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Abstract

Accurately modeling and forecasting the term structure of interest rates is relevant for
both academics and practitioners in the industry. The dynamic Nelson-Siegel model is
suitable for this. Although the amount of research on the in-sample fit of the Nelson-
Siegel model and its extensions is substantial, the number of studies examining the out-of-
sample performance of these models is relatively little, particularly for the nonlinear class
of Nelson-Siegel models. For this reason, the focus of this thesis is twofold. First, I examine
the predictive performance of various extensions in the Nelson-Siegel framework relative to
the standard dynamic Nelson-Siegel model. Second, I study the differences between the
extended Kalman filter and the unscented Kalman filter in the context of nonlinear Nelson-
Siegel models. I find that the results are maturity- and subsample-dependent. The greatest
gain in predictive accuracy is found for the stochastic factor augmented Nelson-Siegel model,
for which the improvement over the standard model attains values of a 28% decrease in the
RMSPE when the yields are relatively volatile. Furthermore, the findings indicate that
the use of the unscented Kalman filter rather than the extended Kalman filter for fitting
nonlinear Nelson-Siegel models is beneficial for both ends of the yield curve and could have
a positive impact on the accuracy in the predictive framework in some cases.
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1 Introduction

The focus of this study is on modeling and forecasting the term structure of interest rates. The
term structure of interest rates, also known as the yield curve, denotes the relation between
interest rates (or bond yields) and different terms (or maturities). The term structure reflects
expectations of market participants about future changes in interest rates and their assessment
of monetary policy conditions.

Understanding the dynamic evolution of the yield curve is important in theory and practice.
For example, it is essential for conducting monetary policy as the yield curve could be used to
predict future inflation (Fama, 1990; Mishkin, 1990), recession periods (Estrella and Mishkin,
1997) and real activity of the economy (Estrella and Hardouvelis, 1991). In addition, it is
relevant for asset managers, traders and risk managers in the fixed-income markets as they
use it to price financial assets and their derivatives, manage financial risk, hedge and allocate
portfolios. Improvements in yield curve modeling translate into improvements in these tasks,
and is therefore a huge area of interest in both academic and financial institutions.

The literature has produced a wide variety of models to study the dynamics of the yield curve.
Among them, dynamic factor models, which trace to Sargent and Sims (1977), Geweke (1977)
as well as Watson and Engle (1983), are found to be appealing for three key reasons. First, the
structure performs empirically well as it describes the yield curve data accurately. Second, fac-
tor models are parsimonious as they are able to convert seemingly intractable high-dimensional
situations (in this case the many yields across maturities) into a few constructed variables or
factors. This is often related to the production of good out-of-sample forecasts, see Diebold
(2007) for additional discussion. Lastly, financial economic theory suggests factor structure.
For example, the capital asset pricing model (CAPM) is a factor model that is able to describe
the risk premiums of thousands of financial assets in the equity market using only a single factor.
Yield curve factor models are a natural bond market parallel.

There are several methods on constructing bond yield factors and factor loadings. One ap-
proach restricts both factors and factor loadings. We refer to this model as the no-arbitrage
dynamic latent factor model, which is the model of choice in finance. The papers of Vasicek
(1977), Cox et al. (1985) as well as Hull and White (1990), among others, lay the foundation for
a vast literature on arbitrage-free models. Those models specify the dynamics of the yield curve
factors using a risk-neutral measure. The affine versions of these models, as proposed by Duffie
and Kan (1996), are particularly popular. Even though these affine term structure models are
theoretically well-founded, in the sense that they impose restrictions that ensure absence of
arbitrage, their forecasting performance is poor relative to the random walk (Duffee, 2002). In
addition, and crucially, the estimation of those models is known to be problematic, in large part
because of the existence of numerous likelihood maxima that have essentially identical fit to the
data but very different implications for economic behavior.

A second approach places a specific structure only on the loadings. A popular example of
this approach is the so-called Nelson-Siegel model as introduced in Nelson and Siegel (1987).
This model was originally designed to describe the cross-sectional aspects of the yield curve
by imposing a parsimonious three-factor structure on the links between yields of different ma-
turities. For this model, the structure of the factor loadings in the DNS depend on a single
loading parameter λ. This ensures the interpretation of the factors as level, slope and cur-
vature. Diebold and Li (2006) introduce a suitable dynamic reformulation of this model (the
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dynamic Nelson-Siegel model), in which the latent factors are modelled by a stationary autore-
gressive process with a constant unconditional mean. They show that this model is simple to
estimate, is quite flexible, fits both the cross-section and time series of yields remarkably well
and provides forecasts that outperform the random walk and various alternative forecasting ap-
proaches. However, despite its good empirical performance, the dynamic Nelson-Siegel (DNS)
model fails on an important theoretical property. That is, the model is not designed to rule
out opportunities for riskless arbitrage which are important in financial markets (e.g. Filipovic,
1999; Diebold et al., 2005). This motivated Christensen, Diebold and Rudebusch (2011) to
introduce the arbitrage-free Nelson-Siegel yield curve model. This class of model maintains
the simplicity and empirical behaviour of the dynamic Nelson-Siegel model, while simultane-
ously enforcing the theoretically desirable property of absence of riskless arbitrage. However,
Diebold and Rudebusch (2013) state that even though it may feel uncomfortable to work with
non-‘arbitrage-free’ models for some tasks (e.g. pricing), the imposition of no-arbitrage appears
theoretically unlikely to help at forecasting. Hence, as I put more emphasis on forecasting in
this thesis, I consider the standard DNS to be the main model in this paper.

Drawing upon the great performance of the DNS, many studies introduce and examine exten-
sions of this model. I discuss the main extensions briefly. Several extensions originated from the
idea of including additional latent factors. Among such models is the Svensson (1995) extension
of the DNS, which is widely used in industry and central banks.i In the dynamic Nelson-Siegel-
Svensson model, a second curvature variable with a longer-maturity hump is added to obtain
a better fit at longer maturities. Similarly, De Pooter (2007) adds a second slope factor to
the DNS and finds that his four factor model provides more accurate forecasts and a better
in-sample fit than the Diebold and Li (2006) three factor model. Instead of including additional
latent factors, Diebold et al. (2006) write the DNS model in a state-space representation form,
which consists of a measurement and a transition equation, and add three observable macroe-
conomic variables (specifically, real activity, inflation, and a monetary policy instrument) to
the model. They find strong evidence of bidirectional causality from the latent factors to the
macroeconomic variables and vice-versa, with a stronger causal direction from the macroeco-
nomic variables to the yield curve. To estimate the parameters in the state-space representation
of their models, the Kalman filter is used. This estimation method relies on an important as-
sumption, i.e. the state-space model should be linear. This is true for the standard DNS as the
loading parameter λ is kept constant over time, resulting in constant factor loadings, for each
maturity. Koopman et al. (2010) relax this and allow λ to vary over time. As a result, the
factor loadings vary over time and the standard DNS model becomes nonlinear, such that the
standard Kalman filter is not applicable. Koopman et al. (2010) analyze models of this kind
using the extended Kalman filter and find that a time-varying loading parameter in the DNS
leads to a significant improvement of the in-sample fit. Concerning the addition of time-varying
elements in the DNS, Hautsch and Ou (2008), Hautsch and Yang (2010) as well as Koopman
et al. (2010) incorporate stochastic volatility in either the transition or measurement shocks.
More recently, van Dijk et al. (2013) allow the unconditional mean to be time-varying and
introduce the dynamic Nelson-Siegel model with so-called shifting endpoints. They find that
this extension can provide gains in the predictive accuracy. Even though the amount of papers
on the effect of these extensions on the in-sample fit is substantial, the number of studies on
the out-of-sample forecasting performance is relatively scarce. In this study, therefore, I con-
sider various extensions of the DNS model and analyze their performance in an out-of-sample
setting using the Fama-Bliss zero-coupon yields dataset at the monthly frequency covering the

iFor example, the U.S. Federal Reserve Board (see Gurkaynak et al, 2007) and the European Central Bank
(see Coronea et al. (2011), among others.
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period January 1970 to December 2009. Before I go into further details of the study, I will first
elaborate on the extensions that I consider and the corresponding subquestions that will help
in answering my main question. Moreover, the extensions that I consider are the inclusion of
macro-economic variables, stochastic volatility and a time-varying loading parameter.

First, I consider the inclusion of observable macroeconomic variables in the DNS model for
the out-of-sample framework. As mentioned, Diebold et al. (2006) include macroeconomic vari-
ables in the DNS (analogous to the inclusion of macroeconomic factors in the affine arbitrage-free
model as introduced by And and Piazzesi, 2003). Based purely on the in-sample results, Diebold
et al. (2006) find that the level factor is highly correlated with inflation and the slope factor is
highly correlated with real activity. Moreover, the curvature factor appears to be unrelated to
any of the main macroeconomic variables. More studies that include macroeconomic variables
and study their explanatory power for yield movements are Kim and Wright (2005), Ang et al.
(2006a), Dai and Philippon (2006), Hordahl et al. (2006), DeWachter and Lyrio (2006), Rude-
busch and Wu (2007), Wu (2008), and Bikbov and Chernov (2010), among others. The natural
questions that arise are which macro factors to include in the model and how many factors to
include. Arguably, many macro variables may influence the dynamics of the yield curve. De
Pooter et al. (2010) use principal components analysis (PCA) to extract a small number of
factors and find that the inclusion of these factors lead to an improvement in forecast accuracy,
compared to the use of single macroeconomic variables. Exterkate et al. (2013) use a wide
variety of variable selection and dimension reduction techniques to extract macroeconomic in-
formation from an extended version of the Stock and Watson (2002) dataset. As a contribution
to the literature, I use a different dataset; obtained from the database of the Federal Reserve
Bank of St. Louis, which is updated on monthly basis, covering the same period as the yields.
Moreover, I apply PCA on the set of 135 macroeconomic variables, to construct the factors that
I include.

Another extension of the DNS on which I focus in this paper is the inclusion of stochastic
volatility. In the state-space formulation of the DNS one can allow for time-varying volatility
through the measurement shocks or the transition shocks, and different possibilities have been
considered by different authors. Hautsch and Ou (2008) and Hautsch and Yang (2010) incorpo-
rate time-varying volatility in the transition equation. They find strong evidence of stochastic
volatility in the transition shocks, and they show that accounting for it improves the conditional
calibration of interval and density forecasts. Alternatively, Koopman et al. (2010) allow for
stochastic volatility in the measurement shocks using the single-factor multivariate GARCH
model of Harvey et al. (1992), and find that this leads to a significant improvement of the
model fit. It would be interesting to allow for stochastic volatility in both the measurement and
transition equation, but, Diebold and Rudebusch (2013) state that identification issues arise in
this case. The out-of-sample performance of the dynamic Nelson-Siegel model with stochastic
volatility incorporated in the transition shocks has been examined extensively by Hautsh and
his co-authors. In contrast, Koopman et al. (2010) do not study their model in an out-of-sample
setting. For this reason, I follow their approach and examine its predictive performance.

Finally, I examine the extension in which the loading parameter is time-varying. As an al-
ternative to the use of the extended Kalman filter as in Koopman et al. (2010), the unscented
Kalman filter could be used. Julier and Uhlmann (1997) proposed this filtering technique and
found substantial performance gains against the extended Kalman filter in the context of state-
estimation for nonlinear control. A lot of research, comparing these two methods, has been
conducted ever since. Worth mentioning, Wan and van der Merwe provide a wide variety of

5



papers in which they compare the unscented Kalman filter and the extended Kalman filter.
They find that the unscented Kalman filter consistently achieves a better level of accuracy than
the extended Kalman filter in a number of application domains, including state-space estima-
tion, dual estimation and parameter estimation. However, its effectiveness for improving the
in-sample fit and accuracy of the forecasts in the context of Nelson-Siegel models with a time-
varying loading parameter has, to my knowledge, been unexplored. In this paper, I will study
and compare the results from both filtering techniques to answer the question of whether the
unscented Kalman filter is superior to the extended Kalman filter in the framework of modeling
and forecasting the term structure of interest rates.

Summarizing, the two main questions in this research are as follows: (I) What is the best
filtering technique, in the context of nonlinear Nelson-Siegel models, for modeling and forecast-
ing the term structure of interest rates? And (II) among the models that I consider, what is the
best Nelson-Siegel model in the forecasting framework? I answer these questions by examining
how the forecasting performance of the different models vary across the yield curve relative to
the standard DNS (e.g. do some models perform well for short-term yields and much worse for
long-maturities) and how the relative forecasting performance change over time, particularly
for stable and volatile periods.

By evaluating the root mean squared prediction error (RMSPE) of the DNS extensions rel-
ative to the standard DNS for forecast horizons of one, six and twelve months ahead, I find that
the results are maturity- and subsample-dependent. First, for the full out-of-sample period the
standard DNS is in general adequate in forecasting the yields. At the semiannually and annually
forecast horizon it is even unbeatable. However, when the subsamples are considered the results
are more promising. Moreover, when the yields are stable (as in January 1995 until December
1999), the GARCH extension of the DNS performs remarkably better than the DNS for all fore-
cast horizons. This result corresponds to the finding Hautsch and Yang (2010), who incorporate
stochastic volatility via the transition equation instead. They argue that the standard DNS has
a higher forecasting uncertainty for periods of low-volatility, which stems from the fact that
the ignored stochastic volatility and parameter uncertainty in periods of high-volatility spread
to periods when the yields are more stable. For periods of relatively highly volatile yields, the
most flexible model provides the most accurate forecasts, i.e. the stochastic factor-augmented
Nelson-Siegel model (the combination of the mentioned models). By using this model, the gain
in predictive accuracy reaches up to 28%. To understand why this model is able to attain such
values, I focus on forecast combinations as well. Using three weighting schemes (equal weights,
time-varying weights based on the cross-sectional average of the RMSPE, and maturity-specific
time-varying weights) I find that the combined forecasts lead to additional gains in predictive
accuracy, particularly for stable periods. Moreover, on average, the maturity-specific weight-
ing scheme provides more accurate forecasts than the other two schemes for the short-end of
the yield curve. However, the scheme-based combined forecasts are dominated by the forecasts
from the stochastic factor-augmented Nelson-Siegel model in periods where the yields are highly
volatile. A possible explanation is that the macro-factors contain valuable information for the
loading parameter in such periods (this is the only property that the combined forecasts do not
exhibit). Furthermore, I find that the extended models outperform the standard DNS most
often for the short-end of the yield curve, followed by the long-term yields and the yields of
intermediate maturity. Regarding the differences between the filtering techniques, the findings
indicate that the use of the unscented Kalman filter rather than the extended Kalman filter
for fitting nonlinear Nelson-Siegel models is beneficial for both ends of the yield curve (due to
the inability of the extended Kalman filter to accurately approximate the curvature factor) and
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could have a positive impact on the accuracy in the predictive framework in some cases.

In addition to the contributions mentioned in the paragraph above, I find that the interpreta-
tion of the factors change due to the incorporation of a time-varying loading parameter, which
results in a better (or worse) fit of the yield. Moreover, I find the estimated time-varying load-
ing parameters from both filtering methods to vary considerably over time, producing some
doubt on studies where λt is fixed. Furthermore, as a contribution to the strand of forecast
combination literature, I find that the stochastic factor augmented Nelson-Siegel model (essen-
tially a combined model) is able to consistently outperform combined forecasts based on various
weighting schemes when the yields are relatively highly volatile.

In the remainder of this paper, the next section begins with a description of the dynamic
Nelson-Siegel model (Diebold and Li, 2006), the factor augmented Nelson-Siegel model as in-
troduced by Diebold et al. (2006), the GARCH extension of the DNS (Koopman et al., 2010)
and the corresponding estimation procedures. Then, I introduce the DNS with time-varying
loadings as in Koopman et al., (2010) for which I consider and discuss both the extended- and
unscented Kalman filter. The third section describes the data that I use for this research, con-
sisting of the Fama-Bliss zero-coupon dataset and the indicators for the macro-economy. The
fourth section contains the empirical results, and the fifth section concludes.

7



2 Methodology

In this section I present the methods that are used. First, I provide a brief review of the dynamic
Nelson-Siegel model and its form in the state-space framework. Next, I elaborate on the factor
augmented Nelson-Siegel model and principal components analysis. I continue by introducing
the GARCH extension of the dynamic Nelson-Siegel model as introduced by Koopman et al.
(2010), which allows for stochastic volatility. The estimation procedure of these models will
then be explained. In addition, I discuss the usefulness of allowing the loading parameter to
be time-varying. This extension introduces nonlinearities in the model, and to cope with this
I elaborate on the estimation procedures that incorporate the extended Kalman filter and the
unscented Kalman filter.

2.1 Dynamic Nelson-Siegel Model and the State-Space Framework

The original Nelson-Siegel (1987) model gives a static representation of the yield curve. However,
to understand the evolution of the bond market over time, a dynamic version is required. For
that reason, Diebold and Li (2006) modified the model such that it allows the coefficients to
vary over time. The dynamic Nelson-Siegel (DNS) model is then given as

yt(τ) = β1,t + β2,t

(1− exp(−λtτ)

λtτ

)
+ β3,t

(1− exp(−λtτ)

λtτ
− exp(−λtτ)

)
, t = 1, . . . , T, (1)

where yt(τ) is the yield at time t for a maturity of τ months. This model decomposes the
yield curve into two parts i.e. the part consisting of factors and a part consisting of their
coefficients. The three dynamic, latent factors (β1,t, β2,t and β3,t) determine the dynamics of
yt for any maturity τ , while the cross-section of the yields y(τ) is formed by the coefficients
(factor loadings) for any time t. An inspection of the factor loadings provides more information
on the interpretation of the latent factors. These factor loadings are a function of maturity
and plotted in Figure 1. First, I evaluate the loading on β1,t. It is fixed and equal to 1 for all
maturities. Moreover, an increase in β1,t results in an equal increase of all yields as the loading
on this factor is identical for all maturities. Additionally, when the time to maturity approaches
infinity, it is the only factor that affects the yields. Therefore, this factor is regarded as the
level factor or the long-term factor. Now, consider the loading on β2,t, (1− e−λtτ )/λtτ .

Figure 1: Factor loadings of the DNS model. This figure shows the factor loadings as a function
of maturity for λt = 0.0609
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For very low values of τ , this function is near 1 and decays quickly to 0 as the maturity ap-
proaches infinity. In other words, the short-term yields load heavily on β2,t, while the long-term
yields load negligibly on this factor. Mostly affecting short-term yields, β2,t is often called the
short-term factor. As mentioned by Diebold and Li (2006), an increase in the short-term factor,
β2,t, changes the slope due to the loading. Hence, they interpret the short-term factor as the
slope factor. Finally, consider the loading on β3,t, (1− e−λtτ )/λtτ − e−λtτ . For very short-term
maturities this function is near 0, increases as τ increases, an then decays to zero again for very
long-term maturities. Thus, an increase in β3,t will have minimal effect on both ends of the
yield curve, but will increase medium-term yields as they load more heavily on it. Hence, this
factor is often called the medium-term factor or the curvature factor.

The parameter λt in the factor loadings determines the rate of exponential decay of the loading
for the short-term factor β2t and the maturity where the loading for the medium-term factor
β3,t reaches its maximum. Moreover, small values of λt results in slow decay and can better
fit the curve at long maturities, while large values of λt have the reverse effect. Diebold and
Li (2006), fix the loading parameter λt for the standard DNS and set it equal to 0.0609. This
value maximizes the loading on the medium-term factor at exactly 30 months (which is the
average of the two- and three-year maturities as these are commonly regarded as the intermedi-
ate maturities). In this paper, I follow them and fix λt at this value for the standard DNS model.

Following Diebold et al. (2006), I write the DNS model in a state-space representation form,
which consists of a measurement and a transition equation. Consider a fixed set of maturities
(τ1, τ2, . . . , τm), by adding stochastic error terms εt(τ), which I interpret as idiosyncratic or
maturity-specific factors, to equation (1) I obtain the measurement equation,

yt(τ1)
yt(τ2)

...
yt(τm)

 =


1 1−exp(−λτ1)

λτ1

1−exp(−λτ1)
λτ1

− exp(−λτ1)
1 1−exp(−λτ2)

λτ2

1−exp(−λτ2)
λτ2

− exp(−λτ2)
...

...
...

