Asset allocation under multiple regimes

Master’s Thesis in Quantitative Finance

Oscar Liszewski

July 2016

Abstract

In this paper we examine the performance of the Markov Switching model with
intra-regimes changes such as the bull market correction and bear market rallies. We
accommodate this short time rehearsals by imposing restrictions on the transition prob-
ability matrix. We compare the model with classic mean-switching and dynamic VAR
models in an asset allocation problem with different number of regimes, initial states
choices and asset distributions used in the estimation process. In an out-of-sample and
bootstrap verification we give evidence that the constrained model outperforms other
models in terms of risk-adjusted returns in the long horizon above 2 years.
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1 Introduction

Investors and academics agree on the existence of short term trends of opposite direction to
the main trend in the stock market. During bear or bull markets the prices of stock can
increase or respectively decrease for a short period of time without necessarily meaning a
change in the state of the economy. These phenomena called bull corrections and bear rallies
might mislead an investor by implying a change in the economy main trend and impact its
investments. We want to verify that by accommodating these short time rehearsals through
component states of the bear and bull markets in our models, we can improve his allocation
choices. We believe that an investor incorporating this knowledge can significantly improve
its results. It is in fact the case as we find in an out-of-sample evaluation that this model
outperforms classic regime-switching models in terms of risk adjusted returns for almost all

tested horizons, especially in the long term (above 2 years).

Regime switching models have been within the scope of financial academic interest for quite
some time now. In the past most studies assumed linear dependencies between regressors
and dependent variables such as asset returns. More recently, it has been proven that such
dependencies are not linear and they do vary across time (Ang and Bekaert (2002a,b, 2004),
Ang and Chen (2002), Garcia and Perron (1996), Guidolin and Timmermann (2005a,b,
2006, 2007), Guidolin and Hyde (2012) to cite a few). This is most clearly visible in stock
returns where bull markets follow bear markets and so on, but it has been shown that it
affects not only equity returns, but also interest rates data (Gray (1996)) or macroeconomic
fundamentals (Hamilton (1989)). These different states of economy not only impact expected
returns but also returns characteristics such as higher correlation in bear markets or higher
correlation Erb et al. (1994), Campbell et al. (2002).

Although the method has been widely propagated due to Hamilton (1989), Ang and Bekaert
(2002a) were the first to use a simple 2 regime model to solve an asset allocation problem
showing significant improvement compared to the non regime dependent model. Ever since,
many authors tried to augment the number of regimes for a better fit of models for the
data. Guidolin and Timmermann (2005a) investigate the economic implication of 3 regimes
- bear, bull and normal market - on UK stocks and bonds. The effect is particularly large
at short investment horizons and if ignored, the presence of such regimes leads to important
welfare costs. Finally, Guidolin and Timmermann (2007) show that 4 regimes are required

to capture the joint distribution of both equities and bonds. They are characterized as crash,



slow growth, bull and recovery states. The authors additionally perform an out of sample
forecast test to demonstrate the benefits of accounting for the presence of these regimes in

asset returns.

Other authors explore the presence of predictability in asset returns under regime switches.
The topic has been widely covered in a linear specification. Authors like Barberis (2000)
or Campbell and Thompson (2008) show the evidence for predictability of stock premium
by variables such as the dividend yield, term spread or net equity issuance. On the other
hand Guidolin and Ono (2006) include many macroeconomic fundamentals in a VAR(1)
component and show that it is not regime dependent. The authors explain it by the fact

that linkages between the macroeconomy and financial markets are stable over time.

Maheu et al. (2012) is an important paper as it takes a different approach to switching model
extensions. Instead of augmenting the number of regimes, they point for the existence of bull
market corrections and bear market rallies. Such high-frequency reversals could be modelled
by imposing restrictions on the transition probability matrix. Thanks to these modifications
they could get a better specification of the 2 general regimes - the bear and bull market. We
use a similar model in our work. Although the results of the paper prove that the model
fits the data well and gives accurate distribution forecasts the authors do not extend their

analysis to any economic evaluation.

A first significant contribution of this paper is to show how the use of a model accommodating
intra-regime changes can influence asset allocation framework and then to compare out-of-
sample its performance with a set of classic MS models. Second, we test the presence of
intra-regimes in monthly data instead of weekly time-frames adopted in Maheu et al. (2012).
We believe that monthly data are most frequently used by long term investors. Third, we are
sceptical about the priors imposed in the Bayesian estimation of Maheu et al. (2012). Instead,
we prefer to let the data speak and estimate the model in a frequentist approach. Finally,
we use a joint distribution of stocks and bonds to estimate the regime distribution. This
approach is then compared to classic stock only distribution and the distribution including
the dividend yield. We perform a thorough analysis estimating 4 models with mean and
covariances dependent of regimes and 4 regimes additionally including a VAR(1) component
with the dividend yield.

Our work differs from Kole and Dijk (2016) in several aspects. The authors perform a com-

parison of a set of regime dependent models both with constant and time-varying transition



probabilities, but they limit themselves to models with just two and three regimes. In our
opinion it is interesting to include 4 regime models into the analysis as Guidolin and Tim-
mermann (2007) prove that they fit the data very well. What is more, the authors only
mention the specification of Maheu et al. (2012) but do not include it in their evaluation,
this is in fact something we want to explore the most. Next, the authors use rule based
semi-parametric (they set a value for minimal changes in prices for the regime to switch)
and parametric regime switching models, whereas we use a joint-distribution of both stocks
and bonds. Finally, in their analysis the investor can choose from stocks and a risk free rate

only, we expand the range of assets with long-term bonds.

We first perform a static allocation based on the model estimates from the whole sample.
This test’s purpose is to answer the question of many long term investors ”what assets should
[ invest into?”. We set an allocation framework similar to the famous paper of Barberis (2000)
results of which became a point of reference both for academia and investors. We compare the
results with other regime switching models as well. The results are in opposition to the main
results of Barberis. In fact, it is not always optimal to increase allocation to stocks with time,
even when predictability is taken into account. In a linear framework, predictability from
variables such as the dividend yield lowers risk in longer horizons, increasing the allocation
to stocks. Regime switching has an opposite effect, return innovations and future expected
returns have a negative correlation leading to a reduced allocation. In other words, we know
that the economy will not always remain in a given state. Even in a strong bull trend, we
should be aware that the economy might finally fall into a bear state. Both effects have an
impact on asset allocation resulting in different shapes of the allocation schemes depending

on the initial state and time horizon.

We implement these findings into an economic evaluation in order to determine the best
model. We choose between 10 models in total. The classical IID model, the linear non
switching VAR model, models with regime switching mean returns and volatility in 4 regime
configurations - 2,3 and 4 regimes and 4 regimes with bull rallies and bear market corrections

and, finally, models in the same regime configurations but with explanatory variables in a
VAR(1) configuration.

We find that the performance of regime dependent models often depend on the investment
horizon. Adding regimes does not necessarily lead to better results, especially depending on

the time horizon. Models with just 2 regimes perform better in short horizon than models



with 3 or 4 regimes, which on the other hand give better results in the medium and long
term. The main finding of the out-of-sample evaluation is that an elaborate extension of
the model, with 4 regimes but the transition matrix modified to accommodate short time-
rehearsals, gives the best results of all the models. Our model not only manages to fit
the data very well, but also gives a great advantage in asset allocation. In short horizon
the investor incorporates brief changes in asset return trends, whereas in the long term, the
model give a better specification of the two main regimes - the bull and bear market. Thanks
to that, the allocation in this horizon is more stable, especially because of the fact that in
the long run a good prediction of returns distribution dominates the model market timing
abilities. Interestingly, even in the longest period the asset allocation differ from the investor

who ignores regime.

Despite these realistic implications the autoregressive component does not give economic ad-
vantages. Mean-switching models dominate their autoregressive counterparts both in testing
and in the real life test of out-of-sample verification. Keeping the number of variables at an
acceptable level, these models prove to be sufficiently complex to fit the data and are simple

enough to be robust on estimation errors.

A common question when increasing the number of regimes is whether the model does not
overfit the data. The same issue has been raised by Guidolin and Timmermann (2007). In
order to address that problem and perform a final check on our constrained model, we use
a historical bootstrap to compare 4 models - the IID model, a 2MS and 4 MS model and
the constrained 4 regime model. Unlike the paper of Guidolin and Timmermann (2007)
who use a parametric bootstrap based on the estimates of the 4 regime model, we use a
historical bootstrap from Politis and Romano (1994) as it does not bias the results in favor
of that model.In order to include dependence in the data we use a block bootstrap where the
optimal block length is chosen based on the method described in Politis and White (2004).
The results show a good performance of both 4 regime models in the short run, however in
the long run all models are outperformed in the long run by the constrained 4 regime model,
which proves our model to allow a good data fit resulting in a good return distribution

forecast.

This paper is organized as follows. Section 2 describes the data. Section 3 covers the
methodology of model construction, testing procedures and portfolio calculations. Section 4

presents the results of model estimation, their tests results and the resulting static allocation



values. Section 5 evaluates the out-of-sample performance of the models. Section 6 extends

the model verification with a bootstrap. Section 7 concludes.

