aijxj ≥ 1 ∀i ∈M (3.8)

xj ∈ {0, 1} ∀j ∈ N (3.9)

As has been noted the MSLSCP reduces to a SCP when there is only one
service considered. Because of this literature on SCP and methods to solve them
might inspire several solution methods.

13

The SCP is a NP-hard problem as can be seen from Garey and Johnson [31].
An early greedy heuristic for the SCP was presented by Chvatal [19]. Since then,
many more solution methods have been presented.

Caprara et al. [13] compare the six most effective heuristic methods up to
the release date of the paper. Each of the heuristics is tested on the test-bed
instances of Beasley’s OR Library [6]. Because each of the heuristics is tested
on the same data sets a fair comparison can be made, but also the results
can be compared to some known optimal solutions. In the article it is shown
that the method by Caprara et al. [12] returns optimal, or the best known
solutions, while requiring the least computational effort. In the paper problems
were considered with up to 5,500 rows and 1,100,000 columns. Also some exact
solution approaches are considered. However, on the smaller problems with up
to 400 rows and 4,000 columns these take 50 times as long as the heuristics to
come up with a solution.

There is also a more recent comparison of methods, found in Umetani and
Yagiura [55]. The added value of this paper is the fact that it summarizes
improvements on the methods used in Caprara et al. [13]. However, the authors
present results from previous papers in which different computers were used.
This means that the comparison of the results is not as fair as in Caprara et al.
[13].

The Set Covering Problem has been found to have applications in many
fields. For this research however, the application to location problems is most
interesting. This set of problems is also referred to as the Location Set Covering
Problem (LSCP). An early introduction in this field has been made by Toregas
et al. [54]. In this paper, the authors used the SCP formulation to determine
the best location for emergency service facilities. Facilities were positioned in
such a way that all demand points were within a specified distance of a facility
while minimizing the total costs of opening the facilities.

The original formulation of the LSCP has been around for decades and
continues to show a lasting applicability to practical problems. Some recent
applications found in the literature are optimizing watchtower locations for fire
monitoring purposes [2], the planning of street lighting [47], location optimiza-
tion of strategic alert sites for homeland defense [8] and locating collection areas
for urban waste management [4].

Following the taxonomy Daskin [21] introduced for location models the LSCP
can be classified as a covering-based, discrete, set covering model. For discrete
location models there is a finite set of candidate locations and demand arises at
known demand points. Covering-based refers to using an underlying distance
metric to determine whether a demand point is within a specified critical dis-
tance and the set covering classification requires a minimal number of facilities
such that all demand points are covered.

An extension to the LSCP has been given by Church and Velle [17]. They
introduced the Maximal Covering Location Problem (MCLP). In the MCLP
the goal is to cover as many demand points as possible with a fixed number of
facilities.

In Farahani et al. [24] multiple reviews on covering problems are given, as

14

well as a comprehensive review of models, solutions and applications. The
authors divided the paper in a section on the SCP and the MCLP. For each of
these problems a basic formulation, as well as many extensions are given. Also
an overview is given of covering models which are not easily related to the SCP
or the MCLP, even though they are somehow related to covering problems.
The paper gives the most extensive overview of covering models introduced
between 1997 and 2011. However, none of the models presented seem to cover
the problem which is proposed in this research.

Lee and Murray [41] apply a covering model to a real life case study in which
they want to supply the city of Dublin, Ohio with a citywide wireless broadband
connection. In this paper an extension of the MCLP is proposed, namely the
Maximal Covering Location Problem with Survivability Constraints (MCSC).
The MCSC is used to cover as much of the population of the city as possible
while ensuring a reliable network. Interesting insights can be obtained from the
highlighted trade-off between coverage and costs.

Another case study has been performed by Bell et al. [8]. In this case study
the authors determine aircraft alert sites for the defense of important national
areas in the USA. First a LSCP is used to determine how many facilities are
required and secondly the minimum aggregate network distance is found for this
number of facilities. This is done by solving a p-median problem. Finally, the
authors check the robustness of their solutions.

Also worth mentioning is the paper by Murray et al. [48]. The authors argue
that the mathematical representation of a study region influences the outcomes
of covering models. Historically, the demand points have been modeled as ir-
regular data points corresponding to neighborhoods, towns, et cetera. Related
to this is using a regular pattern of points to model a study region. The authors
researched the possibility of coverage modeling as regions instead of points. In
the paper it is shown that each mathematical representation of a study region
has its pros and cons. Using data points inherently leads to coverage gaps,
however it is computationally more efficient. Using regions to model a study
region usually results in too many facilities being sited and a higher computa-
tional complexity, however it does result in better coverage. In the paper some
theoretical results are given and additionally the authors show practical results
using the real-world data set of Dublin, Ohio as an example.

3.3 Capacitated Vertex Cover

The Capacitated Vertex Cover (CVC) has first been proposed by Guha et al.
[33]. A more general name for this problem is the Set Covering Problem with
Hard Constraints. The Capacitated Vertex Cover is a generalization of the
well-known Vertex Cover problem.

Given is a graph G = (V,E). An edge e = {u, v} ∈ E should be covered
either by vertex u ∈ V or v ∈ V . To each vertex v ∈ V is assigned a weight
w(v), i.e. costs, a capacity k(v), i.e. a maximum number of edges which can
be covered, and b(v), a maximum number of duplications. The objective is to

15

cover all edges e = {u, v} ∈ E using a multi-set C ⊆ V of minimal weight. In a
multi-set the same element can occur multiple times, which might occur due to
possible duplication of a vertex. Duplicating a vertex v ∈ V l times increases
the capacity k(v) by a factor l.

Let x(v) ∈ {0, . . . , b(v)} be the number of times vertex v ∈ V is added to the
cover. For each e = {u, v} ∈ E let y(e, v) = 1 when edge e ∈ E is covered by
vertex v ∈ V and y(e, v) = 0 otherwise. The set δ(v) contains all edges e ∈ E
adjacent to vertex v ∈ V . The mathematical formulation as presented in the
literature is as follows.

min
∑
v∈V

w(v)x(v) (3.10)

s.t. y(e, u) + y(e, v) = 1 ∀e = {u, v} ∈ E (3.11)

y(e, v) ≤ x(v) ∀v ∈ e ∈ E (3.12)

k(v)x(v)−
∑
e∈δ(v)

y(e, v) ≥ 0 ∀v ∈ V (3.13)

y(e, v) ∈ {0, 1} ∀v ∈ e ∈ E (3.14)

x(v) ∈ {0, . . . , b(v)} ∀v ∈ V (3.15)

The goal is to find a minimum weight vertex cover (3.10) subject to several
constraints. Constraint set (3.11) indicates that each edge should be covered
from exactly one vertex. An edge can only be covered from a selected vertex
due to constraint set (3.12). No vertex can have more connections than its
capacity allows due to constraint set (3.13). Finally, there is the binary decision
variable y(e, v) in constraint set (3.14) and the integer decision variable x(v) in
constraint set (3.15).

When the capacity k(v) = |V | − 1 for each vertex v ∈ V and the decision
variable x(v) ∈ {0, 1} the CVC reduces to the Minimum Weight Vertex Cover.
The Minimum Weight Vertex Cover problem is known to be NP-hard from
Michael and David [45] and thus the CVC is also at least NP-hard.

For the CVC there are mainly two versions, namely the one with ‘soft con-
straints’ and the one with ‘hard constraints’. Referring back to the formulation
for the CVC the difference is in the unbounded x(v) ∈ N0 for the soft con-
strained version and the bounded x(v) ∈ {0, 1, . . . , b(v)} for the version with
the hard constraints.

The CVC has been introduced by Guha et al. [33] in which they applied the
CVC with soft constraints and arbitrary weights to a problem arising in the field
of glycobiology. For the resulting problem a 2-approximation algorithm using a
primal-dual approach and a 4-approximation algorithm based on LP-rounding
are given. Gandhi et al. [29] give a 2-approximation algorithm for the same
problem based on LP-rounding.

For the CVC with hard constraints, where the value b(v) is bounded, the
problem becomes significantly harder. Chuzhoy and Naor [18] show that the
CVC with hard constraints is at least as hard to approximate as the Set Covering

16

Problem when arbitrary weights are used. In their paper, Chuzhoy and Naor
[18] give a 3-approximation algorithm for the unweighted case, where b(v) is
bounded to one, based on randomized rounding of an LP-relaxation followed by
an alteration step.

In Gandhi et al. [30] the algorithm by Chuzhoy and Naor [18] is improved
in two crucial ways to obtain a 2-approximation for the unweighted case of the
CVC with hard constraints. Namely, Gandhi et al. [30] add a pre-processing
step and they modify the alteration step from Chuzhoy and Naor [18].

The input to the WNP can be translated to a graph as follows. Let the
locations taken as input to the WNP be the vertices and let the aij matrix
specify the edges. The costs of a vertex are given by the connection costs of a
location in this case. Additionally it can be assumed that the capacity for each
location is known and that each location can be duplicated only once. Using
this translation it can be demonstrated that the CVC does not describe the
problem at hand.

In the CVC all edges should be covered by a vertex to come to a valid
solution. However, for the WNP the goal is to connect each location. When
two locations are opened than it is no longer necessary to cover the edge which
might be existent between these locations. Thus the formulation of the CVC is
not sufficient to describe the WNP.

17

4 Solution Approach

For both the MSLSCP and WNP several solution methods will be proposed.
The solution methods will be compared on their ability to find good solutions
and on their computation times. The solution method which yields the most
promising results for the MSLSCP will be used as input to the WNP.

4.1 MSLSCP Methods

For the MSLSCP multiple methods are proposed ranging from an exact solution
method using a commercial Mixed Integer Programming solver to two greedy
heuristics and a sophisticated solution method which sequentially solves SCPs.

The methods approach the problem from different perspectives. The method
based on a SCP in section 4.1.2 approaches the problem from the perspective of
the services. The greedy heuristic in section 4.1.3 approaches the problem from
the location perspective and the greedy heuristic in section 4.1.4 approaches the
problem from the demand perspective.

4.1.1 Exact Algorithm

The presented problem formulation can be solved by means of an exact algo-
rithm in reasonable time for problem instances of a likely limited size. The
problem formulation will be implemented and the commercial Mixed Integer
Programming solver Gurobi will be used to search for an optimal solution.

The results of the exact algorithm on a small problem are very useful. These
can be used to determine the effectiveness of the other methods. This can be
done based on the resulting solution as well as on the computation time which
was required.

4.1.2 Sequential Set Covering Heuristic

When solving the MSLSCP for only one service the resulting problem can be
characterized as a SCP. A naive implementation would be to solve a SCP for
each service independently without taking into account the solutions for other
services. However, this fails to take into account the preferred grouping of
services at a single location. To achieve an efficient distribution while also
grouping the services together the following method is proposed.

In the first iteration only one service is considered. For this service a SCP
is solved where each of the demand points should be covered from the given
locations. The costs of selecting each location is given by fj + cuj . This takes
into account that some locations might be preferred over others due to the

18

relatively low costs of enabling a location to be equipped with services. In this
iteration a selection has been made from the locations which are required to
provide coverage for the first service. This information can then be used for the
next service.

For the next service the fixed costs of enabling a previously selected location
to be equipped with services are set to zero. So a location that has been equipped
with the previous service can now be equipped with the new service at a cost
of only cuj instead of the original cuj + fj . This makes it so that locations which
have been selected for the previous service are preferred to be equipped with
the new service.

Then again all locations which are selected to be equipped with the new
service which were not yet equipped with the previous service can be set to a
fixed cost of zero. These steps should be repeated till each of the services is
distributed in such a way that coverage is provided for all services.

This method is likely to result in short computation times when each SCP is
solved heuristically. Good algorithms exist which obtain a good heuristic solu-
tion to a SCP. Considering only one service at a time is however a simplification
of the general MSLSCP and will void the optimality of the results, especially
when a heuristic solution is used for each of the resulting SCPs.

An outline for the Sequential Set Covering (SSC) Heuristic is given in Algo-
rithm 4.1. In this outline the set Xu contains the locations which are connected
to an existing network when solving the SCP for service u ∈ F .

