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Abstract 

In this paper, I present an alternative modelling strategy to examine the non-linear relation between 

temperature and natural gas consumption for 5 European countries. Previous research has typically 

aimed to capture this non-linearity through the use of heating degree days (HDDs) and cooling degree 

days (CDDs) variables. However, while this approach is widely disseminated in the literature, it has 

several apparent drawbacks, i.e. a priori identification of the threshold value, and the ad-hoc transition 

from warmer to cooler regimes. In this study I examine the potentiality of different non-linear models 

to both describe the behaviour of natural gas demand, and to identify and validate the value(s) of the 

temperature threshold(s). Among the models under consideration, the most deliberate specification is 

the logistic smooth transition regression (LSTR) model. In contrast with the HDDs and CDDs approach, 

this method allows for a posteriori determination of the threshold value(s), thereby providing a method 

to examine their validity. Moreover, the LSTR model is more able to describe the degree of smoothness 

and the qualitative behaviour of the demand response function for values close to the threshold value. 

Lastly, by using an analogue of the Akaike Information Criteria (AIC), I formally show that that the 

LSTR specification outperforms the conventional HDDs and CDDs approach for all countries. 

 

Keywords: Natural Gas Consumption; Temperature; Heating Degree Days; Cooling Degree Days; 

Regime-Switching Model; Threshold Regression Model; Smooth Transition Regression Model   
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1 Introduction 

Over the past two decades the markets for natural gas in Europe have undergone a profound 

restructuring process. Traditionally, natural gas markets in most developed countries were restrictively 

monopolistic and government-controlled. However, in the late 1990s the liberalisation and privatisation 

of natural gas markets emerged prominently on the European political agenda (Haase, 2008). This 

process has been pivotal in the convergence of regulatory regimes across Europe, but recently attention 

has shifted towards other, more pressing, energy challenges. In particular, growing worries with regard 

to global warming set climate change at the heart of the European energy debate1. 

At the Paris climate conference (COP21) in December 2015, 195 countries agreed to the “first-ever 

universally, legally binding global climate deal”2. In short, governments agreed on a long-term goal of 

keeping the increase in the global average temperature below 2 °C, as this level of global warming is 

generally judged to inflict dangerous climatological changes. However, the majority of climate change 

assessments have centred on the contributions of the energy sector to global warming (Amato et al., 

2005). Conversely, relatively few studies explore the reverse implications of climatological factors on 

the energy sector. In line with these findings, this paper will focus on the relation between natural gas 

consumption and temperature3.  

The primary studies on the link between energy consumption and temperature consistently indicate 

that the relation is non-linear (Peirson and Henley, 1994, Li and Sailor, 1995, Al-Zayer and Al-Ibrahim, 

1996, Sailor and Muñoz, 1997, Henley and Peirson, 1997, 1998). This non-linearity derives from the fact 

that both increases and decreases in temperature, relative to certain threshold values, can lead to an 

increase in energy demand. In particular, during the winter the expected link between energy 

consumption and temperature is expected to be negative, i.e. lower (colder) temperatures are expected 

to cause an increase in energy demand (heating effect). Vice versa, during the summer the expected link 

between energy consumption and temperature is expected to be positive, i.e. higher (warmer) 

temperatures are expected to cause an increased need for cooling leading to an increase in energy 

demand (cooling effect).  

Prior research has typically aimed to capture this non-linearity through the use of heating degree days 

(HDDs) and cooling degree days (CDDs) variables (Al-Zayer and Al-Ibrahim, 1996, Sailor and Munõz, 

                                                           
1 European Commission: A policy framework for climate and energy in the period from 2020 to 2030. 

2 European Commission: Climate Action, Paris Agreement 2015.  
3 Throughout this paper I use the terms consumption and demand interchangeably to describe the use of energy (and in particular, 

natural gas). 
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1997, Considine, 2000, Valor et al., 2001, Pardo et al., 2002, Amato et al., 2005, Eskeland and Mideksa, 

2009, Petrick et al., 2010). Conventionally, these are defined as follows, 𝐻𝐷𝐷 =  max(𝑇∗ − 𝑇𝑡  , 0), and 

𝐶𝐷𝐷 =  max(𝑇𝑡 − 𝑇
∗ , 0), where 𝑇∗ is an arbitrary threshold temperature. Each degree deviation from 

this predefined balance point is then counted as a degree-day. For instance, if the arbitrary threshold 

value is set to 18 °C, and the average temperature on day t is 23 °C, then this would result in 5 CDDs 

for that day. Vice versa, for the same threshold value, if the temperature on day t is 13 °C, this would 

result in 5 HDDs for that day4.  

Jointly, these two functions specify the number of days on which the temperature exceeds or falls short 

of the threshold value, and by how many degrees. This approach enables the construction of a 

parsimonious linear regression model (that contains HDDs and CDDs as independent variables), which 

maintains ease of interpretation while still capturing the non-linear behaviour of energy demand. 

Although this modelling strategy has performed reasonably well in the previous literature, it also has 

several apparent shortcomings. Firstly, the identification of heating and cooling degree days is based 

on an arbitrary threshold value, typically chosen to be approximately 18 °C (i.e. 65 °F), whose validity 

is not subjected to any type of check. Secondly, it is nontrivial whether a single threshold or a dual 

threshold should be considered. The former would suggest a sharp change in the behaviour of demand 

for temperatures close to the threshold value, i.e. as depicted in figure 1, whereas the latter assumes a 

smoother transition with an intermediate temperature range in which there is no appreciable change in 

consumption. 

Moral-Carcedo and Vicéns-Otero (2005) acknowledge the gravity of these shortcomings, and propose a 

different methodological approach to study the relation between temperature and daily electricity 

demand in Spain over the period 1995-2003.  They suggest a simple regime switching model to examine 

both the implied existence of different regimes (cold and warm states), as well as the transition from 

one to the other. The behaviour that they observe clearly delineates a cold and hot regime, as well as an 

intermediate range in which a gradual transition occurs from the former to the latter. They then employ 

a threshold regression model to further corroborate the preliminary evidence of a U-shaped demand 

response function. Building on these results, the authors propose a smooth transition regression model 

with a logistic transition function (LSTR), to adequately capture the U-shaped non-linear relation 

between temperature and Spanish electricity consumption.  

                                                           
4 The threshold value 𝑇∗can be different for the HDDs and CDDs specification, thereby allowing for a temperature range in which 

energy demand is insensitive to temperature variations. 
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Figure 1: The theoretical relation between energy consumption and temperature. 

 

Notes: Portrays the V-shaped relation between energy consumption and temperature as theorized by the HDDs and CDDs 

approach.  

Bessec and Fouquau (2008) extend the work of Moral-Carcedo and Vicéns-Otero (2005), as they examine 

the non-linear relation between electricity consumption and temperature for a panel of 15 European 

countries. They built on the theoretical work of González et al. (2005) and employ panel smooth 

transition regression models, implementing both logistic and exponential transition functions.  Their 

main empirical findings confirm the non-linear U-shaped pattern of the relation, and they show that the 

non-linearity is more pronounced for warmer countries. Moreover, they endogenously estimate the 

threshold value to be 16.1 °C on average for the panel of European countries.  