2 Data

Our analysis concentrates on a US investor considering three classes of assets: stocks, bonds
and cash. In our research we use the popular data set furnished by Goyal & Welch covering
a wide variety of variables. For stock we use the S&P500 Index end of month values from
the Center for Research in Security Press. The stock returns are continuously compounded
returns. For bond we use the long term return on bonds which is made from a portfolio of
long term bonds from Ibbotson’s Stocks, Bonds, Bills and Inflation Yearbook - it allows to
maintain perpetuity even when some bonds were not issued for some periods of time. Finally
for cash and the risk free rate used to obtain excess returns we use the ex post real T-bill rate
calculated as the difference between the log return from 3-month T-bill and log inflation.
The T-bill rates have been taken from Bloomberg, whereas inflation values from the Federal
Reserve Economic Data. We replace that variable from Goyal & Welch, as they do not give
precise information on the assets used for their riskfree variable. Stock and Bonds returns
are excess returns calculated over the T-bill rate. The dividend yield or the D/P ratio is
calculated as the log of the dividend paid by companies from the index through the last
12 months (sum of dividends from ¢ — 11 to t) divided by the index price. In order for an
increased convergence, in the estimation process the D/P ratio is additionally divided by
100. Following the literature we use data after the Treasury Accord from 1951. Therefore
our data set covers the period from January 1954 until December 2014 - the latest available
update of Goyal & Welch. It gives us a sample o 732 observations. For the out of sample
analysis we use a period of 30 years, from January 1985 to December 2014, covering among
others the last financial crisis. The table below presents the summary statistics of the data

used calculated on the full sample. Data summery statistics are reported in Table 1 below.



Table 1. Summary statistic

The table presents the average, standard deviation, minimum, maximum and the first
order correlation of the ex post real T-bill returns, stocks excess returns, long-term
bonds excess returns and the D/P ratio. The statistics are calculated on the full sample

period from January 1954 to December 2014 and are reported in monthly units.

T-bills Stocks Bonds D/P
Average 0.0009 0.0049 0.0014 -0.0354
St. dev. 0.0028 0.0425 0.0279 0.0039
min -0.0107 -0.2476 -0.1194 -0.0452
max 0.0179 0.1489 0.1348 -0.0275
AR(1) 0.5234 0.0592 0.0424 0.9939

We evaluate the stationarity of our variables by conducting for each one an Augmented
Dickey-Fuller test. All predictor variables menage to reject the null hypothesis for the pres-
ence of the unit root, with the exception of the D /P ratio. However, we decide to not modify
the variable. We find evidence in the literature supporting the fact that the variable is
globally stationary (Chang et al. (2012)) and follow the same approach as Barberis (2000),
Campbell and Viceira (1996) or Brandt (2010). We additionally analyse the impact of the

variable on the model stationarity in the estimation results.

3 Methodology

In this chapter, divided into 3 subsections, we present the methodology used in our analysis.
The first subsection describes the model construction process. In the second we thoroughly
describe the testing procedures and we then describe the portfolio construction methodology
in the third.

3.1 Model construction

Regime switching models, due to their elasticity and empirical value have been much re-

searched by academics. They form a wide group of models thanks to their great variety



of specifications depending on which parameter is subject to regime related variability. Al-
though we work on several models, we can distinguish in our study two major groups of mod-
els’ specifications. The first being MSMH(m) models and the second MSIAH(m)-VAR(p)
models. The former model can be seen as a constrained form of the latter where p, the
parameter determining the number of lags in the autoregressive component, has been set
to 0 with only the intercept or mean component remaining. Additionally, in both cases the
volatility is also regime-dependent allowing for a regime-switching heteroskedasticity. For
models without the VAR component, the mean and intercept are identical and can be used
interchangeably, therefore MSI and MSM are identical. It is no longer the case for MSI-VAR
and MSM-VAR models. Krolzig (2013) shows that they differ in the dynamics of adjustment
after a change in regime. As there are no premises to use a regime-dependent mean model

we will follow a MSI framework for the sake of simplicity of model construction.

The first, simpler specification can be written as

T = Wg, + € (1)

Where r; denotes the n x 1 vector of excess asset returns (ri¢, 72, ..., 7nt)’, Hg, is the vector of
asset means in state S; which takes integer value between 1 and k according to the number
of regimes. €; which is the vector of error component has a distribution N (0, Qg,) with Qg,
being the covariance matrix dependent on the regime S;. When k=1 this simplifies to a

simple linear model, which will often serve as a benchmark.

The second group of models extends our model with an autoregressive component. Recent
papers (e.g. Barberis (2000)) have shown strong evidence supporting the predictive power of
dividend to price ratio on stock returns. We choose only one predictive variable based on the
strong support of the litterature and the fact that other variables would highly increase the
number of estimated parameters. Also Guidolin and Ono (2006) find no evidence of dynamic
linkages between macroeconomics fundamentals and financial markets. We will implement
this variable in our model with a VAR framework of order 1 which can be generally written

as:



In this case pg, and p.s, denote intercepts vectors of R; and z; in state Sy, A is a matrix of
autoregressive coefficients in state S; and (€ €,,)" ~ N(0,g,) is the vector of error terms

with covariance matrix €2 dependent from the actual regime.

The main idea behind models known as regime-switching (Hamilton (1989)) or Markov-
switching, is that the parameters of the model of the observed time series vector r; depend
on a latent process Sy, which represents the probability of being in a given state of the world,

although we can never be sure about the regime which actually prevailed.

The main assumption in this type of models is that the switches in the unobservable realiza-
tions of regimes are driven by a discrete time and state Markov stochastic process, defined

by the transition probability matrix P with elements:

k
pij = Pr[S; = i[Si_1 = jl, Zpij =1 (3)
j=1

In our model we allow only for constant transition probabilities. We motivate this choice
by the fact, that we wanted to see the performance of the constrained 4 regime model and
its advantages in a relatively simple framework. Furthermore, a big part of our work is a
long time forecast for the purpose of a long-term investment strategy. In a time-varying
transition probabilities model these variations are driven by an information variable such as
economic fundamentals. The process of forecasting would require an estimation process for
these variables themselves which is far beyond the scope of this paper. Last but not least,
the whole estimation process is sufficiently computationally burdensome as already in its

current state it requires some trade off in the number of simulations performed.

In order to estimate the parameters of our model we need to make some inference about the
state probabilities conditional on the observed returns. We can do so using the Bayes’ rule
and transition probabilities. The filter derivation is presented in Hamilton (1989), in our

work we use the notation from Kole (2010).

1
m&lt_l o f (4)

ft+1|t = Pft|t (5)

Sip =

The above recursion allows us to obtain the inferred probabilities &, = Pr[S;|R,;] and the
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forecast probabilities &;—; = Pr[S;11|R;] where f, is a vector of observation densities con-
ditional on the regimes. A straightforward maximum likelihood estimation would imply

maximizing

L(ri,ra, ., 0) = Z lOg(é:‘/\tflft) (6)

However that can be computationally burdensome, especially that we would need to know
which regime was relevant at each point in time, that is why we need to get some expectation
on the probability Pr[S; = si|r1, 7, ...r7, 8]. We therefore use the Expectation-Maximization
(EM) algorithm of Dempster et al. (1977). This method is especially useful as it allows to
treat the underlying state variable which is unobservable as latent and iteratively updates

the parameter estimates (Hamilton (1989)).

The EM Algorithm is a two-step iterative Maximum likelihood estimation technique. Demp-
ster et al. (1977) and Hamilton (1989) prove that results obtained using that method converge
to the maximum likelihood estimation of (6). The estimation rely on a recursion, where the
expectation and maximization steps are treated separately. In the Expectation step the
unobserved states £ is estimated with its expectation conditional on the data and the pa-
rameters i.e. the smoothed probabilities. In the second step we estimate the parameters
through the derivation of the first order conditions of the likelihood function with respect to
the parameters where the regime probabilities are replaced by their expectations from the
last iteration. The method is quite simple for the estimation of the MSMH models, as the
number of parameters to estimate is quite low even for a higher number of regimes. However,
that is no longer the case for MSIAH-VAR models as the autoregressive component highly
increases the number of those parameters. The parameter vector # can be decomposed to

the structural parameters « itself consisting of the intercept and autoregressive parameters.

We follow the method presented by Krolzig (2013) who presents the estimation procedure
in a neat way. The ML estimates are obtained through the differentiation of the likelihood

function with respect to the parameters:

6,5(7”1, 9, T'T|0) 10u'Wlu P ou
—_ = —u W —.
0y 2 0Oy “ 0 0

Where W1 is the Kronecker product of the smoothed probabilities diagonal vector and



covariance matrix and u is the vector of residuals. When we substitute u = 1), ® y — X,

where X is the matrix of explanatory variables, and set the equation to zero, we obtain

Y= (XWIX)TI X' W 1y ©y), (8)

which we can see is the GLS estimator weighted with the smoothed probabilities &;r.
The issue with such function form involves operations on high dimensional matrices (like
MTK x MTK) which can be computationally burdensome, especially in out-of-sample anal-
ysis, where on each period of time, the whole model has to be reestimated. However, as noted
by Krolzig (2013), when all parameters are regime-dependent, meaning there are no mutual

parameters, we can estimate separately each vector -, specific for each regime m.

Ym = (X2, X)) ' X'E, @ I)y. (9)

The estimation of the variance follows the same principle of maximizing the likelihood func-

tion with respect to the parameter o giving the following formula:

S =T U Z0U (10)

The iterations of the above algorithm should be performed until a convergence criterion is

met. In our case we perform the estimations until the increase in the loglikelihood is lower
than 1078,

Although simple, the model allows to accommodate many important properties of asset
returns like volatility clustering through regime dependent heteroscedasticity or non normal
distributions of returns among other stylized facts. These properties are especially important

when it comes to asset allocation implications.