1 1−exp(−λτm)
λτm

1−exp(−λτm)
λτm

− exp(−λtτm)


β1,tβ2,t
β3,t

+


εt(τ1)
εt(τ2)

...
εt(τm)

 ,

which can be rewritten as

yt = Λ(λ)βt + εt, εt ∼ NID(0,Σε), t = 1, . . . T, (2)

where Λ(λ) depends on λ only, for given τ . Doing so, we are able to partition the yield yt(τ)
in two parts; a part driven by the common factors β1,t, β2,t and β3,t, and a part driven by its
idiosyncratic factor εt(τ). In addition to the measurement equation, I present the transition
equation, which specifies the common factor dynamics. In accordance with Diebold and Li
(2006), I assume the common factors to follow a autoregressive process of first order with mean
vector µ = (µ1, µ2, µ3)

′. The transition equation is then given asβ1,t+1

β2,t+1

β3,t+1

 =

1− φ11 0 0
0 1− φ22 0
0 0 1− φ33

µ1µ2
µ3

+

φ11 0 0
0 φ22 0
0 0 φ33

β1,tβ2,t
β3,t

+

η1,tη2,t
η3,t

 ,

which can be rewritten in matrix/vector notation as

βt+1 = (I3 −Φ)µ+ Φβt + ηt, ηt ∼ NID(0,Ση) (3)
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where Φ governs the factor dynamics and I3 denotes the identity matrix of size 3 × 3. I will
not include further lags of βt in the transition equation as Diebold and Li (2006) find that it is
sufficient to use only one lag to describe the evolution of the loading vector. As in Christensen,
Diebold and Rudebusch (2011), I assume that the measurement disturbance εt and transition
disturbance ηt are zero-mean white noise and uncorrelated to each other. Furthermore, I assume
that both the covariance matrix Σε as well as the covariance matrix Ση are diagonal. Diebold
et al. (2006) explore the use of a more richly parametrized correlated structure of Φ, where the
state variables βt may interact dynamically and/or their shocks may be correlated. However,
Christensen, Diebold and Rudebusch (2011) found that the latter structure of Φ is dominated by
its parsimonious version, as specified in (3), in an out-of-sample setting. As I put more emphasis
on forecasting, I stick to only having the parsimonious version. I will use the DNS model (2)
and (3) as the standard and use its empirical results as the benchmark for its extensions.

2.2 Factor Augmented Nelson-Siegel Model

The first extension of the DNS, in this paper, is the inclusion of macro-finance data in the
model. In addition to the yield data, assume that a large number of k macroeconomic variables
is available at the monthly frequency, covering the same period as the yield data. Denote these
variables by Xt = (x1,t, . . . , xk,t)

′ for each period t. As the estimation uncertainty increases
with the number of variables in the model, a parsimonious model is preferred. Therefore, I sum-
marize the large amount of information by a limited number of p factors, f t = (f1,t, . . . , fp,t)

′,
with p << k. Moreover, its elements are normalized to have mean zero.

I follow Exterkate et al. (2013) in their procedure of including macro-economic information in
the Nelson-Siegel models. This means that the measurement equation (2) remains unchanged,
but that I have to adjust the transition equation (3) by adding the macro-factors f t to the
vector βt, such that the macro-factors affect the individual yields only via the Nelson-Siegel
factors. For convenience, the adjusted state space representation is given by

yt = Λ(λ)βt + εt, εt ∼ NID(0,Σε), t = 1, . . . T, (4)(
βt+1

f t+1

)
= (I3+p −ΦFA)

(
µ
0p

)
+ ΦFA

(
βt
f t

)
+ ηFAt , ηFAt ∼ NID(0,ΣFA

η ), (5)

where I3+p is the identity matrix of size (3+p)× (3+p), 0p is a p×1 vector consisting of zeros,
the dimensions of Φ, η and Ση are increased as appropriate and they will be denoted by the
superscript ‘FA’. To be more specific, ΦFA is a (3 + p) × (3 + p) matrix, ηFA is a (3 + p) × 1
vector and ΣFA

η is a (3 + p)× (3 + p) matrix. Moreover, ΣFA
η remains diagonal and

ΦFA =


Diagonal Unrestricted

0p×3 Diagonal

 ,

where the block-structure corresponds to the partitioning of the state vector into βt and f t. The
structure of the coefficient matrix implies that the macro-factors affect the individual yields only
via the Nelson-Siegel factors, and that there is no feedback from the yields to the macro-factors.
Moreover, I restrict the bottom-right matrix to be diagonal to keep the model as parsimonious
as possible. I will refer to this model as the factor-augmented DNS (FADNS) model.
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2.2.1 Principal Component Analysis

Similar to Moench (2008) and DePooter et al. (2007), among others, I extract factors f t from
the dataset by applying principal component analysis (PCA), see Stock and Watson (2002).
PCA reduces the dimension of the dataset by constructing factors that capture the common
variance. The construction of the factors (or principal components), is executed by maximizing
the explained variance in the dataset for each principal component. This maximization is done
under the constraint that each principal component has to be orthogonal to preceding principal
components.

In order to exclude the sensitivity of PCA to the scaling of variables, I normalize the time
series of observations on each macro variable separately to have mean zero and unit variance
over the estimation window. Then, I conduct PCA on the normalized macro-finance dataset.
This is done by performing the eigenvalue decomposition on the dataset, P . That is, the
following problem is solved:

Pv = λv, s.t. v′v = 1. (6)

This provides a diagonal matrix D with the eigenvalues, λ̂1 ≤ . . . ≤ λ̂n, of the correlation
matrix P on its diagonal. Moreover, n denotes the number of variables used to construct the
correlation matrix P . In addition, we obtain V = (v̂1, . . . , v̂n), where its columns are the
eigenvectors corresponding to the eigenvalues. Subsequently, the factors f are constructed as
linear combinations of the variables using the loadings in each eigenvector, that is

fi = v̂′iX, (7)

for i = 1, . . . , n and each period t. Moreover, I use the corresponding eigenvalues to estimate
the proportion of variance explained by the factor, that is λ̂i/n.

2.3 Dynamic Nelson-Siegel Model and Stochastic Volatility

Another extension of the DNS is to incorporate stochastic volatility. To account for stochastic
volatility, I follow the approach of Koopman et al. (2010). They allow for stochastic volatility
in the measurement shocks εt using the single-factor multivariate GARCH model of Harvey et
al. (1992). More specifically, they decompose εt as

εt = Γε∗t + ε+t , ε∗t |Ψt−1 ∼ NID(0, ht), ε+t ∼ NID(0,Σ+
ε ), t = 1, . . . T, (8)

where, Γ is a m× 1 loading vector that determines the sensitivity of the yields to the common
shock. Koopman et al. (2010) find that yields with short maturities are more heavily loaded
on the common shock component than yields with longer maturities. In addition, ε+t is a m× 1
vector as well, representing the disturbance vector, with Σ+

t as its corresponding diagonal
covariance-matrix. The scalar ε∗t represents the common disturbance term. The disturbance
components are independent. The variance of ε∗t conditional on all information up to time t− 1
(Ψt−1), denoted by ht, is specified as the GARCH process introduced by Bollserslev (1986).
This is given by

ht+1 = γ0 + γ1ε
∗2
t + γ2ht, t = 1, . . . T, (9)

where the unknown coefficients are subject to a few constraints. More specifically, {γ0, γ1, γ2} >
0 and γ1+γ2 < 1 to guarantee that ht+1 is positive and stationary. The variance of the common
component at time t = 1 is set equal to the unconditional variance, that is, h1 = γ0

1−γ1−γ2 . By
incorporating the GARCH specification in the DNS, the variance matrix of εt is stochastic
through ht and given by

Σε(ht) = htΓΓ′ + Σ∗ε , t = 1, . . . T, (10)
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Koopman et al. (2010) suggest several possibilities to overcome identification issues. First, the
loading vector Γ could be normalized such that Γ′Γ = 1. Another possibility is to assume that
γ0 is known and fixed at a certain value. Koopman et al. (2010) opt for the latter approach,
and I choose to follow this. However, in practice the chosen approach to prevent identification
problems does not matter as the outcomes of all methods are equal up to a scaling factor.
By including the GARCH decomposition in the DNS model, the state-space equations slightly
change. More specifically, the measurement equation and state equation are given by

yt = Λ(λ)βt + Γε∗t + ε+t , ε+t ∼ NID(0,Σ+
ε ), t = 1, . . . T, (11)(

βt+1

ε∗t+1

)
=

(
(I3 −Φ)µ

0

)
+

(
Φ 03

0′3 0

)(
βt
ε∗t

)
+

(
ηt
ε∗t+1

)
,

(
ηt
ε∗t+1

)
∼ NID

(
0,

(
Ση 03

0′3 ht+1

))
,

(12)

where 03 denotes a 3× 1 vector consisting of zeros. I refer to this model as DNS-GARCH.

2.4 Time-Varying Loading Parameter λ

In most studies, the value of λt is fixed at a certain value. In this thesis, λt is set equal to
0.0609 (for DNS, FADNS and DNS-GARCH) following Diebold and Li (2006). Alternatively, a
constant λt can be estimated along with the other model parameters as in Diebold et al. (2006)
and De Pooter et al. (2007), among others. More specifically, Diebold et al. (2006) find that
the estimated value is equal to 0.077. Following this, Yu and Zivot (2010) fix the value of λ
at 0.077. They argue that different values of λt affect the factor loadings Λ(λ) only by a small
amount. By allowing for a time-varying λt, we move from a linear to a nonlinear state-space
environment. Koopman et al. (2010) propose ways of allowing for time-varying λt. They find
that they could be useful in situations that involve not only time-varying curvature, but also in
situations where the location at which the curvature attains its maximum is time-dependent. A
recent example of this is the changing part of the short end of the U.S. yield curve, which is at
the zero bound. Such time-varying yield curve kinks may be captured by imposing time-varying
λt. For this reason, I will also consider the loading parameter λt to be time-varying.

Following Koopman et al. (2010), λt is treated as a latent factor that is included in the
original state vector. The inclusion then results in a change of the state-space equations. More
specifically, the measurement equation and state equation are given by

yt = Λ(λt)βt + εt, εt ∼ NID(0,Σε), t = 1, . . . T, (13)

αt+1 = (I4 −ΦTV L)µTV L + ΦTV Lαt + ηTV Lt , ηTV Lt ∼ NID(0,ΣTV L
η ) (14)

where αt = (β1,t, β2,t, β3,t, λt)
′, and the dimensions of Φ, µ, η and Ση are increased as appro-

priate denoted by the superscript ‘TVL’. To be more specific, ΦTV L is a 4× 4 diagonal matrix,
both µTV L and ηTV L are 4× 1 vectors and ΣTV L

η is a 4× 4 diagonal matrix. I will refer to this
model as the DNS model with time-varying loadings (DNS-TVL).

Recall the interpretation of the loading parameter λt, it determines the rate of exponential
decay of the loading for the short-term factor and the maturity where the loading for the
medium-term factor reaches its maximum. Therefore, only positive values for λt are expected.
To guarantee this, I truncate the lower bound values of λ at 5×10−3. This value maximizes
the loading on the medium-term factor at 360 months, which is the longest maturity of issued
U.S. Treasury bonds. Furthermore, the upper bound values are truncated at 1.8 (the value that
ensures the maximum of the loading on the medium-term factor to be at 1 month, the shortest
maturity of issued U.S. Treasury bonds).
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2.5 The Stochastic Factor-Augmented Nelson-Siegel Model

The last model that I consider in my thesis is the combination of all extensions into one model.
I will refer to this model as the stochastic factor-augmented Nelson-Siegel model (SFADNS).
The state-space form is then given by

yt = Λ(λt)βt + Γε∗t + ε+t , ε+t ∼ NID(0,Σ+
ε ), t = 1, . . . T, (15)αt+1

f t+1

ε∗t+1

 =

(
(I4+p −ΦSFA) 04+p

0′4+p 0

)(
µSFA

0

)
+

(
ΦSFA 04+p

0′4+p 0

)αtf t
ε∗t

+

(
ηSFAt+1

ε∗t+1

)
, (16)

where (
ηSFAt+1

ε∗t+1

)
∼ NID

(
0,

(
ΣSFA
η 04+p

0′4+p ht+1

))
.

Furthermore, the dimensions of Φ, η and Ση are increased as appropriate and they will be
denoted by the superscript ‘SFA’. To be more specific, ΦSFA is a (4 +p)× (4 +p) matrix, ηSFA

is a (4 + p)× 1 vector and ΣSFA
η is a (4 + p)× (4 + p) diagonal matrix. Moreover, the structure

of

ΦSFA =


Diagonal Unrestricted

0p×4 Diagonal

 , µSFA =


µFA

0p

 ,

where the block-structure corresponds to the partitioning of the state vector into αt and f t.
Almost similar to the interpretation of ΦFA, the coefficient matrix ΦSFA implies that there
is no feedback from the Nelson-Siegel factors and the time-varying loading parameter to the
macro-factors.

2.6 Estimation Procedure for Linear Gaussian State-Space Models

Several procedures are studied for estimating and forecasting the Nelson-Siegel models, ranging
from a two-step procedure to the class of one-step estimation procedures where all estimation
is done simultaneously by exploiting the state-space structure of the dynamic Nelson-Siegel
model. In this thesis, I will focus on the latter approach. This approach combines the Kalman
Filter (KF) with Maximum Likelihood (ML) estimation. Before I will go into the details of
the procedure, I will first introduce some new general notation. Consider the following general
linear state-space model

yt = Hxt + vt, vt ∼ NID(0,Σv), t = 1, . . . , T, (17)

xt+1 = C +Kxt + ωt, ωt ∼ NID(0,Σω). (18)

The general procedure to find the values of the latent factors and the unknown parameters is
recursive. The process is started by making an initial guess for the unknown parameters (θ(0)),
and run the KF. The optimal forecast (estimate) of the state vector xt given the information
known at time t−1 (t) are provided by the prediction and the update step of the KF. The results
are then used as input in the log likelihood function such that ML estimation can be conducted
to obtain new estimates of the unknown parameters (θ(1)). These steps are then iterated until
the parameter values θML are found for which the log likelihood function is maximized. The
details of the procedure are discussed below.
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Initialisation
The procedure starts with the initialisation of parameters. I use the two-step approach of
Diebold and Li (2006) to obtain the parameter estimates for C, K, Σv and Σω and use these
as the initial values for the Kalman filter. Furthermore, I have to initialise the state vector and
its covariance matrix. More specifically, under the assumption of a stationary process, the initial
value of the state vector is set equal to the unconditional mean, x0|0 = E[xt] = µ, and the ini-
tial value of the covariance matrix, Σx,0|0, is set equal to V , where V solves V = KVK ′+Σω

ii.

Prediction step
The first step of the KF is the prediction step. Consider period t − 1 and let xt−1|t−1 be the
minimum mean square estimator (MMSE) of xt−1 at this period. Furthermore, let the covari-
ance matrix of the estimation error, xt−1 − xt−1|t−1, be denoted as Σx,t−1|t−1. To obtain the
optimal forecast of this state at time t given the information known at time t − 1, denoted by
xt|t−1, one should calculate the expectation of the transition equation (18) conditional on Ψt−1,
i.e. the history of y and x up to and including the observations at t−1. As both the parameters
in C and K as well as an estimate of the state vector at time t− 1 are known, the conditional
mean is equal to the transition equation itself as shown in (19). Next, the optimal forecast
for the corresponding covariance matrix using the information known at time t − 1 should be
made. This is done by calculating the variance of the state vector conditional on Ψt−1 using
basic statistics as in (20). More formally, the prediction step consists of the following

xt|t−1 = E[xt|Ψt−1] = C +Kxt−1|t−1, (19)

Σx,t|t−1 = Var[xt|Ψt−1] = KΣx,t−1|t−1K
′ + Σω. (20)

Update step
Now consider the time-t update step. In this step, the forecasts obtained from the prediction step
are updated using information from the prediction error as this may hold information that is not
yet contained in the forecasts themselves. The prediction error ṽt is calculated by subtracting
the forecasted yield yt|t−1 from the observed yield yt. Again, the optimal forecast of the yield
is equal to the expectation of the yield conditional on Ψt−1. Subsequently, the corresponding
covariance matrix is calculated using basic statistics. These steps are shown in (21), respectively
(22). The update of the predicted state vector, xt|t, and its covariance matrix, Σx,t|t, are shown
in (23), respectively (24). This is based on a property of a joint normal distribution. More
specifically, to update the predicted state vector and its covariance matrix one should calculate
the expectation, respectively the variance, of the state xt conditional on Ψt−1 and vt. More
formally, the update step consists of the following

ṽt = yt − E[yt|Ψt−1] = yt − yt|t−1 = yt −Hxt|t−1, (21)

Σṽ,t = Var[vt|Ψt−1] = HΣx,t|t−1H
′ + Σv, (22)

xt|t = E[xt|vt,Ψt−1] = xt|t−1 + Σx,t|t−1H
′Σ−1ṽ,t ṽt, (23)

Σx,t|t = Var[xt|vt,Ψt−1] = Σx,t|t−1 −Σx,t|t−1H
′Σ−1ṽ,tHΣx,t|t−1. (24)

iiSee Appendix A for an explanation on how to solve for V .

14



Maximum Likelihood Estimation
The information provided by the KF is then used for the estimation of the unknown parameters
θ. To obtain maximum likelihood estimates of these parameters, numerical maximization of
the log likelihood function is used. As the error terms are assumed to be Gaussian distributed,
the distribution of yt conditional on the information up to time t− 1 is Gaussian as well. The
log likelihood function for the observations are then obtained from the KF via the prediction
error decomposition, see Harvey and Peters (1990). Hence the log likelihood is given by

`(θ) = −mT
2

log 2π − 1

2

T∑
t=1

log |Σṽ,t| −
1

2

T∑
t=1

ṽ′tΣ
−1
ṽ,t ṽt, (25)

which is maximized with respect to the unknown parameter θ. Some additional steps are
required for DNS-GARCH. For this case Σω contains ht+1 as modelled in (9), which is not
computable at time t as it depends on the latent variable ε∗t . Therefore, I replace ht+1 by its
estimate based on the observations y1, . . . , yt, that is

ĥt+1|t = γ0 + γ1e
2
t + γ2ĥt|t−1, t = 1, . . . T, (26)

where et is an estimate of ε∗t based on y1, . . . , yt and obtained from the update step of the KF.
More specifically, it is the last element of xt|t when DNS-GARCH is estimated. Past values of

ĥt|t−1 can be stored outside the model and the variance ht+1 in matrix Σω is replaced by ĥt+1|t
for the prediction step of the KF. As a result, the state estimates are sub-optimal. A more
detailed discussion of this approach is provided by Harvey et al. (1992). The procedure for
linear and non-linear state space models is similar, however, the KF can only be used for linear
models (i.e. for the DNS, FADNS and DNS-GARCH).

2.7 Estimation Procedure for Nonlinear Gaussian State-Space Models

The standard KF is only applicable if the state-space is linear, which is not the case when
the loading parameter λt is stochastic. For this reason, I consider nonlinear Gaussian filtering
techniques for the DNS-TVL and the SFADNS. More specifically, I discuss the extended Kalman
filter (EKF) and the unscented Kalman filter (UKF). First, I introduce some general notation
before I go into the details of the two nonlinear filtering techniques. As λt is now treated as a
latent factor the general nonlinear state-space model is given by

yt = H(xt) + vt, vt ∼ NID(0,Σv), t = 1, . . . , T, (27)

xt+1 = C +Kxt + ωt, ωt ∼ NID(0,Σω). (28)

The general idea to find the values of the latent factors and the unknown parameters remains the
same as discussed in section 2.6. However, as the system is nonlinear, sophisticated methods are
needed to calculate the exact statistics of the nonlinear transformation of a random Gaussian
variable. Furthermore, the initialisation values and the likelihood function remain unchanged
as well. Therefore, I will only elaborate on the steps of both filtering methods.
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2.7.1 The Extended Kalman Filter

The EKF relaxes the requirement of a linear state-space model, but, the model need only be
differentiable and Gaussian distributed. The EKF approximates the nonlinear system using
first order Taylor expansions to locally linearize the model around the most current estimate of
the state. Explicitly, the linearized model at xt = xt|t is as follows

yt = Ht(xt|t) + J t · (xt − xt|t) + vt, t = 1, . . . , T

where J t denotes the Jacobian of the nonlinear function H(xt) in the original measurement
equation. More specifically, the Jacobian is given by

J t =
∂Ht(xt)

∂x′t

∣∣∣
xt=xt|t

.

Prediction step
The first step of the EKF is the prediction step. Consider period t − 1 and let xt−1|t−1 be
the minimum mean square estimator (MMSE) of xt−1 at this period. Furthermore, let the
covariance matrix of the estimation error, xt−1 − xt−1|t−1, be denoted as Σx,t−1|t−1. As the
approximation is locally linear in the estimated state vector xt−1|t−1 and due to the fact that
the transition equation remains unchanged, the prediction step of the EKF is similar to the
prediction step of the KF. Therefore, I refer to subsection 2.6 for more details on this step.

