
Erasmus University of Rotterdam

Master Thesis

Simplicity vs. Complexity: Jump
Diffusions in Affine Term Structure

Models

Author:

Akshay Ramkisoensing

Supervisors:

Michel van der Wel

Marcin Jaskowski

Second Reader:

Rutger-Jan Lange

A thesis submitted in fulfilment of the requirements for the Master degree of

Econometrics and Management Science in Quantitative Finance

at the

Department of Econometrics

October 2016



Declaration of Authorship

I, Akshay Ramkisoensing, declare that this thesis titled, ‘Simplicity vs. Complexity:

Jump Diffusions in Affine Term Structure Models’ and the work presented in it are my

own. I confirm that:

� This work was done wholly or mainly while in candidature for a master degree at

this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i



“Education is key.”

- W.K. Bahadoer (Grandfather)



Abstract

Simplicity vs. Complexity: Jump Diffusions in Affine Term Structure

Models

by Akshay Ramkisoensing

Affine Jump Term Structure Models (AJTSMs) add a jump diffusion component to

Affine Term Structure Models (ATSMs) to model the term structure of interest rates.

I investigate whether there is a significant difference in the in- and out-of-sample per-

formance of ATSMs and AJTSMs for riskless interest rates in pre-, mid- and post-crisis

periods. I consider the one-, two- and three-factor Vasicek model within the ATSM-

and AJTSM-framework and use Quasi-Maximum Likelihood Estimation (QMLE) to es-

timate the parameters. Firstly, I find that the three-factor AJTSM is unidentified and

that imposed restrictions result in an unrealistic economic model. Secondly, the results

show that jump diffusion components are empirically justified in the complete sample

and pre- and mid-crisis samples. Thirdly, goodness-of-fit measures show that the in-

sample fit of one- and two-factor ATSMs and AJTSMs is poor. The three-factor ATSM

is superior in fitting the yield curve of the riskless interest rates. Lastly, I establish that

ATSMs and AJTSMs perform poorly in out-of-sample VaR and ES estimation for Risk

Management purposes.

Keywords: Affine Term Structure Model · Affine Jump Term Structure Model · Jump

diffusion · Fisher Information matrix · Quasi-Maximum Likelihood Estimation · Vasicek

model · Value-at-Risk · Expected Shortfall

J.E.L. Subject Classifications: C.32 · E.43 · G.12
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1. Introduction

Affine Term Structure Models (ATSMs) define zero-coupon bond yields as linear func-

tions of state variables, or factors, and are prominently used in both the finance industry

and in academics. Research in the field of term structure models for interest rates shows

that these ATSMs have desirable properties, which justify the popularity of these models.

The key properties, in this regard, are its analytical tractability and empirical flexibil-

ity. Despite its empirical flexibility, Lin and Yeh (1999) show that ATSMs are not able

to capture perceptible jumps in the time (P) dynamics1 of the term structure of the

interest rates. To implement this discontinuity in the interest rates, Duffie et al. (2000)

provide a framework by deriving analytical tractable ATSMs with Poisson distributed

jump times. These ATSMs with jump diffusion components are known as Affine Jump

Term Structure Models (AJTSMs).

The contribution of this paper is to answer the research question whether there is a

significant difference in modeling the term structure of the riskless interest rates with

ATSMs and AJTSMs in pre-, mid- and post-crisis periods. I investigate one-, two- and

three-factor models for both the ATSMs and AJTSMs. This research focuses on the

economic and practical aspect of the main research question. From an economic stand-

point, this paper investigates whether the economic justification of an additional jump

diffusion component is empirically justified. This, additionally, extends to investigating

what the optimal model is, with regard to ATSMs and AJTSMs, to model and fit the

term structure of the riskless interest rates in a Vasicek (1977) framework. From a prac-

tical standpoint, this paper investigates whether there is a significant difference in the

performance of ATSMs and AJTSMs in Risk Management. The latter research question

focuses on Value-at-Risk (VaR) and Expected Shortfall (ES).

This paper builds upon the pioneering work of Vasicek (1977), Duffie and Kan (1996),

1Henceforth, I will use dynamics and P-dynamics interchangeably. Whenever risk-neutral Q-dynamics
are implied, this will be explicitly indicated.

1



Introduction 2

Baz and Das (1996) and Lin and Yeh (2001). Vasicek (1977) proposes to model the

term structure of interest rates using an Ornstein-Uhlenbeck process and, subsequently,

derives analytical expressions for zero-coupon bond yields2. The Vasicek model is classi-

fied as an ATSM in Duffie and Kan (1996), who highlight the desirable properties of the

ATSMs. Empirical research into the applicability of these models, such as Chan et al.

(1992), Mc Manus et al. (1999) and Wu et al. (2011), suggest that a multi-factor model

is necessary to capture the complete dynamics of the term structure of the interest rates.

In addition to a multi-factor model, Lin and Yeh (1999) emphasize the essence of jump

diffusion components to model the term structure of interest rates. Lin and Yeh (2001)

perform an empirical research on the use of a one-, and two-factor Vasicek model with

jump diffusion components for the Taiwanese Government Bond market. They perform

Quasi-Maximum Likelihood Estimation (QMLE) using approximations of the AJTSM,

proposed in Baz and Das (1996). Their results indicate that the two-factor ATSM and

AJTSM perform significantly better than the one-factor ATSM and AJTSM in fitting

the term structure of interest rates. More importantly, they find significant parameters

related to the jump intensity and jump size, indicating the presence of jumps.

In this paper, the Vasicek (1977) model is used to capture the dynamics of the factors

in the ATSMs. The AJTSMs are comprised of these ATSMs and additional jump dif-

fusion components, which have Gaussian distributed jump sizes. Analogous to Piazzesi

(2003), the parameters of both types of models are estimated by Quasi-Maximum Like-

lihood Estimation (QMLE). In combination with a Global Search algorithm, the Fisher

Information matrix is justifiably used to verify whether all parameters are identified.

Subsequently, I perform an elaborate analysis on the economic interpretation of the pa-

rameters as well as on the in-sample fit of the models using goodness-of-fit measures.

The out-of-sample performance is based on one-week-ahead VaR and ES estimates for

the interest rate swaps, constructed by means of Monte Carlo simulation. The backtests

for VaR estimates include the conventional Unconditional Coverage, Independence and

Conditional Coverage tests. The Saddlepoint Approximation and Box-Pierce tests are

used to backtest ES estimates due to their advantageous small sample properties.

I examine the empirical application of ATSMs and AJTSMs on the riskless interest

rates. In order to approximate the riskless interest rates and, subsequently, to bootstrap

the riskless yield curve, US LIBOR money market deposits and US interest rate swaps

2For elaborate mathematical derivations and analyses of both models, I refer the reader to Bolder
(2001).
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are used. The time series of these securities range from January 6, 2006 to January 1,

2016 to capture the pre-, mid- and post-crisis periods of the financial crisis of 2008. This

time period, in particular, includes the effect of monetary policies and interventions of

central banks on the financial market.

The empirical results imply several significant differences and similarities between

modeling the riskless interest rates with ATSMs and AJTSMs. Firstly, I find that there

is an empirical justification of jump diffusion components in the riskless interest rate pro-

cess, implied by the significance of the jump parameters in the AJTSMs. In economic

terms, this result attributes to the presence of jumps in the riskless interest rate process.

In the presence of significant jump diffusion components, I, generally, find that volatility

estimates of the non-jump process decrease. For the post-crisis period, I find that the

riskless interest rate process does not exhibit significant jumps. Secondly, I find that the

three-factor ATSM is superior in fitting the entire yield curve for the complete sample

and all sub-samples. The goodness-of-fit measures indicate that the one- and two-factor

ATSM and AJTSM, generally, fit the yield curve poorly and are misspecified for long-

term yields. A comparison of ATSMs and AJTSMs shows that the AJTSM-framework

performs marginally better than the ATSM-framework in the case of one-factor models

and the ATSM-framework performs substantially better in the case of the two-factor

models. Due to identification problems, I am not able to estimate the parameters of the

three-factor AJTSM. Lastly, the results show that ATSMs and AJTSMs perform poorly

in terms of Value-at-Risk and Expected Shortfall estimation. From a Risk Management

perspective, ATSMs and AJTSMs are inadequate for interest rate swaps.

The key novelty of this research is the deviation from and, thereby, the contribution

to the current literature in four significant ways. First, the focus of this research is

on the difference between ATSMs and AJTSMs with respect to two separate aspects,

namely from an economic, in-sample fit, standpoint and a practical, Risk Management,

standpoint. To my knowledge, there has neither been an empirical paper on the Risk

Management application of ATSMs, nor has there been a comparable study with respect

to this application of AJTSMs. Therefore, this is regarded to be the key contribution of

this paper. Second, this paper concerns the modeling and fitting of the riskless interest

rates, whereas Lin and Yeh (2001) focus on the Taiwanese Government Bond market.

So far, an empirical study that compares the performance of ATSMs and AJTSMs for

the riskless interest rates has been lacking in the current literature. Third, in addition
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to the one- and two-factor ATSMs and AJTSMs in Lin and Yeh (2001), this paper de-

rives and investigates the three-factor models in both frameworks. This builds upon the

results of Lin and Yeh (2001), that indicate that the in-sample fit of the term structure

of interest rates improves by modeling additional factors. Fourth, I deviate from the

QMLE procedure of Lin and Yeh (2001), which allows for misspecification of the ATSM

and AJTSM models. To this extent, I propose a QMLE procedure along the lines of

Piazzesi (2003).

The remainder of this paper adheres to the following structure. Section 2 discusses

the models and methodology of this paper. Section 3 analyzes the data. Section 4

reports and analyzes the main results. Section 5 concludes and Section 6 presents the

limitations in this research as well as directions for further research.



2. Models and Methodology

In this section, I discuss the main models and methodology of this research. The first

subsection introduces the Vasicek model and derives its implications for the yield curve.

The second subsection proposes the Quasi-Maximum Likelihood Estimation (QMLE)

procedure to obtain the parameters of the Vasicek model. Lastly, the third subsection

considers measures to evaluate the goodness-of-fit of models and measures to backtest

VaR and ES estimates.

2.1 Vasicek model

This subsection is divided in three main parts to emphasize the theoretical back-

ground and derivations of ATSMs and AJTSMs. Firstly, I discuss basic concepts and

the general idea in term structure modeling. Secondly, I derive the relation between

the Vasicek model and the term structure of yields within the ATSM- and AJTSM-

framework. Lastly, I provide the exact solutions for the ATSMs and the approximated

solutions for the AJTSMs.

2.1.1 Basic concepts and general idea

The single, most important security in Fixed Income is the riskless zero-coupon bond.

This bond pays, with certainty, one unit of currency at maturity. The price of a riskless

zero-coupon bond, P (t, T ), depends on the current time, t, and its maturity, T . By def-

inition, it holds that P (T, T ) = 1. Given the prices of riskless zero-coupon bonds for all

maturities, we determine the term structure of the riskless interest rates. Conventionally,

5



Models and Methodology 6

this is done by exploiting the following relation:

ey(t,T )×(T−t) =
1

P (t, T )

y(t, T )× (T − t) = −ln(P (t, T ))

y(t, T ) = − ln(P (t, T ))

T − t
,

(2.1)

where y(t, T ) denotes the yield of a riskless zero-coupon bond at time t with maturity

T . The collection of yields for all maturities represents the term structure of the riskless

interest rates.

The main theoretical concept in term structure modeling is the instantaneous interest

rate, r(t). This theoretical quantity is defined as the yield on a very short bond:

r(t) = lim
T→t y(t, T ). (2.2)

The general idea is to define a model for the instantaneous interest rate, or short

rate. The short rate is assumed to drive the dynamics of the price of the riskless zero-

coupon bonds. Therefore, the short rate drives the dynamics of the term structure,

as well. As a matter of fact, the dynamics of the entire term structure, in ATSMs

and AJTSMs within the Vasicek framework, are completely specified by the short rate.

This relation is established by means of no-arbitrage conditions and the market price of

risk. The following paragraphs provide the mathematical framework of this general idea

and, further, define the dynamics of the short rate, the no-arbitrage conditions and the

market price of risk.

2.1.2 Derivations: ATSM

Initially, I assume a single-factor framework for the short rate model. This assumption

will be relaxed at the end of this subsection. Moreover, I assume that this single factor

is the short rate itself, that the short rate adheres to the Markov-property and that it

has the following real world P-dynamics, excluding jumps:

dr(t) = µ(r, t)dt+ σ(r, t)dW (t), (2.3)
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where W (t) is the Brownian Motion (BM) defined on the probability space (Ω,F ,P),

µ(r, t) is the drift of the process and σ(r, t) is the volatility of the process.

The short rate dynamics in Equation (2.3) imply, by Itô’s Lemma, that the price of a

riskless zero-coupon bond, P (r(t), t, T )1, has the following P-dynamics:

dP (t, T ) = Ptdt+ Prdr(t) +
1

2
Prrdr(t)dr(t)

=

(
Pt + µ(r(t), t)Pr +

σ(r(t), t)2

2
Prr

)
dt+ σ(r(t), t)PrdW (t),

(2.4)

where Px denotes the first-order derivative of P with respect to x and Pxx denotes the

second-order derivative of P with respect to x.

Analogous to the Black-Scholes portfolio, that mimics the pay-off of an option, I aim

to construct a similar self-financing portfolio. The goal is to construct a self-financing

portfolio with no randomness. No-arbitrage conditions imply that this portfolio earns

the riskless rate.

To construct this portfolio, I choose two zero-coupon bonds with maturities, T1 and

T2. Furthermore, I define V to be the value of the self-financing portfolio and wi to

be the weight of bond i in the portfolio. Subsequently, the return on the self-financing

portfolio can be described by the following stochastic differential equation (SDE):

dV (t)

V (t)
= w1

dP1

P1
+ w2

dP2

P2
, (2.5)

where Pi denotes the riskless zero-coupon bond price with maturity Ti, that is P (t, Ti),

and wi ∈ R. Using Equation (2.4), this can be written as:

dV (t)

V (t)
= w1

(P1,t + µP1,r + σ2

2 P1,rr)dt+ σP1,rdW (t)

P1

+ w2
(P2,t + µP2,r + σ2

2 P2,rr)dt+ σP2,rdW (t)

P2
.

(2.6)

In order to simplify this expression, I define:

µi =
Pi,t + µPi,r + σ2

2 Pi,rr

Pi
,

σi =
σPi,r
Pi

,

(2.7)

1For notational convenience, I suppress r(t) in P (r(t), t, T ) throughout the paper.
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which simplifies Equation (2.6) to:

dV (t)

V (t)
= w1(µ1dt+ σ1dW (t)) + w2(µ2dt+ σ2dW (t))

= (w1µ1 + w2µ2)dt+ (w1σ1 + w2σ2)dW (t).

(2.8)

To obtain a self-financing portfolio without uncertainty, we solve the following system

of equations:

w1 + w2 = 1,

w1σ1 + w2σ2 = 0.
(2.9)

The solution to this system of equations is:

w1 =
−σ2

σ1 − σ2
,

w2 =
σ1

σ1 − σ2
.

(2.10)

Substitution of the solution in Equation (2.8) yields a self-financing portfolio without

uncertainty:

dV (t)

V (t)
=

(
−σ2

σ1 − σ2
µ1 +

σ1

σ1 − σ2
µ2

)
dt+

(
−σ2

σ1 − σ2
σ1 +

σ1

σ1 − σ2
σ2

)
dW (t)

=

(
−σ2

σ1 − σ2
µ1 +

σ1

σ1 − σ2
µ2

)
dt.

(2.11)

In order to exclude arbitrage, the drift of the self-financing portfolio should equal the

short rate, r(t). Equating Equation (2.11) to the short rate yields:

(
−σ2

σ1 − σ2
µ1 +

σ1

σ1 − σ2
µ2

)
= r(t)

−σ2µ1 + σ1µ2 = σ1r(t)− σ2r(t)

σ2(r(t)− µ1) = σ1(r(t)− µ2)

µ1 − r(t)
σ1

=
µ2 − r(t)

σ2
= ξ(t).

(2.12)

This expression represents the market price of risk, ξ(t). The market price of risk can

be either positive or negative and is often interpreted as the Sharpe ratio of a security.

More importantly, it constitutes, in an analytical sense, as an internal consistency rela-

tion and is equal for all riskless zero-coupon bonds, as is illustrated by the last line in

Equation (2.12). It provides the shift from the real world P-measure to the risk-neutral
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Q-measure. The Q-measure is needed to uniquely price riskless zero-coupon bonds and

other Fixed Income securities. The key is to rewrite the market price of risk and to find

the partial differential equation (PDE) that needs to be satisfied for an arbitrage-free

price:

µi − r(t)
σi

= ξ(t)

µi − r(t) = ξ(t)σi

(Substituting (2.7)) →
Pi,t + µPi,r + σ2

2 Pi,rr

Pi
− r(t) = ξ(t)

σPi,r
Pi

(Equivalent to) →
Pt + µPr + σ2

2 Prr

P
− r(t) = ξ(t)

σPr
P

Pt + µPr +
σ2

2
Prr − r(t)P = ξ(t)σPr

(PDE) → Pt + (µ− ξ(t)σ)Pr +
σ2

2
Prr − r(t)P = 0.

(2.13)

The solution, P ≡ P (t, T ), to this PDE provides the pricing equation for riskless zero-

coupon bonds in an arbitrage-free world. Using Equation (2.1), this pricing equation

constitutes the link between the term structure of riskless interest rates and the short

rate. Duffie and Kan (1996) show that there is a class of models, namely Affine Term

Structure Models, that uniquely solves this PDE. Assuming a constant relation between

the price of a bond and its maturity and affine functions for µ and σ, the solution of the

PDE can be represented by:

P (t, T ) ≡ P (t, τ) = eA(τ)−B(τ)r(t), (2.14)

where τ is the time to maturity (T − t).

The Vasicek model belongs to the class of ATSMs. In this paper, I assume that

the P-dynamics of the short rate are described by the Vasicek model, that is:

dr(t) = κ(θ − r(t))dt+ σdW (t), (2.15)

where θ is the long-term mean, κ captures the speed of the mean-reversion and is positive

(> 0), σ is the volatility of the short rate and W (t) is a Brownian Motion (BM) defined
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on the probability space (Ω,F ,P). The Q-dynamics of the short rate are given by:

dr(t) = κ(θ̃ − r(t))dt+ σdW̃ (t), (2.16)

where θ̃ = θ− ξ(t)σ
κ incorporates the market price of risk2 and W̃ (t) is a BM defined on

the probability space (Ω,F ,Q). Throughout this paper, I assume, for simplicity, that

the market price of risk is constant over time, that is ξ(t) = ξ.

Using the dynamics of the short rate and the solution form in Equation (2.14), I derive

the PDE in the terms of the Vasicek model in Appendix A. This results in:

0 = At(τ)− κθ̃B(τ) +
σ2

2
B2(τ)− (1 +Bt(τ)− κB(τ))r(t). (2.17)

Equation (2.17) can be rewritten as a system of ODEs, namely:

At(τ)− κθ̃B(τ) +
σ2

2
B2(τ) = 0,

A(0) = 0,

Bt(τ)− κB(τ) = −1,

B(0) = 0.

(2.18)

where A(0) = 0 and B(0) = 0 are inferred by the definition of the price of riskless

zero-coupon bonds, P (T, τ) = 1.

In this entire derivation, I have shown that the price of riskless zero-coupon bonds, in

the ATSM-framework, is an exponential function of the short rate. Its coefficients, A(τ)

and B(τ), are functions of maturity, τ , and are solutions to a system of ODEs (2.18). In

the ATSM-framework, the Vasicek model has a closed-form solution. That is, the sys-

tem of ODEs has a unique solution, see (2.27). The following paragraphs show that this

can, similarly, be done in the AJTSM-framework. In contrast to the ATSM-framework,

approximations are needed to obtain a system of ODEs, that is uniquely solvable, in the

AJTSM-framework.

2In mathematical terms, this can also be interpreted as the drift resulting from Girsanov’s Theorem.
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2.1.3 Derivations: AJTSM

In the previous paragraphs, the dynamics of the short rate did not include jumps. I

continue this subsection with the addition of a jump diffusion component and derive the

pricing equation for riskless zero-coupon bonds in the AJTSM-framework. I follow Baz

and Das (1996) and show that the pricing function can, similar to the ATSM derivation,

be reduced to a set of ODEs.

In the AJTSM-framework, I assume that the P-dynamics of the short rate follow

the Vasicek model with a jump diffusion:

dr(t) = κ(θ − r(t))dt+ σdW (t) + Y dN(t), (2.19)

where θ is the long-term mean, κ is the mean-reversion coefficient and is positive (> 0),

σ is the volatility of the short rate, W (t) is the Brownian Motion (BM) defined on

the probability space (Ω,F ,P), Y is the Gaussian distributed jump size, N(α, β2), and

dN(t) is the Poisson process with intensity λdt. The Brownian Motion and the Poisson

process are assumed to be independent and jump risk is assumed to be diversifiable.

These short rate dynamics imply, by Itô’s Lemma, that the price of a riskless zero-

coupon bond, P (t, T ), has the following P-dynamics:

dP (t, T ) =

(
Pt + κ(θ − r(t))Pr +

σ2Prr
2

)
dt+σPrdW (t)

+ [P (r + Y, t, T )− P (r, t, T )]

(2.20)

where Px and Pxx are similarly defined as in Equation (2.4) and [P (r + Y, t, T )− P (r, t, T )]

results from Itô’s lemma for jump diffusions.

By similar no-arbitrage conditions, Baz and Das (1996) derive the PDE to ensure an

arbitrage-free price:

0 = Pt + (κ(θ − r(t))− ξσ)Pr +
σ2Prr

2
− r(t)P (t, T )

+ λE [P (r + Y, t, T )− P (r, t, T )] .

(2.21)

The solution to this PDE provides the price of riskless zero-coupon bonds in the

AJTSM-framework. Duffie et al. (2000) show that the solution can be represented in

the same form as the solution in the ATSM-framework, namely an exponential function
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of the short rate (2.14). Using Equation (2.14), the PDE can be rewritten as:

0 = Pt + (κ(θ − r(t))− ξσ)Pr +
σ2Prr

2
− r(t)P (t, T )

+ λP (t, T )E
[
e−Y B(τ) − 1

]
.

