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Abstract

In this thesis we develop a discrete-event simulation framework
capable of evaluating the KPI “transport capacity during rush hour”.
The problem is split into several subproblems, namely (i) modeling
passenger arrivals, (ii) representing the planned timetable and rolling
stock schedule, and (iii) determining passenger routes. Finally, we
consider the impact of deviations from the planned timetable and
rolling stock schedule in the form of train cancellations and rolling
stock mismatches.

In order to evaluate our simulation framework, we use passenger
check-in/check-out data, and the planned timetable and rolling stock
schedule for January 12 in order to predict the KPI of February 9. We
conclude that we are adequately able to predict passenger arrivals, but
tend to underestimate the KPI with respect to the realized KPI by
about 3%. Furthermore we provide some insight into the KPI. We
see that overall both train cancellations and rolling stock mismatches
negatively impact the KPI, although the effect of mismatches is much
larger. We also notice that mismatches have different effect for dif-
ferent compositions: for high-capacity compositions the effect is nega-
tive, but low-capacity compositions actually benefit from rolling stock
mismatches.
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Chapter 1

Introduction

1.1 Company Background

Netherlands Railways (NS) is the largest provider of passenger rail trans-
portation in the Netherlands, serving over 1.1 million passengers everyday in
about 5,200 trains. In total, NS employs about 30,000 people. Furthermore,
NS holds the concession for the main rail network in the Netherlands for the
period 2015-2025, meaning that in this time-window only NS may operate
on this network. As a result, the only competition NS faces regarding rail
transit is on the regional lines, by companies like Arriva and Veolia.

This research conducted in this thesis is performed at the department of
Process quality & Innovation (PI). PI is a research department that is mainly
concerned with (as the name suggests) maintaining and innovating various
processes at NS. Typical products of PI are decision support tools in the
form of computer-implemented mathematical models regarding timetabling,
line planning, crew scheduling, and rolling stock rescheduling.

1.2 Thesis Motivation

One of the responsibilities of PI is the handover letter from the department
of Network Design (which PI is a part of) to the Operations Control1 de-
partment. Network Design is responsible for designing the timetable and the
accompanying rolling stock schedule, among others. On the other end of the
spectrum, Operation Control controls the execution of the plans that are in
this handover letter. The letter also reports on the expected quality of these

1The department names have been translated from Dutch. The original names for
Network Design and Operations Control are Netwerk Ontwerp and Besturing Operatie,
respectively.
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1.3. Overview Chapter 1. Introduction

plans in the form of predicted key performance indicators (KPIs). A KPI
is a method for a company to measure its performance, and can be both
quantitative and qualitative. Examples of KPIs are customer acquisition,
customer satisfaction, and punctuality.

Due to the rise of the smart card in Dutch public transit, more detailed
passenger travel information can be gathered. Therefore NS has decided to
redefine one of the KPIs in the handover letter, namely the KPI “transport
capacity during rush hour”. In the remainder of this thesis, the term “KPI”
will refer to exactly (and only) this KPI.

Knowing where the bottlenecks are in terms of this KPI, or where service
can be raised cheaply is vital for NS in order to improve customer service
as efficiently as possible. The importance of this has become more apparent
lately, as recently there has been a lot of pressure from both the public
as from politics due to many complaints about a lack of seats (Bos, 2015;
Baars, 2015), and overall crowdedness (Duursma, 2015; Van Houwelingen
and Voermans, 2015) in passenger trains.

Therefore, PI has opted for a simulation model, which will be developed
in this thesis. The main allure of using simulation is the freedom it gives in
modeling. Additionally, it is very difficult to model phenomena like passenger
route choice on such a scale, as the entire Dutch main rail network needs
to be considered. Of course, there are also downsides to simulation. A
good example is that it requires a lot of computational effort due to model
complexity (even more so with stochastic models). Also, where analytic
models are very transparent, and often give important insight into inner
workings, simulation models can be seen as a black box and insight needs to
be retrieved through statistics and sensitivity analysis.

The main goal of this thesis is to provide a simulation framework able
to predict the new KPI. However, it is also desirable to be able to obtain
insights from it. Therefore, we aim to answer the following two questions:

1. How does one use simulation to predict the KPI “ transport capacity
during rush hour”?

2. What insights can be derived from the simulation model?

1.3 Overview

The thesis is outlined as follows. Chapter 2 describes the problem at hand.
Next, the relevant literature is discussed in Chapter 3. Then, the simulation
model is split into several components. First, Chapter 4 describes how to

2



1.3. Overview Chapter 1. Introduction

model passenger arrivals into the system as non-homogeneous Poisson pro-
cesses, and also gives two methods to approximate the intensity function
λ(t). Second, we look at the issue of timetable representation and passenger
routing preference in Chapter 5. Third, Chapter 6 shows how to incorporate
deviations from the planned timetable and rolling stock schedule into the
simulation framework. Fourth, the discrete-event simulation model that is
at the core of this thesis is described in Chapter 7. Next, the results are
reported in Chapter 8, which contain parameter choice and sensitivity ex-
periments, and also the simulation results. Finally, the thesis is concluded
in Chapter 9.

3



Chapter 2

Problem Description

This chapter aims to define the problem at hand. To this end, first the termi-
nology used in this thesis regarding timetables, rolling stock, and passengers
is introduced in Section 2.1. Then, the definition of the KPI is given in Sec-
tion 2.2. Finally, the challenges of the simulation framework proposed in this
thesis are discussed in Section 2.3.

2.1 Terminology

The terminology sed in this section (including examples) mainly originates
from Nielsen (2011).

2.1.1 Timetable

A timetable is a set of train services, where a train service is a train that
goes from one terminal station to another with some intermediate stops along
the way. A train service then is dividable into trips, during which a train
transports passengers from one station to the next in the train service. Every
trip has a departure time td, arrival time ta, departure station Sd ∈ S, and
arrival station Sa ∈ S. Thus, a trip executed by a train with number Z ∈ Z
is characterized by the tuple (Z, td, ta, Sd, Sa). A line is a sequence of stations
visited by the same train service. For the remainder of this thesis, we shall
denote with T the set of trips in the union of all train services.

Figure 2.1 depicts the 3000 line, which has train services running from
Den Helder (Hdr) to Nijmegen (Nm), with some intermediate stops.

4



2.1. Terminology Chapter 2. Problem Description

Hdr Sgn Amr Asd Ut Ah Nm

Figure 2.1: An example of a line: the 3000 line running from Den Helder
(Hdr) to Nijmegen (Nm).

(a)

(b) (c)

Figure 2.2: Three examples of train compositions: (a) three rolling stock
units with 8 carriages total, (b) 3 units with 7 carriages total, and (c) 1 unit
with 2 carriages total.

2.1.2 Rolling Stock

Rolling stock units at NS are fully independent units with a fixed number
of carriages. The set of different rolling stock types will be denoted by M.
Often, rolling stock units are combined into what is called compositions. A
duty is a time-ordered sequence of trips for a single day that is executed by
the same rolling stock unit. Also, a train unit is used as a synonym for a
rolling stock unit.

Figure 2.2 provides three examples of train compositions. In (a) we see a
train composition consisting of 3 rolling stock units with a total of 8 carriages.
The composition in (b), however, consists of 3 units with 7 carriages total.
Finally, in (c) we see a train composition consisting of a single train unit
with 2 carriages.

2.1.3 Passenger Traveling

A passenger of NS makes a journey from station A to station B, where
A,B ∈ S and S is the set of stations that are operated. Journeys at NS are
registered by means of a check-in at the origin station, and a check-out at
the destination station. Now, a passenger route r states exactly how that
journey is executed. In our scope, a passenger route (or path) is expressed
as a sequence of trips. Note that a journey can generally be executed by
more than one route. Also, we would like to stress that although we can
always observe the journey a passenger makes, we have to infer the route
which is traveled by, as in Dutch public transit passengers (more specifically,
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2.2. KPI Definition Chapter 2. Problem Description

their smart cards) are not always checked intermediately. Furthermore, we
make the distinction between a planned and a realized passenger route. A
planned route is the route that we infer for the passengers, using the planned
timetable and rolling stock schedule in the handover letter. A realized route
is the route that the passenger actually traveled by. Planned and realized
routes do not have to coincide due to changes in timetables and rolling stock
schedules, or due to inaccurate modeling of the passenger’s travel preferences.

2.2 KPI Definition

The term transport capacity in rail transit can have multiple meanings, de-
pending on the context. In this thesis, however, transport capacity refers
to the transport of passengers. Furthermore, although the KPI is named
“transport capacity”, the goal is not to determine how many passengers
can be transported. Instead, “transport capacity” is measured by means of
the seating probability, which includes both normal and foldable seats. The
seating probability entails the probability of a random passenger boarding a
random train being able to find a seat.

If we denote the number of passengers boarding the train executing trip
t as bt, of which ft (0 ≤ ft ≤ bt) find a seat, then for a set of trips X the KPI
is calculated (weighing according to passenger boarding volumes) as

KPI =

∑
t∈X
(
bt · ftbt

)∑
t∈X bt

(2.1)

=

∑
t∈X ft∑
t∈X bt

. (2.2)

In the official definition, the set X is the set of all trips executed during both
morning and evening rush hour, where morning rush hour is defined as the
period 07:00–09:00, and evening rush hour 16:00–18:00.

Note that ft can be calculated using cseatt , bt, and nt. We want to deter-
mine the number of passengers able to find a seat. Before the train departs,
we have nt passengers on board. Of these nt passengers, nt− bt were already
on board of the train executing trip t. The number of available seats for the
people boarding the train is at = [cseatt − (nt − bt)]+, where x+ ≡ max{x, 0}.
Finally, the number of boarding passengers able to find a seat is given by
ft = min{at, bt}.