Update step
Now consider the time-t update step of the EKF. Just as for the standard KF, the prediction
error ṽt is calculated by subtracting the forecasted yield yt|t−1 from the observed yield yt.
Again, the optimal forecast of the yield is equal to the expectation of the yield conditional on
Ψt−1. Subsequently, the corresponding covariance matrix is calculated using basic statistics.
These steps are shown in (29), respectively (30). The update of the predicted state vector,
xt|t, and its covariance matrix, Σx,t|t, are shown in (31), respectively (32). Even though the
idea is similar, there are some small modifications. Moreover, as the model is nonlinear in the
measurement equation, the Jacobian should be used to calculate the variance of the prediction
error. More formally, the update step consists of

ṽt = yt − E[yt|Ψt−1] = yt −Ht(xt|t−1)− J t · (xt|t−1 − xt|t−1) = yt −Ht(xt|t−1), (29)

Σṽ,t = Var[vt|Ψt−1] = J tΣx,t|t−1J
′
t + Σv, (30)

xt|t = E[xt|vt,Ψt−1] = xt|t−1 + Σx,t|t−1J
′
tΣ
−1
ṽ,t ṽt, (31)

Σx,t|t = Var[xt|vt,Ψt−1] = Σx,t|t−1 −Σx,t|t−1J
′
tΣ
−1
ṽ,tJ tΣx,t|t−1. (32)

The calculated ṽt and Σṽ,t are then plugged in the log likelihood function as given in (25)
in order to continue the estimation procedure for the latent factors and unknown parameters.
The EKF is an easy method to implement and very effective to estimate the state when the
nonlinearities in the model are not too complex. However, when the assumption of local linearity
is violated, the filter may be highly unstable. Furthermore, when the initial estimate of the state
is wrong, the filter may quickly diverge

2.7.2 The Unscented Kalman Filter

The UKF addresses the approximation issues of the EKF, and many authors (Julier and
Uhlmann (2004), among others) show that it is an improvement over the EKF, while the calcu-
lation complexity is kept equal. Unlike the EKF, this filtering technique does not approximate
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H(xt) by local linearization but instead uses the exact nonlinear measurement equation. This
approach follows the same idea of the other filtering techniques, i.e. the optimal predictions of
the state and the corresponding covariance matrix are calculated using the conditional expecta-
tion and variance. However, in contrast to the KF and the EKF, a statistical method is needed
to evaluate the expectation of the nonlinear function of a random Gaussian variable. This should
be done in order to calculate the prediction error and its covariance matrix. More specifically, for
the prediction error the optimal prediction of the yield is needed, which is the expectation of the
yield conditional on Ψt−1. Or, equivalently, E[yt|Ψt−1] = E[H(xt)+vt|Ψt−1] = E[H(xt)|Ψt−1].
One suitable method to evaluate the expectation of the nonlinear function is the unscented trans-
formation (UT) as introduced by Julier and Uhlmann (1997). They argue that it is easier to
approximate a Gaussian distribution rather than an arbitrary nonlinear function (which is done
in the EKF).

The Unscented Transformation
Before I go into the details of the UT, I first elaborate on a simple example analogous to
this method. Suppose you would like to find the mean and variance of the transformed
variable y = f(x) of a random variable x. Furthermore, assume the mean and variance of
this random variable to be known. In the most basic simulation procedure, a large num-
ber of samples are drawn from the distribution of the random variable. Subsequently, the
mean of the transformed variable is approximated by the average of the transformed sam-
ple points E[y] ≈ 1/N

∑N
i=1 f(xi) = ȳ and the variance is approximated in a similar manner

Var[y] = E[y − E[y]]2 ≈ 1/N
∑N

i=1[f(xi − ȳ)]2. For the UT, the expectation and the variance
of the random variable are approximated by a weighted average. Furthermore, instead of a
drawing a large sample from the distribution of x, a minimal set of points around the mean are
chosen. These points are referred to as so-called sigma points. The next question is then; how
to choose the rights set of sigma points and weights.

Computing the sigma points and the weights
Consider the nx-dimensional state vector x and assume the mean is equal to µ and the co-
variance is equal Σx. The sigma points should be chosen such that the sample mean and
sample covariance are equal to the assumed mean and covariance matrix of the state vector.
Equivalently, the points x and the weights w should be chosen such that the following hold:∑

i

wi = 1, µ =
∑
i

wixi, Σx =
∑
i

wi

(
xi − µ

)(
xi − µ

)′
.

There is no unique solution for these requirements. But, Julier and Uhlmann (1997) derive and
find that the following definitions provide the most accurate results. They suggest choosing a
set of 2nx + 1 sigma points of the form

xs0 = µ, xsi = µ+
(√

(nx + ξ)Σx

)
i
, xsi+nx

= µ−
(√

(nx + ξ)Σx

)
i+nx

, (33)

for i = 1, . . . , nx. The corresponding weights to compute the first and second moment are

W
(m)
0 =

ξ

nx + ξ
, W

(m)
i =

1

2(nx + ξ)
, i = 1, . . . , 2nx, (34)

W
(c)
0 =

ξ

nx + ξ
+ (1− ρ2 + ζ), W

(c)
i = Wm

i i = 1, . . . , 2nx, (35)

where ξ = ρ2(nx + κ)− nx and where
(√

(nx + ξ)Σx

)
i

is the ith column of the matrix square

root of (nx + ξ)Σx, which is obtained using the Cholesky decomposition of the matrix. Fur-
thermore, the scaling parameter ρ > 0 is intended to minimize higher order effects and can be
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made arbitrary small, I set this equal to 10−3. The restriction κ > 0 guarantees the positivity
of the covariance matrix, and I set this equal to 1. The parameter ζ ≥ 0 can capture higher
order moments of the state distribution and it is equal to 2 for the Gaussian distribution. Fur-
thermore, the superscript m and c at the weights denote for which steps it should be used in
the algorithm, either for the means of for the covariance matrices. The steps for this filtering
technique for the case of zero mean noise are below.

Prediction step
Let χt−1|t−1 = [xs0,t−1|t−1 xsi,t−1|t−1 xsi+nx,t−1|t−1] for i = 1, . . . , nx be the set of sigma points
calculated at time t − 1 given all information known up until time t − 1. In the UKF, the
transformations (the mapping of the measurement and transition equation) are applied to the
sigma points, equations (36) and (39), rather than to the state vector and observed yields. The
optimal forecasts of the state vector and the yields, the expectation conditional on Ψt−1, are
defined as the weighted averages of these transformations, as seen in equation (37) and (40).
The details are as follows

χi,t|t−1 = C +Kχi,t−1|t−1, i = 1, . . . 2nx, (36)

xt|t−1 =

2nx∑
i=0

W
(m)
i χi,t|t−1, (37)

Σx,t|t−1 =

2nx∑
i=0

W
(c)
i

[
χi,t|t−1 − xt|t−1

][
χi,t|t−1 − xt|t−1

]′
+ Σw, (38)

Υi,t|t−1 = Ht

(
χi,t|t−1

)
, i = 1, . . . 2nx, (39)

yt|t−1 =

2nx∑
i=0

W
(m)
i Υi,t|t−1. (40)

Update step
Now consider the time-t update step of the UKF, in which the prediction error ṽt and its
covariance matrix Σṽ,t are calculated first. In combination with Σxṽ,t, the conditional covariance
matrix of the state vector and the prediction error, they provide the information used to improve
the predicted state xt|t−1, to xt|t, and its covariance matrix/mean square error matrix Σx,t|t−1,
to Σx,t|t. Moreover, for these calculations the same procedure as for the KF and EKF is used,
i.e. the expectation and the variance of the state xt conditional on Ψt−1 and vt is calculated.
More formally, the update step consists of the following

ṽt = yt − yt|t−1, (41)

Σṽ,t =

2nx∑
i=0

W
(c)
i

[
Υi,t|t−1 − yt|t−1

][
Υi,t|t−1 − yt|t−1

]′
+ Σv, (42)

Σxṽ,t =

2nx∑
i=0

W
(c)
i

[
χi,t|t−1 − xt|t−1

][
Υi,t|t−1 − yt|t−1

]′
, (43)

xt|t = xt|t−1 + Σxṽ,tΣ
−1
ṽ,t ṽt, (44)

Σx,t|t = Σx,t|t−1 −Σxṽ,tΣ
−1′
ṽ,t Σ

′
xṽ,t. (45)

Parameter estimation using the UKF can be executed in a similar fashion as for the KF and
EKF. That is, plug in ṽt and Σṽ,t in the log likelihood function as given in (25).
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3 Data

In this section, I introduce the data that I use for my research. First, the yields for the different
maturities and their stylized facts will be examined. Afterwards, I discuss which macroeconomic
variables have been used from which I extract the macro factors for the models.

3.1 U.S. Treasury Yields

For my research, I consider the unsmoothed Fama-Bliss zero-coupon yields dataset at the
monthly frequency, obtained from the CRSP unsmoothed Fama and Bliss (1987) forward rates.
The dataset covers the period January 1970 to December 2009, for maturities of 3, 6, 9, 12,
15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 months. This dataset is the same as the
one analyzed by van Dijk et al. (2014). For more details on constructing the yields, I refer to
Diebold and Li (2006).

As yield curves evolve dynamically, they do not only have a cross-sectional (i.e. the varia-
tion across different maturities), but also a temporal (i.e. the dynamics over time), dimension.
In Figure 2, I show the resulting three-dimensional surface for the U.S., with yields shown as a
function of maturity, over time. The figure shows an important yield curve fact: the yield curve
can take on a variety of shapes, such as humped, decreasing almost flat and so on. The Nelson
and Siegel (1987) model can accurately approximate all these shapes. The long term trend is
downwards, with short term interest rates near zero. In Table 1, I present descriptive statistics
for yields at various maturities. Several well-known an key yield curve facts emerge. First, the
yield curve is on average upward sloping and concave. Second, yields are (highly) persistent, as
shown not only by the sizable 1-month autocorrelations but also by the large 12- and 30-month
autocorrelations. Third, the persistence of yields increase with maturity. Fourth, short-term
yields are more volatile than long-term yields.

The upper triangular part of the cross-correlation matrix of the yields are reported in Ta-
ble 2. It shows that the cross-correlations between the maturities are high. This finding implies
that PCA is applicable to explain a large part of the fluctuation in the yields with only a few
number of factors. By applying PCA on the dataset I find that the first three factors explain
nearly all of the variation in bond yields, which corresponds to the finding of Litterman and
Scheinkman (1991). They find that three factors can explain most of the variation, particu-
larly since 1978. Furthermore, they interpret these factors as the level, slope and curvature
factor. Comparing the descriptive statistics of the empirical proxies for these factorsiii in Table
1 with those of the three PCA factors in Table 3, I find that they exhibit similar characteristics.
Moreover, the first PCA factor (level) is the most variable but the most predictable, due to its
high persistence. Followed by the second PCA factor (slope) and third PCA factor (curvature).
As seen in Figure 3, the PCA factors are effectively the data-based level, slope and curvature
factor. This finding is important for two reasons. First, it substantiates the use of the DNS
model to estimate and forecast the yields. Second, it argues for the inclusion of macro-economic
information in the model as Diebold and Rudebusch (2013) state that this finding implies that
the factors are likely to have specific macroeconomic fundamentals. For example, inflation is
related to the level of the yield curve, and a clear business cycle rhythm is displayed by the
slope factor.

iiiI define the proxy for level as the longest maturity yield (120 months), for slope it is the difference between
the 120-month yield and the 3-month yield, and for curvature it is two times the 24-month yield minus the
3-month and 120-month yields.
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Figure 2: U.S. Treasury yield curves, 1970:01-2009:12. The sample consist of the unsmoothed
Fama-Bliss zero-coupon monthly yield data, at maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36,
48, 60, 72, 84, 96, 108 and 120 months.

Maturity (Months) Mean Std. dev. Minimum Maximum ρ̂(1) ρ̂(12) ρ̂(30)

3 5.766 3.071 0.041 16.019 0.979 0.749 0.411
6 5.969 3.098 0.150 16.481 0.980 0.763 0.442
9 6.083 3.089 0.193 16.394 0.981 0.771 0.467
12 6.166 3.053 0.245 16.101 0.981 0.777 0.483
15 6.253 3.029 0.377 16.055 0.982 0.785 0.504
18 6.324 3.009 0.438 16.219 0.983 0.792 0.522
21 6.387 2.990 0.532 16.173 0.983 0.797 0.537
24 6.418 2.943 0.532 15.814 0.983 0.799 0.550
30 6.512 2.878 0.819 15.429 0.983 0.808 0.570
36 6.600 2.832 0.978 15.538 0.984 0.814 0.586
48 6.756 2.755 1.019 15.599 0.984 0.822 0.614
60 6.852 2.671 1.556 15.129 0.985 0.832 0.636
72 6.964 2.638 1.525 15.108 0.987 0.842 0.653
84 7.026 2.573 2.179 15.024 0.987 0.841 0.666
96 7.069 2.536 2.105 15.052 0.988 0.850 0.673
108 7.095 2.519 2.152 15.114 0.988 0.853 0.677
120 (level) 7.067 2.465 2.679 15.194 0.988 0.843 0.674
Slope 1.301 1.362 -3.191 3.954 0.934 0.418 -0.123
Curvature 0.003 0.863 -2.174 2.905 0.877 0.441 0.130

Table 1: Descriptive statistics for monthly U.S. Treasury yields at different maturities over the
period 1970:01-2009:12. The yields are constructed using the unsmoothed Fama-Bliss method.
For each maturity I present the mean, standard deviation, minimum, maximum and the jth-
order autocorrelation coefficients ρ̂(j) for j = 1, 12 and 30. In addition, I provide statistics for
empirical proxies for the level, slope and curvature. I define the proxy for level as the longest
maturity yield (120 months), for slope it is the difference between the 120-month yield and the
3-month yield, and for curvature it is two times the 24-month yield minus the 3-month and
120-month yields.
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3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

3 1.000 0.997 0.994 0.990 0.984 0.980 0.976 0.972 0.964 0.957 0.944 0.934 0.924 0.917 0.909 0.904 0.902
6 1.000 0.999 0.996 0.992 0.988 0.985 0.982 0.975 0.968 0.956 0.946 0.936 0.930 0.922 0.917 0.914
9 1.000 0.999 0.996 0.993 0.991 0.988 0.982 0.976 0.965 0.956 0.946 0.940 0.932 0.928 0.924

12 1.000 0.999 0.997 0.995 0.993 0.988 0.983 0.973 0.965 0.955 0.950 0.942 0.938 0.934
15 1.000 0.999 0.998 0.997 0.993 0.990 0.981 0.974 0.965 0.960 0.953 0.949 0.945
18 1.000 0.999 0.999 0.996 0.993 0.986 0.980 0.972 0.967 0.961 0.956 0.952
21 1.000 1.000 0.998 0.996 0.990 0.984 0.977 0.973 0.966 0.962 0.958
24 1.000 0.999 0.997 0.992 0.987 0.981 0.976 0.971 0.966 0.962
30 1.000 0.999 0.996 0.992 0.987 0.983 0.978 0.974 0.969
36 1.000 0.998 0.995 0.992 0.988 0.984 0.980 0.975
48 1.000 0.999 0.997 0.994 0.991 0.988 0.984
60 1.000 0.999 0.997 0.995 0.992 0.988
72 1.000 0.999 0.997 0.995 0.991
84 1.000 0.999 0.997 0.994
96 1.000 0.999 0.997

108 1.000 0.999
120 1.000

Table 2: The upper triangular correlation-matrix of the yields from different maturities over the period 1970:01-2009:12.

PCA factor Mean Std. dev. Min. Max. ρ̂(1) ρ̂(12) ρ̂(30)

1 0.000 4.074 -8.009 13.039 0.985 0.816 0.583
2 0.000 0.598 -1.337 1.648 0.948 0.491 -0.018
3 0.000 0.171 -0.493 0.695 0.863 0.366 -0.062

Table 3: Descriptive statistics for the first three principal component analysis (PCA) factors of the unsmoothed Fama-Bliss zero-coupon yield
dataset at maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 72, 84, 96, 108 and 120 months, for 1970:01-2009:12.
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Figure 3: Empirical standardized level, slope and curvature factor against the first three stan-
dardized principal component analysis (PCA) factors for the period 1970:01-2009:12.
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3.2 Indicators for the Macro-Economy

The macro factors that I include in the models are extracted from a set of 135 monthly variables
covering the same period as the yield curve period. Moreover, I normalize the time series of
observations on each variable separately to have mean zero and unit variance over the estima-
tion window in order to rule out scale effects. These variables are obtained from the database
of the Federal Reserve Bank of St. Louis (FRED).iv Moreover, these variables are categorized
into eight groups by the FRED in an economically meaningful way. The groups are as follows:
output and income; labor market; housing; consumption, orders and inventories; money and
credit; prices; and stock market.

Attention should be paid to the timing of the macroseries relative to the yield series to prevent
a potential look-ahead bias. Not coping with this, may lead to inaccurate results. Therefore, to
make sure there is no information used that has not been released yet at the time when a fore-
cast is being made, I consider two methods. First, I lag all macroseries by one month. Except
for S&P variables, exchange rates and the federal funds rate, which are all monthly averages.
Second, the included macro factors f t in the models are actually the forecasted macro factors
obtained using an AR(1) model, as shown in (5) and (16). Due to the fact that the macro
factors are extracted from the full dataset, there might still be some look-ahead bias. However,
this greatly facilitate the computational time.

The first macro factor extracted from the dataset, explains 56% of the variation in the panel for
the full sample period. Furthermore, the second factor explains nearly 13%, and the third factor
explains an additional 9%. Moreover, the first ten factors together explain a remarkable 95%
of the variation. Following de Pooter et al. (2010), I regress the individual standardized series
in the macro database of the FRED on each of the first four factors. Figure 11 in Appendix C
shows the individual R2’s of these regressions. This allows me to economically label the factors
such that they can be interpreted more as representing meaningful economic variables instead
of simply as results from applying a statistical procedure. The R2 of the series in the real
output and employment categories (groups 1 and 2), as well as groups 4 through 8, are quite
high when they are regressed on the first factor. This factor can, therefore, be labelled as the
business cycle or real activity factor. The second factor is mostly related to the unemployment
part of the labor market group (group 2) and the housing category and could thus be labelled
as the jobless claim factor. The third factor, although the correlations are much lower than for
the first and second factor, closely resembles the federal funds related series in the money and
credit category (group 6), which allows for the label of federal funds factor. Figure 4 presents
graphically the interpretations through time-series plots of the first three factors together with
real personal income, initial claims and the effective federal funds rate, respectively.

ivhttps://research.stlouisfed.org/econ/mccracken/fred-databases/
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Figure 4: PCA factors versus individual macro series. The time-series plots of the first three
factors (solid blue) together with the main individual macro series within the category to which
the factor is most related (dashed red). The first factor is plotted with real personal income,
the second factor with initial claims and the third factor with the effective federal funds rate.

Various methods can be used to select the number of factors to be included in the model. De
Pooter et al. (2010) evaluate how much variance each factor explains in the cross section of
the macro series to choose the amount of factors. Similar to Diebold et al. (2006), they choose
to include three factors in their models as the factors explains roughly 60% of the variance.
Moreover, they find similar forecasting results when additional factors were included. Exterkate
et al. (2013) use a dynamic scheme on choosing the number of factors. They conclude that
the forecast accuracy for some models improve when the selection of factors is based on past
predictive performance. I choose to follow the approach of Ludvigson and Ng (2009). That is,
I use information criteria to evaluate whether a factor should be included in the model.
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4 Empirical Results

This section elaborates on the empirical results obtained for the DNS and its extensions as
described in the methodology in twofold. First, I discuss the differences between the in-sample
fit of the DNS, DNS-TVL-EKF and DNS-TVL-UKF. Furthermore, I put more emphasis on the
dynamics of the loading parameter as obtained from the EKF and the UKF. In the second part
of the results section, I elaborate on the out-of-sample forecasting performance of all models.
Additionally, I consider various subsamples in which I evaluate this.

4.1 In-Sample Analysis

As the in-sample fit of the DNS and its extensions have been studied thoroughly by various
authors, I choose to focus only on the models for which there is little information. That is, I
study the effect of having a time-varying loading parameter in the DNS model on the in-sample
fit. Moreover, I focus on the differences between the EKF and the UKF in particular. Figure 5
shows the actual yields and the fitted yield curves obtained from the DNS, DNS-TVL-EKF and
DNS-TVL-UKF for the same dates that Diebold and Li (2006) use in their analysis. Overall,

(a) 3/31/1989 (b) 31/7/1989

(c) 30/5/1997 (d) 31/8/1998

Figure 5: Actual yields against the fitted yield curves obtained from the DNS, DNS-TVL-EKF
and DNS-TVL-UKF. This figure shows the differences in the fit of the yield curves from the
considered models for selected dates.
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the three models provide a good fit of the yields and are capable of replicating a variety of
shapes. However, on the dates the yields are dispersed, the differences between the in-sample
fit of the models become clear. In contrast to the DNS, the DNS-TVL-EKF and DNS-TVL-
UKF are more accurate in fitting the short end of the yield curve. This finding confirms the
statement made by Diebold and Rudebusch (2013) that allowing for a time-varying loading
parameter may provide a better fit of the yield curve at short-term maturities. However, it
seems to come at a cost i.e. the fit of the estimate yield curves from the DNS-TVL models are
slightly less accurate than from the basic DNS model at longer maturities.

These findings may only hold for these selected dates, and therefore, to make general state-
ments regarding the fit of the models, I provide the sample means and standard deviations of
filtered errors in Table 4. The filtered errors are defined as the difference between the actual
yields and the filtered estimate of the curve obtained from the different Kalman filters. By
evaluating the filtered means of each model individually, I conclude that the 3-month rate is
difficult to fit for all three models as the highest filtered mean can be found at this maturity.
Moreover, the highest standard deviations can be found at this maturity as well, which cor-
responds to the finding of Koopman et al. (2010), among others. These findings could stem
from the fact that the yield at this maturity is quite volatile, making it harder for the filters to
estimate the Nelson-Siegel factors and, as a result, the yield itself. Comparing the filtered errors
of the three models per maturity, I find that allowing for a time-varying loading parameter in
the DNS model generally leads to an improvement of the in-sample fit. Especially for the short
end of the yield curve, which corresponds with the findings for the selected dates. Furthermore,
the table shows a decrease of the filtered error mean at the 120-month rate. It would be inter-
esting to find out what the results are for maturities longer than ten years. However, this is not
in the scope of this study. Interestingly, the errors of the models with a time-varying loading
parameter are slightly more volatile than those of the standard DNS for all maturities except

DNS DNS-TVL-EKF DNS-TVL-UKF

Maturity Mean Std. dev. Mean Std. dev. Mean Std. dev.