Lee and Chiu (2011) construct a similar research methodology, and develop a panel smooth transition 

regression model for 24 OECD countries. They further the analysis of Bessec and Fouquau (2008) by 

examining the sensitivity of electricity consumption to both electricity price and real income (, in 

addition to temperature). Similarly, they find evidence of a U-shaped relation between electricity 

consumption and temperature. Moreover, they endogenously estimate the threshold value of 

temperature to be approximately 12 °C (i.e. 53 °F), which is significantly lower than in Bessec and 

Fouquau (2008). For a more comprehensive review of the existing literature, I refer to Mideksa and 

Kallbekken (2010), Aufhammer and Mansur (2014), and Ranson, Morris and Kats-Rubin (2014).    

1.1 The Relation between Natural Gas Consumption and Temperature 

Auffhammer and Mansur (2014) observe that most of the prevailing research on energy demand 

sensitivity focuses on electricity consumption. Studies on other fuels are sparse, and in particular 
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natural gas consumption is mostly neglected in the existing literature. De facto, to the best of my 

knowledge, there has not been any research which concentrates exclusively on the relation between 

natural gas consumption and temperature. However, similar to electricity demand, natural gas 

consumption is largely determined by the decisions of large groups of different economic agents (e.g. 

residential consumers, gas-fired power plants, commercial consumers etc.). Even assuming that these 

agents only make dichotomous decisions, and change their behaviour discretely, it seems unlikely that 

they all do this simultaneously. In other words, not every economic agent reacts similarly to 

temperature variations. This suggests that a U-shaped demand response function might likewise be 

more accurate in depicting the response of natural gas consumption to temperature variations.  

Figure 2: Regime switching probability and temperature. 

 

Notes: Depicts the results of a simple regime switching model with two states for Italy, without imposing any a priori relation 

between the switching probability and temperature. The left-hand figure portrays the probabilities of regime 1 plotted against 

temperature, while the right-hand figure shows the probabilities of regime 2. For a complete description of the underlying 

methodology I refer to section 2.  

Figure 2 shows preliminary support for this line of reasoning by portraying the results of a simple 

regime switching model with two states for one of the sample countries, i.e. Italy. Without imposing 

any a priori relation between the switching probability and temperature, the link between regime and 

temperature still manifests itself clearly. In particular, regime one can be identified as a warm regime 

that exhibits a high probability of occurrence for temperatures above 20 °C. Whereas regime two 

corresponds with a cold regime, demonstrating a high probability of occurrence for temperatures below 

10 °C.  

Moreover, as temperature increases, the probability of regime one increases progressively without 

sudden jumps, i.e. it follows a gradual process with frequent reverses in the transition from one regime 
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to the other. This behaviour corresponds with a smooth transition from winter to summer, as economic 

agents adjust their behaviour to prevailing temperature levels. These preliminary findings corroborate 

the intuition that similar to electricity demand, the response of natural gas consumption to temperature 

variations is not V-shaped as suggested by the HDDs and CDDs approach. Rather there is a smoother 

transition with an intermediate temperature range in which there is no appreciable change in 

consumption.  

The main objective of this paper is to propose a modelling strategy that is able to adequately capture 

this non-linear effect of temperature on natural gas consumption. In the first step, I apply regime 

switching models and threshold regression models to demonstrate the shortcomings of the conventional 

HDDs and CDDs approach. Subsequently, I propose smooth transition regression (STR) models, an 

econometric method widely diffused in macro-economic research, to describe the response of natural 

gas consumption to temperature variations. In contrast with the HDDs and CDDs approach, this 

method allows for a posteriori determination of the threshold value, thereby providing a method to 

examine the validity of the threshold value. Furthermore, it captures more adequately the transition 

from warmer to cooler regimes, i.e. the response of natural gas demand to temperature changes for 

intermediate temperature ranges. To the best of my knowledge this is the first occasion where this type 

of model is used in the context of natural gas consumption. 

This paper further adds to the existing literature by using data for five different European member states 

(France, Germany, Italy, the Netherlands, and the United Kingdom). This enables me to identify that 

both the shape and location parameter of the demand response curve differ meaningfully across 

countries. Therefore I argue that the assessment of demand sensitivity to temperature should be 

performed at the regional scale (for large countries such as the United States) or at country-level (as in 

the case of the European Union).  

The remainder of this paper is organized in the following manner. In section 2 I provide an elaborate 

discussion of the methodology, which consists of a detailed portrayal of the different estimation 

techniques and model specifications. Section 3 serves as a description and analysis of the complete 

dataset. In section 4 I depict the empirical results and their implications. Finally, the main conclusions 

are presented and summarised in section 5.  
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2 Methodology 

The preliminary results derived in the previous section suggest that the effect of temperature on natural 

gas consumption is non-linear. In particular, demand appears to increase both during warmer periods 

in the summer, as well as in colder periods during the winter. Conventionally, researchers have aimed 

to capture this non-linearity through the use of HDDs and CDDs variables. Even though this modelling 

strategy has performed reasonably well in the previous literature, it also has several apparent 

shortcomings as specified in the previous section.  

In an attempt to overcome these difficulties I explore three alternative modelling strategies in the next 

sub-sections. These models aim to capture the non-linear relation between temperature and natural gas 

demand more adequately, focusing in particular on the switch in behaviour of natural gas demand for 

different temperature regimes. More specifically, in addition to the HDDs and CDDs variables 

approach, I employ a regime-switching regression model, a threshold regression model, and a smooth 

transition regression model. These approaches can be classified as alternating or switching models, in 

which different linear models are estimated for different states that occur in succession or alternate with 

each other. The characteristics of these models allow for a posteriori determination of the threshold 

value, and a smoother transition from colder to warmer temperature regimes.  

2.1 Country-Level Energy Demand Sensitivities 

The literature on energy demand sensitivities can broadly be divided in two competing strands which 

diverge in their methodological approach, i.e. individual time-series and panel studies. Similar to 

Amato et al. (2005), I argue that energy demand sensitivities with respect to climatic variables should 

be examined at the regional scale (for large countries such as the United States) or at country-level (as 

in the case of the European Union). In particular, as Boustead and Yaros (1994) show, energy 

infrastructures can differ significantly across countries and regions. For instance, energy systems might 

be different in terms of energy sources, efficiencies, age of transmission and distribution systems, and 

end-use technologies, thereby affecting the demand response curve. Secondly, as residential, 

commercial and industrial sectors exhibit different demand responses to temperature, the sectoral 

composition of a country’s economy might significantly influence the sensitivity of natural gas demand 

(Amato et al., 2005). Therefore, I opt that it is sensible to estimate the forthcoming models individually 

for each country (i.e. contrasting with a panel approach). 
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2.2 HDDs and CDDs 

In order to incorporate the non-linear dynamics of energy consumption in a linear model, the majority 

of the related literature has segmented the variation of temperature in two new variables (HDDs and 

CDDs). Thereby essentially segregating the behaviour of demand in colder and warmer regimes. These 

variables can more formally be defined as follows, 

𝐻𝐷𝐷 = max(𝑇∗ − 𝑇𝑡  , 0) (1) 

𝐶𝐷𝐷 =  max(𝑇𝑡 − 𝑇
∗ , 0) (2) 

where 𝑇∗ is an arbitrary threshold temperature. Each degree deviation from this predefined balance 

point is then counted as a degree-day. Although there is no consensus in the literature on the exact value 

of this threshold, it is typically chosen to be approximately 18 °C (i.e. 65 °F). However, most studies 

provide no considerate rationale for using this value. Therefore I opt to follow Bessec and Fouquau 

(2008), who in a panel study of 15 European countries endogenously estimate the threshold value to be 

16.1 °C.  