In the SSC only one service is considered at a time. For the first service the
costs of equipping a location with this service consists of the connection costs fj
and the equipping costs cuj . With these costs a SCP is solved. For all locations
which have been connected in an iteration the connection costs fj are set to
zero for future iterations. This makes it more likely that, ultimately, services
are grouped together on connected lampposts as much as possible.

This is done for all services, such that all services are provided while satis-
fying the coverage requirements. Based on the final outcome a total costs can
be calculated for the solution.

Algorithm 4.1 Outline for the Sequential SCP Heuristic.

1: Xu = ∅
2: for u ∈ F do
3: Solve SCP for service using costs cuj + fj → Xu

4: Set fj = 0 for locations in Xu

5: end for

4.1.3 Likelihood Heuristic

The MSLSCP can also be approached from the location perspective. A certain
location is likely to be enabled to be equipped with services when from this
location the largest amount of demand can be satisfied at the least amount of

19

enabling costs. This results in a greedy heuristic. Greedy heuristics are known
for their intuitive implementations and are also likely to result in quick solutions.

In this greedy heuristic, which is called the Likelihood Heuristic, a ratio is
calculated for each unconnected location in each iteration which represents the
likeliness of lampposts to occur in good solutions.

In each iteration it is known for each of the services which demand points
still require coverage. This means that for any location not yet equipped with a
service it can be calculated how many demand points can be covered when the
specific location is equipped with the service. When this number is divided by
the costs of enabling a location to be equipped with services then the resulting
ratio indicates the likeliness of the location to be equipped with a service.

Now the costs of enabling a location to be equipped with services can either
be fj when the considered service would be the first to be placed at the location
or a small number when the location is already equipped with a service. The
small costs of equipping a location with a service indicates that the location can
be equipped with another service at relatively low costs.

A set Cu ⊆ Gu is determined in each iteration consisting of the demand
points still requiring coverage for service u ∈ F . The set Xu contains the
locations which have been connected for service u ∈ F . The calculated ratio is
as follows.

Luj =

∑
i∈Cu auij
fj

∀j /∈ Xu,∀u ∈ F (4.1)

The resulting values can be sorted in decreasing order. Based on these values
it can be found for which location and which service the highest value of Luj
has been achieved. This location is thus able to cover the most demand at the
least amount of costs. For the resulting service the found location is added to
Xu and the connection costs for the location should be set to ε, to identify this
location as a cheap location to equip with additional services while preventing
division by zero. This approach should be repeated till all demand is satisfied,
i.e. till all sets Cu containing the demand points which still require coverage,
are empty.

With the resulting solution it might be the case that some demand points
are satisfied multiple times. To see whether this is the case, one can take the
solution and calculate for each demand point the number of times which it is
covered. If there is a location which is equipped with a service which only covers
demand points which are covered too often, than this service is considered to
be redundant at this location. When unequipping the location with the service
the solution remains feasible and the total costs are reduced. This step should
be repeated for each location in the solution and for all services with which it
is equipped.

For the resulting solution the total costs can be calculated. An outline for
the Likelihood Heuristic can be found in Algorithm 4.2.

20

Algorithm 4.2 Outline for the Likelihood Heuristic.

1: Xu = ∅
2: Determine Cu ∀u ∈ F
3: while Cu 6= ∅ ∀u ∈ F do
4: Calculate Luj ∀j /∈ Xu, u ∈ F
5: j, u = argmax{Luj }
6: Xu = Xu ∪ {j}
7: Set fj = ε
8: Update the sets Cu

9: end while
10: Remove redundant services

4.1.4 Connection Heuristic

The MSLSCP can also be approached from the perspective of the demand
points. Some demand points might only be covered from a small number of
locations. To find the demand points which might only be covered from very
few locations the same sets Xu and Cu are used in the same way as in the Like-
lihood Heuristic. These sets contain the connected locations and the demand
points which should still be covered, respectively.

Again, an uncovered demand point can only be covered from a location
within range that has not yet been equipped with the service. For each demand
point it can be calculated how many locations are within range that might cover
the demand point for the specific service. This value is then stored in the Du

i

variable.

Du
i =

∑
j /∈Xu

auij ∀i ∈ Cu,∀u ∈ F (4.2)

Then the demand point and service are searched for which the minimum
value of Du

i is found. This demand point is then the demand point which can
be covered from the lowest amount of potential locations. For the demand
point it can be found which locations might cover it for the resulting service,
denoted by the set S. Then it is searched which of these locations covers the
most additional uncovered demand for the same service. This location is then
connected and the sets Cu are updated. This step is then repeated till all
demand points are covered.

Just as in the Likelihood heuristic, which is described in section 4.1.3, the
resulting solution can be inspected on the presence of redundant services. These
should be deleted to improve the solution quality. An outline for the Connection
Heuristic is given in Algorithm 4.3.

21

Algorithm 4.3 Outline for the Connection Heuristic.

1: Xu = ∅
2: Determine Cu

3: while Cu 6= ∅ ∀u ∈ F do
4: Calculate Du

i

5: i, u = argmin{Du
i }

6: S = {j|auij > 0}
7: Xu = Xu ∪ {argmaxj∈S{

∑
i∈Cu Auij}}

8: Update the sets Cu

9: end while
10: Remove redundant services

4.1.5 Improvement Step

The proposed solution methods are mostly heuristics. Results from early iter-
ations are taken into account in the later iterations of each of the heuristics.
However, the heuristics are unable to take into account the results from later it-
erations in early iterations. This might mean that in an early iteration a location
is connected and equipped with certain services even though it turns out that
it is redundant in later iterations. To measure the effectiveness of the heuristics
the solutions of the heuristics are taken as input to the exact algorithm.

From the heuristics it is known that the obtained solution is sufficient to
provide coverage, however it need not be an optimal solution. The locations
which have been chosen in the solution to be equipped with services can be
taken as input to the exact algorithm. Taking the selected locations results in
a new MSLSCP, however of a greatly reduced size.

It can then be investigated whether the exact algorithm is able to greatly
improve the solution based on the selected locations from the heuristic solutions
or not. When a large improvement is possible than this indicates that in the
heuristic many locations have been selected which are not necessary to provide
coverage. However, when the exact algorithm is unable to improve much on
the heuristic solution then this indicates that the heuristic has been able to
efficiently identify locations and equip these with services.

When a very large instance of the MSLSCP is solved by a heuristic then
even the reduced problem size after this step might be too large to be efficiently
solved by the exact algorithm. Because of this the exact algorithm can merely
be used to gauge the quality of the presented heuristic solutions instead of being
a viable alternative to coming to good solutions.

4.2 Common Steps for Metaheuristics

For the WNP multiple metaheuristics will be implemented of varying complex-
ity. In the literature metaheuristics are recognized as efficient approaches to
hard optimization problems. Metaheuristics are usually defined by a general

22

framework in which the same set of steps are executed to solve an optimiza-
tion problem. The steps which are executed may be adapted to better fit the
optimization problem.

A good metaheuristic should be able to find sufficiently good solutions by
sampling solutions for an optimization problem in a structured manner. In
the sampling of the solutions it is important to obtain the right balance be-
tween diversification and intensification. Diversification refers to the ability of
a metaheuristic to sample solutions from a large portion of the search space. A
metaheuristic should also be able to improve already good solutions, which is
called intensification.

Most metaheuristics rely on similar steps which are applied in a slightly
different manner for each of the metaheuristics. Common steps consist of ini-
tializing solutions, generating neighboring solutions and perturbing a solution to
move to a slightly different part of the search space. A general implementation
for these steps will be presented and these implementations will then be used
in a selection of metaheuristics.

Due to the common implementation of important steps for metaheuristics it
will be interesting to see which of the metaheuristics is able to obtain the best
balance between diversification and intensification for the WNP. The common
steps are discussed in the following sections.

4.2.1 Initial Solution

An initial solution to the WNP is generated using a (randomized) greedy heuris-
tic. In the first step locations are identified which are always connected to an
existing network. These are the locations which are not in range of any other
location, i.e. for which

∑
i aij = 0. All locations for which this holds are added

to the set F , containing all locations which are either connected to an existing
network or to another location.

Then, using the remaining locations j /∈ F , a value is calculated which rep-
resents the likeliness of a location to occur in good solutions. This is calculated
as follows.

Vj = min{1 +
∑
i/∈F

Aij , kj}/fj ∀j /∈ F (4.3)

The presented ratio can be seen as the number of locations one can add
over the costs of connecting a location to an existing network. The location
for which the highest value of Vj is reached is most likely to occur in a good
solution and is chosen to be connected to an existing network. This results in a
greedy heuristic.

This procedure can also be randomized. Based on the values Vj a probability
can be assigned to each of the locations which can be used to choose which
location to add to the solution. This probability is calculated as in (4.4). This

23

is a common way of assigning probabilities, see Murata et al. [46].

Pj =
(Vj −minj Vj)

2∑
j(Vj −minj Vj)2

∀j /∈ F (4.4)

When a location is selected to be connected it is checked which other lo-
cations are within range of the newly connected location. When there are less
lampposts within range than the specified capacity, then all lampposts within
range are connected to the newly connected lamppost. When there are more
lampposts within range than the specified capacity than randomly lampposts
are selected to be connected to the newly connected lampposts with equal prob-
ability till the capacity is reached.

All newly connected locations are added to the set F and the previous steps
are repeated till all lampposts are either connected to an existing network or to
another lamppost.

Algorithm 4.4 (Randomized) Greedy Heuristic.

1: Initialize F with all locations which are always opened
2: Set yj = 1 ∀j ∈ F
3: while Not all locations connected do
4: Calculate Vj ∀j /∈ F
5: if Greedy then
6: Identify location to open j = argmaxVj
7: else if Randomized Greedy then
8: Calculate Pj ∀j /∈ F
9: Randomly choose location j to open using Pj

10: end if
11: Set yj = 1
12: Identify all locations within range I = {i|Aij = 1, i /∈ F}
13: if |I| > kj then
14: Randomly remove |I| − kj locations from I
15: end if
16: Set xij = 1 ∀i ∈ I
17: F = F ∩ {I ∩ j}
18: end while

4.2.2 Defining the Neighborhood

The neighborhood of a feasible solution to the WNP is defined as follows. For
any feasible solution it is given that there are small clusters of locations of which
one is connected to an existing network. In the (randomized) greedy heuristic
which is used to create an initial solution, there are always as much as possible
locations connected to an opened location. Intuitively this might seem the best
thing to do. However, this need not lead to the best possible solution.

24

To try and improve on a solution, the following method is proposed. Of
all locations which are connected to an opened location, choose one at random
to investigate whether disconnecting from the opened location is profitable.
Disconnecting can only be profitable when the disconnected location is within
range of one or more opened locations other than the location it was connected
to, before disconnecting.

When a location has been identified for which disconnecting might be prof-
itable then this location will be disconnected and consequently opened. All
opened locations, other than the location the disconnected location was con-
nected to, will be connected to the newly opened location if possible. Now
these opened locations which have been connected to the newly opened location
could have locations connected to them. These will then be disconnected and
using the greedy heuristic will be opened again.

The total creation of a neighboring solution is as in Algorithm 4.5.

Algorithm 4.5 Neighborhood Heuristic.

1: Identify all locations connected to an opened location C = {i|∃xij = 1}
2: Randomly choose i ∈ C, was connected to J = {j|xij = 1}
3: Open the location i, xij = 0 ∀j ∈ L, yi = 1
4: Identify all opened locations in range of i, O = {k|Aik = 1, yk = 1, k 6= J}
5: Disconnect all k ∈ O, yk = 0 and xjk = 0 ∀j ∈ L
6: Let N = {i|yi = 0,@xij = 0}
7: Identify all locations within range of i, I = {j|Aij = 1, j ∈ N}
8: if |I| > kj then
9: Randomly remove |I| − kj locations from I

10: end if
11: Set xji = 1 ∀j ∈ I
12: N = N\I
13: Greedily connect all remaining locations in N

4.2.3 Perturbation of a Solution

In the perturbation of a solution the goal is to introduce a large amount of
diversification in the solution. In this perturbation step large changes are made
to a given solution by purposefully breaking and consequently repairing the
solution in a randomized greedy way.