3 -0.140 0.271 -0.068 0.161 -0.076 0.143
6 -0.027 0.098 0.005 0.068 0.001 0.055
9 0.002 0.062 0.016 0.099 0.011 0.093
12 0.006 0.067 0.011 0.104 0.005 0.096
15 0.020 0.079 0.022 0.094 0.014 0.085
18 0.023 0.069 0.023 0.081 0.014 0.070
21 0.023 0.063 0.024 0.077 0.014 0.066
24 -0.004 0.050 -0.003 0.076 -0.014 0.068
30 -0.015 0.044 -0.012 0.076 -0.024 0.074
36 -0.016 0.050 -0.012 0.077 -0.025 0.081
48 -0.003 0.070 0.003 0.083 -0.010 0.095
60 -0.015 0.069 -0.006 0.082 -0.019 0.098
72 0.016 0.086 0.026 0.090 0.014 0.103
84 0.016 0.074 0.027 0.094 0.015 0.097
96 0.011 0.044 0.023 0.082 0.012 0.072
108 -0.003 0.111 0.012 0.106 0.001 0.099
120 -0.063 0.176 -0.045 0.150 -0.057 0.145

Table 4: Filtered errors of the DNS, DNS-TVL-EKF and DNS-TVL-UKF. The table reports
the mean and standard deviation of the filtered errors for each maturity. The filtered errors
are defined as the difference between the actual yields and the filtered estimate of the curve
obtained from the Kalman filter, respectively, the extended- and the unscented Kalman filter.
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for the really short end of the yield curve (3- and 6-month rate) and the long end of the yield
curve (108- and 120-month rate). A possible explanation could be that the overall fit of both
the DNS-TVL-EKF and the DNS-TVL-UKF are more accurate than that of the DNS, but at
some dates the estimates of these two deviate much from the actual yield. Digging deeper into
the difference between the results obtained from the two nonlinear Gaussian filtering methods,
I find that the EKF filters the bonds with intermediate maturity (two to five years) more
accurately than the UKF does as the means of the filtered errors are lower here. However, for
the remaining maturities the estimates from the UKF are more accurate than that of the EKF.
The same structure is reflected in the standard deviations; for the intermediate maturities the
filtered errors of the EKF are less volatile, while the filtered errors of the UKF are more stable
for the other maturities. An analysis of the estimated latent factors could possibly provide an
explanation for this. In general, the differences between the estimated factors are marginal, with
an exception for the curvature factor. For this factor, I evaluate the estimated error defined as
the data-based curvature factor minus the estimated curvature factor. Figure 6 shows that the
UKF generally fits the curvature factor more accurately than the EKF as the errors are closer
to zero for the UKF. Moreover, the negative errors indicate that the EKF tends to overestimate
the data-based curvature factor, even more than the UKF does for some periods (e.g. 1976-
1977). This means that the EKF either underestimates the 24-months yield or overestimates
the yields at the ends of the yield curve (3-months yield and 120-months yield) by definition.
As Table 4 shows that the mean of the filtered error of the 24-months yield is approximately
zero, I therefore conclude that the EKF tends to overestimate the ends of the yield curve. This
may stem from the fact that the linear approximation in the EKF, to calculate the statistics of
this factor, is inferior to the unscented transformation in the UKF.

Figure 6: The (absolute) estimated curvature errors. The figure shows the (absolute) estimated
curvature errors, which is defined as the (absolute value of the) data-based curvature factor
minus the estimated curvature factor. The estimated curvature factors stems from the EKF
and the UKF.
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In Figure 7, I compare the filtered latent factors obtained from both the DNS-TVL-EKF and
DNS-TVL-UKF with their data-based proxies on the left hand side. The figure shows that the
estimated factors from both models describe the data-based proxy equally well. Furthermore,
the filtered estimates of the loading parameter are presented. These estimates are particularly
high in the early 1980s with a sample average equal to approximately 0.09. Moreover, the
peaks and bottoms of the estimated loading parameter as obtained from the DNS-TVL-EKF
are respectively higher and lower than from the DNS-TVL-UKF. On the right hand side, the
difference between the fit of the models are highlighted. The most notable deviation is found
in the late 1970s, during this period the differences of the latent factors show a similar shape.
More specifically, for the slope and curvature factor a half head-shoulder-pattern is shown, with
the head starting a little after 1975. For the level factor this shape is mirrored in the zero line.
Interestingly is the fact that the difference of the estimated loading parameter is near zero for
the same period. However, as there are no other periods where the same phenomenon can be
seen, I am not able to make any statements regarding the correlation of these findings. For the
other periods, the difference between the estimated factors of both models is marginal.

I also evaluate the performance of the models by considering the log likelihood, the Akaike
Information Criterion (AIC), the Bayesian Information Criterion (BIC) and the likelihood ratio
(LR) test for model improvement. These values are presented in Table 5. First, I compare the
DNS model with the two DNS-TVL models. As the standard model is nested in the models
with a time-varying loading parameter, I can use the standard likelihood-ratio (LR) test. Under
the null hypothesis of standard DNS, LR = 2[`(θDNS−TV L) − `(θDNS)] ∼ χ2(3). The LR test
statistics are presented in the right column of the table. Moreover, the associated p-values are
both less than 0.0001, so I formally reject the restrictions imposed by the DNS model. In other
words, allowing for a time-varying loading parameter results in a significant improvement of the
in-sample fit. This is confirmed by the AIC, the BIC and LR values and corresponds to the
finding of Koopman et al. (2010). Second, consider the fit of the filtered estimates as obtained
from the EKF versus that of the UKF. The models are non-nested but contain equal numbers
of parameters. Therefore, I compare their log likelihoods directly, with the clear result that
the DNS-TVL-UKF is dominated by the DNS-TVL-EKF. Overall, the estimates of the yields
as obtained by the EKF are more accurate than that of the UKF. Although, there are some
differences when the fit is evaluated per maturity. That is, the EKF is able to fit the intermedi-
ate part of the yield curve better than the UKF (with the highest decrease in the mean of the
filtered error of nearly 80% for the 24-months rate), while the latter provides remarkably more
accurate estimates at both ends of the yield curve. Moreover, the biggest drop in the mean of
the filtered error is approximately 96% for the 108-months rate.

Model Log likelihood AIC BIC LR-test statistic

DNS 5613.0 -11174.0 -11065.5 -
DNS-TVL-EKF 5811.3 -11564.6 -11443.6 396.6**
DNS-TVL-UKF 5688.8 -11319.6 -11198.6 151.6**

Table 5: Log likelihood, AIC, BIC and LR test statistics. The table reports the log like-
lihood, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and the
likelihood ratio (LR) test statistics of comparing the standard DNS model to the models with a
time-varying loading parameter (DNS-TVL-EKF and DNS-TVL-UKF). An asterisk (*) denotes
significance at the 5% level or less and two asterisks (**) denote significance at the 1% or less.
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Figure 7: Latent factors. The figure shows the level, slope, curvature and the time-varying
loading parameter as obtained from the DNS-TVL-EKF (red) and DNS-TVL-UKF (blue) on
the left side. Moreover, the proxies of the first three factors are shown as well. On the right
hand side, the difference between the estimated latent factors of the DNS-TVL-EKF and DNS-
TVL-UKF are highlighted.
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4.2 In-Sample Analysis: Factor Loading

Most of the time, the estimated level, slope and curvature factors corresponding to the estimated
λt as obtained from the DNS-EKF-TVL and DNS-UKF-TVL are able to accurately fit the data-
based factors. However, for some values of the estimated time-varying loading parameter, a huge
misfit is observed. The main problem is the fact that the factors are no longer uniquely identified
due to multicolinearity when the factor loading takes on extreme values, see De Pooter (2007).
A deeper analysis of the factor loadings, particularly the slope and curvature loading, provides
an insight of the effect from the time-varying loading parameter on the interpretation of these
factors. For this analysis, I consider the extreme values of λt. Let λEKFt and λUKFt denote
the estimated time-varying loading parameter as obtained by the DNS-TVL-EKF and DNS-
TVL-UKF, respectively. Figure 8 shows the slope and curvature loadings for the Diebold-Li
(2006) fixed value of λt and different estimated loading parameters. I look at the problem from
a theoretical point-of-view and study the obtained estimates. Consider the factor loadings at
their limits

lim
λt↓0

[1− exp(−λtτ)

λtτ

]
= 1; lim

λt↓0

[1− exp(−λtτ)

λtτ
− exp(−λtτ)

]
= 0, (46)

lim
λt→∞

[1− exp(−λtτ)

λtτ

]
= 0; lim

λt→∞

[1− exp(−λtτ)

λtτ
− exp(−λtτ)

]
= 0, (47)

where the loading on the left-hand side corresponds to the slope factor, while the loading on the
right-hands side corresponds to the curvature factor. For very small values of λt, (46) implies
that the curvature factor is non-identified. Furthermore, the level and slope factor can not
be differentiated from each other as the loadings are equal. Put differently, they are jointly
identified. This is the case in the period 1976 - 1978, in which the estimated λt’s attain their
minimums. The minimum value of λEKFt is equal to 0.013 at June 1977, and the minimum value
for λUKFt is equal to 0.014 at November 1976. These values are lower than the Diebold-Li (2006)
value of 0.0609, which implies that the factor loadings of the slope and curvature factor decay
to zero at a slower pace. Moreover, this results in the factor loading of the curvature factor
peaking near the 132-months maturity. Thus, as shown in Figure 8, the factors take on very
different roles in the fit of the model due to the shape of the corresponding loadings (indicated
as ‘Slope 2’ and ‘Curvature 2’). That is, in contrast to the Diebold-Li (2006) interpretation, for
this period, the slope factor acts as both the short- and medium-term factor, while the curvature
factor acts as a long-term factor. As a result, the level factor, which is still considered as a

Figure 8: Slope and curvature loadings for different values of lambda. This figure shows the slope
and curvature loadings as a function of maturity for λ1 = 0.0609, λ2 = 0.0135 and λ3 = 0.3238.
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long-term factor, is allowed to fit other areas of the yield curve (Christensen et al., 2009). The
fact that the curvature factor is non-identified, and the slope and level factors are jointly iden-
tified due to the change of the factor loadings for this period clearly explains the significant
misfit of the estimated level, slope and curvature factors on their proxies as shown in Figure 7.
More specifically, this could be a possible explanation for the peaks with offsetting values in the
estimated slope and level factor (in this period, I find a value of 2 for the estimated level factor,
while at the same time a value of -2 is found for the estimated slope factor). This corresponds
to the findings of Gimeno and Nave (2006), and explains it.

For very large values of λt, (47) implies that both the curvature and slope factors are non-
identified. The estimated λt’s attain their maximums in the period 1980 - 1982. More specifi-
cally, the maximum of both λUKFt and λEKFt is found at April 1981, with corresponding values
equal to 0.2799 and 0.3676, respectively. These values are nearly five to six times the value as
used in Diebold and Li (2006), indicating that the slope and curvature factor decay to zero at
a more rapid pace. Moreover, the peak of factor loading of the curvature factor is found near
the 6-month maturity. Due to the identification problem in this period, the slope and curvature
factor can not be differentiated from each other. This stems from the fact that the loadings for
both factors suggest a short-term factor interpretation as the short-term yields load heavily on
these factors, as shown in Figure 8. More specifically, the loadings are indicated as ‘Slope 3’
and ‘Curvature 3’. This explains why the estimated slope factor from both filtering methods
is able to accurately fit the data-based slope factor, but, the estimated curvature factor is not
able to do so for his data-based counterpart.

4.3 Out-of-Sample Analysis

I construct one-, six- and twelve-months ahead forecasts for yields at all maturities using a
recursive procedure. First, I fit the models from January 1970 to December 1984 and use the
parameter estimates to construct the forecasts for the different horizons; then, one month of
data is added, I re-estimate the models, and construct another set of forecasts. The largest
estimation sample for the one-month ahead forecasts ends in November 2009 (300 forecasts),
for the six-month horizon it ends in June 2009 (295 forecasts) and at a horizon of twelve months
it ends in December 2008 (289 forecasts). The optimal forecast of the τ -maturity yield made
at time t for time t+ h is equal to the conditional expectation

ŷt+h|t = E[yt+h|Ψt] = H(E[xt+h|Ψt]), (48)

where recursive iteration (and i.i.d. innovations) imply that the conditional h-month ahead
forecast of the state vector is given by

E[xt+h|Ψt] =

h−1∑
i=0

KiC +Khxt, (49)

where the matrices of parameters are defined as in the methodology section. In examining the
forecast performance, I am interested in two broad comparisons. First, to what extent do the
forecasts improve after implementing the extensions in the DNS model, and second, what is the
effect of a different filtering technique on the accuracy of the forecasts. I bring these questions
into sharper focus by using the root mean squared prediction error (RMSPE) defined as

RMSPE(h, τ) =

√
1

T

∑
t

[ŷt+h|t(τ)− yt+h(τ)]2, (50)
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Figure 9: Subsamples for the out-of-sample analysis. This figure shows five subsamples of
the yield on which the out-of-sample analysis is conducted. The subsamples cover the pe-
riods 1985:01-1989:12, 1990:01-1994:12, 1995:01-1999:12, 2000:01-2004:12 and 2005:01-2009:1,
respectively.

to compare the models. More specifically, I use the DNS model as the benchmark and report
the ratios of the RMSPE of the different models and the benchmark. By doing this, it is more
convenient to evaluate whether the extensions provide more accurate forecasts than the DNS. In
addition to the assessment over the full out-of-sample period, I evaluate the forecasting results
for five subsamples, similar to Exterkate et al. (2013), each covering a period of five years. More
specifically, the first subsample starts at January 1985 until December 1989, which contains the
interest rate increase from 1986 to 1989 by the Federal Reserve as a response to the increasing
inflation in the early 1980s. This restrictive monetary policy weakened the economic growth,
and in combination with a loss of consumer and business it was one of the determinants of
the following small recession in the early 1990s. The short recession started in July 1990 until
March 1991, and is contained in the second subsample (January 1990 until December 1994).
Even though the economic growth had returned in 1991, the unemployment rate kept rising
through June 1992. As a response to this, the Federal Reserve lowered the interest rates to
reduce this. In fact, the U.S. entered into its longest period (10 years) of economic expansion
after the early 1990s recession, in which employment growth attained values of approximately
22,5%. This period is part of the third subsample, which starts at January 1995 and lasts
through December 1999. Moreover, this period closely corresponds to the forecasting period
as considered by Diebold and Li (2006). The long economic expansion was fueled by the Dot
Com bubble, among others, and ended in the early 2000s due to the collapse of this bubble. In
contrary to the long period of economic growth, the recession was brief and lasted from March
2001 until November 2001. In addition to this short recession, the fourth subsample (January
2000 until December 2004) contains a rare type of yield curve at the end of 2001; the inverted
yield curve. This type of yield curve is often seen as a predictor of lower interest rates in the
future as bonds with long maturities are being demanded, sending the yields down. Finally,
the fifth subsample last from January 2005 until December 2009 containing the 2008-2009 crisis
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period. Moreover, as seen in Figure 9, the yields exhibit a lower volatility in the third subsample
as compared to the other subsamples. I find similar results for the periods in which the yields
are relatively highly volatile. Therefore, for the sake of brevity, I report only the results of the
most recent volatile period, i.e. the fifth subsample.

To asses whether the differences in the RMSPE are significant, the statistic of Diebold and
Mariano (1995) can be used. However, statistical issues may arise when the to be compared
pair of prediction models are nested (West, 2006). This is the case in the thesis as the DNS
model is nested in its extensions. Giacomini and White (2006) show that the Diebold-Mariano
test statistic is valid if and only if a rolling scheme with a finite observation window is used.
However, as I use a recursive scheme, I should consider other methods. Clark and McCracken
(2005) introduce an approach to cope with this, which is based on the bootstrap bias adjustment
of Kilian (1998). Similar to van Dijk et al. (2013), I use this bootstrap method to assess the
statistical significance of the differences in the RMSPE. The steps are as follows:

(1) I estimate the factors βt using the Kalman filter and then fit an AR(1) model to these,
using the bootstrap bias adjustment of Kilian (1998).v Furthermore, I store the residuals.

(2) Now, I create bootstrap samples of the factors by resampling the residuals with replace-
ments, again using Killian’s bootstrap bias adjustment. In addition, I resample from the
maturity-specific (or idiosyncratic) errors in the yields (as in equation (2)).

(3) For each bootstrap replication, I use the bootstrapped data to recursively estimate the re-
stricted (DNS) and unrestricted forecasting models (extensions of the DNS). Subsequently,
I compute the ratio of the recursive out-of-sample RMSPE using the several extensions of
the DNS relative to that from the DNS.

The ratios are effectively the Diebold-Mariano test statistics (I, however, use the RMSPE instead
of MSPE). I perform these steps for 500 bootstrap samples, giving the bootstrap approximation
to the null distribution of the Diebold-Mariano test statistic. Furthermore, the test is regarded
as a one-sided test. Similar to van Dijk et al. (2013), I expect the null distribution of the test
statistic to be centered a bit above unity, as the predictive performance of the other models
should be worse under the null hypothesis that the standard DNS is correctly specified.

Before I continue with the evaluation of the forecasts as obtained from the different models, I
first elaborate on the number of macro-factors that I include in the FADNS, SFADNS-EKF, and
SFADNS-UKF. After using the full sample to fit the FADNS for different numbers of macro-
factors, I compare the obtained information criteria to choose the appropriate amount of factors
to be included. Employing the same approach as Ludvigson and Ng (2009), I find that I should
include the first two factors in the mentioned models. Moreover, these two factors explain
roughly 69% of the variation in the panel for the full sample period, which is more or less of
the same magnitude of percentage of variation explained as in De Pooter et al. (2010). Adding
more factors worsens the in-sample fit, which may be the result of overfitting. However, keep in
mind that a good in-sample fit does not inevitably lead to a good out-of-sample performance.

Table 6 reports the ratios of the RMSPEs of the extensions of the DNS relative to the DNS for
out-of-sample forecasts at a horizon of one, six and twelve months for the full period. Similarly,
the ratios for the stable period (January 1995 until December 1999) and the period of relatively
high volatility (January 2005 until December 2009) are reported in Table 7 and 8, respectively.
I start with the evaluation of the one-month ahead forecasts. On average, the extensions of the

vFor more details and the exact procedure of the bootstrap bias adjustment, I refer to his paper.
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DNS provide slightly more accurate forecasts than the DNS for the short-end of the yield curve
when the full out-of-sample period is considered. In particular, the RMSPEs of the forecasts
of the three-months yield from all models are lower than that of the benchmark. The gain in
predictive accuracy ranges from 0.7% of the FADNS with two macro-factors to nearly 14% when
the SFADNS is used to construct forecasts. Moreover, only for this maturity the differences
are significant. In addition, for the really short-term yields, it holds that the accuracy of the
forecasts increases when more extensions are employed. Put differently, the RMSPE ratios of
the SFADNS for both filtering techniques are lower than that of the single extension models
(FADNS, DNS-GARCH and DNS-TVL) for these maturities.vi However, for the yields with
an intermediate maturity the results are the opposite i.e. the RMSPE ratios of the SFADNS
are higher. Furthermore, the forecasts of these intermediate-term yields from the extensions of
the DNS are less accurate than the standard DNS, but the degree of increase in the ratio is
little with a loss in predictive accuracy of 3.5% for the SFADNS for the three-years yield being
the maximum. For the long-end of the yield curve, the difference between the out-of-sample
performance of the standard DNS and its extensions is marginal.

Now, consider the subsample covering the period January 1995 until December 1999, the stable
period. For the short-end of the yield curve, the extended models are able to provide more
accurate forecasts than the DNS in 75% of the cases. Even though the gain in predictive accu-
racy of a single model over the DNS is not that high as for the full out-of-sample period, the
improvements are consistent and on average equal to 4% with nearly 10% being the maximal
drop in the RMSPE when the DNS-TVL-UKF is used to construct forecasts for this period
and these maturities. Similar to the findings for the full out-of-sample period, on average there
is only a negligible difference between the forecast accuracy of the DNS and its extensions for
the intermediate- and long-term yields. For the fifth subsample, the relatively highly volatile
period, the results are in favor of the extensions of the DNS. The RMSPE ratios are either
lower than one, indicating an outperformance over the DNS, or nearly equal to one with only a
few outliers. Moreover, the highest gain in predictive accuracy is found at the short-end of the
yield curve. In particular, the forecasts for the three-month yields of the considered extensions
dominate the forecasts of the standard DNS, with a drop in the RMSPE ranging from 2% for
the FADNS with two macro factors to almost 28% for the SFADNS. Only the forecasts for the
long-end of the yield curve from some models are significantly more accurate than those of the
DNS for both periods, as shown in the tables.