The model construction allows for an easy augmentation of regimes, however the literature
study shows us that increasing the regimes is not always the solution for a better fit. There-
fore we analyse 4 different sets of regimes: (i) the popular two-regime model proposed by
Ang and Bekaert (2002a), (ii) a model with 3 regimes similar to Guidolin and Timmer-
mann (2005a) where they however concentrate on UK stocks and bonds, (iii) a four-regime

model in the paper of the same authors from 2007, where they argue that 4 regimes are

10



required to capture the joint distribution in both stocks and bonds and (iv) we analyse the
performance of the model similar to the one proposed by Maheu et al. (2012). The authors
notice that in a normal two-regime model switches between states tend to occur too often
although it can be seen from a historical perspective that it was just a short time reversal
and not a real change in the state of the economy. Those short periods are called bear mar-
ket rallies (for bear regimes) and bull market corrections (for bull market) and are common
market reactions. The authors of the paper want to deal with this misleading movements.
They propose a model which accommodates those short-term reversals. Those inter-regime
transitions can be modeled by modifying the transition probability matrix and by imposing
parameters restrictions. The authors work on weekly data which can be more susceptible to
such movements and use a Bayesian approach to the problem with informative priors. We
want to check if such model specifications can be used in monthly intervals and verify it in
a frequentist approach. Such model can be constructed with restrictions on the transition
probability matrix. Assuming that state 2 is the bull market correction we unable switches
to bear regimes i.e states 3,4. The same analogically applies to bear market rallies. The

matrix will then have the following form:

pu P2 0 pu
pa1 P2 0 pu
psi 0 ps3 paa
par 0 paz paa

k
> pi=1
j=1

Each regime - bull and bear markets - have 2 states that allow for periods of positive and

negative stock returns within each regime. We therefore impose:

w1 < 0 (bear market state),

Bear regime { (11)

p2 >0 (bear market rally),

Bull regime { ps < 0 (Bull market correction), (12)

pg >0 (Bull market state),

11



We do not impose restrictions on variance and bond returns. This specification allows to
capture short-time rehearsal. Furthermore due to different variances in all states, it allows

for bear and bull regimes to accommodate heteroskedasticity and different higher moments.

Standard errors in the models are calculated by means of numerical differentiation. The
covariance matrix is calculated using the first derivatives of the log likelihood (Outer product

matrix).

A popular package for MATLAB named MSRegress written by Perlin (2015) allows to es-
timate regime switching models with constant probability matrix. The package however
does not use the EM algorithm and instead uses numerical maximization methods like the
fmincon functions. In most cases both algorithms yield to similar values, however the code
written for the purpose of this paper is 294 times faster than the MSregress package for a

four-regime model and even 1257 time faster for a four-regime VAR model.

A popular method to maximize the chances of finding a global maximum is to begin the esti-
mation with the EM algorithm and then maximize the likelihood instead of its expectation.
We recognize the advantages of this method, however for our analysis it is too computa-
tionally demanding. Given our hardware limitations we restrain to the EM algorithm. The
probability of finding local maxima is minimized by taking different starting points for the
estimation and using the one giving the highest likelihood. We check that our models are
robust to different initial values and manage to find the global maxima from different val-
ues. Furthermore we compare the results with the numerical maximization method of Perlin
(2015) and find that our models find the same maxima in different subsets of data. Finally,
the negative effects of finding a local maximum are minimized in the out-of-sample evalua-
tion as the model is estimated each month in a slightly different dataset, which limits the

chances of getting stuck in one local peak.

3.2 Testing

Although most authors limit themselves to testing the models by comparing information
criteria like the BIC or AIC as in Bae et al. (2014) some more advanced specification tests
are available. We will be mostly using the Likelihood Ratio as for most hypotheses the
distributions remain unchanged. This is not the case when we test for the number of states

as we cannot rely on the standard asymptotic distribution theory due to the presence of
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nuisance parameters under the null hypothesis. For instance when we test an invariant
model compared to a two-regime model, and so under null test that pu; = po, we have
the parameters of the transition matrix which remain unidentified causing the information
matrix to be singular. Most papers rely on Hansen (1992) and Garcia and Perron (1996)
tests. By writing the likelihood as a function of the nuisance parameters Hansen elaborated
a bound test for the asymptotic distribution of the standardized LR statistic. The test
requires demanding simulations, that is why Garcia and Perron (1996) proposes a simplified
testing methodology. By limiting the simulations to a grid of transition probabilities whereas
all other parameters are ML estimates, the computational burden is significantly decreased.
In our work we will use the test of Carrasco et al. (2004). The test is equivalent to a
Likelihood ratio test, hence asymptotically optimal. The test says whether the parameters

0; are constant over time. The hypotheses can be written as:

H() . Qt = 00 (13)

against
H1 :theo—i-??t (14)

where 7 is the switching parameter and is not observable. First we derive the following

expression sticking to the original notations:

1
paa(8,0) = 5 (U + 1V Ean)) + 23 tr (P8 EP () (15)

s<t

where tr denotes the trace, ;(#) the conditional log-likelihood of the tth observation and
lt(l)(é) and lt(Q)(GA) the first and second derivative wrt to the switching parameters calculated
at é, the MLE for 6 under the null hypothesis, n as the switching parameter which is latent
is drawn from a unit sphere. 3 is as well a nuisance parameter and as it is not identified
under Hy, we draw it from the subset B in the interval [-0.7,0.7]. The test statistic TS is

calculated as follows:

1

TSr(8) = TSr(B,0) =T — e(8)é(B) (16)

where 'y = \/LT o 1i24(8,6) and é(3) is the residual from an OLS regression of (3, 0)
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on [;(6). As ( is unknown under Hy, the authors suggest using a sup-type test i.e. to take
the supremum of the test statistic over a subset B of all possible values of the nuisance

parameters.

supT'S = sup T'Sr (), (17)
pseB
or exponential-type test
[ e (T5:5))d(5), (18)
B

In order to get critical values and the p-values we perform a parametric bootstrap of Davidson
and MacKinnon (2004) with steps neatly presented in the Carrasco et al. (2004) paper. Us-
ing the estimated parameters from the previous part 6 we generate N independent samples
{y}, ..., Y% =1, n, where each y, = 1+ 02 * € and € is drawn from the normal distribution.
We perform 1,000 iterations for the series, which is sufficient to five accurate results. Next,
we reestimate for each sample the 6 under H, by means of ML and compute the resulting
expTS and supTS statistics. Finaly, using all the obtained statistics we can get the crit-
ical values which are the (1-a) quantile. The p-value from the bootstrap is calculated as
* SN I(expTS™ > eaxpTs).

The CHP test answers the question whether the dependencies between regressors and depen-
dent variables are linear or regime depending. In order to analyse how many regimes are best
to fit the model and whether the autoregressive component is needful, we supplement the
test by comparing the models in terms of loglikelihood values, Akaike and Schwarz Criteria

and perform a likelihood ratio test.

3.3 Portfolio construction

In our work we investigate a buy-and-hold strategy similar to the case proposed by Barberis
(2000). As described at the beginning of this paper, we focus on passive investment strategies.
It is a common mode of action for many market participants who just want to allocate their
savings and earn a safe profit without frequent rebalancing, it is also the reason why we

choose only 3 classes of assets as a simplistic choice for such an investor. A buy-and-hold
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strategy is also enough to prove that our model with constraints is able to outperform other

models.

The methodology of calculating portfolio weights rely on the work of Barberis (2000). The
investor preferences over terminal wealth are described by constant relative risk-aversion

power utility functions of the form:

We can write the cumulative stock excess return as:

Rt+T = Tt4+1 + Tty + ...+ TtyT (20)

Given that the W; = 1 and w is the vector of portfolio weights the terminal wealth is equal

to:

Wisr = (1 — we)exp(riT) + wexp(riT + Riyr) (21)

Therefore the investor solves the following problem

(0 -t T s + sl
1—-A

max F ( (22)
w
The subscript ¢ in the expectation denotes the fact that we calculate the expectation condi-

tional on the information set until time t. It is especially important to clarify the notation

for the evaluation of the models out of sample.

In order to calculate weights maximizing the investors utility we use Monte Carlo simulations.
We simulate N=30,000 paths of returns. Each path is calculated based on the following

algorithm:

1. We assume that the current period is t. We use either the inferred, steady or equal
probabilities and draw a uniform number. If it is below the probability for state 1 we
are in state 1 if below state 2 (the sum of probabilities of state 1 and 2) we are in state

2 etc.
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2. We draw again a uniform number. Based on the regime simulated in the previous step
we use the probabilities from the transition matrix and simulate the next step in time
t+1. We then assign the returns based on the model estimates and draw the error

terms from a normal distribution multiplied by the covariance matrix.

3. We draw a value for ry,; given the state simulated in the previous step and using the

model estimates.
4. Repeat steps 2 and 3 for T periods.

5. Simulate all the steps for 30,000 paths.

The number of paths is the result of the trade-off between estimation accuracy and compu-
tational limitations related to the economic evaluation. We check that 30,000 is enough to
guarantee stable weight repartition and that differences between estimations based on bigger
samples have a minor impact on the results. At each step of the simulated path we draw
from the estimated transition probability matrix, that allows for shift in regimes. Monte
Carlo simulations are particularly useful in our multivariate framework as they do not suffer
from the curse of dimensionality. Having the returns paths we calculate cumulative returns

and the weights maximizing the utility from equation (22).