For any feasible solution the locations can be divided in a set of opened
locations and a set of locations connected to an opened location. In the set of
opened locations there might be a subset of locations which are opened in all
feasible solution and locations which are opened in the specific solution. The
opened locations which are not fixed in any feasible solution is the part of a
solution which will be perturbed.

Of these non-fixed, opened locations 20% is closed. Additionally, all locations
connected to these closed locations are disconnected. This results in a large part

25

of the locations being disconnected and an infeasible solution. All locations
which are closed and not connected to an opened location are added to the set
N , thus indicating the locations requiring a repair.

The purposefully broken down solution is then rebuilt using a randomized
greedy heuristic for all locations still requiring a connection. The complete
algorithm is given in Algorithm 4.6.

Algorithm 4.6 Perturbation Heuristic.

1: Initialize F with all locations which are always opened
2: Initialize C = {j|yj = 1, j /∈ F}
3: Randomly pick 20% of locations in C to obtain T
4: Set yj = 0 ∀j ∈ T , xij = 0 ∀i ∈ L,∀j ∈ T
5: Let N = {j|yj = 0,@xji = 0}
6: while N 6= ∅ do
7: Calculate Vj ∀j ∈ N
8: Calculate Pj ∀j ∈ N
9: Identify location to open j ∈ N

10: Set yj = 1
11: Identify all locations within range I = {i|Aij = 1, i /∈ F}
12: if |I| > kj then
13: Randomly remove |I| − kj locations from I
14: end if
15: Set xij = 1 ∀i ∈ I
16: N = N\{I ∩ j}
17: end while

4.3 Selected Metaheuristics for the WNP

The common steps which have been discussed in the previous section will be fit-
ted into the framework of several selected metaheuristics. Which metaheuristics
are selected will be discussed in this section. Each of the selected metaheuris-
tics uses the common steps in a slightly different way to find a good balance
between diversification and intensification. For each of the proposed methods
an explanation will be given on how both the intensification and diversifica-
tion is reached. Also, each of the metaheuristics is classified according to being
single-solution based or population based as in Boussäıd et al. [11].

4.3.1 Iterated Local Search

Local Search (LS) is an intensification-oriented, single-solution based meta-
heuristic. In a LS method it is repeatedly attempted to improve the current
best solution by applying slight changes and accepting these changes when they
lead to improvements. This is done till either a local optimum is found or a stop-

26

ping criterion is reached. Whereas the LS method is strong in its intensification
of a solution, it lacks in the diversification of the found solutions.

Iterated Local Search (ILS), proposed by Lourenço et al. [43], is an exten-
sion on the well-known LS method. The ILS method tries to improve on the LS
method by introducing diversification through perturbation of a solution stuck
in a local optimum. When for a solution a local optimum is found or a stopping
criterion is reached, the search is restarted using a perturbed version of the
current best solution. A good perturbation of a solution is achieved when the
perturbed solution has the right balance between being a randomly chosen solu-
tion and the original solution. Usually, the restart is performed a fixed number
of times, always starting from the current best solution.

A framework for the ILS method is given in Algorithm 4.7.

Algorithm 4.7 Iterated Local Search [43].

1: Initialize f(s∗) =∞
2: Create an initial solution s using a Greedy Heuristic
3: Apply the local search method to s to obtain s′

4: if f(s′) < f(s∗) then
5: s∗ = s′

6: end if
7: for A fixed number of iterations do
8: Perturb solution s∗ to obtain p
9: Apply the local search method to p to obtain p′

10: if f(p′) < f(s∗) then
11: s∗ = p′

12: end if
13: end for
14: Return the overall best solution

4.3.2 GRASP

Greedy Randomized Adaptive Search Procedure (GRASP) is another single-
solution based metaheuristic which has been introduced by Feo and Resende [25,
26]. A GRASP procedure repeatedly initializes a solution s using a randomized
greedy heuristic which is consequently improved using a simple local search
method to obtain s′. Each time the local search method terminates the resulting
solution is compared against the current best solution s∗. If it is found that the
newly created solution is an improvement compared to the current best solution
then the current best solution is replaced with the new solution.

This is done for a specified number of iterations, after which the algorithm
terminates and the overall best found solution is returned. A general framework
is given in Algorithm 4.8.

27

Algorithm 4.8 Greedy Randomized Adaptive Search Procedure [25, 26].

1: Initialize f(s∗) =∞
2: for A fixed number of iterations do
3: Create an initial solution s using a Randomized Greedy Heuristic
4: Apply the local search method to s to obtain s′

5: if f(s′) < f(s∗) then
6: s∗ = s′

7: end if
8: end for
9: Return the best solution

4.3.3 Simulated Annealing

Another often used metaheuristic is Simulated Annealing (SA). This meta-
heuristic has been independently proposed by Černỳ [15] and Kirkpatrick [39].
SA is a nature-inspired, single-solution metaheuristic, based on annealing met-
als. Annealing is a technique used in the field of metallurgy in which a metal is
heated in order to reshape it and consequently cooling it in a controlled manner,
such that the metal keeps its improved shape. The idea is that, when working a
heated metal, sometimes the quality of the shape should decrease to ultimately
end up with an improved shape.

SA uses this analogy by introducing controlling parameter T , called the
temperature. The temperature indicates the state of the system. When the
temperature is high a large amount of diversification can take place. As the
temperature is decreased during the search process, the diversification is de-
creased and the intensification is increased.

After the initialization of a solution and a high temperature a neighboring
solution is searched. When the objective value of the neighboring solution is
better than the objective value of the original solution, then the original solution
is replaced by the neighboring solution. When the neighboring solution is worse
than the original solution, then the neighboring solution is accepted as the new
solution with a probability based on the temperature and the objective values
of both solutions. A general form of a probability function is P (T, f(s′), f(s)) =
exp(−(f(s′)−f(s))/T) where T is the temperature, s′ is the neighboring solution
and s is the original solution. When the temperature is high the probability
of accepting a worse solution is large and as the temperature decreases the
probability of accepting a worse solution decreases.

Accepting worse solutions can be seen as a diversification step to escape from
local optima. The SA method should ultimately converge to a good solution,
which is why the intensification of a current solution is increased throughout
time. For a temperature T = 0 a worse solution is never accepted and the SA
method is equal to a LS method. Generally the SA method is terminated when
either the temperature is below a certain threshold value or when the objective
value no longer improves.

Simulated annealing has been around for a long time and has been a topic

28

of interest to many researchers. Many variants have been proposed. See Suman
and Kumar [53] for a recent survey.

A general framework for SA can be found in Algorithm 4.9. In this algorithm
the value η represents the threshold temperature. When the temperature drops
below this temperature it is expected that a good solution has been found by
this time.

Algorithm 4.9 Simulated Annealing [15, 39].

1: Create an initial solution s using a Greedy Heuristic
2: Initialize temperature T
3: while T > η do
4: Search neighboring solution s′ of s
5: if f(s′) < f(s) then
6: s = s′

7: else
8: s = s′ with probability P (T, f(s′), f(s))
9: end if

10: Decrease T
11: end while
12: Return the best solution

4.3.4 Genetic Algorithm

An example of a nature-inspired population-based metaheuristic is a Genetic
Algorithm (GA), first designed by Holland [37]. Since its original introduction
there have been many adaptations and extensions of GAs. However, each GA
has some specific characteristics, which are present in most of the implementa-
tions.

In principle, the GA is based on the theory of evolution found in nature.
In each iteration of the algorithm, or the so-called generation, there is a set
of solutions, otherwise known as a population of individuals. Each of these
individuals is more or less fit for their collective environment. The fitness of any
individual is generally expressed using the objective value corresponding to the
solution. Following the theory of natural selection it follows that individuals
which are more fit to their environment have a higher probability of passing its
desirable genes over to the next generation.

Passing over to a next generation occurs through a recombination of two
individuals, called parents, to produce children. The idea here is that combining
favorable traits of two parents results in children which are even better suited
to the environment. Another way in which improvements in the solutions can
occur is through mutation. Mutation changes an individual slightly which might
possibly improve its fitness for the environment.

A GA generally is run for a fixed number of generations, after which the
best found solution is returned.

29

Due to the highly adaptable nature of GAs it is possible to implement them
for a large range of problems. However, this also means that it can be hard
to find the right settings for a problem. Choices have to be made on how to
recombine two solutions, how a mutation is defined, the probability of mutation,
the probability of crossover, and so on.

For the WNP the GA has been implemented as follows. First the exogenous
parameters are initialized. These are the population size S, the maximum num-
ber of generations G, the crossover probability pc and the mutation probability
pm.

The population is then initialized by calling a randomized greedy heuristic
S times. For all the individuals in the population a fitness is calculated by
evaluating the objective function of the WNP.

Based on the fitness of each of the individuals a selection is made on which
individuals to advance to the next generation. This is done by assigning to each
of the individuals a probability of being selected as a parent. The probability of
selecting solution p ∈ S is given in equation (4.5). The second parent is chosen
by assigning equal probabilities to the remaining parents. This follows the
methodology presented in Murata et al. [46] and can be classified as tournament
selection.

Pp =
(f(p)−mins∈S f(s))2∑
s(f(p)−mins∈S f(s))2

∀p ∈ S (4.5)

When two different parents are selected it is determined whether they should
recombine in the next generation or not. To do this a uniform random variable x
is drawn which is uniformly distributed between [0,1]. When x < pc the solutions
are recombined, otherwise the solutions advance to the next generation as they
are.

Recombining two solutions is not necessarily straightforward. This follows
from the constraints which may not be violated. However, solutions should
retain their favorable characteristics. For the WNP it is chosen to implement
the recombination as follows. Let parent 1 be represented by x1ij and y1j and

parent 2 is x2ij and y2j . For each location in these solutions it follows that they are
either connected to an opened location, or they are opened themselves. These
are the choices which are deemed characteristic in the WNP.

A breakpoint is randomly chosen for the two solutions. Then locations are
crossed by taking all choices made for the locations from the first parent till the
breakpoint and all choices made for the locations from the second parent from
the breakpoint till the end. For the second new solution this is done by taking
the choices made for the locations till the breakpoint from the second parent
and additionally all choices made for the locations from the breakpoint till the
end from the first parent.

This recombination may result in infeasible solutions. For example, when in
the first solution the choice is transferred that a location before the breakpoint
is connected to an opened location after the breakpoint but this location is not

30

opened in the parent with which is recombined than the solution is no longer
valid. Thus after recombination each solution should be checked for feasiblity
and, if necessary, undergo repair.

Repair is done by searching for all locations which are connected to a loca-
tion which is not opened in the new solution. These are the invalid locations.
For each of these locations it is checked whether there is another opened loca-
tion within range which has not yet reached its capacity. If so, the location is
connected to this opened location. Otherwise, the location is disconnected from
all opened locations and opened itself. This is repeated till there are no more
invalid locations.

When the recombination phase has ended a new population is obtained.
However, before moving to the next generation, each of the individuals in the
new population might undergo mutation. To each of the solutions in the popu-
lation a random variable is assigned drawn from a uniform distribution between
[0,1]. When for any solution the random variable is smaller than pm the individ-
ual undergoes mutation. This is done by moving the individual to a neighboring
solution as has been described in the implementation.

These steps are then repeated for the prespecified number of generations G.
At the end the best found solution is returned.

Algorithm 4.10 Genetic Algorithm [11].

1: Initialize exogenous parameters S, G, pc and pm
2: Initialize population by calling the Randomized Greedy Heuristic S times
3: for G generations do
4: Select parents
5: if x ∈ U(0, 1) < pc then
6: Recombine parents
7: else
8: Pass parents to next generation as they are
9: end if

10: Select individuals to mutate from new population
11: end for
12: Return the best solution

31

5 Solving Set Covering Problems

The Sequential Set Covering method introduced in section 4.1.2 is based on
sequentially solving a SCP. This method is motivated by the similarity between
the SCP and the MSLSCP. In section 3.2 a literature review has been given of
the Set Covering Problem. In this literature review it is stated that SCPs are
known to be NP-hard problems [45]. This means that large scale SCPs are not
easily solved to optimality.

However, the SCP has been studied extensively and many good methods
exist for solving a SCP. In this section the implementation of a heuristic solution
method for the SCP will be presented. Afterwards, the performance of the
implemented method will be compared to other implementations by solving the
problems in Beasley’s OR-Library [6].

