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ABSTRACT

Simplicity vs. Complexity: Jump Diffusions in Affine Term Structure
Models

by Akshay RAMKISOENSING

Affine Jump Term Structure Models (AJTSMs) add a jump diffusion component to
Affine Term Structure Models (ATSMs) to model the term structure of interest rates.
I investigate whether there is a significant difference in the in- and out-of-sample per-
formance of ATSMs and AJTSMs for riskless interest rates in pre-, mid- and post-crisis
periods. 1 consider the one-, two- and three-factor Vasicek model within the ATSM-
and AJTSM-framework and use Quasi-Maximum Likelihood Estimation (QMLE) to es-
timate the parameters. Firstly, I find that the three-factor AJTSM is unidentified and
that imposed restrictions result in an unrealistic economic model. Secondly, the results
show that jump diffusion components are empirically justified in the complete sample
and pre- and mid-crisis samples. Thirdly, goodness-of-fit measures show that the in-
sample fit of one- and two-factor ATSMs and AJTSMs is poor. The three-factor ATSM
is superior in fitting the yield curve of the riskless interest rates. Lastly, I establish that
ATSMs and AJTSMs perform poorly in out-of-sample VaR and ES estimation for Risk

Management purposes.

Keywords: Affine Term Structure Model - Affine Jump Term Structure Model - Jump
diffusion - Fisher Information matrix - Quasi-Maximum Likelihood Estimation - Vasicek
model - Value-at-Risk - Expected Shortfall

J.E.L. Subject Classifications: C.32 - E.43 - G.12
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1. Introduction

Affine Term Structure Models (ATSMs) define zero-coupon bond yields as linear func-
tions of state variables, or factors, and are prominently used in both the finance industry
and in academics. Research in the field of term structure models for interest rates shows
that these ATSMs have desirable properties, which justify the popularity of these models.
The key properties, in this regard, are its analytical tractability and empirical flexibil-
ity. Despite its empirical flexibility, Lin and Yeh (1999) show that ATSMs are not able
to capture perceptible jumps in the time (P) dynamics' of the term structure of the
interest rates. To implement this discontinuity in the interest rates, Duffie et al. (2000)
provide a framework by deriving analytical tractable ATSMs with Poisson distributed
jump times. These ATSMs with jump diffusion components are known as Affine Jump
Term Structure Models (AJTSMs).

The contribution of this paper is to answer the research question whether there is a
significant difference in modeling the term structure of the riskless interest rates with
ATSMs and AJTSMs in pre-, mid- and post-crisis periods. I investigate one-, two- and
three-factor models for both the ATSMs and AJTSMs. This research focuses on the
economic and practical aspect of the main research question. From an economic stand-
point, this paper investigates whether the economic justification of an additional jump
diffusion component is empirically justified. This, additionally, extends to investigating
what the optimal model is, with regard to ATSMs and AJTSMs, to model and fit the
term structure of the riskless interest rates in a Vasicek (1977) framework. From a prac-
tical standpoint, this paper investigates whether there is a significant difference in the
performance of ATSMs and AJTSMs in Risk Management. The latter research question
focuses on Value-at-Risk (VaR) and Expected Shortfall (ES).

This paper builds upon the pioneering work of Vasicek (1977), Duffie and Kan (1996),

"Henceforth, I will use dynamics and P-dynamics interchangeably. Whenever risk-neutral Q-dynamics
are implied, this will be explicitly indicated.
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Baz and Das (1996) and Lin and Yeh (2001). Vasicek (1977) proposes to model the
term structure of interest rates using an Ornstein-Uhlenbeck process and, subsequently,
derives analytical expressions for zero-coupon bond yields?. The Vasicek model is classi-
fied as an ATSM in Duffie and Kan (1996), who highlight the desirable properties of the
ATSMs. Empirical research into the applicability of these models, such as Chan et al.
(1992), Mc Manus et al. (1999) and Wu et al. (2011), suggest that a multi-factor model
is necessary to capture the complete dynamics of the term structure of the interest rates.

In addition to a multi-factor model, Lin and Yeh (1999) emphasize the essence of jump
diffusion components to model the term structure of interest rates. Lin and Yeh (2001)
perform an empirical research on the use of a one-, and two-factor Vasicek model with
jump diffusion components for the Taiwanese Government Bond market. They perform
Quasi-Maximum Likelihood Estimation (QMLE) using approximations of the AJTSM,
proposed in Baz and Das (1996). Their results indicate that the two-factor ATSM and
AJTSM perform significantly better than the one-factor ATSM and AJTSM in fitting
the term structure of interest rates. More importantly, they find significant parameters
related to the jump intensity and jump size, indicating the presence of jumps.

In this paper, the Vasicek (1977) model is used to capture the dynamics of the factors
in the ATSMs. The AJTSMs are comprised of these ATSMs and additional jump dif-
fusion components, which have Gaussian distributed jump sizes. Analogous to Piazzesi
(2003), the parameters of both types of models are estimated by Quasi-Maximum Like-
lihood Estimation (QMLE). In combination with a Global Search algorithm, the Fisher
Information matrix is justifiably used to verify whether all parameters are identified.
Subsequently, I perform an elaborate analysis on the economic interpretation of the pa-
rameters as well as on the in-sample fit of the models using goodness-of-fit measures.
The out-of-sample performance is based on one-week-ahead VaR and ES estimates for
the interest rate swaps, constructed by means of Monte Carlo simulation. The backtests
for VaR estimates include the conventional Unconditional Coverage, Independence and
Conditional Coverage tests. The Saddlepoint Approximation and Box-Pierce tests are
used to backtest ES estimates due to their advantageous small sample properties.

I examine the empirical application of ATSMs and AJTSMs on the riskless interest
rates. In order to approximate the riskless interest rates and, subsequently, to bootstrap

the riskless yield curve, US LIBOR money market deposits and US interest rate swaps

2For elaborate mathematical derivations and analyses of both models, I refer the reader to Bolder
(2001).
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are used. The time series of these securities range from January 6, 2006 to January 1,
2016 to capture the pre-, mid- and post-crisis periods of the financial crisis of 2008. This
time period, in particular, includes the effect of monetary policies and interventions of
central banks on the financial market.

The empirical results imply several significant differences and similarities between
modeling the riskless interest rates with ATSMs and AJTSMs. Firstly, I find that there
is an empirical justification of jump diffusion components in the riskless interest rate pro-
cess, implied by the significance of the jump parameters in the AJTSMs. In economic
terms, this result attributes to the presence of jumps in the riskless interest rate process.
In the presence of significant jump diffusion components, I, generally, find that volatility
estimates of the non-jump process decrease. For the post-crisis period, I find that the
riskless interest rate process does not exhibit significant jumps. Secondly, I find that the
three-factor ATSM is superior in fitting the entire yield curve for the complete sample
and all sub-samples. The goodness-of-fit measures indicate that the one- and two-factor
ATSM and AJTSM, generally, fit the yield curve poorly and are misspecified for long-
term yields. A comparison of ATSMs and AJTSMs shows that the AJTSM-framework
performs marginally better than the ATSM-framework in the case of one-factor models
and the ATSM-framework performs substantially better in the case of the two-factor
models. Due to identification problems, I am not able to estimate the parameters of the
three-factor AJTSM. Lastly, the results show that ATSMs and AJTSMs perform poorly
in terms of Value-at-Risk and Expected Shortfall estimation. From a Risk Management
perspective, ATSMs and AJTSMs are inadequate for interest rate swaps.

The key novelty of this research is the deviation from and, thereby, the contribution
to the current literature in four significant ways. First, the focus of this research is
on the difference between ATSMs and AJTSMs with respect to two separate aspects,
namely from an economic, in-sample fit, standpoint and a practical, Risk Management,
standpoint. To my knowledge, there has neither been an empirical paper on the Risk
Management application of ATSMs, nor has there been a comparable study with respect
to this application of AJTSMs. Therefore, this is regarded to be the key contribution of
this paper. Second, this paper concerns the modeling and fitting of the riskless interest
rates, whereas Lin and Yeh (2001) focus on the Taiwanese Government Bond market.
So far, an empirical study that compares the performance of ATSMs and AJTSMs for

the riskless interest rates has been lacking in the current literature. Third, in addition
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to the one- and two-factor ATSMs and AJTSMs in Lin and Yeh (2001), this paper de-
rives and investigates the three-factor models in both frameworks. This builds upon the
results of Lin and Yeh (2001), that indicate that the in-sample fit of the term structure
of interest rates improves by modeling additional factors. Fourth, I deviate from the
QMLE procedure of Lin and Yeh (2001), which allows for misspecification of the ATSM
and AJTSM models. To this extent, I propose a QMLE procedure along the lines of
Piazzesi (2003).

The remainder of this paper adheres to the following structure. Section 2 discusses
the models and methodology of this paper. Section 3 analyzes the data. Section 4
reports and analyzes the main results. Section 5 concludes and Section 6 presents the

limitations in this research as well as directions for further research.



2. Models and Methodology

In this section, I discuss the main models and methodology of this research. The first
subsection introduces the Vasicek model and derives its implications for the yield curve.
The second subsection proposes the Quasi-Maximum Likelihood Estimation (QMLE)
procedure to obtain the parameters of the Vasicek model. Lastly, the third subsection
considers measures to evaluate the goodness-of-fit of models and measures to backtest

VaR and ES estimates.

2.1 Vasicek model

This subsection is divided in three main parts to emphasize the theoretical back-
ground and derivations of ATSMs and AJTSMs. Firstly, I discuss basic concepts and
the general idea in term structure modeling. Secondly, I derive the relation between
the Vasicek model and the term structure of yields within the ATSM- and AJTSM-
framework. Lastly, I provide the exact solutions for the ATSMs and the approximated
solutions for the AJTSMs.

2.1.1 Basic concepts and general idea

The single, most important security in Fixed Income is the riskless zero-coupon bond.
This bond pays, with certainty, one unit of currency at maturity. The price of a riskless
zero-coupon bond, P(t,T'), depends on the current time, ¢, and its maturity, 7. By def-
inition, it holds that P(7,T) = 1. Given the prices of riskless zero-coupon bonds for all

maturities, we determine the term structure of the riskless interest rates. Conventionally,
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this is done by exploiting the following relation:

DX (@t _ L
P(t,T)
y(t,T) x (T —t) = —In(P(t,T)) (2.1)
y(67) = PGT),

where y(t,T) denotes the yield of a riskless zero-coupon bond at time ¢ with maturity
T. The collection of yields for all maturities represents the term structure of the riskless
interest rates.

The main theoretical concept in term structure modeling is the instantaneous interest
rate, r(t). This theoretical quantity is defined as the yield on a very short bond:

r(t) = m (¢, T). (2.2)

T—t

The general idea is to define a model for the instantaneous interest rate, or short
rate. The short rate is assumed to drive the dynamics of the price of the riskless zero-
coupon bonds. Therefore, the short rate drives the dynamics of the term structure,
as well. As a matter of fact, the dynamics of the entire term structure, in ATSMs
and AJTSMs within the Vasicek framework, are completely specified by the short rate.
This relation is established by means of no-arbitrage conditions and the market price of
risk. The following paragraphs provide the mathematical framework of this general idea
and, further, define the dynamics of the short rate, the no-arbitrage conditions and the

market price of risk.

2.1.2 Derivations: ATSM

Initially, I assume a single-factor framework for the short rate model. This assumption
will be relaxed at the end of this subsection. Moreover, I assume that this single factor
is the short rate itself, that the short rate adheres to the Markov-property and that it

has the following real world P-dynamics, excluding jumps:

dr(t) = pu(r,t)dt + o(r, t)dW (), (2.3)
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where W (t) is the Brownian Motion (BM) defined on the probability space (£2, F,P),
w(r,t) is the drift of the process and o(r,t) is the volatility of the process.

The short rate dynamics in Equation (2.3) imply, by It6’s Lemma, that the price of a
riskless zero-coupon bond, P(r(t),t,T)!, has the following P-dynamics:

1
dP(t,T) = Pt + Prdr(t) + 5 Prydr(t)dr()

o(r(t),t)”
2

(2.4)

_ <Pt (), )Py + m) dt + o(r(t), ) P dW (),

where P, denotes the first-order derivative of P with respect to x and P,, denotes the

second-order derivative of P with respect to x.

Analogous to the Black-Scholes portfolio, that mimics the pay-off of an option, I aim
to construct a similar self-financing portfolio. The goal is to construct a self-financing
portfolio with no randomness. No-arbitrage conditions imply that this portfolio earns
the riskless rate.

To construct this portfolio, I choose two zero-coupon bonds with maturities, 77 and
T5. Furthermore, I define V' to be the value of the self-financing portfolio and w; to
be the weight of bond ¢ in the portfolio. Subsequently, the return on the self-financing

portfolio can be described by the following stochastic differential equation (SDE):

Av(t)  dP . dP,
_ = _— 2'
V(t) w1 P1 + w2 PQ ) ( 5)

where P; denotes the riskless zero-coupon bond price with maturity 73, that is P(¢,T;),

and w; € R. Using Equation (2.4), this can be written as:

dv(t) _ (Pt pPiy+ TPy )t + o Py dW (2)
vy Py 26)
(Poy + iPay + %G Poyr)dt + o PaydW (2)
w .
2 P
In order to simplify this expression, I define:
. Pi,t + NPi,r + %ZPi,rr
7 P 9
v (2.7)
o UPi,r
0 = P

!For notational convenience, I suppress 7(t) in P(r(t),t,T) throughout the paper.
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which simplifies Equation (2.6) to:

77@77::uq(uldt+-01dW/U))%—u&(Mth*‘UQdVV(ﬂ) 28)

= (wlm + wgug)dt + (w101 + wgdg)dW(t).

To obtain a self-financing portfolio without uncertainty, we solve the following system

of equations:

wy +wy =1,

(2.9)
wi01 + weog = 0.
The solution to this system of equations is:
—09

w1 = )

o] — 09
o1 (2.10)

W9 = .

01— 02

Substitution of the solution in Equation (2.8) yields a self-financing portfolio without

uncertainty:
dV (t —0 o —0 o
®) = 2 u1 + ! o | dt + 2 o1+ L o9 | dW(t)
V(t) o1 — 09 o1 — 09 o1 — 09 o1 — 09

(2.11)

—09 o1
= ( p+ M2> dt.
01 — 02 01 — 02

In order to exclude arbitrage, the drift of the self-financing portfolio should equal the
short rate, r(t). Equating Equation (2.11) to the short rate yields:

—09 o1
< 1+ m)zrm
g1 — 02 01 — 02

—oop1 + o1pe = o7 (t) — oar(t)

(2.12)
oa(r(t) — m) = o1(r(t) — p2)

M1 — T(t) _ H2 — ’I"(t) — ﬁ(t)
01 g9

This expression represents the market price of risk, £(¢). The market price of risk can
be either positive or negative and is often interpreted as the Sharpe ratio of a security.
More importantly, it constitutes, in an analytical sense, as an internal consistency rela-
tion and is equal for all riskless zero-coupon bonds, as is illustrated by the last line in

Equation (2.12). It provides the shift from the real world P-measure to the risk-neutral
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Q-measure. The Q-measure is needed to uniquely price riskless zero-coupon bonds and
other Fixed Income securities. The key is to rewrite the market price of risk and to find
the partial differential equation (PDE) that needs to be satisfied for an arbitrage-free

price:

2
Pi,t + ,U/-Pi,r + %Pi,rr
P;

(Substituting (2.7)) —

P+ uP + %P, P (2.13)
(Equivalent to) — - Hr T 2T gy ey T
P P
2
P + pPs + %PM —r(t)P = £(t)o P,
2
(PDE) — P+ (u — £(t)0) Py + %PM —r(t)P =0.

The solution, P = P(t,T), to this PDE provides the pricing equation for riskless zero-
coupon bonds in an arbitrage-free world. Using Equation (2.1), this pricing equation
constitutes the link between the term structure of riskless interest rates and the short
rate. Duffie and Kan (1996) show that there is a class of models, namely Affine Term
Structure Models, that uniquely solves this PDE. Assuming a constant relation between
the price of a bond and its maturity and affine functions for  and o, the solution of the

PDE can be represented by:
P(t,T) = P(t, 1) = eAD=BOrt) (2.14)

where 7 is the time to maturity (7" — t).

The Vasicek model belongs to the class of ATSMs. In this paper, I assume that

the P-dynamics of the short rate are described by the Vasicek model, that is:
dr(t) = k(0 — r(t))dt + cdW (t), (2.15)

where 0 is the long-term mean, k captures the speed of the mean-reversion and is positive

(> 0), o is the volatility of the short rate and W (¢) is a Brownian Motion (BM) defined
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on the probability space (2, F,P). The Q-dynamics of the short rate are given by:
dr(t) = k(0 — r(t))dt + odW (1), (2.16)

where § = 6 — % incorporates the market price of risk? and W (t) is a BM defined on
the probability space (£, F,Q). Throughout this paper, I assume, for simplicity, that
the market price of risk is constant over time, that is () = €.

Using the dynamics of the short rate and the solution form in Equation (2.14), I derive

the PDE in the terms of the Vasicek model in Appendix A. This results in:
~ 0'2
0= A7) — kOB(T) + 532(7’) — (1 + Bi(1) — kB(7))r(t). (2.17)
Equation (2.17) can be rewritten as a system of ODEs, namely:
~ 0'2
Ay(1) — kOB(1) + 332(7) =0,

(2.18)

where A(0) = 0 and B(0) = 0 are inferred by the definition of the price of riskless

zero-coupon bonds, P(T,7) = 1.

In this entire derivation, I have shown that the price of riskless zero-coupon bonds, in
the ATSM-framework, is an exponential function of the short rate. Its coefficients, A(7)
and B(7), are functions of maturity, 7, and are solutions to a system of ODEs (2.18). In
the ATSM-framework, the Vasicek model has a closed-form solution. That is, the sys-
tem of ODEs has a unique solution, see (2.27). The following paragraphs show that this
can, similarly, be done in the AJTSM-framework. In contrast to the ATSM-framework,
approximations are needed to obtain a system of ODEs, that is uniquely solvable, in the

AJTSM-framework.

2In mathematical terms, this can also be interpreted as the drift resulting from Girsanov’s Theorem.
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2.1.3 Derivations: AJTSM

In the previous paragraphs, the dynamics of the short rate did not include jumps. 1
continue this subsection with the addition of a jump diffusion component and derive the
pricing equation for riskless zero-coupon bonds in the AJTSM-framework. I follow Baz
and Das (1996) and show that the pricing function can, similar to the ATSM derivation,
be reduced to a set of ODEs.

In the AJTSM-framework, I assume that the P-dynamics of the short rate follow

the Vasicek model with a jump diffusion:

dr(t) = k(0 —r(t))dt + cdW (t) + YdN (1), (2.19)

where 6 is the long-term mean, k is the mean-reversion coefficient and is positive (> 0),
o is the volatility of the short rate, W (t) is the Brownian Motion (BM) defined on
the probability space (2, F,P), Y is the Gaussian distributed jump size, N(a, 3?), and
dN (t) is the Poisson process with intensity Ad¢t. The Brownian Motion and the Poisson
process are assumed to be independent and jump risk is assumed to be diversifiable.
These short rate dynamics imply, by It6’s Lemma, that the price of a riskless zero-

coupon bond, P(t,T'), has the following P-dynamics:

o?P,,

dP(t,T) = <Pt +1(0—r(t)P, + > dt+oPdW (¢)

(2.20)
+[P(r+Y,t,T)— P(r,t,T)]

where P, and P,, are similarly defined as in Equation (2.4) and [P(r + Y, t,T) — P(r,t,T)]
results from It6’s lemma for jump diffusions.
By similar no-arbitrage conditions, Baz and Das (1996) derive the PDE to ensure an

arbitrage-free price:

o2P,,

0=P + (k@ —r(t)) —&o)Pr + —r(t)P(t,T)

(2.21)
FAE[P(r+Y,t,T) — P(r,t,T)].

The solution to this PDE provides the price of riskless zero-coupon bonds in the
AJTSM-framework. Duffie et al. (2000) show that the solution can be represented in

the same form as the solution in the ATSM-framework, namely an exponential function
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of the short rate (2.14). Using Equation (2.14), the PDE can be rewritten as:

o?P,,

0=P + (k(@—r(t)) —&o)P. + —r(t)P(t,T)

(2.22)
+AP(t, T)E [aYB(ﬂ - 1} .

Baz and Das (1996) approximate the expectation expression in the PDE by a two-term

Taylor expansion, that is:

= —aB(7) + B(r)?.  (2.23)

E [e_YB(T) - 1} ~E [—YB(T) + YQBW]

The approximation is needed to obtain a system of ODEs, that is uniquely solvable.

Substitution of Equation (2.23) in the PDE yields:

o’P
0=P + (k@ —r(t) — )P+ 5 T r(t)P(t,T)

(2.24)
FAP(t,T) [—aB(T) P ; QQB(T)ﬂ .

I postpone the implementation of the exponential function (2.14) in the PDE to Ap-
pendix A. This derivation results in the following PDE:

2 2 _ 2 2
0=A(1)+ o BT) _ kOB(T) + A [—aB(T) + fFta B(T)2:|
2 2 (2.25)
+ (=1 = Bi(1) + kB(1))r(t).
Equation (2.25) can be rewritten as a system of ODEs, that is:
~ 2 2 2
A(1) — kOB(1) + %BQ(T) + A [—aB(T) + P —;—a B(T)2] =0,
A(0) =0, (2.26)

These derivations provide the key insight that the price of riskless zero-coupon bonds
are exponential functions of the short rate in, both, the ATSM- and AJTSM-framework.
The coefficients, A(7) and B(r), are functions of maturity, 7, and are solutions to a
system of ODEs ((2.18) and (2.26)). In the following paragraphs, I present the solutions

to the systems of ODEs and extend the results to a multi-factor framework.