The following example illustrates the calculation of the KPI. Let X =
{1, 2} represent a time-ordered set of trips, where trips are executed in
chronological order. For both trips, let the seating capacity be equal to

6
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5. Assume that the rolling stock executing the trips in X starts out empty.
Then, let b1 = 3 and b2 = 5 and, for simplicity’s sake, assume no passengers
leave the train. Now, filling in Equation (2.2) gives

KPI =
3 + 2

3 + 5
= 0.6250.

2.3 Simulation Framework

We identify the following questions that the simulation framework must an-
swer in order to determine the KPI:

• How do we represent the timetable and rolling stock schedule in a useful
manner?

• How do we model the passenger arrival process?

• How do we determine passenger routes?

The term “system” refers to the scope of the simulation. By modeling ar-
rivals of passengers (with a certain destination) into the system, we know
the passenger volumes for each journey. Then by representing the timetable,
we are able to determine the passenger routing. Together, the rolling stock
schedule, and passenger volumes enable us to obtain for each trip (i) how
many passengers have boarded, (ii) how many were already on the train,
and finally, (iii) the (seating) capacity. With this information we are able to
compute the KPI. In the remainder of this section, we discuss these problems
briefly.

2.3.1 Timetable Representation & Passenger Routing

One of the first actions that the simulation performs is importing the planned
timetable and the accompanying planned rolling stock schedule. However,
the data representation must be such, that our passenger routing algorithms
are able to use the timetable. As routing algorithms are usually graph-based,
it makes sense to represent the timetable as a graph. However, a timetable
has two dimensions, namely space and time. Although it is often intuitive
how space is modeled by a graph, including time complicates the manner
somewhat.

Next, as the only information we have on passenger traveling is their jour-
ney (i.e., their check-in and check-out time, and their origin and destination),
we need to somehow infer the route they traveled through the rail network.

7



2.3. Simulation Framework Chapter 2. Problem Description

With the rise of the smartphone, passengers are up-to-date with the latest
travel information. They also have access to the NS “reisplanner”1 applica-
tion, which provides updated travel information. With this application, all
smartphone users are able to retrieve shortest paths at the press of a button.
More familiar commuters, however, may prefer more comfortable trips and
therefore might endure a slightly longer route if it saves them one or more
transfers.

2.3.2 Passenger Arrival Process

Having determined how passengers travel through the rail network, to de-
termine the KPI we also need to know how many. Modeling arrivals into a
system is a well-studied topic in Operations Research, and appears in numer-
ous fields like call center capacity design, revenue management, and supply
chain management. The major problem faced in modeling arrivals is how to
deal with inhomogeneity over time. Typically, arrivals vary over time, and
usually one can derive peak hours. This is not different in our case, as we
expect two major peaks; the morning and evening rush hour. Another mod-
eling choice we need to consider is how we define an arrival. Do we simply
model passengers arriving at a train station, onto platforms, or do we model
arrivals in some other way?

2.3.3 Effects of External Factors

If all goes according to the plans in the handover letter, then we are done
after we have solved above problems. In practice, unfortunately, this is not
the case. There are many external factors influencing rail operations, like
kids playing beside the tracks, bad weather conditions, suicides, and ma-
terial malfunctions. It is impossible to directly model these factors due to
them being unknown, we could, however, attempt to model the effects they
cause. To simplify things a bit, we only consider effects that we think have
considerable impact on transport capacity, namely:

• Train delays.

• Train cancellations.

• Changes in the rolling stock schedule.

First is the most common disruption, namely train delays. When a delay
occurs, there is more time for passengers to arrive so it is expected that the

1http://www.ns.nl/reisplanner/#/
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2.3. Simulation Framework Chapter 2. Problem Description

train will be busier, negatively influencing passenger travel capacity. Next,
when a train is canceled altogether, we expect that most passengers take the
next train. This adds to the passengers that already planned to take that
other train, again being bad for the KPI. Finally, we consider changes in
rolling stock with respect to the planned schedule, which might occur due to
malfunctions or disruptions from previous days. When such a rolling stock
mismatch occurs, it might happen that the substitute rolling stock has lower
capacity, again hurting passenger travel capacity.

2.3.4 Simulation Outline

Finally we provide a simple outline of the simulation process, which is illus-
trated in Figure 2.3. In this figure, rounded rectangles represent processes,
ellipses represent input data, and arrows show the general flow of the sim-
ulation. The dashed arrows signify a cause-effect relation. For example,
disturbances affect both the realized timetable and the realized rolling stock
schedule, and the realized timetable affects which passenger routes are cho-
sen.

First, the simulation processes the planned timetable and planned rolling
stock schedule. Then, arrivals are generated based on the CiCo data, and
disturbances are generated. Next, given these disturbances, passenger routes
are inferred and executed. Finally, we calculate the KPI and a report is
generated.

Note that the disturbances affect both the timetable and the rolling stock
schedule, which results in the realized timetable and rolling stock schedule.
The realized timetable is used to determine passenger routes, and the realized
rolling stock schedule to compute the KPI.

9
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1. process timetable

2. generate
disturbances

3. generate arrivals CiCo data

4. determine
passenger routes

time up?

planned
timetable

planned
RSS

5. calculate KPI
realized

timetable
realized

RSS

yes

no

Figure 2.3: Flowchart giving a simplified view of the simulation framework.
Rounded rectangles denote processes, ellipses denote input data. Also, “RSS”
stands for “rolling stock schedule”.
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Chapter 3

Literature Review

In this chapter we briefly discuss some methods we have found in the litera-
ture which we deem relevant for the problems identified in Section 2.3. We
do not presume this discussion to be exhaustive, as there are many different
angles one could explore. Section 3.1 discusses some papers with methods to
fit non-homogeneous Poisson processes to arrivals, whereas Section 3.2 dis-
cusses some angles on modeling passenger route choice. Finally, this chapter
is concluded with Section 3.3, which provides a quick glance at two methods
to represent timetables that have been proven useful in railway applications.

3.1 Passenger Arrivals

Arrivals into any system have often been modeled as a stochastic process,
most notably the Poisson process. In its most basic form, the Poisson process
assumes that the arrival rate is constant over time, which is not a plausible
assumption in many fields where it is applied. The problem is that often
several peaks can be distinguished in the data, e.g. often call centers experi-
ence more calls during daytime than during nighttime. Thus, the assumption
of a constant arrival function is relaxed, resulting in what is called a non-
homogeneous Poisson process with an arrival function λ(t), dependent on
time.

Now it becomes interesting, as λ(t) is allowed to be any positive piece-
wise function. If historical data is present, several methods exist in order
to find a candidate λ(t). A popular method is to divide the time-horizon
into several subintervals (not necessarily of the same length), where for each
interval the rate of arrival is determined. Then, each subinterval i constitutes
a Poisson process with arrival rate λi, as proposed in Brown et al. (2005)
for call centers. This methodology is also proposed by Wang et al. (2015),

11



3.2. Route Choice Chapter 3. Literature Review

the only paper found which considers arrival processes in public rail transit.
Although the method is easy to implement, the constant rate ignores the
(often) smooth transition of arrival rates, causing the rate to “jump” from
one level to the other. Of course, the “jumping” behavior can be mitigated
by decreasing the length of the intervals, but this also means reducing the
number of data points in each interval.

In order to fix the “jumps” in the piecewise-constant arrival rate, smoother
transitions are necessary. Massey et al. (1996) propose piecewise-linear rates
instead of the piecewise-constant rates, and describe three ways to estimate
the line parameters; ordinary least squares (OLS), iterative weighted least
squares (IWLS), and maximum likelihood estimation (ML). The authors,
however, only describe estimation for a single subinterval, though the same
methodology can be employed for all subintervals independently. To avoid
“jumps” form the end of one subinterval to the begin of the next, one needs
to fix the endpoints of the lines, however.

Still, Alizadeh et al. (2008) note that piecewise-linear arrival rates suf-
fer from abrupt changes. Therefore they suggest to approximate the arrival
rate by non-negative cubic splines. A cubic spline is a function consisting of
piecewise-defined cubic polynomials, often used in the field of interpolation.
The result of the approximation by cubic splines is, contrary to piecewise con-
stant and linear approximations, a smooth function. Due to the smoothness
of the cubic spline, the arrival rate varies gradually over time.

However, the obtained smoothness comes at a price in the form of com-
plexity. Whereas the case of piecewise-constant arrival rates involves almost
trivial calculations, and piecewise-linear rates involve relatively simple OLS
and ML estimation, fitting non-negative cubic splines involves solving second-
order cone constraints with a non-linear objective function.

Due to this added complexity, we only consider piecewise-constant and
piecewise-linear approximations.

3.2 Route Choice

Traditional passenger route choice modeling is based on utility maximization
in the form of choice theory (Ben-Akiva, 1974; Oppenheim, 1993). Often,
the multinomial logit model is used to model route choice (Ben-Akiva, 1974;
Raveau et al., 2011). However, due to shortcomings of this model, alterna-
tives have been proposed (Cascetta et al., 1996). With these utility models
a database of realized passenger routes is often required in order to estimate
the effects of route characteristics. At NS, however, regarding route choice
only the check-in and check-out times and locations are registered, making

12
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this approach difficult to implement.
Recently, however, Van Der Hurk et al. (2015) compared several route

generation and route selection methods as applied in railway transportation
and validated them based on conductor counts. The results of this study
are promising, with their best route deduction method selecting the correct
route (the route a passenger actually traveled) in 95% of the cases. The
reader should note, however, that these methods are only applicable when
dealing with realized routes and timetables.