(2.22)

Baz and Das (1996) approximate the expectation expression in the PDE by a two-term

Taylor expansion, that is:

E
[
e−Y B(τ) − 1

]
≈ E

[
−Y B(τ) +

Y 2B(τ)2

2

]
= −αB(τ) +

β2 + α2

2
B(τ)2. (2.23)

The approximation is needed to obtain a system of ODEs, that is uniquely solvable.

Substitution of Equation (2.23) in the PDE yields:

0 = Pt + (κ(θ − r(t))− ξσ)Pr+
σ2Prr

2
− r(t)P (t, T )

+ λP (t, T )

[
−αB(τ) +

β2 + α2

2
B(τ)2

]
.

(2.24)

I postpone the implementation of the exponential function (2.14) in the PDE to Ap-

pendix A. This derivation results in the following PDE:

0 =At(τ) +
σ2B2(τ)

2
− κθ̃B(τ) + λ

[
−αB(τ) +

β2 + α2

2
B(τ)2

]
+ (−1−Bt(τ) + κB(τ))r(t).

(2.25)

Equation (2.25) can be rewritten as a system of ODEs, that is:

At(τ)− κθ̃B(τ) +
σ2

2
B2(τ) + λ

[
−αB(τ) +

β2 + α2

2
B(τ)2

]
= 0,

A(0) = 0,

Bt(τ)− κB(τ) = −1,

B(0) = 0.

(2.26)

These derivations provide the key insight that the price of riskless zero-coupon bonds

are exponential functions of the short rate in, both, the ATSM- and AJTSM-framework.

The coefficients, A(τ) and B(τ), are functions of maturity, τ , and are solutions to a

system of ODEs ((2.18) and (2.26)). In the following paragraphs, I present the solutions

to the systems of ODEs and extend the results to a multi-factor framework.
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2.1.4 Solutions

The previous paragraphs derive a system of ODEs for both the ATSM- and AJTSM-

framework. The solutions to these systems of ODEs provide the coefficients of the

pricing function (2.14). I refrain from deriving the solution of these ODEs, as there is

a large literature that provides elaborate derivations of these solutions. In this paper,

I use the results of Bolder (2001) and Lin and Yeh (2001) in, respectively, the ATSM-

and AJTSM-framework.

Bolder (2001) provides the following solutions to the system of ODEs (2.18) in the

ATSM-framework:

B(τ) =
1

κ

(
1− e−κτ

)
,

A(τ) =

(
θ − ξσ

κ
− σ2

2κ2

)
(B(τ)− τ)− σ2B2(τ)

4κ
.

(2.27)

Due to additional expressions in the approximated system of ODEs in Equation (2.26),

the solution is more complex in the AJTSM-framework. Lin and Yeh (2001) provide the

following expressions for A(τ) and B(τ) in this framework:

B(τ) =
1

κ

(
1− e−κτ

)
,

A(τ) =
−Ee−2κτ

4κ3
+

(κD + E)e−κτ

κ3
+

(2κD + E)τ

2κ3
− C,

where

C =
D

κ2
+

3E

4κ3
,

D = ξσ − κθ − αλ,

E = σ2 + (α2 + β2)λ,

2κD + E < 0.

(2.28)

The constraint ensures that the price of riskless zero-coupon bonds converges to zero

when maturity increases to infinity. Given the parameters of the short rate dynamics,

the price of riskless zero-coupon bonds can be determined by substituting A(τ) and B(τ)

in:

P (t, τ) = eA(τ)−B(τ)r(t). (2.29)

Subsequently, the term structure of the riskless interest rates is computed using the

relation in Equation (2.1).
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In the beginning of this subsection, I assumed a single-factor model. This assumption

implies that all yields are perfectly correlated. However, the Data Analysis in Section 3

shows that this does not hold in practice. In order to capture the empirical yield dynam-

ics, the current literature provides extensions for the ATSM- and AJTSM-framework to

incorporate a multi-factor model. In this model, the multiple factors continue to be

related to the short rate in the sense that the following relation holds:

r(t) =
n∑
i=1

yi(t). (2.30)

That is, the factors y1(t), . . . , yn(t) drive the dynamics of the short rate, r(t).

The extension of the Vasicek model in a multi-factor framework is one of the model’s

main advantages. Assuming independence between the factors, the multi-factor Vasicek

model in the ATSM-framework is defined as:

dy1(t) = κ1(θ1 − y1(t))dt+ σ1dW1(t),

...
...

...

dyn(t) = κn(θn − yn(t))dt+ σndWn(t),

(2.31)

where θi is the long-term mean of the ith factor, κi is the mean-reversion coefficient of

the ith factor, σi is the volatility of the ith factor and Wi(t) is the Brownian Motion of

the ith factor defined on the probability space (Ω,F ,P). Consequently, the multi-factor

Vasicek model in the AJTSM-framework is defined as:

dy1(t) = κ1(θ1 − y1(t))dt+ σ1dW1(t) + Y1dN1(t),

...
...

...
...

dyn(t) = κn(θn − yn(t))dt+ σndWn(t) + YndNn(t),

(2.32)

where θi, κi, σi and Wi(t) are equivalently defined as in Equation (2.31), Yi is the

Gaussian distributed jump size of the ith factor, N(αi, β
2
i ), and dNi(t) is the Poisson

process of the ith factor with intensity λidt. Lastly, I denote the market price of risk for

the ith factor by ξi. The overall market price of risk is
∑n

i=1 ξi.

By defining the short rate as the sum of the factors, the price of riskless zero-coupon

bonds is modified to:

P (t, τ) = eA(τ)−
∑n

i=1Bi(τ)yi(t). (2.33)
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Similar to the analysis in the previous paragraphs, one can derive the PDEs, the system

of ODEs and the solutions for A(τ) and Bi(τ) in the ATSM- and AJTSM-framework. I

refer the interested reader to Bolder (2001) and Lin and Yeh (2001). Moreover, I use the

results of these papers for the multi-factor models in both frameworks, as well. Bolder

(2001) provides the following expressions for A(τ) and Bi(τ) in the ATSM-framework:

Bi(τ) =
1

κi

(
1− e−κiτ

)
,

A(τ) =
n∑
i=1

(
θi −

ξiσi
κi
− σ2

i

2κ2
i

)
(Bi(τ)− τ)− σ2

iB
2
i (τ)

4κi
,

(2.34)

while Lin and Yeh (2001) provide expressions for A(τ) and Bi(τ) in the AJTSM-

framework:

Bi(τ) =
1

κi

(
1− e−κiτ

)
,

A(τ) =
n∑
i=1

−Eie−2κiτ

4κ3
i

+
(κiDi + Ei)e

−κiτ

κ3
i

+
(2κiDi + Ei)τ

2κ3
i

− Ci,

where

Ci =
Di

κ2
i

+
3Ei
4κ3

i

,

Di = ξiσi − κiθi − αiλi,

Ei = σ2
i + (α2

i + β2
i )λi,

2κiDi + Ei < 0, for i = 1, . . . , n.

(2.35)

Analogous to the single-factor models, the price of riskless zero-coupon bonds can be

determined by substituting A(τ) and Bi(τ) in Equation (2.33). The term structure of

the riskless interest rates is computed using the relation in Equation (2.1).

2.2 Quasi-Maximum Likelihood Estimation (QMLE)

This subsection establishes the empirical methodology to estimate the Vasicek model

in the AJTSM-framework. Using Lin and Yeh (2001), I specify the probability density

function (pdf) for the short rate. The pdf is approximated for feasibility purposes. Sub-

sequently, I elaborate on the Quasi-Maximum Likelihood Estimation (QMLE) for the

parameters of the Vasicek model, along the lines of Piazzesi (2003). Lastly, I extend

the QMLE procedure to a multi-factor framework and contribute to the literature by
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deriving the three-factor ATSM and AJTSM. The results of this subsection extend to

parameter estimation of the Vasicek model without jumps by applying trivial constraints

on the jump parameters.

First, I assume the dynamics of the short rate are described by a one-factor AJTSM,

that is a Vasicek model with jumps (2.19). This model implies that the short rate

adheres to the Markov-property. Therefore, the likelihood function is given by:

L(r1, . . . , rT ; Θ) =

T∏
t=1

f(rt|rt−1), (2.36)

where Θ = {κ, θ, σ, λ, α, β, ξ} denotes the parameter-set. Maximizing the likelihood

function, L, with respect to Θ, yields the optimal parameter set Θ̂MLE . Consequently,

we need an expression for the conditional pdf of rt to perform MLE.

In this AJTSM-framework, Lin and Yeh (1999) derive the following expression for rt

given rt−1 :

rt|rt−1 = e−κ∆t

rt−1 +

∫ t

t−1
eκuκθdu+

∫ t

t−1
eκuσdW (u) +

N(t)∑
j=N(t−1)

eκψjY j

 , (2.37)

where ∆t denotes the time between subsequent observations t and t− 1, ψj denotes the

time of the jth jump, Y j is the corresponding jump size and N(t) denotes the counting

process of the number of jumps in the interval [0, t]. In this paper, I allow for a maximum

of one jump per time period. The probability for more than one jump, within a time

period, is empirically negligible. The Gaussian distribution of the Brownian Motion and

the Poisson distribution of the jump diffusion imply the following pdf for the short rate3:

f(rt|rt−1) =
∞∑
n=0

e−λ∆t(λ∆t)n

n!

×
∫ t

t−1

∫ t

t−1
· · ·
∫ t

t−1

(
φ(rt; rt−1,m, s)×

1

(∆t)n

)
dψ1dψ2 · · · dψn,

(2.38)

3The derivation of this pdf can be found in Lin and Yeh (1999).
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where φ(rt;m, s) denotes a Gaussian distribution with mean m and variance s, that is:

m = e−κ∆trt−1 + θ(1− e−κ∆t) + αe−κ∆t
n∑
j=1

eκψj ,

s =
σ2

2κ
(1− e−2κ∆t) + β2e−2κ∆t

n∑
j=1

e2κψj .

(2.39)

Equation (2.38) shows that the pdf of the short rate contains multiple integrals. These

integrals are a result of the jump diffusion component, but impose a burden on the

feasibility of the estimation procedure. To this extent, Lin and Yeh (1999) propose an

approximation of the current form of the pdf, namely:

f(rt|rt−1) ≈
∞∑
n=0

e−λ∆t(λ∆t)n

n!
× φ(rt; rt−1, m̂, ŝ), (2.40)

where φ(rt; m̂, ŝ) denotes a Gaussian distribution with mean m̂ and variance ŝ, that is:

m̂ = e−κ∆trt−1 +
(
θ +

n

κ∆t
α
)

(1− e−κ∆t),

ŝ =
(
σ2 +

n

∆t
β2
) 1− e−2κ∆t

2κ
.

(2.41)

The approximation is based on the assumption that jumps in the riskless interest rate

are equally spread over time. This assumption is used to take the expectation of the

summation components in m and s in Equation (2.39). I provide the calculations of this

procedure in Appendix A. Additionally, Lin and Yeh (1999) show that the approxima-

tion of the pdf converges to the true density, f(rt|rt−1), when κ∆t→ 0.

The approximate pdf allows for Maximum Likelihood Estimation of the AJTSM

parameter-set, Θ, given r1, . . . , rT . It should be noted that the exact pdf in Equations

(2.38) and (2.39) is used for the estimation of the ATSM parameter-set. The multiple

integrals (and jump components) are eliminated in the absence of jumps and, therefore,

the approximation (2.40) is not needed.

In order to use Maximum Likelihood Estimation, r1, . . . , rT are to be observed. How-

ever, these variables are not observed in practice and, therefore, I propose to perform

a QMLE procedure by expressing r1, . . . , rT in observable variables. This procedure

has been popularized by Piazzesi (2003) and solves a system of equations to obtain the

unobservable variables. The system of equations results from the pricing equation of the
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riskless zero-coupon bond:

P (t, τ) = eA(τ)−B(τ)r(t). (2.42)

A collection of zero-coupon bonds with m different maturities constitutes the system of

equations as follows:

ln [P (t, τ1)] = A(τ1)−B(τ1)r(t),

ln [P (t, τ2)] = A(τ2)−B(τ2)r(t) + ε1,t,

...
...

...

ln [P (t, τm)] = A(τm)−B(τm)r(t) + εm−1,t,

(2.43)

where εt = [ε1,t . . . εm−1,t]
′ ∼ N(0,Ω). The bond with the shortest maturity is modeled

without measurement error in order to use the first equation to obtain an estimate of

the unobservable variables, that is:

r̂t =
−ln [P (t, τ1)] +A(τ1)

B(τ1)
. (2.44)

In this paper, I use the three-month riskless zero-coupon bond to obtain r̂1, . . . , r̂T in

the single-factor framework. The system of equations is completed with the riskless

zero-coupon bond prices of the six-month, one-, two-, three-, four-, five-, six-, seven-,

eight-, nine-, 10-, 15-, 20-, 25- and 30-year maturities, which are modeled with measure-

ment errors. I refer the interested reader to Piazzesi (2003) for an elaborate analysis of

this estimation procedure and the necessity of measurement errors to break stochastic

singularity.

The substitution of r̂t in the approximate density implies a transformation of the pdf

by means of the Jacobian. In the single-factor framework, the Jacobian is the first order

derivative of r̂t with respect to ln [P (t, τ1)], that is:

J = − 1

B(τ1)
. (2.45)
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The approximate pdf, system of equations and transformation yield the following

log-likelihood function for the QMLE procedure:

max
Θ

L(Θ) = ln (L(r̂1, . . . , r̂T ; Θ))− T ln|J |︸ ︷︷ ︸
1

2︷ ︸︸ ︷
−T

2
ln|Ω| − 1

2

T∑
t=1

ε′tΩ
−1εt,

(2.46)

where the first part maximizes the likelihood of the observed data and the second part

minimizes the measurement errors for the bond prices in the system of equations.

This procedure is easily extended to a multi-factor framework. To illustrate this tran-

sition, I use the pricing function of the riskless zero-coupon bonds in the multi-factor

framework:

P (t, τ) = eA(τ)−
∑n

i=1Bi(τ)yi(t). (2.47)

Analogous to the single-factor framework, the system of equations is constructed by a

collection of m bonds with different maturities, namely:

ln [P (t, τ1)] = A(τ1)−
n∑
i=1

Bi(τ1)yi(t),

ln [P (t, τ2)] = A(τ2)−
n∑
i=1

Bi(τ2)yi(t) + ε1,t,

...
...

...

ln [P (t, τm)] = A(τm)−
n∑
i=1

Bi(τm)yi(t) + εm−n,t,

(2.48)

where εt = [ε1,t . . . εm−n,t]
′ ∼ N(0,Ω). In the multi-factor framework, the number of

bond prices, m, should be greater or equal to the number of factors, n. This ensures

that the system of equations can uniquely be solved for the n factors. To capture the

short- and long-term dynamics of the short-rate in the two-factor framework, the three-

month and 30-year bond prices are modeled without errors to uniquely solve for the two

factors. In the three-factor framework, I choose to model the three-month, 10- and 30-

year bond prices without errors to uniquely solve for the three factors. The solutions to

these systems of equations are derived in Appendix A. The solutions are, subsequently,

used to compute the Jacobian.
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The log-likelihood function in the multi-factor framework can, thus, be defined as:

max
Θ

L(Θ) =

n∑
i=1

ln (L(ŷi,1, . . . , ŷi,T ; Θ))− T ln|J | − T

2
ln|Ω| − 1

2

T∑
t=1

ε′tΩ
−1εt, (2.49)

where Θ = {κi, θi, σi, λi, αi, βi, ξi}ni=1 denotes the parameter-set and {ŷi,1, . . . , ŷi,T }ni=1

are assumed to be the factors that constitute the short rate.

2.2.1 Fisher Information matrix

In order to obtain the uncertainty with respect to the estimates of QMLE parameters,

I compute the observed Fisher Information matrix. The Fisher Information matrix is

defined as the negative Hessian of the log-likelihood function, that is:

I(Θ) = − ∂2

∂Θi∂Θj
L(Θ). (2.50)

The observed Fisher Information matrix is obtained by evaluating the Fisher Information

matrix at the QMLE estimate, I(Θ̂QMLE). This is used in the specification of the

asymptotic distribution of the parameter estimates as follows:

Θ̂QMLE
a∼N(Θ, [I(Θ̂QMLE)]−1). (2.51)

Thus, the diagonal of the inverse of the observed Fisher Information matrix quantifies

the uncertainty in the parameter estimates.

Additionally, I use the Fisher Information for identification purposes. The observed

Fisher Information matrix can be interpreted as the amount of information in the

data, regarding the parameter set. Piazzesi (2003) shows that the non-invertibility

of I(Θ̂QMLE) might indicate possible identification issues. A pre-condition for the use

of this measure is to maximize the log-likelihood function for many different trial pa-

rameterizations. This is done by means of a Global Search algorithm in MATLAB. The

Fisher Information matrix is used as an indication of identification issues. The theoret-

ical results of Dai and Singleton (2000) are used to establish whether the ATSMs and

AJTSMs are identified. This is done in the Parameter Estimation section of the Results

(Section 4) by observing that ATSMs can be represented in the canonical framework of

Dai and Singleton (2000).
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2.3 Evaluation measures

In this subsection, I define the evaluation measures to test the goodness-of-fit and the

out-of-sample performance of the models. In accordance with the current literature, I

propose basic measures to evaluate the goodness-of-fit. The backtesting methodology

for the VaR and ES estimates are, however, more involved and I briefly describe these

methodologies in this subsection. For a more elaborate description, I refer the reader to

Christoffersen (1998), Wong (2008) and Du and Escanciano (2015).

2.3.1 Goodness-of-fit

In this paper, I propose several models in the ATSM- and AJTSM-framework. The

parameters of each model are estimated for the complete sample and, separately, for the

pre-, mid- and post-crisis sample periods. Each model fits a yield curve at each period,

t, in time. I compare the fitted yield curve with the observed yield curve by means

of the Mean Squared Prediction Error (MSPE), Mean Absolute Error (MAE), Root

Mean Squared Error (RMSE) and the in-sample Adjusted R2. Additionally, the Akaike

Information Criterion (AIC) and Bayesian Information Criterion (BIC) are computed

for each model to compare the relative quality of the models.

2.3.2 Value-at-Risk and Expected Shortfall

In order to test the out-of-sample performance of the models, I compute VaR and

ES estimates for the interest rate swaps. These estimates are constructed by simulation

and employing the methodology of Hull (2006), proposed in subsection 3.1. First, I use

the parameter estimates of the models to simulate M yield curves. Using the simulated

yield curves and the relation in Equation (3.1), I determine the interest rate swap rates.

Subsequently, I compute their one-week-ahead VaR and ES estimates.

With regard to testing the VaR estimates, I follow Christoffersen (1998) and ap-

ply three interrelated tests. These tests are regularly used in the industry to backtest

two properties of the VaR estimates, namely their independence and (un)conditional
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coverage. The following tests examine these properties using Likelihood Ratio (LR)

tests:

Correct Unconditional Coverage: Assuming that the independence property holds,

the fraction of VaR violations should be equal to the nominal coverage probability,

γ. This is, in essence, equivalent to testing: H0 = P[It+1 = 1] = E[It+1] = γ,

where It is an indicator function of the VaR violations. I test this hypothesis by

the following LR-test:

LRUC = −2log

(
(1− γ)T0 × γT1

(1− π1)T0 × πT11

)
∼ χ2(1), (2.52)

where π1 is the average of VaR violations, T1 is the number of VaR violations,

T0 is the number of non-VaR violations and χ2(1) is the Chi-squared distribution

with one degree of freedom.

Independence: VaR violations should be spread out and not come in clusters. This is

equivalent to testing the hypothesis; H0 = P[It+1 = 1|It] = P[It+1 = 1]. I test this

hypothesis with the following LR-test:

LRIND = −2log

(
(1− π1)T00+T10 × πT01+T11

1

(1− π01)T00 × πT0101 × (1− π11)T10 × πT1111

)
∼ χ2(1), (2.53)

where π1 and χ2(1) are defined in Equation (2.52), π01 is the average number of

non-VaR violations followed by a VaR violation, π11 is the average number of VaR

violations followed by a VaR violation, T00 is the number of non-VaR violations

followed by a non-VaR violation, T01 is the number of non-VaR violations followed

by a VaR violation, T10 is the number of VaR violations followed by a non-VaR

violation and T11 is the number of VaR violations followed by a VaR violation.

Correct Conditional Coverage: Accurate VaR estimates should result in indepen-

dent VaR violations and correct unconditional coverage. That is, the fraction of

VaR violations should be equal to the nominal coverage probability, while they

should be spread out over the sample and not come in clusters. The following

hypothesis applies to this case: H0 = P[It+1 = 1|It] = P[It+1 = 1] = γ. To test

these two properties simultaneously, I use the sum of both LR-tests:

LRCC = LRUC + LRIND ∼ χ2(2), (2.54)
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where χ2(2) is the Chi-squared distribution with two degrees of freedom.

In contrast to backtesting VaR estimates, ES estimates do not have common backtests.

In this paper, I choose the Saddlepoint Approximation test and the Box-Pierce test to

examine the ES estimates. Wong (2008) and Du and Escanciano (2015) show, by Monte

Carlo simulations, that both tests have favorable small sample properties. The following

summary describes the main aspects of these tests.

Saddlepoint Approximation Test The Saddlepoint Approximation (SPA) test is anal-

ogous to the unconditional coverage test for the VaR estimates. Wong (2008)

uses a saddlepoint approximation technique by Lugannani and Rice (1980) to test

whether the ES estimates capture the tail risk accurately. He compares the em-

pirically estimated ESn with the saddlepoint approximated ES0, implied by the

model under H0. The test statistic is defined as:

ESn =
1

n

n∑
i=1

Xi, (2.55)

where n is the number of VaR violations and Xi is the ES estimate corresponding

to the ith VaR violation. The derivation of the saddlepoint approximated ES0 is

beyond the scope of this paper. I refer the reader to Proposition 2 and Equation

(9), in Wong (2008), for an elaborate explanation of the saddlepoint approximated

ES0 and the corresponding p-value of the test.

Box-Pierce Test The Box-Pierce (BP) test is analogous to the independence test for

the VaR estimates. Du and Escanciano (2015) define a cumulative violation pro-

cess, Ht(γ), which should be a martingale difference sequence (mds) after centering.

Using this property, Du and Escanciano (2015) derive a conditional backtest for

the ES estimates by testing the autocorrelation of the cumulative violation process.