This approach enables me to construct a parsimonious linear model with HDDs and CDDs as 

explanatory variables,  

𝐹𝐷𝑡 = 𝛼0 + 𝛽1𝐻𝐷𝐷𝑡 + 𝛽2𝐶𝐷𝐷𝑡 + 𝜀𝑡 (3) 

where 𝐹𝐷𝑡 depicts filtered natural gas demand (see section 3 for the filtering methods), and 𝜀𝑡 is 

assumed to be an independently and identically normally distributed error term (𝑁(0, 𝜎2)).  

2.3 Regime-Switching Model 

The link between natural gas consumption and temperature is expected to be different for colder 

temperatures, then for warmer. In particular, I will assume that this response can be represented by a 

straightforward linear model with two states,  

𝐹𝐷 𝑡 = 𝛼𝑗 + 𝛽𝑗𝑇𝑀𝑃𝑡 + 𝜀𝑡 (4) 

where 𝑇𝑀𝑃𝑡  portrays temperature at time t, 𝜀𝑡~𝑁(0, 𝜎𝑗
2), and J={1, 2} represents each of the two states 

(cold or hot temperatures). The parameter 𝛽𝑗 can then be interpreted as the effect of temperature on 

natural gas demand when the respective state is either cold or hot (and 𝛼𝑗 is an intercept that typically 

has no meaningful interpretation). 

As a starting point of this regime-switching model I assume that natural gas demand alternates 

independently between either of the two aforementioned states. In other words, I do not assume any a 
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priori relation between the switching probability and temperature. Now, presuming that the probability 

of being in a particular state is independent of past values, and denoting the information set at time t 

as 𝜓𝑡−1, I find that 𝑃(𝑗 = 1| 𝜓𝑡−1) = 𝑃(𝑗 = 1) = 𝑝, and therefore 𝑃(𝑗 = 2) = (1 − 𝑝). Subsequently, 

assuming normality in the distribution term 𝜀𝑡~𝑁(0, 𝜎𝑗
2), the natural logarithm of the likelihood function 

can then be formally described as follows, 

ln 𝐿 =  ∑ ln [∑𝑓(𝐹𝐷𝑡|𝑗,  𝜓𝑡−1)𝑃(𝑗| 𝜓𝑡−1)

2

𝑗=1

]

𝑇

𝑡=1

 (5) 

where, 

𝑓(𝐹𝐷𝑡|𝑗,  𝜓𝑡−1) =
1

𝜎𝑗√2𝜋
𝑒𝑥𝑝 [−

1

2
(
𝐹𝐷 𝑡 − 𝛼𝑗 − 𝛽𝑗𝑇𝑀𝑃𝑡

2𝜎𝑗
)

2

] (6) 

and 𝑃(𝑗| 𝜓𝑡−1) depicts the probability that the model is in state j = {1, 2}, given the information set  𝜓𝑡−1 

at time t. 

The resulting model can then be estimated by virtue of the expectation-maximization (EM) algorithm, 

as described in Quandt (1988). More specifically, assuming an initial estimation of the probability that 

observation t belongs to state j, one can maximize the natural logarithm of the likelihood function given 

this probability (the maximization-step). Subsequently, given the values of these parameters, the 

probability that observation t belongs to state j can be updated as follows, 

𝑃(𝐽 = 𝑗| 𝜓𝑡−1) =
𝑓(𝐹𝐷𝑡|𝐽 = 𝑗)𝑃(𝐽 = 𝑗)

∑ 𝑓(𝐹𝐷𝑡|𝐽)𝑃(𝐽)
2
𝑗=1

 (7) 

yielding the Bayesian probability that the observed value of 𝐹𝐷𝑡 has been instigated by the model 

prevailing in state j (the expectation-step). This new probability estimate can then be used in the next 

recursive step, and the maximization and expectation steps can subsequently be repeated until sufficient 

convergence in the likelihood function is reached. For a more formal and complete portrayal of the EM 

algorithm I refer to the annex in the appendix of Moral-Carcedo and Vicéns-Otero (2005).  

2.4 Two-Threshold Regression Model 

A simple (one-) threshold regression model is conceptually similar to a linear regression with two 

regimes as depicted in the previous section. However, now the transition from the first regime to the 

second occurs ad-hoc as the threshold variable takes on different values relative to the threshold. 
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Similarly, a two-threshold regression model can be seen as a linear model with three regimes and two 

thresholds. Applied to the setting in this paper, this model can then be formally described as follows, 

𝐹𝐷𝑡 = {

𝛼1 + 𝛽1𝑇𝑀𝑃𝑡 + 𝜀𝑡                     𝑇𝑀𝑃𝑡 < 𝜑1
𝛼2 + 𝛽2𝑇𝑀𝑃𝑡 + 𝜀𝑡         𝜑1 ≥ 𝑇𝑀𝑃𝑡 < 𝜑2
𝛼3 + 𝛽3𝑇𝑀𝑃𝑡 + 𝜀𝑡                     𝑇𝑀𝑃𝑡 ≥ 𝜑2

 (8) 

where 𝜑1 and 𝜑2 are threshold values, such that 𝜑2 > 𝜑1,  𝑇𝑀𝑃𝑡  is both an explanatory variable as well 

as the threshold variable, and 𝜀𝑡 is an independently and identically normally distributed error term 

(𝑁(0, 𝜎2)).  

The resulting model is estimated by a procedure of consecutive ordinary least squares (OLS) estimation 

in which the value of the thresholds is modified at each step (e.g. Tsay, 1989, 1998; Hansen, 2000). For 

each iteration the Akaike Information Criteria (AIC), or alternatively the Sum of Squared Residuals 

(SSR), is obtained, which can then be used to determine the optimal threshold values (i.e. those that 

provide the lowest AIC or SSR). However, one of the limitations of this approach is that the threshold 

values shouldn’t be too close to the 0th and 100th percentile of the threshold variable, as there are too 

little observations in these extreme points to provide efficient estimates (Tsay, 1989). In order to 

circumvent this problem I restrict the threshold values to fluctuate between the 5th and 95th percentile. 

2.5 Smooth Transition Regression Model 

The preliminary findings in section 1 suggest that the transition from cold to warm regimes (and vice 

versa) occurs gradually, and not sudden. This behaviour can be described adequately by smooth 

transition regression (STR) models (Teräsvirta and Anderson, 1992, Granger and Teräsvirta, 1993, 

Teräsvirta, 1994, 1998), which capture the probability of the prevalence of one state through a 

continuous transition function. In particular, I propose the following application of this model to 

capture the response of natural gas consumption to temperature, 

𝐹𝐷𝑡 = 𝛼1 + 𝛽1𝑇𝑀𝑃𝑡 + (𝛼2 + 𝛽2𝑇𝑀𝑃𝑡)𝐺(𝑧𝑡; 𝛾, 𝑐) + 𝜀𝑡 (9) 

where 𝐺(𝑧𝑡; 𝛾, 𝑐) is a continuous transition function bounded by the interval [0, 1], dependent on a 

transition variable 𝑧𝑡, a slope parameter 𝛾, and a location parameter 𝑐. In the context of this study the 

transition variable 𝑧𝑡 will be represented by the temperature level 𝑇𝑀𝑃𝑡. Furthermore, 𝜀𝑡 is assumed to 

be an independently and identically normally distributed error term (𝑁(0, 𝜎2)).  
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2.5.1 Transition Function  

The literature broadly distinguishes between two common types of transition functions, the logistic 

smooth transition (LSTR) and the exponential smooth transition (ESTR), 

𝐺(𝑧𝑡; 𝛾, 𝑐) = [1 + 𝑒𝑥𝑝{−𝛾(𝑧𝑡 − 𝑐)}]
−1 

𝐺(𝑧𝑡; 𝛾, 𝑐) =  1 − 𝑒𝑥𝑝{−𝛾(𝑧𝑡 − 𝑐)
2}    

(10) 

(11) 

where (10) refers to the logistic specification, and (11) to the exponential. Although both functions are 

continuous, bounded by the interval [0, 1], and determined by the same parameters, there are some key 

differences. Figure 3 portrays these two transition functions for various values of the slope parameter 𝛾 

(assuming 𝑐 to be zero). 