Overall, at a forecast horizon of one-month, the extensions of the DNS provide more accu-
rate forecasts than the DNS for the short-end of the yield curve, particularly for the period
January 2005 until December 2009. Moreover, for this period and maturities, nearly 81% of the
cases the forecasts from the DNS are dominated. For the intermediate- and long-term yields,
the forecasts provided by the DNS and its extensions do not deviate too much from each other
as the ratios are near 1. There are some exceptions, with a gain of predictive accuracy of nearly
5%, in case the DNS-TVL-EKF is used to construct the forecast of the 6-year yield in the
relatively highly volatile period.

The accuracy of the six-month ahead forecasts from the extensions of the DNS are relatively
worse than that from the DNS for all maturities when the full out-of-sample period is consid-
ered. Moreover, I find a loss in predictive accuracy of nearly 10% when SFADNS is used to
construct forecasts for the long-end of the yield curve. Contrariwise, the subsample results are
more positive. Considering the stable period, in 70% of the cases the extensions of the DNS are

viIn subsection 4.4, I analyze why this holds.
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able to provide more accurate six-month ahead forecasts of the short-term yield than the DNS
can. The drop of the RMSPE ranges from 0.7% for the SFADNS to roughly 6% for the DNS-
TVL-UKF. For yields with a longer maturity, only the FADNS with two macro-factors and the
DNS-GARCH perform more or less the same as the standard DNS at providing accurate six-
month ahead forecasts for this subsample. For the period January 2005 until December 2009,
I find that the percentage of cases for which the forecasts of the short-end of the yield curve
from the DNS are dominated by the forecasts from its extensions is roughly the same (67%)
to that for the first subsample period. However, for this period the gain in predictive accuracy
ranges from 0.9% for the FADNS with two macro-factors to 8% for the SFADNS. Moreover,
only the SFADNS is able to outperform the DNS for yields with an intermediate-maturity. For
the long-term yields, the DNS is unbeatable.

Summarizing, when the six-month forecast horizon is considered, the forecasts of the DNS
are more accurate than that of its extensions for the full out-of-sample period. However, for
the subsamples, the results are more promising. More specifically, the extensions of the DNS
outperform the DNS in terms of RMSPE ratios for the short-term yields, with only a few
models providing more accurate forecasts for yields with a longer maturity. In particular, this
statement holds for the FADNS with two macro-factors and the DNS-GARCH for the period
where the yields are relatively stable, as well as for the SFADNS when the yields are highly
volatile. However, none of these forecast are significantly more accurate than the forecasts from
the standard DNS.

For a forecast horizon of twelve months, I find that none of the models are able to provide
forecasts more accurate than those of DNS when the full out-of-sample period, and the volatile
periodsare considered. Remarkably, for the period in which the yield is quite stable, the DNS-
GARCH outperforms the DNS for ten out the seventeen maturities; attaining a gain in predictive
accuracy of 5% for the short-term yields. For the remaining maturities, the maximum increase
in the RMSPE relatively to the DNS is equal to approximately 4% for the yield at a maturity
of 10 years. However, the gain in predictive accuracy is not significant.

In general, irrespective of the forecast horizon, I find that it is quite hard to construct more
accurate forecasts than those obtained from the standard DNS, with 51% being the highest
percentage of obtaining a RMSPE ratio less than 1 at a forecast horizon of 1 month for the
period January 2005 until December 2009. Moreover, only the forecasts from some models for
the ends of the yield curve are more accurate than those from the DNS. In addition, the results
are highly sensitive to the period that is considered. For periods when the yield is stable, the
DNS-GARCH outperforms the DNS at forecasting remarkably well for all forecasting horizons.
This result corresponds to the finding Hautsch and Yang (2010), who incorporate stochastic
volatility via the transition equation instead. As a reason, they argue that the standard DNS
has a higher forecasting uncertainty for periods of low-volatility, which stems from the fact that
the ignored stochastic volatility and parameter uncertainty in periods of high-volatility spread
to periods when the yields are more stable. When the yields are relatively highly volatile, the
SFADNS performs extraordinary well as its forecasting accuracy dominates that of the DNS
for approximately eleven out of the seventeen maturities when a forecast horizon of one- and
six-months is considered. For the same volatile period at the twelve-months forecasting horizon,
however, there is no gain in predictive accuracy when an extension is considered. In addition, I
find no consistency regarding the increase (or decrease) of the RMSPE ratio when more flexibil-
ity is allowed in the model and observe that this is also highly sensitive to the chosen subsample
for the evaluation. To be more precise, only for the high volatility period the average RMSPE
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Panel A: 1-month ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
FADNS (2) 0.993 1.004 1.013 1.009 1.001 1.004 1.009 1.018 1.016 1.019 1.015 1.019 1.011 1.011 1.007 1.006 1.015
DNS-GARCH 0.924 0.995 1.020 1.017 1.006 1.004 1.004 1.009 1.010 1.013 1.012 1.014 1.009 1.006 1.001 0.999 1.004
DNS-TVL-EKF 0.894 0.991 1.021 1.020 1.007 1.009 1.013 1.021 1.019 1.020 1.006 1.011 0.998 1.008 1.004 1.004 1.002
DNS-TVL-UKF 0.889 0.997 1.030 1.027 1.009 1.012 1.017 1.027 1.027 1.030 1.015 1.023 1.009 1.012 1.004 1.005 1.003
SFADNS-EKF 0.861 0.981 1.029 1.025 1.000 1.007 1.017 1.033 1.031 1.035 1.020 1.034 1.016 1.027 1.018 1.014 1.018
SFADNS-UKF 0.865 0.990 1.038 1.035 1.008 1.015 1.026 1.044 1.040 1.045 1.022 1.034 1.011 1.018 1.006 1.005 1.010

Panel B: 6-months ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
FADNS (2) 1.011 1.017 1.022 1.020 1.016 1.019 1.023 1.029 1.030 1.033 1.033 1.037 1.034 1.035 1.031 1.031 1.040
DNS-GARCH 1.032 1.033 1.033 1.031 1.027 1.028 1.029 1.032 1.033 1.035 1.036 1.040 1.038 1.039 1.036 1.035 1.041
DNS-TVL-EKF 1.046 1.049 1.052 1.053 1.050 1.053 1.057 1.061 1.064 1.067 1.067 1.070 1.068 1.070 1.067 1.069 1.074
DNS-TVL-UKF 1.054 1.056 1.059 1.060 1.056 1.060 1.064 1.069 1.073 1.077 1.077 1.082 1.080 1.081 1.078 1.079 1.084
SFADNS-EKF 1.028 1.050 1.067 1.072 1.068 1.077 1.087 1.098 1.101 1.106 1.101 1.106 1.097 1.098 1.089 1.087 1.097
SFADNS-UKF 1.023 1.045 1.060 1.065 1.061 1.069 1.077 1.087 1.089 1.093 1.089 1.093 1.085 1.087 1.080 1.080 1.089

Panel C: 12-months ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
FADNS (2) 1.050 1.050 1.051 1.047 1.043 1.044 1.046 1.050 1.051 1.054 1.056 1.061 1.060 1.061 1.058 1.059 1.065
DNS-GARCH 1.044 1.043 1.044 1.043 1.041 1.043 1.045 1.049 1.052 1.056 1.060 1.066 1.066 1.068 1.066 1.066 1.071
DNS-TVL-EKF 1.056 1.059 1.064 1.067 1.067 1.072 1.078 1.085 1.090 1.096 1.101 1.106 1.106 1.105 1.102 1.101 1.104
DNS-TVL-UKF 1.063 1.066 1.072 1.074 1.074 1.080 1.086 1.093 1.099 1.106 1.112 1.118 1.118 1.117 1.114 1.113 1.115
SFADNS-EKF 1.072 1.087 1.101 1.107 1.108 1.117 1.127 1.138 1.145 1.153 1.157 1.162 1.156 1.154 1.146 1.143 1.147
SFADNS-UKF 1.067 1.080 1.091 1.095 1.095 1.102 1.110 1.119 1.124 1.130 1.132 1.136 1.131 1.130 1.123 1.122 1.126

Table 6: Root mean squared prediction errors (RMSPE) ratios. The table shows the relative RMSPE of the considered extensions of the
DNS against the standard DNS at a forecast horizon of one, six and twelve months. The results per forecast horizon are in Panel A, B and
C, respectively, with corresponding periods 1985:01-2009:12, 1985:06-2009:12, 1985:12-2009:12. The shades of the cells indicate the rank of
the model per maturity. The darker the shade, the better the model. Values in bold denote significance at the 5% level or less.
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Panel A: 1-month ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
FADNS (2) 1.027 1.024 1.023 0.995 0.973 0.981 0.988 1.001 0.999 1.002 1.000 1.012 1.004 0.999 0.992 0.994 1.007
DNS-GARCH 0.918 0.959 0.985 0.973 0.968 0.976 0.984 0.996 1.003 1.009 1.008 1.019 1.012 1.004 0.996 0.995 1.004
DNS-TVL-EKF 0.935 0.959 1.004 0.985 0.968 0.983 0.998 1.017 1.019 1.021 1.012 1.017 1.011 1.006 1.009 1.012 1.021
DNS-TVL-UKF 0.908 0.950 1.005 0.975 0.955 0.974 0.991 1.015 1.018 1.022 1.011 1.025 1.014 1.002 0.995 0.997 1.016
SFADNS-EKF 0.927 0.981 1.061 1.006 0.952 0.982 1.007 1.042 1.039 1.042 1.024 1.044 1.026 1.010 0.998 1.002 1.029
SFADNS-UKF 0.927 0.969 1.032 0.981 0.940 0.967 0.990 1.024 1.025 1.030 1.015 1.035 1.018 1.003 0.992 0.996 1.020

Panel B: 6-months ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
FADNS (2) 1.038 1.022 1.016 0.990 0.969 0.973 0.978 0.988 0.987 0.991 0.992 1.005 1.002 1.000 0.997 1.002 1.014
DNS-GARCH 0.955 0.962 0.970 0.967 0.964 0.972 0.979 0.989 0.994 1.000 1.004 1.014 1.013 1.010 1.007 1.010 1.019
DNS-TVL-EKF 0.943 0.961 0.983 0.986 0.982 0.996 1.007 1.022 1.029 1.035 1.036 1.046 1.044 1.041 1.040 1.045 1.056
DNS-TVL-UKF 0.939 0.959 0.984 0.984 0.979 0.995 1.007 1.024 1.031 1.037 1.039 1.050 1.047 1.042 1.040 1.045 1.059
SFADNS-EKF 0.993 1.012 1.047 1.024 0.997 1.019 1.036 1.059 1.063 1.067 1.060 1.074 1.064 1.055 1.049 1.054 1.073
SFADNS-UKF 1.005 1.002 1.020 0.998 0.975 0.992 1.007 1.028 1.033 1.040 1.038 1.054 1.047 1.042 1.038 1.045 1.063

Panel C: 12-months ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
FADNS (2) 1.097 1.071 1.056 1.021 0.994 0.994 0.996 1.004 1.003 1.007 1.010 1.025 1.024 1.023 1.022 1.029 1.045
DNS-GARCH 0.949 0.955 0.961 0.957 0.950 0.959 0.969 0.981 0.990 0.999 1.010 1.027 1.028 1.027 1.026 1.031 1.044
DNS-TVL-EKF 0.957 0.987 1.012 1.017 1.014 1.031 1.045 1.063 1.074 1.083 1.087 1.097 1.094 1.089 1.087 1.091 1.101
DNS-TVL-UKF 0.954 0.984 1.010 1.014 1.009 1.027 1.043 1.062 1.074 1.084 1.089 1.102 1.098 1.092 1.089 1.094 1.106
SFADNS-EKF 1.087 1.105 1.130 1.112 1.089 1.109 1.125 1.148 1.156 1.161 1.153 1.161 1.149 1.135 1.128 1.133 1.148
SFADNS-UKF 1.106 1.103 1.111 1.085 1.061 1.073 1.084 1.103 1.108 1.114 1.111 1.121 1.113 1.103 1.099 1.104 1.120

Table 7: Root mean squared prediction errors (RMSPE) ratios for the period 1995:01-1999:12. The table shows the relative RMSPE of the
considered extensions of the DNS against the standard DNS at a forecast horizon of one, six and twelve months. The results per forecast
horizon are in Panel A, B and C, respectively. The shades of the cells indicate the rank of the model per maturity. The darker the shade,
the better the model. Values in bold denote significance at the 5% level or less.
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Panel A: 1-month ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
FADNS (2) 0.980 0.981 0.993 1.001 1.006 1.010 1.013 1.017 1.019 1.020 1.016 1.017 1.014 1.011 1.006 1.004 1.003
DNS-GARCH 0.870 0.901 0.944 0.967 0.978 0.987 0.996 1.004 1.018 1.025 1.029 1.028 1.023 1.010 1.001 0.994 0.988
DNS-TVL-EKF 0.778 0.848 0.933 0.980 1.007 1.018 1.019 1.016 1.004 0.986 0.951 0.955 0.950 0.988 0.973 0.990 0.955
DNS-TVL-UKF 0.759 0.835 0.926 0.975 1.000 1.015 1.018 1.018 1.015 1.001 0.974 0.982 0.988 1.016 1.005 1.032 0.983
SFADNS-EKF 0.721 0.793 0.899 0.957 0.967 0.986 0.997 1.001 0.995 0.996 0.972 1.013 1.007 1.080 1.057 1.057 1.024
SFADNS-UKF 0.721 0.796 0.895 0.950 0.968 0.983 0.992 0.994 0.989 0.980 0.950 0.966 0.966 1.007 0.992 1.012 0.976

Panel B: 6-months ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
FADNS (2) 0.991 0.993 0.997 1.000 1.003 1.005 1.007 1.009 1.010 1.012 1.012 1.017 1.019 1.023 1.019 1.017 1.018
DNS-GARCH 0.980 0.986 0.991 0.995 1.000 1.003 1.007 1.010 1.015 1.019 1.023 1.027 1.028 1.028 1.024 1.022 1.016
DNS-TVL-EKF 0.980 0.995 1.005 1.012 1.017 1.019 1.021 1.022 1.023 1.026 1.029 1.046 1.065 1.093 1.111 1.139 1.173
DNS-TVL-UKF 0.983 0.998 1.008 1.016 1.022 1.025 1.029 1.031 1.036 1.041 1.051 1.075 1.100 1.135 1.157 1.189 1.225
SFADNS-EKF 0.921 0.941 0.956 0.966 0.972 0.976 0.981 0.985 0.987 0.992 0.996 1.021 1.040 1.073 1.083 1.101 1.128
SFADNS-UKF 0.916 0.937 0.951 0.959 0.963 0.966 0.969 0.971 0.973 0.976 0.981 1.005 1.027 1.059 1.075 1.098 1.129

Panel C: 12-months ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
FADNS (2) 1.046 1.043 1.041 1.040 1.038 1.037 1.037 1.037 1.035 1.036 1.036 1.042 1.045 1.050 1.049 1.048 1.047
DNS-GARCH 1.003 1.003 1.005 1.008 1.011 1.014 1.017 1.021 1.026 1.031 1.039 1.048 1.053 1.060 1.060 1.061 1.060
DNS-TVL-EKF 1.019 1.023 1.028 1.033 1.037 1.042 1.047 1.051 1.059 1.069 1.089 1.116 1.141 1.176 1.203 1.231 1.260
DNS-TVL-UKF 1.025 1.029 1.034 1.039 1.045 1.050 1.056 1.062 1.072 1.084 1.109 1.144 1.173 1.217 1.249 1.282 1.316
SFADNS-EKF 1.023 1.029 1.034 1.037 1.040 1.043 1.047 1.051 1.055 1.061 1.076 1.101 1.123 1.154 1.173 1.192 1.211
SFADNS-UKF 1.022 1.027 1.030 1.031 1.031 1.031 1.033 1.034 1.035 1.039 1.051 1.074 1.097 1.128 1.150 1.175 1.196

Table 8: Root mean squared prediction errors (RMSPE) ratios for the period 2005:01-2009:12. The table shows the relative RMSPE of the
considered extensions of the DNS against the standard DNS at a forecast horizon of one, six and twelve months. The results per forecast
horizon are in Panel A, B and C, respectively. The shades of the cells indicate the rank of the model per maturity. The darker the shade,
the better the model. Values in bold denote significance at the 5% level or less.
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ratio of the SFADNS decreases relatively to the FADNS with two macro factors, the DNS-
GARCH and the DNS-TVL, which is contrary to the findings for other subsamples. Moreover,
for these subsamples the RMSPE ratios of the SFADNS are either in between the minimum
and maximum of the RMSPE ratios of the latter three models or even higher.

Focusing on the difference between the effect of the filtering techniques on the forecasts, I
find that the DNS-TVL-EKF provides more accurate forecasts than the DNS-TVL-UKF when
the full out-of-sample period is considered, though the difference is marginal (on average 0.5%).
However, for periods of highly volatile yields the percentage of the difference between these two
filtering methods increases in favor of the DNS-TVL-EKF, ranging from 1% to 2%, depending on
the forecast horizon and irrespective of the maturity. Contrary, the forecasts of the yield when
the DNS-TVL-UKF is used are on average more accurate than those from the DNS-TVL-EKF
when the yields are relatively stable, in particular for both ends of the yield curve. Remark-
ably, for the the SFADNS, I find the reversal of the findings. That is, the RMSPE ratios for
the SFADNS-UKF are on average lower than those for the SFADNS-EKF, with improvements
reaching up to 4%. This finding is independent on the forecast horizon and subsample that is
considered. A notable exception is for the full-out-sample period at a forecast horizon of one
month where the forecasts from the SFADNS-EKF are more accurate.

4.4 Out-of-Sample Analysis: On Forecast Combinations

It has often been found that combining forecasts lead to additional gains in predictive accuracy
over the individual forecasting models. Introducing the SFADNS as a mixture of the other
models (FADNS, DNS-GARCH and DNS-TVL) is one way of combining the characteristics
with the aim of improving the forecasts. Another method is to consider the predicted yields
from these models and combine them using specific weights. Moreover, the forecasted yields
are constructed as

ŷct+h|t = w1
t+h|tŷ

FADNS
t+h|t + w2

t+h|tŷ
DNS−GARCH
t+h|t + w3

t+h|tŷ
DNS−TV L
t+h|t (51)

where the superscript of the forecasted yields denote the models in the combination, and wi

denote the weight that is used. In this thesis, I consider three weighting schemes. For the
first scheme I use equal weights to combine the forecasts as several authors, Timmermann
(2006) among others, find that simple combination schemes perform very well compared to
more sophisticated combination schemes. I refer to the forecast combinations in which I use the
equal weights scheme as EW-EKF and EW-UKF, depending on whether the DNS-TVL-EKF
or DNS-TVL-UKF is used for the combination. For the second and third schemes the weights
are varying over time and both dependent on the RMSPE. I use a rolling window of 2 years
to compute this. Now, let the evaluation period be 2 years prior to time t up to time t, the
forecast from model i at time t+ h then gets the weight

wit+h|t =
1/RMSPEit∑3
i=1 1/RMSPEit

, (52)

to construct the combined forecasts for time t + h. Moreover, RMSPEit denotes the RMSPE
of model i over the period 2 years prior to time t up until time t. Details on the different
schemes; in the second scheme I use the average RMSPE across the maturities in the rolling
window per model. While in the third scheme, I look at the RMSPE in the rolling window
per maturity. This means that the weights not only differ over time, but also differ across the
maturities. The reasoning behind the use of the latter scheme stems from the fact that I find a
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different best model per maturity when forecasting the term structure of interest rates. I refer
to the combined forecasts using scheme 2 as RMSPE-AVG-EKF and RMSPE-AVG-UKF, and
RMSPE-MAT-EKF and RMSPE-MAT-UKF when I use scheme 3.

Table 9 reports the ratios of the RMSPEs of both SFADNS and that of the combined fore-
casts using the various schemes relative to the DNS for out-of-sample forecasts at a horizon of
one, six and twelve months for the full period. Just as for the DNS and its considered exten-
sions, I examine the out-of-sample forecasting performance in the five subsamples. Again, I find
similar results for the periods in which the yields are relatively highly volatile. Hence, I report
only the results for the earlier mentioned subsamples for the sake of brevity. More specifically,
the ratios for the stable period (January 1995 until December 1999) and the period of relatively
high volatility (January 2005 until December 2009) are reported in Table 10 and 11, respectively.

I start with the evaluation of the one-month ahead forecasts. On average, the combined fore-
casts using the various weighting schemes are slightly more accurate than the standard DNS at
both ends of the yield curve for the full out-of-sample period. In particular, the gain in predic-
tive accuracy of the combined forecasts at the short-end of the yield curve ranges from 1,5%
of the equally weighted forecasts to nearly 11% when the maturity-specific weighting scheme is
used to combine the forecasts. Moreover, the combined forecasts are significantly more accurate
than those from the standard DNS model at a significance level of five percent. Furthermore,
for intermediate yields the difference between the out-of-sample performance of the standard
DNS and the combined forecasts is marginal. For the stable period, January 1995 until Decem-
ber 1999, the forecasts obtained after conducting the various weighting schemes are on average
more accurate than those from the DNS. Only at a maturity of three months I find the gain
in predictive accuracy to be significant. When the volatile period is considered, January 2005
until December 2009, I find a greater amount of combined forecasts to be significantly more
accurate, particularly for the short-end of the yield curve.