5.1 Solution Method

From the literature review in section 3.2 it can be deduced that many heuristic
solution methods for the SCP exist. The ones which show the best performance
are based on a combination of Lagrangian relaxation, subgradient optimization
and solving a pricing problem to define the core problem. The solution method
which is implemented here is for a large part based on Beasley [5], which is
improved by first defining a core problem by following the steps of Ceria et al.
[14].

5.1.1 Lagrangian Heuristic

Lagrangian relaxation is a proven method for quickly calculating lower bounds.
The right to exist for Lagrangian relaxation stems from the fact that it is often
more efficient in finding a lower bound than solving a linear relaxation. Up
until the introduction of Lagrangian relaxation in the 1970s most methods used
a linear relaxation to calculate a lower bound in, for example, a branch and
bound method. After the introduction of Lagrangian relaxation many methods
were easily improved by the implementation of Lagrangian relaxation.

Lagrangian relaxation is based on the view that most hard problems would
be easy to solve if it were not for a small set of side constraints. In Lagrangian
relaxation a problem is simplified, i.e. relaxed, by dualizing the set of constraints
which make a problem hard to solve. What this effectively means is that one is
allowed to violate the dualized constraints. However, this comes with a penalty
in the solution value. The penalization of violating the dualized constraints is
caused by the so-called Lagrangian multipliers.

32

The key to the Lagrangian relaxation method is the fact that the Lagrangian
multipliers, i.e. the penalization, may be varied. By varying the Lagrangian
multipliers one can influence the solution to the relaxed problem. For solving the
relaxed problem it is known that solving it always results in a valid lower bound
to the original problem. This means it might pay off to investigate whether
stronger lower bounds can be found by varying the Lagrangian multipliers. A
method to find good Lagrangian multipliers in a structured way is subgradient
optimization.

A detailed introduction to the use of Lagrangian relaxation combined with
subgradient optimization for hard optimization problems is given by Fisher [27].

Lagrangian relaxation has been applied to many hard optimization prob-
lems, among which is the SCP. An early heuristic based on Lagrangian relax-
ation is given by Beasley [5]. In the paper by Beasley, the constraint (3.8) is
relaxed which requires that all rows have to be covered. This gives the follow-
ing Lagrangian Lower Bound Program (LLBP) where λi are the Lagrangian
multipliers associated with the relaxed constraint.

Min
∑
j∈N

cjxj +
∑
i∈M

λi

1−
∑
j∈N

aijxj

 = (5.1)

Min
∑
j∈N

(
cj −

∑
i∈M

λiaij

)
xj +

∑
i∈M

λi (5.2)

s.t. xj ∈ {0, 1} ∀j ∈ N (5.3)

In (5.1) the dualization of the coverage constraint can be seen, which is
penalized by λi when the constraint is violated. However, for ease of notation
it is common to use the objective function as in (5.2). This notation is useful
in solving the LLBP.

From (5.2) it can be seen that there is a fixed term, namely the sum of
the Lagrangian multipliers, which can not be influenced. Now let Cj = cj −∑
i∈M λiaij represent the coefficient of xj in (5.2). Using this term it can be

seen that an optimal solution to the LLBP can easily be found by setting xj = 1
if Cj < 0 and xj = 0, otherwise. For any set of multipliers λ ≥ 0 it is known
that the optimal solution to the LLBP is a valid lower bound to the original
SCP instance. Let L(λ) be the optimal solution value of the LLBP given λ.
The best lower bound is found by solving maxL(λ).

Subgradient optimization is used to find the vector λ which maximizes the
Lagrangian function. Subgradient optimization is an iterative procedure which
incrementally updates the vector of multipliers. Given an initial vector of mul-
tipliers λ0 a sequence of multipliers is generated by equation (5.4). In this
equation, λk is the current vector of multipliers, T is the step size and Gi is the
subgradient.

λk+1
i = max{0, λki + TGi} (5.4)

33

In each iteration of the subgradient optimization the subgradient Gi is cal-
culated as in (5.5). Here xkj is the optimal solution to the LLBP for the vector

of multipliers λk in the kth iteration.

Gi = 1−
∑
j∈N

aijx
k
j ∀i ∈M (5.5)

A suitable step size T is calculated as in (5.6). Here ZUB is the objective
value of the best found solution to the original SCP and ZLB is the objective
value found by solving the LLBP for the current set of multipliers. Parameter
f is a controlling parameter which influences the step size. Throughout the
execution of the algorithm the parameter is decreased which results in smaller
step sizes.

T = f
(1.05ZUB − ZLB)∑

i∈M
(Gi)2

(5.6)

Note that, in calculating a suitable step size T a value for ZUB is required.
Ideally the value for ZUB is frequently updated as it is preferred to have a
smaller step size when the difference between ZUB and ZLB becomes smaller.
In the Lagrangian heuristic as proposed by Beasley this is done by making use of
the information contained in the solution to the LLBP. Namely, in each iteration
of the algorithm the solution to the LLBP is transformed into a solution to the
original SCP instance.

A solution to the LLBP is not necessarily a feasible solution to the original
SCP. This follows from the fact that in the LLBP the coverage constraint is re-
laxed, meaning it is allowed to violate this constraint. To transform the solution
to the LLBP the following steps are executed. First, let S = {j|xj = 1,∀j ∈ N},
where xj is a solution to the LLBP. Based on this it can be checked whether
there are any rows which are not covered by the columns in S. For each row
i ∈ M not covered by S, a column is added to S covering row i ∈ M at the
least amount of costs. This gives S = S ∪ argmin(cj |aij = 1). This results
in a feasible solution, however some of the columns in S might turn out to be
redundant.

A column in S is said to be redundant if the set S = S\{j} is still a feasible
solution to the original SCP. For each of the columns in S it is checked whether it
is redundant in descending order of cj and removed if it is found to be redundant.
Finally, it is checked whether the found solution has a lower solution value than
the best found solution so far. The best found solution to the original SCP is
updated by ZUB = min(ZUB ,

∑
j∈S cj).

As stated the best value for ZUB is used for calculating the step size. The
calculated values are then used to update the multipliers. With the new multi-
pliers the same procedure is executed again. When the subgradient optimization
method is unable to improve the best found solution to the original SCP instance
for 30 consecutive iterations, the value for f is halved.

34

The entire algorithm for Beasley’s Lagrangian Heuristic can be found in
Algorithm 5.1. In the algorithm the Lagrangian multipliers are initialized as
λi = min{cj |aij = 1,∀j ∈ N} ∀i ∈ M. The algorithm terminates when either
an optimal solution is found (i.e. ZUB = Zmin, where Zmin is the best found
lower bound) or when f ≤ ε, which is an arbitrarily chosen stopping criteria.
At the end the best found solution is returned.

Algorithm 5.1 Beasley’s Lagrangian Heuristic.

1: Initialize Zmin = −∞, ZUB = ∞, λi = min{cj |aij = 1,∀j ∈ N} ∀i ∈ M,
f = η

2: while ZUB 6= Zmin and f > ε do
3: Solve LLBP for the current set of multipliers, gives ZLB
4: if ZLB > Zmin then
5: Zmin = ZLB
6: end if
7: Construct a feasible solution S to the original SCP
8: Remove redundant columns from S
9: if

∑
j∈S cj < ZUB then

10: ZUB =
∑
j∈S cj

11: end if
12: Calculate the subgradients Gi
13: Calculate step size T
14: if Zmin has not increased in the last 30 iterations then
15: f = f/2
16: end if
17: Update the Lagrangian multipliers λi
18: end while

5.1.2 Defining the Core Problem

The Lagrangian Heuristic by Beasley is found to be a very efficient method,
which is able to reach near optimal results with little computational effort.
However, the problem size of many SCP instances has increased since the intro-
duction of the Lagrangian Heuristic. Many large-scale SCP instances are still
solved with a Lagrangian Heuristic, which is applied to a so-called core problem,
e.g. Caprara et al. [12], Ceria et al. [14].

The goal of defining a core problem is to reduce the problem size, while
maintaining similar solution quality. For a SCP instance, a core problem consists
of a subset of the columns which are found in the original SCP instance and
are able to produce feasible solutions. Solving the core problem by any method,
such as a Lagrangian Heuristic, yields a solution to the core problem. In turn,
a solution to the core problem is a valid solution to the original SCP instance.
This is due to the fact that the core problem consists of columns found in the
original SCP instance.

35

To obtain good solutions to the original SCP instance the core problem
should be determined in an effective way. Any good core problem should consist
of columns which can be found in good solutions, supplemented with additional
columns to ensure feasible solutions. Any column which is not found in the
core problem is assumed to not be found in good solutions and may never be
selected.

Defining a core problem greatly reduces the problem size of a SCP instance.
However, note that defining a core problem is only efficient when the time
required to determine the core problem and solving the core problem offsets
the time required to solve the original SCP instance. Also, solutions to the
core problem should be of similar quality as the solutions to the original SCP
instance.

To define the core problem a pricing procedure is used. The pricing proce-
dure is in the spirit of the well-known column generation technique, as intro-
duced by Bixby et al. [10]. Both Ceria et al. [14] and Caprara et al. [12] used
a pricing procedure specifically tailored for large-scale SCP instances to define
the core problem. The difference between the implementation of Caprara et al.
and Ceria et al. is that Caprara et al. update their core problem dynamically,
whereas Ceria et al. define their core problem once and try to find the best
solution to this core problem. The added benefit to updating the core prob-
lem dynamically is that better solutions are found, however this comes at an
increase in computational effort. As the aim of this research is to obtain quickly
generated solutions it is decided to use the implementation of Ceria et al. to
define the core problem.

Ceria et al. [14] use Lagrangian relaxation to quickly calculate a good lower
bound for the original SCP and a corresponding set of optimal multipliers λ∗.
Based on the optimal multipliers they calculate the reduced costs for each of
the columns, as in (5.7). All columns which have a reduced costs which is
below a threshold value Rj ≤ γ are added to the core problem. To ensure that
the columns in the core problem are able to result in a feasible solution to the
original SCP they add columns to the core problem till each row is covered by
at least θ columns. This is done by identifying how often rows are covered. If
any row is covered less than θ times, it is identified which columns cover those
specific rows. Those columns are then added in ascending reduced costs order
till all rows are sufficiently covered.

Rj = cj −
∑
i∈M

λiaij ∀j ∈ N (5.7)

So far the method for determining a good set of multipliers λ is similar to
the method used by Beasley. However, for large problems it is inefficient to
create a feasible solution to the original SCP in each iteration. Also, in defining
the core problem it is not yet an objective to find a solution to the original SCP.
The goal is to find a good set of multipliers with which a core problem can be
defined. To determine a good set of multipliers an upper bound on the original

36

SCP is required. To quickly calculate an upper bound to the original SCP Ceria
et al. use Lagrangian relaxation for the dual of the original SCP.

The dual to the linear relaxation of the SCP is formulated as follows.

Max
∑
i∈M

yi (5.8)

s.t.
∑
i∈M

ajiyi ≤ cj ∀j ∈ N (5.9)

yi ≥ 0 ∀i ∈M (5.10)

Where a Lagrangian relaxation is given by relaxing the constraint set (5.9),
resulting in the following Lagrangian upper bound program (LUBP). The mul-
tipliers corresponding to the relaxation are given by µj .

Max
∑
i∈M

(1−
∑
j∈N

aTijµj)yi +
∑
j∈N

cjµj (5.11)

s.t. yi ≥ 0 ∀i ∈M (5.12)

For any set of multipliers µ the solution value to the LUBP is a valid up-
per bound to the original SCP. Given a set of dual multipliers µ a solution is
easily calculated. Let c̄i = max{cj |aij = 1, ∀j ∈ N}. Note that the follow-
ing is implied 0 ≤ yi ≤ c̄i due to constraint set (5.9), even though it is not
explicitly stated. A solution to the LUBP is then given by setting yi = c̄i if
(1−

∑
j∈N a

T
ijµj) > 0 and yi = 0 otherwise.

Note that, when maximizing, the choice should actually be made to set
yi =∞ as this choice is in no way prohibited and this would result in the true
maximum of the LUBP. Doing so, however, would result in erratic behavior
in the convergence to an optimal set of multipliers λ. When the found upper
bound constantly switches between ∞ and a suitable upper bound there is no
useful meaning to the calculated step size. To prevent this erratic behavior the
choice is made to set yi = c̄i.