This is accomplished by a Box-Pierce test:

BPES(m) = n

m∑
j=1

p̂2
nj ∼ χ2(m), (2.56)

where p̂nj is the lag-j autocorrelation of the Ht with n violations and m = 3, in

accordance with the power tests in Du and Escanciano (2015).
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Although the VaR and ES backtests have favorable small sample properties, I empha-

size that these tests lack power to provide conclusive results. Therefore, I estimate VaR

and ES estimates with γ = {1%, 5%, 10%}. This gives a more complete picture of the

out-of-sample performance of the models.



3. Data Analysis

In this section, I discuss the data that is used in this research. In the first subsection,

I focus on the modification of the data to construct the riskless yield curve. The models

and methodology are applied on this riskless yield curve. The second subsection presents

evidence for jumps in the riskless interest rates. Lastly, the third subsection provides

summary statistics and further analysis of the yield curve for the entire sample as well

as for three sub-samples.

3.1 Construction of yield curve

In this paper, the riskless yield curve is modeled by ATSMs and AJTSMs in the

Vasicek-framework. In order to obtain the riskless interest rates and, subsequently, the

riskless yield curve, US LIBOR money market deposits and US government based secu-

rities are used, in accordance with Dai and Singleton (2000). Although these securities

are not completely riskfree, they are, generally, regarded to accurately approximate the

riskless interest rates. Moreover, Feldhütter and Lando (2008) show that interest rate

swap data most accurately approximates the riskless interest rates. Therefore, I use

three- and six-month US LIBOR money market deposits and one-, two-, three-, four-,

five-, six-, seven-, eight-, nine-, 10-, 15-, 20-, 25- and 30-year US interest rate swaps.

The data is obtained from the Bloomberg database1 for the period covering January 6,

2006 to January 1, 2016.

1Tickers for the US LIBOR money market deposits are US0003M Index and US0006M Index.
Tickers for the US interest rate swaps are: USSW1 CMPN Curncy, USSW2 CMPN Curncy,
USSW3 CMPN Curncy, USSW4 CMPN Curncy, USSW5 CMPN Curncy, USSW6 CMPN
Curncy, USSW7 CMPN Curncy, USSW8 CMPN Curncy, USSW9 CMPN Curncy, USSW10
CMPN Curncy, USSW15 CMPN Curncy, USSW20 CMPN Curncy, USSW25 CMPN Curncy
and USSW30 CMPN Curncy.

25
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US LIBOR money market deposits have no coupon payment and are, therefore, di-

rectly substituted in the yield curve. US interest rate swaps are, however, more compli-

cated to bootstrap zero-coupon yields from. I apply the methodology, proposed in Hull

(2006), to bootstrap the term structure of the riskless interest rates. The methodology

is based on the concept of an interest rate swap, with maturity T , being equivalent to a

coupon bond, with the same maturity T . More elaborately, I provide a modified version

of the example in Hull (2006), using linear interpolation of the yield curve:

Suppose the six- and 12-month zero-coupon yields are 4% and 4.5%, respectively.

The two-year interest rate swap is 5%. This is equivalent to a bond, with a

principal of $100 and a semi-annually coupon of 5% per annum, selling at par.

Let X denote the two-year zero-coupon yield. By means of linear interpolation of

the yield curve, the 18-month zero-coupon yield is 4.5% + X−4.5%
2 . Therefore, the

following equation should hold2:

100 = 2.5e−4%×0.5 + 2.5e−4.5%×1.0 + 2.5e−(4.5%+X−4.5%
2

)×1.5 + 102.5e−X×2.0. (3.1)

Solving this equation yields a two-year zero-coupon yield of 4.95%.

Similarly, I apply this methodology to US interest rate swaps of all maturities and,

thereby, obtain the entire riskless yield curve.

3.2 Jumps

In order to justify the use of AJTSMs, I analyze whether jumps are, in fact, apparent

in the data. For illustrative purposes, Figure 3.1 only plots the weekly yield changes

of the three-month and 10-year yields. Both weekly yield changes exhibit relatively in-

frequent, large spikes. Figure 3.1 shows that the magnitude of multiple spikes exceeds

the three standard deviations barrier. These observations can be interpreted as jumps.

Jumps are often caused by the arrival of new information that significantly impacts the

view of market participants on the future state of the economy. We observe multiple

jumps during the mid-crisis period, which can not be captured by ATSMs. This justifies

the use of AJTSMs to capture the discontinuity in the riskless interest rates.

2Throughout the entire paper, I assume continuous compounding.
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Figure 3.1: Weekly Yield Changes

Notes: This figure shows the weekly yield changes (in basis points) of the three-month and 10-
year yields from January 6, 2006 to January 1, 2016. The upper and lower dashed lines indicate
the upper and lower three standard deviation barriers.

The most evident jump took place at the end of 2008 and is, in fact, related to mon-

etary policy of central banks. In particular, the Federal Reserve decided on December

16, 2008 to lower the interest rate to the range of 0-0.25% and this constituted the

significant jump in Figure 3.1. Given the previous definition of jumps, interventions of

central banks are interpreted as jumps. This suggests that AJTSMs might outperform

ATSMs in an economic environment with many unanticipated interventions of central

banks. However, anticipated interventions do not constitute large yield changes. This

is apparent in the short-term yield changes after 2009, which are flat due to the zero

interest rate policies of central banks.

3.3 Summary statistics and stylized facts

The summary statistics of the weekly yield curve from January 6, 2006 to January

1, 2016 are reported in Table 3.1. In accordance with established stylized facts in the
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literature, the mean estimates of the yields, in Panel A, show that the yield curve is

generally increasing and concave. A graphical representation of this fact can be found

in Figure B.1 in Appendix B.

Panel A

Maturity Mean (%) SD (%) Skewness Kurtosis ρ1 ρ26 ρ52

3-month 1.6408 2.0524 1.1222 2.4850 0.9966 0.8482 0.6718
6-month 1.7868 1.9550 1.0779 2.4281 0.9968 0.8512 0.6800
1-year 1.6663 1.9087 1.1574 2.6081 0.9963 0.8457 0.6714
2-year 1.8583 1.7677 1.0885 2.5278 0.9956 0.8379 0.6911
3-year 2.1220 1.6622 0.9601 2.3660 0.9951 0.8301 0.7057
4-year 2.3834 1.5679 0.8431 2.2460 0.9946 0.8206 0.7071
5-year 2.6201 1.4813 0.7507 2.1672 0.9940 0.8096 0.6992
6-year 2.8260 1.4054 0.6755 2.1044 0.9935 0.7979 0.6870
7-year 2.9980 1.3421 0.6150 2.0530 0.9930 0.7863 0.6732
8-year 3.1388 1.2911 0.5682 2.0118 0.9926 0.7755 0.6589
9-year 3.2566 1.2498 0.5284 1.9777 0.9922 0.7657 0.6446
10-year 3.3567 1.2155 0.4947 1.9502 0.9920 0.7568 0.6311
15-year 3.6784 1.1144 0.3726 1.8623 0.9908 0.7265 0.5780
20-year 3.8046 1.0758 0.3287 1.8442 0.9904 0.7082 0.5448
25-year 3.8596 1.0555 0.3057 1.8357 0.9900 0.6949 0.5240
30-year 3.8894 1.0411 0.2900 1.8323 0.9896 0.6874 0.5131

Panel B

Maturity Mean (%) SD (%) Skewness Kurtosis ρ1 ρ26 ρ52

3-month -0.0077 0.0970 -2.7751 39.413 0.6086 0.0152 0.0528
6-month -0.0074 0.0783 -2.2179 22.874 0.5428 -0.0007 0.0366
1-year -0.0076 0.0830 -0.5303 12.241 0.1219 -0.0081 0.0498
2-year -0.0069 0.1018 0.2188 9.0549 -0.0391 -0.0418 0.0436
3-year -0.0065 0.1131 0.3860 6.9851 -0.0481 -0.0664 0.0598
4-year -0.0061 0.1197 0.4090 5.6894 -0.0422 -0.0689 0.0604
5-year -0.0059 0.1249 0.4163 5.1153 -0.0560 -0.0733 0.0597
6-year -0.0057 0.1276 0.4170 4.9190 -0.0680 -0.0819 0.0598
7-year -0.0055 0.1290 0.3808 4.7880 -0.0721 -0.0783 0.0599
8-year -0.0054 0.1293 0.3410 4.8621 -0.0745 -0.0839 0.0600
9-year -0.0052 0.1300 0.2902 4.9018 -0.0804 -0.0837 0.0609
10-year -0.0052 0.1290 0.2467 4.9442 -0.0764 -0.0910 0.0666
15-year -0.0049 0.1283 0.1018 5.3798 -0.0964 -0.0832 0.0923
20-year -0.0048 0.1272 0.1087 4.8059 -0.1011 -0.0881 0.0953
25-year -0.0047 0.1283 -0.1145 5.7621 -0.1064 -0.0886 0.1009
30-year -0.0047 0.1300 -0.1152 5.8883 -0.1226 -0.0930 0.1038

Table 3.1: Summary Statistics

Notes: This table shows the summary statistics of the weekly yield curve (Panel A) and the
weekly changes in the yield curve (Panel B) from January 6, 2006 to January 1, 2016. The
table provides the mean (in %), standard deviation (SD in %), skewness and kurtosis. The one-,
26- and 52-week auto-correlation coefficients are denoted by, respectively, ρ1, ρ26 and ρ52.



Data Analysis 29

Moreover, standard deviation estimates in Panel A of Table 3.1 decrease with increas-

ing maturities. This indicates that the short end of the yield curve is more volatile than

its long end. Both the short and long end of the yield curve exhibit high persistence in

their dynamics, emphasized by their high auto-correlation coefficients, ρ1. The cross-

correlation among yields with different maturities can be found in Panel A of Table B.2

in Appendix B for the complete sample. This table indicates, as expected, that cross-

correlation among yields is high, ranging from 0.8191 to 0.9998.

In contrast to what the established literature suggests, the half- and one-year auto-

correlation coefficients, ρ26 and ρ52, indicate that the yield dynamics are more persistent

at the short end of the yield curve than at the long end. A possible explanation for this

anomaly is the aggressive intervention of central banks in recent years. Monetary policy

is known to affect the short end of the yield curve more profoundly than the long end.

Keeping interest rates low since 2008, arguably, constituted these contradictory results.

Panel B in Table 3.1 reports the summary statistics of the weekly changes. The

mean estimates show that all yields, on average, display negative weekly changes, con-

sistent with decreasing interest rates in the past 10 years. This is graphically represented

in Figure 3.2 for the three-month, three-year, 10-year and 30-year yields. More inter-

estingly, the standard deviation estimates show reverse patterns in Panel A and B in

Table 3.1. Apparently, weekly changes in yields are smaller and more dispersed at the

long end of the yield curve than the short end. Additionally, Figure 3.2 shows that the

level of the yields diverged, since 2008. This phenomenon might also be explained by

the low interest rates, set by the central banks. The skewness and kurtosis estimates in

both Panels A and B in Table 3.1 conclude that the yields and the yield changes are not

Normally distributed.
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Figure 3.2: Time Series of Yields

Notes: This figure plots weekly yields (in %) from January 6, 2006 to January 1, 2016. The yields
have three-month (blue), three-year (red), 10-year (yellow) and 30-year (purple) maturities.

In this paper, I investigate the performance of ATSMs and AJTSMs in different eco-

nomic environments. Therefore, the sample is divided into three sub-samples. The first

sub-sample ranges from January 6, 2006 to December 28, 2007 and captures the pre-

crisis period. The second sub-sample ranges from January 4, 2008 to December 25, 2009

and captures the mid-crisis period. Lastly, the third sub-sample ranges from January 1,

2010 to January 1, 2016 and capture the post-crisis period. For the sake of brevity, only

the mean and standard deviation (SD) of the yields are reported in Table 3.2 for each

sub-sample. The complete summary statistics and cross-correlation of these sub-samples

are reported in Tables B.1 and B.2 in Appendix B.

The mean estimates in Table 3.2 generally indicate that the average yield curve is in-

creasing and concave, with an exception for the pre-crisis period. The pre-crisis period

exhibits a flat yield curve. These findings are graphically represented in Figure B.2 in

Appendix B. In accordance with previous findings for the complete sample, first-order

auto-correlation coefficients in Panels A, B and C of Table B.1 also show that the yield

dynamics, in every sub-sample, are highly persistent.
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However, the sub-sample statistics additionally present remarkable results, regarding

cross-correlations and standard deviations of the yields. Firstly, Panels B and C in Table

B.2 show that cross-correlations are, relatively, high in the pre- and mid-crisis periods.

The cross-correlation coefficients range from 0.3942 to 0.9998 and 0.4485 to 0.9996 for

these periods, respectively. Panel D in Table B.2 indicates, however, that the cross-

correlation relation is distorted after the crisis, with coefficients ranging from -0.3597 to

0.9997. Further analysis shows that negative, low cross-correlations are only apparent

at the short end of the yield curve, that is for the three-month, six-month and 1-year

yields.

Secondly, the SD estimates in Table 3.2 indicate that standard deviation dynamics

changed from 2006 to 2016. During the pre-crisis period, the standard deviation had a

humped term structure. That is, the standard deviation increased from low to medium

maturities and decreased from medium to high maturities. During the mid-crisis period,

standard deviation decreased as maturity increased. This is in contrast with the post-

crisis period, when standard deviation increased as maturity increased. A comparison of

SD estimates across periods shows that the standard deviation spiked in the mid-crisis

period, as is expected during recessions.

Monetary policies, affecting the short end of the yield curve, can be interpreted as

an explanation for these abnormalities. The data analysis concludes that this research

is, partly, focused on the applicability of ATSMs and AJTSMs in unconventional eco-

nomic environments. In this case, the unconventionality is caused by monetary policy

experiments of central banks.
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Pre-Crisis Mid-Crisis Post-Crisis

Maturity Mean (%) SD (%) Mean (%) SD (%) Mean (%) SD (%)

3-month 5.3962 0.2685 1.8514 1.2881 0.3272 0.0983
6-month 5.3432 0.2529 2.1231 1.1183 0.4975 0.1477
1-year 5.2004 0.3420 1.8308 1.0219 0.4412 0.1308
2-year 5.0695 0.3871 2.1903 0.8774 0.6848 0.2329
3-year 5.0576 0.3674 2.6018 0.7906 0.9908 0.3538
4-year 5.0841 0.3453 2.9323 0.7278 1.3072 0.4393
5-year 5.1225 0.3233 3.1833 0.6826 1.6047 0.4943
6-year 5.1597 0.3068 3.3847 0.6579 1.8680 0.5296
7-year 5.1937 0.2936 3.5445 0.6437 2.0897 0.5522
8-year 5.2253 0.2834 3.6676 0.6387 2.2725 0.5673
9-year 5.2549 0.2757 3.7677 0.6362 2.4254 0.5790
10-year 5.2822 0.2701 3.8507 0.6325 2.5553 0.5885
15-year 5.3822 0.2544 4.1141 0.6300 2.9698 0.6195
20-year 5.4279 0.2484 4.1906 0.6586 3.1392 0.6279
25-year 5.4404 0.2466 4.2128 0.6805 3.2189 0.6313
30-year 5.4409 0.2459 4.2273 0.6881 3.2635 0.6306

Table 3.2: Summary Statistics of Sub-Samples (Mean and Standard Deviation)

Notes: This table shows an excerpt of the summary statistics of the weekly yield curve for the
pre-crisis, mid-crisis and post-crisis samples in Table B.1. The pre-crisis sample ranges from
January 6, 2006 to December 28, 2007, the mid-crisis sample ranges from January 4, 2008 to
December 25, 2009 and the post-crisis sample ranges from January 1, 2010 to January 1, 2016.
The table provides the mean (in %) and standard deviation (SD in %) estimates of these samples.



4. Results

In this section, I present the results of this research. The first subsection provides the

parameter estimates of the ATSMs and AJTSMs for the complete sample and, separately,

for the pre-, mid- and post-crisis samples. The second subsection provides the goodness-

of-fit measures to evaluate the in-sample performance of the models. Lastly, the third

subsection reports the results of the backtests for VaR and ES estimates to evaluate the

out-of-sample Risk Management performance.

4.1 Parameter estimation

The parameter estimates of ATSMs and AJTSMs for the complete sample and the

pre-, mid- and post-crisis samples are presented in, respectively, Tables 4.1 and C.1, C.2

and C.3 in Appendix C. The following paragraphs provide an elaborate analysis of these

results and focus on the empirical justification of the jump diffusion component.

Before I analyze the results, I discuss the application of the methodology to the empir-

ical data. Firstly, I estimate the parameters of the ATSMs and AJTSMs by the QMLE

procedure in conjunction with a Global Search procedure to avoid local optima. I find

that this algorithm is robust in finding a global optimum in most cases.

Secondly, I experience difficulties in approximating the Hessian matrix and, thereby,

the Fisher Information matrix by numerical optimization. This problem arises due to

the incorporation of constraints on the parameters in the model. A constrained problem

includes the constraints by means of Karish-Kuhn-Tucker multipliers, which ultimately

affect the Hessian matrix. I optimize the constrained problem and calculate the Hes-

sian matrix of the unconstrained problem, evaluated in the solution of the constrained

problem. This results in a non-optimal Hessian matrix and in a negative semi-definite

covariance matrix. To avoid negative variances, I report the standard errors from the

33
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nearest positive semi-definite covariance matrix, based on the Frobenius-norm.

Thirdly, I find that the one-, two- and three-factor ATSMs are identified, according

to the observed Fisher Information matrix. This in accordance with the theoretical

framework of Dai and Singleton (2000) as well. The ATSMs, in this paper, adhere

to the canonical representation in Dai and Singleton (2000)1 and are, therefore, clas-

sified as admissible ATSMs. These admissible ATSMs are econometrically identified.

The AJTSMs are not classified within the theoretical framework of Dai and Singleton

(2000), due to the jump diffusion component. The observed Fisher Information matrix,

in combination with the Global Search algorithm, show that the one- and two-factor

AJTSMs are identified. The three-factor model in the AJTSM-framework, however,

has identification issues according to the Hessian matrix. The estimation algorithm re-

ports a near-singular Hessian matrix during the optimization procedure, which indicates

that certain parameters are not identified. The final Hessian matrix and the observed

Fisher Information matrix, however, have full rank. Given this anomaly, the estimates

of the three-factor AJTSM are suspect. I impose restrictions on the parameters to solve

the identification problem. However, this results in either the two-factor AJTSM, the

three-factor ATSM or an unrealistic economic model. Due to this identification problem

and computational feasibility, I only include the three-factor models in the parameter

estimation and goodness-of-fit analysis and exclude these models in the VaR and ES

analysis.

Fourthly, given the identification problem, the robustness property of the Global

Search algorithm does not apply to the three-factor AJTSMs. By definition of an

unidentified model, I find that the estimated parameters are highly dependent on the

initialization of the QMLE procedure. Remarkably, initialization of the QMLE proce-

dure with the parameter estimates of the ATSMs result in sound economic parameter

estimates of the AJTSMs2. Although this procedure is practical, it is not econometri-

cally sound. I report the results of the three-factor AJTSMs to portray its anomalous

behaviour and to, possibly, stimulate further research.

1ATSMs within the Vasicek framework comply with the constraints in Definition 1 of Dai and Sin-
gleton (2000).

2This holds for parameter estimation in the sub-samples and is not observed for parameter estimation
in the complete sample.
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4.1.1 Complete sample analysis

Panel A in Table 4.1 shows that all parameters of the one-, two- and three-factor

models in the ATSM-framework are significantly different from zero on a 95% confi-

dence level, except for the long-term mean (θ). Equivalently, all parameters of the one-,

two- and three-factor models but five, in the AJTSM-framework, are significantly differ-

ent from zero on a 95% confidence level in Panel B in Table 4.1. The five insignificant

parameters include the long-term mean as well.

The mean-reversion coefficients (κ) determine the speed of the process to return to

its long-term mean. For interpretational purposes, I modify this coefficient to the mean

half life of the process, − ln(0.5)
κ . This expression is interpreted as the expected time for

the process to return halfway to its long-term mean, according to Lin and Yeh (2001).

In the ATSM-framework, Panel A in Table 4.1 shows that the first factor has mean half

lives of 4.5, 1.5 and 5.1 years in, respectively, the one-, two- and three-factor model. The

third factor has a mean half life of 1.3 years in the three-factor model. The first and

third factor, therefore, seem to exhibit some periodicity through their mean-reversion

coefficients. In contrast, the mean half life of the second factor in the two- and three-

factor model is relatively high, namely 69 years in both models. The mean-reversion

estimates in the AJTSM-framework, in Panel B in Table 4.1, exhibit a similar pattern,

with the exception of the three-factor model. The first factor has mean half lives of 4.5

and 2.0 years in the one- and two-factor model, but a mean half life of 21 years in the

three-factor model. The second factor has a mean half life of 24 years in the two-factor

model. In the three-factor model, however, the second and the third factor exhibit sig-

nificant mean-reversion with mean half lives of, respectively, 2.2 and 0.4 years.