4 Results

In this section we will present the estimation results from models described in the previous
section. We report the results in 3 subsections analogous to the methodology description.
We begin with the presentation of model estimates, then the testing results and finally with
the description of portfolios constructed based on model estimates. All the values in this

section are calculated on the full sample i.e from January 1954 till December 2014..

4.1 Model estimates

In this section we will present the results of the models estimation. For the sake of clarity we
present the results in 2 subsections. First we report the results for 3 mean-switching models

and then for the autoregressive models. We give the proof of such selection in the following
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section and 4.2 describing the results of the testing procedures. We present the estimates in
Table 3 in the Appendix in Panels B-E.

4.1.1 Mean-switching models estimates

We see in Panel B the estimates for the two-regime model. The mean excess stock return
in the bull market is 0.85% and -0.48% for bear regime. For bonds it is respectively 0.04%
and 0.43%. It clearly shows the following relation. When times are bad, the stock market is
plummeting as a general manifestation of a recession in the economy. In order to boost the
economy, the central bank lowers the interest rates which increase the prices of long term
bonds. Furthermore, in times of uncertain markets the investors look for a safe harbor for
their money. In a behaviour called ”flight to quality” they try to purchase safe assets which
are often government backed securities. By increasing the demand on bonds they increase
their prices. That is why in the bear market the bond excess returns are high. Also the
volatility is properly estimated. As we would expect in bear markets the volatility of assets

is much higher than during bull market and the correlation higher.

In case of the four-regime model presented in Panel C of Table 3, we differentiate two regimes
with negative returns one which has mean excess stock returns at the very low level of -0.73%
and which occurs after regimes with positive returns making of it a crash regime and another
with mean -0.5% which we could assign to the bear regime. The regimes differ also in bond
mean returns. The crash regime has mean bond returns of 0.16% much lower than the bear
regime. This could appear counter-intuitive, as with bad times the bonds prices would be
expected to grow. However, as we already said, it is a regime occurring after growth periods,
therefore we can assume that the FED would take some time to make changes in interest
rates and therefore it is more visible in the bear regime. The third regime has mean excess
stock returns of 0.73% and bond 0.07% - it is a normal growth regime also prevailing for
most of the time - 66% of the sample. Finally we have a state with high returns on stocks
and low or negative for bonds, that would be the bull regime. The volatility behaves in a
good way - with the highest values in the crash and bear regimes. Questions might arise
whether 4 regimes is not too much and if we do not overfit the data. A similar question has
been raised in the paper of Guidolin and Timmermann (2007). We deal with this question

in section 6 of the paper.
We follow with the results of the constrained four-regime model, where the transition proba-
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bility matrix has been restricted in a manner that there is a limited possibility of transition
to regimes 2 to 3 which are described as intra-regimes movements. The results are presented
in Panel D of Table 3 in the Appendix. Obviously the constraints give a lower log likelihood,
but the idea is that those restrictions will allow a better specification of the bull and bear
states as they cover the intra-regime changes. It is also hoped that they allow a more robust
asset allocation which could be verified economically out-of-sample. It is the model that has

not been used in an asset allocation until now.

In this specification the bear regime has a mean stock excess return of 0.38%. It consists of
two states, the actual bear state with mean stock returns of -0.25% and a bear market rally
with high stock returns at the level of 1.62%. The bear regimes lasts around one third of
the total bear regime with the bear states prevailing on its own for around one fourth of the
total sample. The bull regime has a total mean of 0.5%. The stock returns in the bull state
elevate to 0.79% and in the bull market correction to the very low -1.04%. We see that the
means of the complex regimes are closer to each other and the values less extreme than in
the case of the normal two-regime model, however, it has to be reminded that each regime is
composed of two separate ones which values can be seen in Panel D of Table 3 . We notice
that there are periods of very low and very high returns, but they are simply mitigated by
other intra-regimes. Also given this specification the bull and bear market lasts longer than
in case of a simple two-regime model. In Figure 1 in the Appendix we plot the smoothed
probabilities calculated using the 4 regime constrained model as well as the probabilities of
the 2 states model. It allows us to see that the constrained model better fits the periods of
recession, although we would expect a better differentiation between bear regimes and bull

market corrections.

4.1.2 Autoregressive models estimates

We now present the remaining selected models including an autoregressive component which
is allowed to vary across regimes. As mentioned in subsection 3.1, the lagged values are the
stock and bond market returns and the popular predictive regressor, the dividend to price
ratio also called the dividend yield. Although in the majority of cases this component has
been proven to be statistically insignificant, we present the only case where it was. In order
to give the reader a presentation of the structure of the VAR models, we start by the simple

VAR(1) model independent of regimes, which is also one of our benchmarks.
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The multivariate least squares (MLS) estimates are as follows:

0.0286 0.0518  0.1398  0.6834

(rt>= —0.0070 | + | —0.0058 0.0588 —0.2496] (" +(€t>,
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where r, = (ry, 79, ..., 7). These estimates show us that higher dividend-to-price ratio
forecasts positive stock returns. Also it is worth noting that the D /P ratio is highly persistent
with the estimate of 0.9921. We calculated the asset allocation for a range of starting values
of the D/P ratio. We notice that the higher the D/P ratio is, the higher will be the allocation
to stocks. Also for the unconditional mean we find that the longer the horizon the higher
allocation to stocks is predicted, which is in line with earlier findings. As already noticed
by Campbell and Viceira (2002) and Guidolin and Timmermann (2007) the D/P ratio is
very low after 1993, reaching values of -4.5 in the early 2000s compared to the unconditional
mean of -3.4. This results in a very small intercept and close to one coefficient for D /P ratio,
resulting in a small impact of the variable especially for short horizon effects. Estimating
the same model on a shorter period, when D/P ratio values were much higher until the early
1990, those effects were much more pronounced and therefore the allocation on stocks was
much higher. Nevertheless, we will now cover the results estimated on the full sample period
until December 2014. The described exercises prove the direct impact of the level of the
D/P ratio on the asset allocation. Therefore instead of spanning its mean for simulation on
a range of values, we simply use the all sample unconditional mean saving computational

time.

The estimates of the four-state model with no constraints on the transition probabilities
matrix are given in Table 3 Panel E from the Appendix. We have again a well distinguished
bear regime with highly negative excess stock returns which account for 23% of the time.
However, we have 3 regimes with positive stock returns. We could differentiate a normal
growth regime with 0.43% mean excess stock returns which spans over 56% of the sample

period. The two remaining regimes are interesting as they both have high mean stock
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returns: 1.55% and 4.12%. Nonetheless only regime 3 should be seen as a a bull regime. It
has negative bond returns which is typical in time of prosperity on the market and it lasts
longer - on average 16 months. The other is a short state lasting on average only 2 months.
When we look on the transition probability matrix we see that transitions between regime
1 and 4 have high probabilities showing frequent changes between those states. This results
are similar to the recovery state differentiated by Guidolin and Timmermann (2007) with
the difference that it lasts for a shorter period and has higher probabilities of returning to
the bear regime, which is an outcome similar to bear market rallies described in the previous
chapter. One could notice the high parameter estimate for the D/P ratio in the recovery
state. Indeed it might suggest that the variable might be explosive, however this regime lasts
on average only 2 months, therefore the model remains stationary. This aspect has already

been discussed in section 2.

VAR models have a large number of variables highly increasing the estimation errors. It
is therefore hard for them to compete in the testing procedures with the mean-switching
models. Nevertheless it is interesting to see the performance of the predictability component

in the asset allocation exercise.

4.2 Testing results

We present the results from the testing procedures described in section 3.2. We begin with

the results of the Carrasco et al. (2004) test presented in Table 4 in the Appendix.

From these results we can unequivocally reject the hypothesis of constant mean and volatil-
ity in stock returns. As already mentioned, the test is for the stability of parameters in
the framework of MS models where the null hypothesis is linear. Therefore, it is used for
answering the question whether the regimes are needed to fit the data, but we do not answer
the question how many regimes are best to do it. To answer that question we compare
the models under the Akaike and Schwarz Information criteria. Table 5 in the Appendix
regroups the log likelihood values and information criteria for the set of our models. The log
likelihood values can be compared as both sets of models (mean and VAR models) have the
same dependent variables - stock and bonds returns. A likelihood ratio test is additionally

performed.

The results in Table 5 show an important feature. Although VAR models increase the

20



likelihood they struggle to beat the MSM models in an Information Criteria comparison
especially unnder the Bayesian Information Criterion which strongly penalizes the number
of regime. Also when we compare MS and MSVAR models under the Likelihood Ratio,
the results show that the autoregressive component does not give statistical improvement,
with the only exception being the MS4 VAR model. We therefore concentrate on the MSM

analysis in further parts.

4.3 Portfolio allocation results

Before we move to the out-of-sample evaluation of model results, we describe the asset
allocation results calculated based on model estimates presented in subsection 4.1 where
the full sample was used. These are therefore the portfolios that a buy-and-hold investor
would invest in at the end of December 2014. All results are presented in Table 6 in the
Appendix. It is important to analyse these results, as they may answer the question of many
individual investors, who face an investment dilemma, especially when they do not seek any
active investing in the meantime. The results are also interesting, as they may be confronted
with the results from Barberis (2000) or Canner et al. (1994) who showed model portfolios
recommended by 4 investment advisors in the 1990s. Additionally we see the 6 different
horizons for which the weights are calculated. Finally, the analysis is performed for every
initial regime and for steady states probabilities, which allows us to analyse the behavior
of investments strategies depending on the horizon but most importantly depending on the

current state of the economy.