From figure 3 we observe that the logistic transition function has an S-shape. Hence, it could be used to 

describe the transition from a cooler regime to a warmer regime, with an intermediate range in which 

natural gas consumption is inelastic to temperature variations. Conversely, the exponential transition 

function is U-shaped, indicating that the two states correspond with a situation of extreme temperatures 

(both cold and warm), and one of intermediate temperature levels. Following Moral-Carcedo and 

Vicéns-Otero (2005) I opt for the logistic specification, as it seems counterintuitive to assume a priori 

that natural gas consumption responds similar to cold and hot temperature regimes. 

Figure 3: Logistic and exponential smooth transition functions. 

 

Notes: Figure 3 portrays examples of transition functions with on the left-hand side a logistic specification, and on the right-hand 

side an exponential specification. In both cases the location parameter c is assumed to be 0, and three different values for the 

shape parameter 𝛾 are depicted (i.e. 0.5, 2.5, and 10). 

Moreover, figure 3 shows that the parameter 𝛾, which determines the smoothness (i.e. speed of 

transition), can significantly affect the shape of the transition function. In particular, if the value of 𝛾 
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tends to infinity the transition function becomes and indicator function, such that the model can be 

substituted with a threshold regression model with one threshold. Contrastingly, if 𝛾 tends to zero the 

transition function is constant, such that the model reduces to a standard linear regression model. In 

addition, note that the inclusion of the transition function allows for an infinite number of intermediate 

regimes. More specifically, the coefficients at each point in time can be seen as a weighted average of 

the values obtained in each of the two extreme regimes. Now, as the weights depend on the value of the 

transition function, this allows for a continuum of coefficient values, where each set is associated with a 

different value of the transition function.  

2.5.2 Estimation and Linearity Test 

The estimation of smooth transition regression models consists of several stages. Firstly, a linearity test 

should be conducted, which tests the LSTR model against a linear alternative. The null hypothesis for 

this linearity test can be expressed as 𝐻0 ∶  𝛾 = 0, or alternatively 𝐻0 ∶  𝛽1 = 𝛽2. However, in both 

circumstances there is an identification problem since the model is not identified under the null 

hypothesis. Namely, the model contains unidentified nuisance parameters (i.e. c, 𝛼2, and 𝛽2) under  𝐻0, 

whose values do not affect the value of the log-likelihood (Davies, 1987). As a consequence, standard 

tests such as the Lagrange Multiplier, Likelihood Ratio, and Wald test, do not have their asymptotic 

distributions under the null hypothesis, rendering them invalid for consistent estimation of c, 𝛼2, and 

𝛽2. 

Luukkonen, Saikkonen, and Teräsvirta (1998) and Teräsvirta (1998) propose a solution to this problem 

by replacing the transition function with a first-order Taylor expansion around 𝛾 = 0. This yields the 

following equation for a logistic transition function, 

𝐹𝐷𝑡 = 𝜃0 + 𝜃1𝑇𝑀𝑃𝑡 + 𝜃2𝑇𝑀𝑃𝑡
2 + 𝜀𝑡

∗ (12) 

such that testing linearity against the LSTR alternative reduces to  𝐻0 ∶  𝜃2 = 0. Now, if we denote the 

sum of squared residuals under the null hypothesis (i.e. the linear alternative) as 𝑆𝑆𝑅0, and the sum of 

squared residuals under the alternative hypothesis (i.e. the LSTR model) as 𝑆𝑆𝑅1, the LM-statistic is 

defined as follows, 

𝐿𝑀𝜒 = 𝑇
(𝑆𝑆𝑅0 − 𝑆𝑆𝑅1)

𝑆𝑆𝑅0
 (13) 

where T denotes the length of the times series, such that the LM-statistic has an approximate 𝜒2(1) 

distribution under the null hypothesis.  
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A similar testing method can be used to extend the LSTR model with one transition function, to a 

specification that allows for multiple transition functions. The procedure then consists of testing the null 

hypothesis of no remaining non-linearity. In particular, if the findings in (13) are such that linearity is 

rejected, one can test whether one transition function is appropriate ( 𝐻0 ∶  𝑟 = 1), or whether there are 

at least two transition functions ( 𝐻0 ∶  𝑟 = 2). Note that a STR model with two transition functions can 

be formally described as follows: 

𝐹𝐷𝑡 = 𝛼1 + 𝛽1𝑇𝑀𝑃𝑡 + (𝛼2 + 𝛽2𝑇𝑀𝑃𝑡)𝐺1(𝑧𝑡; 𝛾1, 𝑐1) + (𝛼3 + 𝛽3𝑇𝑀𝑃𝑡)𝐺2(𝑧𝑡; 𝛾2, 𝑐2) + 𝜀𝑡 (14) 

Similarly, the procedure then entails replacing the second transition function with its first-order Taylor 

series expansion around 𝛾2 = 0, which yields the following model, 

𝐹𝐷𝑡 = 𝛼1 + 𝛽1𝑇𝑀𝑃𝑡 + (𝛼2 + 𝛽2𝑇𝑀𝑃𝑡)𝐺1(𝑧𝑡; 𝛾1, 𝑐1) + 𝜃1𝑇𝑀𝑃𝑡
2 + 𝜀𝑡

∗ (15) 

The test of no remaining non-linearity is then simply defined as  𝐻0 ∶  𝜃1 = 0, and I can again construct 

the LM-statistic, where the sum of squared residuals under the null hypothesis (i.e. the specification 

with one transition function) is likewise denoted as 𝑆𝑆𝑅0, and the sum of squared residuals of the 

alternative specification as 𝑆𝑆𝑅1. A similar testing procedure can then be used to further extend the 

model to a specification that allows for more transition functions. If there is no remaining non-linearity 

the procedure ends, and the resulting model can then be estimated using non-linear least squares as 

proposed by Teräsvirta (1994, 1998).  
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3 Data 

In this paper, I employ a dataset consisting of five European member states: France, Germany, Italy, the 

Netherlands, and the United Kingdom. These countries were primarily selected based on their volume 

of natural gas consumption, jointly accounting for approximately 70% of total natural gas consumption 

in the European Union5. The sample period extends from January 2008 to December 2015, and I gather 

monthly data for this period on natural gas consumption, population, production in total 

manufacturing, and temperature. Natural gas consumption is measured as gross inland consumption 

expressed in Terajoules, and data is obtained from Eurostat. Furthermore, production in total 

manufacturing is a seasonally unadjusted index obtained from the OECD database. The base year 

(originally 2010) is adjusted to 2008 to reflect the sample in this paper. Population data is similarly 

obtained from the OECD database, and following Bessec and Fouquau (2008) monthly data was attained 

by applying linear interpolation. 