As previously stated, the long-term mean estimates (θ) in the ATSM-framework are

not significantly different from zero on 95% confidence level. The insignificance of these

estimates are, understandably, a result of the zero-interest rate policies of central banks,

which covers a significant part of the complete sample. However, several factors in the

AJTSMs have significantly large long-term mean estimates. The analysis of the jump

component, partly, explains these results.
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Panel A: ATSM

1-Factor model 2-Factor model 3-Factor model
Θ 1st-F SE (p-value) 1st-F SE (p-value) 2nd-F SE (p-value) 1st-F SE (p-value) 2nd-F SE (p-value) 3rd-F SE (p-value)

κ 0.155 0.009 (0.00) 0.455 0.014 (0.00) 0.010 0.002 (0.00) 0.136 0.002 (0.00) 0.010 0.002 (0.00) 0.539 0.030 (0.00)
θ 0.000 0.008 (1.00) 0.000 0.735 (1.00) 0.000 0.741 (1.00) 0.000 0.090 (1.00) 0.000 0.002 (1.00) 0.000 0.210 (1.00)
σ 0.007 0.001 (0.00) 0.014 0.004 (0.00) 0.011 0.002 (0.00) 0.075 0.003 (0.00) 0.011 0.005 (0.03) 0.020 0.010 (0.05)
ξ -1.069 0.027 (0.00) -0.508 0.118 (0.00) -0.190 0.011 (0.00) -0.228 0.032 (0.00) -0.345 0.012 (0.00) -1.256 0.401 (0.00)

Panel B: AJTSM

1-Factor model 2-Factor model 3-Factor model
Θ 1st-F SE (p-value) 1st-F SE (p-value) 2nd-F SE (p-value) 1st-F SE (p-value) 2nd-F SE (p-value) 3rd-F SE (p-value)

κ 0.153 0.010 (0.00) 0.351 0.006 (0.00) 0.029 0.001 (0.00) 0.033 0.000 (0.00) 0.312 0.002 (0.00) 1.789 0.017 (0.00)
θ 0.000 0.003 (1.00) 0.021 0.007 (0.00) 0.023 0.003 (0.00) 0.015 0.008 (0.05) 0.440 0.009 (0.00) 0.327 0.038 (0.00)
σ 0.001 0.000 (0.00) 0.021 0.001 (0.00) 0.011 0.000 (0.00) 0.019 0.000 (0.00) 0.007 0.001 (0.00) 0.139 0.019 (0.00)
λ 7.663 0.087 (0.00) 0.000 0.001 (1.00) 0.655 0.004 (0.00) 0.277 0.014 (0.00) 29.06 0.024 (0.00) 2.604 0.042 (0.00)
α -0.002 0.000 (0.00) 0.011 0.314 (0.97) 0.001 0.000 (0.00) 0.036 0.001 (0.00) -0.003 0.000 (0.00) -0.129 0.013 (0.00)
β 0.003 0.002 (0.15) 0.904 0.147 (0.00) 0.002 0.001 (0.00) 0.004 0.001 (0.00) 0.004 0.001 (0.00) 0.046 0.014 (0.00)
ξ -1.996 0.045 (0.00) 0.328 0.027 (0.00) -0.067 0.003 (0.00) -0.033 0.000 (0.00) -0.582 0.000 (0.00) -0.484 0.000 (0.00)

Table 4.1: Parameter Estimates Complete Sample

Notes: This table reports the parameter estimates, based on the QMLE procedure, in the ATSM-framework (Panel A) and in the AJTSM-framework
(Panel B) using the weekly yield curve from January 6, 2006 to January 1, 2016 (522 observations). The table provides the parameter estimates of κ, θ, σ
and ξ, their corresponding standard errors and p-values for the one-, two- and three-factor model in the ATSM-framework (Panel A). Additionally, the table
provides the parameter estimates of κ, θ, σ, λ, α, β and ξ, their corresponding standard errors and p-values for the one-, two- and three-factor model in the
AJTSM-framework (Panel B). In the models, I assume that the dynamics of the factors are described by a Vasicek model and the market price of risk of
each factor is constant. The standard errors are based on the nearest symmetric-positive definite covariance matrix, derived from the unconstrained Hessian
matrix. In the AJTSM-framework, I assume that jump risk is diversifiable and the Brownian Motion and Poisson process are independent as well.
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Panel B in Table 4.1 shows that all jump intensity parameters (λ) are significantly

different from zero on a 95% confidence level, with the exception of the first factor in the

two-factor AJTSM. Factors, that exhibit significant jump intensities, generally have sig-

nificant parameters for the distribution of the jump size, that is α and β. This indicates

that there is empirical evidence for the presence of jumps in the riskless interest rate.

Moreover, we identify three factors with particular importance for the jump diffusion,

namely the first factor in the one-factor model and the second and third factor in the

three-factor model. These factors exhibit, on average, 7.7, 29 and 2.6 jumps per year,

respectively. The size of these jumps follow a Gaussian distribution with a negative

mean. In the case of the three-factor AJTSM, large negative jumps provide a possible

explanation for the positive long-term mean estimates. The volatility of the jump pro-

cess is small and, generally, lower than the volatility estimates.

A comparison of the volatility estimates (σ) in Table 4.1 shows that the volatility of

the non-jump processes decreases in the presence of a significant jump diffusion compo-

nent. I reason that this advocates the presence of jumps in the riskless interest rates.

That is, observations with jumps increase the volatility of a process as the model aims

to capture these aberrant observations within its framework. By capturing the jumps in

the aberrant observations with a jump diffusion process, the volatility estimate should

decrease substantially. This result is observed for the factors with significant jumps. The

third factor in the three-factor AJTSM is an exception to this general result as it has an

unreasonably high volatility estimate. Most factors have volatility estimates of the same

order as standard deviations of the yields in Panel A in Table 3.1 in the Data Analysis of

Section 3. The irregularly high volatility estimate of the third factor, possibly, indicates

the unreliability of the parameter estimates in the three-factor AJTSM.

Lastly, Table 4.1 shows that most factors have negative market prices of risk (ξ).

Essentially, negative market prices of risk indicate negative Sharpe ratios, which would

make these securities unattractive to investors. The market, however, infers that in-

vestors are willing to take on the risk in exchange for a default-free security. In light of

the recession, this assessment is justified. However, I emphasize that this relation might

be distorted in recent years by (short-term) monetary policies.
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4.1.2 Sub-sample analysis

In order to investigate whether there is an empirical justification for the jump diffusion

component in different economic environments, I compare the ATSMs and AJTSMs for

different sub-samples. The subsequent paragraphs analyze the parameter estimates of

the ATSMs and AJTSMs, that are specifically different in the pre-, mid- and post-crisis

samples. To this extent, Figure 4.1 is used to graphically present the variations in the

parameter estimates over time. The complete statistics of the parameter estimation of

the sub-samples is reported in Tables C.1, C.2 and C.3 in Appendix C.

Figure (A) in 4.1 presents the number of insignificant parameters in the ATSMs and

AJTSMs for the pre-, mid- and post-crisis samples as well as for the complete sample.

The pre- and mid-crisis samples are substantially smaller (104 observations) than the

post-crisis and complete sample (respectively, 314 and 522 observations). This affects

the parameter estimates in the sense that the estimates are less accurate and have large

standard errors. Figure (A) in 4.1 reflects this result. The figure shows that, on a 95%

confidence level, the ATSMs and AJTSMs in the pre-crisis sample have, respectively,

nine and 14 insignificant parameters. Equivalently, the ATSMs and AJTSMs in the

mid-crisis sample have, respectively, 10 and 12 parameters that are not significantly

different from zero. This is in contrast with the parameter estimates of the post-crisis

and complete samples, which have 4 to 6 insignificant parameters. Tables C.1, C.2 and

C.3 show that the insignificance is largely restricted to the long-term mean estimates

in the ATSM-framework, while varying long-term mean estimates and jump parameters

are insignificant in the AJTSM-framework.

Figure (B) in 4.1 provides the average long-term mean estimates of the ATSMs and

AJTSMs for the complete, pre-, mid- and post-crisis samples. In contrast to the com-

plete sample results, Figure (B) in 4.1 shows that the average long-term mean estimates

of the pre-crisis sample are significantly different from zero. The average long-term mean

estimates range between 3%-4% for, both, ATSMs and AJTSMs. Table C.1 adheres to

this result by reporting that all models, for the pre-crisis sample, have one factor with a

significant positive long-term mean between the range of 5%-6%. This result is expected

for the pre-crisis sample since Panel A in Table B.1 (Appendix B) shows a three-month

interest rate of 5.4% during this period. Additionally, Panel B and C in Table B.1 show

a decrease of the short-term interest rates over time. This is accurately captured by
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the ATSMs as Figure (B) in 4.1 illustrates the decrease in their average long-term mean

estimates for the mid- and post-crisis periods. These results are more in accordance

with the complete sample results and reflect the fall of the riskless interest rates during

the crisis in 2008. We do, however, observe positive average long-term mean estimates

for the AJTSMs during the mid- and post-crisis periods. Panel B in Table C.2 indicates

that the long-term mean estimates are compensated by significant negative jumps dur-

ing the mid-crisis period. This result does not hold during the pre-crisis period. This

anomaly can be explained by the long-term mean estimates of the three-factor AJTSM,

which have a large impact on the average long-term mean estimate, but are suspect.

In order to establish the empirical justification of jump diffusion components, I ana-

lyze the significance of the jump intensities (λ). Panel B in Tables C.1 and C.2 show

that all, but one, jump intensities are significantly different from zero in the pre- and

mid-crisis samples. Excluding the three-factor AJTSM due to identification issues, the

jump intensities in the post-crisis sample are insignificant, according to Panel B in Table

C.3. The jump intensities are modified in Figure (C) in 4.1, to graphically indicate the

average number of jumps per year in each AJTSM. The figure shows that the average

number of jumps in each AJTSM is large during the pre- and mid-crisis periods and

small during the post-crisis period. These results attribute to the presence of jumps

in the riskless interest rates during the pre- and mid-crisis periods and the absence of

jumps during the post-crisis period. Figure 3.1 in the Data Analysis of Section 3 pro-

vides the justification for this observation. The figure shows that, while there are a

significant number of jumps from 2006 to 2009, there are no observable jumps in the

three-month yield changes during the post-crisis sample. Effectively, this result suggests

that AJTSMs are not applicable in an economic environment without the presence of

jumps. In the case of significant jumps, we observe that the mean jump size, generally,

is non-positive. Moreover, we observe that volatility estimates of the non-jump process

decrease in the presence of these jumps. This is in line with the complete sample results,

but does not hold during the mid-crisis period as crises are regarded to be extremely

volatile.

Lastly, Figure (D) in Table 4.1 plots the average market price of risk of the ATSMs

and AJTSMs for the complete, pre-, mid- and post-crisis samples. The figure shows

that that the average market prices of risk are positive, during the pre-crisis period, and

negative during the mid- and post-crisis periods. Analogous to previous results, these

findings emphasize the contrast of the pre-crisis results and the congruence of the mid-
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and pre-crisis results with the complete sample results. There are several interpretations

of these discrepancies. An economic reason for the positive average market prices of risk

is that the market did not highly demand default-free securities in the pre-crisis period

(2006-2007). Investors demanded a return for the risk on these securities. Understand-

ably, the market sentiment changed during and after the financial crisis of 2008 with

regard to the default-free securities. The negative average market prices of risk in the

mid-crisis period (2008-2009) demonstrate this change in market sentiment during the

financial crisis of 2008. Investors fled to safe securities and the market’s demand for

default-free securities rose. The continuation of negative market prices of risk during

the post-crisis period (2010-2016) emphasizes that the market sentiment has not shifted

back in the recovery period after the financial crisis to pre-crisis levels.
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(A) (B)

(C) (D)

Figure 4.1: Key Results of Sub-Sample Analysis

Notes: These figures provide key results of the sub-sample parameter estimates in
Tables C.1, C.2 and C.3 in Appendix C. (A) plots the number of insignificant param-
eters of all ATSMs (blue) and AJTSMs (yellow) for each sub-sample in a bar chart.
The lines represent the number of insignificant parameters for the ATSM (blue) and
AJTSM (red) in the complete sample. ATSMs have a total of 24 parameters in each
sample, while AJTSMs have 42. (B) plots the average long-term mean estimates (θ)
of the ATSMs (blue) and AJTSMs (yellow) for each sub-sample in a bar chart. The
lines represent the average long-term mean estimates for the ATSM (blue) and AJTSM
(red) in the complete sample. (C) lots the average number of jumps per year for the
one- (blue), two- (green) and three-factor (yellow) AJTSM for each sub-sample in a
bar chart. The lines represent the number of jumps per year for the one- (blue), two-
(green) and three-factor (red) AJTSM in the complete sample. (D) plots the average
market price of risk (ξ) of the ATSMs (blue) and AJTSMs (yellow) for each sub-sample
in a bar chart. The lines represent the average market price of risk for the ATSM (blue)

and AJTSM (red) in the complete sample.
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4.2 Goodness-of-fit

In this subsection, I evaluate the performance of the ATSMs and AJTSMs in terms

of their ability to fit the term structure of the riskless interest rates. Analogous to the

previous subsection, I perform a complete sample analysis and focus on discrepancies

with the complete sample results in a separate sub-sample analysis. Table 4.2 reports the

AIC and BIC values of all models for each sample and Table 4.3 provides the goodness-

of-fit measures3 for the complete sample. Due to contrasting results, the goodness-of-fit

measures for the pre-crisis sample are presented in Table 4.4 as well. For sake of brevity,

I postpone the results for the mid- and post-crisis samples to Tables C.4 and C.5 in

Appendix C.

4.2.1 Complete sample analysis

Firstly, Panel A in Table 4.3 shows that the performance of the one-factor ATSM and

AJTSM, in terms of goodness-of-fit, is similar. Both one-factor models exhibit increasing

MSPEs, RMSEs and MAEs and decreasing R2
A’s for yields with longer maturities. In

particular, the negative R2
A’s assert that the model is misspecified for these yields. By

definition of the R2
A, the results indicate that one would obtain a better fit by using the

average of the yield itself. Emphasizing the disparity in the fit of the yield curve, the

MAE4 ranges from 2.505 to 43.89 basis points for the one-factor ATSM, while it ranges

from 2.511 to 43.75 basis points for the one-factor AJTSM. This pattern of increasing

difficulty to fit long-term yields results from two separate issues. First, the restriction

of the model to one factor only enables the model to capture the level of the short rate.

I choose to approximate this factor by modeling the three-month yield without error.

Consequently, the short-term yields are fitted better than long-term yields. Second,

the one-factor Vasicek model is known to capture P-dynamics much better than the Q-

dynamics (see Bolder (2001)). Effectively, the increasing MAEs portray this empirical

fact. The market price of risk of one factor is not able to capture the internal consistency

relation across the yield curve in the Vasicek framework. To improve this characteristic

within the framework, factors are added. The results of multi-factor models are discussed

3The goodness-of-fit measures for the 3-month, 30-year and 10-year yield are not provided, because
I model these yields without error for, respectively, the one-, two- and three-factor model.

4I put more emphasis on the MAE as this measure uses equal weighting of the errors and portrays a
fairer impression of the average error than the MSPE and RMSE.
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in the two- and three-factor analysis.

Although the performance of both one-factor models is similar, Panel A in Table 4.3

indicates a marginal difference in favor of the one-factor AJTSM. This is confirmed by

the AIC and BIC values in Table 4.2. However, all goodness-of-fit measures show that

the one-factor model, in both frameworks, is not able to fit the entire yield curve well.

ATSM AJTSM
1-Factor model 2-Factor model 3-Factor model 1-Factor model 2-Factor model 3-Factor model

Sample AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

Complete -49334 -49317 -68357 -68323 -79773 -79722 -50372 -50342 -63736 -63676 52705 52614
Pre-Crisis -11470 -11459 -15995 -15974 -19003 -18971 -11547 -11528 -14414 -14377 -18354 -18298
Mid-Crisis -9688.4 -9677.4 -13024 -13003 -16050 -16018 -9798.3 -9779.8 -12066 -12029 -15582 -15527
Post-Crisis -18557 -18572 -28431 -28382 -30212 -29019 -19439 -19413 -27194 -27142 -27769 -27690

Table 4.2: AIC and BIC values of ATSMs and AJTSMs

Notes: This table reports statistics concerning the relative fit of the one-, two- and three-
factor models in the ATSM- and AJTSM-framework. The table provides the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC) for the complete sample and the
pre-, mid- and post-crisis samples.

Secondly, Panel B in Table 4.3 shows a significant improvement in the performance

of the two-factor model in, both, the ATSM- and AJTSM-framework in comparison

with the one-factor model. There is a pronounced decrease in the MSPEs, RMSEs and

MAEs of both two-factor models. The MAE ranges from 2.374 to 12.52 basis points for

the two-factor ATSM and from 2.426 to 17.32 basis points for the two-factor AJTSM.

Although both models are performing as well for short-term yields as the one-factor

model, the magnitude of the MSPEs, RMSEs and MAEs of long-term yields is greatly

diminished for the two-factor models. Moreover, the error measures do not increase with

maturity. Instead, their evolution can be described as a concave function of maturity.

These improvements in the results are attributable to the fact that the two-factor models

use the three-month and 30-year yields to approximate the factors. The model is able to

capture the short- and long-term dynamics, which can be transformed to and interpreted

as the level and the slope of the short rate.

Although an additional factor improves in-sample fitting performance of both models,

the negative R2
A’s still indicate that the model is misspecified for a majority of the yields.

This holds for the two-factor AJTSM and, to a lesser extent, for the two-factor ATSM.

In contrast to the one-factor models, the two-factor models exhibit a clear difference in

their performances. The two-factor ATSM outperforms the two-factor AJTSM and, as

is shown in Table 4.2, the AIC and BIC favor the two-factor ATSM over the one-factor

ATSM and one- and two-factor AJTMS.
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Panel A: 1-Factor model Panel B: 2-Factor model

MSPE RMSE MAE R2
A MSPE RMSE MAE R2

A

τ ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM

3-month - - - - - - - - - - - - - - - -
6-month 0.007 0.007 0.085 0.085 2.505 2.511 0.998 0.998 0.006 0.007 0.078 0.081 2.374 2.426 0.998 0.998
1-year 0.077 0.077 0.277 0.277 4.354 4.345 0.979 0.979 0.099 0.099 0.314 0.315 4.950 4.881 0.973 0.972
2-year 0.621 0.620 0.788 0.788 7.854 7.844 0.801 0.799 0.736 0.750 0.858 0.866 8.323 8.365 0.764 0.753
3-year 1.906 1.907 1.381 1.381 10.49 10.49 0.310 0.300 1.685 1.749 1.298 1.323 10.30 10.55 0.390 0.349
4-year 4.132 4.145 2.033 2.036 12.62 12.63 -0.681 -0.709 2.491 2.700 1.578 1.643 11.47 11.94 -0.013 -0.129
5-year 7.352 7.391 2.712 2.719 14.50 14.53 -2.351 -2.414 2.914 3.418 1.707 1.849 12.01 12.69 -0.328 -0.601
6-year 11.57 11.65 3.402 3.413 16.28 16.31 -4.859 -4.978 3.087 4.045 1.757 2.011 12.19 13.14 -0.563 -1.104
7-year 16.68 16.80 4.085 4.099 17.89 17.93 -8.262 -8.454 3.233 4.781 1.798 2.186 12.23 13.54 -0.795 -1.727
8-year 22.39 22.53 4.732 4.747 19.34 19.36 -12.43 -12.70 3.386 5.604 1.840 2.367 12.24 13.93 -1.031 -2.455
9-year 28.78 28.93 5.365 5.378 20.68 20.69 -17.42 -17.77 3.555 6.503 1.885 2.550 12.26 14.42 -1.276 -3.278
10-year 35.82 35.95 5.985 5.996 21.98 21.96 -23.25 -23.66 3.729 7.465 1.931 2.732 12.28 14.98 -1.524 -4.192
15-year 84.23 83.74 9.178 9.151 28.00 27.91 -66.83 -67.35 3.968 11.28 1.992 3.359 12.52 17.32 -2.195 -8.336
20-year 166.5 164.6 12.90 12.83 33.47 33.34 -142.9 -143.2 1.490 7.833 1.221 2.799 9.976 15.87 -0.288 -5.955
25-year 309.7 306.5 17.60 17.51 38.76 38.62 -277.0 -277.9 0.606 2.441 0.779 1.562 7.721 11.74 0.456 -1.251
30-year 525.8 522.1 22.93 22.85 43.89 43.75 -484.1 -487.3 - - - - - - - -

Panel C: 3-Factor model

MSPE RMSE MAE R2
A

τ ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM

3-month - - - - - - - -
6-month 0.008 0.965 0.089 0.982 2.605 9.888 0.998 0.737
1-year 0.052 17.34 0.228 4.164 4.092 20.34 0.986 -3.959
2-year 0.287 100.0 0.535 10.00 6.591 31.52 0.908 -32.36
3-year 0.565 184.9 0.752 13.60 7.984 36.76 0.795 -68.74
4-year 0.739 222.2 0.860 14.90 8.670 38.49 0.699 -93.16
5-year 0.709 206.2 0.842 14.36 8.625 37.79 0.677 -96.93
6-year 0.531 155.8 0.729 12.48 8.040 35.24 0.731 81.21
7-year 0.323 95.49 0.568 9.772 7.102 31.18 0.821 -54.24
8-year 0.148 43.86 0.384 6.623 5.801 25.67 0.911 -26.42
9-year 0.040 10.90 0.199 3.301 4.109 18.12 0.975 -6.269
10-year - - - - - - - -
15-year 0.562 156.0 0.750 12.49 8.132 35.24 0.547 -129.9
20-year 0.635 232.0 0.797 15.23 8.230 38.92 0.452 -207.9
25-year 0.299 102.5 0.547 10.12 6.703 31.72 0.732 -94.84
30-year - - - - - - - -

Table 4.3: Goodness-of-Fit Measures of Complete Sample

Notes: This table reports and compares the goodness-of-fit measures for ATSMs and AJTSMs for the yield curve from January 6, 2006 to January 1, 2016.
Panel A presents the results of the one-factor ATSM and AJTSM, Panel B presents the results of the two-factor ATSM and AJTSM, and Panel C presents
the results of the three-factor ATSM and AJTSM. The MSPEs are denoted in squared basis points, the RMSEs and MAEs are denoted in basis points, R2

A

denotes the adjusted R2 and τ denotes the maturity. The bold numbers show the best model (ATSM or AJTSM) with respect to the goodness-of-fit measure.
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Thirdly, Panel C in Table 4.3 demonstrates the effect of the parameter estimation

problems in the three-factor model within the AJTSM-framework. The MSPEs, RMSEs,

MAEs and R2
A’s of the three-factor AJTSM are worse than all other models in both

frameworks. The negative performance is recognized by the AIC and BIC values in Table

4.2 as well. In contrast to the three-factor AJTSM, the three-factor ATSM performs

particularly well. The MAE ranges from 2.605 to 8.670 basis points and shows that the

three-factor ATSM performs slightly worse for the six-month yield than the one- and

two-factor models. This, however, is compensated by low MSPEs, RMSEs and MAEs

for all remaining yields. As a matter of fact, the three-factor ATSM is the best model

to fit the yield curve for the complete sample, according to Table 4.2. Essentially, this

result shows that increasing the number of factors increases the fit of the entire yield

curve. The positive R2
A’s, in Panel C in Table 4.3, confirm this statement. Multiple

factors are able to capture the market price of risk and, thereby, increase the model’s

ability to capture the internal consistency relation and, consequently, the Q-dynamics.

These results might be attributed to the incorporation of the short-term, mid-term

and long-term dynamics in the three-factor model by modeling, respectively, the three-

month, 10-year and 30-year yields without error. These dynamics are transformed to

and interpreted as the level, slope and curvature of the short rate.

4.2.2 Sub-sample analysis

In the following paragraphs, I analyze the results of the pre-, mid- and post-crisis

samples. I focus on contrasting results for different economic environments and dis-

crepancies with the complete sample analysis. The results of the pre-crisis sample are

reported in Table 4.4. The results of the mid- and post-crisis samples are reported in

Tables C.4 and C.5 in Appendix C.