Models and Methodology 13

2.1.4 Solutions

The previous paragraphs derive a system of ODEs for both the ATSM- and AJTSM-
framework. The solutions to these systems of ODEs provide the coefficients of the
pricing function (2.14). I refrain from deriving the solution of these ODEs, as there is
a large literature that provides elaborate derivations of these solutions. In this paper,
I use the results of Bolder (2001) and Lin and Yeh (2001) in, respectively, the ATSM-
and AJTSM-framework.

Bolder (2001) provides the following solutions to the system of ODEs (2.18) in the
ATSM-framework:

2 B(r) (2.27)

Due to additional expressions in the approximated system of ODEs in Equation (2.26),
the solution is more complex in the AJTSM-framework. Lin and Yeh (2001) provide the

following expressions for A(7) and B(7) in this framework:

1

B(r)==(1—-¢e"),
K
—Ee 2" (kD + E)e ™™™ (2kD + E)T

Alr) = 1w K3 + 2K3 -G

where
c-D  3E (2.28)

k2 4r3

D =¢&o0 — kb — al,
E =0+ (® + B,

2D + F < 0.

The constraint ensures that the price of riskless zero-coupon bonds converges to zero
when maturity increases to infinity. Given the parameters of the short rate dynamics,
the price of riskless zero-coupon bonds can be determined by substituting A(7) and B(7)
in:

P(t, 1) = eAM=BO®) (2.29)

Subsequently, the term structure of the riskless interest rates is computed using the

relation in Equation (2.1).
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In the beginning of this subsection, I assumed a single-factor model. This assumption
implies that all yields are perfectly correlated. However, the Data Analysis in Section 3
shows that this does not hold in practice. In order to capture the empirical yield dynam-
ics, the current literature provides extensions for the ATSM- and AJTSM-framework to
incorporate a multi-factor model. In this model, the multiple factors continue to be

related to the short rate in the sense that the following relation holds:
r(t) = wilt). (2.30)
i=1

That is, the factors yi(t),...,yn(t) drive the dynamics of the short rate, r(t).
The extension of the Vasicek model in a multi-factor framework is one of the model’s

main advantages. Assuming independence between the factors, the multi-factor Vasicek

model in the ATSM-framework is defined as:

dyl(t) = I€1(91 — U1 (t))dt + 0'1dW1 (t),

(2.31)

dyn(t) = £n (0 — yn(t))dt + o dWy (),

where 6; is the long-term mean of the i** factor, x; is the mean-reversion coefficient of
the i'" factor, o; is the volatility of the i** factor and W;(t) is the Brownian Motion of
the it" factor defined on the probability space (Q, F,P). Consequently, the multi-factor
Vasicek model in the AJTSM-framework is defined as:

dyr (t) = 51(91 — yl(t))dt + Jldwl(t) + Y1dN; (t),

(2.32)

dyn(t) = kn(On — yn(t))dt + ondWy(t) + YodNy (),

where 0;, ki, 0; and W;(t) are equivalently defined as in Equation (2.31), Y; is the
Gaussian distributed jump size of the i'* factor, N(a;, 3?), and dN;(t) is the Poisson
process of the i factor with intensity A;dt. Lastly, I denote the market price of risk for
the " factor by &;. The overall market price of risk is S &
By defining the short rate as the sum of the factors, the price of riskless zero-coupon
bonds is modified to:
P(t, 1) = eAD-Eim Binui(t), (2.33)
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Similar to the analysis in the previous paragraphs, one can derive the PDEs, the system
of ODEs and the solutions for A(7) and B;(7) in the ATSM- and AJTSM-framework. I
refer the interested reader to Bolder (2001) and Lin and Yeh (2001). Moreover, I use the
results of these papers for the multi-factor models in both frameworks, as well. Bolder

(2001) provides the following expressions for A(7) and B;(7) in the ATSM-framework:

Bi(r) = ’il (1—e™7),

n o o 2B (2.34)
A =3 (8- 57 - 7 ) (i) - ) - T,

=1 g 7 3

while Lin and Yeh (2001) provide expressions for A(7) and B;(7) in the AJTSM-

framework:

B;(1) = 1 (1 — e_””) ,

R
n . .
—Eie 27 (k;D; + E))e™™T  (2k;D; + E;)T
A — (] (] K3 (2 (3 (] 3 _ C
(7) Z 4K3 + K3 * 23 v
i=1 i i i
where
o D; 3E; (2.35)
L /{? 4/@?’
Di = ioi — kil — aiki,
Ei = 01-2 + (Oé? + ,83))\1,
2k; Dy + E; <0, fori=1,...,n.

Analogous to the single-factor models, the price of riskless zero-coupon bonds can be
determined by substituting A(7) and B;(7) in Equation (2.33). The term structure of

the riskless interest rates is computed using the relation in Equation (2.1).

2.2 Quasi-Maximum Likelihood Estimation (QMLE)

This subsection establishes the empirical methodology to estimate the Vasicek model
in the AJTSM-framework. Using Lin and Yeh (2001), I specify the probability density
function (pdf) for the short rate. The pdf is approximated for feasibility purposes. Sub-
sequently, I elaborate on the Quasi-Maximum Likelihood Estimation (QMLE) for the
parameters of the Vasicek model, along the lines of Piazzesi (2003). Lastly, I extend

the QMLE procedure to a multi-factor framework and contribute to the literature by
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deriving the three-factor ATSM and AJTSM. The results of this subsection extend to
parameter estimation of the Vasicek model without jumps by applying trivial constraints

on the jump parameters.

First, I assume the dynamics of the short rate are described by a one-factor AJTSM,
that is a Vasicek model with jumps (2.19). This model implies that the short rate

adheres to the Markov-property. Therefore, the likelihood function is given by:

T

L(ri,...,rp;0) = Hf(rt\rt_l), (2.36)

t=1

where © = {k,0,0,\,a,3,£} denotes the parameter-set. Maximizing the likelihood
function, £, with respect to O, yields the optimal parameter set OnmLE- Consequently,
we need an expression for the conditional pdf of r; to perform MLE.

In this AJTSM-framework, Lin and Yeh (1999) derive the following expression for r;

given ry_q :
t t N(t) '
relre_y = e RA rt_l—i-/ e”uﬁﬁdu—i-/ e™adW (u) + Z eiyd | (2.37)
t—1 t—1 J=NG1)

where At denotes the time between subsequent observations ¢t and ¢ — 1, 1; denotes the
time of the j%" jump, Y7 is the corresponding jump size and N (t) denotes the counting
process of the number of jumps in the interval [0, ¢]. In this paper, I allow for a maximum
of one jump per time period. The probability for more than one jump, within a time
period, is empirically negligible. The Gaussian distribution of the Brownian Motion and

the Poisson distribution of the jump diffusion imply the following pdf for the short rate?:

> e_)‘At()\At)”

frelri—1) = Z .
¢t : )
X /t—l /t_1m/t—1 <¢(rt;rt1,m,8) X (At)") dipdiy - - - dipn,

n=0 (238)
3The derivation of this pdf can be found in Lin and Yeh (1999).
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where ¢(ri;m, s) denotes a Gaussian distribution with mean m and variance s, that is:

n
m=e "Bl 1 401 — e "B 4 ae "B Z Vi
J=1

2 n
_ o __—2rAt 2 —2rAt 2k
s = —21%(1 e )+ B E i,

(2.39)
j=1

Equation (2.38) shows that the pdf of the short rate contains multiple integrals. These
integrals are a result of the jump diffusion component, but impose a burden on the
feasibility of the estimation procedure. To this extent, Lin and Yeh (1999) propose an

approximation of the current form of the pdf, namely:

> e_AAt()\At)"

’I’l' X ¢(Tt; Tt—1, ma ‘§)7 (240)

frri—1) =
n=0

where ¢(r; 1, §) denotes a Gaussian distribution with mean m and variance §, that is:

. — kAt n — kAL
= a0+ — ) 1-— ,
m=e Te—1 ( Ve (1—e )
1 ef2nAt

s = <U2 + Aﬁtﬁ2) 2K

The approximation is based on the assumption that jumps in the riskless interest rate

(2.41)

are equally spread over time. This assumption is used to take the expectation of the
summation components in m and s in Equation (2.39). I provide the calculations of this
procedure in Appendix A. Additionally, Lin and Yeh (1999) show that the approxima-

tion of the pdf converges to the true density, f(r¢|r¢—1), when kAt — 0.

The approximate pdf allows for Maximum Likelihood Estimation of the AJTSM
parameter-set, ©, given r1,...,rp. It should be noted that the exact pdf in Equations
(2.38) and (2.39) is used for the estimation of the ATSM parameter-set. The multiple
integrals (and jump components) are eliminated in the absence of jumps and, therefore,
the approximation (2.40) is not needed.

In order to use Maximum Likelihood Estimation, 71, ..., r7 are to be observed. How-
ever, these variables are not observed in practice and, therefore, I propose to perform
a QMLE procedure by expressing r1,...,rr in observable variables. This procedure
has been popularized by Piazzesi (2003) and solves a system of equations to obtain the

unobservable variables. The system of equations results from the pricing equation of the
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riskless zero-coupon bond:

P(t, 1) = AM=BO®), (2.42)

A collection of zero-coupon bonds with m different maturities constitutes the system of

equations as follows:

In[P(t, )] = A(m1) — B(m1)r(t),
In [P(t, 7‘2)] = A(Tg) — B(TQ)T(t) + €14,
(2.43)

In [P(t, 7m)] = A(Tm) — B(Tm)r(t) + €m—1,4

where € = [e14 ... €m—1.] ~ N(0,Q). The bond with the shortest maturity is modeled
without measurement error in order to use the first equation to obtain an estimate of

the unobservable variables, that is:

. —In[P(t,7)] + A(11)
T = B(Tl) . (2.44)

In this paper, I use the three-month riskless zero-coupon bond to obtain 71,...,77 in
the single-factor framework. The system of equations is completed with the riskless
zero-coupon bond prices of the six-month, one-, two-, three-, four-, five-, six-, seven-,
eight-, nine-, 10-, 15-, 20-, 25- and 30-year maturities, which are modeled with measure-
ment errors. I refer the interested reader to Piazzesi (2003) for an elaborate analysis of
this estimation procedure and the necessity of measurement errors to break stochastic
singularity.

The substitution of #; in the approximate density implies a transformation of the pdf
by means of the Jacobian. In the single-factor framework, the Jacobian is the first order

derivative of 7, with respect to In [P(t, )], that is:

(2.45)
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The approximate pdf, system of equations and transformation yield the following

log-likelihood function for the QMLE procedure:

2

T
T 1
méiXL(@) =In(L("1,...,77;0)) — Tln|J| —51n|Q\ -3 ; €0 ey, (2.46)

1

where the first part maximizes the likelihood of the observed data and the second part

minimizes the measurement errors for the bond prices in the system of equations.

This procedure is easily extended to a multi-factor framework. To illustrate this tran-
sition, I use the pricing function of the riskless zero-coupon bonds in the multi-factor

framework:

P(t, 7.) — BA(T)—Z?:1 Bi(T)yi(t)' (247)

Analogous to the single-factor framework, the system of equations is constructed by a

collection of m bonds with different maturities, namely:

n

In[P(t,m)] = A(m1) = > Bi(m)ui(t),
i=1

In[P(t,72)] = A(m) — Z Bi(12)yi(t) + €1,
i=1 (2.48)

n

In[P(t,7n)] = A7) = > BilTim)yi(t) + €m—nys,
i=1
where € = [e1;... em_m]/ ~ N(0,9Q). In the multi-factor framework, the number of
bond prices, m, should be greater or equal to the number of factors, n. This ensures
that the system of equations can uniquely be solved for the n factors. To capture the
short- and long-term dynamics of the short-rate in the two-factor framework, the three-
month and 30-year bond prices are modeled without errors to uniquely solve for the two
factors. In the three-factor framework, I choose to model the three-month, 10- and 30-
year bond prices without errors to uniquely solve for the three factors. The solutions to
these systems of equations are derived in Appendix A. The solutions are, subsequently,

used to compute the Jacobian.
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The log-likelihood function in the multi-factor framework can, thus, be defined as:

n T
T 1
maxL(©) = > W(L(@ias- - Gir; ©)) — Tl J| — Q-5 > a0 le,  (2.49)
i=1 t=1
where © = {k;,0;, 04, \i, i, Bi, &}y denotes the parameter-set and {9;1,...,3i7}—

are assumed to be the factors that constitute the short rate.

2.2.1 Fisher Information matrix

In order to obtain the uncertainty with respect to the estimates of QMLE parameters,
I compute the observed Fisher Information matrix. The Fisher Information matrix is
defined as the negative Hessian of the log-likelihood function, that is:

82

I =—— L
©)=~%6,50,

(). (2.50)

The observed Fisher Information matrix is obtained by evaluating the Fisher Information
matrix at the QMLE estimate, I (é)Q MmrLE)- This is used in the specification of the

asymptotic distribution of the parameter estimates as follows:
Oque ~ N(©, [[(Ogurr) ™). (251)

Thus, the diagonal of the inverse of the observed Fisher Information matrix quantifies
the uncertainty in the parameter estimates.

Additionally, I use the Fisher Information for identification purposes. The observed
Fisher Information matrix can be interpreted as the amount of information in the
data, regarding the parameter set. Piazzesi (2003) shows that the non-invertibility
of I (éQMLE) might indicate possible identification issues. A pre-condition for the use
of this measure is to maximize the log-likelihood function for many different trial pa-
rameterizations. This is done by means of a Global Search algorithm in MATLAB. The
Fisher Information matrix is used as an indication of identification issues. The theoret-
ical results of Dai and Singleton (2000) are used to establish whether the ATSMs and
AJTSMs are identified. This is done in the Parameter Estimation section of the Results
(Section 4) by observing that ATSMs can be represented in the canonical framework of

Dai and Singleton (2000).
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2.3 Evaluation measures

In this subsection, I define the evaluation measures to test the goodness-of-fit and the
out-of-sample performance of the models. In accordance with the current literature, I
propose basic measures to evaluate the goodness-of-fit. The backtesting methodology
for the VaR and ES estimates are, however, more involved and I briefly describe these
methodologies in this subsection. For a more elaborate description, I refer the reader to

Christoffersen (1998), Wong (2008) and Du and Escanciano (2015).

2.3.1 Goodness-of-fit

In this paper, I propose several models in the ATSM- and AJTSM-framework. The
parameters of each model are estimated for the complete sample and, separately, for the
pre-, mid- and post-crisis sample periods. Each model fits a yield curve at each period,
t, in time. I compare the fitted yield curve with the observed yield curve by means
of the Mean Squared Prediction Error (MSPE), Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE) and the in-sample Adjusted R%. Additionally, the Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC) are computed

for each model to compare the relative quality of the models.

2.3.2 Value-at-Risk and Expected Shortfall

In order to test the out-of-sample performance of the models, I compute VaR and
ES estimates for the interest rate swaps. These estimates are constructed by simulation
and employing the methodology of Hull (2006), proposed in subsection 3.1. First, I use
the parameter estimates of the models to simulate M yield curves. Using the simulated
yield curves and the relation in Equation (3.1), I determine the interest rate swap rates.

Subsequently, I compute their one-week-ahead VaR and ES estimates.

With regard to testing the VaR estimates, I follow Christoffersen (1998) and ap-
ply three interrelated tests. These tests are regularly used in the industry to backtest

two properties of the VaR estimates, namely their independence and (un)conditional



Models and Methodology 22

coverage. The following tests examine these properties using Likelihood Ratio (LR)

tests:

Correct Unconditional Coverage: Assuming that the independence property holds,
the fraction of VaR violations should be equal to the nominal coverage probability,
~. This is, in essence, equivalent to testing: Hy = P[li11 = 1] = E[I;41] = 7,
where I; is an indicator function of the VaR violations. I test this hypothesis by

the following LR-test:

(1 _ t‘y)TO X n)/Tl 9
L = =2l ~ 1 2.52
Ryc Og((l—m)TOXWlTl x“(1), (2.52)

where 7 is the average of VaR violations, 77 is the number of VaR violations,
Ty is the number of non-VaR violations and x?(1) is the Chi-squared distribution

with one degree of freedom.

Independence: VaR violations should be spread out and not come in clusters. This is
equivalent to testing the hypothesis; Hy = P[I;4+1 = 1|I;] = P[l;4+1 = 1]. T test this
hypothesis with the following LR-test:

(1 o 7r1>Too+T10 % 7T1T01+T11

LR;nyp = —2log ( T11> ~ X2(1)7 (2'53)

(1 — 7'['01)T00 X 7Tgf1 X (1 — 7T11)T10 X T4

where 71 and x2(1) are defined in Equation (2.52), mo; is the average number of
non-VaR violations followed by a VaR violation, 711 is the average number of VaR
violations followed by a VaR violation, Typ is the number of non-VaR violations
followed by a non-VaR violation, Tp; is the number of non-VaR violations followed
by a VaR violation, Tj¢ is the number of VaR violations followed by a non-VaR

violation and 777 is the number of VaR violations followed by a VaR violation.

Correct Conditional Coverage: Accurate VaR estimates should result in indepen-
dent VaR violations and correct unconditional coverage. That is, the fraction of
VaR violations should be equal to the nominal coverage probability, while they
should be spread out over the sample and not come in clusters. The following
hypothesis applies to this case: Hy = P[ly41 = 1|I}] = P[141 = 1] = 7. To test

these two properties simultaneously, I use the sum of both LR-tests:

LRcc = LRyc + LRinp ~ X2(2), (2.54)



Models and Methodology 23

where x?(2) is the Chi-squared distribution with two degrees of freedom.

In contrast to backtesting VaR estimates, ES estimates do not have common backtests.
In this paper, I choose the Saddlepoint Approximation test and the Box-Pierce test to
examine the ES estimates. Wong (2008) and Du and Escanciano (2015) show, by Monte
Carlo simulations, that both tests have favorable small sample properties. The following

summary describes the main aspects of these tests.

Saddlepoint Approximation Test The Saddlepoint Approximation (SPA) test is anal-
ogous to the unconditional coverage test for the VaR estimates. Wong (2008)
uses a saddlepoint approximation technique by Lugannani and Rice (1980) to test
whether the ES estimates capture the tail risk accurately. He compares the em-
pirically estimated E.S, with the saddlepoint approximated ESy, implied by the

model under Hy. The test statistic is defined as:
1 n
ESy =~ ZIX (2.55)
1=

where n is the number of VaR violations and Xj; is the ES estimate corresponding
to the i*"* VaR violation. The derivation of the saddlepoint approximated ESj is
beyond the scope of this paper. I refer the reader to Proposition 2 and Equation
(9), in Wong (2008), for an elaborate explanation of the saddlepoint approximated

E Sy and the corresponding p-value of the test.

Box-Pierce Test The Box-Pierce (BP) test is analogous to the independence test for
the VaR estimates. Du and Escanciano (2015) define a cumulative violation pro-
cess, Hy (), which should be a martingale difference sequence (mds) after centering.
Using this property, Du and Escanciano (2015) derive a conditional backtest for
the ES estimates by testing the autocorrelation of the cumulative violation process.

This is accomplished by a Box-Pierce test:
m

BPgs(m) =nY_ pr; ~x*(m), (2.56)
j=1

where py; is the lag-j autocorrelation of the H; with n violations and m = 3, in

accordance with the power tests in Du and Escanciano (2015).
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Although the VaR and ES backtests have favorable small sample properties, I empha-
size that these tests lack power to provide conclusive results. Therefore, I estimate VaR
and ES estimates with v = {1%, 5%, 10%}. This gives a more complete picture of the

out-of-sample performance of the models.



3. Data Analysis

In this section, I discuss the data that is used in this research. In the first subsection,
I focus on the modification of the data to construct the riskless yield curve. The models
and methodology are applied on this riskless yield curve. The second subsection presents
evidence for jumps in the riskless interest rates. Lastly, the third subsection provides
summary statistics and further analysis of the yield curve for the entire sample as well

as for three sub-samples.

3.1 Construction of yield curve

In this paper, the riskless yield curve is modeled by ATSMs and AJTSMs in the
Vasicek-framework. In order to obtain the riskless interest rates and, subsequently, the
riskless yield curve, US LIBOR money market deposits and US government based secu-
rities are used, in accordance with Dai and Singleton (2000). Although these securities
are not completely riskfree, they are, generally, regarded to accurately approximate the
riskless interest rates. Moreover, Feldhiitter and Lando (2008) show that interest rate
swap data most accurately approximates the riskless interest rates. Therefore, I use
three- and six-month US LIBOR money market deposits and one-, two-, three-, four-,
five-, six-, seven-, eight-, nine-, 10-, 15-, 20-, 25- and 30-year US interest rate swaps.
The data is obtained from the Bloomberg database! for the period covering January 6,

2006 to January 1, 2016.

!Tickers for the US LIBOR money market deposits are US0003M INDEX and USO006M INDEX.
Tickers for the US interest rate swaps are: USSW1 CMPN Curncy, USSW2 CMPN Curncy,
USSW3 CMPN Curncy, USSW4 CMPN Curncy, USSW5 CMPN Curncy, USSW6 CMPN
CurNcy, USSW7 CMPN Curncy, USSW8 CMPN Curncy, USSW9 CMPN Curncy, USSW10
CMPN CurNcy, USSW15 CMPN Curncy, USSW20 CMPN Curncy, USSW25 CMPN CuURNCY
and USSW30 CMPN CURNCY.

25
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US LIBOR money market deposits have no coupon payment and are, therefore, di-
rectly substituted in the yield curve. US interest rate swaps are, however, more compli-
cated to bootstrap zero-coupon yields from. I apply the methodology, proposed in Hull
(2006), to bootstrap the term structure of the riskless interest rates. The methodology
is based on the concept of an interest rate swap, with maturity 7', being equivalent to a
coupon bond, with the same maturity 7. More elaborately, I provide a modified version

of the example in Hull (2006), using linear interpolation of the yield curve:

Suppose the six- and 12-month zero-coupon yields are 4% and 4.5%, respectively.
The two-year interest rate swap is 5%. This is equivalent to a bond, with a
principal of $100 and a semi-annually coupon of 5% per annum, selling at par.
Let X denote the two-year zero-coupon yield. By means of linear interpolation of
the yield curve, the 18-month zero-coupon yield is 4.5% + %‘5%. Therefore, the

following equation should hold?:

X—-4.5%

100 = 2.5¢4%%05 4 9 5e=45%X10 4 9 5= (45%+T=75)x15 4 109 5= X %20 (3.1

Solving this equation yields a two-year zero-coupon yield of 4.95%.