Let DL(µ) be the solution value to the LUBP for the dual multipliers µ. The
best upper bound is found by solving minDL(µ). A good set of dual multipliers
µ can be found using subgradient optimization in a similar fashion to Beasley’s
Lagrangian Heuristic.

In each iteration of the algorithm the dual multipliers are updated as in
(5.13).

µk+1
j = max{0, µkj + USj} ∀j ∈ N (5.13)

The subgradients for the dual Lagrangian problem are calculated as in (5.14).
In this equation yki is the optimal solution to the LUBP for the dual multipliers

37

µk.

Sj =
∑
i∈M

aijy
k
i − cj ∀j ∈ N (5.14)

A step size for the dual subgradients is calculated as follows. Here ZUB is
the solution value of the LUBP for the current set of dual multipliers µ. Zmin is
the best lower bound found in the previous iterations. Parameter g = η initially,
however this value is halved if the tightest upper bound has not improved in
the last 30 iterations.

U = g
(1.05Zub − Zmin)∑

j∈N
(Sj)2

(5.15)

Ceria et al. created a Primal-Dual Lagrangian algorithm which solves the
Lagrangian relaxations of the original SCP and the dual of the original SCP
simultaneously. In the algorithm Zmin represents the best lower bound and
Zmax represents the best upper bound. The algorithm stops when either an
optimal solution is found (i.e. ZUB = Zmin) or when either f ≤ ε or g ≤ ε. The
algorithm is implemented as in Algorithm 5.2, where λ, f and T correspond to
the Lagrangian relaxation of the original SCP.

When the algorithm terminates the final multipliers λ are used to construct
the core problem. This core problem is then extended with additional columns
to ensure the feasibility of a possible solution. This core problem can then be
solved by any method which can be used to solve a SCP instance.

5.2 Performance of the Solution Method

The performance of the implemented method can be compared to the other
methods by solving the SCP problems found in Beasley’s OR-library. These
SCPs are solved by most of the in the literature available methods for SCPs
and for many problems an optimal solution is known.

In the comparison three solution methods will be compared to one another.
First there is the method by Beasley [5], which is shown in Algorithm 5.1. This
method is indicated by Be. For this method the parameter ε is set to 0.005,
just as in the paper by Beasley [5]. Secondly, there is the method where first
a core problem is identified as is described in Algorithm 5.2. For defining the
core problem the parameters γ = 0.1, θ = 10 and ε = 0.005 are used, which
are equivalent to the parameters used by Ceria et al. [14]. This core problem
is then solved using the Lagrangian heuristic as in Algorithm 5.1. This method
is indicated by BeCe. Thirdly, the objective value and solution times of the
commercial Gurobi solver are added to compare the solutions by the heuristics
to the optimal solutions.

38

Algorithm 5.2 Ceria’s Primal-Dual Lagrangian Algorithm.

1: Initialize Zmin = −∞, Zmax = ∞, λi = min{cj |aij = 1,∀j ∈ N} ∀i ∈ M,
µj = 1/

∑
i∈M aij ∀j ∈ N , f = g = η

2: while ZUB 6= Zmin and f > ε and g > ε do
3: Solve LLBP and LUBP for the current multipliers, gives ZLB and ZUB
4: if ZLB > Zmin then
5: Zmin = ZLB
6: end if
7: if ZUB < Zmax then
8: Zmax = ZUB
9: end if

10: Calculate the subgradients Gi and Sj
11: Calculate step size T and U
12: if Zmin has not increased in the last 30 iterations then
13: f = f/2
14: end if
15: if Zmax has not increased in the last 30 iterations then
16: g = g/2
17: end if
18: Update the Lagrangian multipliers λi and µj
19: end while
20: Determine core problem based on final Cj < γ
21: Extend the core problem till each row is covered θ times

39

Test Problem Details

Set Rows Columns Density (%) No. of Problems

4 200 1,000 2 10
5 200 2,000 2 10
6 200 1,000 5 5
A 300 3,000 2 5
B 300 3,000 5 5
C 400 4,000 2 5
D 400 4,000 5 5
E 500 5,000 10 5
F 500 5,000 20 5
G 1,000 10,000 2 5
H 1,000 10,000 5 5

Table 5.1: Details for each of the test sets.

Some details about the SCPs found in Beasley’s OR-Library can be found
in Table 5.1. In this table the density is defined as the percentage of ones in the
aij matrix. For each of the problem sets the costs of a column lie within the
interval [1,100].

As can be seen from this table, the problem sets differ in size (i.e. number
of rows and number of columns) and density. Generally, the computational
effort required to solve a problem increases with the size and the density of the
problem.

For most of the problems in the problem set an optimal solution is known in
the literature. However, for the hardest problems considered, namely the prob-
lems in problem sets G and H, no optimal solutions are known and only a best
known objective value is reported in the literature. As a best known solution
is available it is still possible to compare the performance of the heuristics to
this value. For the Gurobi solver it will be interesting to see whether it is able
to solve the problems in the problem set within 10 minutes, which is the time
limit set for the solver.

In Table 5.2 the problems of sets 4, 5 and 6 are solved. These are relatively
small problems and require little computational effort. The Gurobi solver is
able to solve these problems to optimality in a small amount of computation
time. The heuristics Be and BeCe are comparable in their performance. Both
have similar computation times and are able to obtain optimal or near-optimal
results. From these problem instances it can be seen that, for problems of a
limited size, no improvement is made in terms of computation times by first
defining a core problem. However, first defining a core problem also does not
increase the computation times of the heuristic.

In Table 5.3 the problem sets A, B, C and D are considered. For these
problem sets the Gurobi solver is still able to solve them to optimality in only
a couple of seconds. However, the Gurobi solver is no longer noticeably more

40

Be BeCe Gurobi

Problem Opt Obj Time (s) Obj Time (s) Obj Time (s)

4.1 429 429 0.281 429 0.401 429 0.026
4.2 512 512 0.290 512 0.230 512 0.016
4.3 516 516 0.089 516 0.186 516 0.015
4.4 494 495 0.924 494 0.284 494 0.017
4.5 512 512 0.128 512 0.104 512 0.015
4.6 560 561 0.903 561 0.712 560 0.026
4.7 430 430 0.230 430 0.442 430 0.015
4.8 492 493 0.810 492 0.885 492 0.039
4.9 641 641 1.349 641 1.008 641 0.044
4.10 514 514 0.151 514 0.263 514 0.016

5.1 253 254 1.511 254 1.115 253 0.107
5.2 302 305 1.841 302 1.326 302 0.105
5.3 226 226 0.166 226 0.173 226 0.024
5.4 242 242 1.225 242 0.902 242 0.037
5.5 211 211 0.184 211 0.184 211 0.025
5.6 213 213 0.203 213 0.353 213 0.025
5.7 293 293 1.083 294 1.045 293 0.043
5.8 288 288 1.352 288 0.865 288 0.040
5.9 279 279 0.315 279 0.402 279 0.024
5.10 265 265 0.106 265 0.167 265 0.023

6.1 138 140 1.359 141 0.803 138 0.322
6.2 146 149 1.137 148 0.903 146 0.594
6.3 145 145 1.070 145 0.718 145 0.118
6.4 131 131 0.785 131 0.744 131 0.054
6.5 161 166 1.143 163 0.892 161 0.657

Table 5.2: Comparison of the SCP solution methods for the problem sets 4, 5
and 6.

41

Be BeCe Gurobi

Problem Opt Obj Time (s) Obj Time (s) Obj Time (s)

A.1 253 255 2.980 256 1.493 253 0.852
A.2 252 256 2.536 255 1.655 252 0.592
A.3 232 235 2.670 234 1.741 232 0.417
A.4 234 234 2.449 234 1.729 234 0.203
A.5 236 237 1.968 237 1.371 236 0.090

B.1 69 70 2.436 70 1.133 69 1.446
B.2 76 76 3.766 76 1.576 76 1.978
B.3 80 81 2.959 81 1.229 80 0.862
B.4 79 81 3.651 81 1.318 79 2.256
B.5 72 72 3.353 72 1.372 72 1.219

C.1 227 230 4.415 229 2.932 227 0.660
C.2 219 222 3.966 222 2.041 219 1.264
C.3 243 248 5.492 247 2.490 243 2.165
C.4 219 223 4.363 223 2.193 219 0.958
C.5 215 217 4.005 217 1.940 215 0.970

D.1 60 60 6.641 60 1.799 60 1.776
D.2 66 68 5.525 67 1.687 66 3.684
D.3 72 73 6.311 74 2.240 72 4.200
D.4 62 64 5.944 64 1.751 62 2.709
D.5 61 61 5.259 61 2.288 61 0.902

Table 5.3: Comparison of the SCP solution methods for the problem sets A,
B, C and D.

efficient in coming to a solution than the BeCe method. In terms of solution
quality both the Be and BeCe method show similar performance by obtaining
optimal or near-optimal solutions. Based on the time in which the solution is
obtained, it is now evident that first defining a core problem already improves
the efficiency of the BeCe method.

Finally, in Table 5.4 the hardest problem sets are considered. The problems
in problem sets E and F are still solved to optimality by the Gurobi solver within
the time limit of 10 minutes. Yet for the problems in problem sets G and H,
which are the hardest problems, the Gurobi solver is unable to find the optimal
solution within the time limit. For these problems best known solutions (BKS)
are reported which originate from existing literature on SCP problems. Most of
the times the Gurobi solver is not able to find the best known solutions within
the time limit.

For all the problems in the problem sets E, F, G and H the computational
efficiency of the heuristics is finally apparent. Again the heuristics are able to
obtain optimal or near-optimal results while requiring only little computational

42

Be BeCe Gurobi

Problem BKS Obj Time (s) Obj Time (s) Obj Time (s)

E.1 29 29 20.450 29 2.599 29 44.150
E.2 30 32 21.746 32 2.911 30 267.470
E.3 27 29 19.794 29 2.578 27 22.996
E.4 28 30 24.612 29 2.849 28 35.761
E.5 28 28 20.618 28 3.288 28 25.786

F.1 14 15 37.496 15 4.032 14 37.658
F.2 15 16 33.035 15 3.651 15 28.512
F.3 14 15 40.721 15 3.579 14 17.500
F.4 14 15 37.539 15 3.619 14 76.569
F.5 13 15 32.630 15 4.274 13 403.435

G.1 176 183 40.960 183 6.127 176 †600.000
G.2 154 162 41.011 164 6.364 155 †600.000
G.3 166 174 44.269 175 6.023 167 †600.000
G.4 168 178 39.816 176 6.003 168 †600.000
G.5 168 177 53.299 177 6.326 169 †600.000

H.1 63 68 110.769 69 8.404 65 †600.000
H.2 63 66 100.165 66 7.722 64 †600.000
H.3 59 65 101.599 65 7.978 61 †600.000
H.4 58 63 88.943 63 7.963 59 †600.000
H.5 55 59 82.091 59 7.674 55 †600.000

Table 5.4: Comparison of the SCP solution methods for the problem sets E,
F, G and H. For solution times marked with †, the Gurobi solver reached the
time limit before finding an optimal solution.

effort. For these problem sets the BeCe method really distinguishes itself in
terms of computational efficiency. For the BeCe method the computations times
are only a fraction of the computations times of the Be method and the Gurobi
solver.

43

6 Application and Test Instances

In this section the design of several fictitious test instances is discussed. These
are used to gain experience with the application of the models which are pro-
posed to distribute the services over the lampposts in a city. In the test instances
there are several key ingredients required to obtain a situation in which the pro-
posed models are applicable. These ingredients are chosen in such a way that
they resemble the real world conditions as close as possible.

For each test instance the list of services which are to be distributed will be
the same. The test instances differ on which city is used as an area of interest.
The cities are selected in such a way that the test instances are ranging from
small rural towns to a moderately large city. The selected cities influence the
size of the test instances. The test instance of a small rural town will have much
less lampposts than the test instance of a moderately large city. The range of
test instances can be used to investigate the scalability of the solution methods.

6.1 List of Services

For the test instances it is important to first define the services which will be
considered. For each of the services an equipping cost should be known, which is
assumed to be equal over all locations. Additionally, the shape of the coverage
area is required.