Panel A in Table 4.4 shows that the results of the pre-crisis sample for the one-

factor ATSM and AJTSM are comparable to the complete sample results. Both one-

factor models perform poorly in terms of the goodness-of-fit measures and the one-factor

AJTSM is marginally superior to the one-factor ATSM. This is confirmed by the AIC

and BIC values in Table 4.2. More importantly, the MSPEs, RMSEs and MAEs show

increasing difficulty to fit long-term yields and the negative R2
A’s indicate that both

models are misspecified for the long-term yields.
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In contrast to the complete sample results, Table 4.4 shows that the magnitude of the

poor performance of the one-factor models is much smaller in the pre-crisis period. The

MAE ranges from 2.157 to 25.90 basis points for the one-factor ATSM and from 2.141

to 26.02 basis points for the one-factor AJTSM. This is a sharp decrease in comparison

with the MAEs of the complete sample results. A similar pattern holds for the MSPEs,

RMSEs and R2
A’s of the one-factor model.

The two-factor models in Panel B in Table 4.4 improve upon the one-factor models in

accordance with the results of the complete sample. However, the performance of the

two-factor models is comparable to the performance of the three-factor ATSM in the

complete sample results. Both two-factor models have remarkably low MSPEs, RMSEs

and MAEs and the R2
A’s indicate that a large part of the variance of the yields is ex-

plained. Apparently, the Vasicek framework is more applicable in the pre-crisis period.

Panel B in Table 4.4 shows that the two-factor ATSM and AJTSM have comparable

results for the six-month and one-year yields. The models diverge in performance when

the maturity increases. The two-factor ATSM outperforms the two-factor AJTSM in

terms of goodness-of-fit. This is also deduced from the results in Table 4.2 and observed

in the complete sample results.

Panel C in Table 4.4 provides the results for the three-factor models. As mentioned in

the Parameter Estimation subsection, the results of the three-factor AJTSM are provided

to portray its anomalous behaviour. Despite the fact that the model is unidentified, the

results indicate that the performance of the three-factor AJTSM is comparable to the

three-factor ATSM. The three-factor ATSM, however, is identified and performs par-

ticularly well. The MAE of this model ranges from 1.629 to 5.138 basis points, which

is significantly lower than the MAEs in the complete sample results. Additionally, the

MSPEs, RMSEs and R2
A’s indicate that the three-factor ATSM is superior in fitting the

yield curve during the pre-crisis period. Analogous to the complete sample, the AIC

and BIC values in Table 4.2 confirm its superiority over the one- and two-factor models.
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Panel A: 1-Factor model Panel B: 2-Factor model

MSPE RMSE MAE R2
A MSPE RMSE MAE R2

A

τ ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM

3-month - - - - - - - - - - - - - - - -
6-month 0.004 0.004 0.061 0.060 2.157 2.141 0.999 0.999 0.002 0.002 0.049 0.049 2.058 1.974 0.999 0.999
1-year 0.113 0.111 0.336 0.333 4.751 4.691 0.969 0.967 0.065 0.078 0.255 0.279 4.424 4.312 0.982 0.975
2-year 0.805 0.788 0.897 0.888 8.028 7.949 0.742 0.729 0.035 0.487 0.188 0.698 6.328 7.053 0.887 0.820
3-year 1.698 1.664 1.303 1.290 9.860 9.780 0.385 0.354 0.622 0.935 0.788 0.967 7.252 8.567 0.775 0.608
4-year 2.504 2.462 1.582 1.569 11.03 10.98 -0.018 -0.074 0.802 1.268 0.895 1.126 7.820 9.372 0.674 0.403
5-year 3.107 3.071 1.763 1.752 11.84 11.79 -0.416 -0.502 0.858 1.419 0.926 1.191 8.092 9.738 0.609 0.252
6-year 3.635 3.617 1.907 1.902 12.44 12.39 -0.840 -0.965 0.851 1.460 0.923 1.208 8.216 9.872 0.569 0.145
7-year 4.146 4.155 2.036 2.038 12.93 12.90 -1.302 -1.474 0.792 1.414 0.890 1.189 8.172 9.866 0.561 0.092
8-year 4.706 4.748 2.169 2.179 13.37 13.36 -1.823 -2.056 0.705 1.313 0.840 1.146 8.028 9.721 0.577 0.088
9-year 5.392 5.473 2.322 2.339 13.81 13.84 -2.452 -2.759 0.605 1.175 0.778 1.084 7.812 9.483 0.613 0.129
10-year 6.293 6.417 2.509 2.533 14.28 14.33 -3.259 -3.660 0.525 1.052 0.725 1.025 7.628 9.240 0.644 0.176
15-year 15.06 15.44 3.881 3.930 17.41 17.53 -11.13 -12.34 0.271 0.833 0.521 0.913 6.464 8.407 0.781 0.223
20-year 31.08 31.73 5.575 5.633 20.76 20.89 -25.85 -28.41 0.104 0.869 0.322 0.932 4.923 8.766 0.910 0.131
25-year 51.49 52.40 7.176 7.238 23.55 23.68 -45.22 -49.46 0.043 0.374 0.206 0.612 4.050 7.168 0.962 0.611
30-year 75.05 76.18 8.663 8.728 25.90 26.02 -68.24 -74.41 - - - - - - - -

Panel C: 3-Factor model

MSPE RMSE MAE R2
A

τ ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM

3-month - - - - - - - -
6-month 0.002 0.001 0.043 0.032 1.868 1.629 1.000 1.000
1-year 0.021 0.023 0.146 0.150 3.626 3.449 0.994 0.992
2-year 0.059 0.092 0.244 0.302 4.443 4.778 0.981 0.963
3-year 0.069 0.123 0.262 0.351 4.488 5.093 0.975 0.944
4-year 0.067 0.127 0.260 0.357 4.408 5.138 0.973 0.935
5-year 0.052 0.102 0.228 0.319 4.113 4.894 0.976 0.942
6-year 0.038 0.073 0.195 0.271 3.784 4.522 0.981 0.953
7-year 0.022 0.042 0.148 0.205 3.202 3.902 0.988 0.971
8-year 0.010 0.019 0.100 0.136 2.587 3.172 0.994 0.986
9-year 0.003 0.005 0.051 0.067 1.851 2.245 0.998 0.996
10-year - - - - - - - -
15-year 0.036 0.069 0.191 0.263 3.677 4.576 0.971 0.930
20-year 0.049 0.118 0.221 0.344 4.070 5.233 0.958 0.872
25-year 0.045 0.065 0.213 0.254 4.233 4.475 0.959 0.927
30-year - - - - - - - -

Table 4.4: Goodness-of-Fit Measures of Pre-Crisis Sample

Notes: This table reports and compares the goodness-of-fit measures for ATSMs and AJTSMs for the yield curve from January 6, 2006 to December 28, 2007.
Panel A presents the results of the one-factor ATSM and AJTSM, Panel B presents the results of the two-factor ATSM and AJTSM, and Panel C presents
the results of the three-factor ATSM and AJTSM. The MSPEs are denoted in squared basis points, the RMSEs and MAEs are denoted in basis points, R2

A

denotes the adjusted R2 and τ denotes the maturity. The bold numbers show the best model (ATSM or AJTSM) with respect to the goodness-of-fit measure.
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The results of the mid- and post-crisis samples are more aligned with the complete

sample results than with the pre-crisis sample results. Panel A in Tables C.4 and C.5

show that the one-factor models are misspecified due to largely negative R2
A’s, in accor-

dance with the complete and pre-crisis sample results. However, the magnitude of the

R2
A’s is comparable with the complete sample results. Moreover, the MAE ranges from

2.128 to 41.51 basis points in the ATSM-framework and from 2.142 to 41.49 basis points

in the AJTSM-framework for, both, the mid- and post-crisis samples. This is similar to

the performance of the one-factor models in the complete sample. Additionally, Table

4.2 shows that the one-factor AJTSM is preferred over the one-factor ATSM in the mid-

and post-crisis samples.

An identical pattern is observed for the two-factor models. The two-factor models

are not misspecified in the pre-crisis sample and, correspondingly, have low MSPEs,

RMSEs and MAEs. Although the R2
A’s of the two-factor models in the mid- and post-

crisis samples indicate an improvement over the one-factor models, the models remain

misspecified. The corresponding MSPEs, RMSEs and MAEs are comparable to the ob-

served measures in the complete sample results. Furthermore, the AIC and BIC values

in Table 4.2 show that the two-factor ATSMs are preferred over the two-factor AJTSMs

in the mid- and post-crisis samples. This is equivalent to the complete and pre-crisis

sample results.

The results of the three-factor AJTSM in the mid- and post-crisis sample is presented

to portray the anomalous behaviour of the unidentified model. Similar to the pre-crisis

sample results, the three-factor ATSM results are comparable to the results of this er-

roneous model. However, the three-factor ATSM is identified and performs particularly

well across the yield curve. The MSPEs, RMSEs and MAEs are relatively low for, both,

the mid- and post-crisis samples. Moreover, the R2
A’s in Panel C in Tables C.4 and C.5

show that the model is not misspecified for the yield curve. Table 4.2 shows that the

three-factor ATSM outperforms the one- and two-factor ATSMs and AJTSMs. More

importantly, the three-factor ATSM is superior in fitting the entire yield curve in the

mid- and post-crisis periods.

The complete and sub-sample analysis show that the three-factor ATSM is supe-

rior in fitting the yield curve in the pre-, mid- and post-crisis periods. The analysis

indicates that the one-factor models are inadequate in fitting the entire yield curve in

the pre-, mid- and post-crisis periods. This holds for the two-factor models in the mid-
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and post-crisis periods as well. The two-factor model in the pre-crisis period, however,

is able to fit the entire yield curve. For this pre-crisis sample, the two-factor ATSM con-

sistently outperforms the two-factor AJTSM. Moreover, the goodness-of-fit measures

indicate that the pre-crisis period is fitted with the smallest average error in comparison

with the other periods. This indicates that the Vasicek model, either with or without

jump diffusions, is more applicable in the pre-crisis period than the mid- and post-crisis

periods. A possible explanation for these results is the monetary policy of central banks

since the financial crisis of 2008. These interventions distort the internal consistency re-

lation across the yield curve, which is captured by the market price of risk. The results

show that multiple factors are needed to capture this relation and fit the entire yield

curve appropriately.

I emphasize that the analysis of the results in this subsection are based on in-sample

goodness-of-fit statistics. The Vasicek model is known to capture the P-dynamics better

than the Q-dynamics. The results show that increasing the number of factors increases

the ability to capture the Q-dynamics. However, this is restricted to the in-sample

performance of the models. The out-of-sample performance exposes the inferiority of

the Vasicek framework. This is discussed in the Value-at-Risk and Expected Shortfall

subsection.

4.3 Value-at-Risk and Expected Shortfall

In this subsection, I analyze the results of the backtests on the one-week-ahead VaR

and ES estimates from January 4, 2008 to January 1, 2016. The analysis provides a

comparison of the performance of the ATSMs and AJTSMs from a Risk Management

perspective. The VaR and ES estimates are constructed by Monte Carlo simulation of

the one- and two-factor models. The parameters of these models are estimated using an

expanding window. I provide the results of the Correct Unconditional Coverage, Inde-

pendence and Correct Conditional Coverage tests in Tables 4.5 and 4.6. The results of

the Saddlepoint Approximation and Box-Pierce tests are presented in Table 4.7. Figures

C.1 and C.2, in Appendix C, provide graphical representations of the one-week-ahead

V aR1% and ES1% estimates for the one- and 30-year interest rate swaps.
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Value-at-Risk

Panel A and B in Table 4.5 show that the Correct Unconditional Coverage, Indepen-

dence and Correct Conditional Coverage tests significantly reject their corresponding

hypotheses for the one-factor ATSM and AJTSM. That is, the Correct Unconditional

Coverage test rejects that the fraction of VaR violations is equal to the nominal coverage

probability and the Independence test rejects that the VaR violations are independent.

Consequently, the Correct Conditional Coverage tests rejects that the VaR estimates

exhibit both properties. Essentially, the results show that the VaR estimates of the

one-factor ATSM and AJTSM are inadequate for Risk Management purposes.

Further analysis shows that the one-factor models are able to capture the P-dynamics

of the one-year interest rate swap, according to Figures (A) and (C) in C.1 in Appendix

C. However, the level of the VaR estimates is not conservative enough, resulting in a

large number of violations and the rejection of the Correct Unconditional Coverage.

Figures (A) and (C) in C.1 also show that the VaR violations occur in groups rather

than separately, rejecting the Independence property of the VaR estimates. Addition-

ally, the level of the V aR1% estimates in the figures indicate that the one-factor AJTSM

describes a wider distribution for the one-year interest rate swap rate5. Consequently,

Panel A and B in Table 4.5 show that the number of violations is larger for V aR1% esti-

mates of the one-factor ATSM than for V aR1% estimates of the one-factor AJTSM. The

opposite is true for the V aR5% and V aR10% estimates. This indicates that the relative

performance of the one-factor ATSM is worse than the performance of the one-factor

AJTSM for the V aR1% estimates, but better for the V aR5% and V aR10% estimates.

5That is, the one-year interest rate swap rate can take a wider range of values in the one-factor
AJTSM than in the one-factor ATSM.
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Panel A: ATSM

V aR1% V aR5% V aR10%

τ T1 LRUC LRIND LRCC T1 LRUC LRIND LRCC T1 LRUC LRIND LRCC

1-year 123 632.3 (0.00) 221.3 (0.00) 853.6 (0.00) 260 1020 (0.00) 354.7 (0.00) 1374 (0.00) 291 853.5 (0.00) 296.7 (0.00) 1150 (0.00)
2-year 242 1663 (0.00) 466.3 (0.00) 2130 (0.00) 263 1040 (0.00) 384.9 (0.00) 1425 (0.00) 276 765.2 (0.00) 348.0 (0.00) 1113 (0.00)
3-year 211 1368 (0.00) 357.3 (0.00) 1725 (0.00) 230 822.1 (0.00) 396.1 (0.00) 1218 (0.00) 237 557.6 (0.00) 393.0 (0.00) 950.6 (0.00)
4-year 171 1014 (0.00) 398.5 (0.00) 1413 (0.00) 186 563.8 (0.00) 373.4 (0.00) 937.2 (0.00) 199 384.1 (0.00) 327.4 (0.00) 711.4 (0.00)
5-year 151 849.3 (0.00) 392.6 (0.00) 1242 (0.00) 156 409.3 (0.00) 385.9 (0.00) 795.2 (0.00) 167 259.5 (0.00) 362.3 (0.00) 621.7 (0.00)
6-year 143 785.5 (0.00) 349.2 (0.00) 1135 (0.00) 153 394.8 (0.00) 371.5 (0.00) 766.3 (0.00) 158 228.1 (0.00) 365.4 (0.00) 593.5 (0.00)
7-year 141 769.8 (0.00) 357.7 (0.00) 1128 (0.00) 146 361.8 (0.00) 368.8 (0.00) 730.5 (0.00) 153 211.3 (0.00) 388.2 (0.00) 599.5 (0.00)
8-year 135 723.2 (0.00) 367.4 (0.00) 1091 (0.00) 144 352.5 (0.00) 377.9 (0.00) 730.4 (0.00) 146 188.8 (0.00) 380.3 (0.00) 569.1 (0.00)
9-year 134 715.5 (0.00) 366.0 (0.00) 1082 (0.00) 141 338.8 (0.00) 392.9 (0.00) 731.7 (0.00) 144 182.5 (0.00) 409.3 (0.00) 591.8 (0.00)
10-year 134 715.5 (0.00) 383.3 (0.00) 1099 (0.00) 137 320.8 (0.00) 375.4 (0.00) 696.2 (0.00) 141 173.3 (0.00) 380.7 (0.00) 554.0 (0.00)
15-year 108 523.3 (0.00) 294.0 (0.00) 817.3 (0.00) 114 224.4 (0.00) 327.0 (0.00) 551.4 (0.00) 116 104.1 (0.00) 319.6 (0.00) 423.7 (0.00)
20-year 95 433.4 (0.00) 277.1 (0.00) 710.5 (0.00) 99 168.2 (0.00) 296.8 (0.00) 465.1 (0.00) 101 69.70 (0.00) 290.3 (0.00) 359.9 (0.00)
25-year 79 329.2 (0.00) 205.3 (0.00) 534.4 (0.00) 82 111.9 (0.00) 212.9 (0.00) 324.8 (0.00) 85 39.40 (0.00) 233.2 (0.00) 272.6 (0.00)
30-year 48 151.5 (0.00) 112.7 (0.00) 264.2 (0.00) 50 31.20 (0.00) 119.5 (0.00) 150.7 (0.00) 53 3.121 (0.08) 113.7 (0.00) 116.8 (0.00)

Panel B: AJTSM

V aR1% V aR5% V aR10%

τ T1 LRUC LRIND LRCC T1 LRUC LRIND LRCC T1 LRUC LRIND LRCC

1-year 30 68.26 (0.00) 105.7 (0.00) 174.0 (0.00) 326 1522 (0.00) 188.5 (0.00) 1710 (0.00) 374 1450 (0.00) 100.9 (0.00) 1551 (0.00)
2-year 192 1196 (0.00) 298.9 (0.00) 1495 (0.00) 286 1205 (0.00) 304.0 (0.00) 1509 (0.00) 322 1052 (0.00) 249.3 (0.00) 1302 (0.00)
3-year 174 1040 (0.00) 377.9 (0.00) 1417 (0.00) 248 938.5 (0.00) 364.5 (0.00) 1303 (0.00) 271 736.9 (0.00) 323.0 (0.00) 1060 (0.00)
4-year 151 849.3 (0.00) 369.4 (0.00) 1218 (0.00) 207 682.5 (0.00) 319.0 (0.00) 1001 (0.00) 232 533.2 (0.00) 288.3 (0.00) 821.5 (0.00)
5-year 139 754.2 (0.00) 402.9 (0.00) 1157 (0.00) 165 453.7 (0.00) 340.2 (0.00) 793.9 (0.00) 187 335.0 (0.00) 338.1 (0.00) 673.1 (0.00)
6-year 128 669.7 (0.00) 413.7 (0.00) 1083 (0.00) 159 423.9 (0.00) 366.3 (0.00) 790.2 (0.00) 172 277.6 (0.00) 381.7 (0.00) 659.4 (0.00)
7-year 124 639.7 (0.00) 393.5 (0.00) 1033 (0.00) 154 399.6 (0.00) 389.2 (0.00) 788.8 (0.00) 161 238.4 (0.00) 384.3 (0.00) 622.7 (0.00)
8-year 116 580.7 (0.00) 385.0 (0.00) 967.7 (0.00) 146 361.8 (0.00) 380.3 (0.00) 742.1 (0.00) 156 221.3 (0.00) 368.4 (0.00) 589.8 (0.00)
9-year 116 580.7 (0.00) 348.9 (0.00) 929.6 (0.00) 146 361.8 (0.00) 386.9 (0.00) 748.6 (0.00) 148 195.1 (0.00) 377.5 (0.00) 572.6 (0.00)
10-year 109 530.4 (0.00) 312.9 (0.00) 843.3 (0.00) 141 338.8 (0.00) 369.0 (0.00) 707.8 (0.00) 145 185.6 (0.00) 374.0 (0.00) 559.6 (0.00)
15-year 94 426.7 (0.00) 250.7 (0.00) 677.4 (0.00) 118 240.3 (0.00) 323.1 (0.00) 563.4 (0.00) 123 122.1 (0.00) 310.4 (0.00) 432.5 (0.00)
20-year 87 380.4 (0.00) 207.2 (0.00) 587.6 (0.00) 103 182.7 (0.00) 316.7 (0.00) 499.3 (0.00) 105 78.29 (0.00) 309.5 (0.00) 387.8 (0.00)
25-year 61 221.6 (0.00) 154.7 (0.00) 376.3 (0.00) 84 118.1 (0.00) 227.2 (0.00) 345.3 (0.00) 88 44.54 (0.00) 250.4 (0.00) 294.9 (0.00)
30-year 42 121.7 (0.00) 124.8 (0.00) 246.6 (0.00) 53 37.11 (0.00) 113.7 (0.00) 150.8 (0.00) 62 9.594 (0.00) 118.8 (0.00) 128.3 (0.00)

Table 4.5: Value-at-Risk Backtests of One-Factor Models

Notes: This table reports the results of the Value-at-Risk (VaR) backtests for the one-factor model in the ATSM-framework (Panel A) and in the AJTSM-
framework (Panel B). The VaR estimates are constructed for the interest rate swaps from January 4, 2008 to January 1, 2016 (418 observations) by means
of Monte Carlo simulation. These VaR estimates have three different nominal coverage probabilities, namely γ = {1%, 5%, 10%}. This table provides the
number of VaR violations (T1) and the likelihood-ratio test statistics of the Correct Unconditional Coverage (LRUC), Independence (LRIND) and Correct
Conditional Coverage (LRCC) tests. The corresponding p-values are reported in brackets.
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Using Panel A and B in Table 4.5 and Figures (B) and (D) in C.1, the analysis of the

rejected Correct Unconditional Coverage and Independence properties and the difference

between the one-factor ATSM and AJTSM can be extrapolated to the 30-year interest

rate swap as well. However, an analysis of the performance of the one-factor models

across the yield curve is more insightful. Figures (B) and (D) in C.1 show that both

models are unable to capture the P-dynamics of the 30-year interest rate swap. This

is related to the fact that one-factor models are not able to capture the Q-dynamics

with the market price of risk of a single factor. Similarly, in the previous subsection,

the goodness-of-fit measures show that the one-factor models perform poorly and are

misspecified for long-term yields. Figures (B) and (D) in C.1 adhere to these results.

They indicate that the dynamics of the 30-year interest rate swap are represented by,

approximately, a straight line as the Q-dynamics are not captured. According to the

one-factor models, it is unclear how the long-term yields are related to the short rate and

evolve over time. Effectively, the VaR and ES estimates are more static and conservative

as the maturity of the interest rate swap increases, resulting in a decrease in the number

of violations. The number of violations, however, remain substantial and result in the

inadequacy of both one-factor models for Value-at-Risk estimation.

Table 4.6 presents the results of the two-factor ATSM and AJTSM. Similar to the

results of the one-factor models, Correct Unconditional Coverage and Independence are

rejected for the one- to 10-year interest rate swap VaR estimates of the two-factor ATSM

and for the one- to five-year interest rate swap VaR estimates of the two-factor AJTSM.