Similarly, I apply this methodology to US interest rate swaps of all maturities and,

thereby, obtain the entire riskless yield curve.

3.2 Jumps

In order to justify the use of AJTSMs, I analyze whether jumps are, in fact, apparent
in the data. For illustrative purposes, Figure 3.1 only plots the weekly yield changes
of the three-month and 10-year yields. Both weekly yield changes exhibit relatively in-
frequent, large spikes. Figure 3.1 shows that the magnitude of multiple spikes exceeds
the three standard deviations barrier. These observations can be interpreted as jumps.
Jumps are often caused by the arrival of new information that significantly impacts the
view of market participants on the future state of the economy. We observe multiple
jumps during the mid-crisis period, which can not be captured by ATSMs. This justifies

the use of AJTSMs to capture the discontinuity in the riskless interest rates.

2Throughout the entire paper, I assume continuous compounding.



Data Analysis

27

3-month yield changes

100 [ - - - - - : -
o

D st

b — e o m — — — —— — — — — — — — — — —— ———

o

_':c% 0 MW.L‘F"NP'_' Hl’J * e e e e
[ — o e e o e o e e e e e e e e e e e e e

E 50 F 111

=

_1 DD l L L 1 i 'l 1 1l
2006 2007 2008 2009 2010 2011

10-year yield changes

212 2013 2014 2015 2016

100 T T

[y}
=]
T

i
on
':I

Yield change (BF)

=
=
-F—E

I
=
=
%

_1 DD l L L 1 i 'l 1 1l
2006 2007 2008 2009 2010 2011

FIGURE 3.1: Weekly Yield Changes
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Notes: This figure shows the weekly yield changes (in basis points) of the three-month and 10-
year yields from January 6, 2006 to January 1, 2016. The upper and lower dashed lines indicate

the upper and lower three standard deviation barriers.

The most evident jump took place at the end of 2008 and is, in fact, related to mon-

etary policy of central banks. In particular, the Federal Reserve decided on December

16, 2008 to lower the interest rate to the range of 0-0.25% and this constituted the

significant jump in Figure 3.1. Given the previous definition of jumps, interventions of

central banks are interpreted as jumps. This suggests that AJTSMs might outperform

ATSMs in an economic environment with many unanticipated interventions of central

banks. However, anticipated interventions do not constitute large yield changes. This

is apparent in the short-term yield changes after 2009, which are flat due to the zero

interest rate policies of central banks.

3.3 Summary statistics and stylized facts

The summary statistics of the weekly yield curve from January 6, 2006 to January

1, 2016 are reported in Table 3.1. In accordance with established stylized facts in the
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literature, the mean estimates of the yields, in Panel A, show that the yield curve is
generally increasing and concave. A graphical representation of this fact can be found

in Figure B.1 in Appendix B.

Panel A
Maturity Mean (%) SD (%) Skewness Kurtosis 01 026 P52

3-month 1.6408 2.0524 1.1222 24850 0.9966 0.8482 0.6718
6-month 1.7868 1.9550 1.0779 24281  0.9968 0.8512 0.6800
1-year 1.6663 1.9087 1.1574 2.6081  0.9963 0.8457 0.6714
2-year 1.8583 1.7677 1.0885 2.5278  0.9956 0.8379 0.6911
3-year 2.1220 1.6622 0.9601 2.3660 0.9951 0.8301 0.7057
4-year 2.3834 1.5679 0.8431 2.2460 0.9946 0.8206 0.7071
5-year 2.6201 1.4813 0.7507 21672 0.9940 0.8096 0.6992
6-year 2.8260 1.4054 0.6755 2.1044 0.9935 0.7979 0.6870
T-year 2.9980 1.3421 0.6150 2.0530 0.9930 0.7863 0.6732
8-year 3.1388 1.2911 0.5682 2.0118 0.9926 0.7755 0.6589
9-year 3.2566 1.2498 0.5284 1.9777 09922 0.7657 0.6446
10-year 3.3567 1.2155 0.4947 1.9502  0.9920 0.7568 0.6311
15-year 3.6784 1.1144 0.3726 1.8623  0.9908 0.7265 0.5780
20-year 3.8046 1.0758 0.3287 1.8442  0.9904 0.7082 0.5448
25-year 3.8596 1.0555 0.3057 1.8357  0.9900 0.6949 0.5240
30-year 3.8894 1.0411 0.2900 1.8323 0.9896 0.6874 0.5131

Panel B
Maturity Mean (%) SD (%) Skewness Kurtosis p1 026 052

3-month -0.0077 0.0970  -2.7751 39.413  0.6086 0.0152 0.0528
6-month -0.0074 0.0783  -2.2179 22.874  0.5428 -0.0007 0.0366

1-year -0.0076 0.0830  -0.5303 12.241  0.1219 -0.0081 0.0498
2-year -0.0069 0.1018 0.2188 9.0549  -0.0391 -0.0418 0.0436
3-year -0.0065 0.1131 0.3860 6.9851 -0.0481 -0.0664 0.0598
4-year -0.0061 0.1197 0.4090 5.6894  -0.0422 -0.0689 0.0604
5-year -0.0059 0.1249 0.4163 5.1153  -0.0560 -0.0733 0.0597
6-year -0.0057 0.1276 0.4170 4.9190 -0.0680 -0.0819 0.0598
T-year -0.0055 0.1290 0.3808 4.7880  -0.0721 -0.0783 0.0599
8-year -0.0054 0.1293 0.3410 4.8621 -0.0745 -0.0839 0.0600

9-year -0.0052 0.1300 0.2902 4.9018  -0.0804 -0.0837 0.0609
10-year -0.0052 0.1290 0.2467 49442  -0.0764 -0.0910 0.0666
15-year -0.0049 0.1283 0.1018 5.3798  -0.0964 -0.0832 0.0923
20-year -0.0048 0.1272 0.1087 4.8059 -0.1011 -0.0881 0.0953
25-year -0.0047 0.1283  -0.1145 5.7621  -0.1064 -0.0886 0.1009
30-year -0.0047 0.1300  -0.1152 5.8883  -0.1226 -0.0930 0.1038

TABLE 3.1: Summary Statistics

Notes: This table shows the summary statistics of the weekly yield curve (Panel A) and the
weekly changes in the yield curve (Panel B) from January 6, 2006 to January 1, 2016. The
table provides the mean (in %), standard deviation (SD in %), skewness and kurtosis. The one-,
26- and 52-week auto-correlation coefficients are denoted by, respectively, p1, p2g and pso.
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Moreover, standard deviation estimates in Panel A of Table 3.1 decrease with increas-
ing maturities. This indicates that the short end of the yield curve is more volatile than
its long end. Both the short and long end of the yield curve exhibit high persistence in
their dynamics, emphasized by their high auto-correlation coefficients, p;. The cross-
correlation among yields with different maturities can be found in Panel A of Table B.2
in Appendix B for the complete sample. This table indicates, as expected, that cross-

correlation among yields is high, ranging from 0.8191 to 0.9998.

In contrast to what the established literature suggests, the half- and one-year auto-
correlation coefficients, pog and ps2, indicate that the yield dynamics are more persistent
at the short end of the yield curve than at the long end. A possible explanation for this
anomaly is the aggressive intervention of central banks in recent years. Monetary policy
is known to affect the short end of the yield curve more profoundly than the long end.

Keeping interest rates low since 2008, arguably, constituted these contradictory results.

Panel B in Table 3.1 reports the summary statistics of the weekly changes. The
mean estimates show that all yields, on average, display negative weekly changes, con-
sistent with decreasing interest rates in the past 10 years. This is graphically represented
in Figure 3.2 for the three-month, three-year, 10-year and 30-year yields. More inter-
estingly, the standard deviation estimates show reverse patterns in Panel A and B in
Table 3.1. Apparently, weekly changes in yields are smaller and more dispersed at the
long end of the yield curve than the short end. Additionally, Figure 3.2 shows that the
level of the yields diverged, since 2008. This phenomenon might also be explained by
the low interest rates, set by the central banks. The skewness and kurtosis estimates in
both Panels A and B in Table 3.1 conclude that the yields and the yield changes are not
Normally distributed.
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Time Series of Weekly Zero-Coupon Yields
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FIGURE 3.2: Time Series of Yields

Notes: This figure plots weekly yields (in %) from January 6, 2006 to January 1, 2016. The yields
have three-month (blue), three-year (red), 10-year (yellow) and 30-year (purple) maturities.

In this paper, I investigate the performance of ATSMs and AJTSMs in different eco-
nomic environments. Therefore, the sample is divided into three sub-samples. The first
sub-sample ranges from January 6, 2006 to December 28, 2007 and captures the pre-
crisis period. The second sub-sample ranges from January 4, 2008 to December 25, 2009
and captures the mid-crisis period. Lastly, the third sub-sample ranges from January 1,
2010 to January 1, 2016 and capture the post-crisis period. For the sake of brevity, only
the mean and standard deviation (SD) of the yields are reported in Table 3.2 for each
sub-sample. The complete summary statistics and cross-correlation of these sub-samples
are reported in Tables B.1 and B.2 in Appendix B.

The mean estimates in Table 3.2 generally indicate that the average yield curve is in-
creasing and concave, with an exception for the pre-crisis period. The pre-crisis period
exhibits a flat yield curve. These findings are graphically represented in Figure B.2 in
Appendix B. In accordance with previous findings for the complete sample, first-order
auto-correlation coefficients in Panels A, B and C of Table B.1 also show that the yield

dynamics, in every sub-sample, are highly persistent.
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However, the sub-sample statistics additionally present remarkable results, regarding
cross-correlations and standard deviations of the yields. Firstly, Panels B and C in Table
B.2 show that cross-correlations are, relatively, high in the pre- and mid-crisis periods.
The cross-correlation coefficients range from 0.3942 to 0.9998 and 0.4485 to 0.9996 for
these periods, respectively. Panel D in Table B.2 indicates, however, that the cross-
correlation relation is distorted after the crisis, with coefficients ranging from -0.3597 to
0.9997. Further analysis shows that negative, low cross-correlations are only apparent
at the short end of the yield curve, that is for the three-month, six-month and 1-year
yields.

Secondly, the SD estimates in Table 3.2 indicate that standard deviation dynamics
changed from 2006 to 2016. During the pre-crisis period, the standard deviation had a
humped term structure. That is, the standard deviation increased from low to medium
maturities and decreased from medium to high maturities. During the mid-crisis period,
standard deviation decreased as maturity increased. This is in contrast with the post-
crisis period, when standard deviation increased as maturity increased. A comparison of
SD estimates across periods shows that the standard deviation spiked in the mid-crisis

period, as is expected during recessions.

Monetary policies, affecting the short end of the yield curve, can be interpreted as
an explanation for these abnormalities. The data analysis concludes that this research
is, partly, focused on the applicability of ATSMs and AJTSMs in unconventional eco-
nomic environments. In this case, the unconventionality is caused by monetary policy

experiments of central banks.
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Pre-Crisis Mid-Crisis Post-Crisis
Maturity Mean (%) SD (%) Mean (%) SD (%) Mean (%) SD (%)

3-month 5.3962 0.2685 1.8514 1.2881 0.3272 0.0983
6-month 5.3432 0.2529 2.1231 1.1183 0.4975 0.1477
1-year 5.2004 0.3420 1.8308 1.0219 0.4412 0.1308
2-year 5.0695 0.3871 2.1903 0.8774 0.6848 0.2329
3-year 5.0576 0.3674 2.6018 0.7906 0.9908 0.3538
4-year 5.0841 0.3453 2.9323 0.7278 1.3072 0.4393
5-year 5.1225 0.3233 3.1833 0.6826 1.6047 0.4943
6-year 5.1597 0.3068 3.3847 0.6579 1.8680 0.5296
T-year 5.1937 0.2936 3.5445 0.6437 2.0897 0.5522
8-year 5.2253 0.2834 3.6676 0.6387 2.2725 0.5673
9-year 5.2549 0.2757 3.7677 0.6362 2.4254 0.5790
10-year 5.2822 0.2701 3.8507 0.6325 2.5553 0.5885
15-year 5.3822 0.2544 4.1141 0.6300 2.9698 0.6195
20-year 5.4279 0.2484 4.1906 0.6586 3.1392 0.6279
25-year 5.4404 0.2466 4.2128 0.6805 3.2189 0.6313
30-year 5.4409 0.2459 4.2273 0.6881 3.2635 0.6306

TABLE 3.2: Summary Statistics of Sub-Samples (Mean and Standard Deviation)

Notes: This table shows an excerpt of the summary statistics of the weekly yield curve for the
pre-crisis, mid-crisis and post-crisis samples in Table B.1. The pre-crisis sample ranges from
January 6, 2006 to December 28, 2007, the mid-crisis sample ranges from January 4, 2008 to
December 25, 2009 and the post-crisis sample ranges from January 1, 2010 to January 1, 2016.
The table provides the mean (in %) and standard deviation (SD in %) estimates of these samples.



4.  Results

In this section, I present the results of this research. The first subsection provides the
parameter estimates of the ATSMs and AJTSMs for the complete sample and, separately,
for the pre-, mid- and post-crisis samples. The second subsection provides the goodness-
of-fit measures to evaluate the in-sample performance of the models. Lastly, the third
subsection reports the results of the backtests for VaR and ES estimates to evaluate the

out-of-sample Risk Management performance.

4.1 Parameter estimation

The parameter estimates of ATSMs and AJTSMs for the complete sample and the
pre-, mid- and post-crisis samples are presented in, respectively, Tables 4.1 and C.1, C.2
and C.3 in Appendix C. The following paragraphs provide an elaborate analysis of these
results and focus on the empirical justification of the jump diffusion component.

Before I analyze the results, I discuss the application of the methodology to the empir-
ical data. Firstly, I estimate the parameters of the ATSMs and AJTSMs by the QMLE
procedure in conjunction with a Global Search procedure to avoid local optima. I find
that this algorithm is robust in finding a global optimum in most cases.

Secondly, I experience difficulties in approximating the Hessian matrix and, thereby,
the Fisher Information matrix by numerical optimization. This problem arises due to
the incorporation of constraints on the parameters in the model. A constrained problem
includes the constraints by means of Karish-Kuhn-Tucker multipliers, which ultimately
affect the Hessian matrix. I optimize the constrained problem and calculate the Hes-
sian matrix of the unconstrained problem, evaluated in the solution of the constrained
problem. This results in a non-optimal Hessian matrix and in a negative semi-definite

covariance matrix. To avoid negative variances, I report the standard errors from the

33
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nearest positive semi-definite covariance matrix, based on the Frobenius-norm.

Thirdly, I find that the one-, two- and three-factor ATSMs are identified, according
to the observed Fisher Information matrix. This in accordance with the theoretical
framework of Dai and Singleton (2000) as well. The ATSMs, in this paper, adhere
to the canonical representation in Dai and Singleton (2000)! and are, therefore, clas-
sified as admissible ATSMs. These admissible ATSMs are econometrically identified.
The AJTSMs are not classified within the theoretical framework of Dai and Singleton
(2000), due to the jump diffusion component. The observed Fisher Information matrix,
in combination with the Global Search algorithm, show that the one- and two-factor
AJTSMs are identified. The three-factor model in the AJTSM-framework, however,
has identification issues according to the Hessian matrix. The estimation algorithm re-
ports a near-singular Hessian matrix during the optimization procedure, which indicates
that certain parameters are not identified. The final Hessian matrix and the observed
Fisher Information matrix, however, have full rank. Given this anomaly, the estimates
of the three-factor AJTSM are suspect. I impose restrictions on the parameters to solve
the identification problem. However, this results in either the two-factor AJTSM, the
three-factor ATSM or an unrealistic economic model. Due to this identification problem
and computational feasibility, I only include the three-factor models in the parameter
estimation and goodness-of-fit analysis and exclude these models in the VaR and ES
analysis.

Fourthly, given the identification problem, the robustness property of the Global
Search algorithm does not apply to the three-factor AJTSMs. By definition of an
unidentified model, I find that the estimated parameters are highly dependent on the
initialization of the QMLE procedure. Remarkably, initialization of the QMLE proce-
dure with the parameter estimates of the ATSMs result in sound economic parameter
estimates of the AJTSMs?. Although this procedure is practical, it is not econometri-
cally sound. I report the results of the three-factor AJTSMs to portray its anomalous

behaviour and to, possibly, stimulate further research.

! ATSMs within the Vasicek framework comply with the constraints in Definition 1 of Dai and Sin-
gleton (2000).

2This holds for parameter estimation in the sub-samples and is not observed for parameter estimation
in the complete sample.
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4.1.1 Complete sample analysis

Panel A in Table 4.1 shows that all parameters of the one-, two- and three-factor
models in the ATSM-framework are significantly different from zero on a 95% confi-
dence level, except for the long-term mean (). Equivalently, all parameters of the one-,
two- and three-factor models but five, in the AJTSM-framework, are significantly differ-
ent from zero on a 95% confidence level in Panel B in Table 4.1. The five insignificant
parameters include the long-term mean as well.

The mean-reversion coefficients (k) determine the speed of the process to return to
its long-term mean. For interpretational purposes, I modify this coefficient to the mean

half life of the process, _In(05)

. This expression is interpreted as the expected time for
the process to return halfway to its long-term mean, according to Lin and Yeh (2001).
In the ATSM-framework, Panel A in Table 4.1 shows that the first factor has mean half
lives of 4.5, 1.5 and 5.1 years in, respectively, the one-, two- and three-factor model. The
third factor has a mean half life of 1.3 years in the three-factor model. The first and
third factor, therefore, seem to exhibit some periodicity through their mean-reversion
coefficients. In contrast, the mean half life of the second factor in the two- and three-
factor model is relatively high, namely 69 years in both models. The mean-reversion
estimates in the AJTSM-framework, in Panel B in Table 4.1, exhibit a similar pattern,
with the exception of the three-factor model. The first factor has mean half lives of 4.5
and 2.0 years in the one- and two-factor model, but a mean half life of 21 years in the
three-factor model. The second factor has a mean half life of 24 years in the two-factor
model. In the three-factor model, however, the second and the third factor exhibit sig-
nificant mean-reversion with mean half lives of, respectively, 2.2 and 0.4 years.

As previously stated, the long-term mean estimates () in the ATSM-framework are
not significantly different from zero on 95% confidence level. The insignificance of these
estimates are, understandably, a result of the zero-interest rate policies of central banks,
which covers a significant part of the complete sample. However, several factors in the
AJTSMs have significantly large long-term mean estimates. The analysis of the jump

component, partly, explains these results.



Panel A: ATSM

1-Factor model 2-Factor model 3-Factor model
© | 1.F  SE (p-value) | 1*-F SE (p-value) 2"-F SE (p-value) | 1-F = SE (p-value) 2"“-F SE (p-value) 3™-F SE (p-value)
k | 0.155 0.009 (0.00) | 0.455 0.014 (0.00) 0.010 0.002 (0.00) | 0.136  0.002 (0.00) 0.010  0.002 (0.00) 0.539  0.030 (0.00)
6 | 0.000 0.008 (1.00) | 0.000 0.735 (1.00) 0.000 0.741 (1.00) | 0.000  0.090 (1.00) 0.000  0.002 (1.00) 0.000  0.210 (1.00)
o | 0.007 0.001 (0.00) | 0.014 0.004 (0.00) 0.011 0.002 (0.00) | 0.075 0.003 (0.00) 0.011 0.005 (0.03) 0.020 0.010 (0.05)
¢ | -1.069 0.027 (0.00) | -0.508 0.118 (0.00) -0.190 0.011 (0.00) | -0.228 0.032 (0.00) -0.345 0.012 (0.00) -1.256 0.401 (0.00)

Panel B: AJTSM

1-Factor model 2-Factor model 3-Factor model
© | 1*-F SE (p-value) | 1-F SE (p-value) 2"%-F SE (p-value) | 1**-F  SE (p-value) 2"-F SE (p-value) 3"-F SE (p-value)
k | 0.153  0.010 (0.00) | 0.351 0.006 (0.00) 0.029 0.001 (0.00) | 0.033 0.000 (0.00) 0.312 0.002 (0.00) 1.789 0.017 (0.00)
6 | 0.000 0.003 (1.00) | 0.021 0.007 (0.00) 0.023 0.003 (0.00) | 0.015 0.008 (0.05) 0.440 0.009 (0.00) 0.327 0.038 (0.00)
o | 0.001 0.000 (0.00) | 0.021 0.001 (0.00) 0.011  0.000 (0.00) | 0.019 0.000 (0.00) 0.007 0.001 (0.00) 0.139 0.019 (0.00)
A | 7.663 0.087 (0.00) | 0.000 0.001 (1.00) 0.655 0.004 (0.00) | 0.277 0.014 (0.00) 29.06 0.024 (0.00) 2.604 0.042 (0.00)
a | -0.002 0.000 (0.00) | 0.011 0.314 (0.97) 0.001  0.000 (0.00) | 0.036 0.001 (0.00) -0.003 0.000 (0.00) -0.129 0.013 (0.00)
g | 0.003 0.002 (0.15) | 0.904 0.147 (0.00) 0.002 0.001 (0.00) | 0.004 0.001 (0.00) 0.004 0.001 (0.00) 0.046 0.014 (0.00)
¢ [-1.996 0.045 (0.00) | 0.328 0.027 (0.00) -0.067 0.003 (0.00) | -0.033 0.000 (0.00) -0.582 0.000 (0.00) -0.484 0.000 (0.00)

TABLE 4.1: Parameter Estimates Complete Sample

Notes: This table reports the parameter estimates, based on the QMLE procedure, in the ATSM-framework (Panel A) and in the AJTSM-framework
(Panel B) using the weekly yield curve from January 6, 2006 to January 1, 2016 (522 observations). The table provides the parameter estimates of &, 6, o
and &, their corresponding standard errors and p-values for the one-, two- and three-factor model in the ATSM-framework (Panel A). Additionally, the table
provides the parameter estimates of k, 6, o, A, o, # and &, their corresponding standard errors and p-values for the one-, two- and three-factor model in the
AJTSM-framework (Panel B). In the models, I assume that the dynamics of the factors are described by a Vasicek model and the market price of risk of
each factor is constant. The standard errors are based on the nearest symmetric-positive definite covariance matrix, derived from the unconstrained Hessian
matrix. In the AJTSM-framework, I assume that jump risk is diversifiable and the Brownian Motion and Poisson process are independent as well.
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Panel B in Table 4.1 shows that all jump intensity parameters (\) are significantly
different from zero on a 95% confidence level, with the exception of the first factor in the
two-factor AJTSM. Factors, that exhibit significant jump intensities, generally have sig-
nificant parameters for the distribution of the jump size, that is o and . This indicates
that there is empirical evidence for the presence of jumps in the riskless interest rate.
Moreover, we identify three factors with particular importance for the jump diffusion,
namely the first factor in the one-factor model and the second and third factor in the
three-factor model. These factors exhibit, on average, 7.7, 29 and 2.6 jumps per year,
respectively. The size of these jumps follow a Gaussian distribution with a negative
mean. In the case of the three-factor AJTSM, large negative jumps provide a possible
explanation for the positive long-term mean estimates. The volatility of the jump pro-
cess is small and, generally, lower than the volatility estimates.