In this research it is assumed that all services have a circular coverage area
which is defined by the range of a service. For many services this will be an
accurate representation of reality. However, it should be noted that in theory
any other shape could be incorporated in the auij matrix.

For most of the services it is the case that the quality of the service diminishes
when one is further away from the source. For example, an alarm can be assumed
to be insufficiently audible from a certain distance. Hence, a range is specified
for which it is assumed that the quality of the service is acceptable within the
range. This does not mean that the service is no longer available just outside
the range, however coverage is deemed inadequate from this point onward.

A final list of services which are considered in this research can be found in
Table 6.1. For each of the services in this table information can be found on
the range of the service and on the equipping costs. The specifications for each
of the services are chosen to be plausible in a real world situation, however the
list of services which will be considered is by no means exhaustive and serves
an exemplary purpose.

44

Specifications

Service Abbreviation Range (m) Costs (e)

Wi-Fi Wi 50 300
Motion Detection MD 100 350
Alarm AL 300 150
Air quality AQ 650 400
Weather Station WS 1,500 950

Table 6.1: Technical specifications and costs of services.

6.2 The Locations of Lampposts

For many cities in the Netherlands the locations of lampposts are made publicly
available. The data on the locations of lampposts is accessible through the Open
Data Initiative Dataplatform1. For the test instances a diverse range of cities
is chosen as an area of interest. The selection consists of Schiermonnikoog,
Rozendaal, Noordwijk, Lisse, Amsterdam Center and Delft.

As an example, the city center of Amsterdam is used. The city center has
8,604 lampposts which are displayed on a map of Amsterdam in Figure 6.1.

6.3 Regional Representation

Some additional attention should be paid to the representation of the area which
needs to be covered. The results from Murray et al. [48] indicate that repre-
senting the state space as regularly spaced points on a street map works best in
terms of computational efficiency. A visualization of a regularly spaced regional
representation of the city center of Amsterdam, The Netherlands for the Wi-Fi
service can be found in Figure 6.2. The known location of lampposts can then
be used to calculate the distance from each lamppost location to each of the
demand points. Additionally, with the coverage of a service it can be checked
whether a demand point might be covered by a service from a lamppost location.

A choice should be made for the density, i.e. the resolution, of the regularly
spaced points on the street map. A high resolution results in an accurate regional
representation. However, it also leads to an increase in the problem sizes.

From Table 6.1 it can be seen that the difference in range between services
can be very large. The Wi-Fi service for example only has a range of 50 meters,
whereas the weather station service has a range of 1,500 meters, which is 30
times as large. For services with a small range it is imperative to use a very
detailed state space, i.e. the demand points should be close to one another. This
ensures an accurate representation of a city. For services with a large range,
the demand points can be further apart. This will still ensure an accurate
representation of a city.

1https://www.dataplatform.nl/ (Accessed on April 1, 2016)

45

https://www.dataplatform.nl/

AmsterdamAmsterdam

Map data © OpenStreetMap contributorsMap data © OpenStreetMap contributors

Lampposts
Center Boundary

Figure 6.1: The locations of lampposts in the city center of Amsterdam, The
Netherlands.

AmsterdamAmsterdam

Map data © OpenStreetMap contributorsMap data © OpenStreetMap contributors

Demand Points
Center Boundary

Figure 6.2: Regional representation of the city center of Amsterdam, The
Netherlands for the Wi-Fi service.

46

The number of demand points which might be covered by a location is de-
pendent on the range of a service and the density of the demand points. To be
precise, it is the ratio of the range of a service and the distance between demand
points which determines the potential number of demand points within reach.
This can be seen from the following. Consider a circle with a range of 20 meters
containing equally spaced demand points which are 1 meter apart. Then the
same number of points are within this circle as in a circle with a range of 10
meters in which each point is 0.5 meters apart. However, when the range of a
circle is 20 meters while the range between points is 0.5 meters the number of
points within the circle has increased.

To illustrate how the number of demand points within range is dependent
on the ratio of the range of a service and the distance between demand points
a small test case has been created. Consider a square area where the sides have
a length which is two times the range of a circle. In this square area a grid
is created where the points have an equal distance from one another. When
drawing a circle with as center the middle of the square area, one can count the
number of points within the circle. When increasing the range, and thus the
area which is considered, but keeping the distance between points the same, the
ratio increases. With this also the number of points within range increases.

Figure 6.3 illustrates the increase in the number of demand points within
range as the ratio increases. It can be seen that the ratio entirely explains
the number of demand points which can be covered from a location. Given any
ratio x, the number of demand points within range, y, is given by equation (6.1).
This curve is also shown in Figure 6.3. The fitted equation is, not coincidentally,
similar to the equation describing the area of a circle.

y = 3.169x2 − 1.11x− 0.1088 (6.1)

This result indicates that while, for example, a distance between demand
points of 20 meters is suitable for the motion detection service, which has a
range of 50 meters, this is not suitable for the air quality service. The air
quality service has a range of 1,500 meters which would result in up to 17,743
demand points being covered from one location when the demand points are
only 20 meters apart. Hence, the distance between demand points should be
suitably adjusted for each of the services.

For this research it is chosen to have a distance between demand points which
is the range of a service divided by 2. This results in a potential number of 10
demand points within range of any location and thus an accurate representation
of the state space. Note that this is not a perfect representation. This is due to
the fact that the demand points should be covered, however, the area between
demand points does not have to be covered. When the distance between demand
points increases, also the area which is potentially not covered increases. This
is because only coverage guarantees for the demand points can be given with
the current model. This concession has to be made, however, as the problem
might turn computationally intractable if the number of demand points is too
large.

47

0 5 10 15 20 25

Ratio range over distance

0

200

400

600

800

1000

1200

1400

1600

1800

2000

W
ith

in
 R

an
ge

Within Range
Fitted curve

Figure 6.3: Relationship between the ratio range over distance and the number
of demand points within range.

6.4 Places

Combining the information in sections 6.1 to 6.3 enables the creation of test
instances. First a region should be specified within which the MSLSCP and
WNP should be applied. This is specified by a boundary of (a part of) a city
or a town. Using this boundary a grid of demand points is created for each of
the services. For each of the services, the distance between the demand points
is specified by half the service range.

Then a distance is calculated from each location of a lamppost to all demand
points. This is done to create the coverage matrix for a service. When for a
service a demand point might be covered from a location then this information is
stored in the coverage matrix. It might be that some demand points are never
within the range of any location of a lamppost for a service. These demand
points are obsolete and thus deleted from the formulation. All resulting demand
points are required to be covered at least once in any valid solution to the
MSLSCP. This is repeated for all services, such that each service has its own
demand points and coverage matrix.

The costs of connecting a lamppost to an existing network are assumed to
be uniformly distributed between e750 and e5,000. A uniform distribution is
chosen as no additional information on the costs of connecting a lamppost to
an existing network is known at the time.

In Table 6.2 it can be found which places are considered. For each of the
places a test case has been created. In the table information can be found on
the number of lampposts and the number of created demand points per service.

48

Demand Points

Service Area Lampposts Wi MD AL AQ WS

Schiermonnikoog 233 1,704 783 242 106 52
Rozendaal 523 1,736 653 116 40 16
Noordwijk 1,162 4,156 1,902 488 187 72
Lisse 4,273 10,172 3,692 724 194 43
Amsterdam Center 8,604 11,744 3,243 391 96 19
Delft 13,885 22,489 6,806 983 248 53

Table 6.2: Test instance details.

From this table it can be seen that the selection of cities results in varying sizes
of the test instances.

49

7 Computational Results

The proposed solution methods are applied to the test instances to solve the
problem where a set of services is to be distributed over the lampposts in a city
such that coverage can be provided. As stated in the introduction this will be
done in a two-step approach. First the MSLSCP is solved for the test instances
to make a selection from the lampposts which are required to provide coverage.
Then it is investigated whether a cost reduction is possible by applying the
solution methods for the WNP to the solution of the MSLSCP obtained using
the most promising solution method.

For each of the solution methods a comparison will be made on the compu-
tation time as well as on the quality of the solution. It is preferred to come to
good solutions in a relatively small amount of time.

7.1 MSLSCP Results

First the results for the MSLSCP to the test instances are presented. The
results for each of the solution methods on the test instances can be found in
Table 7.1. In the first phase the results for the solution methods, as described in
section 4.1.1 to 4.1.4, are presented. The second phase is the improvement step
which has been described in section 4.1.5 This is used to gauge the quality of
the solutions obtained by the proposed solution methods. Another measure to
determine the solution quality is by comparing the solution to the lower bound
for each of the test instances, which is calculated by solving the linear relaxation
of the MSLSCP. For each solution a percentage deviation from the lower bound
is presented.

The MSLSCP Exact method is the exact algorithm as described in section
4.1.1. The time limit for the Gurobi solver has been set to an overnight com-
putation time of seven hours. Optimal solutions have been found for the four
smallest test cases, namely for Schiermonnikoog, Rozendaal, Noordwijk and
Lisse. The results are indicative of the rapidly increasing computational effort
which is required to solve larger problems.

The SSC Heuristic method is the Sequential Set Covering method as de-
scribed in section 4.1.2. In each iteration the resulting SCP is solved using the
heuristic method described in section 5. For the smallest test case Schiermon-
nikoog, this method is able to find the optimal solution. For the test cases
Rozendaal, Noordwijk and Lisse the found solution is very close to the optimal
solution. For the larger test cases Amsterdam Center and Delft the SSC Heuris-
tic method is able to find solutions within reasonable computation times. For
these test cases no optimal solutions are known. However, the found solutions
are very close to the best found solutions by the exact algorithm.

50

The results for the greedy Likelihood and Connection heuristics are also
shown. These methods are described in section 4.1.3 and section 4.1.4, respec-
tively. Both these methods are able to quickly find feasible solutions to the test
cases. The Likelihood heuristic tends to require a longer time till a solution is
found, however the solution is always of a better quality then those found by
the Connection heuristic. This can be attributed to the fact that the Likelihood
heuristic takes into account the costs of opening a location, whereas the Con-
nection heuristic does not. Even though the solutions found by the Likelihood
heuristic are always of a lesser quality than the solutions found by the SSC
method, they are somewhat close. The same can not be said for the Connection
heuristic.

In the second phase the improvement step is applied to the solutions found
in the first phase. Using the connected locations it is investigated whether a
redistribution of the services leads to an improvement in the solution quality.
The improvement is not applied to the solutions found by the MSLSCP Exact
method as the optimal solutions can not be improved.

For the smaller test cases Schiermonnikoog, Rozendaal, Noordwijk and Lisse
the solutions are quickly improved. For the larger test cases Amsterdam Center
and Delft the improvement step is less efficient. For the Delft test case, all
solutions from the first phase can not be optimally improved within the time
limit. However, some feasible solutions are found which are improvements of
the initial solutions. The computation times which are required indicate that
the improvement step might not be useful to apply to large test cases.

For the SSC method, the improvements are not very large. This indicates
that a redistribution of the services over the opened locations is not very influen-
tial on the final result. This shows that the services are already distributed quite
effectively over the opened locations by the SSC method in the first phase. For
the Connection method there is much room for improvement. However, even
the improved solutions for the Connection method do not match the solution
quality of the solutions found by the SSC and Likelihood methods in the first
phase.

In Figure 7.1 the results for the Air Quality service are visualized for the
test case Amsterdam Center which has been solved by the Likelihood method.
Indeed all demand points are covered which is as expected of a feasible solution.
Some coverage gaps can be found in the solution. However, as explained in
section 6.3, these were to be expected.