The six- and seven-year interest rate swap VaR estimates of the two-factor AJTSM ex-

hibit Correct Unconditional Coverage, Independence and Correct Conditional Coverage

in several instances. However, the results suggest that this is most likely a coincidence

due to the decrease in VaR violations as the maturity increases. The large number of

rejected hypotheses attest to this assumption. For the remaining VaR estimates of the

interest rate swaps, there are no VaR violations. These results imply that the two-factor

ATSM and AJTSM are inadequate for Risk Management purposes as well.

A comparison of the two-factor ATSM and AJTSM shows that, in terms of VaR

violations, the two-factor AJTSM outperforms the two-factor ATSM. Moreover, a com-

parison of the one- and two-factor models shows that the two-factor ATSM performs

worse than the one-factor ATSM and that the two-factor AJTSM is superior to all one-

and two-factor models. However, the overall performance of the one- and two-factor
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models is poor and not useful for Value-at-Risk in Risk Management.

To gain further insight in the absence of VaR violations for a number of long-term

yields, I analyze Figures C.2 in Appendix C. In contrast to the one-factor models, the

figures show that the two-factor models are able to capture the P-dynamics of the one-

and 30-year interest rate swaps to a certain degree. This, indirectly, implies that the

two-factor models are able to capture the Q-dynamics to a larger extent than the one-

factor models. However, Figures (B) and (D) in C.2 indicate that the VaR estimates are

very conservative for the 30-year interest rate swap. Apparently, the two-factor models

do not capture the Q-dynamics to such an extent that the VaR estimates are accurate.

This results in zero VaR violations for long-term yields and inadequacy of ATSMs and

AJTSMs in Value-at-Risk estimation.
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Panel A: ATSM

V aR1% V aR5% V aR10%

τ T1 LRUC LRIND LRCC T1 LRUC LRIND LRCC T1 LRUC LRIND LRCC

1-year 221 1461 (0.00) 356.1 (0.00) 1817 (0.00) 329 1547 (0.00) 296.3 (0.00) 1843 (0.00) 351 1262 (0.00) 246.7 (0.00) 1509 (0.00)
2-year 345 2791 (0.00) 290.1 (0.00) 3081 (0.00) 361 1835 (0.00) 251.1 (0.00) 2086 (0.00) 380 1503 (0.00) 141.1 (0.00) 1644 (0.00)
3-year 341 2742 (0.00) 276.4 (0.00) 3019 (0.00) 362 1845 (0.00) 234.4 (0.00) 2079 (0.00) 378 1485 (0.00) 119.7 (0.00) 1605 (0.00)
4-year 330 2610 (0.00) 250.4 (0.00) 2861 (0.00) 356 1788 (0.00) 219.3 (0.00) 2007 (0.00) 372 1433 (0.00) 108.5 (0.00) 1541 (0.00)
5-year 311 2391 (0.00) 336.7 (0.00) 2727 (0.00) 339 1633 (0.00) 248.8 (0.00) 1882 (0.00) 354 1285 (0.00) 166.6 (0.00) 1452 (0.00)
6-year 281 2062 (0.00) 301.2 (0.00) 2363 (0.00) 312 1406 (0.00) 290.1 (0.00) 1696 (0.00) 328 1094 (0.00) 245.3 (0.00) 1339 (0.00)
7-year 206 1322 (0.00) 301.5 (0.00) 1623 (0.00) 252 965.2 (0.00) 303.1 (0.00) 1268 (0.00) 285 817.6 (0.00) 268.5 (0.00) 1086 (0.00)
8-year 137 738.6 (0.00) 341.6 (0.00) 1080 (0.00) 171 484.3 (0.00) 315.7 (0.00) 800.0 (0.00) 199 384.1 (0.00) 318.2 (0.00) 702.3 (0.00)
9-year 89 393.5 (0.00) 315.7 (0.00) 709.1 (0.00) 112 216.6 (0.00) 301.7 (0.00) 518.2 (0.00) 133 149.6 (0.00) 358.1 (0.00) 507.8 (0.00)
10-year 48 151.5 (0.00) 256.3 (0.00) 407.8 (0.00) 78 99.92 (0.00) 299.3 (0.00) 399.2 (0.00) 85 39.41 (0.00) 318.3 (0.00) 357.7 (0.00)
15-year 0 - - - 0 - - - 0 - - -
20-year 0 - - - 0 - - - 0 - - -
25-year 0 - - - 0 - - - 0 - - -
30-year 0 - - - 0 - - - 0 - - -

Panel B: AJTSM

V aR1% V aR5% V aR10%

τ T1 LRUC LRIND LRCC T1 LRUC LRIND LRCC T1 LRUC LRIND LRCC

1-year 27 56.40 (0.00) 20.54 (0.00) 76.39 (0.00) 119 244.3 (0.00) 172.3 (0.00) 416.5 (0.00) 179 303.9 (0.00) 238.1 (0.00) 542.1 (0.00)
2-year 120 610.1 (0.00) 125.5 (0.00) 735.6 (0.00) 215 729.9 (0.00) 245.1 (0.00) 975.4 (0.00) 254 644.3 (0.00) 236.3 (0.00) 880.6 (0.00)
3-year 118 595.3 (0.00) 107.2 (0.00) 702.6 (0.00) 210 700.1 (0.00) 260.5 (0.00) 960.6 (0.00) 244 592.6 (0.00) 336.6 (0.00) 929.2 (0.00)
4-year 86 373.9 (0.00) 76.54 (0.00) 450.4 (0.00) 170 479.2 (0.00) 240.4 (0.00) 719.6 (0.00) 204 405.3 (0.00) 309.9 (0.00) 715.2 (0.00)
5-year 36 93.95 (0.00) 24.47 (0.00) 118.3 (0.00) 92 144.1 (0.00) 119.9 (0.00) 263.9 (0.00) 127 132.8 (0.00) 183.6 (0.00) 316.4 (0.00)
6-year 5 0.200 (0.70) 4.100 (0.04) 4.300 (0.12) 32 5.401 (0.02) 26.23 (0.00) 31.69 (0.00) 48 1.211 (0.32) 38.83 (0.00) 39.82 (0.00)
7-year 0 - - - 2 29.30 (0.00) - - 8 44.16 (0.00) 2.200 (0.13) 46.39 (0.00)
8-year 0 - - - 0 - - - 0 - - -
9-year 0 - - - 0 - - - 0 - - -
10-year 0 - - - 0 - - - 0 - - -
15-year 0 - - - 0 - - - 0 - - -
20-year 0 - - - 0 - - - 0 - - -
25-year 0 - - - 0 - - - 0 - - -
30-year 0 - - - 0 - - - 0 - - -

Table 4.6: Value-at-Risk Backtests of Two-Factor Models

Notes: This table reports the results of the Value-at-Risk (VaR) backtests for the two-factor model in the ATSM-framework (Panel A) and in the AJTSM-
framework (Panel B). The VaR estimates are constructed for the interest rate swaps from January 4, 2008 to January 1, 2016 (418 observations) by means
of Monte Carlo simulation. These VaR estimates have three different nominal coverage probabilities, namely γ = {1%, 5%, 10%}. This table provides the
number of VaR violations (T1) and the likelihood-ratio test statistics of the Correct Unconditional Coverage (LRUC), Independence (LRIND) and Correct
Conditional Coverage (LRCC) tests. The corresponding p-values are reported in brackets. The test statistics, and their corresponding p-values, can not be
computed for VaR estimates with zero VaR violations.
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Expected Shortfall

The analysis of the ES estimates in Figures C.1 and C.2 demonstrate that the ES

estimates follow the same dynamics as their corresponding VaR estimates. That is, the

ES estimates of one-factor models are able to capture the P-dynamics of short-term

yields, but not of the long-term yields. The ES estimates of two-factor models are able

to capture the P-dynamics of short-term yields and the long-term yields, to a larger

extent than the ES estimates of the one-factor models. As mentioned in the previous

analysis of the VaR estimates, this result is related to the inability of the models to

capture the Q-dynamics of the yield curve. More importantly, Figures C.1 and C.2

graphically confirm that the one- and two-factor ATSMs and AJTSMs are inadequate

for Risk Management purposes with respect to Expected Shortfall estimation.

Panel A in Table 4.7 provides quantitative results to confirm this inadequacy by reject-

ing the correct unconditional coverage and independence properties of the ES estimates

of the one-factor models. The table shows that the Saddlepoint Approximation tests re-

ject the correct unconditional coverage for all one-factor models as all p-values are zero.

Similarly, the Box-Pierce tests reject that there is no autocorrelation in the cumulative

violation process of the ES estimates. The results indicate that there is no difference in

the poor performance of the one-factor ATSM and AJTSM.

Similar to the VaR backtests for the two-factor models, Panel B in Table 4.7 shows

that a large number of tests can not be computed due to scarcity of VaR violations.

The feasible tests indicate that there is a distinction between the performance of the

two-factor ATSM and AJTSM. The results of the two-factor ATSM show that all, but

two, Saddlepoint Approximation and Box-Pierce tests return zero p-values. Therefore,

the ES estimates of the two-factor ATSM do not exhibit correct unconditional coverage

or independence. This reflects the poor performance of the two-factor ATSM VaR esti-

mates. The results of the two-factor AJTSM, however, indicate a diverse performance

with respect to correct unconditional coverage and independence. The Box-Pierce tests

show that the ES1% estimates of the two-factor AJTSM exhibit independence. This

holds, to a lesser extent, for the ES5% estimates as well. The Saddlepoint Approx-

imation tests reject the correct conditional coverage property for the majority of ES

estimates of the two-factor AJTSM. Exceptions occur for several cases with a small

number of VaR violations.
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Panel A: One-Factor Models

1-Factor ATSM 1-Factor AJTSM
ES1% ES5% ES10% ES1% ES5% ES10%

τ pBP pSPA pBP pSPA pBP pSPA pBP pSPA pBP pSPA pBP pSPA

1-year 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2-year 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3-year 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4-year 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5-year 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6-year 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7-year 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8-year 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9-year 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10-year 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15-year 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20-year 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25-year 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30-year 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Panel B: Two-Factor Models

2-Factor ATSM 2-Factor AJTSM
ES1% ES5% ES10% ES1% ES5% ES10%

τ pBP pSPA pBP pSPA pBP pSPA pBP pSPA pBP pSPA pBP pSPA

1-year 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.01 0.00 0.00 0.00
2-year 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 1.00 0.00 0.00 0.00
3-year 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.94 0.00 0.00 0.00
4-year 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.10 0.00 0.00 0.00
5-year 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.04
6-year 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.01 0.00 0.96
7-year 0.00 0.00 0.00 0.00 0.00 0.00 - - 0.00 0.12 0.00 1.00
8-year 0.00 0.00 0.00 0.00 0.00 0.00 - - - - - -
9-year 0.00 0.00 0.00 0.91 0.00 0.00 - - - - - -
10-year 0.00 0.00 0.00 0.85 0.00 0.00 - - - - - -
15-year - - - - - - - - - - - -
20-year - - - - - - - - - - - -
25-year - - - - - - - - - - - -
30-year - - - - - - - - - - - -

Table 4.7: Expected Shortfall Backtests of One- and Two-Factor Models

Notes: This table reports the results of the Expected Shortfall (ES) backtests for the one-
factor (Panel A) and two-factor (Panel B) model in, both, the ATSM-framework and the
AJTSM-framework. The ES estimates are constructed for the interest rate swaps from January
4, 2008 to January 1, 2016 (418 observations) by means of Monte Carlo simulation. These ES
estimates have three different nominal coverage probabilities, namely γ = {1%, 5%, 10%}. This
table provides the p-values of the Saddlepoint Approximation test (pSPA) and the Box-Pierce
test (pBP ). The test statistics, and their corresponding p-values, can not be computed for ES
estimates with zero VaR violations.

These results indicate that both two-factor models are inadequate for Expected Short-

fall estimation in Risk Management. Although the performance of the two-factor ATSM

is worse than the two-factor AJTSM, the results refute that either the ATSMs or

AJTSMs are able to accurately estimate Expected Shortfall values.



5. Conclusion

This paper considers whether there is a significant difference between Affine Term

Structure Models (ATSMs) and Affine Jump Term Structure Models (AJTSMs) with

respect to their in-sample and out-of-sample performance for the riskless interest rates.

In this research, I derive and propose to use one-, two- and three-factor ATSMs and

AJTSMs within the Vasicek framework for the riskless interest rates. Subsequently, I

test whether the jump diffusion component is empirically justified in each AJTSM. I

propose goodness-of-fit measures to compare the in-sample performance of the ATSMs

and AJTSMs. Lastly, I compute and backtest Value-at-Risk (VaR) and Expected Short-

fall (ES) estimates of interest rate swaps to compare the out-of-sample performance of

the ATSMs and AJTSMs.

Firstly, I find that the significance of the jump parameters in the AJTSMs indicates the

empirical justification of jump diffusion components in the riskless interest rate process.

In economic terms, this result attributes to the presence of jumps in the riskless interest

rate process. I find significant jump diffusion components in the parameter estimation

for the complete sample and, more specifically, for the pre- and mid-crisis samples. For

these samples, each model in the AJTSM-framework incorporates, at least, one factor

with a significant jump diffusion component. In the presence of significant jump diffu-

sion components, I find that volatility estimates decrease, except during the mid-crisis

period. In contrast to the complete sample and the pre- and mid-crisis samples, I find

that the post-crisis period does not exhibit significant jump parameters. That is, there

is no presence of jumps in the riskless interest rate process after the financial crisis of

2008.

Secondly, I find that, from an economic perspective, the three-factor ATSM is supe-

rior in fitting the entire yield curve for the complete sample and all sub-samples. The
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goodness-of-fit measures indicate that the one-factor ATSM and AJTSM fit the yield

curve poorly and are misspecified for long-term yields. Although the two-factor ATSM

and AJTSM exhibit an improvement in their performance over the one-factor models,

both two-factor models are misspecified for long-term yields as well. The two-factor

models for the pre-crisis sample are exceptions to this result. Ultimately, the three-

factor ATSM fits the entire yield curve well and the R2
A’s indicate that the model is not

misspecified. A comparison of ATSMs and AJTSMs shows that the AJTSM-framework

performs marginally better than the ATSM-framework in the case of one-factor models.

However, the ATSM-framework performs substantially better in the case of the two-

factor models. This result is observed for the complete sample and all sub-samples. Due

to identification problems, I am not able to estimate the parameters of the three-factor

AJTSM.

Thirdly, the results in this paper show that ATSMs and AJTSMs perform poorly in

terms of Value-at-Risk and Expected Shortfall estimation. From a Risk Management

perspective, ATSMs and AJTSMs are inadequate for interest rate swaps. I find that

VaR and ES estimates of one-factor ATSMs and AJTSMs are inaccurate for short-term

interest rate swaps and are not able to capture the dynamics of the long-term interest

rate swaps. Although two-factor ATSMs and AJTSMs improve upon the one-factor

ATSMs and AJTSMs in terms of VaR and ES estimates, Correct Unconditional Cov-

erage, Independence, Correct Conditional Coverage, Saddlepoint Approximation and

Box-Pierce tests reject the application of these two-factor models in Risk Management

as well. There is, however, a significant difference in the performance of the two-factor

models in favor of the two-factor AJTSM.

In conclusion, this paper confirms that there is empirical justification for a jump

diffusion component in the riskless interest rate process. The addition of this jump

diffusion component in Affine Term Structure Models does not result in a significant

improvement in the in-sample performance. That is, the three-factor ATSM is superior

in fitting the entire yield curve in-sample. Lastly, the results in this paper establish

that ATSMs and AJTSMs are not applicable in out-of-sample VaR and ES estimation

in Risk Management.



6. Limitations and Further Research

In this research, I encountered certain limitations with respect to the data, models

and parameter estimation. Firstly, I emphasize that the data for the pre- and mid-crisis

samples contains 104 observations for each period. This amount is too small for accu-

rate parameter estimation and is reflected in the insignificance of parameters in these

samples. Secondly, I encountered long computation times for the parameter estimation

of the three-factor ATSM. In order to compute VaR and ES estimates, the parameter

estimation procedure reiterates 418 times, which is not feasible within the time-frame

of this research.

This paper is first in its use of AJTSMs on the riskless interest rates and in its

application of ATSMs and AJTSMs in Risk Management. Therefore, there are several

directions for further research to explore these new fields of application. The first direc-

tion for further research is to investigate whether the outperformance of the two-factor

AJTSM by the two-factor ATSM, in the presence of jumps, is due to the approximation

of the AJTSM. This can be done by means of a simulation study. One would expect

that each model performs best for its own Data Generating Process (DGP). In case the

ATSMs outperform AJTSMs for DGPs, that are based on AJTSMs, the approximation

of the AJTSM is not accurate. The second direction is to perform a similar research

with ATSMs and AJTSMs in a different framework than the Vasicek-framework. In

order to improve upon capturing the Q-dynamics, one might investigate the Hull-White

or Heath-Jarrow-Morton framework in this respect. More interestingly, the assumption

of diversifiable jump risk could be relaxed, using Baz and Das (1996), to increase the

flexibility in the Q-dynamics. Similarly, the Cox-Ingersoll-Ross framework would be

attractive in order to provide a more realistic model for the P-dynamics of the riskless

interest rates. The third direction for further research is to investigate the anomalous
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behaviour of the QMLE procedure for parameter estimation of the three-factor AJTSM.

The fourth direction for further research would be to compare the VaR and ES es-

timates of ATSMs and AJTSMs to VaR and ES estimates of a vector autoregressive

(VAR) model. The VAR model is statistically optimal and, therefore, is a credible

benchmark for the VaR and ES estimates. Besides VaR and ES estimation, which focus

on the variance of the interest rate swap forecasts, the out-of-sample performance could

be based on the RMSE and MAE, which concern the mean of the interest rate swap

forecasts.



A. Models and Methodology Appendix

A.1 PDE derivation for ATSMs

In this subsection, I derive the ODEs for A(τ) and B(τ) in the pricing equation:

P (t, τ) = eA(τ)−B(τ)r(t). (A.1)

Firstly, I derive the partial derivatives of P (t, τ):

Pt = (At(τ)−Bt(τ)r(t))eA(τ)−B(τ)r(t)

= (At(τ)−Bt(τ)r(t))P (t, τ),

Pr = −B(τ)eA(τ)−B(τ)r(t)

= −B(τ)P (t, τ),

Prr = B2(τ)eA(τ)−B(τ)r(t)

= B2(τ)P (t, τ).

(A.2)

Substitution of these derivatives in the PDE yields:

0 = Pt + (µ− ξ(t)σ)Pr +
σ2

2
Prr − r(t)P (t, τ)

0 = (At(τ)−Bt(τ)r(t))P (t, τ)− (µ− ξ(t)σ)B(τ)P (t, τ) +
σ2

2
B2(τ)P (t, τ)

− r(t)P (t, τ)

0 = (At(τ)−Bt(τ)r(t))− (µ− ξ(t)σ)B(τ) +
σ2

2
B2(τ)− r(t)

0 = At(τ)− (1 +Bt(τ))r(t)− (µ− ξ(t)σ)B(τ) +
σ2

2
B2(τ).

(A.3)
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The Vasicek model is defined by:

µ ≡ κ (θ − r(t)) ,

σ ≡ σ.
(A.4)

Using Equation (A.4), the PDE simplifies to:

0 = At(τ)− (1 +Bt(τ))r(t)− (κ (θ − r(t))− ξ(t)σ)B(τ) +
σ2

2
B2(τ)

0 = At(τ)− (1 +Bt(τ))r(t)− κ
(
θ̃ − r(t)

)
B(τ) +

σ2

2
B2(τ)

0 = At(τ)− κθ̃B(τ) +
σ2

2
B2(τ)− (1 +Bt(τ)− κB(τ))r(t).

(A.5)

A.2 PDE derivation for AJTSMs

For notational convenience, I transform the PDE in Equation (2.24) from coefficients in

the P-measure to coefficients in the Q-measure. This is done by substituting θ̃ = θ− ξ(t)σ
κ .

The PDE simplifies to:

0 = Pt + κ(θ̃ − r(t))Pr+
σ2Prr

2
− r(t)P (t, τ)

+ λP (t, τ)

[
−αB(τ) +

β2 + α2

2
B(τ)2

]
.

(A.6)

I restate the partial derivatives of the pricing function, P (t, τ), for convenience:

Pt = (At(τ)−Bt(τ)r(t))eA(τ)−B(τ)r(t)

= (At(τ)−Bt(τ)r(t))P (t, τ),

Pr = −B(τ)eA(τ)−B(τ)r(t)

= −B(τ)P (t, τ),

Prr = B2(τ)eA(τ)−B(τ)r(t)

= B2(τ)P (t, τ),

(A.7)
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and substitution in Equation (A.6) yields:

0 =(At(τ)−Bt(τ)r(t))P (t, τ)− κ(θ̃ − r(t))B(τ)P (t, τ)

+
σ2B2(τ)P (t, τ)

2
− r(t)P (t, τ) + λP (t, τ)

[
−αB(τ) +

β2 + α2

2
B(τ)2

]
,

0 =At(τ)−Bt(τ)r(t)− κ(θ̃ − r(t))B(τ) +
σ2B2(τ)

2
− r(t)

+ λ

[
−αB(τ) +

β2 + α2

2
B(τ)2

]
,

0 =At(τ) +
σ2B2(τ)

2
− κθ̃B(τ) + λ

[
−αB(τ) +

β2 + α2

2
B(τ)2

]
+ (−1−Bt(τ) + κB(τ))r(t).

(A.8)

A.3 Approximation of f(rt|rt−1)

The approximation of f(rt|rt−1) is based on taking the expectation of
∑n

j=1 e
κψj and∑n

j=1 e
2κψj . Assuming that jumps in the riskless interest rate are equally spread over

time, Lin and Yeh (1999) show:

E

 n∑
j=1

eκψj

 =
n∑
j=1

E
[
eκψj

]
= nE

[
eκψ
]

= n

∫ t

t−1
eκψ

1

∆t
ψ =

n

κ∆t

(
eκ∆t − 1

)
. (A.9)

Equivalently,

E

 n∑
j=1

e2κψj

 =
n∑
j=1

E
[
e2κψj

]
= nE

[
e2κψ

]
= n

∫ t

t−1
e2κψ 1

∆t
ψ

=
n

2κ∆t

(
e2κ∆t − 1

)
.

(A.10)

Substituting Equations (A.9) and (A.10) in the conditional pdf (2.38) results in the

approximation of the conditional pdf (2.40).
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A.4 Multi-factor framework: System of equations

The goal of solving the system of equations is to obtain an expression for the n factors.