A comparison of the volatility estimates (o) in Table 4.1 shows that the volatility of
the non-jump processes decreases in the presence of a significant jump diffusion compo-
nent. I reason that this advocates the presence of jumps in the riskless interest rates.
That is, observations with jumps increase the volatility of a process as the model aims
to capture these aberrant observations within its framework. By capturing the jumps in
the aberrant observations with a jump diffusion process, the volatility estimate should
decrease substantially. This result is observed for the factors with significant jumps. The
third factor in the three-factor AJTSM is an exception to this general result as it has an
unreasonably high volatility estimate. Most factors have volatility estimates of the same
order as standard deviations of the yields in Panel A in Table 3.1 in the Data Analysis of
Section 3. The irregularly high volatility estimate of the third factor, possibly, indicates
the unreliability of the parameter estimates in the three-factor AJTSM.

Lastly, Table 4.1 shows that most factors have negative market prices of risk (&).
Essentially, negative market prices of risk indicate negative Sharpe ratios, which would
make these securities unattractive to investors. The market, however, infers that in-
vestors are willing to take on the risk in exchange for a default-free security. In light of
the recession, this assessment is justified. However, I emphasize that this relation might

be distorted in recent years by (short-term) monetary policies.
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4.1.2 Sub-sample analysis

In order to investigate whether there is an empirical justification for the jump diffusion
component in different economic environments, I compare the ATSMs and AJTSMs for
different sub-samples. The subsequent paragraphs analyze the parameter estimates of
the ATSMs and AJTSMs, that are specifically different in the pre-, mid- and post-crisis
samples. To this extent, Figure 4.1 is used to graphically present the variations in the
parameter estimates over time. The complete statistics of the parameter estimation of

the sub-samples is reported in Tables C.1, C.2 and C.3 in Appendix C.

Figure (A) in 4.1 presents the number of insignificant parameters in the ATSMs and
AJTSMs for the pre-, mid- and post-crisis samples as well as for the complete sample.
The pre- and mid-crisis samples are substantially smaller (104 observations) than the
post-crisis and complete sample (respectively, 314 and 522 observations). This affects
the parameter estimates in the sense that the estimates are less accurate and have large
standard errors. Figure (A) in 4.1 reflects this result. The figure shows that, on a 95%
confidence level, the ATSMs and AJTSMs in the pre-crisis sample have, respectively,
nine and 14 insignificant parameters. Equivalently, the ATSMs and AJTSMs in the
mid-crisis sample have, respectively, 10 and 12 parameters that are not significantly
different from zero. This is in contrast with the parameter estimates of the post-crisis
and complete samples, which have 4 to 6 insignificant parameters. Tables C.1, C.2 and
C.3 show that the insignificance is largely restricted to the long-term mean estimates
in the ATSM-framework, while varying long-term mean estimates and jump parameters
are insignificant in the AJTSM-framework.

Figure (B) in 4.1 provides the average long-term mean estimates of the ATSMs and
AJTSMs for the complete, pre-, mid- and post-crisis samples. In contrast to the com-
plete sample results, Figure (B) in 4.1 shows that the average long-term mean estimates
of the pre-crisis sample are significantly different from zero. The average long-term mean
estimates range between 3%-4% for, both, ATSMs and AJTSMs. Table C.1 adheres to
this result by reporting that all models, for the pre-crisis sample, have one factor with a
significant positive long-term mean between the range of 5%-6%. This result is expected
for the pre-crisis sample since Panel A in Table B.1 (Appendix B) shows a three-month
interest rate of 5.4% during this period. Additionally, Panel B and C in Table B.1 show

a decrease of the short-term interest rates over time. This is accurately captured by
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the ATSMs as Figure (B) in 4.1 illustrates the decrease in their average long-term mean
estimates for the mid- and post-crisis periods. These results are more in accordance
with the complete sample results and reflect the fall of the riskless interest rates during
the crisis in 2008. We do, however, observe positive average long-term mean estimates
for the AJTSMs during the mid- and post-crisis periods. Panel B in Table C.2 indicates
that the long-term mean estimates are compensated by significant negative jumps dur-
ing the mid-crisis period. This result does not hold during the pre-crisis period. This
anomaly can be explained by the long-term mean estimates of the three-factor AJTSM,
which have a large impact on the average long-term mean estimate, but are suspect.

In order to establish the empirical justification of jump diffusion components, I ana-
lyze the significance of the jump intensities (A). Panel B in Tables C.1 and C.2 show
that all, but one, jump intensities are significantly different from zero in the pre- and
mid-crisis samples. Excluding the three-factor AJTSM due to identification issues, the
jump intensities in the post-crisis sample are insignificant, according to Panel B in Table
C.3. The jump intensities are modified in Figure (C) in 4.1, to graphically indicate the
average number of jumps per year in each AJTSM. The figure shows that the average
number of jumps in each AJTSM is large during the pre- and mid-crisis periods and
small during the post-crisis period. These results attribute to the presence of jumps
in the riskless interest rates during the pre- and mid-crisis periods and the absence of
jumps during the post-crisis period. Figure 3.1 in the Data Analysis of Section 3 pro-
vides the justification for this observation. The figure shows that, while there are a
significant number of jumps from 2006 to 2009, there are no observable jumps in the
three-month yield changes during the post-crisis sample. Effectively, this result suggests
that AJTSMs are not applicable in an economic environment without the presence of
jumps. In the case of significant jumps, we observe that the mean jump size, generally,
is non-positive. Moreover, we observe that volatility estimates of the non-jump process
decrease in the presence of these jumps. This is in line with the complete sample results,
but does not hold during the mid-crisis period as crises are regarded to be extremely
volatile.

Lastly, Figure (D) in Table 4.1 plots the average market price of risk of the ATSMs
and AJTSMs for the complete, pre-, mid- and post-crisis samples. The figure shows
that that the average market prices of risk are positive, during the pre-crisis period, and
negative during the mid- and post-crisis periods. Analogous to previous results, these

findings emphasize the contrast of the pre-crisis results and the congruence of the mid-
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and pre-crisis results with the complete sample results. There are several interpretations
of these discrepancies. An economic reason for the positive average market prices of risk
is that the market did not highly demand default-free securities in the pre-crisis period
(2006-2007). Investors demanded a return for the risk on these securities. Understand-
ably, the market sentiment changed during and after the financial crisis of 2008 with
regard to the default-free securities. The negative average market prices of risk in the
mid-crisis period (2008-2009) demonstrate this change in market sentiment during the
financial crisis of 2008. Investors fled to safe securities and the market’s demand for
default-free securities rose. The continuation of negative market prices of risk during
the post-crisis period (2010-2016) emphasizes that the market sentiment has not shifted

back in the recovery period after the financial crisis to pre-crisis levels.
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FI1GURE 4.1: Key Results of Sub-Sample Analysis

Notes: These figures provide key results of the sub-sample parameter estimates in
Tables C.1, C.2 and C.3 in Appendix C. (A) plots the number of insignificant param-
eters of all ATSMs (blue) and AJTSMs (yellow) for each sub-sample in a bar chart.
The lines represent the number of insignificant parameters for the ATSM (blue) and
AJTSM (red) in the complete sample. ATSMs have a total of 24 parameters in each
sample, while AJTSMs have 42. (B) plots the average long-term mean estimates (6)
of the ATSMs (blue) and AJTSMs (yellow) for each sub-sample in a bar chart. The
lines represent the average long-term mean estimates for the ATSM (blue) and AJTSM
(red) in the complete sample. (C) lots the average number of jumps per year for the
one- (blue), two- (green) and three-factor (yellow) AJTSM for each sub-sample in a
bar chart. The lines represent the number of jumps per year for the one- (blue), two-
(green) and three-factor (red) AJTSM in the complete sample. (D) plots the average
market price of risk (§) of the ATSMs (blue) and AJTSMs (yellow) for each sub-sample
in a bar chart. The lines represent the average market price of risk for the ATSM (blue)
and AJTSM (red) in the complete sample.
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4.2 Goodness-of-fit

In this subsection, I evaluate the performance of the ATSMs and AJTSMs in terms
of their ability to fit the term structure of the riskless interest rates. Analogous to the
previous subsection, I perform a complete sample analysis and focus on discrepancies
with the complete sample results in a separate sub-sample analysis. Table 4.2 reports the
AIC and BIC values of all models for each sample and Table 4.3 provides the goodness-
of-fit measures? for the complete sample. Due to contrasting results, the goodness-of-fit
measures for the pre-crisis sample are presented in Table 4.4 as well. For sake of brevity,
I postpone the results for the mid- and post-crisis samples to Tables C.4 and C.5 in
Appendix C.

4.2.1 Complete sample analysis

Firstly, Panel A in Table 4.3 shows that the performance of the one-factor ATSM and
AJTSM, in terms of goodness-of-fit, is similar. Both one-factor models exhibit increasing
MSPEs, RMSEs and MAEs and decreasing R%’s for yields with longer maturities. In
particular, the negative RZ’S assert that the model is misspecified for these yields. By
definition of the Ri, the results indicate that one would obtain a better fit by using the
average of the yield itself. Emphasizing the disparity in the fit of the yield curve, the
MAE* ranges from 2.505 to 43.89 basis points for the one-factor ATSM, while it ranges
from 2.511 to 43.75 basis points for the one-factor AJTSM. This pattern of increasing
difficulty to fit long-term yields results from two separate issues. First, the restriction
of the model to one factor only enables the model to capture the level of the short rate.
I choose to approximate this factor by modeling the three-month yield without error.
Consequently, the short-term yields are fitted better than long-term yields. Second,
the one-factor Vasicek model is known to capture P-dynamics much better than the Q-
dynamics (see Bolder (2001)). Effectively, the increasing MAEs portray this empirical
fact. The market price of risk of one factor is not able to capture the internal consistency
relation across the yield curve in the Vasicek framework. To improve this characteristic

within the framework, factors are added. The results of multi-factor models are discussed

3The goodness-of-fit measures for the 3-month, 30-year and 10-year yield are not provided, because
I model these yields without error for, respectively, the one-, two- and three-factor model.

41 put more emphasis on the MAE as this measure uses equal weighting of the errors and portrays a
fairer impression of the average error than the MSPE and RMSE.
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in the two- and three-factor analysis.

Although the performance of both one-factor models is similar, Panel A in Table 4.3
indicates a marginal difference in favor of the one-factor AJTSM. This is confirmed by
the AIC and BIC values in Table 4.2. However, all goodness-of-fit measures show that

the one-factor model, in both frameworks, is not able to fit the entire yield curve well.

ATSM AJTSM
1-Factor model  2-Factor model 3-Factor model | 1-Factor model  2-Factor model 3-Factor model
Sample AIC  BIC | AIC BIC | AIC BIC | AIC  BIC | AIC BIC | AIC  BIC

Complete | -49334 -49317 | -68357 -68323 | -79773 -79722 | -50372  -50342 | -63736 -63676 | 52705 52614
Pre-Crisis | -11470  -11459 | -15995 -15974 | -19003 -18971 | -11547 -11528 | -14414 -14377 | -18354 -18298
Mid-Crisis | -9688.4 -9677.4 | -13024 -13003 | -16050 -16018 | -9798.3 -9779.8 | -12066 -12029 | -15582 -15527
Post-Crisis | -18557  -18572 | -28431 -28382 | -30212 -29019 | -19439 -19413 | -27194 -27142 | -27769 -27690

TABLE 4.2: AIC and BIC values of ATSMs and AJTSMs

Notes: This table reports statistics concerning the relative fit of the one-, two- and three-
factor models in the ATSM- and AJTSM-framework. The table provides the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC) for the complete sample and the
pre-, mid- and post-crisis samples.

Secondly, Panel B in Table 4.3 shows a significant improvement in the performance
of the two-factor model in, both, the ATSM- and AJTSM-framework in comparison
with the one-factor model. There is a pronounced decrease in the MSPEs, RMSEs and
MAEs of both two-factor models. The MAE ranges from 2.374 to 12.52 basis points for
the two-factor ATSM and from 2.426 to 17.32 basis points for the two-factor AJTSM.
Although both models are performing as well for short-term yields as the one-factor
model, the magnitude of the MSPEs, RMSEs and MAEs of long-term yields is greatly
diminished for the two-factor models. Moreover, the error measures do not increase with
maturity. Instead, their evolution can be described as a concave function of maturity.
These improvements in the results are attributable to the fact that the two-factor models
use the three-month and 30-year yields to approximate the factors. The model is able to
capture the short- and long-term dynamics, which can be transformed to and interpreted
as the level and the slope of the short rate.

Although an additional factor improves in-sample fitting performance of both models,
the negative Ri’s still indicate that the model is misspecified for a majority of the yields.
This holds for the two-factor AJTSM and, to a lesser extent, for the two-factor ATSM.
In contrast to the one-factor models, the two-factor models exhibit a clear difference in
their performances. The two-factor ATSM outperforms the two-factor AJTSM and, as
is shown in Table 4.2, the AIC and BIC favor the two-factor ATSM over the one-factor
ATSM and one- and two-factor AJTMS.



Panel A: 1-Factor model

Panel B: 2-Factor model

MSPE RMSE MAE 2 MSPE RMSE MAE 7
T ATSM  AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM | ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM
3-month - - - - - - - - - - - - - - - -
6-month | 0.007 0.007 0.085 0.085 2.505 2.511 0.998 0.998 0.006 0.007 0.078 0.081 2.374 2.426 0.998 0.998
1-year 0.077 0.077 0.277 0.277 4.354 4.345 0.979 0.979 0.099 0.099 0.314 0.315 4.950 4.881 0.973 0.972
2-year 0.621 0.620 0.788 0.788 7.854 7.844  0.801 0.799 0.736 0.750 0.858 0.866 8.323 8.365 0.764 0.753
3-year 1.906 1.907 1.381 1.381 10.49 10.49 0.310 0.300 1.685 1.749 1.298 1.323 10.30 10.55 0.390 0.349
4-year 4.132 4.145 2.033 2.036 12.62 12.63 -0.681 -0.709 | 2.491 2.700 1.578 1.643 11.47 1194 -0.013 -0.129
5-year 7.352 7.391 2.712 2.719 14.50 14.53  -2.351 -2414 | 2.914 3.418 1.707 1.849 12.01 12.69 -0.328 -0.601
6-year 11.57 11.65 3.402 3.413 16.28 16.31 -4.859  -4.978 3.087 4.045 1.757 2.011 12.19 13.14 -0.563 -1.104
7-year 16.68 16.80 4.085 4.099 17.89 17.93  -8.262 -8.454 | 3.233 4.781 1.798 2.186 12.23 13.54  -0.795 -1.727
8-year 22.39 22.53 4.732 4.747 19.34 19.36  -12.43 -12.70 | 3.386 5.604 1.840 2.367 12.24 13.93  -1.031 -2.455
9-year 28.78 28.93 5.365 5.378 20.68 20.69 -17.42 -17.77 | 3.555 6.503 1.885 2.550 12.26 1442  -1.276  -3.278
10-year | 35.82 35.95 5.985 5.996 21.98 21.96 -23.25 -23.66 | 3.729 7.465 1.931 2.732 12.28 1498  -1.524 -4.192
15-year 84.23 83.74 9.178 9.151 28.00 27.91 -66.83 -67.35 | 3.968 11.28 1.992 3.359 12.52 1732  -2.195 -8.336
20-year 166.5 164.6 12.90 12.83 33.47 33.34 -142.9 -143.2 | 1.490 7.833 1.221 2.799 9.976 15.87 -0.288 -5.955
25-year 309.7 306.5 17.60 17.51 38.76 38.62 -277.0 -277.9 | 0.606 2.441 0.779 1.562 7.721 11.74 0.456  -1.251
30-year 525.8 522.1 22.93 22.85 43.89 43.75 -484.1 -487.3 - - - - - - - -
Panel C: 3-Factor model
MSPE RMSE MAE R

T ATSM  AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM

3-month - - - - - - - -

6-month | 0.008 0.965 0.089 0.982 2.605 9.888 0.998 0.737

1-year 0.052 17.34 0.228 4.164 4.092 20.34 0.986  -3.959

2-year 0.287 100.0 0.535 10.00 6.591 31.52 0.908 -32.36

3-year 0.565 184.9 0.752 13.60 7.984 36.76 0.795 -68.74

4-year 0.739 222.2 0.860 14.90 8.670 38.49 0.699 -93.16

5-year 0.709 206.2 0.842 14.36 8.625 37.79 0.677  -96.93

6-year 0.531 155.8 0.729 12.48 8.040 35.24 0.731 81.21

T-year 0.323 95.49 0.568 9.772 7.102 31.18 0.821  -54.24

8-year 0.148 43.86 0.384 6.623 5.801 25.67 0.911 -26.42

9-year 0.040 10.90 0.199 3.301 4.109 18.12 0.975  -6.269

10-year - - - - - - - -

15-year | 0.562 156.0 0.750 12.49 8.132 35.24 0.547  -129.9

20-year | 0.635 232.0 0.797 15.23 8.230 38.92 0.452  -207.9

25-year | 0.299 102.5 0.547 10.12 6.703 31.72 0.732 -94.84

30-year - - - - - - - -

Notes: This table reports and compares the goodness-of-fit measures for ATSMs and AJTSMs for the yield curve from January 6, 2006 to January 1, 2016.
Panel A presents the results of the one-factor ATSM and AJTSM, Panel B presents the results of the two-factor ATSM and AJTSM, and Panel C presents
the results of the three-factor ATSM and AJTSM. The MSPEs are denoted in squared basis points, the RMSEs and MAEs are denoted in basis points, R%
denotes the adjusted R? and 7 denotes the maturity. The bold numbers show the best model (ATSM or AJTSM) with respect to the goodness-of-fit measure.

TABLE 4.3: Goodness-of-Fit Measures of Complete Sample
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Thirdly, Panel C in Table 4.3 demonstrates the effect of the parameter estimation
problems in the three-factor model within the AJTSM-framework. The MSPEs, RMSEs,
MAEs and R124’s of the three-factor AJTSM are worse than all other models in both
frameworks. The negative performance is recognized by the AIC and BIC values in Table
4.2 as well. In contrast to the three-factor AJTSM, the three-factor ATSM performs
particularly well. The MAE ranges from 2.605 to 8.670 basis points and shows that the
three-factor ATSM performs slightly worse for the six-month yield than the one- and
two-factor models. This, however, is compensated by low MSPEs, RMSEs and MAEs
for all remaining yields. As a matter of fact, the three-factor ATSM is the best model
to fit the yield curve for the complete sample, according to Table 4.2. Essentially, this
result shows that increasing the number of factors increases the fit of the entire yield
curve. The positive R%’s, in Panel C in Table 4.3, confirm this statement. Multiple
factors are able to capture the market price of risk and, thereby, increase the model’s
ability to capture the internal consistency relation and, consequently, the Q-dynamics.
These results might be attributed to the incorporation of the short-term, mid-term
and long-term dynamics in the three-factor model by modeling, respectively, the three-
month, 10-year and 30-year yields without error. These dynamics are transformed to

and interpreted as the level, slope and curvature of the short rate.

4.2.2 Sub-sample analysis

In the following paragraphs, I analyze the results of the pre-, mid- and post-crisis
samples. I focus on contrasting results for different economic environments and dis-
crepancies with the complete sample analysis. The results of the pre-crisis sample are
reported in Table 4.4. The results of the mid- and post-crisis samples are reported in

Tables C.4 and C.5 in Appendix C.

Panel A in Table 4.4 shows that the results of the pre-crisis sample for the one-
factor ATSM and AJTSM are comparable to the complete sample results. Both one-
factor models perform poorly in terms of the goodness-of-fit measures and the one-factor
AJTSM is marginally superior to the one-factor ATSM. This is confirmed by the AIC
and BIC values in Table 4.2. More importantly, the MSPEs, RMSEs and MAEs show
increasing difficulty to fit long-term yields and the negative Ri’s indicate that both

models are misspecified for the long-term yields.
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In contrast to the complete sample results, Table 4.4 shows that the magnitude of the
poor performance of the one-factor models is much smaller in the pre-crisis period. The
MAE ranges from 2.157 to 25.90 basis points for the one-factor ATSM and from 2.141
to 26.02 basis points for the one-factor AJTSM. This is a sharp decrease in comparison
with the MAEs of the complete sample results. A similar pattern holds for the MSPEs,
RMSEs and RQA’S of the one-factor model.