Again we present the results only for the models we have selected in the testing procedures.
The Schwarz Criterion strongly penalizes models with high number of parameters and so
it was more restrictive for MS VAR models. Thus, we analyze only one VAR model: the
four-state VAR model where the tests have proven for the autoregressive component to be
significant and which outperforms its counterpart in terms of likelihood and AIC. It is also
the model estimated as the best MS specification by Guidolin and Timmermann (2007).
Hence we present the results for four models: MSM(2), MSM(4), MSI(4)VAR and MSM(4)

under transition constraints.
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4.3.1 Asset allocation results of mean-switching models

We will discuss the weights distribution depending on the current regime. We begin with

the 2 regime model asset allocation results.

When the economy is in the bull regime, the biggest share is associated to stocks with 100%
in 1 month horizon gradually decreasing to 49% in stocks in the longest - 120 month horizon.
When allocation to stock decreases, intuitively, the allocation to bonds and T-bills increases,
from respectively 0% and 0% in the 1 month horizon to 40% and 11% in the 10 years horizons.
When we start in the bear regime allocation to stock starts at the 0% level for growing up
to 40% in the longest horizon. Bond allocation starts around 58% and gradually diminishes
to 43%. The decrease in T-bills is even more pronounced from 42% to 17%. As for the
steady state allocation it allocates 63% in stocks, 36% in bonds and 1% in the T-bill for
the 1 month horizon and changes to 45%, 41% and 13% in the equivalent assets. The slow
convergences are due to the fact that the regimes are characterised by high persistence. The
bear regime persisted 27% of the time and the bull 73%. These results can be contrasted
with a 69% allocation to stocks in Barberis (2000) estimated on a similar period, however
with only 2 asset classes - stocks and treasury bills - without taking bonds into account.
Therefore with bonds being another risky asset, the results from Barberis are less insightful

for practitioners.

In case of the four-regime model, both bearish regimes allocate 0% to stocks in the short
periods. The allocation then rise to almost 40% in the crash regime and to 31% in the bear
state - this is explained by the fact that the crash regime is less persistent. An even bigger
difference between these regimes can be observed for bond and t-bills allocation. In the first
regime the results suggest to allocate up to 78% in T-bills and 22% in bonds in the 1 month
horizon. This allocation gradually diminishes for t-bills settling at around 30% in the 10 year
horizon for both bonds and T-bills. In the bear regime the highest allocation is assigned
to bonds (100%) falling with time. The normal growth regime starts with a full allocation
to stocks in the shortest regime decreasing to 45% in stocks, resulting in a 34% bonds and
21% bills allocation. The bull market state has a very high allocation to stocks for a very
long period. The steady state allocation shows a decreasing allocation to stocks starting at
55% and moving to 44%. Bonds allocation is constant around 40% with a slight increase for

intermediate horizons.
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Finally, we can see the results of the constrained four-regime model. When we are in the
bear regime the investor would allocate almost all of his investments in bonds. With the time
horizon expanding he would gradually switch to stocks to finish with 41% in stocks, 46% in
bonds and 13% in cash. It is interesting to compare this state with the bull correction. Both
regimes are characterized by negative stock returns and so in both the investor would start
with almost null allocation to stocks, but in the bull correction the investor would rather
invest in cash. Given the fact it is a short trend it is smart not to switch to bonds and
safely stay with cash and wait to see how the situation will evolve. On the opposite side, in
the bull market the investor would invest everything in stocks in the short term gradually
moving to cash and bonds. It is interesting to see that in the bear rallies the model would
advise to keep for a much longer horizon a full investment in stocks moving to bonds only
after 2 years. It is counter intuitive given the lower persistence of that state, but it might
be explained by very high stock returns. The steady state probabilities for the constrained
model advise a similar allocation to the 4 regime model with 43% in stocks, 32% in bonds
and 25% in Cash.

4.3.2 Results for Asset allocation under predictability

When calculating the asset allocation using the dividend yield we come across the problem
of choosing the initial value for the paths simulation. We check the allocation for a range of
starting values of the D/P ratio. We notice that the higher the D/P ratio is, the higher will
be the allocation to stocks. As already noticed by Campbell and Viceira (2002), Barberis
(2000) or Guidolin and Timmermann (2007) the D/P ratio is very low after 1993, reaching
values of -4.5 in the early 2000s compared to the unconditional mean of -3.4. This results
in a very small intercept and close to one coefficient for the D/P ratio, resulting in a small
impact of the variable especially for short horizon effects. Estimating the same model on a
shorter period, when D/P ratio values were much higher until the early 1990, those effects
were much more pronounced and therefore the allocation on stocks was much higher. The
described exercises prove the direct impact of the level of D/P ratio on the asset allocation.
Having that in mind we keep the initial value fixed at the historical mean of the sample as

the most representative.

We will now discuss the only VAR model chosen for further analysis - the 4 regime VAR
model. The portfolio weights are given in Table 6 in the Appendix. We notice that in the
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bear regime at short horizons the allocation to stock is minimal, although because of the
high probability of corrections it is not null. Bond allocation is at the level of 55%. With
time horizon expanding the allocation to stocks increase at the cost of stock allocation. In
other states given positive stock returns at the beginning almost everything is invested in
stocks and decrease with time. The only difference is the "recovery” state which despite
having the highest stock returns gives not the signal to a full investment in stocks. The
reason might be a high probability of returning to the bear regime. All allocations converge
to the steady state values around 60% to stocks and 20% to bonds.

It is interesting to note that these results are quite similar to the ones presented in the paper
of Canner et al. (1994) in which 4 investment advisers gave their recommendations on asset
allocation. The mean weights for a moderately risk averse investor were 50%, 40% and 10%
respectively for stocks, bonds and cash. The weights for the steady states give a similar
outcome. It is quite different from the results of Barberis (2000) who advise to hold much
more in stock for such a long horizon. For a moderate investor, when parameter uncertainty

is not taken into account, Barberis suggest a full investment in stock beyond 5 years.

In the following chapters we will cover the results of the forecasting and the out of sample

verification of the models.

5 Economic verification

In this chapter, we test the performance of our models in an out-of-sample asset allocation
performance. As we estimate the model until December 1984, the out-of-sample period
spreads on 30 year i.e. 360 months. We also investigate the impact of the initial state on

the strategy returns.

5.1 Initial state

When calculating the return paths it is crucial to assume an initial state of the economy.
This is particularly important as we are never sure in which regime we really are. As shown
by Veronesi (1999) this uncertainty can explain the asset price dynamics as it is common

that investors overreact to bad news in good times and underreact to good news in bad
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times.

Based on the literature we consider 3 approaches to the initial state selection. The first
assumes the state probabilities to be equal, the second is using steady state probabilities
and finally, the third is using inferred probabilities from the model. From the out-of-sample
evaluation we find that the third method gives the best results and therefore we will present
the results for this method only. This conclusion is very intuitive as we would expect that

as last period returns should carry important information about the state.

5.2 Out of sample evaluation

In the previous parts we analyzed the model construction and the in-sample results. However,
in order to answer the question which model is the most valuable and performs best, we need
to test it out of sample. In order to calculate the return of each of the 10 models (including
the benchmarks) for each period of the out of sample period, we estimate the model using
an expanding window starting from January 1954 to December 1984. The reason we use an
expanding window instead of a moving window is that we believe that the information in
every period allows to update the model, whereas the ghost effect present in linear models is
mitigated by the presence of regimes and in fact makes the regime estimates more accurate.
For instance a severe crisis at the beginning of the data set would indeed impact the whole
estimation in a linear model, dragging down the estimated stock mean returns, creating a
so called ghost effect. However, when regimes are included and the recession state correctly
identified, only the bear market estimates would be updated and for instance appropriately
lowered, allowing for better forecasts at the brink of a new recession. A moving window
would lack this information and could perhaps forecast too optimistic returns in bearish

times.

We perform our economic verification in several steps. First we calculate the weights at-
tributed to 3 classes of assets as described in section 3.3 for 6 different time horizons - 1,
6, 12, 24, 60 and 120 months. For a larger sample we use overlapping returns. Next, we
calculate the results of each investment strategy based on real returns from the out of sample
period and move one month ahead. The first iteration will therefore be estimated on the pe-
riod from January 1954 till December 1984 and we use the estimates and state probabilities

as of December 1984 to calculate the weights and next the portfolio performance for January

25



1985 (or a period of time spanning on several months depending on the time horizon). Then
we repeat the estimation and allocation on a period from 01.1954 to 01.1985 for one month
ahead (or other time horizon) and so forth. We iterate those steps for each month, for the

whole out-of-sample period until December 2014.

Finally, we compare the performance of the estimated regime switching models with each

other and a VAR(1) and a simple IID model with constant mean and variance.