It is of note to report that passenger flow modeling is a subproblem in
many railway optimization problems, ranging from line planning (Schöbel
and Scholl, 2006) to rolling stock rescheduling (Kroon et al., 2014). However,
to keep the model complexity in check, more often than not simplifying
assumptions are made. For example, Cadarso and Maŕın (2011), and Haahr
et al. (2014) assume that passenger flows are static (using point forecasts in
their models), whereas Caprara et al. (2007) and Dollevoet et al. (2012) and
others assume that passengers always choose shortest paths.

As no individual route preference data was available at the time of writing,
we are forced to simplify our approach. We assume that passengers consider
only two route characteristics, namely travel time and number of transfers.
To aid us, we follow the approach proposed in Schulz (2005), which consists
of solving a bi-criteria shortest-path problem with travel time and number
of transfers for criteria.

3.3 Timetable Graphs

Finally we would like to mention the choices available in representing the
train timetable in graph form. As the number of nodes and edges of a net-
work directly affect the complexity of path algorithms, how the timetable is
represented is of some importance.

Seemingly the most popular way of representing train timetables is using
the so-called event-activity network, introduced by Nachtigall (1998). In this
time-space network, nodes represent events, which in our context would be
train departures, and edges represent activities, like a train traveling from
one station to the other. An advantage of this approach is that it is very
intuitive. If the network is drawn, one is easily able to see the paths that
trains follow throughout the network.

Another, less popular, approach is to model the timetable as a dynamic
time-dependent graph. In this graph, only space is modeled. Every sta-
tion has his own node, and the edges between nodes (representing direct
station-to-station connections) are time-dependent. For these type of net-

13
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works, standard shortest-path algorithms are no longer an option due to the
time-dependence of edge weights. Shortest-path algorithms for this type of
network are given by Orda and Rom (1990) and Orda and Rom (1991).

Schulz (2005) compares both networks in the context of timetable queries.
The results are that for basic queries time-dependent graphs are over a factor
10 faster. However, when including transfer times, the added nodes and edges
amount to time-dependent graph queries being “only” 1.5 times faster, on
average.

Also, including transfer time for time-dependent graphs is much more
difficult. Therefore, we opt for the event-activity network approach in this
thesis, seeing as the performance advantage for time-dependent graphs with
transfer time is limited.

14



Chapter 4

Passenger Arrivals

4.1 Modeling System Arrivals

In the scope of this thesis, we assume a passenger to arrive at their origin
station sO ∈ S at time tO, from which he or she travels to their destination
station sD ∈ S. We do not assume to know an arrival time at their des-
tination, as at this point in time the passenger has not yet decided his or
her route. Furthermore, we assume passenger arrivals into the system to be
random over time.

Borrowing from queuing theory, an obvious choice to model arrivals is
by means of a non-homogeneous Poisson process. Therefore we suggest to
fit such process for each OD-pair (sO, sD). This way, we capture the differ-
ence in OD popularity. For example, a journey to a central station of a big
city is often more popular than a journey to a station in some small village.
This approach also has its drawbacks. For starters, we estimate an amount
of processes in the order of |S|2. Due to this large number (about 26,000),
statistical testing is restricted to hypothesis tests, which may be too strict.
Moreover, a lot of journeys (sO, sD) are quite unpopular (e.g., traveling be-
tween two remote train stations), meaning that in these cases data is usually
very scarce.

However, we find our approach better than the alternative, which is to
somehow aggregate. The problem here is that by aggregating you lose pre-
cious information. For instance, when aggregating by destination, you model
passenger arrivals into the system as arrivals to their origin stations. In do-
ing so, however, every arrival at station sO is treated the same, which is
unfortunate. Take for example as origin station Rotterdam Alexander. The
empirical arrival rate for February 2, 2016 is depicted in Figure 4.1. We
clearly discern two peaks, coinciding with the morning and evening rush
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hour, which are about the same. Now we take a look at a subset of these
arrivals, namely from Rotterdam Alexander to Utrecht Centraal, of which
the empirical arrival rate of the same day is depicted in Figure 4.2. Again,
two clear peaks are easily discerned, but the peak corresponding to the morn-
ing rush hour is way higher than the one corresponding to the evening rush
hour. This is a typical example of commuter behavior, which is very difficult
to capture when aggregating arrivals.
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Figure 4.1: Empirical arrival rate of passengers with origin Rotterdam
Alexander on February 9, 2016.

Fitting a non-homogeneous Poisson process is more involved than its ho-
mogeneous counterpart, as in this case the arrival rate λ(t) is some function.
Although technically one could fit any nonnegative function of t, we restrict
ourselves to the family of piecewise-continuous nonnegative functions, where
we consider the simple (and popular) piecewise-constant arrival rate, and the
more involved piecewise-linear arrival rate.

4.2 Piecewise-Constant Arrival Rate

Fitting a piecewise-constant arrival rate is perhaps the simplest and most-
popular estimation method for λ(t). The process is as follows. Given a
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Figure 4.2: Empirical arrival rate of passengers with origin Rotterdam
Alexander and destination Utrecht Centraal, on February 9, 2016.

time-interval (0, T ) over which passengers arrive in the system. Define knots
w0, w1, . . . , wm, where w0 = 0 < w1 < · · · < wm = T and m is the number of
intervals. Although the distance between knots does not need to be equal,
for simplicity’s sake we assume it to be. Now, the piecewise-constant arrival
rate is specified as

λ(t) =


λ1 w0 < t ≤ w1,

λ2 w1 < t ≤ w2,
...

λm wm−1 < t ≤ wm.

(4.1)

In each interval [wi, wi+1) the process behaves as a homogeneous Poisson
process. The log-likelihood function we use is the same as in Alizadeh et al.
(2008):

`(λ) =
n∑

j=1

lnλ(tj)−
∫ wm

w0

λ(t)dt. (4.2)
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Expanding and evaluating the integral we get∫ wm

w0

λ(t)dt =

∫ w1

w0

λ(t)dt+ . . .+

∫ wm

wm−1

λ(t)dt

=
m∑
i=1

∫ wi

wi−1

λ(t)dt

=
m∑
i=1

∫ wi

wi−1

λidt

=
m∑
i=1

[
λit
]wi

wi−1

=
m∑
i=1

λi(wi−1 − wi).

Rewriting the summation in (4.2) (where ni is the number of arrivals in
segment i) and plugging in the above result for the integration we get

`(λ) =
m∑
i=1

ni∑
j=1

lnλi −
m∑
i=1

λi(wi−1 − wi) (4.3)

=
m∑
i=1

ni lnλi −
m∑
i=1

λi(wi−1 − wi) (4.4)

=
m∑
i=1

[
ni lnλi − λi(wi−1 − wi)

]
(4.5)

Thus, the first-order conditions are

∂`(λ)

∂λi
=
ni

λi
− (wi − wi−1) = 0, i = 1, . . . ,m,

which is easily seen to be solved by

λ̂i =
ni

wi − wi−1
, i = 1, . . . ,m, (4.6)

the commonly used estimator for homogeneous Poisson processes.
Although estimation of a piecewise-constant arrival rates is quite simple,

the downside to this approach is that the rates are not continuous along its
entire domain (0, T ), which causes abrupt changes in the transition from one
interval to the next.
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4.3 Piecewise-Linear Arrival Rate

4.3.1 Formulation

We attempt to resolve this issue by modeling λ(t) as a piecewise-linear
function continuous over (0, T ). Again, define knots w0, w1, . . . , wm, where
w0 = 0 < w1 < · · · < wm = T and m is the number of intervals. The arrival
rate λ(t) now has the form

λ(t) =


a1 + b1t w0 < t ≤ w1,

a2 + b2t w1 < t ≤ w2,
...

am + bmt wm−1 < t ≤ wm.

(4.7)

Massey et al. (1996) proposes to estimate a piecewise-linear arrival rate,
but this rate is only piecewise-continuous. Furthermore, the maximum-
likelihood estimation is based on grouping arrivals during an interval into
smaller partitions. The number of arrivals for each of these partitions is then
Poisson distributed. However, the reader is left to determine the number of
partitions for each interval.

On the other hand, Alizadeh et al. (2008) suggests a method to estimate
the arrival rate using nonnegative cubic splines. Although this is an im-
provement to estimating a piecewise-linear arrival rate, because of the added
complexity in estimation and the fact that we need to estimate a number of
arrival processes in the order of |S|2, we do not consider this option.

We start deriving the log-likelihood function in the same way as before.
Expanding and evaluating the integral in (4.2) we get∫ wm

w0

λ(t)dt =

∫ w1

w0

λ(t)dt+

∫ w2

w1

λ(t)dt+ . . .+

∫ wm

wm−1

λ(t)dt

=
m∑
i=1

∫ wi

wi−1

λ(t)dt

=
m∑
i=1

∫ wi

wi−1

(ai + bit)dt

=
m∑
i=1

[
ait+

1

2
bit

2
]wi

wi−1

=
m∑
i=1

[
ai(wi − wi−1) +

1

2
bi(w

2
i − w2

i−1)
]
.
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Plugging this result in (4.2) we get the log-likelihood function

`(λ) =
m∑
i=1

ni∑
j=1

ln(ai + bitij)−
m∑
i=1

[
ai(wi − wi−1) +

1

2
bi(w

2
i − w2

i−1)
]
, (4.8)

where we rewrote the summation in the first term for convenience. (4.8) can
be shown to be concave by inspecting its Hessian.