Moreover, temperature data is obtained from the high resolution gridded dataset constructed by Caesar 

et al. (2006)6.  Daily observations on the minimum and maximum daily temperature are combined to 

form a daily average, which is then translated into HDDs and CDDs variables according to equation (1) 

and (2). In order to let the HDDs and CDDs variables coincide with the monthly frequency of the natural 

gas consumption data, the degree days are accumulated over time to provide monthly heating and 

cooling degree-day totals. The accuracy of the gridded dataset is crosschecked with the Cooperative 

Station Dataset published by the National Oceanic and Atmospheric Administration’s National Climate 

Data Center. In particular, I gather monthly average temperature data expressed in degrees Celsius for 

779 weather stations across the 15 member states. The individual time-series are then checked for 

completeness, spatial distribution and representativeness of population distribution, and then 

combined by taking the simple arithmetic mean to form 5 country-aggregates. In general, this method 

yields largely similar results to the high resolution gridded dataset of Caesar et al. (2006).  

3.1 Descriptive Statistics 

Table 1 portrays descriptive statistics on natural gas consumption and temperature for each of the five 

countries. It illustrates that the United Kingdom and Germany are the largest consumers of natural gas 

in absolute terms, whereas the Netherlands has (by far) the highest average consumption per capita. A 

possible explanation for this is a combination of the relatively small number of inhabitants in the 

                                                           
5 Eurostat Energy Statistics – Supply, Transformation and Consumption (2014). 
6 MET Office Hadley Centre – Observation Datasets. 
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Netherlands, the excellent energy infrastructure, and the abundance of natural gas (i.e. there is a very 

large natural gas field located in the Northern part of the country). Moreover, table 1 depicts relatively 

large differences in minimum and maximum monthly natural gas consumption. This is mostly due to a 

slow-down of residential and commercial consumption in the summer as a result of reduced heating-

requirements as well as through the reduction of industrial activity during the summer holiday, leading 

to lower consumption levels  

Table 1: Descriptive statistics regarding natural gas consumption and temperature.  

 

Notes: Natural gas consumption refers to gross inland consumption expressed in Terajoules (TJ), and is obtained from Eurostat. 
The 4th column reflects natural gas consumption on a per capita basis, derived by dividing mean consumption with average 

population levels. Temperature is obtained from the high resolution gridded dataset constructed by Caesar et al. (2006), and 

reflects the simple arithmetic mean of the minimum and maximum temperature levels. Moreover, the table refers to the applicable 

sample period used in this paper, namely January 2008 to December 2015. 

Furthermore, from Table 1 I observe that France and Italy are relatively warm countries, with an average 

monthly temperature close to 13 °C. For these countries I expect to observe a more pronounced cooling 

effect, and a more limited heating effect. The Netherlands and the United Kingdom on the other hand 

have a milder climate that is approximately three degrees colder on average, and Germany has the 

lowest average monthly temperature of the five sample countries. For these three colder countries I 

expect a more sizable heating effect, and a limited cooling effect as air-conditioning penetration is likely 

to be significantly lower.  

3.2 Filter Approach 

Since the aim of this paper is to examine the sensitivity of natural gas consumption to temperature, it is 

necessary to first eliminate the effect of unrelated trends and non-climatic influences. Following the 

previous literature I aim to filter out three components from natural gas demand. Firstly, the 

demographic trend, as the population over the whole area increased by more than 3% over the sample 

period this likely increased energy consumption. Secondly, the technological trend, as this leads to 

improving energy efficiency and different demand responses through for instance, increased air-

conditioning, better home-insulation, and changes in appliance usage. Lastly, the monthly industrial 

seasonality, as a reduction in production during the summer period could for instance partially offset 

the theorized cooling effect. 

Min. Max. Mean Mean (Pc) Min. Max. Mean

France 44,833 307,937 144,753 0.00222 2.83 22.36 12.87

Germany 126,201 490,862 277,864 0.00342 -3.34 19.81 9.06

Italy 115,557 411,023 237,380 0.00397 1.55 24.57 13.66

The Netherlands 67,073 244,402 130,064 0.00779 -2.02 20.34 10.22

United Kingdom 133,719 495,290 276,645 0.00436 0.64 18.51 10.50

Natural Gas Consumption Temperature
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In line with Moral-Carcedo and Vicéns-Otero (2005) and Bessec and Fouquau (2008) I firstly remove the 

demographic trend before applying subsequent alternative filters. This trend is filtered out simply by 

dividing natural gas consumption through the interpolated population levels. Then, the latter two 

components are eliminated by applying two alternate filters to the per capita natural gas consumption. 

These approaches are referred to as filter I, and II throughout the rest of this paper. 

The first filter builds on the work of Moral-Carcedo and Vicéns-Otero (2005). They suggest that the 

filtered demand can be obtained as the residuals from an OLS regression of the unfiltered natural gas 

consumption per capita on a third degree time polynomial and a dummy for the month of August. As 

the aim of this dummy is to capture the decrease in production activity during the summer holiday, I 

extend it to include both July and August. This yields the following equation, 

GC𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑡
2 + 𝛽3𝑡

3 + 𝛽4𝐷𝑆𝑢𝑚𝑚𝑒𝑟,𝑡 + 𝐹𝐷𝑡
𝐼  (16) 

where GC𝑖,𝑡 represents the per capita natural gas consumption at time t, t is a simple time variable (0 for 

January 2008, 1 for February 2008, …), 𝐷𝑆𝑢𝑚𝑚𝑒𝑟,𝑡 is a dummy variable which is 1 if observation t 

corresponds with July or August, and zero otherwise. Furthermore, non-significant terms are discarded 

from the model in a sequential manner, i.e. first the most insignificant term is discarded, and then the 

model is estimated again and re-evaluated for remaining insignificant terms. 

The second filter is proposed by Bessec and Fouquau (2008) and follows a largely similar approach to 

Moral-Carcedo and Vicéns-Otero (2005). In particular, natural gas demand is regressed on a third 

degree time polynomial, and the summer dummy is replaced by a seasonally unadjusted production 

term. This approach might be more sensible in filtering out the seasonal effect of industrial activity as it 

might not be limited to the summer months. The model is then estimated as follows, 

GC𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑡
2 + 𝛽3𝑡

3 + 𝛽4𝑌 𝑡 + 𝐹𝐷𝑡
𝐼𝐼  (17) 

where 𝑌 𝑡 represents a seasonally unadjusted production term at time t. Again, following a similar 

approach as in (14), non-significant terms are sequentially discarded from the model.  

In Appendix A1 and A2 I portray scatter plots of the filtered natural gas consumption plotted against 

temperature for each of the five countries under scrutiny. For illustration purposes a local polynomial 

kernel regression of order 2 is included with a Gaussian kernel between the two variables, i.e. the fitted 

line in the figures. As an illustrative example I consider the results obtained for Italy. From Appendix 

A1 I observe that the relation between natural gas consumption and temperature is clearly non-linear. 