Table 7 regroups the results. For each model we can observe its mean returns across all the
data set for different horizons, the standard deviation, the annualized Sharpe ratio (in order
to compare the risk-adjusted returns) and the utility which is maximized at each step. The
one month Sharpe ratio has been annualized taking into consideration return autocorrelation
following Lo (2002). For each regime switching model we evaluated three different results
depending on the methodology used to determine the initial state. We present the results
only for the initial state chosen based on the inferred probabilities as they proved to be the
best setup in the majority of cases, with only a few exception in the shortest time horizons.
The analysis relies on regime persistence, and the model investment signal for the next
month is taken on actual information. Regime changes cannot be exactly anticipated and
so when regimes changes occur frequently the advantages of regime switching models and
inferred probabilities might be limited in favor of steady probabilities. It is clearly visible
when we perform our analysis in a shorter out-of-sample period concentrating on the period
of the financial crisis of 2008. However, these drawbacks are not as severe for all the models
as the 4 regimes constrained model is constructed to deal with such frenetic movements.
Nevertheless, besides small discrepancies, the inferred probabilities are the best framework

based on the performance measures.

We compare the models mainly under the Sharpe ratio criterion and the average power
utility. Based on the results we make these observations. First, the mean-changing models in
general perform better than their VAR counterparts, especially for longer horizons. Second,
the MS4 Constrained model strongly outperforms all others. Third, the VAR models give

higher mean returns but these returns are mitigated by higher standard deviation.

It is interesting to note that the models with the autoregressive component do not outperform
the mean-switching models, although we would expect them to excel since they use fully the
data. However, it goes in line with the tests proving that the autoregressive component

is very often not statistically significant. It also appears that VAR models do not benefit
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much from the increase in the number of regimes. On the contrary, it might be detrimental
because of the estimation errors as the number of variables increases quickly. It is true
that the VAR models give higher mean returns, however they give an even higher standard
deviation. Another observation we can make is that these models tend to change more
frequently the allocation to assets (up to 3 times higher turnover). Although we do not
perform a transaction cost analysis in our study, based on the high turnover of these models,
we would expect very high transaction costs if such where imposed, which would even further
drag the performance down, especially for shorter investments horizons and a more active
investment strategy. Last but not least, based on Barberis (2000) we know that the VAR
component effect is stronger the longer the time horizon. However, when we add regimes,
the estimates of the D/P ratio change as well and so we do not obtain the same risk reducing
results. Regime mean-reverting effects are stronger than the risk reducing one and so the

increase in stock holdings is less pronounced.

Focusing on the first group of models we can see that adding restrictions significantly im-
proves the efficiency of the model both in shorter and longer horizons. In general models
with more regimes allow a better allocation. In general models tend to change regimes
rather quickly, however the regimes in the 2 regime model are too extreme, therefore when
give a wrong signal the losses are bigger compared to model with more regimes. In a 4
regime models the remaining models are better fitted to different economic situations. This
allows for a better market timing explaining the higher sharpe ratio in the short horizon,
where the autocorrelation of returns is taken into account. Models with more regimes fit the
data better in longer periods, but still the constrained model outperforms all of them giving
thanks to the additional intra-regimes which allow a better specification of 2 regimes. It all
helps in a better asset allocation robust to chaotic movements between regimes, which often
might disrupt the construction of a good investment strategy. The constrained model not
necessarily gives the best mean returns but it is much more robust and stable giving better
risk adjusted returns. Figure 2 in the Appendix show the plotted distribution of weights in
the 4 regime constrained model in the 1 month and 10 year horizon. We see that the model
is relatively stable but keeps market timing properties. We also add the myopic investor
1 month allocation plot to show the differences in the allocation strategy. The iid model

suggests a higher allocation to stocks.

It is surprising to see how well does the VAR(1) model perform. In fact it outperforms

all other models in the 1 month horizon. We believe that the explanation is similar to the
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reason why the initial state choice based on inferred probabilities is not always optimal.
When the economy remains in a given regime for some time, regime switching models can
fully profit of this situation as they rely on regime persistence, however when the economy
changes frequently they might give worse results than the IID or VAR(1) strategies. For the

same reason the constrained model performs so well.

5.3 Joint distribution of regimes

So far we have calculated and analysed our regimes under the joint distribution of stocks and
bonds. It is a common solution in the literature used in Guidolin and Timmermann (2006) or
Guidolin and Hyde (2012), supported by the fact, that we estimate and forecast the values of
both stock and bond returns. However, it is worthwhile to ask if the joint distribution is the
correct approach to define regimes. Most regime switching models thrive to correctly specify
the bear and bull regimes, which are characterized by stock returns. The recession is defined
by low or even negative stock returns. Bond returns are dependent in an important part from
FED decisions on interest rates taken in response to the actual market situation, they are
however inevitably delayed. Perhaps models based only on the distribution of stock returns
are more appropriate? On the other side maybe a single or joint distribution is not enough
to accurately specify a higher number of regimes. When calculating MS VAR models, we
also have the dividend to price ratio as a dependent variable, known for carrying information
about future stock returns. Maybe it should be therefore included in the distribution for
estimating the models’ regimes? That is what we will verify in this chapter. Although we
cannot compare the likelihoods of models based on different distributions (as they do not
cover the same variables) we could once again resort to the returns each models allowed to

gain in the out-of-sample analysis.

5.4 Only stock returns

Models with only stocks return distribution manage to occasionally outperform their joint
distribution counterparts especially in shorter horizons. In general, mean variant models
without the autoregressive component manage to achieve better results in terms of means,
but they also have higher standard deviations. Those high returns suggest that the prediction

of a better responsiveness to stock movements is true. As the stock returns are in general
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more important than those of the bonds, both negative and positive, a model focusing on
stocks might give better results. On the other hand information from bonds in the joint
distribution might be more insightful in the longer run, as this is suggested by the results.
The same can be observed for the models with the autoregressive component which achieve
very good results in shorter horizons. For the 1 month horizon the Sharpe ratio value is

increased even more by the autocorrelation of model returns.

It is worth stressing that we use the single distribution of stock returns only for finding the

regimes. The covariance matrix is calculated for all the dependent variables of the model.

Nevertheless, it appears that the joint distribution of stock and bond returns is optimal for

the estimation of models.

5.5 Dividend-to-price ratio

Models including the D/P ratio in the joint distribution are different only for the MS-VAR
models, as models based on regime switching means do not include this variable at all. Table
9 in the Appendix regroups the results. We see that again, the constrained model performs
very well, but surprisingly in the longer ones it is outperformed by other models. The D/P
Ratio is a variable which is rather stable in itself, and so including it in the joint distribution
is enough to augment the stability of the model without penalizing the fit of the model by
any constraints on the estimation. That is why the normal 4 regime VAR model can beat
it in that framework. This would also explain why this observation becomes more clear in
the longer period, when the D/P Ratio effects are the strongest. Nevertheless, even in that
framework the VAR models do not perform better than the mean-switching counterparts.

We will therefore focus on the joint distribution of stock and bonds.

6 Bootstrap

We want to compare the best performing models in a longer period. This would also allow
us to answer the question whether the four-state model overfits the data, and because of the
estimation errors on parameters, performs worse than a two-state model, which remains the

most frequently used in the literature. We want to test also how robust the results of the

29



constrained model are. In order to do that we will simulate a time series of returns to compare
our models in an extended analysis similarly to Guidolin and Timmermann (2007). However
we will perform this in a slightly different manner. In their paper the authors simulate
the time-series using the estimated four-regime model. We believe this approach is strongly
biased in favor of the four-regime model. Therefore we use a stationary bootstrap technique
which allows to include dependence. The method is described in Politis and Romano (1994).
The algorithm can be described as follows: we draw uniformly an observation from the set.
It will be denoted as our X, then we have two possibilities. With probability p the next
observation X, will be picked again randomly from the initial set, or, with probability 1-p, it
will be the next observation after X;. It results in a pseudo time-series constituted of blocks
By = {Xi, Xit1, .., Xitp—1} where b denotes the length of the block which is random. In
order to determine the optimal block length we resort to the method of Politis and White
(2004). We choose the length which minimizes the MSE(c?) using the flag-top window as
described in Politis and Romano (1995) which is performed in 3 steps. First, we look for
the smallest lag after which the correlation stops being significant. Second, we calculate the
estimates of G and Dgp which are the functions of flagtop kernel weights and the spectral
density of the data calculated as the autocorrelation. Finally, we use the estimates in the

following formula (23).

1/3
s (25) =

The results of the optimal bloc lengths for each variable are presented in Table 2.

Table 2. Optimal bloc length calculation

Optimal bloc length for the stationary bootstrap calculated based on the work of Politis
and White (2004). The value for each variable show to optimal length in months.

Stocks Bonds T-bills D/P Ratio

~

bopt,sB 2.0162 1.6806 46.55 48.2781

Having the estimates of the optimal block length we choose the maximum of them i.e. the
length 48.3 estimated for the D/P Ratio. We use it in our bootstrap to generate 1,000
independent samples each containing 732 periods. It will allow us to maintain a similar

estimation period (as in the case of our previous models) and to calculate the statistics to
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compare the results. We compare our results to the IID/myopic model. The results are

presented in Table 10 in the Appendix.