The piecewise-constant arrival rate estimation was rather straightforward,
as only piecewise-continuity was considered, and the rate was inherently non-
negative. The piecewise-linear arrival rate estimation is a little more involved
when considering continuity over (0, T ) and nonnegativity, as this must be
taken into account explicitly.

First, we consider continuity over it domain (0, T ). For a piecewise-linear
function we only need to reinforce continuity over the interval transitions.
Thus, when transitioning from interval i to i+ 1 we require

ai + biwi = ai+1 + bi+1wi, i = 1, . . . ,m− 1 (4.9)

Next, we require λ(t) to be nonnegative over (0, T ). Using the fact that
a linear function over [a, b] is negative if and only if it is negative at either a,
b, or both, we enforce nonnegativity by requiring λ(t) to be nonnegative at
each knot wi using

a1 + b1w0 ≥ 0, (4.10)

ai + biwi ≥ 0, i = 1, . . . ,m. (4.11)

Combining the log-likelihood function (4.8) with constraints (4.9)–(4.11)
we obtain the non-linear program

max `(λ) =
m∑
i=1

ni∑
j=1

ln(ai + bitij)−
m∑
i=1

[
ai(wi − wi−1) +

1

2
bi(w

2
i − w2

i−1)
]

s.t. ai + biwi = ai+1 + bi+1wi, i = 1, . . . ,m− 1,
a1 + b1w0 ≥ 0,
ai + biwi ≥ 0, i = 1, . . . ,m,
ai, bi ∈ R, i = 1, . . . ,m.

As −`(λ) is convex (due to concavity of `(λ)) and the constraints are linear,
this problem belongs to the family of convex optimization problems, which
can be solved by interior point methods (see Boyd and Vandenberghe, 2004).
Popular solvers for these type of problems are KNITRO (Byrd et al., 2006),
IPOPT (Wächter and Biegler, 2006), and LOQO (Benson et al., 2002). As
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all of these are either commercial, exclusively for C/C++, or difficult to set
up for Java (we experienced a bug for IPOPT during compilation), we solve
the non-linear program with the freely available Java library jOptimizer1.

4.3.2 Additional Constraints

If data is sparse for some segments, it might be that for those segments you
have to resort to other estimation methods. In order to still be able to fit a
piecewise-linear arrival rate to the remaining segments, we suggest the fol-
lowing. Suppose we already have estimated arrival rates for some groups
of segments. Then we group the segments for which we want to estimate
a piecewise-linear rate consecutively, as follows. Say we have 10 segments,
numbered 1 to 10. If for segments 3 and 6 we already have arrival rate esti-
mates, then we group the remaining segments as 1–2, 4–5, and finally 7–10.
Now, for each of those groups we can estimate piecewise-linear arrival rates,
but if we also want continuity, we need to add some constraints. Suppose
one such group of segments is iL–iR, where segment iL start at time tL, and
segment iR ends at time tR. Then, in order to guarantee continuity, if tL 6= 0
we need to add the constraint

aiL + biLtL = λ̂L(tL) (4.12)

to the original non-linear program, where λ̂L is the estimated arrival rate
function of the segment preceding iL. Next, if tR 6= T we also need to add

aiR + biRtR = λ̂R(tR), (4.13)

where similarly λ̂R is the arrival rate function of the segment succeeding iR.

4.3.3 Scaled Formulation

After testing the formulation, we found that jOptimizer was not able to solve
quite a few problems. Alizadeh et al. (2008) suggest the following scaling to
help with numerical instabilities. Instead of specifying each linear function
over [wi−1, wi], we rescale to [0, 1]. With t ∈ [wi−1, wi], the arrival rate
function with scaling is

µ(t) = u0i + u1i
t− wi−1

wi − wi−1
= u0i + u1i

t− wi−1

di
, (4.14)

1http://www.joptimizer.com
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where u0i is the intercept for segment i, and u1i the slope. Note that due to
the scaling, the parameters in (4.14) are generally different from the ones in
(4.7), which we signify by using a different notation.

After similar algebraic manipulation as before, we obtain the the formu-
lation for the scaled version in (4.15).

max `(λ) =
m∑
i=1

ni∑
j=1

ln(u0i + u1i
tij − wi−1

di
)−

m∑
i=1

di(u
0
i +

1

2
u1i )

s.t. u0i + u1i = u0i+1, i = 1, . . . ,m− 1,
u0i + u1i ≥ 0, i = 1, . . . ,m− 1,
u01 ≥ 0,
u0i , u

1
i ∈ R i = 1, . . . ,m.

(4.15)

The constraints are analogous to the unscaled formulation. Note that as the
linear functions are now defined on [0, 1], wi is gone from the constraints.

The additional constraints (4.12) and (4.13) for the scaled version of the
formulation become

u0iL = λ̂L(tL), (4.16)

and
u0iR + u1iR = λ̂R(tR), (4.17)

4.4 Sampling From a Poisson Process

Drawing from homogeneous Poisson process is rather straightforward due to
inter-arrival times being drawn from an exponential distribution with the
same constant rate. Unfortunately, when considering a non-homogeneous
Poisson process, this procedure is no longer valid due to the arrival rate being
time-dependent. Luckily, realizations can still be drawn relatively easily, by
using a technique proposed by Lewis and Shedler (1979) called thinning.

The procedure can be seen as the process analogue of the acceptance-
rejection method for drawing from distributions, and is described in Algo-
rithm 1.
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Algorithm 1 Drawing from a non-homogeneous Poisson process by thinning.

1: procedure DrawByThinning(T , λ(t))
2: λ∗ ← sup0≤t≤T λ(t)
3: t∗ ← 0
4: X ← ∅ . List of drawn numbers
5: while t < T do
6: Draw E from Exp(λ∗) . Exponential distribution
7: Draw U from U(0, 1) . Uniform distribution
8: t∗ ← t∗ + E
9: if t∗ < T and U ≤ λ(t∗)/λ∗ then

10: X ← X ∪ {t∗}
11: end if
12: end while
13: return X
14: end procedure
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Chapter 5

Passenger Routing

5.1 Basic Timetable Representation

By far the most popular method of representing timetables for routing pur-
poses is the event-activity network due to its intuitiveness and simplicity. In
this representation a network is created with nodes posing as events (like
arrivals and departures), and edges serving as activities (like executing a
trip).

Given a set T of all trips we consider, the basic event-activity network
representation of a timetable is given as follows. For each trip in T , which
can be characterized as seen in 2.1 by the tuple (Z, td, ta, Sd, Sa), there is a
node corresponding to the departure and arrival events, where the departure
node belongs to station Sd and the arrival node belongs to station Sa. Linking
these two nodes is the trip edge, with weight equal to ta−td. Let v1, v2, . . . , vk
be the time-ordered nodes belonging to station S. Wait edges connect nodes
vi and vi+1 where 1 ≤ i ≤ k − 1. These wait edges represent transfer
opportunities and train dwell times. As with the trip edges, their weight is
equal to the difference in time between vi and vi+1.

For example, consider Figure 5.1. Here, a timetable snippet is represented
with 6 trips, executed by 3 trains. The first two trains start in station A,
dwell for some time at station B, and carries on to station C. The third train
executes its trips in reverse so that it eventually ends up at station A. Going
into more detail, the odd numbered nodes are all departure nodes, whereas
the even numbered nodes are arrival nodes. Furthermore, nodes 1, 5, and
12 belong to station A, nodes 2, 3, 6, 7, 10, and 11 belong to B, and finally
nodes 4, 8, and 9 belong to C. The basic network contains 6 arrival nodes,
6 departure nodes, 6 trip edges, and 9 wait edges, totaling 12 nodes and 15
edges.
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Figure 5.1: Small example of the basic event-activity network, with three
trains traveling between three stations. Solid arrows represent trip edges,
whereas dashed arrows represent wait edges.

5.2 Modeling Transfer Time

Although the basic event-activity network represented in the previous section
is quite simple, it does result in unrealistic passenger routes as no transfer
time is taken into account. In its ultimate form, it is even possible to incor-
porate platforms in the network, resulting in very detailed representations.
We, however, restrict ourselves to the case of constant transfer times, as in-
corporating platforms increases the complexity of the simulation too much.

We call the event-activity network explicitly modeling constant-time trans-
fers the extended event-activity network. For every trip (Z, td, ta, Sd, Sa), the
network contains an arrival and departure node, and two transfer nodes. The
transfer node corresponding to the departure node belongs to station Sd, and
the transfer node corresponding to the arrival node belongs to station Sa. The
edge connecting the transfer node at Sd and corresponding departure node
is a wait edge with zero weight. However, the arrival node at Sa is connected
by a transfer edge (if available) with the first transfer node at station Sa

with corresponding time after ta + c, where c is the constant transfer time.
The edge weight (as usual) is equal to the difference in time between the
nodes. Finally, for each station, if v1, v2, . . . , vk is the time-ordered sequence
of transfer nodes, (vi, vi+1) are the wait edges, for i = 1, . . . , k − 1. Again,
the edge weight is equal to the absolute time difference.

To illustrate the extended network representation, we continue with the
previous example of Figure 5.1. We additionally assume that the constant
transfer time is such, that we are always able to catch the next departing
train for the station we arrive on. In this figure, we arrival and departure
nodes are black, whereas transfer nodes are gray. Moreover, trip edges are
solid black, wait edges are dashed, and finally transfer edges are dash dotted.
The first train to depart (in chronological order, assuming time flows from
left to right) starts in station A. When it arrives at B, we have the choice
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to either transfer to another train (train 2 or 3, in this case), or we stay
and continue to station C. The extended network contains 6 arrival nodes, 6
departure nodes, 9 transfer nodes, 6 trip edges, 12 wait edges, and 4 transfer
edges, totaling 21 nodes and 22 edges, resulting in an overall much larger
network.