The accuracy of the six- and twelve-month ahead forecasts provided by the three weighting
schemes are relatively worse than those from the DNS for all maturities when the full out-of-
sample period is considered. For the subsamples, the results are more promising. Consider first
the relatively highly volatile period. Even though the DNS dominates the combined forecasts
at a forecast horizon of twelve months, gains in predictive accuracy of approximately 2% are
attained when six-month ahead forecasts are made for the short-end of the yield curve. The
results become better when the stable period is examined. Moreover, in nearly 42% of the cases
the six-month ahead forecasts from the DNS are dominated by the combined forecasts. This
holds in particular for the short- to intermediate-term yields. For the same yields, I find a gain
in predictive accuracy when the twelve-month ahead forecasts are combined over the forecasts
from the benchmark. However, for these forecasts horizons, none of the combination schemes
are able to provide significantly more accurate forecasts than the standard DNS.

Overall, at a forecast horizon of one-month, the considered combination schemes are able to
provide either forecasts with equal predictive accuracy relative to the standard DNS or fore-
casts that are more accurate. For a forecast horizon of six- and twelve-months, the results are
in general not that promising, with an exception for the stable period. Moreover, for this sub-
sample, I find the use of combinations schemes to be appealing for forecasting the short-end of
the yield curve. Comparing the different combination schemes with each other, I find that the
maturity-based combination scheme is able to provide, on average, more accurate forecasts than
the other two schemes for the short-end of the yield curve, at a forecast horizon of one-month
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Panel A: 1-month ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EW-EKF 0.917 0.985 1.013 1.010 1.001 1.003 1.006 1.012 1.012 1.013 1.007 1.010 1.004 1.003 0.997 0.996 0.995
EW-UKF 0.914 0.986 1.015 1.011 1.001 1.003 1.006 1.013 1.014 1.016 1.011 1.015 1.008 1.004 0.996 0.994 0.993
RMSPE-AVG-EKF 0.916 0.985 1.013 1.010 1.001 1.003 1.006 1.012 1.012 1.013 1.007 1.010 1.004 1.003 0.997 0.996 0.995
RMSPE-AVG-UKF 0.914 0.986 1.014 1.011 1.001 1.002 1.006 1.013 1.014 1.016 1.010 1.015 1.008 1.004 0.996 0.994 0.993
RMSPE-MAT-EKF 0.913 0.984 1.013 1.010 1.001 1.002 1.006 1.012 1.012 1.013 1.007 1.010 1.003 1.003 0.997 0.996 0.995
RMSPE-MAT-UKF 0.909 0.984 1.014 1.011 1.001 1.002 1.006 1.013 1.014 1.016 1.010 1.015 1.008 1.004 0.996 0.994 0.994
SFADNS-EKF 0.846 0.976 1.029 1.024 0.998 1.007 1.018 1.034 1.032 1.035 1.019 1.034 1.018 1.027 1.014 1.013 1.016
SFADNS-UKF 0.848 0.978 1.028 1.022 0.998 1.006 1.016 1.032 1.031 1.034 1.015 1.026 1.007 1.011 0.998 1.001 1.003

Panel B: 6-months ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EW-EKF 1.018 1.022 1.024 1.023 1.020 1.022 1.024 1.028 1.030 1.032 1.032 1.035 1.033 1.031 1.027 1.026 1.032
EW-UKF 1.020 1.024 1.026 1.025 1.022 1.024 1.026 1.031 1.032 1.035 1.035 1.039 1.037 1.035 1.031 1.030 1.036
RMSPE-AVG-EKF 1.018 1.022 1.024 1.023 1.020 1.022 1.024 1.028 1.029 1.032 1.031 1.035 1.032 1.031 1.027 1.026 1.032
RMSPE-AVG-UKF 1.020 1.024 1.026 1.025 1.021 1.023 1.026 1.030 1.032 1.035 1.035 1.039 1.037 1.035 1.030 1.030 1.035
RMSPE-MAT-EKF 1.018 1.022 1.024 1.023 1.020 1.022 1.024 1.028 1.029 1.032 1.031 1.035 1.032 1.031 1.027 1.026 1.031
RMSPE-MAT-UKF 1.020 1.024 1.026 1.025 1.021 1.023 1.026 1.030 1.032 1.035 1.035 1.039 1.036 1.035 1.030 1.029 1.035
SFADNS-EKF 1.018 1.037 1.051 1.055 1.050 1.057 1.066 1.077 1.079 1.083 1.078 1.083 1.074 1.073 1.063 1.062 1.074
SFADNS-UKF 1.013 1.029 1.039 1.040 1.034 1.039 1.046 1.055 1.056 1.060 1.056 1.062 1.056 1.057 1.051 1.052 1.064

Panel C: 12-months ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EW-EKF 1.038 1.039 1.041 1.041 1.039 1.041 1.044 1.049 1.052 1.056 1.060 1.066 1.066 1.066 1.062 1.063 1.069
EW-UKF 1.040 1.041 1.044 1.043 1.041 1.044 1.047 1.052 1.055 1.060 1.064 1.071 1.071 1.071 1.067 1.068 1.074
RMSPE-AVG-EKF 1.038 1.039 1.041 1.041 1.039 1.041 1.044 1.049 1.052 1.056 1.060 1.066 1.065 1.065 1.062 1.062 1.068
RMSPE-AVG-UKF 1.040 1.041 1.043 1.043 1.041 1.043 1.047 1.052 1.055 1.060 1.064 1.070 1.070 1.070 1.067 1.067 1.074
RMSPE-MAT-EKF 1.038 1.039 1.041 1.040 1.039 1.041 1.044 1.049 1.052 1.056 1.060 1.066 1.065 1.065 1.062 1.062 1.068
RMSPE-MAT-UKF 1.040 1.041 1.043 1.043 1.041 1.043 1.047 1.052 1.055 1.059 1.064 1.070 1.070 1.070 1.066 1.067 1.073
SFADNS-EKF 1.066 1.077 1.089 1.092 1.091 1.099 1.108 1.119 1.124 1.132 1.135 1.142 1.137 1.136 1.128 1.127 1.135
SFADNS-UKF 1.061 1.068 1.075 1.075 1.072 1.077 1.083 1.091 1.095 1.100 1.102 1.109 1.106 1.106 1.101 1.102 1.110

Table 9: Root mean squared prediction errors (RMSPE) ratios. The table shows the relative RMSPE of the combined forecasts using various
weighting schemes against the standard DNS at a forecast horizon of one, six and twelve months. The results per forecast horizon are in Panel
A, B and C, respectively, with corresponding periods 1987:01-2009:12, 1987:06-2009:12, 1987:12-2009:12. The shades of the cells indicate the
rank of the model per maturity. The darker the shade, the better the model. Values in bold denote significance at the 5% level or less.
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Panel A: 1-month ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EW-EKF 0.938 0.974 1.001 0.982 0.968 0.978 0.989 1.004 1.006 1.010 1.006 1.016 1.009 1.002 0.998 0.999 1.008
EW-UKF 0.931 0.971 1.001 0.978 0.963 0.975 0.986 1.002 1.006 1.010 1.006 1.018 1.010 1.001 0.994 0.995 1.007
RMSPE-AVG-EKF 0.938 0.974 1.001 0.982 0.968 0.978 0.989 1.004 1.006 1.010 1.006 1.016 1.009 1.002 0.998 0.999 1.008
RMSPE-AVG-UKF 0.931 0.971 1.001 0.978 0.963 0.975 0.986 1.003 1.006 1.010 1.006 1.018 1.010 1.001 0.994 0.995 1.008
RMSPE-MAT-EKF 0.936 0.973 1.001 0.982 0.968 0.978 0.989 1.004 1.006 1.010 1.006 1.016 1.009 1.002 0.998 0.999 1.009
RMSPE-MAT-UKF 0.929 0.970 1.001 0.978 0.963 0.975 0.986 1.003 1.006 1.010 1.006 1.018 1.010 1.001 0.994 0.995 1.008
SFADNS-EKF 0.927 0.981 1.061 1.006 0.952 0.982 1.007 1.042 1.039 1.042 1.024 1.044 1.026 1.010 0.998 1.002 1.029
SFADNS-UKF 0.927 0.969 1.032 0.981 0.940 0.967 0.990 1.024 1.025 1.030 1.015 1.035 1.018 1.003 0.992 0.996 1.020

Panel B: 6-months ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EW-EKF 0.974 0.979 0.988 0.979 0.969 0.978 0.986 0.998 1.002 1.007 1.010 1.021 1.019 1.016 1.014 1.018 1.029
EW-UKF 0.973 0.979 0.987 0.978 0.968 0.978 0.986 0.998 1.002 1.008 1.011 1.022 1.020 1.017 1.014 1.018 1.030
RMSPE-AVG-EKF 0.974 0.979 0.987 0.979 0.969 0.978 0.986 0.998 1.002 1.007 1.010 1.021 1.019 1.016 1.014 1.018 1.029
RMSPE-AVG-UKF 0.973 0.979 0.987 0.978 0.968 0.978 0.986 0.998 1.002 1.008 1.010 1.022 1.020 1.017 1.014 1.018 1.030
RMSPE-MAT-EKF 0.972 0.979 0.987 0.979 0.969 0.978 0.986 0.998 1.002 1.007 1.010 1.021 1.019 1.016 1.014 1.018 1.029
RMSPE-MAT-UKF 0.972 0.978 0.987 0.978 0.968 0.978 0.986 0.998 1.002 1.007 1.010 1.022 1.020 1.017 1.014 1.018 1.030
SFADNS-EKF 0.993 1.012 1.047 1.024 0.997 1.019 1.036 1.059 1.063 1.067 1.060 1.074 1.064 1.055 1.049 1.054 1.073
SFADNS-UKF 1.005 1.002 1.020 0.998 0.975 0.992 1.007 1.028 1.033 1.040 1.038 1.054 1.047 1.042 1.038 1.045 1.063

Panel C: 12-months ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EW-EKF 0.997 1.001 1.007 0.996 0.983 0.992 1.001 1.014 1.020 1.028 1.034 1.049 1.048 1.045 1.044 1.050 1.062
EW-UKF 0.997 1.000 1.006 0.994 0.981 0.991 1.000 1.013 1.020 1.028 1.035 1.050 1.049 1.046 1.045 1.051 1.064
RMSPE-AVG-EKF 0.998 1.001 1.007 0.996 0.983 0.992 1.001 1.014 1.020 1.028 1.034 1.049 1.048 1.045 1.044 1.049 1.062
RMSPE-AVG-UKF 0.997 1.000 1.006 0.994 0.981 0.991 1.000 1.013 1.020 1.028 1.034 1.050 1.049 1.046 1.045 1.051 1.064
RMSPE-MAT-EKF 0.997 1.001 1.007 0.996 0.983 0.992 1.001 1.013 1.020 1.027 1.033 1.048 1.047 1.045 1.044 1.049 1.062
RMSPE-MAT-UKF 0.996 1.000 1.006 0.995 0.981 0.990 0.999 1.013 1.019 1.027 1.034 1.049 1.049 1.046 1.045 1.051 1.064
SFADNS-EKF 1.087 1.105 1.130 1.112 1.089 1.109 1.125 1.148 1.156 1.161 1.153 1.161 1.149 1.135 1.128 1.133 1.148
SFADNS-UKF 1.106 1.103 1.111 1.085 1.061 1.073 1.084 1.103 1.108 1.114 1.111 1.121 1.113 1.103 1.099 1.104 1.120

Table 10: Root mean squared prediction errors (RMSPE) ratios for the period 1995:01-1999:12. The table shows the relative RMSPE of
the combined forecasts using various weighting schemes against the standard DNS at a forecast horizon of one, six and twelve months. The
results per forecast horizon are in Panel A, B and C, respectively. The shades of the cells indicate the rank of the model per maturity. The
darker the shade, the better the model. Values in bold denote significance at the 5% level or less.
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Panel A: 1-month ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EW-EKF 0.872 0.905 0.953 0.981 0.995 1.004 1.009 1.012 1.013 1.008 0.995 0.994 0.991 0.996 0.986 0.983 0.960
EW-UKF 0.865 0.900 0.950 0.978 0.992 1.002 1.008 1.012 1.016 1.014 1.004 1.005 1.004 1.004 0.991 0.988 0.956
RMSPE-AVG-EKF 0.871 0.904 0.953 0.981 0.995 1.004 1.009 1.012 1.013 1.008 0.995 0.993 0.991 0.996 0.986 0.983 0.959
RMSPE-AVG-UKF 0.865 0.899 0.950 0.978 0.992 1.002 1.008 1.012 1.016 1.014 1.004 1.005 1.004 1.004 0.991 0.988 0.955
RMSPE-MAT-EKF 0.865 0.902 0.953 0.981 0.995 1.004 1.008 1.012 1.013 1.008 0.995 0.993 0.991 0.996 0.986 0.984 0.961
RMSPE-MAT-UKF 0.857 0.896 0.949 0.978 0.992 1.002 1.008 1.012 1.016 1.014 1.004 1.004 1.004 1.004 0.992 0.988 0.958
SFADNS-EKF 0.721 0.793 0.899 0.957 0.967 0.986 0.997 1.001 0.995 0.996 0.972 1.013 1.007 1.080 1.057 1.057 1.024
SFADNS-UKF 0.721 0.796 0.895 0.950 0.968 0.983 0.992 0.994 0.989 0.980 0.950 0.966 0.966 1.007 0.992 1.012 0.976

Panel B: 6-months ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EW-EKF 0.982 0.989 0.996 1.001 1.005 1.008 1.010 1.012 1.015 1.018 1.020 1.028 1.035 1.042 1.043 1.045 1.045
EW-UKF 0.983 0.991 0.997 1.002 1.007 1.010 1.013 1.015 1.019 1.023 1.028 1.037 1.046 1.055 1.056 1.060 1.060
RMSPE-AVG-EKF 0.982 0.989 0.996 1.001 1.005 1.008 1.010 1.012 1.015 1.018 1.020 1.028 1.034 1.042 1.042 1.045 1.045
RMSPE-AVG-UKF 0.983 0.990 0.997 1.002 1.006 1.010 1.013 1.015 1.019 1.023 1.027 1.037 1.045 1.054 1.055 1.059 1.059
RMSPE-MAT-EKF 0.982 0.990 0.996 1.001 1.005 1.008 1.010 1.012 1.015 1.018 1.020 1.028 1.034 1.041 1.042 1.043 1.043
RMSPE-MAT-UKF 0.983 0.991 0.997 1.002 1.007 1.010 1.013 1.015 1.019 1.023 1.027 1.037 1.045 1.053 1.053 1.056 1.055
SFADNS-EKF 0.921 0.941 0.956 0.966 0.972 0.976 0.981 0.985 0.987 0.992 0.996 1.021 1.040 1.073 1.083 1.101 1.128
SFADNS-UKF 0.916 0.937 0.951 0.959 0.963 0.966 0.969 0.971 0.973 0.976 0.981 1.005 1.027 1.059 1.075 1.098 1.129

Panel C: 12-months ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EW-EKF 1.020 1.020 1.022 1.025 1.027 1.029 1.032 1.034 1.038 1.043 1.053 1.066 1.076 1.090 1.097 1.104 1.108
EW-UKF 1.022 1.022 1.024 1.027 1.029 1.032 1.035 1.038 1.043 1.048 1.059 1.075 1.087 1.103 1.111 1.120 1.125
RMSPE-AVG-EKF 1.020 1.021 1.023 1.025 1.027 1.029 1.032 1.034 1.038 1.043 1.052 1.065 1.076 1.089 1.096 1.102 1.106
RMSPE-AVG-UKF 1.022 1.023 1.025 1.027 1.029 1.032 1.035 1.038 1.042 1.048 1.059 1.074 1.085 1.101 1.109 1.117 1.122
RMSPE-MAT-EKF 1.021 1.021 1.023 1.025 1.027 1.029 1.032 1.034 1.038 1.043 1.052 1.065 1.075 1.088 1.094 1.099 1.101
RMSPE-MAT-UKF 1.023 1.023 1.025 1.027 1.029 1.032 1.035 1.038 1.042 1.048 1.058 1.073 1.084 1.099 1.106 1.112 1.115
SFADNS-EKF 1.023 1.029 1.034 1.037 1.040 1.043 1.047 1.051 1.055 1.061 1.076 1.101 1.123 1.154 1.173 1.192 1.211
SFADNS-UKF 1.022 1.027 1.030 1.031 1.031 1.031 1.033 1.034 1.035 1.039 1.051 1.074 1.097 1.128 1.150 1.175 1.196

Table 11: Root mean squared prediction errors (RMSPE) ratios for the period 2005:01-2009:12. The table shows the relative RMSPE of
the combined forecasts using various weighting schemes against the standard DNS at a forecast horizon of one, six and twelve months. The
results per forecast horizon are in Panel A, B and C, respectively. The shades of the cells indicate the rank of the model per maturity. The
darker the shade, the better the model. Values in bold denote significance at the 5% level or less.
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and irrespective of the subsample that is considered. For six-month ahead forecasts, this holds
only when the stable period is considered. The contrary is found when the relatively highly
volatile period is examined. For the other cases, the difference between the weighting schemes is
marginal. At the same time, the various schemes can be compared to the SFADNS. In general, I
find that the combined forecasts dominate the forecasts from the SFADNS in terms of RMSPE
ratios, irrespective of the forecast horizon. A notable exception is the period January 2005 until
December 2009 at a monthly and semiannually forecast horizon. For this case, the SFADNS
provides remarkably more accurate forecasts then the combined forecasts. Stemming from the
fact that the macro-factors contain valuable information for the loading parameter, which may
result in a better fit. Moreover, this is the only property not included in the combined forecasts.

The results from the various weighting schemes can be used to further emphasize the difference
between the EKF and the UKF in an out-of-sample setting. Based purely on the results reported
in Tables 9, 10 and 11, I find the difference in the RMSPE ratios to be marginal. Therefore, I
analyze the details of the weighting schemes. More specifically, I compare the relative number
of times that a model gets the largest weight, during the forecasting period and per maturity,
which is showed in Figure 10. As the only difference is the filtering technique that is used for
the DNS with time-varying loading, a comparison between the techniques can be made based
on the subfigures.

At the monthly forecast horizon, I observe that the DNS-TVL-UKF is often chosen to be the
best model (in terms of RMSPE) for both ends of the yield curve. Interestingly, this observa-
tions corresponds to the finding for the in-sample framework. This makes sense as the forecast
horizon is short. For the semi- and annually forecast horizon, the DNS-TVL-EKF appears to
obtain rank 1 more often.

4.5 Out-of-Sample Analysis: Robustness Check

In this subsection, I describe the check for robustness of the main empirical results. More
specifically, I focus on the choice of the amount of factors to be included in the FADNS and
another weighting scheme based on the RMSPE. To preserve space I report the RMSPE ration
in Appendix D and E.

4.5.1 Number of Included Macro-Factors

I consider the forecasts of the yields for the different forecasting horizons and subsamples for
various choices of p. Tables 16, 17 and 18 report the RMSPE ratios for this robustness check.
The evaluation of the forecasts made in the full out-of-sample period show that including four
macro-factors in the FADNS results in a RMSPE ratio which is on average the lowest among
those of the considered number of macro-factors. Moreover, for the short-end of the yield
curve the FADNS with four macro-factors provides more accurate forecasts than the DNS at a
forecast horizon of one- and six-months. Similar results are found for the January 2005 until
December 2009, in which the yields are highly volatile. When the yields are relatively stable,
the difference between the results of using two macro-factors in the FADNS and using either
one or three macro-factors in the model is marginal. Although, the FADNS with one macro-
factor slightly outperforms the others. Moreover, the latter model is in general able to beat the
DNS at forecasting the yield for various maturities, irrespective of the forecast horizon that is
considered. The gain in predictive accuracy rises to a maximum of 6%.
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(a) EKF, h = 1 (b) UKF, h = 1

(c) EKF, h = 6 (d) UKF, h = 6

(e) EKF, h = 12 (f) UKF, h = 12

Figure 10: Relative number of times that the model gets a rank equal to 1 per maturity. This
figure shows how often the DNS-TVL-EKF (or UKF), the DNS-GARCH or the FADNS with
two macro factors is considered to be the relatively best forecasting model in terms of RMSPE
(using a window of two years prior to the calculation of it), during the predictive period and
per maturity. The best model then gets a rank 1 in the maturity-specific weighting scheme.
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4.5.2 Rank-Based Combination Scheme

As the RMSPEs of the FADNS, the DNS-GARCH and the DNS-TVL are nearly equal to
each other, the RMSPE-based weighting scheme is almost the same as the equal weighted
combination scheme. To really differentiate the weights in the combination, one could opt for
giving larger weights to the best model. Aiolfi and Timmermann (2006) do this by introducing a
ranks in the combination scheme based on the RMSPE. Similar to them, I use a rolling window
of 2 years to rank the models based on this statistical evaluation criterion. The best model gets
a rank of 1, the second best a rank of 2, and the relative worst model gets a rank of 3. Now,
let the evaluation period be 2 years prior to time t up to time t, the forecast from model i at
time t+ h then gets the weight

wit+h|t =
1/Rankit∑3
i=1 1/Rankit

, (53)

to construct the combined forecasts for time t+ h. Moreover, Rankit denotes the rank of model
i according to the RMSPE over the period 2 years prior to time t up until time t. Details on
the different schemes; in the second scheme I look at the average RMSPE across the maturities
in the rolling window per model, and rank the models according this average. While in the
third scheme, I look at the RMSPE in the rolling window per maturity, and rank the models
according to this. This means that the weights not only differ over time, but also differ across
the maturities. The results are shown in Tables 19, 20 and 21. By comparing the rank-based
combination scheme against the RMSPE-based combination scheme, I find that the rank-based
combination scheme provides slightly more accurate forecasts, but the differences are marginal.