7.2 Wireless Network Problem

From the results for the MSLSCP it follows that the SSC method yields the
most useful results. The solutions to each of the test instances obtained through
applying the SSC method are taken as input to the WNP. The most important
objective of the WNP is to see whether a cost reduction can be found in enabling
lampposts to be equipped with services. In the MSLSCP the assumption has
been that all lampposts have to be connected to an existing network in order

51

Phase 1 Phase 2

TC LB (e) Method Obj (e) Dev (%) Time (s) Obj (e) Dev (%) Time (s)

S
ch

ie
r

m
on

n
ik

o
og

528,291

MSLSCP Exact 528,889 0.11 0.12 - - -
SSC Heuristic 528,889 0.11 2.33 528,889 0.11 0.07
Likelihood 542,154 2.62 0.08 535,359 1.34 0.06
Connection 592,924 12.23 0.19 554,192 4.89 0.06

R
oz

en
d

aa
l

592,871

MSLSCP Exact 593,402 0.09 0.17 - - -
SSC Heuristic 596,727 0.65 1.57 594,734 0.31 0.10
Likelihood 636,001 7.27 0.16 610,854 3.03 0.14
Connection 748,627 26.27 0.13 654,739 10.44 0.10

N
o
or

d
w

ij
k

1,692,027

MSLSCP Exact 1,692,594 0.03 0.55 - - -
SSC Heuristic 1,706,116 0.83 3.66 1,696,606 0.27 0.11
Likelihood 1,783,309 5.39 0.90 1,721,095 1.72 0.14
Connection 2,017,122 19.21 0.89 1,823,728 7.78 0.17

L
is

se 2,957,457

MSLSCP Exact 2,963,737 0.21 2,736.75 - - -
SSC Heuristic 2,991,293 1.14 21.71 2,977,416 0.67 3.96
Likelihood 3,167,800 7.11 6.43 3,056,816 3.36 234.32
Connection 4,032,367 36.35 5.26 3,533,453 19.48 167.22

A
m

st
er

d
a
m

C
en

te
r

3,236,138

MSLSCP Exact 3,255,959 0.61 †25, 200.00 - - -
SSC Heuristic 3,303,342 2.08 26.18 3,280,118 1.36 981.73
Likelihood 3,609,602 11.54 14.27 3,449,529 6.59 †25, 200.00
Connection 5,130,907 58.55 10.24 4,362,125 34.79 4,083.67

D
el

ft

6,918,375

MSLSCP Exact 6,947,421 0.42 †25, 200.00 - - -
SSC Heuristic 7,019,789 1.47 96.92 6,984,609 0.96 †25, 200.00
Likelihood 7,576,794 9.52 43.59 7,259,661 4.93 †25, 200.00
Connection 10,425,661 50.70 30.79 8,939,547 29.21 †25, 200.00

Table 7.1: Results for each of the test cases. For solution times marked with
†, the Gurobi solver reached the time limit before finding an optimal solution.

52

AmsterdamAmsterdam

Map data © OpenStreetMap contributorsMap data © OpenStreetMap contributors

Lampposts

Center Boundary

Air Quality

Demand Points

Figure 7.1: Result for the Air Quality service for the Likelihood heuristic.
Test case Amsterdam Center.

to be equipped with services. This is a costly endeavor and any possible cost
reductions should be exploited.

In the application of the WNP to the solutions of the MSLSCP it is assumed
that a lamppost connected to an existing network can act as a hub to at most
four other lampposts which are within a range of 100 meters of the connected
lamppost.

In Table 7.2 the starting position of the WNP is shown. This starting posi-
tion is defined by the results of the MSLSCP obtained through the SSC method
on the test instances. In these solutions a certain amount of lampposts is con-
nected to an existing network and there is a corresponding connection costs
associated with this. In the table also the results of the exact algorithm for
the WNP can be found. The results indicate an increasing computational effort
required to solve the WNP. However, the results also give a useful benchmark
for the implemented heuristic methods.

The results for each of the heuristic methods can be found in Table 7.3. As
all methods are randomized to a certain extend it is chosen to apply the methods
three times to each of the test instances. In the table the best objective value
from the three solutions is presented, as well as the average objective value and
the average time required to come to a solution.

First, the ILS and GRASP methods are shown. The implementation of both
these methods has been discussed in section 4.3.1 and section 4.3.2, respectively.
For the ILS it has been chosen to restart the search 10 times from a perturbed

53

MSLSCP Exact WNP

Service Area Connected Costs (e) Connected Costs (e) Time (s)

Schiermonnikoog 163 441,049 55 120,478 0.15
Rozendaal 196 506,227 48 73,958 0.29
Noordwijk 544 1,434,866 142 233,330 2.00
Lisse 1,075 2,511,543 261 393,003 89.09
Amsterdam Center 1,401 2,729,674 307 357,287 1536.70
Delft 2,792 5,851,939 648 855,452 †25, 200.00

Table 7.2: Comparison of connection results after the MSLSCP and after
WNP. For solution times marked with †, the Gurobi solver reached the time
limit before finding an optimal solution.

version of the best solution. At the end the overall best solution is returned for
which the results are shown in the table. The GRASP method has also been
restarted 10 times, however for this method the search starts from a solution
obtained through a randomized greedy procedure.

Secondly, the SA and GA methods are shown. The implementation of both
these methods has been discussed in section 4.3.3 and section 4.3.4, respectively.
These methods are more advanced than the ILS and GRASP method in the
sense that they allow some control over the behavior of the methods through
the tuning of several parameters. For the SA a choice can be made on the initial
temperature, the cooling scheme which is used and when the method should
terminate. The GA requires a population size, a mutation rate, a crossover rate
and a maximum number of generations.

For the SA method the same initial temperature has been used for all test
instances which is chosen to be a temperature of 10,000. This initial tempera-
ture yields suitable acceptance probabilities of worse solutions. Dependent on
the test instances differing cooling schemes have been used. For the Schiermon-
nikoog, Rozendaal and Noordwijk test cases the temperature is decreased by 50
after each iteration. For Lisse the temperature is decreased by 25 in each itera-
tion and for Amsterdam Center and Delft the temperature is decreased by 10 in
each iteration. When the temperature is decreased with a smaller number then
this ultimately results in a larger number of total iterations, which for the larger
test instances is useful as the search space is larger for these test instances. For
all test instances the search is terminated once the temperature falls below 500.

For the GA it is chosen to have the same parameters for all test instances.
The population size is initialized to be 20. In accordance with existing literature
the mutation rate has been selected to be 5% and the crossover rate is set
to 80%, see Boussäıd et al. [11]. The GA terminates after 50 generations.
These parameters are chosen in such a way that there is a sufficient number of
iterations to allow the algorithm to investigate a large part of the search space.
A high crossover rate is chosen to give good solutions the opportunity to obtain

54

ILS GRASP

Service Area Best Avg Time (s) Best Avg Time (s)

Schiermonnikoog 134,851 135,450 0.21 132,874 134,140 0.76
Rozendaal 76,791 81,091 0.37 85,829 87,312 1.17
Noordwijk 255,015 256,550 2.15 267,084 279,010 10.94
Lisse 501,235 511,790 15.93 545,337 555,790 64.53
Amsterdam Center 516,017 538,388 32.25 550,556 561,990 136.65
Delft 1,186,504 1,196,515 147.39 1,276,910 1,287,202 318.24

SA GA

Service Area Best Avg Time (s) Best Avg Time (s)

Schiermonnikoog 143,149 146,025 0.14 145,901 147,714 3.38
Rozendaal 93,514 96,734 0.23 95,074 99,251 5.17
Noordwijk 308,813 320,027 1.72 342,396 346,415 19.43
Lisse 550,193 551,091 12.37 612,893 620,898 75.62
Amsterdam Center 565,008 583,935 53.23 617,867 629,034 119.78
Delft 1,225,352 1,241,628 201.21 1,395,782 1,413,018 333.49

Table 7.3: Results on WNP for ILS, GRASP, SA and GA.

good characteristics of other solutions. Mutation of a solution is not necessarily
preferred as this might result in a decreasing quality of a solution which is why
this rate is set relatively low.

From the results it can be seen that the ILS method returns the most promis-
ing results. Generally, this method is able to find the best solutions while re-
quiring the least amount of computation time. This indicates that this method
is able to find a good balance between intensification and diversification. The
other methods are unable to find a similar balance between intensification and
diversification, however this can be explained.

For the GRASP method it is found that it is able to obtain solutions which
are not far off from the solutions found by the ILS method. This can be at-
tributed to the fact that these methods use the same local search method.
However, the solutions times for GRASP are noticeably worse than the solution
times which are required for the ILS method. This can be attributed to the
initialization of these solutions.

The heuristic used to obtain initial solutions could be implemented either
greedy, randomized greedy or totally random. When comparing the quality
of the initial solutions the results as in Figure 7.2 could be seen for all the
test instances. The greedy implementation is always able to find better initial
solutions than the randomized greedy implementation. Hence, any method
starting from a randomized greedy solution requires more local search iterations
before a solution of a similar quality of even the greedy heuristic is found. The
GRASP method always restarts from a randomized greedy solution, whereas

55

5 5.5 6 6.5 7 7.5 8 8.5 9

Objectiveovalue G 105

0

5

10

15

20

25

30

35

40

45

50

F
re

qu
en

cy

Random

RandomizedoGreedy

Greedy

Figure 7.2: Comparison of initial solutions for the test instance Lisse.

the ILS method starts from a greedy solution and restarts from a perturbed
version of the current best solution which is likely to still be of a better quality
than the randomized greedy solutions. This leads to a smaller number of overall
iterations for the ILS method and thus better computation times.

The SA method also starts from a greedy solution. However, this method
sometimes moves to worse solutions for the purpose of diversification. As the
algorithm progresses the amount of diversification is lowered and the amount of
intensification is increased. Apparently the method is unable to obtain a suitable
starting point for the intensification of a solution after the diversification of the
solutions.

The GA method is overall the method which results in the least favorable
solutions and computation times. The GA method is also the method which
is the most distinct from the other methods. The reason why the GA method
is unable to find good solutions can be attributed to the fact that it is rather
difficult to suitably recombine two solutions. Generally after each recombination
the solutions have to be repaired in order to adhere to the restrictions imposed by
the WNP. This repairing of a solution prevents the GA method from converting
to better and better solutions.

This shows that ILS is the preferred method for solving the WNP. For this
method the solutions are of a sufficient quality while requiring the least amount
of computation time. A visual representation of the WNP result obtained with
the ILS method for the test instance Amsterdam Center is shown in Figure 7.3.

56

AmsterdamAmsterdam

Map data © OpenStreetMap contributorsMap data © OpenStreetMap contributors

Connected to Backbone

Connected to Hub

Connections

Center Boundary

Figure 7.3: Results for the WNP for the test instance Amsterdam Center
using ILS.

7.3 Two-Step Approach Results

When combining the results for both the MSLSCP and the WNP it has been
found that the best combination of solution methods is the Sequential Set Cov-
ering method and the Iterated Local Search method. Combining these methods
leads to a final result in terms of total costs required to supply the cities in
the test instances with the services and a total number of connected lampposts.
These results are shown in Table 7.4 and are based on the best solution obtained
with the ILS method.

Service Area Total Costs (e) Connected

Schiermonnikoog 222,701 65
Rozendaal 167,291 56
Noordwijk 526,265 166
Lisse 980,985 323
Amsterdam Center 1,138,676 420
Delft 2,354,354 824

Table 7.4: Final results.

57

8 Concluding Remarks

In this research a visionary problem has been considered in which services are
to be distributed over the lampposts in a city such that these services can be
provided adequately against minimal costs. The difficulties of this problem lie
in the shared set-up costs of enabling a lamppost to be equipped with services.

To solve this problem a two-step approach is proposed. In the first step it is
assumed that all lampposts which are to be equipped with services need to be
connected to an existing network.

A mathematical formulation of the problem in the first step has been pre-
sented and this formulation has been termed the Multi-Service Location Set
Covering Problem. Based on this formulation and the similarities to some well-
known problems from the literature, several solutions methods have been de-
vised. The solution methods were implemented and tested on a range of test
instances which consisted of cities in which five services were to be distributed
over the lampposts. The implemented methods showed varying degrees of suc-
cess in their ability to solve the MSLSCP. From the results it is concluded that
the Sequential Set Covering method worked best.

For the SSC method to work adequately it is important to be able to solve
Set Covering Problems. The SCP is known to NP-hard which means that this is
no trivial task. From the literature it is found that the most promising methods
use a combination of Lagrangian relaxation, subgradient optimization and the
search for a core problem. In this research a method for defining a core problem
found in the literature has been implemented which subsequently is solved using
a proven method to solve SCPs which has also been found in the literature. The
combination of these methods showed efficient solving capabilities of random
SCP instances.