The two-factor models in Panel B in Table 4.4 improve upon the one-factor models in
accordance with the results of the complete sample. However, the performance of the
two-factor models is comparable to the performance of the three-factor ATSM in the
complete sample results. Both two-factor models have remarkably low MSPEs, RMSEs
and MAEs and the R%’s indicate that a large part of the variance of the yields is ex-
plained. Apparently, the Vasicek framework is more applicable in the pre-crisis period.

Panel B in Table 4.4 shows that the two-factor ATSM and AJTSM have comparable
results for the six-month and one-year yields. The models diverge in performance when
the maturity increases. The two-factor ATSM outperforms the two-factor AJTSM in
terms of goodness-of-fit. This is also deduced from the results in Table 4.2 and observed

in the complete sample results.

Panel C in Table 4.4 provides the results for the three-factor models. As mentioned in
the Parameter Estimation subsection, the results of the three-factor AJTSM are provided
to portray its anomalous behaviour. Despite the fact that the model is unidentified, the
results indicate that the performance of the three-factor AJTSM is comparable to the
three-factor ATSM. The three-factor ATSM, however, is identified and performs par-
ticularly well. The MAE of this model ranges from 1.629 to 5.138 basis points, which
is significantly lower than the MAEs in the complete sample results. Additionally, the
MSPEs, RMSEs and Ri’s indicate that the three-factor ATSM is superior in fitting the
yield curve during the pre-crisis period. Analogous to the complete sample, the AIC

and BIC values in Table 4.2 confirm its superiority over the one- and two-factor models.



Panel A: 1-Factor model

Panel B: 2-Factor model

MSPE RMSE MAE 4 MSPE RMSE MAE 4
T ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM | ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM
3-month - - - - - - - - - - - - - - - -
6-month | 0.004 0.004 0.061 0.060 2.157 2.141 0.999 0.999 0.002 0.002 0.049 0.049 2.058 1.974 0.999 0.999
1-year 0.113 0.111 0.336 0.333 4.751 4.691 0.969 0.967 0.065 0.078 0.255 0.279 4.424 4.312  0.982 0.975
2-year 0.805 0.788 0.897 0.888 8.028 7.949  0.742 0.729 0.035 0.487 0.188 0.698 6.328 7.053 0.887 0.820
3-year 1.698 1.664 1.303 1.290 9.860 9.780 0.385 0.354 0.622 0.935 0.788 0.967 7.252 8.567 0.775 0.608
4-year 2.504 2.462 1.582 1.569 11.03 10.98 -0.018 -0.074 | 0.802 1.268 0.895 1.126 7.820 9.372 0.674 0.403
5-year 3.107 3.071 1.763 1.752 11.84 11.79 -0.416 -0.502 0.858 1.419 0.926 1.191 8.092 9.738 0.609 0.252
6-year 3.635 3.617 1.907 1.902 12.44 12.39 -0.840 -0.965 | 0.851 1.460 0.923 1.208 8.216 9.872 0.569 0.145
T-year 4.146 4.155 2.036 2.038 12.93 12.90 -1.302 -1.474 | 0.792 1.414 0.890 1.189 8.172 9.866 0.561 0.092
8-year 4.706 4.748 2.169 2.179 13.37 13.36 -1.823 -2.056 | 0.705 1.313 0.840 1.146 8.028 9.721 0.577 0.088
9-year 5.392 5.473 2.322 2.339 13.81 13.84 -2.452 -2.759 | 0.605 1.175 0.778 1.084 7.812 9.483 0.613 0.129
10-year | 6.293 6.417 2.509 2.533 14.28 14.33  -3.259  -3.660 0.525 1.052 0.725 1.025 7.628 9.240 0.644 0.176
15-year 15.06 15.44 3.881 3.930 17.41 1753 -11.13 -12.34 | 0.271 0.833 0.521 0.913 6.464 8.407 0.781 0.223
20-year | 31.08 31.73 5.575 5.633 20.76 20.89 -25.85 -28.41 0.104 0.869 0.322 0.932 4.923 8.766 0.910 0.131
25-year | 51.49 52.40 7.176 7.238 23.55 23.68 -45.22 -49.46 | 0.043 0.374 0.206 0.612 4.050 7.168 0.962 0.611
30-year | 75.05 76.18 8.663 8.728 25.90 26.02 -68.24 -74.41 - - - - - - - -
Panel C: 3-Factor model
MSPE RMSE MAE R

T ATSM  AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM

3-month - - - - - - - -

6-month | 0.002 0.001 0.043 0.032 1.868 1.629 1.000 1.000

1-year 0.021 0.023 0.146 0.150 3.626 3.449  0.994 0.992

2-year 0.059 0.092 0.244 0.302 4.443 4.778 0.981 0.963

3-year 0.069 0.123 0.262 0.351 4.488 5.093 0.975 0.944

4-year 0.067 0.127 0.260 0.357 4.408 5.138 0.973 0.935

5-year 0.052 0.102 0.228 0.319 4.113 4.894 0.976 0.942

6-year 0.038 0.073 0.195 0.271 3.784 4.522 0.981 0.953

T-year 0.022 0.042 0.148 0.205 3.202 3.902 0.988 0.971

8-year 0.010 0.019 0.100 0.136 2.587 3.172 0.994 0.986

9-year 0.003 0.005 0.051 0.067 1.851 2.245 0.998 0.996

10-year - - - - - - - -

15-year | 0.036 0.069 0.191 0.263 3.677 4.576 0.971 0.930

20-year | 0.049 0.118 0.221 0.344 4.070 5.233 0.958 0.872

25-year | 0.045 0.065 0.213 0.254 4.233 4.475 0.959 0.927

30-year - - - - - - - -

Notes: This table reports and compares the goodness-of-fit measures for ATSMs and AJTSMs for the yield curve from January 6, 2006 to December 28, 2007.
Panel A presents the results of the one-factor ATSM and AJTSM, Panel B presents the results of the two-factor ATSM and AJTSM, and Panel C presents
the results of the three-factor ATSM and AJTSM. The MSPEs are denoted in squared basis points, the RMSEs and MAEs are denoted in basis points, R%
denotes the adjusted R? and 7 denotes the maturity. The bold numbers show the best model (ATSM or AJTSM) with respect to the goodness-of-fit measure.

TABLE 4.4: Goodness-of-Fit Measures of Pre-Crisis Sample

SYMSaY

Ly



Results 48

The results of the mid- and post-crisis samples are more aligned with the complete
sample results than with the pre-crisis sample results. Panel A in Tables C.4 and C.5
show that the one-factor models are misspecified due to largely negative Ri’s, in accor-
dance with the complete and pre-crisis sample results. However, the magnitude of the
Ri’s is comparable with the complete sample results. Moreover, the MAE ranges from
2.128 to 41.51 basis points in the ATSM-framework and from 2.142 to 41.49 basis points
in the AJTSM-framework for, both, the mid- and post-crisis samples. This is similar to
the performance of the one-factor models in the complete sample. Additionally, Table
4.2 shows that the one-factor AJTSM is preferred over the one-factor ATSM in the mid-
and post-crisis samples.

An identical pattern is observed for the two-factor models. The two-factor models
are not misspecified in the pre-crisis sample and, correspondingly, have low MSPEs,
RMSEs and MAEs. Although the R?’s of the two-factor models in the mid- and post-
crisis samples indicate an improvement over the one-factor models, the models remain
misspecified. The corresponding MSPEs, RMSEs and MAEs are comparable to the ob-
served measures in the complete sample results. Furthermore, the AIC and BIC values
in Table 4.2 show that the two-factor ATSMs are preferred over the two-factor AJTSMs
in the mid- and post-crisis samples. This is equivalent to the complete and pre-crisis
sample results.

The results of the three-factor AJTSM in the mid- and post-crisis sample is presented
to portray the anomalous behaviour of the unidentified model. Similar to the pre-crisis
sample results, the three-factor ATSM results are comparable to the results of this er-
roneous model. However, the three-factor ATSM is identified and performs particularly
well across the yield curve. The MSPEs, RMSEs and MAEs are relatively low for, both,
the mid- and post-crisis samples. Moreover, the R124’s in Panel C in Tables C.4 and C.5
show that the model is not misspecified for the yield curve. Table 4.2 shows that the
three-factor ATSM outperforms the one- and two-factor ATSMs and AJTSMs. More
importantly, the three-factor ATSM is superior in fitting the entire yield curve in the

mid- and post-crisis periods.

The complete and sub-sample analysis show that the three-factor ATSM is supe-
rior in fitting the yield curve in the pre-, mid- and post-crisis periods. The analysis
indicates that the one-factor models are inadequate in fitting the entire yield curve in

the pre-, mid- and post-crisis periods. This holds for the two-factor models in the mid-
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and post-crisis periods as well. The two-factor model in the pre-crisis period, however,
is able to fit the entire yield curve. For this pre-crisis sample, the two-factor ATSM con-
sistently outperforms the two-factor AJTSM. Moreover, the goodness-of-fit measures
indicate that the pre-crisis period is fitted with the smallest average error in comparison
with the other periods. This indicates that the Vasicek model, either with or without
jump diffusions, is more applicable in the pre-crisis period than the mid- and post-crisis
periods. A possible explanation for these results is the monetary policy of central banks
since the financial crisis of 2008. These interventions distort the internal consistency re-
lation across the yield curve, which is captured by the market price of risk. The results
show that multiple factors are needed to capture this relation and fit the entire yield

curve appropriately.

I emphasize that the analysis of the results in this subsection are based on in-sample
goodness-of-fit statistics. The Vasicek model is known to capture the P-dynamics better
than the Q-dynamics. The results show that increasing the number of factors increases
the ability to capture the QQ-dynamics. However, this is restricted to the in-sample
performance of the models. The out-of-sample performance exposes the inferiority of
the Vasicek framework. This is discussed in the Value-at-Risk and Expected Shortfall

subsection.

4.3 Value-at-Risk and Expected Shortfall

In this subsection, I analyze the results of the backtests on the one-week-ahead VaR
and ES estimates from January 4, 2008 to January 1, 2016. The analysis provides a
comparison of the performance of the ATSMs and AJTSMs from a Risk Management
perspective. The VaR and ES estimates are constructed by Monte Carlo simulation of
the one- and two-factor models. The parameters of these models are estimated using an
expanding window. I provide the results of the Correct Unconditional Coverage, Inde-
pendence and Correct Conditional Coverage tests in Tables 4.5 and 4.6. The results of
the Saddlepoint Approximation and Box-Pierce tests are presented in Table 4.7. Figures
C.1 and C.2, in Appendix C, provide graphical representations of the one-week-ahead

VaR,y and ES ¢ estimates for the one- and 30-year interest rate swaps.
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Value-at-Risk

Panel A and B in Table 4.5 show that the Correct Unconditional Coverage, Indepen-
dence and Correct Conditional Coverage tests significantly reject their corresponding
hypotheses for the one-factor ATSM and AJTSM. That is, the Correct Unconditional
Coverage test rejects that the fraction of VaR violations is equal to the nominal coverage
probability and the Independence test rejects that the VaR violations are independent.
Consequently, the Correct Conditional Coverage tests rejects that the VaR estimates
exhibit both properties. Essentially, the results show that the VaR estimates of the
one-factor ATSM and AJTSM are inadequate for Risk Management purposes.

Further analysis shows that the one-factor models are able to capture the P-dynamics
of the one-year interest rate swap, according to Figures (A) and (C) in C.1 in Appendix
C. However, the level of the VaR estimates is not conservative enough, resulting in a
large number of violations and the rejection of the Correct Unconditional Coverage.
Figures (A) and (C) in C.1 also show that the VaR violations occur in groups rather
than separately, rejecting the Independence property of the VaR estimates. Addition-
ally, the level of the VaR;¢ estimates in the figures indicate that the one-factor AJTSM
describes a wider distribution for the one-year interest rate swap rate®. Consequently,
Panel A and B in Table 4.5 show that the number of violations is larger for VaR,¢ esti-
mates of the one-factor ATSM than for VaR, ¢ estimates of the one-factor AJTSM. The
opposite is true for the VaRs5y and VaRgy estimates. This indicates that the relative
performance of the one-factor ATSM is worse than the performance of the one-factor

AJTSM for the VaR,y estimates, but better for the VaR5y and VaR; gy estimates.

5That is, the one-year interest rate swap rate can take a wider range of values in the one-factor
AJTSM than in the one-factor ATSM.



Panel A: ATSM

VaR,y VaRsy, VaRy

T T LRyc LRiND LReo | T LRyc LRiND LRce | Th LRyc LRiND LRce

lyear | 123 632.3 (0.00) 221.3 (0.00) 853.6 (0.00) | 260 1020 (0.00) 354.7 (0.00) 1374 (0.00) | 291 853.5 (0.00) 296.7 (0.00) 1150 (0.00)
2-year | 242 1663 0 00) 466.3 (0.00) 2130 (0.00) | 263 1040 (0.00) 384.9 (0 00) 1425 (0.00) | 276 765.2 (0 00) 348.0 (0.00) 1113 (0.00)
3-year | 211 1368 (0.00) 357.3 (0.00) 1725 (0.00) | 230 822.1 (0.00) 396.1 (0.00) 1218 (0.00) | 237 557.6 (0.00) 393.0 (0.00) 950.6 (0.00)
dyear | 171 1014 (0.00) 3985 (0.00) 1413 (0.00) | 186 563.8 (0.00) 373.4 (0.00) 937.2 (0.00) | 199 384 1(0.00) 327.4 (0.00) 711.4 (0.00)
S-year | 151 849.3 (0 00) 392.6 (0.00) 1242 (0.00) | 156 409.3 (0.00) 385.9 (0.00) 795.2 (0.00) | 167 259.5 (0.00) 362.3 (0.00) 621.7 (0.00)
6-year | 143 785.5 (0.00) 349.2 (0.00) 1135 (0.00) | 153 394.8 (0.00) 371.5 (0.00) 766.3 (0.00) | 158 228.1 (0.00) 365.4 (0.00) 593.5 (0.00)
T-year | 141 769.8 (0.00) 357.7 (0.00) 1128 (0.00) | 146 361.8 (0.00) 368.8 (0.00) 730.5 (0.00) | 153 211.3 (0.00) 388.2 (0.00) 599.5 (0.00)
Syear | 135 723.2 (0.00) 367.4 (0.00) 1091 (0.00) | 144 352.5 (0.00) 377.9 (0.00) 730.4 (0.00) | 146 188.8 (0.00) 380.3 (0.00) 569.1 (0.00)
9-year | 134 7155 (0.00) 366.0 (0.00) 1082 (0.00) | 141 338.8 (0.00) 392.9 (0.00) 731.7 (0.00) | 144 182.5 (0.00) 409.3 (0.00) 591.8 (0.00)
10-year | 134 715.5 (0.00) 383.3 (0.00) 1099 (0.00) | 137 320.8 (0.00) 375.4 (0.00) 696.2 (0.00) | 141 173.3 (0.00) 380.7 (0.00) 554.0 (0.00)
15-year | 108 523.3 (0.00) 294.0 (0.00) 817.3 (0 00) | 114 224.4 (0.00) 327.0 (0.00) 551.4 (0.00) | 116 104.1 (0.00) 319.6 (0.00) 423.7 (0.00)
20-year | 95 433.4 (0.00) 277.1 (0.00) 710.5 (0.00) | 99 168.2 (0.00) 296.8 (0.00) 465.1 (0.00) | 101 69.70 (0.00) 290.3 (0.00) 359.9 (0.00)
25-year | 79 329.2 (0.00) 205.3 (0.00) 534.4 (0.00) | 82 111.9 (0.00) 212.9 (0.00) 324.8 (0.00) | 85 39.40 (0.00) 233.2 (0.00) 272.6 (0.00)
30-year | 48 151.5 (0.00) 112.7 (0.00) 264.2 (0.00) | 50 31.20 (0.00) 119.5 (0.00) 150.7 (0.00) | 53 3.121 (0.08) 113.7 (0.00) 116.8 (0.00)

Panel B: AJTSM

VU,Rl% VaRs% VaRlO%

T Ty LRyc LRiND LRce | T LRyc LRinD LRoc | Th LRyc LRinD LERcco
lyear | 30 68.26 (0.00) 105.7 (0.00) 174.0 (0.00) | 326 1522 (0.00) 188.5 (0.00) 1710 (0.00) | 374 1450 (0.00) 100.9 (0.00) 1551 (0.00)
2year | 192 1196 (0.00) 298.9 (0.00) 1495 (0.00) | 286 1205 (0.00) 304.0 (0.00) 1509 (0.00) | 322 1052 (0.00) 249.3 (0.00) 1302 (0.00)
3oyear | 174 1040 (0.00) 377.9 (0.00) 1417 (0.00) | 248 938.5 (0.00) 364.5 (0.00) 1303 (0.00) | 271 736.9 (0.00) 323.0 (0.00) 1060 (0.00)
deyear | 151 849.3 (0.00) 369.4 (0.00) 1218 (0.00) | 207 682.5 (0.00) 319.0 (0.00) 1001 (0.00) | 232 533.2 (0.00) 288.3 (0.00) 8215 (0.00)
Seyear | 139 754.2 (0.00) 402.9 (0.00) 1157 (0.00) | 165 453.7 (0.00) 340.2 (0.00) 793.9 (0.00) | 187 335.0 (0.00) 338.1 (0.00) 673.1 (0.00)
Gyear | 128 660.7 (0.00) 413.7 (0.00) 1083 (0.00) | 159 423.9 (0.00) 366.3 (0.00) 790.2 (0.00) | 172 277.6 (0.00) 38L.7 (0.00) 659.4 (0.00)
Toyear | 124 639.7 (0.00) 393.5 (0.00) 1033 (0.00) | 154 399.6 (0.00) 389.2 (0.00) 788.8 (0.00) | 161 238.4 (0.00) 384.3 (0.00) 622.7 (0.00)
Syear | 116 580.7 (0.00) 385.0 (0.00) 967.7 (0.00) | 146 361.8 (0.00) 380.3 (0.00) 742.1 (0.00) | 156 221.3 (0.00) 368.4 (0.00) 589.8 (0.00)
9-year | 116 580.7 (0.00) 348.9 (0.00) 929.6 (0.00) | 146 361.8 (0.00) 386.9 (0.00) 748.6 (0.00) | 148 195.1 (0.00) 377.5 (0.00) 572.6 (0.00)
10-year | 109 530.4 (0.00) 312.9 (0.00) 843.3 (0.00) | 141 338.8 (0.00) 369.0 (0.00) 707.8 (0.00) | 145 185.6 (0.00) 374.0 (0.00) 559.6 (0.00)
15-year | 94  426.7 (0.00) 250.7 (0.00) 677.4 (0.00) | 118 240.3 (0.00) 323.1 (0.00) 563.4 (0.00) | 123 122.1 (0.00) 310.4 (0.00) 432.5 (0.00)
20-year | 73804 (000) 2072 (0.00) 5876 (0.00) | 103 1827 (000) 3167 (0.00) 4993 (0.00) | 105 7829 (0.00) 3095 (0.00) 38T (0.00)

| 61 221.6 (0.00) 154.7 (0.00) 376.3 (0.00) | 84 118.1 (0.00) 227.2 (0.00) 345.3 (0.00) | 88 44.54 (0.00) 250.4 (0.00) 294.9 (0.00)
S0year | 42 1217 (0.00) 124.8 (0.00) 246.6 (0.00) | 53 37.11 (0.00) 113.7 (0.00) 150.8 (0.00) | 62 9.594 (0.00) 118.8 (0.00) 128.3 (0.00)

TABLE 4.5: Value-at-Risk Backtests of One-Factor Models

Notes: This table reports the results of the Value-at-Risk (VaR) backtests for the one-factor model in the ATSM-framework (Panel A) and in the AJTSM-
framework (Panel B). The VaR estimates are constructed for the interest rate swaps from January 4, 2008 to January 1, 2016 (418 observations) by means
of Monte Carlo simulation. These VaR estimates have three different nominal coverage probabilities, namely v = {1%,5%, 10%}. This table provides the
number of VaR, violations (77) and the likelihood-ratio test statistics of the Correct Unconditional Coverage (LRy¢), Independence (LR;yp) and Correct
Conditional Coverage (LRc¢) tests. The corresponding p-values are reported in brackets.
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Using Panel A and B in Table 4.5 and Figures (B) and (D) in C.1, the analysis of the
rejected Correct Unconditional Coverage and Independence properties and the difference
between the one-factor ATSM and AJTSM can be extrapolated to the 30-year interest
rate swap as well. However, an analysis of the performance of the one-factor models
across the yield curve is more insightful. Figures (B) and (D) in C.1 show that both
models are unable to capture the P-dynamics of the 30-year interest rate swap. This
is related to the fact that one-factor models are not able to capture the Q-dynamics
with the market price of risk of a single factor. Similarly, in the previous subsection,
the goodness-of-fit measures show that the one-factor models perform poorly and are
misspecified for long-term yields. Figures (B) and (D) in C.1 adhere to these results.
They indicate that the dynamics of the 30-year interest rate swap are represented by,
approximately, a straight line as the Q-dynamics are not captured. According to the
one-factor models, it is unclear how the long-term yields are related to the short rate and
evolve over time. Effectively, the VaR and ES estimates are more static and conservative
as the maturity of the interest rate swap increases, resulting in a decrease in the number
of violations. The number of violations, however, remain substantial and result in the

inadequacy of both one-factor models for Value-at-Risk estimation.

Table 4.6 presents the results of the two-factor ATSM and AJTSM. Similar to the
results of the one-factor models, Correct Unconditional Coverage and Independence are
rejected for the one- to 10-year interest rate swap VaR estimates of the two-factor ATSM
and for the one- to five-year interest rate swap VaR estimates of the two-factor AJTSM.
The six- and seven-year interest rate swap VaR estimates of the two-factor AJTSM ex-
hibit Correct Unconditional Coverage, Independence and Correct Conditional Coverage
in several instances. However, the results suggest that this is most likely a coincidence
due to the decrease in VaR violations as the maturity increases. The large number of
rejected hypotheses attest to this assumption. For the remaining VaR estimates of the
interest rate swaps, there are no VaR violations. These results imply that the two-factor
ATSM and AJTSM are inadequate for Risk Management purposes as well.