A

B

C

Figure 5.2: Extended network representation of the example in Figure 5.1.
Black circles are arrival and departure nodes, whereas gray nodes are transfer
nodes. Next, solid arrows correspond to trip edges, dashed arrows to wait
edges, and finally dash dotted arrows to transfer edges.

5.3 Passenger Route Choice

In the literature, route choice is almost always modeled by means of ran-
dom utility models. The modeling tool of choice in this field seems to be (a
derivative of) the family of logit and probit models (Ben-Akiva, 1974; Op-
penheim, 1993; Cascetta et al., 1996; Raveau et al., 2011). Following this
way of modeling, one would need for each OD-pair a realized route and a
way to generate plausible routes. Usually, these realized routes are derived
from survey data.

Unfortunately, we were unable to acquire such data, meaning we are
not able to pursue the random utility theory approach. Instead, we need
to make simplifying assumptions. As such we decide to only consider two
factors, namely total travel time and number of transfers. Although these
factors were largely motivated by intuition, they are also mentioned by Schulz
(2005) as important criteria in providing timetable information. Therefore,
we have made the following assumption:
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Passengers always choose the earliest arriving path with minimum
number of transfers.

This results in a shortest-path problem where we minimize two criteria. Of-
ten with problems involving the optimization of two criteria, the concept of
Pareto-optimality is utilized. We say a solution with objective value (x1, x2)
is Pareto-optimal if there exists no other solution with objective value (y1, y2)
such that y1 < x1 and y2 < x2. However, it is possible that numerous
Pareto-optima exist. In our case, when considering travel time and number
of transfers as criteria, one could create a rule which selects the most pre-
ferred Pareto-optimum, but this would require knowledge about passenger
preferences, of which we have no data.

We therefore suggest selecting the lexicographically first Pareto-optimum.
The lexicographical ordering is defined as

(a, b) ≺ (a′, b′) ⇐⇒ (a < a′) ∨ (a = a′ ∧ b < b′),

meaning that the lexicographically first Pareto-optimum when considering
criteria (C1, C2) is the Pareto-optimum first minimizing C1, and then C2. In
our case, we feel that minimizing travel time is the most important objective,
so we let C1 correspond to travel time, and C2 to the number of transfers.

Before we provide an algorithm for the lexicographically first Pareto-
optimum problem involving travel time and number of transfers, we shortly
consider Dijkstra’s algorithm for the shortest-path problem.

Dijkstra’s algorithm is initialized by marking every node as unvisited, and
every distance label of each node is set to +∞. Let the current node being
processed be v, and set it to be equal to the origin. Now comes the main
loop of the algorithm. The distance labels of v’s neighbors are updated, and
they are all marked as visited. Then, v is set to be equal to the node marked
visited with the lowest value for distance label. Now the loop repeats itself,
until the very moment v is set to be the target.

Fast implementations of Dijkstra’s algorithm maintain a priority queue,
which allows for fast retrieval of the visited node with smallest distance label.
For a comparison of different priority queue implementations for Dijkstra’s
algorithm the reader is referred to Chen et al. (2007).

Our lexicographically first Pareto-optimum in bicriteria shortest-paths is
solved in a modified Dijkstra’s algorithm. Instead of keeping a distance label,
we keep a label with both travel time and number of transfers, say (x, y),
where x denotes total travel time and y the total number of transfers. Now,
in the label updating step, a neighbor of v only gets his label updated if the
new label precedes the old one in lexicographical order. When the algorithm
terminates, it means that we have found a path from origin to destination
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that precedes all others in lexicographical order. The entire algorithm is
depicted in Algorithm 2. Here, N = (V,E) is the network in which we find
paths, s is the origin node, and t is the destination node. Note that in the
algorithm w(u, v) = (w1, w2) for (u, v) ∈ E is the weight, where w1 is the
time between u and v, and w2 is 1 if (u, v) is a transfer edge and 0 otherwise.
Finally note that the variant of Dijkstra’s algorithm we use comes from Chen
et al. (2007).

Algorithm 2 Dijkstra’s algorithm modified to find the lexicographically first
Pareto-optimum in bicriteria shortest-path problems.

1: procedure LexicographicallyFirstOptimum(N , s, t)
2: N = (V,E) . Network with node and edge set
3: Q← ∅ . Priority queue
4: d : V → R+ × R+ . Label mapping
5: for each v ∈ V do
6: d[v]← (+∞,+∞)
7: end for
8: Q.insert(s, (0, 0)) . Insert origin into queue
9: while Q 6= ∅ do

10: (u, `)← Q.removeMin()
11: if u = t then
12: return . We found the destination, so terminate
13: end if
14: if ` ≺ d[u] then
15: d[u]← ` . Update label
16: for each (u, v) ∈ E do
17: if d[u] + w(u, v) ≺ d[v] then
18: Q.insert(v, d[u] + w(u, v))
19: d[v]← d[u] + w[u, v] . Update label
20: end if
21: end for
22: end if
23: end while
24: end procedure
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Chapter 6

Deviating From the Plans

Almost every day the execution of a timetable and/or rolling stock schedule
did not go as planned. Although small deviations (like a minute delay) are
manageable, and bearable for the public, larger deviations often do cause
problems. In this chapter, we consider two types of deviation. Section 6.1
describes what we understand by rolling stock mismatch and how to model
them, while Section 6.2 is concerned with train cancellations.

6.1 Rolling Stock Mismatches

Sometimes in the execution of a timetable, it is impossible for a train to run in
the composition it was planned to. This often occurs when, due to disruptions
from previous days, rolling stock units did not end their day where they were
supposed to. If a train were to be planned to run as a VIRM4-VIRM6,
it could be that at that moment at that location no VIRM6 is available.
Instead, it could be that the best available alternative is to operate it with
a VIRM4-VIRM4. We call this mismatch between the planned and realized
timetable a rolling stock mismatch.

In order to model these mismatches, we look at the moments in time that
compositions are formed or changed. We assume that this is at the begin-
ning of a train service, and at intermediate train stations as designated in
the planned timetable. Denote C as the set of possible compositions.We de-
note πcplan,creal , where cplan, creal ∈ C, as the probability that given a planned
composition cplan for some composition formation or change, the actual com-
position is creal.

Suppose we have historic data of the planned and realized timetables.
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Then, πcplan,creal can be estimated by

π̂cplan,creal =
ncplan,creal

ncplan

, ∀cplan ∈ C, (6.1)

where ncplan,creal denotes the number of composition formations or changes
where composition cplan was planned, but creal is realized, and ncplan is the
number of composition formations or changes in the historic data where cplan
was planned.

The method we use unfortunately has some disadvantages. For example,
we ignore the actual availability of rolling stock units present at any location
at any time, and we also ignore composition restrictions imposed by railway
infrastructure. As an example, a VIRM6-VIRM6 is not allowed to dwell at
relatively small stations due to its length.

6.2 Train Cancellations

Although it does not occur that often, sometimes due to various reasons (bad
weather, technical problems) NS decides to cancel a train service. A direct
result is that every passenger that planned on taking that canceled train
service, needs to find an alternative, which is usually the next train. This
means that this next train receives more passengers than expected, often
resulting in a busy train.

There are two ways one can model train cancellations. The way that
is more true to reality is modleing them dynamically, by which we mean
that cancellations occur during simulation, and happen “unexpectedly”. An
easier approach, the one taken in this thesis, is to model cancellations stat-
ically, or, before execution of the simulation. The main difference between
the two methods is that when modeling cancellations statically, we assume
passengers are aware of future cancellations. In contrast, when modeling
them dynamically, passengers only become aware of cancellations when they
occur.

If we assume that the probability of a train service being canceled is
independent of all other events, and if we assume that the probability of
canceling a train service is equal for all services, then services are canceled
as follows. For each train service in the planned timetable, with probability
ψ we remove all trips associated to it.
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Chapter 7

Simulation Framework

7.1 Discrete-Event Simulation

In order to determine the KPI according to the old and new definition, we use
discrete-event simulation (DES). DES is a way of simulating systems (both
deterministic and stochastic of nature) by generating and processing events.
This allows for an efficient simulation of systems that only change their state
at discrete times.

A DES usually consists of the following components:

1. A system state;

2. An event queue;

3. An event handler;

4. Statistical counters.

The system state can be seen as a snapshot of the simulated system at a
certain point in time. The event handler is in charge of retrieving events
from the event queue and passing them on to the event handler. The event
queue (often called event list) stores the events in a particular order. Often
in implementations a binary heap is used, which is able to store and retrieve
objects in O(log n) time. Next, the event handler processes the event accord-
ing to its type. In our implementation, the event handler passes the event
to the appropriate callback method, which in turn processes the event. Each
event type has its own callback method. Lastly, the statistical counters are
perhaps the most important in a DES, as they are used to calculate the value
of interest.
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The goal of a DES is to process events and update the statistical counters
accordingly, so that the value of interest can be calculated. To achieve this
goal, a DES can be split into several phases:

1. Initialization;

2. Event processing;

3. Calculation of performance measures.

The initialization phase loads and processes the data, and queues events.
Next, the events are processed by the event handler. After all events are pro-
cessed, the statistical counters are used to calculate the value of interest. In
the case of a stochastic simulation, multiple runs are performed and (usually)
the mean and standard deviation of the value of interest are reported.

7.2 Model Specification

Now we present our DES. The choice for the counters is obvious, as they
follow directly from the definition in Section 2.2. Hence, for every trip t we
calculate

• bt: the number of people boarding the train right before executing trip
t;

• nt: the number of people on board during execution of trip t.