In the second step of the two-step approach the assumption is dropped that
all lampposts which are equipped with services need to be connected to an
existing network. It is now investigated whether several lampposts can act as
a hub to other lampposts, such that not all lamppost need to be connected.
In the first step of the two-step approach a selection has been made from the
lampposts which are required to provide coverage. This selection is taken as
input to the problem in the second step.

In this problem several restrictions had to be taken into account, such as
a maximum range between the lampposts and a maximum number of lamp-
posts which could be connected to a hub. This problem has been formulated
mathematically and was termed the Wireless Network Problem.

For the WNP several metaheuristics have been implemented. A good meta-
heuristic should be able to efficiently find good solutions to hard optimization
problems. A metaheuristic is defined by a framework in which several steps are

58

executed in a structured manner such that solutions are efficiently sampled from
the search space. The sampled solutions should have a good balance between
diversification and intensification. Some of the frameworks for metaheuristics
which were applied executed similar steps and these were implemented in the
same way across the different metaheuristics. For the WNP it was found that
the Iterated Local Search metaheuristic was able to find the best solutions in a
reasonable amount of computation time.

8.1 Future Research

Inherent to the formulation of the MSLSCP is the fact that it can be assured
that all demand points are covered. However, no guarantees on the coverage for
the regions between the demand points can be given. This was to be expected
due to literature already indicating such behavior. However, no solution for this
behavior has been found. This means an interesting direction for future research
would be to investigate how coverage of an entire region can be guaranteed.

To the WNP several metaheuristics have been applied. These metaheuristics
had some similar implementations of steps generally occurring in the frameworks
of metaheuristics. These were implemented in the same way and it has been
interesting to see how each of the metaheuristics were able to use these steps
to find good solutions. However, metaheuristics are solution methods which are
designed in such a way that they make as few assumptions about good solutions
as possible. To solve the WNP it might be that some methods which exploit
the characteristics of the problem formulation might result in better solutions.
This can not be said with certainty without performing any research regarding
this.

59

Bibliography

[1] R. K. Ahuja, J. B. Orlin, S. Pallottino, M. P. Scaparra, and M. G. Scutellà.
A multi-exchange heuristic for the single-source capacitated facility location
problem. Management Science, 50(6):749–760, 2004.

[2] S. Bao, N. Xiao, Z. Lai, H. Zhang, and C. Kim. Optimizing watchtower
locations for forest fire monitoring using location models. Fire Safety Jour-
nal, 71:100–109, 2015.

[3] J. Barceló and J. Casanovas. A heuristic lagrangean algorithm for the
capacitated plant location problem. European Journal of Operational Re-
search, 15(2):212–226, 1984.

[4] J. Bautista and J. Pereira. Modeling the problem of locating collection areas
for urban waste management. an application to the metropolitan area of
barcelona. Omega, 34(6):617–629, 2006.

[5] J. E. Beasley. A lagrangian heuristic for set-covering problems. Naval
Research Logistics (NRL), 37(1):151–164, 1990.

[6] J. E. Beasley. Or-library: distributing test problems by electronic mail.
Journal of the operational research society, pages 1069–1072, 1990.

[7] J. E. Beasley. Lagrangean heuristics for location problems. European Jour-
nal of Operational Research, 65(3):383–399, 1993.

[8] J. E. Bell, S. E. Griffis, W. A. Cunningham, and J. A. Eberlan. Location
optimization of strategic alert sites for homeland defense. Omega, 39(2):
151–158, 2011.

[9] H. Bernhard, B. Korte, and J. Vygen. Combinatorial optimization: Theory
and algorithms, 2008.

[10] R. E. Bixby, J. W. Gregory, I. J. Lustig, R. E. Marsten, and D. F. Shanno.
Very large-scale linear programming: a case study in combining interior
point and simplex methods. Operations Research, 40(5):885–897, 1992.

[11] I. Boussäıd, J. Lepagnot, and P. Siarry. A survey on optimization meta-
heuristics. Information Sciences, 237:82–117, 2013.

[12] A. Caprara, M. Fischetti, and P. Toth. A heuristic method for the set
covering problem. Operations research, 47(5):730–743, 1999.

[13] A. Caprara, P. Toth, and M. Fischetti. Algorithms for the set covering
problem. Annals of Operations Research, 98(1-4):353–371, 2000.

60

[14] S. Ceria, P. Nobili, and A. Sassano. A lagrangian-based heuristic for large-
scale set covering problems. Mathematical Programming, 81(2):215–228,
1998.

[15] V. Černỳ. Thermodynamical approach to the traveling salesman problem:
An efficient simulation algorithm. Journal of optimization theory and ap-
plications, 45(1):41–51, 1985.

[16] C.-H. Chen and C.-J. Ting. Combining lagrangian heuristic and ant colony
system to solve the single source capacitated facility location problem.
Transportation research part E: logistics and transportation review, 44(6):
1099–1122, 2008.

[17] R. Church and C. R. Velle. The maximal covering location problem. Papers
in regional science, 32(1):101–118, 1974.

[18] J. Chuzhoy and J. Naor. Covering problems with hard capacities. SIAM
Journal on Computing, 36(2):498–515, 2006.

[19] V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics
of operations research, 4(3):233–235, 1979.

[20] I. A. Contreras and J. A. Dı́az. Scatter search for the single source ca-
pacitated facility location problem. Annals of Operations Research, 157(1):
73–89, 2008.

[21] M. S. Daskin. What you should know about location modeling. Naval
Research Logistics (NRL), 55(4):283–294, 2008.

[22] J. Diaz and E. Fernández. A branch-and-price algorithm for the single
source capacitated plant location problem. Journal of the Operational Re-
search Society, 53(7):728–740, 2002.

[23] D. Erlenkotter. A dual-based procedure for uncapacitated facility location.
Operations Research, 26(6):992–1009, 1978.

[24] R. Z. Farahani, N. Asgari, N. Heidari, M. Hosseininia, and M. Goh. Cov-
ering problems in facility location: A review. Computers & Industrial
Engineering, 62(1):368–407, 2012.

[25] T. A. Feo and M. G. Resende. A probabilistic heuristic for a computation-
ally difficult set covering problem. Operations research letters, 8(2):67–71,
1989.

[26] T. A. Feo and M. G. Resende. Greedy randomized adaptive search proce-
dures. Journal of global optimization, 6(2):109–133, 1995.

[27] M. L. Fisher. The lagrangian relaxation method for solving integer pro-
gramming problems. Management science, 50(12 supplement):1861–1871,
2004.

61

[28] M. L. Fisher, R. Jaikumar, and L. N. Van Wassenhove. A multiplier ad-
justment method for the generalized assignment problem. Management
Science, 32(9):1095–1103, 1986.

[29] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan. Dependent
rounding in bipartite graphs. In Foundations of Computer Science, 2002.
Proceedings. The 43rd Annual IEEE Symposium on, pages 323–332. IEEE,
2002.

[30] R. Gandhi, E. Halperin, S. Khuller, G. Kortsarz, and A. Srinivasan. An
improved approximation algorithm for vertex cover with hard capacities.
Journal of Computer and System Sciences, 72(1):16–33, 2006.

[31] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,
USA, 1979. ISBN 0716710447.

[32] G. Guastaroba and M. G. Speranza. A heuristic for bilp problems: the
single source capacitated facility location problem. European Journal of
Operational Research, 238(2):438–450, 2014.

[33] S. Guha, R. Hassin, S. Khuller, and E. Or. Capacitated vertex covering.
Journal of Algorithms, 48(1):257–270, 2003.

[34] H. W. Hamacher and Z. Drezner. Facility location: applications and theory.
Springer Science & Business Media, 2002.

[35] K. Hindi and K. Pieńkosz. Efficient solution of large scale, single-source,
capacitated plant location problems. Journal of the operational Research
Society, 50(3):268–274, 1999.

[36] S. C. Ho. An iterated tabu search heuristic for the single source capacitated
facility location problem. Applied Soft Computing, 27:169–178, 2015.

[37] J. H. Holland. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. U
Michigan Press, 1975.

[38] K. Holmberg, M. Rönnqvist, and D. Yuan. An exact algorithm for the ca-
pacitated facility location problems with single sourcing. European Journal
of Operational Research, 113(3):544–559, 1999.

[39] S. Kirkpatrick. Optimization by simulated annealing: Quantitative studies.
Journal of statistical physics, 34(5-6):975–986, 1984.

[40] J. G. Klincewicz and H. Luss. A lagrangian relaxation heuristic for ca-
pacitated facility location with single-source constraints. Journal of the
Operational Research Society, 37(5):495–500, 1986.

62

[41] G. Lee and A. T. Murray. Maximal covering with network survivability re-
quirements in wireless mesh networks. Computers, Environment and Urban
Systems, 34(1):49–57, 2010.

[42] S. Li. A 1.488 approximation algorithm for the uncapacitated facility loca-
tion problem. Information and Computation, 222:45–58, 2013.

[43] H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search. In
Handbook of metaheuristics, pages 320–353. Springer, 2003.

[44] M. Mahdian, Y. Ye, and J. Zhang. Approximation algorithms for metric
facility location problems. SIAM Journal on Computing, 36(2):411–432,
2006.

[45] R. G. Michael and S. J. David. Computers and intractability: a guide to
the theory of np-completeness. WH Free. Co., San Fr, 1979.

[46] T. Murata, H. Ishibuchi, and H. Tanaka. Genetic algorithms for flowshop
scheduling problems. Computers & Industrial Engineering, 30(4):1061–
1071, 1996.

[47] A. T. Murray and X. Feng. Public street lighting service standard as-
sessment and achievement. Socio-Economic Planning Sciences, 53:14–22,
2016.

[48] A. T. Murray, M. E. OKelly, and R. L. Church. Regional service coverage
modeling. Computers & Operations Research, 35(2):339–355, 2008.

[49] R. M. Nauss. An improved algorithm for the capacitated facility location
problem. Journal of the Operational Research Society, pages 1195–1201,
1978.

[50] M. B. Rosenwein. Discrete location theory, edited by PB Mirchandani and
RL Francis, John Wiley & Sons, New York, 1990, 555 pp., 1994.

[51] D. B. Shmoys, É. Tardos, and K. Aardal. Approximation algorithms for
facility location problems. In Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing, pages 265–274. ACM, 1997.

[52] R. Sridharan. The capacitated plant location problem. European Journal
of Operational Research, 87(2):203–213, 1995.

[53] B. Suman and P. Kumar. A survey of simulated annealing as a tool for
single and multiobjective optimization. Journal of the operational research
society, 57(10):1143–1160, 2006.

[54] C. Toregas, R. Swain, C. ReVelle, and L. Bergman. The location of emer-
gency service facilities. Operations Research, 19(6):1363–1373, 1971.

63

[55] S. Umetani and M. Yagiura. Relaxation heuristics for the set covering
problem. Journal of the Operations Research Society of Japan, 50(4):350–
375, 2007.

[56] Z. Yang, F. Chu, and H. Chen. A cut-and-solve based algorithm for the
single-source capacitated facility location problem. European Journal of
Operational Research, 221(3):521–532, 2012.

64

	Introduction
	Problem Setting
	Base Problem
	Extension on the Base Problem
	Two-Step Approach
	Goal of this Research
	Structure of the Thesis

	Problem Formulations
	The Multi-Service Location Set Covering Problem
	The Wireless Network Problem

	Literature Review
	Facility Location Problems
	Set Covering Problems
	Capacitated Vertex Cover

	Solution Approach
	MSLSCP Methods
	Exact Algorithm
	Sequential Set Covering Heuristic
	Likelihood Heuristic
	Connection Heuristic
	Improvement Step

	Common Steps for Metaheuristics
	Initial Solution
	Defining the Neighborhood
	Perturbation of a Solution

	Selected Metaheuristics for the WNP
	Iterated Local Search
	GRASP
	Simulated Annealing
	Genetic Algorithm

	Solving Set Covering Problems
	Solution Method
	Lagrangian Heuristic
	Defining the Core Problem

	Performance of the Solution Method

	Application and Test Instances
	List of Services
	The Locations of Lampposts
	Regional Representation
	Places

	Computational Results
	MSLSCP Results
	Wireless Network Problem
	Two-Step Approach Results

	Concluding Remarks
	Future Research

	Bibliography