5 Conclusion

This study examines the out-of-sample forecast performance of various extensions in the Nelson-
Siegel framework relative to the dynamic Nelson-Siegel (DNS) model. More specifically, I con-
sider the factor augmented dynamic Nelson-Siegel (FADNS) model by Diebold et al. (2006),
the GARCH extension of the DNS (DNS-GARCH) and the DNS with time-varying loadings
(DNS-TVL), which are both introduced by Koopman et al. (2010). Additionally, I introduce
the stochastic factor augmented DNS (SFADNS), which combines the characteristics of the
mentioned DNS extensions.

By evaluating the RMSPE ratios of these models, I find that it is generally not easy to improve
upon forecasts made by the standard DNS for the full out-of-sample period (January 1985 until
December 2009), although gains in the predictive accuracy up to 14% can still be attained in
several cases. The results are more promising when different subsamples are considered. When
there is little volatility in yields, as in the period January 1995 until December 1999, the drop in
the RMSPE reaches up to 10%. On the other hand, when volatility is relatively high, as in the
period January 2005 until December 2009, gains of nearly 28% are attainable. Hence, the gains
are highly sensitive to the period that is considered. Moreover, for stable periods and short- to
intermediate-term yields, the DNS-GARCH is preferred over the DNS for all forecast horizons.
This result corresponds to the finding Hautsch and Yang (2010), who incorporate stochastic
volatility via the transition equation instead. As a reason, they argue that the standard DNS
has a higher forecasting uncertainty for periods of low-volatility, which stems from the fact that
the ignored stochastic volatility and parameter uncertainty in periods of high-volatility spread
to periods when the yields are more stable.On the other hand, in case of relatively highly
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volatile yields, the SFADNS should be chosen as its out-of-sample forecast performance dom-
inates that of the DNS at a forecast horizon of one and six months. When accurate forecasts
for the long-end of the yield curve should be made the DNS is in general the most reliable model.

To understand why the SFADNS is able to attain such values, I focus on forecast combina-
tions as well. Using three weighting schemes (equal weights, time-varying weights based on
the cross-sectional average of the RMSPE, and maturity-specific time-varying weights) I find
that the combining forecasts leads to additional gains in predictive accuracy, particularly for
stable periods. Moreover, on average, the maturity-specific weighting scheme provides more
accurate forecasts than the other two schemes for the short-end of the yield curve. However,
the combined forecasts are dominated by the forecasts from the SFADNS in periods where the
yields are relatively highly volatile. A possible explanation is that the macro-factors contain
valuable information for the loading parameter in such periods (this is the only property that
the combined forecasts do not exhibit).

The results show that the relative forecasting performance of the different models vary across
the yield curve. Particularly, the forecasts from the extensions for the short-end of the yield
curve perform remarkably well, dominating the forecasts from the DNS in up to 81% of the
cases. For yields with an intermediate maturity, the standard DNS is sufficient for forecasting.
In fact, there are only a few cases for which the extensions of the DNS provide more accurate
forecasts of the intermediate-term yields.

There has been, to my knowledge, no comparison between two estimation techniques for nonlin-
ear Gaussian state-space models, the extended Kalman filter (EKF) and the unscented Kalman
filter (UKF), in the context of nonlinear Nelson-Siegel models. Therefore, my main contribution
to the large strand of research on the Nelson-Siegel models is the examination of the differences
between the filtering techniques. By evaluating the in-sample fit, I find that the estimates of the
EKF are dominated by those of the UKF for both ends of the yield curve; observing a decrease
in the mean of the filtered error of approximately 96%. On the other hand, for intermediate-
term yields the EKF is preferred. A possible explanation for this is the inability of the extended
Kalman filter to accurately approximate the curvature factor. In the out-of-sample framework,
the results are contrasting. Moreover, I find that the forecasts from the EKF are generally more
accurate than those from the UKF when the DNS-TVL is used. However, when I allow for more
flexibility in the model, by considering the SFADNS, I find the converse with gains reaching up
to 4% when the UKF is used. The contrasting results may stem from the fact that the EKF is
not able to provide more accurate estimates and forecasts than those from the UKF when the
number of latent factors and unknown parameters increase. A more in-depth analysis regarding
the filtering techniques has been conducted in the forecast combination part. By using the
ranking system of the maturity-specific weighting scheme, I find that the DNS-TVL-UKF is
chosen more often to be the best model in terms of RMSPE for monthly forecasting both ends
of the yield curve. For other cases, the DNS-TVL-UKF is dominated by the DNS-TVL-EKF.

To conclude, I find that there is no best Nelson-Siegel model in the forecasting framework.
The results imply that the practitioner should take into account the circumstances of the cur-
rent yield (stable or relatively volatile), and the maturity for which the yield is forecasted.
Furthermore, the findings indicate that the use of the UKF over the EKF for fitting nonlinear
Nelson-Siegel models is beneficial for both ends of the yield curve and could have a positive
impact on the accuracy in the predictive framework in some cases.
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6 Further Research

The findings presented in this thesis offer several directions for further research. I discuss six
suggestions I find particularly interesting. First, PCA is commonly used to extract factors from a
set of variables. However, it fails to take the prediction objective into account when constructing
factors as argued by Heij et al. (2007). As an alternative, they propose principal covariate
regression (PCovR) as a solution to this. Furthermore, other factor extraction techniques, e.g.
partial least squares, can be considered as well. This is similar to the study of Exterkate et al.
(2013), but conducted on a monthly updated dataset, which is easily accessible. Second, other
specifications of the GARCH model can be considered. For example the threshold GARCH could
be used, which accounts for the asymmetry in the financial markets. Also worth mentioning,
is the exponential GARCH, for which no restrictions are needed to ensure that the volatility is
positive and stationary. Third, the idea of allowing the loading parameter λt to be time-varying
could also be applied to the dynamic Nelson-Siegel-Svensson (DNSS) model (Svensson, 1995).
This model extends the DNS with a second curvature factor such that the Svensson extension
often fits better than the DNS at long maturities. The DNSS could then be adjusted by allowing
the loading parameter to vary over time, while keeping it fixed for one of the curvature factors
(to avoid identification issues). This should lead to an improved fit over the DNS-TVL as the
DNSS is able to fit more maturities in the cross-section. Fourth, another interesting paths for
further research is the inclusion of stochastic volatility and a time-varying loading parameter
in the DNS with shifting endpoints, as introduced by van Dijk et al. (2013). Fifth, allowing
the loading parameter to vary over time is one way of incorporating nonlinearities in the DNS
model. Another method is to include nonlinear regime-switching yield factor dynamics in the
model, in the tradition of Hamilton (1989). For these type of models, the difference between
the EKF and the UKF can be examined. Finally, in this thesis I did not consider the relaxation
of the assumption of Gaussian distributed shocks. For example, Mesters and Koopman (2014)
show that the accuracy for the factor estimates greatly improves when the errors are assumed
to be Student’s t distributed. Additionally, when the model is nonlinear and non-Gaussian
different estimation techniques, such as the interesting particle filter, should be used.
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A The Unconditional Covariance Matrix of the State Vector

In order to solve V = KVK ′ + Σw for V I follow the approach of Christensen and van der
Wel (2010). First, I rewrite the equation such that I obtain the unconditional covariance matrix
at one side of the equal sign. This results in V −KVK ′ = Σw. Subsequently, I apply the
vectorization operator to both side of the equation, giving

vec(V )− vec(KVK ′) = vec(Σw),

which can be rewritten as

Idim2vec(V )− (K ⊗K)vec(V ) =[
Idim2 − (K ⊗K)

]
vec(V ) = vec(Σw),

where dim2 is the squared dimension of the state vector. Now, the above can be solved for V ,
which result in the following

vec(V ) =
[
Idim2 − (K ⊗K)

]−1
vec(Σw).
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B The Macroeconomic Dataset

Panel A: Output and income

No. Transformation Variable

1 5 Real Personal Income
2 5 Real personal income ex transfer receipts
3 5 IP Index
4 5 IP: Final Products and Nonindustrial Supplies
5 5 IP: Final Products (Market Group)
6 5 IP: Consumer Goods
7 5 IP: Durable Consumer Goods
8 5 IP: Nondurable Consumer Goods
9 5 IP: Business Equipment

10 5 IP: Materials
11 5 IP: Durable Materials
12 5 IP: Nondurable Materials
13 5 IP: Manufacturing (SIC)
14 5 IP: Residential Utilities
15 5 IP: Fuels
16 1 ISM Manufacturing: Production Index
17 2 Capacity Utilization: Manufacturing

Table 12: The macroeconomic dataset. The table lists the individual macro series of the dataset
that are used to contruct macro factors. The series are categorized in 8 groups: (A) output
and income. The transformations applied to original series are coded by the FRED as: (1) no
transformation (levels are used); (2) ∆xt (the difference); (3) ∆2xt (the squared differences); (4)
log(xt) (logarithm of series); (5) ∆ log(xt) (difference of the logarithm of series); (6) ∆2 log(xt)
(squared difference of the logarithm of series); (7) ∆(xt/xt−1 − 1) (difference of the growth).
The description of the remaining groups are down below.
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Panel B: Labor market

No. Transformation Variable

18 2 Help-Wanted Index for United States
19 2 Ratio of Help Wanted/No. Unemployed
20 5 Civilian Labor Force
21 5 Civilian Employment
22 2 Civilian Unemployment Rate
23 2 Average Duration of Unemployment (Weeks)
24 5 Civilians Unemployed - Less Than 5 Weeks
25 5 Civilians Unemployed for 5-14 Weeks
26 5 Civilians Unemployed - 15 Weeks & Over
27 5 Civilians Unemployed for 15-26 Weeks
28 5 Civilians Unemployed for 27 Weeks and Over
29 5 Initial Claims
30 5 All Employees: Total nonfarm
31 5 All Employees: Goods-Producing Industries
32 5 All Employees: Mining and Logging: Mining
33 5 All Employees: Construction
34 5 All Employees: Manufacturing
35 5 All Employees: Durable goods
36 5 All Employees: Nondurable goods
37 5 All Employees: Service-Providing Industries
38 5 All Employees: Trade, Transportation & Utilities
39 5 All Employees: Wholesale Trade
40 5 All Employees: Retail Trade
41 5 All Employees: Financial Activities
42 5 All Employees: Government
43 1 Avg Weekly Hours : Goods-Producing
44 2 Avg Weekly Overtime Hours : Manufacturing
45 1 Avg Weekly Hours : Manufacturing
46 1 ISM Manufacturing: Employment Index
47 6 Avg Hourly Earnings : Goods-Producing
48 6 Avg Hourly Earnings : Construction
49 6 Avg Hourly Earnings : Manufacturing

Panel C: Housing

No. Transformation Variable

50 4 Housing Starts: Total New Privately Owned
51 4 Housing Starts, Northeast
52 4 Housing Starts, Midwest
53 4 Housing Starts, South
54 4 Housing Starts, West
55 4 New Private Housing Permits (SAAR)
56 4 New Private Housing Permits, Northeast (SAAR)
57 4 New Private Housing Permits, Midwest (SAAR)
58 4 New Private Housing Permits, South (SAAR)
59 4 New Private Housing Permits, West (SAAR)

Table 13: The macroeconomic dataset (continued).
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Panel D: Consumption, orders, and inventories

No. Transformation Variable

60 5 Real personal consumption expenditures
61 5 Real Manu. and Trade Industries Sales
62 5 Retail and Food Services Sales
63 1 ISM : PMI Composite Index
64 1 ISM : New Orders Index
65 1 ISM : Supplier Deliveries Index
66 1 ISM : Inventories Index
67 5 New Orders for Consumer Goods
68 5 New Orders for Durable Goods
69 5 New Orders for Nondefense Capital Goods
70 5 Unlled Orders for Durable Goods
71 5 Total Business Inventories
72 2 Total Business: Inventories to Sales Ratio
73 2 Consumer Sentiment Index

Panel E: Money and credit

No. Transformation Variable

74 6 M1 Money Stock
75 6 M2 Money Stock
76 5 Real M2 Money Stock
77 6 St. Louis Adjusted Monetary Base
78 6 Total Reserves of Depository Institutions
79 7 Reserves Of Depository Institutions
80 6 Commercial and Industrial Loans
81 6 Real Estate Loans at All Commercial Banks
82 6 Total Nonrevolving Credit
83 2 Nonrevolving consumer credit to Personal Income
84 6 MZM Money Stock
85 6 Consumer Motor Vehicle Loans Outstanding
86 6 Total Consumer Loans and Leases Outstanding
87 6 Securities in Bank Credit at All Commercial Banks

Table 14: The macroeconomic dataset (continued).
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Panel F: Interest and exchange rates

No. Transformation Variable

88 2 Effective Federal Funds Rate
89 2 3-Month AA Financial Commercial Paper Rate
90 2 3-Month Treasury Bill:
91 2 6-Month Treasury Bill:
92 2 1-Year Treasury Rate
93 2 5-Year Treasury Rate
94 2 10-Year Treasury Rate
95 2 Moody’s Seasoned Aaa Corporate Bond Yield
96 2 Moody’s Seasoned Baa Corporate Bond Yield
97 1 3-Month Commercial Paper Minus FEDFUNDS
98 1 3-Month Treasury C Minus FEDFUNDS
99 1 6-Month Treasury C Minus FEDFUNDS

100 1 1-Year Treasury C Minus FEDFUNDS
101 1 5-Year Treasury C Minus FEDFUNDS
102 1 10-Year Treasury C Minus FEDFUNDS
103 1 Moody’s Aaa Corporate Bond Minus FEDFUNDS
104 1 Moody’s Baa Corporate Bond Minus FEDFUNDS
105 5 Trade Weighted U.S. Dollar Index: Major Currencies
106 5 Switzerland / U.S. Foreign Exchange Rate
107 5 Japan / U.S. Foreign Exchange Rate
108 5 U.S. / U.K. Foreign Exchange Rate
109 5 Canada / U.S. Foreign Exchange Rate

Panel G: Prices

No. Transformation Variable

110 6 PPI: Finished Goods
111 6 PPI: Finished Consumer Goods
112 6 PPI: Intermediate Materials
113 6 PPI: Crude Materials
114 6 Crude Oil, spliced WTI and Cushing
115 6 PPI: Metals and metal products:
116 1 ISM Manufacturing: Prices Index
117 6 CPI : All Items
118 6 CPI : Apparel
119 6 CPI : Transportation
120 6 CPI : Medical Care
121 6 CPI : Commodities
122 6 CPI : Durables
123 6 CPI : Services
124 6 CPI : All Items Less Food
125 6 CPI : All items less shelter
126 6 CPI : All items less medical care
127 6 Personal Cons. Expend.: Chain Index
128 6 Personal Cons. Exp: Durable goods
129 6 Personal Cons. Exp: Nondurable goods
130 6 Personal Cons. Exp: Services

Panel H: Stock market

No. Transformation Variable

131 5 S&P’s Common Stock Price Index: Composite
132 5 S&P’s Common Stock Price Index: Industrials
133 2 S&P’s Composite Common Stock: Dividend Yield
134 5 S&P’s Composite Common Stock: Price-Earnings Ratio
135 1 VXO

Table 15: The macroeconomic dataset (continued).
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C R2 in Regressions of Individual Macro Series on PCA Factors

(a) First factor obtained via PCA (b) Second factor obtained via PCA

(c) Third factor obtained via PCA

Figure 11: R2 of the regression of individual standardized macro series on PCA factors. The
figure show the R2 when regressing the individual standardized series in the macro database
of the FRED on each of the first three PCA factors. The macro dataset consists of 135 series
(transformed to rule out scale effects) over the period 1970:01-2009:12. Panels (a), (b), and (c)
show the results for the first, second, and third PCA factor, respectively. In each panel the
macro series are grouped and given different colors according to the 8 categories as indicated
on the FRED website. The group categories are (red) output and income; (blue) labor market;
(green) housing; (orange) consumption, (yellow) orders and inventories; (brown) money and
credit; (pink) prices; and (grey) stock market.
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D Robustness Check: Number Included Macro-Factors
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Panel A: 1-month ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

FADNS (1) 1.004 1.021 1.030 1.026 1.015 1.017 1.021 1.029 1.028 1.030 1.023 1.027 1.018 1.016 1.010 1.009 1.018
FADNS (2) 0.993 1.004 1.013 1.009 1.001 1.004 1.009 1.018 1.016 1.019 1.015 1.019 1.011 1.011 1.007 1.006 1.015
FADNS (3) 0.992 1.001 1.011 1.006 0.998 1.002 1.008 1.016 1.014 1.017 1.013 1.017 1.010 1.010 1.007 1.006 1.015
FADNS (4) 0.992 0.996 1.005 0.997 0.988 0.994 1.002 1.014 1.012 1.015 1.013 1.018 1.011 1.013 1.011 1.011 1.019

Panel B: 6-months ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

FADNS (1) 1.038 1.044 1.049 1.049 1.045 1.048 1.052 1.057 1.059 1.062 1.060 1.062 1.057 1.056 1.050 1.049 1.057
FADNS (2) 1.011 1.017 1.022 1.020 1.016 1.019 1.023 1.029 1.030 1.033 1.033 1.037 1.034 1.035 1.031 1.031 1.040
FADNS (3) 1.005 1.010 1.015 1.012 1.008 1.012 1.015 1.021 1.022 1.025 1.026 1.031 1.029 1.032 1.030 1.030 1.039
FADNS (4) 0.998 0.996 0.998 0.992 0.987 0.992 0.997 1.005 1.007 1.012 1.018 1.028 1.029 1.035 1.035 1.037 1.046

Panel C: 12-months ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

FADNS (1) 1.052 1.055 1.059 1.059 1.057 1.061 1.065 1.071 1.074 1.080 1.083 1.089 1.086 1.087 1.083 1.082 1.089
FADNS (2) 1.050 1.050 1.051 1.047 1.043 1.044 1.046 1.050 1.051 1.054 1.056 1.061 1.060 1.061 1.058 1.059 1.065
FADNS (3) 1.051 1.048 1.047 1.042 1.037 1.038 1.040 1.043 1.043 1.046 1.048 1.054 1.054 1.057 1.055 1.057 1.065
FADNS (4) 1.063 1.050 1.042 1.032 1.023 1.023 1.024 1.028 1.028 1.032 1.039 1.050 1.055 1.062 1.065 1.069 1.078

Table 16: Root mean squared prediction errors (RMSPE) ratios. The table shows the relative RMSPE of the considered extensions of the
DNS against the standard DNS at a forecast horizon of one, six and twelve months. The results per forecast horizon are in Panel A, B and
C, respectively, with corresponding periods 1985:01-2009:12, 1985:06-2009:12, 1985:12-2009:12. The shades of the cells indicate the rank of
the model per maturity. The darker the shade, the better the model. Values in bold denote significance at the 5% level or less.
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Panel A: 1-month ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

FADNS (1) 1.014 1.018 1.018 0.991 0.972 0.979 0.986 0.998 0.997 1.001 0.999 1.011 1.005 0.999 0.991 0.993 1.006
FADNS (2) 1.027 1.024 1.023 0.995 0.973 0.981 0.988 1.001 0.999 1.002 1.000 1.012 1.004 0.999 0.992 0.994 1.007
FADNS (3) 1.040 1.032 1.027 0.996 0.973 0.981 0.988 1.000 0.998 1.000 0.998 1.008 1.002 0.998 0.992 0.994 1.006
FADNS (4) 1.097 1.084 1.066 1.019 0.980 0.990 0.998 1.013 1.005 1.006 1.001 1.009 1.002 0.998 0.994 0.996 1.001

Panel B: 6-months ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

FADNS (1) 0.985 0.985 0.986 0.970 0.954 0.962 0.969 0.980 0.982 0.987 0.991 1.005 1.003 1.001 0.998 1.003 1.015
FADNS (2) 1.038 1.022 1.016 0.990 0.969 0.973 0.978 0.988 0.987 0.991 0.992 1.005 1.002 1.000 0.997 1.002 1.014
FADNS (3) 1.068 1.042 1.030 0.998 0.974 0.978 0.982 0.991 0.989 0.991 0.992 1.004 1.001 1.000 0.998 1.003 1.014
FADNS (4) 1.197 1.136 1.102 1.044 1.002 1.001 1.002 1.009 1.001 1.000 0.996 1.005 1.001 1.000 0.999 1.002 1.010