The results from the bootstrap support our previous findings. The first question we wanted
to answer i.e. whether the four-regime model over-fits the data is overruled as the model
performs better, even for shorter periods of time which is a novelty compared to previous
results. Again, the simpler model achieves to beat the other model in terms of mean returns,
but the advantage is narrowed by the higher standard deviation. Second, the constrained
model proves to outperform the other models in terms of risk adjusted returns in almost all
horizons. It only struggles to do so in the shortest horizon, which is also new compared to the
out-of-sample verification. In general, with the time horizon expanding, the model proves
to be more stable and keeps the standard deviation low. Interestingly the model has the
lowest average utility. Although we notice this drawback, we support the conclusion that the
economic results outweigh this negative point and the constrained model remains the winner
of this comparison. It is also worth noting that all the Regime-switching models outperfom
the IID model which, although showing good mean return and utility, fails to compete
with the other models under the Sharpe ratio criterion. These results prove how powerful
predicting instruments these models are, reaffirming the validity of extended research in that
field.

7 Conclusions

This paper explores the regime switching models in a stock and bond joint distribution
specification. It summarizes and compares different approaches from existing research on
regime switching like the analysis of the number of regimes, the VAR specification, the joint
or single distribution of assets, as well as the initial state implications. However, what it adds
above all is the thorough analysis of regime specification. We found that MS models can be
modified not only by adding the number of regimes but also by constraining the transition
matrix in order to accommodate short time reversal movements and get a 4 regime model
which is in fact a better specified 2 state model. The data supports the existence of bear

market rallies and bull market corrections in monthly data.

We found that the constrained 4 regime model not only gives valuable insight in a short

horizon framework but it unveils all its power in the long term investment. The asset
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allocation analysis shows the importance of regime accommodation in investment models.
Previous findings and investment rules on increasing allocation to stocks with time horizons
have to be conditioned on the regime we are currently observing. It is not always the case
especially in times of economic prosperity when it is wiser to lower the allocation in the long

run, regardless of additional variables used such as the famous D /P ratio.

Our model gives a wide possibility of extensions as it allows in general a modification of
regime switching models which are more and more often used in economics. The current
framework could be extended by a better specification of short term interest rates. We
assume iid in our cash variable, however many authors point out the presence of regime
switching in this variable, which might be a valuable addition to the research. Another
extension of the model might by the use of time-varying probabilities which could be as
well restricted to accommodate bull market corrections and bear market rallies. Finally, we
believe it would be interesting to explore the advantages of our model in a dynamic asset

allocation framework.
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Appendix

Figure 1. Smoothed state probabilities
This figure plots the smoothed state probabilities for regimes 1-4 for the 4 regimes
constrained model in the multivariate distribution of stock and bond returns (Panel
(a)) and for the 2 regime model in the same multivariate framework. Recession periods

are marked in light gray.
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Figure 2. Out-of-sample portfolio weights
This figure plots the weights distribution in the out-of-sample performance of the 4
regime constrained model in 1 month horizon, the same model in a 10 years investments
horizon and 1 month portfolio choices in the IID model. For 1 month ahead the results
are presented for 30 years starting from January 1985 to December 2014. For the 10

years investment horizon the results are shown from December 1994 to December 2014
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Table 3. Model estimates

In this table we present the result of the estimation of the models we selected in the

testing procedures. Panels A-D present the model of the form:

Ty = g, + €

P
()= () e 2 () +(2)
2t :u’ZSt j=1 ot zt—j €25

Where © denotes the intercept vector in state Sy which takes integer value between 1

and Panel E:

and k according to the number of regimes, r; and z; respectively the vector of returns
and dividend yields, € ~ N (0, ) is the vector of innovations. The dependent variables
are the returns of the S&P500 index and a portfolio of long term bonds all in excess
of the 3 month T-bill rate. In the VAR model additionally the dividend yield is used.
The results are evaluated on the full sample from January 1954 to December 2014.
Presented mean excess returns or monthly returns whereas volatilities are annualized.

We present the standard errors either in brackets next to the results or with asterisks.

Panel A - Single state model

1. Mean excess return Stocks Bonds
0.0049*** (0.0009)  0.0014*** (0.0006)

2. Correlation/volatility

Stocks 0.1471%%* 0.1171%**

Bonds 0.1171%%* 0.0966***
Panel B - 2 state model

1. Mean excess return Stocks Bonds

Regime 1 (Bear) -0.0048 (0.0044) 0.0043*** (0.0015)

Regime 2 (Bull) 0.0085 (0.0044)  0.0004 (0.0004)

2. Correlation/volatility
Regime 1 (Bear)

Stocks 0.2060%** 0.0928
Bonds 0.0928 0.1445%**
Regime 2 (Bull)

Stocks 0.1155%** 0.1732%**
Bonds 0.1732 0.0709%**
3. Transition probabilities Regime 1 Regime 2
Regime 1 0.9174%%* 0.0826
Regime 2 0.0307 0.9693***
Duration 12.11 32.56
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Table 3 (Cont.)

Panel C - 4 regimes

1. Mean excess return Stocks Bonds
Regime 1 (Crash) 0.0073  (0.0086) 0.0016  (0.0063)
Regime 2 (Bear) -0.0050  (0.0036) 0.0082** (0.0038)
Regime 3 (Normal growth) 0.0073*** (0.0018) 0.0007  (0.0005)
Regime 4 (Bull) 0.0127*** (0.0037) -0.0003  (0.0009)
2. Correlation/volatility

Regime 1 (Crash)

Stocks 0.2387*** 0.2335%*
Bonds 0.2335%* 0.0920***
Regime 2 (Bear)

Stocks 0.1707%%* -0.6145***
Bonds -0.6145%+* 0.0097#**
Regime 3 (Normal growth)

Stocks 0.1193*** 0.2778%***
Bonds 0.2778%*** 0.0815%**
Regime 4 (Bull)

Stocks 0.1222%** -0.1735%%*
Bonds -0.1735%%* 0.0291***

3. Transition probabilities | Regime 1  Regime 2  Regime 3  Regime 4
Regime 1 0.8664***  (0.0000 0.1336***  0.0000
Regime 2 0.0309* 0.9545%%*  0.0147 0.0000
Regime 3 0.0204***  0.0077* 0.9678%**  0.0042
Regime 4 0.0000 0.0000 0.0313 0.9687***
Duration 7.48 21.96 31.06 31.97

39



Table 3 (Cont.)

Panel D - 4 regimes Constrained

1. Mean excess return Stocks Bonds
Regime 1 (Bear) 0.0025  (0.0058)  0.0043  (0.0033)
Regime 2 (Bear rally) 0.0162  (0.0503) -0.0006  (0.0014)
Regime 3 (Bull correction) -0.0104  (0.0089) 0.0012  (0.0065)
Regime 4 (Bull) 0.0079*** (0.0023) 0.0011 (0.0015)
2. Correlation/volatility

Regime 1 (Bear)

Stocks 0.1570%** -0.4984 %%
Bonds -0.4984*#* 0.0853%**
Regime 2 (Bear rally)

Stocks 0.1034%** -0.1453%%*
Bonds -0.1453*** 0.0269***
Regime 3 (Bull correction)

Stocks 0.2454%** 0.2227%*
Bonds 0.2227%%* 0.1824%**
Regime 4 (Bull)

Stocks 0.1196 0.3329%**
Bonds 0.3329%** 0.0842%***

3. Transition probabilities | Regime 1 Regime 2 Regime 3 Regime 4
Regime 1 0.9452*%%*  (0.0260 0 0.0288
Regime 2 0.0443 0.9481%** 0 0.0076
Regime 3 0.0000%** 0 0.8342*%**  (.1658*
Regime 4 0.0088* 0 0.0321 0.9591***
Duration 18.26 19.26 6.03 24.45
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Table 3 (Cont.)

Panel E - 4 regimes VAR

1. Estimates Intercept Stock Bonds D/P ratio

Regime 1 (Bear) 0.0819** 0.1745%* 0.1416 2.7046%*
-0.0382 -0.1543***  0.0817 -1.1431
-0.0008 -0.0018 -0.0014 0.9721*

Regime 2 (Normal growth) -0.0163 -0.1386**  0.1657**  -0.5918
-0.0165 -0.1002***  0.1052* -0.4932
-0.0017* 0.0020 -0.0050 0.9529

Regime 3 (Bull) 0.1946*%**  -0.2074** 0.4143 5.1666%**
0.0216* -0.0424 0.0153 0.6481**
-0.0017 0.0020 -0.0050 0.9529

Regime 4 (Recovery) -0.0016 -0.2424FFF  (0.2478%**  _1.2957**
0.1410%**  0.0441 -0.1898* 3.8224 %%
-0.0000 0.0024 -0.0023 1.0106

2. Correlation/volatility Stocks Bonds D/P ratio

Regime 1 (Bear)

Stocks 0.1961%%*  0.1677***  -0.9938

Bonds 0.1677%** 0.1426 -0.1504%**

D/P Ratio -0.9938 -0.1504***  0.0020

Regime 2 (Normal Growth)

Stocks 0.1134***  0.2153***  -0.9827

Bonds 0.2153***  0.0772***  -0.1982

D/P Ratio -0.9827 -0.1982 0.0012

Regime 3 (Bull)

Stocks 0.0970***  -0.3220%** -0.9801

Bonds -0.3220%FF  0.0234***  0.2921

D/P Ratio -0.9801 0.2921 0.0010

Regime 4 (Recovery)

Stocks 0.0534***  -0.0869* -0.9019

Bonds -0.0869* 0.0695***  0.0243

D/P Ratio -0.9019 0.0243 0.0006

3. Transition probabilities | Regime 1  Regime 2  Regime 3  Regime 4

Regime 1 0.7839***  0.0000 0.0000 0.2161

Regime 2 0.0349***  0.9651***  0.0000 0.0000

Regime 3 0.0000 0.0612***  (0.9388***  (0.0000

Regime 4 0.3512%**  (.1488***  (.0821***  0.4179***

Duration 4.63 28.68 16.34 1.72
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Table 4. CHP test results