In this subsection, I derive these expressions for the two- and three- factor model. To

this extent, I use the equations that are modeled without measurement errors. For the

two-factor model, I consider the following system of equations:

x1 = A(τ1)−B1(τ1)y1 −B2(τ1)y2,

x2 = A(τ2)−B1(τ2)y1 −B2(τ2)y2,
(A.11)

where xi = ln [P (t, τi)] and yj = yj(t) for brevity. Solving for y1 and y2, yields:

(Express y1 in y2) → y1 =
A(τ1)− x1 −B2(τ1)y2

B1(τ1)
,

(Substitution) → x2 = A(τ2)−B1(τ2)
A(τ1)− x1 −B2(τ1)y2

B1(τ1)
−B2(τ2)y2,

x2 = A(τ2)−B1(τ2)
A(τ1)− x1

B1(τ1)

+ y2

(
B1(τ2)B2(τ1)

B1(τ1)
−B2(τ2)

)
,

(Solve for y2) → ŷ2 =
A(τ2)−B1(τ2)A(τ1)−x1

B1(τ1) − x2

B2(τ2)− B1(τ2)B2(τ1)
B1(τ1)

,

ŷ1 =
A(τ1)− x1 −B2(τ1)ŷ2

B1(τ1)
.

(A.12)

For the three-factor model, I consider the following system of equations:

x1 = A(τ1)−B1(τ1)y1 −B2(τ1)y2 −B3(τ1)y3,

x2 = A(τ2)−B1(τ2)y1 −B2(τ2)y2 −B3(τ2)y3,

x3 = A(τ3)−B1(τ3)y1 −B2(τ3)y2 −B3(τ3)y3,

(A.13)

where xi and yj are similarly defined.
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Solving for y1, y2 and y3, I first express y1 and y2 in terms of y3:

y1 =
A(τ1)− x1 −B2(τ1)y2 −B3(τ1)y3

B1(τ1)
,

x2 = A(τ2)−B1(τ2)
A(τ1)− x1 −B2(τ1)y2 −B3(τ1)y3

B1(τ1)

−B2(τ2)y2 −B3(τ2)y3,

x2 = A(τ2)−B1(τ2)
A(τ1)− x1

B1(τ1)
+ y2

(
B1(τ2)B2(τ1)

B1(τ1)
−B2(τ2)

)
+ y3

(
B1(τ2)B3(τ1)

B1(τ1)
−B3(τ2)

)
,

y2 =

[
A(τ2)−B1(τ2)

A(τ1)− x1

B1(τ1)
− x2 + y3

(
B1(τ2)B3(τ1)

B1(τ1)
−B3(τ2)

)]
×
(
B2(τ2)− B1(τ2)B2(τ1)

B1(τ1)

)−1

.

(A.14)

Substituting y1 and y2 in x3, yields:

x3 = A(τ3)−B1(τ3)
A(τ1)− x1 −B2(τ1)y2 −B3(τ1)y3

B1(τ1)
−B2(τ3)

×
[
A(τ2)−B1(τ2)

A(τ1)− x1

B1(τ1)
− x2 + y3

(
B1(τ2)B3(τ1)

B1(τ1)
−B3(τ2)

)]
×
(
B2(τ2)− B1(τ2)B2(τ1)

B1(τ1)

)−1

−B3(τ3)y3.

(A.15)

Rearranging y3, generates:

x3 = A(τ3)−B1(τ3)
A(τ1)− x1

B1(τ1)
+

[
A(τ2)−B1(τ2)

A(τ1)− x1

B1(τ1)
− x2

]
×

((
B1(τ2)B2(τ1)

B2(τ3)B1(τ1)
− B2(τ2)

B2(τ3)

)−1

+

(
B1(τ1)B2(τ2)−B1(τ2)B2(τ1)

B1(τ3)B2(τ1)

)−1
)

+ y3

[
B1(τ3)B3(τ1)

B1(τ1)
−B3(τ3) +

(
B1(τ2)B3(τ1)

B1(τ1)
−B3(τ2)

)
×((

B1(τ2)B2(τ1)

B2(τ3)B1(τ1)
− B2(τ2)

B2(τ3)

)−1

+

(
B1(τ1)B2(τ2)−B1(τ2)B2(τ1)

B1(τ3)B2(τ1)

)−1
)]

.

(A.16)
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Subsequently, y1, y2 and y3 can be expressed as:

ŷ3 = A(τ3)− x3 −B1(τ3)
A(τ1)− x1

B1(τ1)
+

[
A(τ2)−B1(τ2)

A(τ1)− x1

B1(τ1)
− x2

]
×

((
B1(τ2)B2(τ1)

B2(τ3)B1(τ1)
− B2(τ2)

B2(τ3)

)−1

+

(
B1(τ1)B2(τ2)−B1(τ2)B2(τ1)

B1(τ3)B2(τ1)

)−1
)

×
[
B3(τ3)− B1(τ3)B3(τ1)

B1(τ1)
−
(
B1(τ2)B3(τ1)

B1(τ1)
−B3(τ2)

)
×((

B1(τ2)B2(τ1)

B2(τ3)B1(τ1)
− B2(τ2)

B2(τ3)

)−1

+

(
B1(τ1)B2(τ2)−B1(τ2)B2(τ1)

B1(τ3)B2(τ1)

)−1
)]−1

ŷ2 =

[
A(τ2)−B1(τ2)

A(τ1)− x1

B1(τ1)
− x2 + ŷ3

(
B1(τ2)B3(τ1)

B1(τ1)
−B3(τ2)

)]
×
(
B2(τ2)− B1(τ2)B2(τ1)

B1(τ1)

)−1

ŷ1 =
A(τ1)− x1 −B2(τ1)ŷ2 −B3(τ1)ŷ3

B1(τ1)
.

(A.17)

A.5 Multi-factor framework: Jacobian

Using the solutions of the factors, I calculate the corresponding Jacobian for the two-

and three-factor models. The Jacobian is defined as:

J =


ŷ1
x1

. . . ŷ1
xm

...
. . .

...

ŷn
x1

. . . ŷn
xm

 , (A.18)

where yi denotes the ith factor and xi = ln [P (t, τi)]. This results in:

J2 =

 ŷ1x1 ŷ1
x2

ŷ2
x1

ŷ2
x2

 and J3 =


ŷ1
x1

ŷ1
x2

ŷ1
x3

ŷ2
x1

ŷ2
x2

ŷ2
x3

ŷ3
x1

ŷ3
x2

ŷ3
x3

 , (A.19)

for, respectively, the two- and three-factor models. Due to the linear relation between

ŷj and xi, the first-order partial derivatives are easily derived from the results in the

previous subsection.



B. Data Analysis Appendix

B.1 Average yield curves

Figure B.1: Average Yield Curve

Notes: This figure shows the average yield curve (in %) of the riskless interest rates. The yield
curve is based on the complete sample, from January 6, 2006 to January 1, 2016, and is presented
until a maturity of 30 years. The yield curve is bootstrapped from US LIBOR money market
deposits and US interest rate swaps.
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Figure B.2: Average Yield Curve of Sub-Samples

Notes: This figure shows the average yield curve (in %) of the riskless interest rates for (from
top to bottom) the pre-crisis, mid-crisis and post-crisis samples. The pre-crisis sample ranges
from January 6, 2006 to December 28, 2007, the mid-crisis sample ranges from January 4, 2008
to December 25, 2009 and the post-crisis sample ranges from January 1, 2010 to January 1, 2016.
The yield curve is presented until a maturity of 30 years and is bootstrapped from US LIBOR
money market deposits and US interest rate swaps.
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B.2 Summary Statistics

Panel A: Pre-Crisis Sample

Maturity Mean (%) SD (%) Skewness Kurtosis ρ1 ρ26 ρ52

3-month 5.3962 0.2685 -0.9759 3.3675 0.9054 -0.1881 -0.0296
6-month 5.3432 0.2529 -0.9879 3.0846 0.9086 -0.2310 -0.0034
1-year 5.2004 0.3420 -1.3615 4.3649 0.9162 -0.1241 -0.0385
2-year 5.0695 0.3871 -1.3178 4.6107 0.9133 -0.1280 0.0637
3-year 5.0576 0.3674 -1.0798 4.2515 0.9118 -0.1679 0.1318
4-year 5.0841 0.3453 -0.8485 3.8558 0.9088 -0.2017 0.1775
5-year 5.1225 0.3233 -0.6208 3.4785 0.9060 -0.2400 0.2179
6-year 5.1597 0.3068 -0.4283 3.1566 0.9047 -0.2722 0.2478
7-year 5.1937 0.2936 -0.2623 2.9057 0.9037 -0.3046 0.2753
8-year 5.2253 0.2834 -0.1312 2.7161 0.9029 -0.3313 0.2962
9-year 5.2549 0.2757 -0.0305 2.5789 0.9022 -0.3528 0.3116
10-year 5.2822 0.2701 0.0439 2.4839 0.9021 -0.3689 0.3225
15-year 5.3822 0.2544 0.1729 2.2854 0.9010 -0.4007 0.3451
20-year 5.4279 0.2484 0.2021 2.2306 0.9007 -0.4091 0.3480
25-year 5.4404 0.2466 0.2138 2.2289 0.8997 -0.4083 0.3480
30-year 5.4409 0.2459 0.2195 2.2379 0.9002 -0.4068 0.3459

Panel B: Mid-Crisis Sample

Maturity Mean (%) SD (%) Skewness Kurtosis ρ1 ρ26 ρ52

3-month 1.8514 1.2881 0.3359 2.0194 0.9552 0.2720 -0.3688
6-month 2.1231 1.1183 0.0727 1.8577 0.9563 0.2627 -0.3695
1-year 1.8308 1.0219 0.1709 1.4489 0.9627 0.2626 -0.3864
2-year 2.1903 0.8774 0.3874 1.5833 0.9643 0.1672 -0.3494
3-year 2.6018 0.7906 0.4661 1.7185 0.9627 0.0589 -0.2943
4-year 2.9323 0.7278 0.4019 1.7708 0.9598 -0.0261 -0.2480
5-year 3.1833 0.6826 0.2654 1.8187 0.9557 -0.0905 -0.2141
6-year 3.3847 0.6579 0.1065 1.8750 0.9524 -0.1354 -0.1956
7-year 3.5445 0.6437 -0.0395 1.9582 0.9498 -0.1655 -0.1853
8-year 3.6676 0.6387 -0.1554 2.0245 0.9488 -0.1811 -0.1842
9-year 3.7677 0.6362 -0.2547 2.0955 0.9476 -0.1897 -0.1891
10-year 3.8507 0.6325 -0.3279 2.1658 0.9487 -0.1971 -0.1925
15-year 4.1141 0.6300 -0.5252 2.3675 0.9480 -0.2057 -0.2169
20-year 4.1906 0.6586 -0.5819 2.4469 0.9526 -0.2010 -0.2393
25-year 4.2128 0.6805 -0.6132 2.4664 0.9548 -0.2072 -0.2450
30-year 4.2273 0.6881 -0.6562 2.5507 0.9529 -0.2146 -0.2455
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Panel C: Post-Crisis Sample

Maturity Mean (%) SD (%) Skewness Kurtosis ρ1 ρ26 ρ52

3-month 0.3272 0.0983 1.2314 3.3658 0.9766 0.2538 -0.1247
6-month 0.4975 0.1477 0.8075 2.4022 0.9850 0.3851 -0.0732
1-year 0.4412 0.1308 0.8679 3.5359 0.9411 0.3492 -0.0134
2-year 0.6848 0.2329 0.6367 2.6718 0.9451 0.3776 0.2909
3-year 0.9908 0.3538 0.4926 2.7354 0.9585 0.3595 0.3439
4-year 1.3072 0.4393 0.4062 2.8689 0.9634 0.3485 0.3102
5-year 1.6047 0.4943 0.3987 2.8895 0.9663 0.3449 0.2605
6-year 1.8680 0.5296 0.4315 2.8268 0.9684 0.3443 0.2171
7-year 2.0897 0.5522 0.4663 2.7206 0.9698 0.3441 0.1819
8-year 2.2725 0.5673 0.4958 2.5980 0.9711 0.3446 0.1544
9-year 2.4254 0.5790 0.5123 2.4867 0.9721 0.3469 0.1322
10-year 2.5553 0.5885 0.5256 2.4000 0.9725 0.3475 0.1157
15-year 2.9698 0.6195 0.5131 2.1756 0.9748 0.3611 0.0773
20-year 3.1392 0.6279 0.4541 2.0682 0.9761 0.3727 0.0579
25-year 3.2189 0.6313 0.4211 2.0172 0.9764 0.3783 0.0491
30-year 3.2635 0.6306 0.4034 1.9996 0.9769 0.3817 0.0456

Table B.1: Summary Statistics of Sub-Samples

Notes: This table shows the summary statistics of the weekly yield curve for the pre-crisis
(Panel A), mid-crisis (Panel B) and post-crisis (Panel C) samples. The pre-crisis sample
ranges from January 6, 2006 to December 28, 2007, the mid-crisis sample ranges from January
4, 2008 to December 25, 2009 and the post-crisis sample ranges from January 1, 2010 to January
1, 2016. The table provides the mean (in %), standard deviation (SD in %), skewness and
kurtosis. The one-, 26- and 52-week auto-correlation coefficients are denoted by, respectively,
ρ1, ρ26 and ρ52.
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B.3 Cross-correlations

Panel A: Complete Sample

Maturity 3-month 6-month 1 year 2 year 3 year 4 year 5 year 6 year 7 year 8 year 9 year 10 year 15 year 20 year 25 year 30 year

3-month 1.0000
6-month 0.9976 1.0000
1 year 0.9930 0.9950 1.0000
2 year 0.9811 0.9855 0.9943 1.0000
3 year 0.9645 0.9699 0.9799 0.9951 1.0000
4 year 0.9474 0.9529 0.9637 0.9849 0.9970 1.0000
5 year 0.9321 0.9374 0.9488 0.9736 0.9905 0.9980 1.0000
6 year 0.9187 0.9235 0.9353 0.9621 0.9823 0.9933 0.9986 1.0000
7 year 0.9069 0.9113 0.9233 0.9512 0.9737 0.9873 0.9952 0.9990 1.0000
8 year 0.8972 0.9010 0.9131 0.9415 0.9654 0.9810 0.9908 0.9966 0.9993 1.0000
9 year 0.8884 0.8917 0.9038 0.9325 0.9574 0.9744 0.9859 0.9933 0.9975 0.9994 1.0000
10 year 0.8803 0.8832 0.8954 0.9242 0.9498 0.9680 0.9808 0.9896 0.9950 0.9980 0.9996 1.0000
15 year 0.8487 0.8501 0.8629 0.8914 0.9187 0.9403 0.9574 0.9704 0.9799 0.9865 0.9913 0.9947 1.0000
20 year 0.8346 0.8345 0.8484 0.8761 0.9033 0.9257 0.9442 0.9588 0.9698 0.9779 0.9841 0.9888 0.9987 1.0000
25 year 0.8259 0.8249 0.8397 0.8668 0.8939 0.9165 0.9357 0.9512 0.9630 0.9720 0.9789 0.9842 0.9968 0.9995 1.0000
30 year 0.8204 0.8191 0.8342 0.8611 0.8880 0.9109 0.9305 0.9464 0.9587 0.9681 0.9755 0.9813 0.9953 0.9989 0.9998 1.0000

Panel B: Pre-Crisis Sample

Maturity 3-month 6-month 1 year 2 year 3 year 4 year 5 year 6 year 7 year 8 year 9 year 10 year 15 year 20 year 25 year 30 year

3-month 1.0000
6-month 0.8983 1.0000
1 year 0.5358 0.8205 1.0000
2 year 0.4120 0.7334 0.9769 1.0000
3 year 0.3942 0.7138 0.9521 0.9930 1.0000
4 year 0.3945 0.7062 0.9287 0.9790 0.9959 1.0000
5 year 0.4017 0.7024 0.9028 0.9591 0.9848 0.9963 1.0000
6 year 0.4159 0.7033 0.8772 0.9366 0.9694 0.9872 0.9971 1.0000
7 year 0.4283 0.7010 0.8481 0.9100 0.9493 0.9731 0.9890 0.9973 1.0000
8 year 0.4409 0.6992 0.8197 0.8827 0.9274 0.9562 0.9772 0.9904 0.9978 1.0000
9 year 0.4520 0.6960 0.7916 0.8550 0.9042 0.9373 0.9629 0.9804 0.9921 0.9982 1.0000
10 year 0.4591 0.6916 0.7671 0.8305 0.8832 0.9197 0.9488 0.9698 0.9849 0.9941 0.9988 1.0000
15 year 0.4907 0.6814 0.6882 0.7464 0.8071 0.8525 0.8915 0.9224 0.9475 0.9661 0.9796 0.9880 1.0000
20 year 0.4991 0.6695 0.6468 0.7027 0.7667 0.8157 0.8589 0.8939 0.9233 0.9460 0.9633 0.9749 0.9975 1.0000
25 year 0.5019 0.6638 0.6308 0.6856 0.7506 0.8009 0.8454 0.8819 0.9128 0.9369 0.9556 0.9684 0.9951 0.9995 1.0000
30 year 0.5025 0.6599 0.6212 0.6758 0.7415 0.7926 0.8379 0.8753 0.9070 0.9319 0.9514 0.9649 0.9936 0.9990 0.9998 1.0000
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Panel C: Mid-Crisis Sample

Maturity 3-month 6-month 1 year 2 year 3 year 4 year 5 year 6 year 7 year 8 year 9 year 10 year 15 year 20 year 25 year 30 year

3-month 1.0000
6-month 0.9883 1.0000
1 year 0.9550 0.9690 1.0000
2 year 0.8900 0.9088 0.9782 1.0000
3 year 0.8384 0.8552 0.9407 0.9888 1.0000
4 year 0.7956 0.8076 0.9018 0.9656 0.9930 1.0000
5 year 0.7536 0.7599 0.8615 0.9363 0.9760 0.9947 1.0000
6 year 0.7192 0.7188 0.8246 0.9061 0.9547 0.9825 0.9963 1.0000
7 year 0.6878 0.6820 0.7920 0.8783 0.9333 0.9677 0.9882 0.9976 1.0000
8 year 0.6663 0.6555 0.7677 0.8563 0.9151 0.9539 0.9790 0.9927 0.9986 1.0000
9 year 0.6463 0.6311 0.7460 0.8363 0.8978 0.9401 0.9689 0.9861 0.9951 0.9988 1.0000
10 year 0.6284 0.6102 0.7282 0.8196 0.8830 0.9275 0.9592 0.9789 0.9904 0.9959 0.9989 1.0000
15 year 0.5537 0.5242 0.6559 0.7527 0.8203 0.8706 0.9105 0.9381 0.9576 0.9695 0.9792 0.9864 1.0000
20 year 0.5235 0.4889 0.6272 0.7247 0.7920 0.8429 0.8849 0.9148 0.9368 0.9509 0.9630 0.9727 0.9971 1.0000
25 year 0.5031 0.4659 0.6071 0.7060 0.7742 0.8259 0.8690 0.9003 0.9237 0.9391 0.9525 0.9635 0.9936 0.9988 1.0000
30 year 0.4865 0.4485 0.5916 0.6919 0.7612 0.8141 0.8586 0.8910 0.9157 0.9318 0.9461 0.9579 0.9912 0.9978 0.9996 1.0000

Panel D: Post-Crisis Sample

Maturity 3-month 6-month 1 year 2 year 3 year 4 year 5 year 6 year 7 year 8 year 9 year 10 year 15 year 20 year 25 year 30 year

3-month 1.0000
6-month 0.9751 1.0000
1 year 0.7233 0.6810 1.0000
2 year 0.1350 0.0797 0.7088 1.0000
3 year -0.1244 -0.1917 0.4658 0.9438 1.0000
4 year -0.2211 -0.2945 0.3447 0.8691 0.9806 1.0000
5 year -0.2611 -0.3353 0.2719 0.7984 0.9410 0.9883 1.0000
6 year -0.2775 -0.3496 0.2203 0.7339 0.8952 0.9627 0.9925 1.0000
7 year -0.2855 -0.3543 0.1787 0.6763 0.8500 0.9322 0.9760 0.9952 1.0000
8 year -0.2918 -0.3569 0.1430 0.6260 0.8083 0.9016 0.9561 0.9846 0.9969 1.0000
9 year -0.2962 -0.3577 0.1130 0.5824 0.7710 0.8728 0.9356 0.9715 0.9899 0.9979 1.0000
10 year -0.2996 -0.3575 0.0867 0.5441 0.7375 0.8460 0.9155 0.9574 0.9808 0.9930 0.9985 1.0000
15 year -0.3026 -0.3480 0.0093 0.4255 0.6288 0.7540 0.8414 0.8996 0.9371 0.9613 0.9767 0.9868 1.0000
20 year -0.3117 -0.3526 -0.0274 0.3773 0.5853 0.7163 0.8094 0.8730 0.9152 0.9434 0.9624 0.9755 0.9981 1.0000
25 year -0.3143 -0.3526 -0.0443 0.3532 0.5629 0.6964 0.7923 0.8585 0.9030 0.9332 0.9539 0.9685 0.9957 0.9995 1.0000
30 year -0.3143 -0.3507 -0.0540 0.3376 0.5475 0.6823 0.7798 0.8478 0.8938 0.9254 0.9473 0.9629 0.9935 0.9986 0.9997 1.0000

Table B.2: Cross-Correlations

Notes: This table reports the cross-correlations of the yield curve for the complete (Panel A), pre-crisis (Panel B), mid-crisis (Panel C) and post-crisis
(Panel D) samples. The complete sample ranges from January 6, 2006 to January 1, 2016, the pre-crisis sample ranges from January 6, 2006 to December
28, 2007, the mid-crisis sample ranges from January 4, 2008 to December 25, 2009 and the post-crisis sample ranges from January 1, 2010 to January 1, 2016.
The lower triangle of the table provides the cross-correlations of the yields.



C. Results Appendix

C.1 Parameter Estimates

The parameter estimates of the pre-, mid- and post-crisis samples are reported on the

following pages.