Panel C: 12-months ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

FADNS (1) 0.967 0.968 0.971 0.955 0.940 0.950 0.960 0.975 0.982 0.993 1.004 1.025 1.026 1.025 1.025 1.032 1.048
FADNS (2) 1.097 1.071 1.056 1.021 0.994 0.994 0.996 1.004 1.003 1.007 1.010 1.025 1.024 1.023 1.022 1.029 1.045
FADNS (3) 1.133 1.100 1.081 1.041 1.010 1.008 1.009 1.015 1.012 1.014 1.014 1.027 1.026 1.025 1.025 1.032 1.045
FADNS (4) 1.263 1.203 1.163 1.096 1.048 1.039 1.034 1.037 1.027 1.024 1.019 1.029 1.027 1.026 1.027 1.033 1.044

Table 17: Root mean squared prediction errors (RMSPE) ratios for the period 1995:01-1999:12. The table shows the relative RMSPE of the
considered extensions of the DNS against the standard DNS at a forecast horizon of one, six and twelve months. The results per forecast
horizon are in Panel A, B and C, respectively. The shades of the cells indicate the rank of the model per maturity. The darker the shade,
the better the model. Values in bold denote significance at the 5% level or less.
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Panel A: 1-month ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

FADNS (1) 1.023 1.052 1.057 1.060 1.055 1.055 1.053 1.054 1.049 1.045 1.039 1.037 1.032 1.025 1.021 1.021 1.028
FADNS (2) 1.001 1.015 1.036 1.021 1.017 1.022 1.028 1.033 1.029 1.026 1.023 1.023 1.019 1.016 1.014 1.014 1.021
FADNS (3) 1.008 1.012 1.035 1.015 1.010 1.017 1.024 1.031 1.027 1.023 1.020 1.021 1.016 1.014 1.012 1.013 1.020
FADNS (4) 1.033 1.004 1.031 0.992 0.986 0.999 1.013 1.022 1.020 1.018 1.018 1.020 1.017 1.015 1.015 1.016 1.023

Panel B: 6-months ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

FADNS (1) 1.056 1.066 1.078 1.085 1.087 1.093 1.097 1.100 1.106 1.109 1.110 1.108 1.109 1.109 1.107 1.108 1.113
FADNS (2) 1.023 1.029 1.039 1.035 1.034 1.040 1.044 1.049 1.051 1.054 1.057 1.058 1.059 1.062 1.062 1.064 1.073
FADNS (3) 1.024 1.026 1.034 1.026 1.024 1.029 1.033 1.038 1.039 1.040 1.044 1.046 1.047 1.050 1.052 1.055 1.065
FADNS (4) 1.031 1.018 1.019 0.999 0.993 0.998 1.003 1.008 1.009 1.011 1.020 1.028 1.034 1.042 1.047 1.054 1.064

Panel C: 12-months ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

FADNS (1) 1.066 1.071 1.079 1.083 1.084 1.089 1.094 1.099 1.105 1.110 1.119 1.123 1.126 1.130 1.133 1.137 1.145
FADNS (2) 1.052 1.052 1.055 1.051 1.049 1.051 1.053 1.056 1.058 1.060 1.066 1.072 1.075 1.080 1.083 1.088 1.098
FADNS (3) 1.056 1.052 1.052 1.045 1.041 1.041 1.042 1.045 1.045 1.047 1.053 1.059 1.063 1.069 1.073 1.079 1.091
FADNS (4) 1.078 1.058 1.046 1.027 1.017 1.013 1.011 1.012 1.009 1.010 1.020 1.034 1.044 1.057 1.067 1.078 1.092

Table 18: Root mean squared prediction errors (RMSPE) ratios for the period 2005:01-2009:12. The table shows the relative RMSPE of the
considered extensions of the DNS against the standard DNS at a forecast horizon of one, six and twelve months. The results per forecast
horizon are in Panel A, B and C, respectively. The shades of the cells indicate the rank of the model per maturity. The darker the shade,
the better the model. Values in bold denote significance at the 5% level or less.
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E Robustness Check: Rank-Based Combination Scheme
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Panel A: 1-month ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EW-EKF 0.917 0.985 1.013 1.010 1.001 1.003 1.006 1.012 1.012 1.013 1.007 1.010 1.004 1.003 0.997 0.996 0.995
EW-UKF 0.914 0.986 1.015 1.011 1.001 1.003 1.006 1.013 1.014 1.016 1.011 1.015 1.008 1.004 0.996 0.994 0.993
RMSPE-AVG-EKF-RANK 0.913 0.983 1.011 1.009 1.000 1.002 1.005 1.012 1.012 1.013 1.006 1.009 1.001 1.002 0.995 0.995 0.993
RMSPE-AVG-UKF-RANK 0.914 0.984 1.012 1.008 0.999 1.001 1.005 1.012 1.014 1.016 1.011 1.015 1.009 1.004 0.997 0.996 0.992
RMSPE-MAT-EKF-RANK 0.898 0.974 1.007 1.007 0.998 1.001 1.004 1.011 1.010 1.010 1.003 1.006 1.000 1.003 0.996 0.995 0.992
RMSPE-MAT-UKF-RANK 0.892 0.974 1.008 1.007 0.998 1.001 1.004 1.012 1.013 1.014 1.007 1.012 1.009 1.005 0.999 0.996 0.997
SFADNS-EKF 0.846 0.976 1.029 1.024 0.998 1.007 1.018 1.034 1.032 1.035 1.019 1.034 1.018 1.027 1.014 1.013 1.016
SFADNS-UKF 0.848 0.978 1.028 1.022 0.998 1.006 1.016 1.032 1.031 1.034 1.015 1.026 1.007 1.011 0.998 1.001 1.003

Panel B: 6-months ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EW-EKF 1.018 1.022 1.024 1.023 1.020 1.022 1.024 1.028 1.030 1.032 1.032 1.035 1.033 1.031 1.027 1.026 1.032
EW-UKF 1.020 1.024 1.026 1.025 1.022 1.024 1.026 1.031 1.032 1.035 1.035 1.039 1.037 1.035 1.031 1.030 1.036
RMSPE-AVG-EKF-RANK 1.018 1.021 1.023 1.021 1.018 1.019 1.022 1.026 1.027 1.029 1.029 1.032 1.030 1.028 1.024 1.023 1.029
RMSPE-AVG-UKF-RANK 1.019 1.022 1.023 1.021 1.018 1.020 1.022 1.026 1.028 1.031 1.031 1.035 1.032 1.031 1.026 1.026 1.032
RMSPE-MAT-EKF-RANK 1.015 1.021 1.022 1.021 1.017 1.019 1.021 1.025 1.027 1.029 1.029 1.032 1.029 1.028 1.024 1.023 1.027
RMSPE-MAT-UKF-RANK 1.017 1.021 1.023 1.022 1.018 1.020 1.023 1.027 1.028 1.030 1.030 1.034 1.032 1.031 1.026 1.025 1.031
SFADNS-EKF 1.018 1.037 1.051 1.055 1.050 1.057 1.066 1.077 1.079 1.083 1.078 1.083 1.074 1.073 1.063 1.062 1.074
SFADNS-UKF 1.013 1.029 1.039 1.040 1.034 1.039 1.046 1.055 1.056 1.060 1.056 1.062 1.056 1.057 1.051 1.052 1.064

Panel C: 12-months ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EW-EKF 1.038 1.039 1.041 1.041 1.039 1.041 1.044 1.049 1.052 1.056 1.060 1.066 1.066 1.066 1.062 1.063 1.069
EW-UKF 1.040 1.041 1.044 1.043 1.041 1.044 1.047 1.052 1.055 1.060 1.064 1.071 1.071 1.071 1.067 1.068 1.074
RMSPE-AVG-EKF-RANK 1.038 1.038 1.040 1.039 1.036 1.038 1.041 1.045 1.048 1.052 1.055 1.061 1.061 1.061 1.058 1.059 1.065
RMSPE-AVG-UKF-RANK 1.039 1.039 1.041 1.040 1.037 1.039 1.042 1.047 1.050 1.054 1.058 1.064 1.064 1.065 1.061 1.062 1.069
RMSPE-MAT-EKF-RANK 1.036 1.036 1.038 1.038 1.036 1.038 1.041 1.045 1.048 1.052 1.055 1.061 1.060 1.060 1.057 1.058 1.064
RMSPE-MAT-UKF-RANK 1.037 1.037 1.039 1.038 1.036 1.039 1.042 1.047 1.049 1.054 1.057 1.064 1.063 1.064 1.061 1.061 1.068
SFADNS-EKF 1.066 1.077 1.089 1.092 1.091 1.099 1.108 1.119 1.124 1.132 1.135 1.142 1.137 1.136 1.128 1.127 1.135
SFADNS-UKF 1.061 1.068 1.075 1.075 1.072 1.077 1.083 1.091 1.095 1.100 1.102 1.109 1.106 1.106 1.101 1.102 1.110

Table 19: Root mean squared prediction errors (RMSPE) ratios. The table shows the relative RMSPE of the combined forecasts using
various weighting schemes against the standard DNS at a forecast horizon of one, six and twelve months. The results per forecast horizon
are in Panel A, B and C, respectively, with corresponding periods 1987:01-2009:12, 1987:06-2009:12, 1987:12-2009:12. The shades of the cells
indicate the rank of the model per maturity. The darker the shade, the better the model. Values in bold denote significance at the 5% level
or less.
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Panel A: 1-month ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EW-EKF 0.938 0.974 1.001 0.982 0.968 0.978 0.989 1.004 1.006 1.010 1.006 1.016 1.009 1.002 0.998 0.999 1.008
EW-UKF 0.931 0.971 1.001 0.978 0.963 0.975 0.986 1.002 1.006 1.010 1.006 1.018 1.010 1.001 0.994 0.995 1.007
RMSPE-AVG-EKF-RANK 0.942 0.970 0.994 0.974 0.964 0.974 0.984 1.000 1.005 1.010 1.007 1.017 1.010 1.002 0.997 0.997 1.007
RMSPE-AVG-UKF-RANK 0.928 0.967 0.999 0.976 0.965 0.977 0.988 1.005 1.009 1.013 1.009 1.021 1.012 1.003 0.995 0.996 1.009
RMSPE-MAT-EKF-RANK 0.927 0.976 1.001 0.979 0.964 0.975 0.985 1.001 1.005 1.010 1.006 1.017 1.011 1.006 0.998 0.999 1.010
RMSPE-MAT-UKF-RANK 0.918 0.969 1.003 0.979 0.965 0.978 0.988 1.005 1.008 1.013 1.008 1.020 1.011 1.004 0.996 0.998 1.011
SFADNS-EKF 0.927 0.981 1.061 1.006 0.952 0.982 1.007 1.042 1.039 1.042 1.024 1.044 1.026 1.010 0.998 1.002 1.029
SFADNS-UKF 0.927 0.969 1.032 0.981 0.940 0.967 0.990 1.024 1.025 1.030 1.015 1.035 1.018 1.003 0.992 0.996 1.020

Panel B: 6-months ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EW-EKF 0.974 0.979 0.988 0.979 0.969 0.978 0.986 0.998 1.002 1.007 1.010 1.021 1.019 1.016 1.014 1.018 1.029
EW-UKF 0.973 0.979 0.987 0.978 0.968 0.978 0.986 0.998 1.002 1.008 1.011 1.022 1.020 1.017 1.014 1.018 1.030
RMSPE-AVG-EKF-RANK 0.969 0.975 0.984 0.977 0.969 0.978 0.986 0.997 1.001 1.006 1.009 1.020 1.018 1.015 1.013 1.016 1.027
RMSPE-AVG-UKF-RANK 0.970 0.975 0.984 0.977 0.968 0.977 0.986 0.997 1.002 1.007 1.010 1.021 1.019 1.016 1.013 1.016 1.027
RMSPE-MAT-EKF-RANK 0.964 0.970 0.981 0.977 0.970 0.978 0.985 0.994 0.998 1.003 1.005 1.017 1.015 1.012 1.010 1.013 1.025
RMSPE-MAT-UKF-RANK 0.961 0.969 0.980 0.974 0.968 0.977 0.986 0.997 0.998 1.003 1.006 1.017 1.015 1.012 1.010 1.014 1.028
SFADNS-EKF 0.993 1.012 1.047 1.024 0.997 1.019 1.036 1.059 1.063 1.067 1.060 1.074 1.064 1.055 1.049 1.054 1.073
SFADNS-UKF 1.005 1.002 1.020 0.998 0.975 0.992 1.007 1.028 1.033 1.040 1.038 1.054 1.047 1.042 1.038 1.045 1.063

Panel C: 12-months ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EW-EKF 0.997 1.001 1.007 0.996 0.983 0.992 1.001 1.014 1.020 1.028 1.034 1.049 1.048 1.045 1.044 1.050 1.062
EW-UKF 0.997 1.000 1.006 0.994 0.981 0.991 1.000 1.013 1.020 1.028 1.035 1.050 1.049 1.046 1.045 1.051 1.064
RMSPE-AVG-EKF-RANK 1.008 1.008 1.011 0.999 0.986 0.993 1.001 1.013 1.018 1.025 1.031 1.046 1.045 1.043 1.042 1.047 1.059
RMSPE-AVG-UKF-RANK 1.008 1.008 1.010 0.998 0.984 0.992 1.000 1.012 1.018 1.025 1.031 1.046 1.046 1.043 1.042 1.047 1.060
RMSPE-MAT-EKF-RANK 1.000 1.003 1.009 0.996 0.982 0.992 0.999 1.013 1.015 1.022 1.026 1.042 1.040 1.038 1.039 1.046 1.061
RMSPE-MAT-UKF-RANK 1.000 1.003 1.008 0.995 0.980 0.991 0.999 1.013 1.017 1.024 1.026 1.042 1.040 1.038 1.041 1.048 1.063
SFADNS-EKF 1.087 1.105 1.130 1.112 1.089 1.109 1.125 1.148 1.156 1.161 1.153 1.161 1.149 1.135 1.128 1.133 1.148
SFADNS-UKF 1.106 1.103 1.111 1.085 1.061 1.073 1.084 1.103 1.108 1.114 1.111 1.121 1.113 1.103 1.099 1.104 1.120

Table 20: Root mean squared prediction errors (RMSPE) ratios for the period 1995:01-1999:12. The table shows the relative RMSPE of
the combined forecasts using various weighting schemes against the standard DNS at a forecast horizon of one, six and twelve months. The
results per forecast horizon are in Panel A, B and C, respectively. The shades of the cells indicate the rank of the model per maturity. The
darker the shade, the better the model. Values in bold denote significance at the 5% level or less.
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Panel A: 1-month ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EW-EKF 0.872 0.905 0.953 0.981 0.995 1.004 1.009 1.012 1.013 1.008 0.995 0.994 0.991 0.996 0.986 0.983 0.960
EW-UKF 0.865 0.900 0.950 0.978 0.992 1.002 1.008 1.012 1.016 1.014 1.004 1.005 1.004 1.004 0.991 0.988 0.956
RMSPE-AVG-EKF-RANK 0.855 0.885 0.939 0.971 0.992 1.003 1.008 1.011 1.011 1.004 0.985 0.984 0.980 0.990 0.977 0.979 0.951
RMSPE-AVG-UKF-RANK 0.858 0.887 0.939 0.969 0.989 1.001 1.007 1.012 1.018 1.016 1.008 1.008 1.008 1.001 0.989 0.988 0.938
RMSPE-MAT-EKF-RANK 0.836 0.881 0.943 0.974 0.990 0.999 1.007 1.010 1.009 1.000 0.979 0.978 0.977 1.000 0.988 0.989 0.962
RMSPE-MAT-UKF-RANK 0.826 0.874 0.941 0.973 0.987 1.000 1.007 1.011 1.018 1.013 0.994 0.999 1.009 1.009 1.007 0.994 0.984
SFADNS-EKF 0.721 0.793 0.899 0.957 0.967 0.986 0.997 1.001 0.995 0.996 0.972 1.013 1.007 1.080 1.057 1.057 1.024
SFADNS-UKF 0.721 0.796 0.895 0.950 0.968 0.983 0.992 0.994 0.989 0.980 0.950 0.966 0.966 1.007 0.992 1.012 0.976

Panel B: 6-months ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EW-EKF 0.982 0.989 0.996 1.001 1.005 1.008 1.010 1.012 1.015 1.018 1.020 1.028 1.035 1.042 1.043 1.045 1.045
EW-UKF 0.983 0.991 0.997 1.002 1.007 1.010 1.013 1.015 1.019 1.023 1.028 1.037 1.046 1.055 1.056 1.060 1.060
RMSPE-AVG-EKF-RANK 0.981 0.988 0.994 0.999 1.003 1.006 1.009 1.011 1.014 1.017 1.020 1.026 1.030 1.035 1.033 1.034 1.031
RMSPE-AVG-UKF-RANK 0.981 0.989 0.995 0.999 1.003 1.007 1.010 1.012 1.016 1.019 1.023 1.031 1.036 1.041 1.040 1.040 1.037
RMSPE-MAT-EKF-RANK 0.987 0.995 0.998 1.002 1.004 1.006 1.008 1.009 1.013 1.016 1.018 1.025 1.028 1.034 1.031 1.031 1.030
RMSPE-MAT-UKF-RANK 0.989 0.996 0.999 1.002 1.004 1.007 1.009 1.011 1.015 1.018 1.021 1.030 1.034 1.041 1.039 1.039 1.038
SFADNS-EKF 0.921 0.941 0.956 0.966 0.972 0.976 0.981 0.985 0.987 0.992 0.996 1.021 1.040 1.073 1.083 1.101 1.128
SFADNS-UKF 0.916 0.937 0.951 0.959 0.963 0.966 0.969 0.971 0.973 0.976 0.981 1.005 1.027 1.059 1.075 1.098 1.129

Panel C: 12-months ahead forecasts

Model
Maturity

3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120

DNS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EW-EKF 1.020 1.020 1.022 1.025 1.027 1.029 1.032 1.034 1.038 1.043 1.053 1.066 1.076 1.090 1.097 1.104 1.108
EW-UKF 1.022 1.022 1.024 1.027 1.029 1.032 1.035 1.038 1.043 1.048 1.059 1.075 1.087 1.103 1.111 1.120 1.125
RMSPE-AVG-EKF-RANK 1.019 1.020 1.022 1.024 1.026 1.028 1.030 1.032 1.035 1.039 1.047 1.058 1.066 1.076 1.080 1.084 1.085
RMSPE-AVG-UKF-RANK 1.021 1.022 1.023 1.025 1.027 1.029 1.031 1.034 1.037 1.041 1.050 1.061 1.070 1.081 1.086 1.090 1.092
RMSPE-MAT-EKF-RANK 1.020 1.020 1.022 1.023 1.025 1.027 1.029 1.031 1.034 1.037 1.044 1.055 1.062 1.072 1.075 1.078 1.079
RMSPE-MAT-UKF-RANK 1.021 1.022 1.023 1.024 1.026 1.028 1.030 1.032 1.036 1.040 1.048 1.060 1.068 1.079 1.082 1.086 1.088
SFADNS-EKF 1.023 1.029 1.034 1.037 1.040 1.043 1.047 1.051 1.055 1.061 1.076 1.101 1.123 1.154 1.173 1.192 1.211
SFADNS-UKF 1.022 1.027 1.030 1.031 1.031 1.031 1.033 1.034 1.035 1.039 1.051 1.074 1.097 1.128 1.150 1.175 1.196

Table 21: Root mean squared prediction errors (RMSPE) ratios for the period 2005:01-2009:12. The table shows the relative RMSPE of
the combined forecasts using various weighting schemes against the standard DNS at a forecast horizon of one, six and twelve months. The
results per forecast horizon are in Panel A, B and C, respectively. The shades of the cells indicate the rank of the model per maturity. The
darker the shade, the better the model. Values in bold denote significance at the 5% level or less.

66


	Introduction
	Methodology
	Dynamic Nelson-Siegel Model and the State-Space Framework
	Factor Augmented Nelson-Siegel Model
	Principal Component Analysis

	Dynamic Nelson-Siegel Model and Stochastic Volatility
	Time-Varying Loading Parameter 
	The Stochastic Factor-Augmented Nelson-Siegel Model
	Estimation Procedure for Linear Gaussian State-Space Models
	Estimation Procedure for Nonlinear Gaussian State-Space Models
	The Extended Kalman Filter
	The Unscented Kalman Filter


	Data
	U.S. Treasury Yields
	Indicators for the Macro-Economy

	Empirical Results
	In-Sample Analysis
	In-Sample Analysis: Factor Loading
	Out-of-Sample Analysis
	Out-of-Sample Analysis: On Forecast Combinations
	Out-of-Sample Analysis: Robustness Check
	Number of Included Macro-Factors
	Rank-Based Combination Scheme


	Conclusion
	Further Research
	The Unconditional Covariance Matrix of the State Vector
	The Macroeconomic Dataset
	R2 in Regressions of Individual Macro Series on PCA Factors
	Robustness Check: Number Included Macro-Factors
	Robustness Check: Rank-Based Combination Scheme