A comparison of the two-factor ATSM and AJTSM shows that, in terms of VaR
violations, the two-factor AJTSM outperforms the two-factor ATSM. Moreover, a com-
parison of the one- and two-factor models shows that the two-factor ATSM performs
worse than the one-factor ATSM and that the two-factor AJTSM is superior to all one-

and two-factor models. However, the overall performance of the one- and two-factor
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models is poor and not useful for Value-at-Risk in Risk Management.

To gain further insight in the absence of VaR violations for a number of long-term
yields, I analyze Figures C.2 in Appendix C. In contrast to the one-factor models, the
figures show that the two-factor models are able to capture the P-dynamics of the one-
and 30-year interest rate swaps to a certain degree. This, indirectly, implies that the
two-factor models are able to capture the Q-dynamics to a larger extent than the one-
factor models. However, Figures (B) and (D) in C.2 indicate that the VaR estimates are
very conservative for the 30-year interest rate swap. Apparently, the two-factor models
do not capture the Q-dynamics to such an extent that the VaR estimates are accurate.
This results in zero VaR violations for long-term yields and inadequacy of ATSMs and

AJTSMs in Value-at-Risk estimation.



Panel A: ATSM

VaRl% VaR5% V(lRlU%
T Ty LRyc LRinD LRce | Th LRyc LRinp LRcc | T LRyc LRinD LRcc
l-year | 221 1461 (0.00) 356.1 (0.00) 1817 (0.00) | 329 1547 (0.00) 296.3 (0.00) 1843 (0.00) | 351 1262 (0.00) 246.7 (0.00) 1509 (0.00)
2-year | 345 2791 (0.00) 290.1 (0.00) 3081 (0.00) | 361 1835 (0.00) 251.1 (0.00) 2086 (0.00) | 380 1503 (0.00) 141.1 (0.00) 1644 (0.00)
3-year | 341 2742 (0.00) 276.4 (0.00) 3019 (0.00) | 362 1845 (0.00) 234.4 (0.00) 2079 (0.00) | 378 1485 (0.00) 119.7 (0.00) 1605 (0.00)
4-year | 330 2610 (0.00) 250.4 (0.00) 2861 (0.00) | 356 1788 (0.00) 219.3 (0.00) 2007 (0.00) | 372 1433 (0.00) 108.5 (0.00) 1541 (0.00)
5-year | 311 2391 (0.00) 336.7 (0.00) 2727 (0.00) | 339 1633 (0.00) 248.8 (0.00) 1882 (0.00) | 354 1285 (0.00) 166.6 (0.00) 1452 (0.00)
6-year | 281 2062 (0.00) 301.2 (0.00) 2363 (0.00) | 312 1406 (0.00) 290.1 (0.00) 1696 (0.00) | 328 1094 (0.00) 245.3 (0.00) 1339 (0.00)
T-year | 206 1322 (0.00) 301.5 (0.00) 1623 (0.00) | 252 965.2 (0.00) 303.1 (0.00) 1268 (0.00) | 285 817.6 (0.00) 268.5 (0.00) 1086 (0.00)
8-year | 137 738.6 (0.00) 341.6 (0.00) 1080 (0.00) | 171 484.3 (0.00) 315.7 (0.00) 800.0 (0.00) | 199 384.1 (0.00) 318.2 (0.00) 702.3 (0.00)
9-year 89 393.5 (0.00) 315.7 (0.00) 709.1 (0.00) | 112 216.6 (0.00) 301.7 (0.00) 518.2 (0.00) | 133 149.6 (0.00) 358.1 (0.00) 507.8 (0.00)
10-year | 48 151.5 (0 00) 256.3 (0.00) 407.8 (0.00) | 78 99.92 (0.00) 299.3 (0.00) 399.2 (0.00) | 85 39.41 (0.00) 318.3 (0.00) 357.7 (0.00)
15-year | 0 - 0 - - 0 - -
20-year | 0 - - - 0 - - - 0 - - -
25-year | 0 - - - 0 - - - 0 - - -
30-year | 0 - - - 0 - - - 0 - - -

Panel B: AJTSM

VaR;y VaRsy, VaRygy,
T T LRyc LRiND LRco \ T LRyc LRiND LRcc \ Ty LRyc LRiND LRcc
1-year 27 56.40 (0.00) 20.54 (0.00) 76.39 (0.00) | 119 244.3 (0.00) 172.3 (0.00) 416.5 (0.00) | 179 303.9 (0.00) 238.1 (0.00) 542.1 (0.00)
2-year | 120 610.1 (0.00) 125.5 (0.00) 735.6 (0.00) | 215 729.9 (0.00) 245.1 (0.00) 975.4 (0.00) | 254 644.3 (0.00) 236.3 (0.00) 880.6 (0.00)
3-year | 118 595.3 (0.00) 107.2 (0.00) 702.6 (0.00) | 210 700.1 (0.00) 260.5 (0.00) 960.6 (0.00) | 244 592.6 (0.00) 336.6 (0.00) 929.2 (0.00)
4-year 86 373.9 (0.00) 76.54 (0.00) 450.4 (0.00) | 170 479.2 (0.00) 240.4 (0.00) 719.6 (0.00) | 204 405.3 (0.00) 309.9 (0.00) 715.2 (0.00)
5-year 36 93.95 (0.00) 24.47 (0.00) 118.3 (0.00) | 92 144.1 (0.00) 119.9 (0.00) 263.9 (0.00) | 127 132.8 (0.00) 183.6 (0.00) 316.4 (0.00)
6-year 5 0.200 (0.70) 4.100 (0.04) 4.300 (0.12) | 32 5.401 (0.02) 26.23 (0.00) 31.69 (0.00) | 48 1.211 (0.32) 38.83 (0.00) 39.82 (0.00)
T-year 0 - - - 2 29.30 (0.00) - - 8 44.16 (0.00) 2.200 (0.13) 46.39 (0.00)
8-year 0 - - - 0 - - - 0 - - -
9-year 0 - - - 0 - - - 0 - - -
10-year | 0 - - - 0 - - - 0 - - -
15-year | 0 - - - 0 - - - 0 - - -
20-year | 0 - - - 0 - - - 0 - - -
25-year | 0 - - - 0 - - - 0 - - -
30-year | 0 - - - 0 - - - 0 - - -

TABLE 4.6: Value-at-Risk Backtests of Two-Factor Models

Notes: This table reports the results of the Value-at-Risk (VaR) backtests for the two-factor model in the ATSM-framework (Panel A) and in the AJTSM-
framework (Panel B). The VaR estimates are constructed for the interest rate swaps from January 4, 2008 to January 1, 2016 (418 observations) by means
of Monte Carlo simulation. These VaR estimates have three different nominal coverage probabilities, namely v = {1%,5%, 10%}. This table provides the
number of VaR violations (77) and the likelihood-ratio test statistics of the Correct Unconditional Coverage (LRy¢), Independence (LRrnyp) and Correct
Conditional Coverage (LRcc) tests. The corresponding p-values are reported in brackets. The test statistics, and their corresponding p-values, can not be
computed for VaR estimates with zero VaR violations.
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Expected Shortfall

The analysis of the ES estimates in Figures C.1 and C.2 demonstrate that the ES
estimates follow the same dynamics as their corresponding VaR, estimates. That is, the
ES estimates of one-factor models are able to capture the P-dynamics of short-term
yields, but not of the long-term yields. The ES estimates of two-factor models are able
to capture the P-dynamics of short-term yields and the long-term yields, to a larger
extent than the ES estimates of the one-factor models. As mentioned in the previous
analysis of the VaR estimates, this result is related to the inability of the models to
capture the Q-dynamics of the yield curve. More importantly, Figures C.1 and C.2
graphically confirm that the one- and two-factor ATSMs and AJTSMs are inadequate
for Risk Management purposes with respect to Expected Shortfall estimation.

Panel A in Table 4.7 provides quantitative results to confirm this inadequacy by reject-
ing the correct unconditional coverage and independence properties of the ES estimates
of the one-factor models. The table shows that the Saddlepoint Approximation tests re-
ject the correct unconditional coverage for all one-factor models as all p-values are zero.
Similarly, the Box-Pierce tests reject that there is no autocorrelation in the cumulative
violation process of the ES estimates. The results indicate that there is no difference in

the poor performance of the one-factor ATSM and AJTSM.

Similar to the VaR backtests for the two-factor models, Panel B in Table 4.7 shows
that a large number of tests can not be computed due to scarcity of VaR violations.
The feasible tests indicate that there is a distinction between the performance of the
two-factor ATSM and AJTSM. The results of the two-factor ATSM show that all, but
two, Saddlepoint Approximation and Box-Pierce tests return zero p-values. Therefore,
the ES estimates of the two-factor ATSM do not exhibit correct unconditional coverage
or independence. This reflects the poor performance of the two-factor ATSM VaR esti-
mates. The results of the two-factor AJTSM, however, indicate a diverse performance
with respect to correct unconditional coverage and independence. The Box-Pierce tests
show that the FS;¢ estimates of the two-factor AJTSM exhibit independence. This
holds, to a lesser extent, for the ESs5y estimates as well. The Saddlepoint Approx-
imation tests reject the correct conditional coverage property for the majority of ES
estimates of the two-factor AJTSM. Exceptions occur for several cases with a small

number of VaR violations.
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Panel A: One-Factor Models

1-Factor ATSM 1-Factor AJTSM
ES1y ESsy, ESioy, ESi E S5y ESio%
T PP DPSPA ‘ PP PSPA ‘ bBrP PSPA | PBP DPSPA ‘ bPBP PspA ‘ PP DPSPA

l-year | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 |0.00 0.00
2-year | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 |0.00 0.00 [0.00 0.00 |0.00 0.00
3-year | 0.00 0.00 [ 0.00 0.00 | 0.00 0.00 |0.00 0.00 | 0.00 0.00 |0.00 0.00
4-year | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 |0.00 0.00
5-year | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 |0.00 0.00 [0.00 0.00 |0.00 0.00
6-year | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 [0.00 0.00 |0.00 0.00
7-year | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 |0.00 0.00
8-year | 0.00 0.00 [ 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 |0.00 0.00
9-year | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 |0.00 0.00 [0.00 0.00 |0.00 0.00
10-year | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
15-year | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 |0.00 0.00
20-year | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 |0.00 0.00 [0.00 0.00 |0.00 0.00
25-year | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 [0.00 0.00 |0.00 0.00
30-year | 0.00  0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 |0.00 0.00

Panel B: Two-Factor Models

2-Factor ATSM 2-Factor AJTSM
ESo E S5y ES10% ES1y ESsy, ES10%
T PP PsSpPA ‘ bPBp PspA | PBP PSPA | PBP DPSPA ‘ PP DPSPA ‘ PP PsprA

l-year | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 |0.03 0.00 |0.01 0.00 |0.00 0.00
2-year | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 |0.06 0.00 | 1.00 0.00 | 0.00 0.00
3-year | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 {0.99 0.00 | 0.94 0.00 | 0.00 0.00
4-year | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 {0.99 0.00 |0.10 0.00 | 0.00 0.00
5-year | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 |0.99 0.00 | 0.00 0.00 | 0.00 0.04
6-year | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 [1.00 0.00 | 0.00 0.01 |0.00 0.96
7-year | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 - - 0.00 0.12 | 0.00 1.00
8-year | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 - - - - - -
9-year | 0.00 0.00 | 0.00 0.91 | 0.00 0.00 - - - - - -
10-year | 0.00 0.00 | 0.00 0.85 | 0.00 0.00 - - - - - -
15-year - - - - - - - - - - - -
20-year - - - - - - - - - - - -
25-year - - - - - - - - - - - -
30-year - - - - - - - - - - - -

TABLE 4.7: Expected Shortfall Backtests of One- and Two-Factor Models

Notes: This table reports the results of the Expected Shortfall (ES) backtests for the one-
factor (Panel A) and two-factor (Panel B) model in, both, the ATSM-framework and the
AJTSM-framework. The ES estimates are constructed for the interest rate swaps from January
4, 2008 to January 1, 2016 (418 observations) by means of Monte Carlo simulation. These ES
estimates have three different nominal coverage probabilities, namely v = {1%,5%, 10%}. This
table provides the p-values of the Saddlepoint Approximation test (pspa) and the Box-Pierce
test (pgp). The test statistics, and their corresponding p-values, can not be computed for ES
estimates with zero VaR violations.

These results indicate that both two-factor models are inadequate for Expected Short-
fall estimation in Risk Management. Although the performance of the two-factor ATSM

is worse than the two-factor AJTSM, the results refute that either the ATSMs or

AJTSMs are able to accurately estimate Expected Shortfall values.



5. Conclusion

This paper considers whether there is a significant difference between Affine Term
Structure Models (ATSMs) and Affine Jump Term Structure Models (AJTSMs) with
respect to their in-sample and out-of-sample performance for the riskless interest rates.
In this research, I derive and propose to use one-, two- and three-factor ATSMs and
AJTSMs within the Vasicek framework for the riskless interest rates. Subsequently, 1
test whether the jump diffusion component is empirically justified in each AJTSM. I
propose goodness-of-fit measures to compare the in-sample performance of the ATSMs
and AJTSMs. Lastly, I compute and backtest Value-at-Risk (VaR) and Expected Short-
fall (ES) estimates of interest rate swaps to compare the out-of-sample performance of

the ATSMs and AJTSMs.

Firstly, I find that the significance of the jump parameters in the AJTSMs indicates the
empirical justification of jump diffusion components in the riskless interest rate process.
In economic terms, this result attributes to the presence of jumps in the riskless interest
rate process. I find significant jump diffusion components in the parameter estimation
for the complete sample and, more specifically, for the pre- and mid-crisis samples. For
these samples, each model in the AJTSM-framework incorporates, at least, one factor
with a significant jump diffusion component. In the presence of significant jump diffu-
sion components, I find that volatility estimates decrease, except during the mid-crisis
period. In contrast to the complete sample and the pre- and mid-crisis samples, I find
that the post-crisis period does not exhibit significant jump parameters. That is, there
is no presence of jumps in the riskless interest rate process after the financial crisis of
2008.

Secondly, I find that, from an economic perspective, the three-factor ATSM is supe-

rior in fitting the entire yield curve for the complete sample and all sub-samples. The

o7
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goodness-of-fit measures indicate that the one-factor ATSM and AJTSM fit the yield
curve poorly and are misspecified for long-term yields. Although the two-factor ATSM
and AJTSM exhibit an improvement in their performance over the one-factor models,
both two-factor models are misspecified for long-term yields as well. The two-factor
models for the pre-crisis sample are exceptions to this result. Ultimately, the three-
factor ATSM fits the entire yield curve well and the Ri’s indicate that the model is not
misspecified. A comparison of ATSMs and AJTSMs shows that the AJTSM-framework
performs marginally better than the ATSM-framework in the case of one-factor models.
However, the ATSM-framework performs substantially better in the case of the two-
factor models. This result is observed for the complete sample and all sub-samples. Due
to identification problems, I am not able to estimate the parameters of the three-factor
AJTSM.

Thirdly, the results in this paper show that ATSMs and AJTSMs perform poorly in
terms of Value-at-Risk and Expected Shortfall estimation. From a Risk Management
perspective, ATSMs and AJTSMs are inadequate for interest rate swaps. I find that
VaR and ES estimates of one-factor ATSMs and AJTSMs are inaccurate for short-term
interest rate swaps and are not able to capture the dynamics of the long-term interest
rate swaps. Although two-factor ATSMs and AJTSMs improve upon the one-factor
ATSMs and AJTSMs in terms of VaR and ES estimates, Correct Unconditional Cov-
erage, Independence, Correct Conditional Coverage, Saddlepoint Approximation and
Box-Pierce tests reject the application of these two-factor models in Risk Management
as well. There is, however, a significant difference in the performance of the two-factor

models in favor of the two-factor AJTSM.

In conclusion, this paper confirms that there is empirical justification for a jump
diffusion component in the riskless interest rate process. The addition of this jump
diffusion component in Affine Term Structure Models does not result in a significant
improvement in the in-sample performance. That is, the three-factor ATSM is superior
in fitting the entire yield curve in-sample. Lastly, the results in this paper establish
that ATSMs and AJTSMs are not applicable in out-of-sample VaR and ES estimation

in Risk Management.



6. Limitations and Further Research

In this research, I encountered certain limitations with respect to the data, models
and parameter estimation. Firstly, I emphasize that the data for the pre- and mid-crisis
samples contains 104 observations for each period. This amount is too small for accu-
rate parameter estimation and is reflected in the insignificance of parameters in these
samples. Secondly, I encountered long computation times for the parameter estimation
of the three-factor ATSM. In order to compute VaR and ES estimates, the parameter
estimation procedure reiterates 418 times, which is not feasible within the time-frame

of this research.

This paper is first in its use of AJTSMs on the riskless interest rates and in its
application of ATSMs and AJTSMs in Risk Management. Therefore, there are several
directions for further research to explore these new fields of application. The first direc-
tion for further research is to investigate whether the outperformance of the two-factor
AJTSM by the two-factor ATSM, in the presence of jumps, is due to the approximation
of the AJTSM. This can be done by means of a simulation study. One would expect
that each model performs best for its own Data Generating Process (DGP). In case the
ATSMs outperform AJTSMs for DGPs, that are based on AJTSMs, the approximation
of the AJTSM is not accurate. The second direction is to perform a similar research
with ATSMs and AJTSMs in a different framework than the Vasicek-framework. In
order to improve upon capturing the Q-dynamics, one might investigate the Hull-White
or Heath-Jarrow-Morton framework in this respect. More interestingly, the assumption
of diversifiable jump risk could be relaxed, using Baz and Das (1996), to increase the
flexibility in the Q-dynamics. Similarly, the Cox-Ingersoll-Ross framework would be
attractive in order to provide a more realistic model for the P-dynamics of the riskless

interest rates. The third direction for further research is to investigate the anomalous
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behaviour of the QMLE procedure for parameter estimation of the three-factor AJTSM.
The fourth direction for further research would be to compare the VaR and ES es-
timates of ATSMs and AJTSMs to VaR and ES estimates of a vector autoregressive
(VAR) model. The VAR model is statistically optimal and, therefore, is a credible
benchmark for the VaR and ES estimates. Besides VaR and ES estimation, which focus
on the variance of the interest rate swap forecasts, the out-of-sample performance could
be based on the RMSE and MAE, which concern the mean of the interest rate swap

forecasts.



A.  Models and Methodology Appendiz

A.1 PDE derivation for ATSMs

In this subsection, I derive the ODEs for A(7) and B(7) in the pricing equation:
P(t, 1) = AM=BO®) (A1)
Firstly, I derive the partial derivatives of P(t,7):
By(7)r(t))eA ) =Br)
Bi(r)r(t)) P(t, 7),

(7)

— (At
At(T)

( _
)eA(T)—B(T)T‘(t)

(A.2)
T)P(t,7),

P, =

P.=—-B(r

PT’T‘ = B2(T)6A(T)7B(T)r(t)
= B*(1)P(t, 7).

Substitution of these derivatives in the PDE yields:

0.2
0= P+ (n—E&()o)Pr+ o Prp —r()P(L,7)

0.2
0= (Ai(7) = Bi(r)r(8)) P(t,7) — (0 = &(t)o) B(T) P(L, 7) + 732(7)1[’(@ 7)

— r(t)P(t,7) (A.3)
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The Vasicek model is defined by:

p=r(0=r), (A4)
Using Equation (A.4), the PDE simplifies to:
0.2
0= Ay(r) = (Lt Bi(m)r(t) = (5 (0 = r(t)) — £()0) B(r) + & BA(r)
~ 0-2
0= A44(7) = (1 + Bi(r)r(t) = (6 (1)) B(r) + T BA(7) (A.5)

~ 0'2
0= A1) — KOB(T) + ?BQ(T) — (14 B(1) — kB(7))r(t).

A.2 PDE derivation for AJTSMs

For notational convenience, I transform the PDE in Equation (2.24) from coefficients in

the P-measure to coefficients in the Q-measure. This is done by substituting § = 6— %
The PDE simplifies to:
5 UQPTT
0=PFP +r(0—r(t)P+ —r(t)P(t,T)
2, 2 (A.6)
+ AP(t, ) |—aB(T) + B%B(T)Q .
I restate the partial derivatives of the pricing function, P(t, 7), for convenience:
Py = (Au(r) — Bu(r)r(0))eA) B0
= (Ai(7) = Bi(7)r(t)) P(t, 7),
P,,. = _B(T)GA( )_B(T)T(t)
(A.7)
= —B(7)P(t,7),
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and substitution in Equation (A.6) yields:

0 =(A¢(1) — Be(m)r(t))P(t,7) — (0 — r(t))B(T)P(t, T)

n O'QBQ(TQ)P(t,T)

B2+Oé2

—r(t)P(t,7) + AP(t,T) [—aB(T) + B(r)ﬂ ,

~ 0.2 2 e
0 =44(r) ~ B(P)r(t) - (0 - r(t) B(7) + T2 17

a2 ; O‘QB(T)Q] ,

—r(t)
(A.8)

2

o2B?(1)
2

+ (=1 — Bi(1) + kB(7))r(t).

0 :At(T) +

— KOB(T) + A {_QB(T) n B(T)z}

A.3 Approximation of f(r:|r:_1)

The approximation of f(r¢|r;—1) is based on taking the expectation of 3 7 ; e™i and
Z?:l e?*¥i. Assuming that jumps in the riskless interest rate are equally spread over

time, Lin and Yeh (1999) show:

n | n | . )
E j;efi% = ];E [e'ﬂby] =nkE [emﬁ} :n/t_l eﬁwﬂw _ ﬁ (enAt . 1). (A.9)

Equivalently,

n

n t
1
E ;:1 28 | = E E [62”%} =nk [e%ﬂ = n/ e%wiAtw

j=1 t—1 (A.10)

- Q:At (% - 1).