Following the choice for the counters, the system state consists of the
norm (cnormt ) and seating capacity (cseatt ) for each trip t, as well as the event-
activity network corresponding to the planned timetable, all estimated arrival
processes, and all derived passenger routes.

In a DES, the system state can only be changed by processing events.
To determine nt and bt, we need events for every passenger at boarding
and alighting. Therefore we introduce the boarding event eboardt denoting
that a passenger has boarded the train executing trip t at the corresponding
departure station. On the other hand, the alighting event ealightt denotes that
a passenger has alighted the train executing trip t at the arrival station.

The order in which we store the events is according to the execution time
of the trip they belong to, where alighting events have priority over boarding
events in case they belong to the same trip. Here we assume the common
courtesy of allowing other passengers to alight before boarding a train.
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7.2.1 Initialization

The DES is initialized as follows. First, the check-in/check-out data is im-
ported. Then for each OD-pair piecewise-linear arrival rates are estimated
using formulation (4.15) in Section 4.3. Note that the log-likelihood func-
tion contains the term ln(u0i + u1i

tij−wi−1

di
), meaning that it is impossible to

estimate a zero rate (u0i = u1i = 0) as ln 0 is not defined. So, before solving
(4.15) we set u0i = u1i = 0 for all segments i without arrivals. Then we group
all other segments together and estimate piecewise-linear arrival rates for
each group. Unfortunately, the non-linear solver we used (jOptimizer) was
not able to solve all problem instances. For those that remain unsolved we
estimate piecewise-constant rates using Equation (4.6).

Having estimated the arrival rates, we now draw from the processes using
Algorithm 1. Next, for each passenger arrival drawn, a path is generated
from origin to destination using Algorithm 2. Boarding and alighting events
are created for boarding at the origin and alighting at the destination, re-
spectively. If the path contains one or more transfers, then for each transfer
an alighting event is created for the trip containing the transfer station as
arrival station, and a boarding event is created for the trip with the transfer
station as departure station. All events are of course then added to the event
queue. Next, if we allow rolling stock mismatches, we go through all planned
train services and determine for each time the composition of a service is
assembled or altered, what the realized composition will be according to the
estimated probabilities π̂cplan,creal . Upon realization, we alter the correspond-
ing state variables cnormt and cseatt . Finally, we set nt and bt equal to zero for
all trips t ∈ T .

7.2.2 Event Callback Methods

After initialization, the event handler processes all events in the queue by
means of the corresponding callback method. As we have two event types,
we discern two different callback methods:

Boarding event callback As a boarding event eboardt signifies one passen-
ger boarding the train executing trip t, we increment both bt and nt.

Alighting event callback An alighting event ealightt signifies one passenger
alighting the train executing trip t, so we decrement nt by one upon
processing.

33



7.2. Model Specification Chapter 7. Simulation Framework

7.2.3 Implementation Note

We note that every simulation replication is independent, meaning they can
be executed in parallel. Do note, however, that every replication is reliant
on its own timetable and therefore event-activity network. When running
m instances in parallel, m copies of timetables and networks are needed to
be loaded into memory at the same time, resulting in quite some memory
overhead. For instance, using typical input, and taking m = 4, the simulation
needed just over 4 GB of RAM.
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Chapter 8

Results

8.1 Data

In this thesis, we use the planned rolling stock schedule and timetable for
February and March 2016. This dataset is cyclic in the sense that it re-
peats itself every week. Moreover, it contains 4,263 different train services,
executing a total of 253,599 trips. Furthermore, we disregard all night and
international trains.

In addition, NS has also provided check-in/check-out data for January
12 and February 9. Tuesdays were chosen, as it seems to be the most rep-
resentative weekday regarding rail transit behavior. In these datasets, all
smart card passenger journeys are registered, meaning we know the time and
station where they checked in and out. Due to privacy concerns, we only
mention that the datasets contain about one million records.

In addition to passengers checking in and out, there is also a significant
number who travel without doing so. The research “meten in de trein”
(MidT) provided us with correction factors for each type of product issued by
NS. Unfortunately we have to aggregate these factors into one, as otherwise
we need to estimate a different arrival process for each OD-pair for each
product type. We aggregate the correction factors by taking a weighted
average, with the weights corresponding to the passenger volumes from the
check-in/check-out data. The resulting factor is kcor = 1.2158. We then take
into account this correction by applying it to the statistical counters, thus
obtaining the corrected counters b̃t = kcor · bt and ñt = kcor · nt.

Lastly, we have rolling stock schedule and timetable realization data for
January 25 until February 8 (15 days), which contain both planned and
realized arrival and departure times, and train compositions, for all trips
executed by NS. This dataset contains 786,338 records.
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8.2 Arrival Rate Approximation

Chapter 4 discussed two methods for approximating the arrival rate for a
non-homogeneous Poisson process, namely by a piecewise-constant and by a
piecewise-linear function. Both methods are parameterized by segment width
d. However, no methods were given to determine which of the two perform
better, or how to choose d. We now provide such a method, by comparing
the approximations with the empirical rate.

The arrival rate only impacts the number of passengers boarding a certain
train. Thus, let bemp

t and bapprt be the number of passengers boarding the
train executing trip t, under the empirical and approximated arrival rate,
respectively, where passengers were routed using Algorithm 2. We then define
the loss L as

L =
∑
t∈T

(
bemp
t − E[bapprt ]

)2
,

where the closer the approximation is to the empirical rate, the lower the
value of L.

We consider the piecewise-constant and piecewise-linear approximations
for bapprt , with d ∈ {1, 3, 5, 10, 15, 20, 30} minutes, we obtain the results as
depicted in Figure 8.1 using the January 12 check-in/check-out dataset.

The results depicted in Figure 8.1 were calculated using 16 simulation
runs per value for d. The figure clearly shows that the piecewise-linear ap-
proximation is superior. As expected, the larger d, the worse the approx-
imation tends to be (in both cases). We also see that for both cases the
difference between choosing d to be 1, 3, or 5 is very small, although for the
piecewise-linear approximation d = 1 minute scores the best.

Figure 8.2 depicts the predicted and realized arrival rates for the morning
rush of passengers traveling from Rotterdam Alexander to Utrecht Centraal,
for the piecewise-constant (d = 3) and piecewise-linear (d = 1) approxima-
tions.

8.3 Transfer Time

Next, we take a look at the impact of transfer time to the KPI. We consider
the transfer windows 0, 1, 2, 3, 5, 7, and 8 minutes. For an average person, 8
minutes gives a big enough transfer window for even the largest train stations.
Furthermore, we set d = 1 minute, and use the piecewise-linear arrival rate
approximation. The results are shown in Figure 8.3.

Again, the results were computed using 16 simulation runs for each con-
figuration. Taking into account the scale of the figure, we can safely say that
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Figure 8.1: Comparison between piecewise-constant and piecewise-linear ar-
rival rate approximations for several values of segment width d.

the choice for constant transfer time barely affects the KPI. However, we do
see an unusual low KPI for a transfer time of zero, which unfortunately we
cannot explain. For the non-zero transfer times, considering the scale of the
figure, we see a rather constant curve. Therefore we come to the conclu-
sion that, in general, the transfer time parameter does not have a significant
impact on seating probability.

For the remainder of this section, we select a constant transfer time of
1 minute. The reason for this, is that it eliminates the impossible transfers
with a zero minute transfer window, while also not being as restrictive as
selecting a relatively high transfer time. Preliminary tests have shown that
with a transfer time of 1 minute, we still get realistic transfers in most of the
cases.

8.4 Simulation Output

Using the January 12 dataset, we predict the KPI for the entire main rail
network for February 9, for (i) the entire day, (ii) the morning rush hour,
(iii) evening rush hour, and (iv) both rush hour periods combined.
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Figure 8.2: Visual comparison between the predicted and realized rate, for
the piecewise-constant (d = 3) and piecewise-linear (d = 1) approximations.
Here, the arrival rate is approximated for passengers traveling from Rotter-
dam Alexander to Utrecht Centraal, from 07:00 to 09:00.
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Figure 8.3: Plot of the KPI with varying constant transfer time.

Table 8.1: Simulation results for the February 9 dataset, using a predicted
and realized arrival rate. The KPI is displayed in percentages, where the
numbers between parentheses are the standard deviation.

KPI

Generated arrivals Real arrivals

Entire day 95.02 (0.046) 94.28 (–)
Rush hour - Combined 90.57 (0.094) 89.11 (–)
Rush hour - Morning 88.38 (0.130) 86.17 (–)
Rush hour - Evening 93.04 (0.150) 92.44 (–)
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The results are reported in Table 8.1. The first column shows on what
levels we aggregate the KPI. The second column shows the prediction for
the KPI approximating the arrival rate with a piecewise-linear function with
d = 1 minute. Finally, the third column shows the KPI obtained from using
the real February 9 passenger arrivals. This allows us to assess the abso-
lute quality of the piecewise-linear approximation, rather than the relative
quality we investigated in Figure 8.1. Using the framework presented in this
thesis, we predict a KPI of 90.57% for February 9, with the current planned
timetable and rolling stock. However, using the real arrivals of that day, we
obtain a KPI of 89.11%, meaning that our piecewise-linear approximation
for the arrival rate causes an error of 1.46%. Breaking the rush hour into
morning and evening, we see that main cause of that error is due to the
morning rush (error for morning rush is 2.21%, whereas the error for evening
rush is 0.60%).