73



R
esu

lts
A

p
pen

d
ix

74

Panel A: ATSM

1-Factor model 2-Factor model 3-Factor model
Θ 1st-F SE (p-value) 1st-F SE (p-value) 2nd-F SE (p-value) 1st-F SE (p-value) 2nd-F SE (p-value) 3rd-F SE (p-value)

κ 0.609 0.093 (0.00) 2.034 0.113 (0.00) 0.010 0.004 (0.01) 0.010 0.002 (0.00) 0.423 0.032 (0.00) 1.684 0.080 (0.00)
θ 0.056 0.010 (0.00) 0.002 0.251 (0.99) 0.055 0.025 (0.03) 0.000 0.128 (1.00) 0.058 0.017 (0.00) 0.000 0.201 (1.00)
σ 0.006 0.005 (0.21) 0.013 0.009 (0.18) 0.007 0.002 (0.00) 0.006 0.003 (0.06) 0.014 0.010 (0.16) 0.019 0.013 (0.14)
ξ 0.332 0.089 (0.00) 1.005 0.272 (0.00) -0.112 0.010 (0.00) 0.002 0.024 (0.94) -0.871 0.252 (0.00) 1.530 0.252 (0.00)

Panel B: AJTSM

1-Factor model 2-Factor model 3-Factor model
Θ 1st-F SE (p-value) 1st-F SE (p-value) 2nd-F SE (p-value) 1st-F SE (p-value) 2nd-F SE (p-value) 3rd-F SE (p-value)

κ 0.751 0.040 (0.00) 1.656 0.063 (0.00) 0.035 0.003 (0.00) 0.024 0.001 (0.00) 0.293 0.005 (0.00) 2.207 0.018 (0.00)
θ 0.049 0.010 (0.00) 0.000 0.014 (0.99) 0.040 0.001 (0.00) 0.005 0.002 (0.05) 0.104 0.005 (0.00) 0.000 0.030 (1.00)
σ 0.002 0.001 (0.28) 0.023 0.019 (0.24) 0.005 0.000 (0.00) 0.007 0.000 (0.00) 0.004 0.001 (0.00) 0.016 0.016 (0.32)
λ 13.32 0.230 (0.00) 0.013 0.055 (0.81) 2.538 0.022 (0.00) 0.034 0.002 (0.00) 40.27 0.051 (0.00) 0.088 0.036 (0.02)
α 0.000 0.000 (0.24) 0.075 0.057 (0.19) 0.001 0.000 (0.00) 0.000 0.000 (1.00) -0.001 0.000 (0.00) 0.509 0.089 (0.00)
β 0.001 0.005 (0.78) 0.005 0.118 (0.97) 0.001 0.000 (0.00) 0.002 0.002 (0.28) 0.002 0.003 (0.54) 0.993 0.087 (0.00)
ξ 1.445 0.094 (0.00) -0.491 0.164 (0.00) -0.211 0.005 (0.00) -0.127 0.004 (0.00) -0.109 0.019 (0.00) -0.015 0.358 (0.00)

Table C.1: Parameter Estimates Pre-Crisis Sample

Notes: This table reports the parameter estimates, based on the QMLE procedure, in the ATSM-framework (Panel A) and in the AJTSM-framework
(Panel B) using the pre-crisis weekly yield curve from January 6, 2006 to December 28, 2007 (104 observations). The table provides the parameter estimates
of κ, θ, σ and ξ, their corresponding standard errors and p-values for the one-, two- and three-factor model in the ATSM-framework (Panel A). Additionally,
the table provides the parameter estimates of κ, θ, σ, λ, α, β and ξ, their corresponding standard errors and p-values for the one-, two- and three-factor
model in the AJTSM-framework (Panel B). In the models, I assume that the dynamics of the factors are described by a Vasicek model and the market price
of risk of each factor is constant. The standard errors are based on the nearest symmetric-positive definite covariance matrix, derived from the unconstrained
Hessian matrix. In the AJTSM-framework, I assume that jump risk is diversifiable and the Brownian Motion and Poisson process are independent as well.
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Panel A: ATSM

1-Factor model 2-Factor model 3-Factor model
Θ 1st-F SE (p-value) 1st-F SE (p-value) 2nd-F SE (p-value) 1st-F SE (p-value) 2nd-F SE (p-value) 3rd-F SE (p-value)

κ 0.330 0.032 (0.00) 0.545 0.032 (0.00) 0.010 0.010 (0.33) 0.107 0.004 (0.00) 0.010 0.006 (0.10) 1.134 0.074 (0.00)
θ 0.000 0.017 (1.00) 0.000 0.251 (1.00) 0.000 0.251 (1.00) 0.000 0.226 (1.00) 0.000 0.403 (1.00) 0.000 0.368 (1.00)
σ 0.015 0.002 (0.00) 0.022 0.005 (0.00) 0.010 0.001 (0.00) 0.058 0.007 (0.00) 0.017 0.004 (0.00) 0.025 0.013 (0.07)
ξ -1.053 0.061 (0.00) -1.504 0.118 (0.00) -0.127 0.037 (0.00) -0.024 0.091 (0.79) -0.504 0.034 (0.00) -0.633 0.265 (0.02)

Panel B: AJTSM

1-Factor model 2-Factor model 3-Factor model
Θ 1st-F SE (p-value) 1st-F SE (p-value) 2nd-F SE (p-value) 1st-F SE (p-value) 2nd-F SE (p-value) 3rd-F SE (p-value)

κ 0.330 0.031 (0.00) 0.032 0.000 (0.00) 0.433 0.013 (0.00) 0.022 0.001 (0.00) 0.092 0.003 (0.00) 1.050 0.031 (0.00)
θ 0.000 0.007 (1.00) 0.000 0.005 (1.00) 0.051 0.017 (0.00) 0.023 0.007 (0.00) 0.016 0.021 (0.44) 0.010 0.015 (0.53)
σ 0.003 0.001 (0.00) 0.011 0.000 (0.00) 0.024 0.006 (0.00) 0.011 0.000 (0.00) 0.041 0.002 (0.00) 0.018 0.012 (0.15)
λ 11.61 0.236 (0.00) 0.037 0.002 (0.00) 5.583 0.062 (0.00) 0.181 0.007 (0.00) 1.982 0.015 (0.00) 3.113 0.205 (0.00)
α 0.000 0.000 (0.32) -0.029 0.001 (0.00) -0.007 0.000 (0.00) -0.007 0.001 (0.00) 0.000 0.001 (0.70) -0.003 0.008 (0.68)
β 0.004 0.006 (0.56) 0.018 0.002 (0.00) 0.000 0.012 (1.00) 0.004 0.002 (0.02) 0.016 0.003 (0.00) 0.007 0.014 (0.64)
ξ -2.000 0.100 (0.00) -0.336 0.006 (0.00) -0.848 0.082 (0.00) -0.119 0.008 (0.00) -0.241 0.025 (0.00) -0.250 0.014 (0.97)

Table C.2: Parameter Estimates Mid-Crisis Sample

Notes: This table reports the parameter estimates, based on the QMLE procedure, in the ATSM-framework (Panel A) and in the AJTSM-framework (Panel
B) using the mid-crisis weekly yield curve from January 4, 2008 to December 25, 2009 (104 observations). The table provides the parameter estimates of κ,
θ, σ and ξ, their corresponding standard errors and p-values for the one-, two- and three-factor model in the ATSM-framework (Panel A). Additionally, the
table provides the parameter estimates of κ, θ, σ, λ, α, β and ξ, their corresponding standard errors and p-values for the one-, two- and three-factor model
in the AJTSM-framework (Panel B). In the models, I assume that the dynamics of the factors are described by a Vasicek model and the market price of
risk of each factor is constant. The standard errors are based on the nearest symmetric-positive definite covariance matrix, derived from the unconstrained
Hessian matrix. In the AJTSM-framework, I assume that jump risk is diversifiable and the Brownian Motion and Poisson process are independent as well.
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Panel A: ATSM

1-Factor model 2-Factor model 3-Factor model
Θ 1st-F SE (p-value) 1st-F SE (p-value) 2nd-F SE (p-value) 1st-F SE (p-value) 2nd-F SE (p-value) 3rd-F SE (p-value)

κ 0.165 0.013 (0.00) 0.269 0.014 (0.00) 0.015 0.003 (0.00) 0.201 0.007 (0.00) 0.022 0.003 (0.00) 0.877 0.032 (0.00)
θ 0.029 0.006 (0.00) 0.000 0.901 (1.00) 0.000 0.190 (1.00) 0.000 0.144 (1.00) 0.058 1.069 (0.96) 0.147 0.154 (0.34)
σ 0.001 0.000 (0.00) 0.011 0.004 (0.01) 0.019 0.001 (0.00) 0.084 0.005 (0.00) 0.020 0.001 (0.00) 0.016 0.003 (0.00)
ξ -2.000 0.055 (0.00) -0.135 0.075 (0.07) -0.176 0.021 (0.00) -0.171 0.021 (0.00) 0.192 0.016 (0.00) -2.000 0.069 (0.00)

Panel B: AJTSM

1-Factor model 2-Factor model 3-Factor model
Θ 1st-F SE (p-value) 1st-F SE (p-value) 2nd-F SE (p-value) 1st-F SE (p-value) 2nd-F SE (p-value) 3rd-F SE (p-value)

κ 0.045 0.002 (0.00) 0.035 0.000 (0.00) 0.192 0.007 (0.00) 0.020 0.000 (0.00) 0.314 0.002 (0.00) 1.546 0.010 (0.00)
θ 0.000 0.006 (0.99) 0.028 0.003 (0.00) 0.012 0.005 (0.02) 0.036 0.002 (0.00) 0.129 0.008 (0.00) 0.230 0.017 (0.00)
σ 0.001 0.000 (0.00) 0.009 0.000 (0.00) 0.016 0.002 (0.00) 0.011 0.000 (0.00) 0.016 0.001 (0.00) 0.143 0.006 (0.00)
λ 0.284 0.008 (0.00) 0.240 0.003 (0.00) 0.002 0.002 (0.43) 0.313 0.002 (0.00) 23.89 0.022 (0.00) 2.052 0.032 (0.00)
α 0.019 0.002 (0.00) 0.000 0.000 (0.24) -0.029 0.020 (0.16) 0.008 0.000 (0.00) -0.001 0.000 (0.00) -0.181 0.003 (0.00)
β 0.040 0.002 (0.00) 0.006 0.001 (0.00) 0.100 0.028 (0.00) 0.004 0.000 (0.00) 0.021 0.002 (0.00) 0.102 0.025 (0.00)
ξ -1.170 0.011 (0.00) -0.089 0.004 (0.00) -0.096 0.013 (0.00) -1.253 0.003 (0.00) -0.011 0.283 (0.00) -1.131 0.042 (0.00)

Table C.3: Parameter Estimates Post-Crisis Sample

Notes: This table reports the parameter estimates, based on the QMLE procedure, in the ATSM-framework (Panel A) and in the AJTSM-framework
(Panel B) using the post-crisis weekly yield curve from January 1, 2010 to January 1, 2016 (318 observations). The table provides the parameter estimates
of κ, θ, σ and ξ, their corresponding standard errors and p-values for the one-, two- and three-factor model in the ATSM-framework (Panel A). Additionally,
the table provides the parameter estimates of κ, θ, σ, λ, α, β and ξ, their corresponding standard errors and p-values for the one-, two- and three-factor
model in the AJTSM-framework (Panel B). In the models, I assume that the dynamics of the factors are described by a Vasicek model and the market price
of risk of each factor is constant. The standard errors are based on the nearest symmetric-positive definite covariance matrix, derived from the unconstrained
Hessian matrix. In the AJTSM-framework, I assume that jump risk is diversifiable and the Brownian Motion and Poisson process are independent as well.
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C.2 Mid- and post-crisis goodness-of-fit statistics

The goodness-of-fit measures of the mid- and post-crisis samples are reported on the

following pages.
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Panel A: 1-Factor model Panel B: 2-Factor model

MSPE RMSE MAE R2
A MSPE RMSE MAE R2

A

τ ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM

3-month - - - - - - - - - - - - - - - -
6-month 0.018 0.018 0.134 0.134 3.440 3.443 0.995 0.995 0.017 0.019 0.132 0.139 3.365 3.453 0.995 0.994
1-year 0.232 0.231 0.481 0.480 5.965 5.954 0.936 0.932 0.229 0.225 0.478 0.475 6.162 5.973 0.937 0.928
2-year 1.212 1.206 1.101 1.098 9.054 9.042 0.612 0.586 1.034 1.056 1.017 1.028 8.796 8.389 0.669 0.609
3-year 2.300 2.291 1.516 1.514 11.05 11.05 0.168 0.110 1.476 1.703 1.215 1.305 9.020 9.121 0.466 0.287
4-year 3.638 3.632 1.907 1.906 12.76 12.76 -0.480 -0.585 1.717 2.373 1.310 1.541 9.316 10.43 0.302 -0.117
5-year 5.503 5.502 2.346 2.346 14.26 14.27 -1.508 -1.690 2.051 3.312 1.432 1.820 10.19 11.84 0.065 -0.747
6-year 7.918 7.925 2.814 2.815 15.64 15.65 -3.009 -3.305 2.492 4.414 1.578 2.101 11.13 13.04 -0.261 -1.586
7-year 11.08 11.09 3.328 3.330 16.96 16.97 -5.150 -5.606 3.095 5.679 1.759 2.383 12.00 14.06 -0.718 -2.649
8-year 14.87 14.88 3.856 3.858 18.17 18.17 -7.920 -8.580 3.706 6.872 1.925 2.622 12.63 14.81 -1.223 -3.771
9-year 19.49 19.51 4.415 4.417 19.35 19.36 -11.48 -12.40 4.222 7.914 2.055 2.813 13.07 15.40 -1.703 -4.863
10-year 24.77 24.78 4.977 4.978 20.54 20.55 -15.77 -17.00 4.671 8.889 2.161 2.981 13.41 15.89 -2.162 -5.963
15-year 64.84 64.82 8.053 8.051 26.13 26.13 -51.22 -55.00 5.298 11.23 2.302 3.351 13.69 16.87 -3.266 -9.466
20-year 133.2 133.1 11.54 11.54 30.71 30.70 -114.1 -122.4 1.945 6.315 1.395 2.513 10.65 14.33 -0.680 -5.314
25-year 234.5 234.5 15.31 15.31 34.74 34.72 -209.5 -224.8 0.766 1.796 0.875 1.340 8.622 10.41 0.312 -0.865
30-year 361.8 362.0 19.02 19.03 38.22 38.20 -332.8 -357.3 - - - - - - - -

Panel C: 3-Factor model

MSPE RMSE MAE R2
A

τ ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM

3-month - - - - - - - -
6-month 0.020 0.018 0.141 0.135 3.418 3.341 0.995 0.994
1-year 0.107 0.124 0.327 0.351 5.047 5.271 0.971 0.957
2-year 0.393 0.447 0.627 0.669 7.254 7.557 0.874 0.820
3-year 0.474 0.510 0.688 0.714 7.696 7.856 0.829 0.768
4-year 0.431 0.449 0.657 0.670 7.367 7.417 0.825 0.771
5-year 0.333 0.353 0.577 0.594 6.753 6.752 0.848 0.798
6-year 0.215 0.243 0.464 0.493 5.959 5.986 0.891 0.845
7-year 0.130 0.160 0.361 0.400 5.197 5.361 0.928 0.888
8-year 0.068 0.086 0.261 0.293 4.332 4.510 0.959 0.935
9-year 0.028 0.033 0.167 0.182 3.275 3.418 0.982 0.973
10-year - - - - - - - -
15-year 0.491 0.462 0.701 0.680 7.836 7.641 0.604 0.532
20-year 0.470 0.550 0.686 0.741 7.518 7.861 0.594 0.403
25-year 0.263 0.270 0.513 0.519 6.252 6.402 0.764 0.696
30-year - - - - - - - -

Table C.4: Goodness-of-Fit Measures of Mid-Crisis Sample

Notes: This table reports and compares the goodness-of-fit measures for ATSMs and AJTSMs for the yield curve from January 4, 2008 to December 25, 2009.
Panel A presents the results of the one-factor ATSM and AJTSM, Panel B presents the results of the two-factor ATSM and AJTSM, and Panel C presents
the results of the three-factor ATSM and AJTSM. The MSPEs are denoted in squared basis points, the RMSEs and MAEs are denoted in basis points, R2

A

denotes the adjusted R2 and τ denotes the maturity. The bold numbers show the best model (ATSM or AJTSM) with respect to the goodness-of-fit measure.
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Panel A: 1-Factor model Panel B: 2-Factor model

MSPE RMSE MAE R2
A MSPE RMSE MAE R2

A

τ ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM

3-month - - - - - - - - - - - - - - - -
6-month 0.003 0.003 0.053 0.054 2.128 2.142 0.999 0.999 0.003 0.003 0.051 0.052 1.946 1.957 0.999 0.999
1-year 0.022 0.022 0.150 0.147 3.603 3.569 0.994 0.994 0.041 0.040 0.203 0.199 4.242 4.201 0.989 0.989
2-year 0.334 0.327 0.578 0.572 6.952 6.913 0.893 0.893 0.485 0.466 0.696 0.683 7.855 7.786 0.845 0.844
3-year 1.396 1.384 1.181 1.177 9.735 9.715 0.495 0.488 1.409 1.356 1.187 1.164 10.22 10.14 0.490 0.486
4-year 3.507 3.506 1.873 1.872 12.16 12.17 -0.426 -0.459 2.331 2.247 1.527 1.499 11.61 11.53 0.052 0.043
5-year 6.883 6.910 2.624 2.629 14.50 14.52 -2.137 -2.221 2.886 2.796 1.699 1.672 12.19 12.12 -0.315 -0.334
6-year 11.66 11.71 3.414 3.422 16.66 16.69 -4.902 -5.063 3.115 3.054 1.765 1.747 12.38 12.33 -0.577 -0.618
7-year 17.67 17.72 4.204 4.210 18.52 18.54 -8.810 -9.062 3.183 3.171 1.784 1.781 12.40 12.40 -0.767 -0.843
8-year 24.64 24.65 4.964 4.965 20.12 20.13 -13.78 -14.13 3.153 3.193 1.776 1.787 12.34 12.36 -0.892 -1.005
9-year 32.49 32.42 5.700 5.694 21.59 21.60 -19.80 -20.23 3.059 3.144 1.749 1.773 12.20 12.27 -0.959 -1.107
10-year 41.12 40.94 6.412 6.399 22.96 22.96 -26.83 -27.35 2.900 3.020 1.703 1.738 12.02 12.11 -0.963 -1.140
15-year 95.53 95.03 9.774 9.748 28.81 28.86 -75.93 -77.28 1.888 1.984 1.374 1.409 10.58 10.68 -0.520 -0.673
20-year 168.3 169.2 12.97 13.01 33.66 33.74 -144.4 -148.6 0.732 0.762 0.856 0.873 8.161 8.328 0.367 0.311
25-year 267.1 269.0 16.34 16.40 37.89 37.96 -238.7 -246.0 0.368 0.450 0.606 0.671 7.167 7.516 0.670 0.577
30-year 384.6 383.8 19.61 19.59 41.51 41.49 -353.8 -361.2 - - - - - - - -

Panel C: 3-Factor model

MSPE RMSE MAE R2
A

τ ATSM AJTSM ATSM AJTSM ATSM AJTSM ATSM AJTSM

3-month - - - - - - - -
6-month 0.009 0.009 0.096 0.096 2.720 2.720 0.998 0.997
1-year 0.048 0.048 0.219 0.219 4.310 4.310 0.987 0.986
2-year 0.200 0.200 0.447 0.447 6.130 6.130 0.936 0.931
3-year 0.255 0.256 0.505 0.505 6.575 6.575 0.908 0.901
4-year 0.279 0.279 0.528 0.528 6.617 6.617 0.886 0.878
5-year 0.257 0.257 0.507 0.507 6.341 6.341 0.883 0.874
6-year 0.180 0.180 0.425 0.425 5.837 5.837 0.909 0.902
7-year 0.099 0.099 0.315 0.315 5.104 5.104 0.945 0.941
8-year 0.044 0.044 0.211 0.211 4.180 4.180 0.973 0.971
9-year 0.013 0.013 0.112 0.112 2.999 2.999 0.992 0.991
10-year - - - - - - - -
15-year 0.130 0.130 0.360 0.360 5.205 5.205 0.895 0.888
20-year 0.394 0.394 0.628 0.628 7.149 7.149 0.659 0.635
25-year 0.778 0.778 0.882 0.882 9.028 9.028 0.302 0.251
30-year - - - - - - - -

Table C.5: Goodness-of-Fit Measures of Post-Crisis Sample

Notes: This table reports and compares the goodness-of-fit measures for ATSMs and AJTSMs for the yield curve from January 1, 2010 to January 1, 2016.
Panel A presents the results of the one-factor ATSM and AJTSM, Panel B presents the results of the two-factor ATSM and AJTSM, and Panel C presents
the results of the three-factor ATSM and AJTSM. The MSPEs are denoted in squared basis points, the RMSEs and MAEs are denoted in basis points, R2

A

denotes the adjusted R2 and τ denotes the maturity. The bold numbers show the best model (ATSM or AJTSM) with respect to the goodness-of-fit measure.
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C.3 Value-at-Risk and Expected Shortfall Estimates

(A) (B)

(C) (D)

Figure C.1: VaR and ES Estimates of One-Factor Models

Notes: These figures plot the one- and 30-year interest rate swaps and their one-week-
ahead VaR and ES estimates from January 4, 2008 to January 1, 2016. The VaR and
ES estimates have a nominal coverage probability of γ = 1% and are constructed by
the one-factor models. (A) plots the V aR1% and ES1% of the one-year interest rate
swap, based on the one-factor ATSM, (B) plots the V aR1% and ES1% of the 30-year
interest rate swap, based on the one-factor ATSM, (C) plots the V aR1% and ES1% of
the one-year interest rate swap, based on the one-factor AJTSM, and (D) plots the
V aR1% and ES1% of the 30-year interest rate swap, based on the one-factor AJTSM.
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(A) (B)

(C) (D)

Figure C.2: VaR and ES Estimates of Two-Factor Models

Notes: These figures plot the one- and 30-year interest rate swaps and their one-week-
ahead VaR and ES estimates from January 4, 2008 to January 1, 2016. The VaR and
ES estimates have a nominal coverage probability of γ = 1% and are constructed by
the two-factor models. (A) plots the V aR1% and ES1% of the one-year interest rate
swap, based on the two-factor ATSM, (B) plots the V aR1% and ES1% of the 30-year
interest rate swap, based on the two-factor ATSM, (C) plots the V aR1% and ES1% of
the one-year interest rate swap, based on the two-factor AJTSM, and (D) plots the
V aR1% and ES1% of the 30-year interest rate swap, based on the two-factor AJTSM.
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