Substituting Equations (A.9) and (A.10) in the conditional pdf (2.38) results in the

approximation of the conditional pdf (2.40).
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A.4 Multi-factor framework: System of equations

The goal of solving the system of equations is to obtain an expression for the n factors.
In this subsection, I derive these expressions for the two- and three- factor model. To
this extent, I use the equations that are modeled without measurement errors. For the

two-factor model, I consider the following system of equations:

x1 = A(m) — Bi(m1)y1 — Ba(11)y2,

(A.11)
z9 = A(12) — Bi(m2)y1 — Ba(m2)y2,
where z; = In[P(t,7;)] and y; = y;(t) for brevity. Solving for y; and y2, yields:
A —x1—B
(Express gy in ) — gy = 2 =11~ Balmilue,
Bi(m1)
A —x1—B
(Substitution) — xo = A(72) — B1(72) (71) gi(ﬁ) 2(r)y2 By (12)ya,
A(Tl) — T
— A(m) — Bi(r) )~ 1
w3 = A(72) — Bi(72) By ()
(A.12)

Bi(12)Ba(m1)
+ Y2 <Bl(71) - BZ(TZ)> )

A(Tg) — Bl(Tg)% — T2

Bs(19) — BulnlBan) (;i)(ff)m)

- A(n) —x1 — Ba(m)i2
n Bi(n) .

(Solve for y2) — g2 =

For the three-factor model, I consider the following system of equations:

x1 = A(11) — Bi(m1)y1 — Ba(11)y2 — Bs(71)ys,
wy = A(72) — B1(m2)y1 — Ba2(72)y2 — B3(72)ys, (A.13)

x3 = A(13) — Bi(13)y1 — Ba2(73)y2 — B3(73)y3,

where z; and y; are similarly defined.
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Solving for y1, y2 and ys, I first express y; and ys in terms of ys:

gy = ) = 21 = Ba(n)yz — Bs(r)ys
' Bi(m1) ’
A(m1) — 1 — Ba(11)y2 — Bs(m1)ys
By (71)

Tr9 = A(TQ) — Bl(Tg)

— By(12)y2 — B3(12)ys,

A(Tl) — I B1(7'2)BQ(7'1)
Bi(m1) +y2< Bi(m) _B2(72))

By (72)B3(1)
+ Y3 (Bl(ﬁ) - B3(7'2)> )

Yo = [A(Tz) — B (Tz)A(;ll)(T_l)xl — T2+ Y3 <B1(;21)(179_13)(T1) - 33(72)>]

—1
x <Bz(7-2) _bB (;21)(?12)(7'1)>

z9 = A(12) — Bi(72) (A.14)

Substituting 37 and ys in 3, yields:

A(11) — 21 — Ba(11)y2 — B3(11)ys3
Bi(m1)

X [A(m) _Bl(TQ)A(Tl) i P (Bl(T?)B?’(Tl) _BS(TQ)H (A.15)

r3 — A(Tg) — Bl(Tg) — BQ(T?,)

Bi(m1) Bi(m1)

-1
- Bl(TQ)B2(T1)> — B3(73)ys.

X (BQ(TQ) Bl (Tl)

Rearranging ys3, generates:

A(Tl)—l’l A(Tl)—:El o :|
Bl(Tl) Bl(’Tl) 2

Bi(r)Ba(r1)  Ba(m)\ Bi(11)Ba(m2) — Bi(72)Ba(m1)\ "
g ((Bz( i(m) > i < > )
) _

€T3 = A(Tg) — B (Tg) + |:A(7'2) - Bl(7'2)

m3)Bi(11)  Ba(13) By(73)Ba(1)
(A.16)

Bl(Tg)Bg(Tl Bl(TQ)BS(Tl)
+y3 [31(7'1) Bs(r3) + <Bl(7'1) - 33(72)> X

<(§2(72;g2(7'1) BQ(TZ)>1 N <Bl(7'1)B2(7'2) - Bl(72)32(71)>1>] |

(r3)Bi(r1)  Ba(7s) By (73)Ba(71)
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Subsequently, y1, y2 and y3 can be expressed as:

— + |:A(7‘2) — B1(7’2)

S

|
o ——

-1 Bl(Tl)BQ(TQ) - Bl(T2)B2(Tl) -
* ( By(73) B2(71) ) )

X [33(73) _ Bl(;?;)(ff)(ﬁ By (;21)(?13)(71) - Bg(Tz)) X
<Bl(T2)BQ(T1) B B2(72)>_1 n (Bl(Tl)BQ(TQ) — B1(7’2)Bz(7’1))_1 o (A.17)
Bo(13)B1(11)  Ba(13) By (73)Ba(T1)
B2 = [A(Tz) - 31(7_2)14(;11)(;)551 —x2 + U3 (Bl(;)(i?’)(ﬁ) - 33(72)>]
1

% ( Ba(m) Bl%?(iz)(ﬁ))
. A(m) — @1 — By(m1)d2 — Bs(71)ds
Y1 Bi(m) .

A.5 Multi-factor framework: Jacobian

Using the solutions of the factors, I calculate the corresponding Jacobian for the two-

and three-factor models. The Jacobian is defined as:

i i
T1 Tom
J=: , (A.18)
Un On
T1 T
where y; denotes the " factor and z; = In [P(t,7;)]. This results in:
91 1 T 2 T3
Jo=|" "2 and J3= |2 B2 2| (A.19)
gi yl z1 x2 x3
Lo T2 g3 g3 Us

1 X2 X3

for, respectively, the two- and three-factor models. Due to the linear relation between

9; and x;, the first-order partial derivatives are easily derived from the results in the

previous subsection.



B. Data Analysis Appendiz

B.1 Average yield curves

Average Yield Curve 2006 - 2016
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FicUrRE B.1: Average Yield Curve

Notes: This figure shows the average yield curve (in %) of the riskless interest rates. The yield
curve is based on the complete sample, from January 6, 2006 to January 1, 2016, and is presented
until a maturity of 30 years. The yield curve is bootstrapped from US LIBOR money market
deposits and US interest rate swaps.
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Average Yield Curve 2006 - 2007
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FIGURE B.2: Average Yield Curve of Sub-Samples
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Notes: This figure shows the average yield curve (in %) of the riskless interest rates for (from
top to bottom) the pre-crisis, mid-crisis and post-crisis samples. The pre-crisis sample ranges
from January 6, 2006 to December 28, 2007, the mid-crisis sample ranges from January 4, 2008
to December 25, 2009 and the post-crisis sample ranges from January 1, 2010 to January 1, 2016.
The yield curve is presented until a maturity of 30 years and is bootstrapped from US LIBOR

money market deposits and US interest rate swaps.
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B.2 Summary Statistics

Panel A: Pre-Crisis Sample

Maturity Mean (%) SD (%) Skewness Kurtosis p1 026 P52
3-month 5.3962 0.2685 -0.9759 3.3675  0.9054 -0.1881 -0.0296
6-month 5.3432 0.2529 -0.9879 3.0846  0.9086 -0.2310 -0.0034
1-year 5.2004 0.3420 -1.3615 4.3649  0.9162 -0.1241 -0.0385
2-year 5.0695 0.3871 -1.3178 4.6107  0.9133 -0.1280 0.0637
3-year 5.0576 0.3674 -1.0798 4.2515 0.9118 -0.1679 0.1318
4-year 5.0841 0.3453 -0.8485 3.8558  0.9088 -0.2017 0.1775
d-year 5.1225 0.3233 -0.6208 3.4785  0.9060 -0.2400 0.2179
6-year 5.1597 0.3068 -0.4283 3.1566  0.9047 -0.2722 0.2478
T-year 5.1937 0.2936 -0.2623 2.9057  0.9037 -0.3046 0.2753
8-year 5.2253 0.2834 -0.1312 2.7161  0.9029 -0.3313 0.2962
9-year 5.2549 0.2757 -0.0305 2.5789  0.9022 -0.3528 0.3116
10-year 5.2822 0.2701 0.0439 2.4839  0.9021 -0.3689 0.3225
15-year 5.3822 0.2544 0.1729 2.2854  0.9010 -0.4007 0.3451
20-year 5.4279 0.2484 0.2021 2.2306  0.9007 -0.4091 0.3480
25-year 5.4404 0.2466 0.2138 2.2289  0.8997 -0.4083 0.3480
30-year 5.4409 0.2459 0.2195 2.2379  0.9002 -0.4068 0.3459
Panel B: Mid-Crisis Sample
Maturity Mean (%) SD (%) Skewness Kurtosis p1 026 P52
3-month 1.8514 1.2881 0.3359 2.0194  0.9552 0.2720 -0.3688
6-month 2.1231 1.1183 0.0727 1.8577  0.9563 0.2627 -0.3695
1-year 1.8308 1.0219 0.1709 1.4489  0.9627 0.2626 -0.3864
2-year 2.1903 0.8774 0.3874 1.5833 0.9643 0.1672 -0.3494
3-year 2.6018 0.7906 0.4661 1.7185  0.9627 0.0589 -0.2943
4-year 2.9323 0.7278 0.4019 1.7708  0.9598 -0.0261 -0.2480
d-year 3.1833 0.6826 0.2654 1.8187  0.9557 -0.0905 -0.2141
6-year 3.3847 0.6579 0.1065 1.8750  0.9524 -0.1354 -0.1956
T-year 3.5445 0.6437 -0.0395 1.9582  0.9498 -0.1655 -0.1853
8-year 3.6676 0.6387 -0.1554 2.0245 0.9488 -0.1811 -0.1842
9-year 3.7677 0.6362 -0.2547 2.0955 0.9476 -0.1897 -0.1891
10-year 3.8507 0.6325 -0.3279 2.1658  0.9487 -0.1971 -0.1925
15-year 4.1141 0.6300 -0.5252 2.3675 0.9480 -0.2057 -0.2169
20-year 4.1906 0.6586 -0.5819 2.4469  0.9526 -0.2010 -0.2393
25-year 4.2128 0.6805 -0.6132 2.4664  0.9548 -0.2072 -0.2450
30-year 4.2273 0.6881 -0.6562 2.5507  0.9529 -0.2146 -0.2455
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Panel C: Post-Crisis Sample
Maturity Mean (%) SD (%) Skewness Kurtosis  p; P26 P52

3-month 0.3272 0.0983 1.2314 3.3658  0.9766 0.2538 -0.1247
6-month 0.4975 0.1477 0.8075 2.4022  0.9850 0.3851 -0.0732
1-year 0.4412 0.1308 0.8679 3.5359  0.9411 0.3492 -0.0134
2-year 0.6848 0.2329 0.6367 2.6718 0.9451 0.3776 0.2909
3-year 0.9908 0.3538 0.4926 2.7354 0.9585 0.3595 0.3439
4-year 1.3072 0.4393 0.4062 2.8689 0.9634 0.3485 0.3102
d-year 1.6047 0.4943 0.3987 2.8895 0.9663 0.3449 0.2605
6-year 1.8680 0.5296 0.4315 2.8268 0.9684 0.3443 0.2171
T-year 2.0897 0.5522 0.4663 2.7206  0.9698 0.3441 0.1819
8-year 2.2725 0.5673 0.4958 25980 0.9711 0.3446 0.1544
9-year 2.4254 0.5790 0.5123 24867 0.9721 0.3469 0.1322
10-year 2.5553 0.5885 0.5256 2.4000 0.9725 0.3475 0.1157
15-year 2.9698 0.6195 0.5131 21756  0.9748 0.3611 0.0773
20-year 3.1392 0.6279 0.4541 2.0682  0.9761 0.3727 0.0579
25-year 3.2189 0.6313 0.4211 2.0172  0.9764 0.3783 0.0491
30-year 3.2635 0.6306 0.4034 1.9996 09769 0.3817 0.0456

TABLE B.1: Summary Statistics of Sub-Samples

Notes: This table shows the summary statistics of the weekly yield curve for the pre-crisis
(Panel A), mid-crisis (Panel B) and post-crisis (Panel C) samples. The pre-crisis sample
ranges from January 6, 2006 to December 28, 2007, the mid-crisis sample ranges from January
4, 2008 to December 25, 2009 and the post-crisis sample ranges from January 1, 2010 to January
1, 2016. The table provides the mean (in %), standard deviation (SD in %), skewness and
kurtosis. The one-, 26- and 52-week auto-correlation coefficients are denoted by, respectively,

p1, p26 and psa.



B.3 Cross-correlations

Panel A: Complete Sample

Maturity 3-month 6-month 1 year 2 year 3 year 4 year 5 year 6 year 7 year 8 year 9 year 10 year 15 year 20 year 25 year 30 year

3-month 1.0000

6-month 0.9976 1.0000

1 year 0.9930 0.9950 1.0000

2 year 0.9811 0.9855 0.9943 1.0000

3 year 0.9645 0.9699 0.9799 0.9951 1.0000

4 year 0.9474 0.9529 0.9637 0.9849 0.9970 1.0000

5 year 0.9321 0.9374 0.9488 0.9736 0.9905 0.9980 1.0000

6 year 0.9187 0.9235 0.9353 0.9621 0.9823 0.9933 0.9986 1.0000

7 year 0.9069 0.9113 0.9233 0.9512 0.9737 0.9873 0.9952 0.9990 1.0000

8 year 0.8972 0.9010 0.9131 0.9415 0.9654 0.9810 0.9908 0.9966 0.9993 1.0000

9 year 0.8884 0.8917 0.9038 0.9325 0.9574 0.9744 0.9859 0.9933 0.9975 0.9994 1.0000

10 year 0.8803 0.8832 0.8954 0.9242 0.9498 0.9680 0.9808 0.9896 0.9950 0.9980 0.9996 1.0000

15 year 0.8487 0.8501 0.8629 0.8914 0.9187 0.9403 0.9574 0.9704 0.9799 0.9865 0.9913 0.9947 1.0000

20 year 0.8346 0.8345 0.8484 0.8761 0.9033 0.9257 0.9442 0.9588 0.9698 0.9779 0.9841 0.9888 0.9987 1.0000

25 year 0.8259 0.8249 0.8397 0.8668 0.8939 0.9165 0.9357 0.9512 0.9630 0.9720 0.9789 0.9842 0.9968 0.9995 1.0000

30 year 0.8204 0.8191 0.8342 0.8611 0.8880 0.9109 0.9305 0.9464 0.9587 0.9681 0.9755 0.9813 0.9953 0.9989 0.9998 1.0000
Panel B: Pre-Crisis Sample

Maturity 3-month 6-month 1 year 2 year 3 year 4 year 5 year 6 year 7 year 8 year 9 year 10 year 15 year 20 year 25 year 30 year

3-month 1.0000

6-month 0.8983 1.0000

1 year 0.5358 0.8205 1.0000

2 year 0.4120 0.7334 0.9769 1.0000

3 year 0.3942 0.7138 0.9521 0.9930 1.0000

4 year 0.3945 0.7062 0.9287 0.9790 0.9959 1.0000

5 year 0.4017 0.7024 0.9028 0.9591 0.9848 0.9963 1.0000

6 year 0.4159 0.7033 0.8772 0.9366 0.9694 0.9872 0.9971 1.0000

7 year 0.4283 0.7010 0.8481 0.9100 0.9493 0.9731 0.9890 0.9973 1.0000

8 year 0.4409 0.6992 0.8197 0.8827 0.9274 0.9562 0.9772 0.9904 0.9978 1.0000

9 year 0.4520 0.6960 0.7916 0.8550 0.9042 0.9373 0.9629 0.9804 0.9921 0.9982 1.0000

10 year 0.4591 0.6916 0.7671 0.8305 0.8832 0.9197 0.9488 0.9698 0.9849 0.9941 0.9988 1.0000

15 year 0.4907 0.6814 0.6882 0.7464 0.8071 0.8525 0.8915 0.9224 0.9475 0.9661 0.9796 0.9880 1.0000

20 year 0.4991 0.6695 0.6468 0.7027 0.7667 0.8157 0.8589 0.8939 0.9233 0.9460 0.9633 0.9749 0.9975 1.0000

25 year 0.5019 0.6638 0.6308 0.6856 0.7506 0.8009 0.8454 0.8819 0.9128 0.9369 0.9556 0.9684 0.9951 0.9995 1.0000

30 year 0.5025 0.6599 0.6212 0.6758 0.7415 0.7926 0.8379 0.8753 0.9070 0.9319 0.9514 0.9649 0.9936 0.9990 0.9998 1.0000
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Panel C: Mid-Crisis Sample
Maturity ‘ 3-month 6-month 1 year 2 year 3 year 4 year 5 year 6 year 7 year 8 year 9 year 10 year 15 year 20 year 25 year 30 year

3-month 1.0000

6-month 0.9883 1.0000

1 year 0.9550 0.9690 1.0000

2 year 0.8900 0.9088 0.9782 1.0000

3 year 0.8384 0.8552 0.9407 0.9888 1.0000

4 year 0.7956 0.8076 0.9018 0.9656 0.9930 1.0000

5 year 0.7536 0.7599 0.8615 0.9363 0.9760 0.9947 1.0000

6 year 0.7192 0.7188 0.8246 0.9061 0.9547 0.9825 0.9963 1.0000

7 year 0.6878 0.6820 0.7920 0.8783 0.9333 0.9677 0.9882 0.9976 1.0000

8 year 0.6663 0.6555 0.7677 0.8563 0.9151 0.9539 0.9790 0.9927 0.9986 1.0000

9 year 0.6463 0.6311 0.7460 0.8363 0.8978 0.9401 0.9689 0.9861 0.9951 0.9988 1.0000

10 year 0.6284 0.6102 0.7282 0.8196 0.8830 0.9275 0.9592 0.9789 0.9904 0.9959 0.9989 1.0000

15 year 0.5537 0.5242 0.6559 0.7527 0.8203 0.8706 0.9105 0.9381 0.9576 0.9695 0.9792 0.9864 1.0000

20 year 0.5235 0.4889 0.6272 0.7247 0.7920 0.8429 0.8849 0.9148 0.9368 0.9509 0.9630 0.9727 0.9971 1.0000

25 year 0.5031 0.4659 0.6071 0.7060 0.7742 0.8259 0.8690 0.9003 0.9237 0.9391 0.9525 0.9635 0.9936 0.9988 1.0000

30 year 0.4865 0.4485 0.5916 0.6919 0.7612 0.8141 0.8586 0.8910 0.9157 0.9318 0.9461 0.9579 0.9912 0.9978 0.9996 1.0000
Panel D: Post-Crisis Sample

Maturity 3-month 6-month 1 year 2 year 3 year 4 year 5 year 6 year 7 year 8 year 9 year 10 year 15 year 20 year 25 year 30 year

3-month 1.0000

6-month 0.9751 1.0000

1 year 0.7233 0.6810 1.0000

2 year 0.1350 0.0797 0.7088 1.0000

3 year -0.1244 -0.1917 0.4658 0.9438 1.0000

4 year -0.2211 -0.2945 0.3447 0.8691 0.9806 1.0000

5 year -0.2611 -0.3353 0.2719 0.7984 0.9410 0.9883 1.0000

6 year -0.2775 -0.3496 0.2203 0.7339 0.8952 0.9627 0.9925 1.0000

7 year -0.2855 -0.3543 0.1787 0.6763 0.8500 0.9322 0.9760 0.9952 1.0000

8 year -0.2918 -0.3569 0.1430 0.6260 0.8083 0.9016 0.9561 0.9846 0.9969 1.0000

9 year -0.2962 -0.3577 0.1130 0.5824 0.7710 0.8728 0.9356 0.9715 0.9899 0.9979 1.0000

10 year -0.2996 -0.3575 0.0867 0.5441 0.7375 0.8460 0.9155 0.9574 0.9808 0.9930 0.9985 1.0000

15 year -0.3026 -0.3480 0.0093 0.4255 0.6288 0.7540 0.8414 0.8996 0.9371 0.9613 0.9767 0.9868 1.0000

20 year -0.3117 -0.3526 -0.0274 0.3773 0.5853 0.7163 0.8094 0.8730 0.9152 0.9434 0.9624 0.9755 0.9981 1.0000

25 year -0.3143 -0.3526 -0.0443 0.3532 0.5629 0.6964 0.7923 0.8585 0.9030 0.9332 0.9539 0.9685 0.9957 0.9995 1.0000

30 year -0.3143 -0.3507 -0.0540 0.3376 0.5475 0.6823 0.7798 0.8478 0.8938 0.9254 0.9473 0.9629 0.9935 0.9986 0.9997 1.0000

TABLE B.2: Cross-Correlations

Notes: This table reports the cross-correlations of the yield curve for the complete (Panel A), pre-crisis (Panel B), mid-crisis (Panel C) and post-crisis
(Panel D) samples. The complete sample ranges from January 6, 2006 to January 1, 2016, the pre-crisis sample ranges from January 6, 2006 to December
28, 2007, the mid-crisis sample ranges from January 4, 2008 to December 25, 2009 and the post-crisis sample ranges from January 1, 2010 to January 1, 2016.
The lower triangle of the table provides the cross-correlations of the yields.
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C. Results Appendix

C.1 Parameter Estimates

The parameter estimates of the pre-, mid- and post-crisis samples are reported on the

following pages.
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Panel A: ATSM

1-Factor model 2-Factor model 3-Factor model
© | 1%-F SE (p-value) ‘ 1%%-F SE (p-value) 2"-F SE (p-value) ‘ 18%-F SE (p-value) 2"-F SE (p-value) 3"-F SE (p-value)
k | 0.609 0.093 (0.00) | 2.034 0.113 (0.00) 0.010 0.004 (0.01) | 0.010 0.002 (0.00) 0.423 0.032 (0.00) 1.684 0.080 (0.00)
6 | 0.056 0.010 (0.00) | 0.002 0.251 (0.99) 0.055 0.025 (0.03) | 0.000 0.128 (1.00) 0.058 0.017 (0.00) 0.000 0.201 (1.00)
o | 0.006 0.005 (0.21) | 0.013 0.009 (0.18) 0.007 0.002 (0.00) | 0.006 0.003 (0.06) 0.014 0.010 (0.16) 0.019 0.013 (0.14)
¢ 10.332 0.089 (0.00) | 1.005 0.272 (0.00) -0.112 0.010 (0.00) | 0.002 0.024 (0.94) -0.871 0.252 (0.00) 1.530 0.252 (0.00)