For colder temperatures (i.e. below 15 degrees) demand decreases steadily as temperature increases, 

reflecting the decreased usage of heating appliances as temperature levels rise. Then between 15 and 20 
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degrees there is an intermediate range in which natural gas demand is inelastic with regard to 

temperature. Lastly, for temperature levels above this intermediate comfort zone, there is a positive 

relation between natural gas consumption and temperature. This positive link reflects the increased 

usage of cooling appliances, which indirectly, via electricity generation, affects natural gas demand. The 

results for France are largely similar to those of Italy, whereas in contrast, Germany, the Netherlands, 

and the United Kingdom all show a significantly less pronounced cooling effect. This likely reflects the 

colder climates in these countries, translating in a decreased need for air-conditioning and other cooling 

appliances as temperatures are seldom consistently at levels that necessitate cooling.  

When comparing the results in appendix A1 to those in A2 I discern two important differences. Firstly, 

the dispersion in appendix A1 is larger than in A2, especially for higher temperatures. This could imply 

that the summer dummy employed in the first filtering approach might not fully capture the seasonal 

effect of production during the summer. Secondly, the cooling effect observed in appendix A1 

disappears almost entirely for both France and Italy. Note however, that the relation between natural 

gas consumption and temperature remains non-linear, i.e. there is a gradual transition from the cooler 

regime to a temperature range in which demand is insensitive to temperature variations. 

4 Empirical Results 

This section presents the results of the previously described model specifications. First I discuss the 

findings of the conventional HDDs and CDDs modelling approach. Then I estimate the regime 

switching model and the two-threshold regression model, and draw preliminary inferences with regard 

to the shape of the demand response function. Lastly, I evaluate the findings of the LSTR specification, 

and formally compare them with the conventional HDDs and CDDs approach.  

4.1 HDDs and CDDs Approach 

Table 2 portrays the results of a simple regression of monthly filtered natural gas consumption on HDDs 

and CDDs. The analysis covers the sample period ranging from 2008 to 2015, where HDDs and CDDs 

are derived using a base temperature of 16.1°C. The standard errors are depicted in parentheses below 

the parameter estimates, and adjusted for heteroscedasticity and autocorrelation (using Newey-West 

standard errors).  Furthermore, (I) denotes the model specification where filtered natural gas 

consumption is derived from equation (16) (i.e. Filter I), and vice versa (II) refers to filter II (as in (17)). 

The constant term on the first row in table 2 captures the level of filtered monthly natural gas demand 

that is insensitive to temperature variations, i.e. the volume of filtered natural gas demanded at the 

balance point temperature.   
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For France, Germany, Italy, and the United Kingdom the constant term is negative. This corresponds 

with the findings in Appendix A1 and A2, which illustrate that the balance point temperature coincides 

with a negative rate of filtered natural gas consumption. Conversely, the Netherlands has a positive 

constant term. This is likely due to the anomalously high level of per capita natural gas consumption in 

the Netherlands.  

Table 2 further illustrates that monthly HDDs have a positive and significant effect on filtered natural 

gas consumption for all countries and filtering approaches (i.e. at conventional confidence levels). The 

positive sign for all parameters confirms the intuition that an increase in HDDs will lead to an increase 

in filtered natural gas demand. Conversely, the results for CDDs are less unanimous, differing 

significantly across countries and filtering approaches. In particular, the results for CDDs appear to be 

significant and positive for the first filtering approach, and insignificant for the second filtering 

approach. This confirms the findings in section 3.2 and appendix A1 and A2, which suggest that there 

is no distinctive cooling effect after applying the second filter, but rather a temperature range in which 

demand is largely insensitive to temperature variations. 

Moreover, the evaluation criteria at the bottom of table 2 indicate that the HDDs and CDDs modelling 

approach explains a sizable proportion of the variance in the dependent variable. In particular, the 

coefficient of determination ranges between 0.77 and 0.92. These relatively high values are consistent 

with previous research on the relation between temperature and electricity/natural gas consumption 

(e.g. Pardo et al., 2002, Amato et al., 2005, Eskeland and Mideksa, 2009, etc.). In addition, the sum of 

squared residuals is relatively small, which corresponds with the small absolute values of the dependent 

variable, rather than implying an anomalously good fit. In section 4.4.3 I will use the sum of squared 

residuals in order to formally compare this approach with the LSTR specification. 

4.2 Regime-Switching Model 

The results in the previous section are largely consistent with prior research and confirm the cogency of 

HDDs and CDDs as explanatory variables. However, as described earlier this approach assumes a sharp 

change in the behaviour of demand for temperatures close to the threshold value. Even assuming that 

economic agents only make dichotomous decisions, and change their behaviour discretely, it seems 

unlikely that they all do this simultaneously. In other words, not every economic agent reacts similarly 

to temperature variations. This suggests the potential existence of a smoother transition with an 

intermediate temperature range in which there is no appreciable change in consumption, i.e. a U-shaped 

demand response function. In this section I aim to provide support for this theorization by further 

expanding the preliminary analysis of the regime-switching model described in section 1. 
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Appendix A3 portrays the results of the simple regime switching model with two states for filter I. Note 

that I assume that natural gas demand alternates independently between either of the two 

aforementioned states. In other words, I do not assume any a priori relation between the switching 

probability and temperature. In general, I find that regime one can be identified as a warm regime that 

exhibits a high probability of occurrence for warmer temperatures, i.e. the regime is prevalent across all 

countries for temperature levels close to their respective upper percentiles. Subsequently, for lower 

temperature levels, the dynamics of the switching probability are less unanimous across countries. For 

Italy I observe a gradual decrease in the probability of regime one as temperature decreases. This 

behaviour corresponds with a smooth transition from winter to summer, as economic agents adjust 

their behaviour to prevailing temperature levels. 

On the other hand, for France, Germany, The Netherlands, and the United Kingdom there appears to 

be a more immediate decrease in the transition probability. In particular, these countries show a 

concentration of low switching probabilities (between 0 and 0.2) in the range from 12 °C to 16 °C, which 

then gradually increases as temperature levels further decrease. This suggests the potential existence of 

three regimes, i.e. one regime for temperature levels in the upper percentiles, a second for temperatures 

in the comfort zone (between 12 °C and 16 °C) where demand is likely to be inelastic to temperature 

variations, and a third for lower temperatures. These preliminary findings corroborate the intuition that 

the response of natural gas consumption to temperature variations is not V-shaped as suggested by the 

HDDs and CDDs approach. Rather there is a smoother transition with an intermediate temperature 

range in which there is no appreciable change in consumption. 

Appendix A4 depicts the results of a simple regime switching model with two states for filter II. When 

compared to appendix A3, I find that the findings are largely dissimilar for Italy, the Netherlands, and 

the United Kingdom. In particular, for these three countries there appears to be a clear heating effect for 

temperature levels in the lower percentiles, whereas regime 1 prevails for the rest of the temperature 

range. For both Germany and France the findings are more comparable to appendix A3, i.e. they show 

a prevalent warm regime, and a more gradual transition in which probabilities decrease steadily as 

temperature decreases. 

4.3 Two-Threshold Regression Model 

The results of the analysis in the previous section suggest that the transition between the colder and 

warmer regime occurs gradually (i.e. for most countries). In particular, appendix A3 illustrates that 

there are potentially even three regimes for filter I, i.e. cold, intermediate, and warm. In this section I 

further corroborate these findings by employing a two-threshold regression model of filtered per capita 
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natural gas consumption on temperature (assuming temperature itself to be the threshold variable). 