The table reports the results of the Carrasco et al. test. The null hypothesis of the
test tells us that the regimes in the stock returns are not observable and the returns
are best described with a model without regime-switches. The alternative hypothesis

tells us that a 2 regime model better desribes the data

Critical values supTS expTS
99th percentile 5.1849 2.4245
95th percentile 3.6950 1.5239
90th percentile 2.9279 1.2411

Test Statistic p-value
supTS 10.4863 0.00
expTS 17.5037 0.00

Table 5. Likelihood and information criteria

The table presents the values of the log likelihood, Akaike and Schwarz information

criteria calculated for all estimated models

Likelihood AIC BIC

MS2 2958.9 -5891.7 -5832.0
MS3 3002.2 -5958.5  -5852.8
MS4 3024.2 -5978.4  -5817.6
MS4 Constrained 3025.6 -5989.2 -5846.8
MS2 VAR 2969.4 -b872.8 -5721.2
MS3 VAR 3022.0 -5978.1 -5826.5
MS4 VAR 3053.6 -5957.1  -5612.6

MS4 VAR Constrained 3050.0 -5957.9 -5631.7
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Table 6. Asset allocation for regimes

The table reports the asset allocation calculates for 6 models - MS2, MS4, MS4 Con-
strained, MS4VAR and two benchmarks: the VAR(1) model and the myopic strategy.
The models are calculated based on estimates calculated on the full sample 01.1954-
12.2014 using Monte Carlo simulations to simulate return paths. We use 30 000 it-
erations. The allocation is calculated for a moderately risk averse investor (y = 5).
For each model the portfolios are presented for every regime plus the steady states

probabilites for 6 time horizons: 1, 6, 12 months and 2, 5 and 10 years

2 Regime 4 Regime

Regime 1 (Bear market) Regime 1 (Crash)

Horizon 1M 6M 12M 2Y 5Y 10Y Horizon 1M 6M 12M 2Y 5Y 10Y
Stocks 0% 0% 9% 22% 35% 40% Stocks 0% 0% 8% 24% 36% 39%

Bonds 58% 58% 53% 49% 45% 43% Bonds 22%  22%  23%  22% 2T% 32%
Cash 49%  49% 38% 29% 29% 17% Cash 8% 8%  69% 54% 3T% 29%

Regime 2 (Bull market) Regime 2 (Bear Regime)

Horizon IM 6M 12M 2Y 5Y 10Y Horizon M 6M  12M 2Y  5Y 10Y
Stocks  100% 97% 78% 64% 52% 49% Stocks 0% 0% 0% 5% 23% 31%
Bonds 0% 3% 22% 35% 39% 40% Bonds  100% 100% 100% 95% 69% 55%
Cash 0% 0% 0% 1% 9% 11% Cash 0% 0% 0% 0% 8% 14%

Steady steates probabilities Regime 3 (Normal Growth)

Horizon 1M 6M 12M 2Y 5Y 10Y Horizon 1M 6M  12M 2Y 5Y 10Y
Stocks 64% 56% 52% 50% 46% 45% Stocks  100%  90%  74%  59% 50% 45%
Bonds  36% 39% 39% 40% 40% 41% Bonds 0% 10% 1% 23% 34% 34%
Cash 1% 5% 9% 10% 14% 13% Cash 0% 0% 9% 18% 16% 21%

IID /myopic Regime 4 (Bull Regime)

Horizon 1M 6M 12M 2Y 5Y 10Y Horizon 1M 6M 12M 2Y 5Y 10Y
Stocks 60% 62% 63% 61% 63% 62% Stocks  100% 100% 100% 100% 74% 56%
Bonds 40% 38% 3% 39% 3% 38% Bonds 0% 0% 0% 0% 22% 31%
Cash % 0% 0% 0% 0% 0% Cash 0% 0% 0% 0% 4% 13%

VAR(1) Steady states probabilities

Horizon M 6M 12M 2Y 5Y 10Y Horizon 1M 6M 12M 2Y 5Y 10Y
Stocks 2% 62% 62% 64% T72% 83% Stocks 55%  50%  49% 4% 45% 44%
Bonds 28% 38% 38% 36% 28% 1% Bonds 3% 40%  36%  39% 3% 3%
Cash 0% 0% 0% 0% 0% 0% Cash 8% 10% 15% 14% 18% 19%
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Table 6 (Cont.)

4 Regime Constrained

4 Regime VAR

Regime 1 (Bear market)

Regime 1 (Bear regime)

Horizon 1M 6M 12M 2Y 5Y 10Y Horizon 1M 6M 12M 2Y 5Y 10Y
Stocks 2% 12%  20% 31% 40% 41% Stocks 12%  24% 31% 40% 51% 60%
Bonds 98% 8% 80% 69% 60% 46% Bonds 55%  57%  53%  46% 33% 25%
Cash 0% 0% 0% 0% 0% 13% Cash 3%  19% 16% 14% 16% 15%
Regime 2 (Bear rally) Regime 2 (Normal growth)
Horizon 1M 6M 12M 2Y 5Y 10Y  Horizon IM  6M 12M  2Y 5Y 10Y
Stocks  100% 100% 100% 78% 60% 54%  Stocks 100% 71% 61% 57% 57% 64%
Bonds 0% 0% 0% 22% 40% 42% Bonds 0% 29% 35% 36% 29% 21%
Cash 0% 0% 0% 0% 0% 4% Cash 0% 0% 4% % 14% 15%
Regime 3 (Bull correction) Regime 3 (Bull regime)
Horizon 1M 6M 12M 2Y 5Y 10Y Horizon 1M 6M 12M 2Y 5Y 10Y
Stocks 0% 0% 6% 21% 33% 38% Stocks  100% 100% 100% 100% 81% 76%
Bonds 23%  22%  22% 22% 23% 26% Bonds 0% 0% 0% 0% 15% 15%
Cash % 8% 2% 57% 44% 36% Cash 0% 0% 0% 0% 4% 0%
Regime 4 (Bull market) Regime 4 (Recovery)
Horizon 1M 6M 12M 2Y 5Y 10Y Horizon 1M 6M 12M 2Y 5Y 10Y
Stocks 100%  81%  62% 53% 47% 45% Stocks 8% 60% 54% 52% 58% 63%
Bonds 0% 5%  15% 19% 25% 2% Bonds 12%  38% 38% 40% 31% 21%
Cash 0% 14% 23% 28% 28% 29% Cash 1% 2% 8% 8% 11% 16%
Steady states probabilities Steady states probabilities
Horizon 1M 6M 12M 2Y 5Y 10Y Horizon 1M 6M 12M 2Y 5Y 10Y
Stocks 55%  52%  49% 47% 44% 43% Stocks 86% 59% 55%  55% 59% 63%
Bonds 1%  32%  33% 33% 31% 32% Bonds 14%  41%  39% 36% 28% 20%
Cash 14%  16% 18% 20% 25% 25% Cash 0% 0% 6% 9% 13% 1%
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Table 10. Results of the bootstrap asset allocation

The table reports results of the asset allocation test performed on bootstrapped data
for 4 models. We use a stationary bootstrap with calculated optimal bloc length of
48 months in order to keep the asset returns properties. We generate 1,000 indepen-
dent sample 732 periods each. We estimate the models on 610 months and construct
strategies for 6 time horizons and then we calculate the realized returns and utility. We
use 4 performance measures: the mean returns, the standard deviation, the annualized

Sharpe ratio and the average utility

11D MS2 MS4 M54
Constrained
1 month horizon
Mean 0.0072 0.0082 0.0085 0.0081
St. Deviation 0.0273 0.0304 0.0298 0.0303
Sharpe ratio 0.8041 0.8403 0.8840 0.8246
Utility -0.2467 -0.2456 -0.2451 -0.2454
6 months horizon
Mean 0.0444 0.0432 0.0438 0.0421
St. Deviation 0.0696 0.0694 0.0695 0.0696
Sharpe ratio 0.7969 0.7726 0.7853 0.7496
Utility -0.2312 -0.2294 -0.2271 -0.2289
12 months horizon
Mean 0.0853 0.0826 0.0811 0.0839
St. Deviation 0.1053 0.0997 0.0975 0.0973
Sharpe ratio 0.7076 0.7206 0.7206 0.7523
Utility -0.2150 -0.2147 -0.2117 -0.2148
2 years horizon
Mean 0.1756 0.1655 0.1666 0.1619
St. Deviation 0.1489 0.1380 0.1384 0.1324
Sharpe ratio 0.7310 0.7374 0.7412 0.7496
Utility -0.1889 -0.1922 -0.1895 -0.1945
5 years horizon
Mean 0.4297 0.4033 0.3996 0.3869
St. Deviation 0.2350 0.2076 0.2007 0.1883
Sharpe ratio 0.7167 0.7543 0.7721 0.7927
Utility -0.1464 -0.1601 -0.1593 -0.1689
10 years horizon
Mean 0.8454 0.7889 0.7749 0.7506
St. Deviation 0.3583 0.3148 0.3000 0.2837
Sharpe ratio 0.6551 0.6889 0.7081 0.7217
Utility -0.1653 -0.2308 -0.2274 -0.2577

48