The realized KPI value for February 9 was 93.11%, meaning that our
simulation underestimates the KPI by almost 3%. This seems rather pecu-
liar, as the realized KPI was calculated using the historical KPI with actual
realization data, which includes train cancellation and delays, two negative
factors which we do not include. However, the way that the realized KPI is
calculated is different than how we do it. First and foremost, for the realized
KPI the correction factors are not aggregated into one like we did with kcor.
Second, only the OD-pairs are included in the realized KPI that have at least
100 passengers in the last 100 days, where the passengers must travel on 20
different days (to exclude rare events). We on the other hand include every
OD-pair with at least one passenger. Third, when a passenger has x > 1
travel options, the passenger is “split” over these x options equally. Thus,
the passenger counts for 1/x passenger for each of the x alternatives. We, on
contrary, pick exactly 1 of the alternatives, namely the lexicographically-first
Pareto-optimum. By splitting the passenger, the load is smeared out over
all alternatives, which relieves the burden of a “whole” passenger to already
busy trips. On top of that,

We also see that the morning rush hour scores significantly lower than the
evening rush hour. There are two factors contributing to the seating capacity:
passenger volume, and transport capacity. Table 8.2 displays the results of
our comparison using real passenger arrivals for February 9. We have chosen
the average number of seats (including foldable seats) per trip as measure for
seat capacity. The results show that the relatively bad performance during
the morning rush is most likely caused by not allotting enough capacity. We
see from Table 8.2 that for both rush hours, approximately an equal amount
of seat capacity is allotted, the morning rush hour sees 28,283 (11.39%) more
passenger arrivals than the evening rush.
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Table 8.2: Comparison of morning and evening rush passenger volume and
seat capacity. As a measure for seat capacity we have chosen the average
number of seats per trip.

Passenger arrivals Ave. seats/trip

Morning Rush 276,533 475.52
Evening Rush 248,250 467.53

Table 8.3: List of ten worst train services, measured by KPI. Produced using
a transfer time of 1 minute, using the piecewise-linear rate approximation
with d = 1 minute, after 32 simulation runs.

Station

Train Start End KPI cplan RH

14869 Amsterdam Centraal Hoorn 36.35 (2.58) SGM3 E∗

2825 Rotterdam Centraal Utrecht Centraal 44.66 (2.44) VIRM4 M
14867 Amsterdam Centraal Hoorn 46.30 (3.12) SGM5 E
14871 Amsterdam Centraal Hoorn 48.35 (3.38) SGM3 E∗

2827 Rotterdam Centraal Utrecht Centraal 49.09 (3.40) VIRM6 M
4919 Almere Oostvaarders Utrecht Centraal 49.58 (3.22) SLT6 M
5663 Utrecht Centraal Zwolle 50.61 (4.71) DDZ4 E
5618 Zwolle Utrecht Centraal 51.60 (3.85) DDZ4 M
5020 Breda Den Haag Centraal 52.28 (3.37) SLT10 M
2218 Dordrecht Amsterdam Centraal 52.74 (1.11) VIRM8 M

* : The 14869 starts at 18:04 and the 14871 at 18:34, which is technically after the
evening rush hour.
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Apart from providing the user with just the predicted overall KPI, the
simulation is also able to help provide insight. In order to help increase the
KPI as efficiently as possible, the framework is able to display a list of worst
performing train services. An example of such list is shown in Table 8.3 for 10
services, which was produced using 32 simulation runs, with a transfer time
of 1 minute and segment width of d = 1 minute using the piecewise-linear
rate approximation. The table shows the position in the worst ten list, the
train number, origin and destination, predicted KPI, planned composition,
and during which rush hour (RH) the service is executed. Out of the 10
services, 6 are executed during the morning rush hour, 2 during the evening
rush hour, and 2 are executed just barely after the evening rush hour. Also,
out the 10 services 7 are of the sprinter type (SGM, SLT, and DDZ1). Most
notable is the poor performance of the three consecutive train services from
the 14800 line.

Of course, it is also possible to aggregate the KPI on station level. To do
this, we determine for each passenger arriving into the system at station O
which trip he boards. So, for each origin we obtain a set of boarding trips for
which we can easily calculate the KPI using (2.2). Afterwards, we take the
ten worst scoring origins and make a list, which is displayed in Table 8.4.

Table 8.4: Top ten worst performing origin stations (during rush hour), based
on KPI.

Pos. Origin KPI

1 Purmerend 78.66 (0.97)
2 Sassenheim 81.20 (0.64)
3 Diemen Zuid 82.16 (0.51)
4 Santpoort Noord 82.76 (0.75)
5 Soest 83.01 (1.10)
6 Santpoort Zuid 83.07 (0.86)
7 Waddinxveen Noord 83.43 (0.85)
8 Den Haag Moerwijk 83.94 (0.50)
9 Zaandam Kogerveld 83.97 (1.04)
10 Soestdijk 84.27 (0.64)

First of all we note that all the stations in Table 8.4 are relatively small.
In fact, all of them are only frequented by sprinter train services. This is not
that surprising, as compositions used for sprinter train services (except DDZ

1The DDZ can be employed both as sprinter or intercity. However, in this case, they
were employed as sprinters.
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compositions) have a much lower ratio of seated to non-seated capacity than
compositions used for intercity services.

8.5 Deviating From the Plans

Next, we investigate the impact of rolling stock mismatches. As the number
of rolling stock combinations is too large to display on paper, we only provide
a brief summary. We identified 54,686 possible composition changes in the
planned timetable. Out of these 54,686 possible changes, 35,242 (64.44%)
trains were executed as planned (until a possible next composition change).
9,595 (17.55%) were executed in a composition with lower capacity, and 9,849
(18.01%) with higher capacity. Note that although 64.44% trains running in
the planned compositions seems low, do note that after the handover letter,
the rolling stock schedule is still subject to some possible changes.

Now we investigate the sensitivity of the estimated probabilities. We in-
troduce a parameter ϕ, indicating how often rolling stock mismatches occur.
These altered mismatch probabilities are defined as

π̃cplan,cplan = πcplan,cplan(1− ϕ) + ϕ, cplan ∈ C,
π̃cplan,creal = πcplan,creal(1− ϕ), cplan, creal ∈ C,

with ϕ ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. In the case ϕ = 0, the probabilities are
left unaltered and mismatches occur according to the originally estimated
probabilities. On contrary, if ϕ = 1, all trains run in their planned composi-
tions.

In addition to presenting the sensitivity of rolling stock mismatches to
the KPI on national level (Table 8.5a), we also investigate the effect on a
less aggregated level, namely for the ten worst performing train services of
Table 8.3 (Table 8.5b).

Table 8.5a indicates that, in general, rolling stock mismatches tend to
affect the KPI negatively, and significantly so. In our case, we estimate that
mismatches cause the KPI to drop from 90.57% to 85.54%.

Looking at the results in Table 8.5b, we see that it is not always the case
that mismatches worsen the KPI. In fact, we see the following happening.
The more likely a mismatch, the more we see services with low-capacity
compositions (e.g. 14869, 14867, and 14871) improve, and services with
high-capacity compositions (e.g., 2218 and 5020) worsen. Take for example
an SGM3. As this is the composition with the smallest seat capacity, if
any other composition takes its place, the KPI must increase (keeping the
passenger volume fixed). Similarly, the opposite occurs for a composition
with a large seat capacity (like the VIRM8).
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Table 8.5: Sensitivity of rolling stock mismatch probabilities on the KPI,
aggregation based on (a) nation-wide, (b) worst ten train services.

(a)

Percentage as planned

64.44 71.55 78.66 85.78 92.89 100.00
(ϕ = 0.0) (ϕ = 0.2) (ϕ = 0.4) (ϕ = 0.6) (ϕ = 0.8) (ϕ = 1.0)

KPI 85.54 86.58 87.48 88.67 89.57 90.57
(0.546) (0.550) (0.501) (0.353) (0.286) (0.094)

(b)

Percentage as planned

64.44 71.55 78.66 85.78 92.89 100.00 cplan
Train (ϕ = 0.0) (ϕ = 0.2) (ϕ = 0.4) (ϕ = 0.6) (ϕ = 0.8) (ϕ = 1.0)

14869 41.90 45.97 41.17 37.30 37.76 36.35 SGM3
(10.91) (13.97) (10.89) (5.10) (5.81) (2.58)

2825 56.91 53.47 56.45 50.58 45.44 44.66 VIRM4
(22.19) (18.61) (22.08) (15.18) (7.19) (2.44)

14867 56.71 50.63 49.93 47.50 49.11 46.30 SGM5
(14.29) (10.03) (13.20) (8.93) (7.43) (3.12)

14871 58.58 55.60 54.23 53.79 49.80 48.35 SGM3
(15.49) (12.87) (15.87) (12.88) (8.89) (3.38)

2827 47.29 42.87 51.83 49.50 47.95 49.09 VIRM6
(13.67) (7.09) (15.66) (10.41) (3.80) (3.40)

4919 53.89 54.97 51.04 51.02 50.60 49.58 SLT6
(15.43) (16.27) (11.88) (10.57) (5.18) (3.22)

5663 53.81 53.11 50.15 52.61 52.55 50.61 DDZ4
(15.83) (16.23) (10.59) (10.24) (12.58) (4.71)

5618 55.11 56.91 58.41 53.37 50.76 51.60 DDZ4
(15.23) (17.74) (16.42) (9.60) (5.33) (3.85)

5020 42.24 44.27 45.50 46.27 49.11 52.28 SLT10
(13.49) (14.74) (13.12) (13.01) (9.02) (3.37)

2218 45.18 46.01 44.93 48.68 51.39 52.74 VIRM8
(14.19) (11.67) (12.65) (12.12) (4.14) (1.11)
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Table 8.6: First 10 order statistics of the KPI aggregated on train services,
for different values of ϕ