Note, that a single threshold type model is conceptually similar to a linear regression with two regimes 

as depicted in the previous section, except now the transition occurs ad-hoc and is based on an 

observable threshold variable. Similarly, a two-threshold regression model can be seen as a linear model 

with three regimes and two thresholds.  

Appendix A5 to A9 depict the results of a two-threshold regression model for filter I. In particular, I 

portray the Akaike Information Criteria for different values of the two temperature thresholds. Since 

the results appear to be visually similar in the 3D plot (upper-left figure), I further delineate the plot in 

three 2D figures (respectively the upper-right, and lower left and right figures). As a starting point I 

consider the upper-right figure, from which I observe that across all countries the AIC spans a broad 

range for lower temperature levels. The range then gradually grows denser as temperature levels 

increase towards the upper percentiles. Intuitively, it might seem that as temperature increases the AIC 

decreases, i.e. the model appears to perform better. However, this increase in density mostly represents 

the fact that there are less combinations of the two threshold values as the first threshold increases (since 

necessarily 𝜑2 has to be larger than 𝜑1).  

Therefore, the upper-right figure should be analysed conjointly with the lower-left and right figure. 

From this we observe that the lowest AIC values are achieved for relatively high values of the second 

threshold. In particular, for Germany, the Netherlands, and the United Kingdom for temperatures 

between 14 °C and 18 °C, and for France and Italy for temperatures between 18 °C and 22 °C. Now, if I 

consider these temperature ranges for the second threshold when examining the lower-right figure, I 

find that very similar AIC values are achieved for different values of the first threshold. This is indicative 

of a smooth transition, since if there was a more sudden transition the values of the thresholds that 

minimize the AIC would be more defined (i.e. the dark blue regions in the lower-right figures would 

stand out more).  

In addition, table 3 illustrates the results of the two-threshold regression model for the threshold values 

that minimize the AIC. The findings for filter I confirm the previously observed range for the second 

threshold, and also support the broader dispersion found for the first threshold. When comparing these 

results with those of filter II I observe two important differences. Firstly, there appears to be less 

dispersion in the first threshold for the second filtering approach, as it centres around 10-11 °C. 

Secondly, the values for the second threshold are significantly lower than those found for the first 

filtering approach. This likely reflects the absence of a cooling effect in the second filtering approach 

(i.e. appendix A2 depicts a flattening of the curve for higher temperature levels), suggesting there is a 
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cold regime for temperatures below the 10-11 °C range. Followed by a smooth transition for 

temperatures between the first and second threshold, to a temperature range in which demand is largely 

insensitive to temperature variations (i.e. for values above the second threshold). 

Table 3: Estimation results of the two-threshold regression model. 

 

Notes: Depicts the results of the two-threshold regression model for the threshold values that minimize the AIC. The model is 

estimated by sequentially performing Ordinary Least Squares for different values of the thresholds. For a more complete 

description of the methodology I refer to section 2.4.  

4.4 Logistic Smooth Transition Regression 

The analysis until now suggests that the transition between warmer and cooler regimes occurs 

gradually rather than sudden as implied by the HDDs and CDDs approach. In particular, for the first 

filtering approach the response of per capita natural gas consumption to temperature appears to follow 

a U-shape (with a more pronounced cooling effect for Italy and France). Conversely, for the second 

filtering approach there appears to be no observable cooling effect, i.e. rather there is an extended 

temperature range in which demand is largely inelastic to temperature variations (smooth L-curve). 

Both types of behaviour can be adequately captured by smooth transition regression models as 

proposed by Teräsvirta and Anderson (1992).  

4.4.1 Linearity tests 

The estimation of smooth transition regression models consists of several stages. Firstly, a linearity test 

should be conducted, which tests the LSTR model against a linear alternative. Following, Luukkonen, 

Saikkonen, and Teräsvirta (1998) and Teräsvirta (1998) I estimate equation (12) and test  𝐻0 ∶  𝜃2 = 0, 

through an LM test. Subsequently, I follow a sequential testing procedure to test for remaining non-

linearity and the existence of additional transition functions. In table 4 I depict the results of this test for 

the different countries and filtering approaches. The LM-statistic is 𝜒2(1) distributed under the null 

hypothesis, and the corresponding p-values are denoted in parentheses.  

  

Threshold 1 Threshold 2 AIC Threshold 1 Threshold 2 AIC

France 10 °C 19 °C -12.78 14.25 °C 16.25 °C -12.65

Germany 10.25 °C 17 °C -12.52 10.25 °C 15 °C -12.42

Italy 11.5 °C 21 °C -12.84 11 °C 16.5 °C -12.60

The Netherlands 5.75 °C 15 °C -11.23 10 °C 11 °C -11.33

United Kingdom 15.25 °C 16.5 °C -12.47 11.5 °C 14 °C -12.88

Filter I Filter II
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Table 4 illustrates that the null hypothesis of linearity is convincingly rejected for all filtering approaches 

and across all countries. In general, the rejection appears to be stronger for the first filtering approach 

than for the second. Similarly, the rejection is also more robust for warmer countries than for colder 

countries. This likely results from the more pronounced cooling effect observed for the first filter, as 

well as for the subset of warmer countries (i.e. France and Italy), as illustrated in appendix A1 and A2. 

Moreover, the specification tests of no remaining non-linearity shows that for all countries and filtering 

approaches, one transition function is optimal. These results confirm the findings of Bessec and 

Fouquau (2008), who show that a small number of regimes is sufficient to capture the non-linearity of 

energy demand. 

4.4.2 Estimation Results 

Table 5 depicts the parameter estimates of the different LSTR model specifications. Before interpreting 

the results, recall that the LSTR specification allows for an evaluation of the effect of temperature on 

natural gas consumption given a certain temperature level. Therefore the coefficients in table 5 (i.e. 𝛼1 

and 𝛽1) can be different from the parameter estimates in the extreme regimes (Bessec and Fouquau, 

2008). As a results, it is generally preferred to only interpret the sign of these parameters, which indicate 

an increase or decrease in the coefficients depending on the temperature level. 

Firstly, examining the values of 𝛼1 and 𝛽1 I observe that they are all significantly different from zero at 

conventional confidence levels. Moreover, corresponding with appendix A1 and A2 I find that 𝛼1 is 

positive across all countries and filtering approaches, and 𝛽1 is generally negative. The negative 

coefficients for 𝛽1 are indicative of a heating effect in the winter, i.e. a decrease in temperature results in 

an increase in natural gas consumption for heating purposes. The only exception for which  𝛽1 is not 

negative, is for the Netherlands (in particular, for filter II). However, this likely results from a 

combination of the rather large negative value for 𝛼1, as well as the very small value for the slope 

parameter 𝛾 (recall that as 𝛾 tends to zero the LSTR specification reduces to a linear regression model).  

The coefficient estimates for 𝛼2 and 𝛽2 are less unanimous across countries and filtering approaches. 

More specifically, 𝛼2 and 𝛽2 are generally not significant for the first filtering approach. A possible 

explanation for this is that the cooling effect observed in appendix A1 is not significant, i.e. rather there 

is a range of warmer temperatures in which natural gas demand is largely inelastic to temperature 

variations (corresponding with a smooth L-curve). Alternatively, I could argue from a different 

perspective that there is in fact a cooling effect, but that it is largely captured by the positive coefficient 

for 𝛼2.   
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For the second filtering approach I generally observe negative and significant values for 𝛼2, and positive 

and significant values for 𝛽2.  The former likely reflects the lower level of per capita natural gas 

consumption for higher temperatures (as observed in appendix A2), whereas the latter term can be seen 

as a counter-effect that reduces the decrease resulting from the negative value of 𝛼2.  