Panel B: AJTSM

1-Factor model 2-Factor model 3-Factor model
© | 1%-F SE (p-value) ‘ 1%-F SE (p-value) 2"-F SE (p-value) ‘ 1*%-F  SE (p-value) 2"-F SE (p-value) 3"-F SE (p-value)
k | 0.751 0.040 (0.00) | 1.656  0.063 (0.00) 0.035 0.003 (0.00) | 0.024 0.001 (0.00) 0.293 0.005 (0.00) 2.207 0.018 (0.00)
6 | 0.049 0.010 (0.00) | 0.000 0.014 (0.99) 0.040 0.001 (0.00) | 0.005 0.002 (0.05) 0.104 0.005 (0.00) 0.000 0.030 (1.00)
o | 0.002 0.001 (0.28) | 0.023 0.019 (0.24) 0.005 0.000 (0.00) | 0.007 0.000 (0.00) 0.004 0.001 (0.00) 0.016 0.016 (0.32)
A | 13.32 0.230 (0.00) | 0.013 0.055 (0.81) 2.538 0.022 (0.00) | 0.034 0.002 (0.00) 40.27 0.051 (0.00) 0.088 0.036 (0.02)
a | 0.000 0.000 (0.24) | 0.075 0.057 (0.19) 0.001  0.000 (0.00) | 0.000 0.000 (1.00) -0.001 0.000 (0.00) 0.509 0.089 (0.00)
B 10.001 0.005 (0.78) | 0.005 0.118 (0.97) 0.001 0.000 (0.00) | 0.002 0.002 (0.28) 0.002 0.003 (0.54) 0.993 0.087 (0.00)
¢ | 1.445 0.094 (0.00) | -0.491 0.164 (0.00) -0.211 0.005 (0.00) | -0.127 0.004 (0.00) -0.109 0.019 (0.00) -0.015 0.358 (0.00)

TABLE C.1: Parameter Estimates Pre-Crisis Sample

Notes: This table reports the parameter estimates, based on the QMLE procedure, in the ATSM-framework (Panel A) and in the AJTSM-framework

(Panel B) using the pre-crisis weekly yield curve from January 6, 2006 to December 28, 2007 (104 observations). The table provides the parameter estimates
of k, 0, o and &, their corresponding standard errors and p-values for the one-, two- and three-factor model in the ATSM-framework (Panel A). Additionally,
the table provides the parameter estimates of k, 8, o, A, a, 8 and &, their corresponding standard errors and p-values for the one-, two- and three-factor
model in the AJTSM-framework (Panel B). In the models, I assume that the dynamics of the factors are described by a Vasicek model and the market price
of risk of each factor is constant. The standard errors are based on the nearest symmetric-positive definite covariance matrix, derived from the unconstrained
Hessian matrix. In the AJTSM-framework, I assume that jump risk is diversifiable and the Brownian Motion and Poisson process are independent as well.
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Panel A: ATSM

1-Factor model 2-Factor model 3-Factor model
© | 1¥.F SE (p-value) ‘ 1%-F SE (p-value) 2"-F SE (p-value) ‘ 1*%-F  SE (p-value) 2"-F SE (p-value) 3"-F SE (p-value)
k| 0.330  0.032 (0.00) | 0.545 0.032 (0.00) 0.010 0.010 (0.33) | 0.107 0.004 (0.00) 0.010 0.006 (0.10) 1.134  0.074 (0.00)
6 | 0.000 0.017 (1.00) | 0.000 0.251 (1.00) 0.000 0.251 (1.00) | 0.000 0.226 (1.00) 0.000 0.403 (1.00) 0.000 0.368 (1.00)
o | 0.015 0.002 (0.00) | 0.022 0.005 (0.00) 0.010 0.001 (0.00) | 0.058 0.007 (0.00) 0.017 0.004 (0.00) 0.025 0.013 (0.07)
¢ | -1.053 0.061 (0.00) | -1.504 0.118 (0.00) -0.127 0.037 (0.00) | -0.024 0.091 (0.79) -0.504 0.034 (0.00) -0.633 0.265 (0.02)

Panel B: AJTSM

1-Factor model 2-Factor model 3-Factor model
© | 1¥.F SE (p-value) ‘ 1®-F SE (p-value) 2"-F SE (p-value) ‘ 1*®-F  SE (p-value) 2"-F SE (p-value) 3"-F SE (p-value)
k | 0.330 0.031 (0.00) | 0.032 0.000 (0.00) 0.433 0.013 (0.00) | 0.022 0.001 (0.00) 0.092 0.003 (0.00) 1.050 0.031 (0.00)
6 | 0.000 0.007 (1.00) | 0.000 0.005 (1.00) 0.051 0.017 (0.00) | 0.023 0.007 (0.00) 0.016 0.021 (0.44) 0.010 0.015 (0.53)
o | 0.003 0.001 (0.00) | 0.011 0.000 (0.00) 0.024 0.006 (0.00) | 0.011 0.000 (0.00) 0.041 0.002 (0.00) 0.018 0.012 (0.15)
A | 11.61 0.236 (0.00) | 0.037 0.002 (0.00) 5.583 0.062 (0.00) | 0.181 0.007 (0.00) 1.982 0.015 (0.00) 3.113  0.205 (0.00)
a | 0.000 0.000 (0.32) | -0.029 0.001 (0.00) -0.007 0.000 (0.00) | -0.007 0.001 (0.00) 0.000 0.001 (0.70) -0.003 0.008 (0.68)
B | 0.004 0.006 (0.56) | 0.018 0.002 (0.00) 0.000 0.012 (1.00) | 0.004 0.002 (0.02) 0.016 0.003 (0.00) 0.007 0.014 (0.64)
¢ | -2.000 0.100 (0.00) | -0.336 0.006 (0.00) -0.848 0.082 (0.00) | -0.119 0.008 (0.00) -0.241 0.025 (0.00) -0.250 0.014 (0.97)

TABLE C.2: Parameter Estimates Mid-Crisis Sample

Notes: This table reports the parameter estimates, based on the QMLE procedure, in the ATSM-framework (Panel A) and in the AJTSM-framework (Panel
B) using the mid-crisis weekly yield curve from January 4, 2008 to December 25, 2009 (104 observations). The table provides the parameter estimates of x,
0, o and &, their corresponding standard errors and p-values for the one-, two- and three-factor model in the ATSM-framework (Panel A). Additionally, the
table provides the parameter estimates of k, 8, o, A, «, § and &, their corresponding standard errors and p-values for the one-, two- and three-factor model
in the AJTSM-framework (Panel B). In the models, I assume that the dynamics of the factors are described by a Vasicek model and the market price of
risk of each factor is constant. The standard errors are based on the nearest symmetric-positive definite covariance matrix, derived from the unconstrained
Hessian matrix. In the AJTSM-framework, I assume that jump risk is diversifiable and the Brownian Motion and Poisson process are independent as well.
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Panel A: ATSM

1-Factor model 2-Factor model 3-Factor model
© | 1¥.F SE (p-value) ‘ 1%-F SE (p-value) 2"-F SE (p-value) ‘ 1*%-F  SE (p-value) 2"-F SE (p-value) 3"“-F SE (p-value)
k | 0.165 0.013 (0.00) | 0.269 0.014 (0.00) 0.015 0.003 (0.00) | 0.201  0.007 (0.00) 0.022 0.003 (0.00) 0.877 0.032 (0.00)
6 | 0.029 0.006 (0.00) | 0.000 0.901 (1.00) 0.000 0.190 (1.00) | 0.000 0.144 (1.00) 0.058 1.069 (0.96) 0.147 0.154 (0.34)
o | 0.001 0.000 (0.00) | 0.011 0.004 (0.01) 0.019 0.001 (0.00) | 0.084 0.005 (0.00) 0.020 0.001 (0.00) 0.016  0.003 (0.00)
¢ [-2.000 0.055(0.00) |-0.135 0.075 (0.07) -0.176 0.021 (0.00) | -0.171 0.021 (0.00) 0.192 0.016 (0.00) -2.000 0.069 (0.00)

Panel B: AJTSM

1-Factor model 2-Factor model 3-Factor model
© | 1¥.F SE (p-value) ‘ 1®-F SE (p-value) 2"-F SE (p-value) ‘ 1*®-F  SE (p-value) 2"-F SE (p-value) 3"-F SE (p-value)
k | 0.045 0.002 (0.00) | 0.035 0.000 (0.00) 0.192 0.007 (0.00) | 0.020 0.000 (0.00) 0.314 0.002 (0.00) 1.546 0.010 (0.00)
6 | 0.000 0.006 (0.99) | 0.028 0.003 (0.00) 0.012 0.005 (0.02) | 0.036 0.002 (0.00) 0.129 0.008 (0.00) 0.230 0.017 (0.00)
o | 0.001 0.000 (0.00) | 0.009 0.000 (0.00) 0.016 0.002 (0.00) | 0.011 0.000 (0.00) 0.016 0.001 (0.00) 0.143 0.006 (0.00)
A | 0.284 0.008 (0.00) | 0.240 0.003 (0.00) 0.002 0.002 (0.43) | 0.313 0.002 (0.00) 23.89 0.022 (0.00) 2.052 0.032 (0.00)
a | 0.019 0.002 (0.00) | 0.000 0.000 (0.24) -0.029 0.020 (0.16) | 0.008 0.000 (0.00) -0.001 0.000 (0.00) -0.181 0.003 (0.00)
B | 0.040 0.002 (0.00) | 0.006 0.001 (0.00) 0.100 0.028 (0.00) | 0.004 0.000 (0.00) 0.021 0.002 (0.00) 0.102 0.025 (0.00)
¢ |[-1.170 0.011 (0.00) | -0.089 0.004 (0.00) -0.096 0.013 (0.00) | -1.253 0.003 (0.00) -0.011 0.283 (0.00) -1.131 0.042 (0.00)

TABLE C.3: Parameter Estimates Post-Crisis Sample

Notes: This table reports the parameter estimates, based on the QMLE procedure, in the ATSM-framework (Panel A) and in the AJTSM-framework

(Panel B) using the post-crisis weekly yield curve from January 1, 2010 to January 1, 2016 (318 observations). The table provides the parameter estimates
of k, 0, o and &, their corresponding standard errors and p-values for the one-, two- and three-factor model in the ATSM-framework (Panel A). Additionally,
the table provides the parameter estimates of k, 8, o, A, a, 8 and &, their corresponding standard errors and p-values for the one-, two- and three-factor
model in the AJTSM-framework (Panel B). In the models, I assume that the dynamics of the factors are described by a Vasicek model and the market price
of risk of each factor is constant. The standard errors are based on the nearest symmetric-positive definite covariance matrix, derived from the unconstrained
Hessian matrix. In the AJTSM-framework, I assume that jump risk is diversifiable and the Brownian Motion and Poisson process are independent as well.
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Results Appendix 77

C.2 Mid- and post-crisis goodness-of-fit statistics

The goodness-of-fit measures of the mid- and post-crisis samples are reported on the

following pages.



Panel A: 1-Factor model

Panel B: 2-Factor model

MSPE RMSE MAE 4 MSPE RMSE MAE Ri
T ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM | ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM
3-month - - - - - - - - - - - - - - - -
6-month | 0.018 0.018 0.134 0.134 3.440 3.443 0.995 0.995 0.017 0.019 0.132 0.139 3.365 3.453 0.995 0.994
1-year 0.232 0.231 0.481 0.480 5.965 5.954 0.936 0.932 0.229 0.225 0.478 0.475 6.162 5.973 0.937 0.928
2-year 1.212 1.206 1.101 1.098 9.054 9.042 0.612 0.586 1.034 1.056 1.017 1.028 8.796 8.389 0.669 0.609
3-year 2.300 2.291 1.516 1.514 11.05 11.05 0.168 0.110 1.476 1.703 1.215 1.305 9.020 9.121 0.466 0.287
4-year 3.638 3.632 1.907 1.906 12.76 12.76  -0.480 -0.585 | 1.717 2.373 1.310 1.541 9.316 10.43 0.302  -0.117
5-year 5.503 5.502 2.346 2.346 14.26 14.27  -1.508 -1.690 | 2.051 3.312 1.432 1.820 10.19 11.84 0.065  -0.747
6-year 7.918 7.925 2.814 2.815 15.64 15.65 -3.009 -3.305 2.492 4.414 1.578 2.101 11.13 13.04 -0.261 -1.586
T-year 11.08 11.09 3.328 3.330 16.96 16.97 -5.150 -5.606 | 3.095 5.679 1.759 2.383 12.00 14.06  -0.718 -2.649
8-year 14.87 14.88 3.856 3.858 18.17 18.17  -7.920 -8.580 | 3.706 6.872 1.925 2.622 12.63 14.81  -1.223 -3.771
9-year 19.49 19.51 4.415 4.417 19.35 19.36 -11.48 -12.40 | 4.222 7.914 2.055 2.813 13.07 15.40 -1.703 -4.863
10-year | 24.77 24.78 4.977 4.978 20.54 20.55  -15.77 -17.00 | 4.671 8.889 2.161 2.981 13.41 15.89  -2.162 -5.963
15-year 64.84 64.82 8.053 8.051 26.13 26.13 -51.22  -55.00 | 5.298 11.23 2.302 3.351 13.69 16.87 -3.266  -9.466
20-year 133.2 133.1 11.54 11.54 30.71 30.70 -114.1 -1224 | 1.945 6.315 1.395 2.513 10.65 14.33  -0.680 -5.314
25-year 234.5 234.5 15.31 15.31 34.74 34.72 -209.5 -224.8 | 0.766 1.796 0.875 1.340 8.622 10.41 0.312  -0.865
30-year | 361.8 362.0 19.02 19.03 38.22 38.20 -332.8 -357.3 - - - - - - - -
Panel C: 3-Factor model
MSPE RMSE MAE R

T ATSM  AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM

3-month - - - - - - - -

6-month | 0.020 0.018 0.141 0.135 3.418 3.341  0.995 0.994

1-year 0.107 0.124 0.327 0.351 5.047 5.271 0.971 0.957

2-year 0.393 0.447 0.627 0.669 7.254 7.557 0.874 0.820

3-year 0.474 0.510 0.688 0.714 7.696 7.856 0.829 0.768

4-year 0.431 0.449 0.657 0.670 7.367 7.417 0.825 0.771

5-year 0.333 0.353 0.577 0.594 6.753 6.752 0.848 0.798

6-year 0.215 0.243 0.464 0.493 5.959 5.986 0.891 0.845

T-year 0.130 0.160 0.361 0.400 5.197 5.361 0.928 0.888

8-year 0.068 0.086 0.261 0.293 4.332 4.510 0.959 0.935

9-year 0.028 0.033 0.167 0.182 3.275 3.418 0.982 0.973

10-year - - - - - - - -

15-year 0.491 0.462 0.701 0.680 7.836 7.641 0.604 0.532

20-year | 0.470 0.550 0.686 0.741 7.518 7.861 0.594 0.403

25-year | 0.263 0.270 0.513 0.519 6.252 6.402 0.764 0.696

30-year - - - - - - - -

Notes: This table reports and compares the goodness-of-fit measures for ATSMs and AJTSMs for the yield curve from January 4, 2008 to December 25, 2009.
Panel A presents the results of the one-factor ATSM and AJTSM, Panel B presents the results of the two-factor ATSM and AJTSM, and Panel C presents
the results of the three-factor ATSM and AJTSM. The MSPEs are denoted in squared basis points, the RMSEs and MAEs are denoted in basis points, R%
denotes the adjusted R? and 7 denotes the maturity. The bold numbers show the best model (ATSM or AJTSM) with respect to the goodness-of-fit measure.

TABLE C.4: Goodness-of-Fit Measures of Mid-Crisis Sample
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Panel A: 1-Factor model

Panel B: 2-Factor model

MSPE RMSE MAE R% MSPE RMSE MAE R
T ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM | ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM
3-month - - - - - - - - - - - - - - - -
6-month | 0.003  0.003 0.053 0.054 2.128  2.142 0.999 0.999 | 0.003 0.003 0.051 0.052 1.946  1.957 0.999 0.999
1-year 0.022  0.022 0.150 0.147 3.603 3.569  0.994 0.994 | 0.041 0.040 0203 0.199 4242  4.201  0.989 0.989
2-year 0.334 0.327 0578 0.572 6952 6.913  0.893 0.893 | 0.485 0.466 0.696 0.683  7.855 7.786  0.845  0.844
3-year 1.396 1.384  1.181  1.177  9.735 9.715  0.495  0.488 1.409 1.356  1.187 1.164 10.22  10.14 0.490  0.436
4-year 3.507 3.506 1.873 1.872 12.16 12.17 -0.426 -0.459 | 2.331  2.247 1527 1.499 11.61 11.53 0.052  0.043
5-year 6.883  6.910 2.624 2629 14.50 14.52 -2.137 -2221 | 2.886  2.796 1.699 1.672 1219 12.12 -0.315 -0.334
6-year 11.66 11.71 3.414 3422 16.66 16.69 -4.902 -5.063 | 3.115 3.054 1.765 1.747 1238 12.33 -0.577 -0.618
7-year 17.67 17.72  4.204 4.210 18.52 1854 -8.810 -9.062 | 3.183  3.171  1.784  1.781  12.40 12.40  -0.767 -0.843
8-year 24.64 2465 4.964 4965 20.12 20.13 -13.78 -14.13 | 3.153  3.193 1.776  1.787  12.34 1236 -0.892 -1.005
9-year 3249 3242 5700 5.694 21.59 2160 -19.80 -20.23 | 3.059 3.144 1.749 1.773  12.20 1227 -0.959 -1.107
10-year | 41.12  40.94 6.412 6.399 2296 2296 -26.83 -27.35 | 2.900 3.020 1.703 1.738  12.02 1211 -0.963 -1.140
15-year | 95.53  95.03 9.774  9.748 28.81 2886 -75.93 -77.28 | 1.888 1984 1.374 1409 10.58  10.68 -0.520 -0.673
20-year | 168.3  169.2  12.97 13.01 33.66 33.74 -144.4 -1486 | 0.732 0.762 0.856  0.873 8.161 8328 0.367 0.311
25-year | 267.1  269.0 16.34 1640 37.89  37.96 -238.7 -246.0 | 0.368 0.450 0.606 0.671  7.167 7.516 0.670  0.577
30-year | 384.6 383.8 1961 19.59 4151 41.49 -353.8 -361.2 - - - - - - - -
Panel C: 3-Factor model
MSPE RMSE MAE R

T ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM

3-month - - - - - - - -

6-month | 0.009  0.009  0.096  0.096  2.720 2720 0.998  0.997

1-year 0.048  0.048 0219 0219 4310 4.310 0.987  0.986

2-year 0.200  0.200  0.447 0447  6.130 6.130 0.936  0.931

3-year 0.255 0.256  0.505  0.505  6.575  6.575  0.908  0.901

4-year 0279 0279 0528  0.528  6.617  6.617 0.886  0.878

5-year 0.257  0.257  0.507  0.507  6.341 6.341  0.883  0.874

6-year 0.180  0.180  0.425 0425 5837  5.837 0.909  0.902

7-year 0.099 0.099 0315 0315 5104 5104 0.945 0.941

8-year 0.044  0.044 0.211 0.211 4180  4.180 0.973  0.971

9-year 0.013  0.013  0.112  0.112 2999 2999  0.992  0.991

10-year - - - - - - - -

15-year | 0.130  0.130  0.360  0.360 5205  5.205 0.895  0.888

20-year | 0.394  0.394  0.628  0.628  7.149  7.149 0.659  0.635

25-year | 0.778  0.778  0.882  0.882  9.028  9.028  0.302  0.251

30-year - - - - - - - -

Notes: This table reports and compares the goodness-of-fit measures for ATSMs and AJTSMs for the yield curve from January 1, 2010 to January 1, 2016.
Panel A presents the results of the one-factor ATSM and AJTSM, Panel B presents the results of the two-factor ATSM and AJTSM, and Panel C presents
the results of the three-factor ATSM and AJTSM. The MSPEs are denoted in squared basis points, the RMSEs and MAEs are denoted in basis points, R%
denotes the adjusted R? and 7 denotes the maturity. The bold numbers show the best model (ATSM or AJTSM) with respect to the goodness-of-fit measure.

TABLE C.5: Goodness-of-Fit Measures of Post-Crisis Sample
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Results Appendix

C.3 Value-at-Risk and Expected Shortfall Estimates
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FIGURE C.1: VaR and ES Estimates of One-Factor Models

Notes: These figures plot the one- and 30-year interest rate swaps and their one-week-
ahead VaR and ES estimates from January 4, 2008 to January 1, 2016. The VaR and
ES estimates have a nominal coverage probability of v = 1% and are constructed by
the one-factor models. (A) plots the VaR 5 and ESjy of the one-year interest rate
swap, based on the one-factor ATSM, (B) plots the VaR1y and ESig of the 30-year
interest rate swap, based on the one-factor ATSM, (C) plots the VaR;y and ESyg of
the one-year interest rate swap, based on the one-factor AJTSM, and (D) plots the
VaR g and ES,g of the 30-year interest rate swap, based on the one-factor AJTSM.
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FIGure C.2: VaR and ES Estimates of Two-Factor Models

Notes: These figures plot the one- and 30-year interest rate swaps and their one-week-
ahead VaR and ES estimates from January 4, 2008 to January 1, 2016. The VaR and
ES estimates have a nominal coverage probability of v = 1% and are constructed by
the two-factor models. (A) plots the VaR;¢ and ESjy of the one-year interest rate
swap, based on the two-factor ATSM, (B) plots the VaR ¢ and ES;g of the 30-year
interest rate swap, based on the two-factor ATSM, (C) plots the VaR;¢ and ESjy of
the one-year interest rate swap, based on the two-factor AJTSM, and (D) plots the
VaR,y and ES;¢ of the 30-year interest rate swap, based on the two-factor AJTSM.
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