Percentage as planned

64.44 71.55 78.66 85.78 92.89 100.00
Pos. (ϕ = 0.0) (ϕ = 0.2) (ϕ = 0.4) (ϕ = 0.6) (ϕ = 0.8) (ϕ = 1.0)

1 19.36 19.43 22.02 24.50 25.50 36.06
(3.74) (4.42) (5.44) (4.90) (6.13) (1.82)

2 22.34 23.06 26.11 29.13 31.35 43.08
(3.61) (4.10) (4.44) (4.53) (5.36) (1.24)

3 24.88 26.09 28.54 32.13 35.20 44.99
(3.31) (3.91) (3.81) (4.11) (4.59) (1.29)

4 27.00 28.16 30.82 34.36 37.37 46.71
(3.21) (3.76) (3.95) (4.44) (3.76) (1.19)

5 28.82 29.72 32.97 35.96 39.58 47.81
(2.72) (3.81) (2.75) (3.57) (4.19) (1.23)

6 30.33 31.88 34.41 37.68 41.31 49.07
(2.68) (2.88) (2.74) (3.27) (4.31) (1.46)

7 31.42 33.40 35.89 39.32 42.81 50.08
(2.58) (2.80) (2.74) (3.84) (4.05) (1.45)

8 32.63 35.08 37.09 40.85 44.10 50.94
(2.47) (2.63) (2.68) (3.61) (3.52) (1.30)

9 33.74 35.77 38.03 41.88 45.30 51.87
(2.51) (2.64) (2.69) (3.49) (3.05) (1.17)

10 34.57 37.04 38.80 42.88 46.29 52.67
(2.24) (2.41) (2.66) (3.35) (2.65) (1.04)

For Table 8.5b we have varied the likelihood of rolling stock mismatches,
for a pre-selected set of train services. However, to provide another perspec-
tive to the impact of mismatches, we determine the KPI for all train services
for some values of ϕ. Then, this list of KPIs is sorted, and the worst 10 are
returned. This is different than Table 8.5b as we do not fix the train ser-
vices. Except for some minor disturbances, we generally see that the more
train services are executed with their planned compositions, the better the
KPI. The only real outlier being the results for position 1, which after inves-
tigating turns out to be train 14869 for all values of ϕ. This discrepancy is
caused by (as already discussed) the fact that if its composition varies, the
KPI automatically improves.

Furthermore we have included the first ten order statistics for the train
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Table 8.7: Impact of train cancellation on the KPI, for various values of ψ.

ψ

0.0 0.002 0.005 0.01 0.015 0.02 0.025 0.03

KPI 90.57 90.37 90.19 89.91 89.67 89.12 88.89 88.59
(0.094) (0.186) (0.294) (0.350) (0.369) (0.445) (0.432) (0.690)

services KPI, under varying ϕ. The results are found in Table 8.6. The
statistics were calculated as follows. For each of the 32 iterations, sort the
train service KPIs in increasing order. Then, for statistic x(i), compute the
mean and standard deviation of the i-th element in each of the 32 lists. It
can be seen from the table that the impact of rolling stock mismatches can
be quite large. Looking at the standard deviation, we see that the more we
go to the end (or tail) of the list, the larger the deviations in KPI.

Finally we consider the impact on the KPI of canceling train services. As
typically about 1.5% of all services are canceled, we compare between the
values ψ = 0.0, 0.002, 0.005, 0.01, 0.015, 0.02, 0.025, and 0.03. The results
are displayed in Table 8.7. If no services are canceled, the KPI is around
90.57%, as we have already seen. However, increasing ψ gradually decreases
the KPI. At ψ = 0.015 we obtain a KPI of 89.67%, which does not seem to
be that much of a decrease. However, Increasing ψ also tends to increase the
uncertainty in the KPI estimation, which is to be expected.

Under typical circumstances (ϕ = 0.0 and ψ = 0.015), we see that rolling
stock mismatches lower the KPI by 5%, whereas train cancellations decrease
the KPI by not even 1%. As a matter of fact, even in the case that ψ = 0.03
do we see that train cancellations have a smaller effect on the KPI than
rolling stock mismatches do.
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Chapter 9

Conclusion

In this thesis we have looked at developing a simulation framework capa-
ble of evaluating the new definition for the KPI “transport capacity during
rush hour”, and we have also derived some insights from it. The problem
of evaluating the KPI is split into that of (i) modeling passenger arrivals,
(ii) representing the timetable and rolling stock schedule, and (iii) determin-
ing passenger routes. Next, insight was derived by looking at how the KPI
reacted to deviations from the planned timetable and rolling stock sched-
ule. Here, we looked at the impact of rolling stock mismatches and train
cancellations.

We modeled passenger arrivals by assuming a passenger group for each
OD-pair. For each passenger group (i.e., OD-pair), we estimated a non-
homogeneous Poisson process, where we assume the arrival rate function λ(t)
to be either piecewise-constant, or piecewise-linear. We compared the two
estimation methods using a criterion we developed based on the difference in
actual arrivals per trip, and those generated by approximating λ(t). Compar-
ing both piecewise-constant and piecewise-linear approximations, we see that
the piecewise-linear approximation with segment width d = 1 minute clearly
performs best. Apart from relative fit, we also check the absolute goodness
of fit and prediction power by comparing the KPI obtained from using actual
arrivals, and that obtained from assuming a piecewise-linear approximation
for λ(t). Our model overestimates the KPI by 1.46%.

By far the most popular way to represent a timetable in railway literature
is by means of an event-activity network. In this thesis we looked at the
variant allowing for constant transfer times, although this approach can also
be extended to allow for non-constant transfer times. We have seen that the
KPI is pretty robust to choices of transfer time in the sense that it seems
to barely effect it at all. However, we do see a small difference in zero and
non-zero transfer times.
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Chapter 9. Conclusion

As we were not able to obtain passenger route preference data, we unfor-
tunately had to make an assumption regarding passenger routing. We made
the assumption that passengers always travel using the earliest arriving path
with a minimum number of transfers. Following this assumption is a Dijkstra-
like algorithm able to find the lexicographically-first Pareto-optimum using
travel time and number of transfers as criteria (in that order).

As already mentioned, we also looked at the impact to the KPI of rolling
stock mismatches and train cancellations. We model rolling stock mismatches
by looking at the planned and realized train compositions. For every moment
in time that a train composition is either formed or changed, we assume that
a mismatch may occur, meaning that the realized composition differs from
planned. We estimate probabilities for each pair of planned and realized com-
position. According to our framework, the KPI with planned timetable and
rolling stock schedule for February 9 is 90.57%. We estimate that with rolling
stock mismatches the KPI becomes 85.54%, meaning these mismatches have
a significant impact of 5.03%. Next, we assume that a train is canceled with
probability ψ, independently of all other events. Typically, about 1–1.5% of
all trains is canceled, resulting in a KPI of 89.67–89.91%.

In general, it seems that rolling stock mismatches cause a greater loss
in KPI than train cancellations. Looking with more detail into the KPI, we
found the following. The ten worst performing origin stations (under planned
timetable and rolling stock schedule) are exclusively so-called “sprinter sta-
tions”, meaning only sprinter trains frequent them. Also, 7 out of the 10
worst performing train services are sprinter services. Checking the seating
capacities, we indeed see that train types designated for sprinter services
(SGM, SLT) have a relatively smaller ratio of seated to non-seated capacity.
Regarding rolling stock mismatches, we found that, although in general the
KPI deteriorates the more mismatches occur, it all depends on the planned
train composition. For example, we have seen that if a low-capacity compo-
sition is planned (like an SGM3), increasing the probability of a mismatch
means the KPI for that train service will most like increase, as there are
more compositions with larger capacity than with less. If a high-capacity
composition is planned, the reverse effect occurs. Therefore, we advise NS to
focus reducing rolling stock mismatches for high-capacity compositions, as
for low-capacity compositions mismatches are actually beneficial to the KPI.

Unfortunately, due to time constraints we were unable to model train
delays for the simulation framework. This is unfortunate, as delays occur
way more frequent than train cancellations, and thus may impact the KPI
significantly.
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L. Kroon, G. Maróti, and L. K. Nielsen. Rescheduling of railway rolling
stock with dynamic passenger flows. Transportation Science, 49(2):165–
184, 2014.

P. A. W. Lewis and G. S. Shedler. Simulation of nonhomogeneous poisson
processes by thinning. Naval Research Logistics Quarterly, 26(3):403–413,
1979.

W. A. Massey, G. A. Parker, and W. Whitt. Estimating the parameters of
a nonhomogeneous poisson process with linear rate. Telecommunication
Systems, 5:361–388, 1996.

50

http://www.nrc.nl/handelsblad/2015/12/01/in-2016-wordt-het-weer-drukker-in-de-spitstreinen-1565267
http://www.nrc.nl/handelsblad/2015/12/01/in-2016-wordt-het-weer-drukker-in-de-spitstreinen-1565267
http://www.ad.nl/binnenland/recordaantal-klachten-over-te-volle-treinen-ns~a6e07253/
http://www.ad.nl/binnenland/recordaantal-klachten-over-te-volle-treinen-ns~a6e07253/


K. Nachtigall. Periodic network optimization and fixed interval timetables.
Deutsches Zentrum für Luft–und Raumfahrt, Institut für Flugführung,
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A. Schöbel and S. Scholl. Line planning with minimal traveling time. In
OASIcs-OpenAccess Series in Informatics, volume 2. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2006.

F. Schulz. Timetable Information and Shortest Paths. PhD thesis, Univer-
sität Fridericiana zu Karlsruhe, 2005.
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