Continuing with the slope parameter 𝛾 I find that the estimated value is rather small in general (i.e. 

between 0.5 and 2). Recall that as the slope parameter becomes smaller that the transition becomes 

smoother, whereas if it tends to infinity the transition becomes more abrupt as the transition function 

approximates an indicator function. For the first filtering approach I find that the slope parameter 

consistently fluctuates around one. Contrastingly, for the second filtering approach the results are more 

disparate. In particular, for France, Germany, and the United Kingdom the slope parameter 

approximates 10, indicating an abrupt transition. Whereas, for Italy and the Netherlands, the slope 

parameter is considerably smaller, implying a more gradual transition.   

The location parameter 𝑐 indicates the temperature level at which the transition function reaches an 

inflection point. For the first filtering approach I observe that the location parameter is congruent with 

the climatic condition of a country, i.e. 𝑐 is larger for Italy and France, then for the other countries. 

Moreover, I observe that the location parameter is significantly different from the threshold value of 

18.3 °C that is typically used in the literature. In particular, for the warmer countries the location 

parameter tends to be above this threshold value, whereas for Germany, the Netherlands, and the 

United Kingdom it is significantly lower. Observe that a threshold value of 16.1 °C for European 

countries, as suggested by Bessec and Fouquau (2008), would be reasonable for Germany, the 

Netherlands, and the United Kingdom. These findings illustrate the advantages of the methodological 

approach presented in this paper. Namely, not only is the location parameter estimated rather than 

imposed a priori, but table 5 also illustrates that there are intricate differences between countries.   

4.4.3 Model Comparison 

In order to formally compare the difference between the conventional HDDs and CDDs approach, and 

the LSTR model, I use an analogue of the Aikaike Information Criterion. In particular, following 

Burnham and Anderson (1998) I use the sum of squared residuals to compute the following, 

𝐴𝐼𝐶 = 𝑡 ln(𝑆𝑆𝑅 𝑡⁄ ) + 2(𝑝 + 1) (18) 

where t is the number of observations (i.e. 96 in this study), and p the number of parameters estimated. 

Then in order to examine whether two models (non-nested, but with the same dependent variable) are 

significantly different one can look at the difference in the AIC value. Burnham and Anderson 
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(1998, p. 123) suggest that a difference of around 4 to 7 roughly corresponds with a “95% confidence 

level”. 

In table 6 I portray the AIC for the HDDs and CDDs approach and the LSTR specification, as well as the 

difference between these models. For the first filtering approach the differences are consistently larger 

than 4, implying that the LSTR specification is superior to the HDDs and CDDs approach. Especially, 

for France, Germany and the United Kingdom the LSTR model strongly outperforms the conventional 

approach. For the second filtering approach the results are less definite. However, observe that the LSTR 

specification is always better than the conventional approach, albeit not significantly (i.e. with the 

exception of the United Kingdom).   

Table 6: Testing the performance of the LSTR specification. 

 

Notes: Describes the results of an analogue of the AIC as portrayed in equation (18). The number of parameters for the HDD and 

CDD approach is 3, and for the LSTR specification 4. The last column denotes the difference between the HDDs and CDDs 

approach with the LSTR specification, where a difference of between 4 and 7 roughly corresponds with a 95% confidence interval 

(Burnham and Anderson, 1998).  

  

(I) (II) (I) (II) (I) (II) (I) (II) (I) (II)

-1479.5 -1477.4 -1452.2 -1458.4 -1485 -1475.8 -1342.5 -1354.6 -1431.9 -1498.4

-1502.1 -1478.8 -1474.2 -1459.5 -1493.5 -1479 -1347 -1355.4 -1470.4 -1505.1

-22.61 -1.41 -22.07 -1.07 -8.47 -3.12 -4.55 -0.89 -38.47 -6.65

France Germany Italy The Netherlands United Kingdom

𝐴𝐼𝐶   
𝐴𝐼𝐶 𝑆𝑇 
  𝐴𝐼𝐶
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5 Conclusion 

In this paper, I present an alternative modelling strategy to explore the non-linear relation between 

temperature and natural gas consumption. Previous research has typically aimed to capture this non-

linearity through the use of heating degree days (HDDs) and cooling degree days (CDDs). Jointly, these 

two variables specify the number of days on which the temperature exceeds or falls short of the 

threshold value, and by how many degrees. However, while this approach is widely disseminated in 

the literature, it has several apparent drawbacks, i.e. a priori identification of the threshold value, and 

the ad-hoc transition from warmer to cooler regimes. This study examines the potentiality of different 

non-linear models to both describe the behaviour of natural gas demand, and to identify and validate 

the values of the temperature thresholds.   

Among the models under consideration, the preferred specification is the logistic smooth transition 

regression (LSTR) model. In contrast with the HDDs and CDDs approach, this method allows for a 

posteriori determination of the threshold value, thereby providing a method to examine the validity of 

the threshold value(s). In particular, I show that the location parameter is generally significantly 

different from the threshold value of 18.3 °C that is typically used in the literature. In addition, I 

illustrate that both the shape and location parameter of the demand response curve differ meaningfully 

across countries. Therefore I argue that the assessment of demand sensitivity to temperature should be 

performed at the regional scale (for large countries such as the United States) or at country-level (as in 

the case of the European Union).   

Furthermore, I show that the LSTR specification captures more adequately the transition from warmer 

to cooler regimes, i.e. the response of natural gas demand to temperature changes for intermediate 

temperature ranges. In particular, the LSTR model is more able to describe the degree of smoothness 

and the qualitative behaviour of the demand response function for values close to the threshold value. 

Ultimately, by using an analogue of the Akaike Information Criteria (AIC), I formally show that that the 

LSTR specification outperforms the conventional HDDs and CDDs approach for all countries. 

5.1 Discussion 

A limitation of the analysis I propose in this paper is that I do not distinguish between residential, 

commercial and industrial natural gas consumption. Dissecting aggregate natural gas consumption in 

these different categories is informative as they likely exhibit different demand responses with regard 

to temperature. Similarly, this study examines the temperature sensitivity of natural gas consumption 

at the national level. By focusing on such large geographical areas, I might forego to explicitly account 
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for within-country differences in temperature, energy infrastructure, and sectoral composition. It is 

evident that a further decomposition in sectors and regions would be more relevant, however obtaining 

disaggregated data with a monthly frequency for this set of countries was simply unfeasible. 

Moreover, in this paper I forego to explicitly test for the potentiality of different types of transition 

functions, i.e. I reject the notion of an exponential smooth transition function beforehand based on its 

shape, without applying any formal test. To examine the robustness of my choice, I can follow Escribano 

and Jorda (1999) who develop several Lagrange Multiplier (LM) type tests to choose between logistic 

and exponential smooth transition functions. Furthermore, in this study I propose the use of an 

analogue of the AIC in order to formally compare the difference between the conventional HDDs and 

CDDs approach, and the LSTR model. While Burnham and Anderson (1998) suggest that a difference 

of around 4 to 7 roughly corresponds with a “95% confidence level”, they do not provide any rigorous 

statistical evidence to support this claim. Hence, it might be sensible to perform alternative tests for non-

nested models to examine the robustness of the AIC method, and the findings in this paper. 
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