
Erasmus University Rotterdam

Department of Econometrics

Master Thesis: Impact of parameter uncertainty on
Value-at-Risk estimates when few data is available

E.T. Goedegebure
374875

Supervisors: C. Zhou, H.J.W.G. Kole and A. van Oord
Master Programme: Econometrics & Management Science

Specialization: Quantitative Finance
Course: Master Thesis

Rotterdam 2016



Abstract

In this thesis I investigated the impact of parameter uncertainty on the 99.5 percent one year
Value-at-Risk (VaR), in particular the impact of having only a few years of available data.
In a simulation study where the underlying data generation process is known, I applied es-
timation methods that do and do not take into account the effect of parameter uncertainty
to show if, and by how much these estimation methods differ from the known VaR. The
data generating processes I used vary from a Gaussian copula to a Clayton copula. Within
the simulation study I differentiated between the impact of parameter uncertainty on the
VaR for the correlation, variances and Clayton copula parameter. Finally, I applied the
different estimation methods on the return series used for the Solvency II calibration of the
Solvency II Capital Requirement for equity investments. I found that including parameter
uncertainty results in a smaller probability of underestimating the true 99.5 percent one year
VaR and less economic impact of underestimating the true 99.5 percent one year VaR as
compared to VaR estimates obtained using Maximum Likelihood Estimation. Furthermore,
incorporating parameter uncertainty, within the context of Solvency II equity module, re-
sulted in a more strict Solvency II Capital Requirement.

Keywords: Value-at-Risk, Parameter Uncertainty, Simulation Study, Solvency II
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1 Introduction

Capital requirements in general are based on VaR and typically calibrated on few available
data (e.g. Solvency II and IAIS standards). In these circumstances parameter uncertainty
and sample size are particular relevant because it influences the amount of capital investors
and insurers have to hold. An inaccurate capital requirement can therefore distort the balance
between investing capital for profitability on the one hand, and maintaining enough capital to
account for possible capital shocks on the other hand.

Estimating a VaR with just a few observations, results in an uncertain the VaR estimate. For
example, figure 1 shows a density plot of VaR estimates obtained in a simulation study. Each
VaR is estimated by assuming normally distributed returns and applying Maximum Likelihood
Estimation (MLE). The figure indicates that the VaR estimates, under a correct distributional
assumption, already vary considerably around the true VaR.

Figure 1: Density plot of VaR estimates
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Note: VaR estimates are obtained by applying Maximum Likelihood Estimation on 5000 simu-
lated return series with 10 observations. The returns follow a standard normal distribution and
the vertical dotted line corresponds with the true VaR.

Previous research suggests that parameter uncertainty plays a key role in this variation. Dowd
(2000b) shows that little uncertainty in the parameters causes the VaR confidence intervals to
widen rapidly and the VaR estimator to become imprecise. Another important result of Dowd’s
(2000a) research is that a small data sample results in VaR estimates with fairly wide confidence
intervals. Aussenegg (2006), among others, includes parameter uncertainty in a GARCH volatil-
ity environment using a Bayesian framework and finds that the proposed Bayesian approach
provides a more adequate VaR framework with less uncertainty in VaR estimates compared to
frequentist estimation methods.

Although this research gives some evidence that parameter uncertainty impacts VaR varia-
tion, some remarks can still be made. Dowd (2000b) demonstrates the impact of parameter
uncertainty by inserting sampled parameters in a functional expression of the VaR. However, in
practice real data is available to estimate the VaR. Using a Bayesian framework to determine
the impact of parameter uncertainty on the VaR would be more realistic, because both data
and distributional assumption can be combined. Aussenegg (2006) applies a Bayesian frame-
work to estimate VaR and shows that this results in less uncertain VaR estimates as compared
to frequentist methods. However, these results are obtained by using a large amount of data.
Furthermore, both studies only take in consideration the impact of parameter uncertainty on
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uncertainty in the VaR estimate and not the impact on the accuracy of the VaR estimate.
Therefore, my research will investigate the impact of incorporating parameter uncertainty on
the VaR, when few data is available, compared to not incorporating this uncertainty.

In a simulation study I apply estimation methods that either do (e.g. Bayesian methods)
or do not (e.g. Maximum Likelihood Estimation) take into account the effect of parameter
uncertainty, to show which is the best performing method. When applying different estimation
methods to analyze empirical data, it is difficult to assess which method performs best, since the
true data generating process and VaR are unknown. Investigating the impact of parameter un-
certainty in a simulation study allows me to compare the estimates of the VaR to the true VaR of
the data generating process (DGP). This provides insight in the bias and variation of the differ-
ent estimation methods. The data generating processes that I use are a Gaussian and a Clayton
copula. I derive the estimates of the VaR that take into account parameter uncertainty in two
different ways: 1) by taking the empirical VaR from the posterior predictive return distribution
or, 2) by computing the VaR using the mean of the sampled parameters from the posterior
distributions of these parameters. Within the simulation study I differentiate between the im-
pact of parameter uncertainty on the VaR for the correlation, variances and Clayton parameter.

Once the simulation study results are obtained I will use the results to investigate the im-
pact of incorporating parameter uncertainty on Solvency II Capital Requirement for equity
risk. There are three reasons for choosing this empirical example. First, the Solvency II Cap-
ital Requirement for equity risk corresponds to a 99.5 percent one year VaR of an insurance
company’s own funds. As a consequence of this time horizon, few historical annual returns are
available to calibrate this VaR. Secondly, Solvency II calibration has circumvented this issue by
using a one year rolling-window in order to obtain annual returns on a daily frequency. However,
Mittnik (2011) has shown that using such an annualization procedure results in high autocorre-
lation between the data and VaR estimates which are as a result highly erratic. Therefore, the
current accuracy of the Solvency II Capital Requirement is questionable. Thirdly, the Solvency
II calibration procedure does not look at the impact of incorporating parameter uncertainty on
the Solvency II Capital Requirement.

The results of my research show that incorporating uncertainty in both the correlation pa-
rameter and the variance parameters results in almost no underestimation of the true VaR.
However, the economic impact of overestimation is rather large. With respect to the impact of
incorporating parameter uncertainty on the Solvency II Capital Requirement for equity risk I
find that the current capital requirement is insufficient if parameter uncertainty is incorporated.

My paper contributes to the literature in two ways: the simulation study results give insight
in the magnitude of under- and overestimation for estimation methods that do and do not in-
corporate parameter uncertainty. This can be used to justify the use of a Bayesian approach
over a frequentist approach, or vice versa, when estimating a VaR with data scarcity. Secondly,
it extents the current knowledge on the optimal design of insurance regulation. Because of a
better understanding of the impact of parameter uncertainty on capital requirements.

The remainder of the thesis is structured as follows: first, I describe the standard model of
Solvency II. Secondly, I explain the simulation study and the parameter estimation methods I
used, to be followed by a discussion of the results. Thirdly, I estimate the capital requirement
for the equity module of Solvency II. Finally, I answer my research question and discuss the
practical relevance of my research.
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Part I

Theoretical Part
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2 The Standard Model under Solvency II

Solvency II regulation is a three pillar framework. The first pillar focuses on capital require-
ments. The second pillar bundles relevant activities for supervising risk management processes,
while the third pillar covers transparency issues. Under the first pillar two capital requirements
were established: the Minimum Capital Requirement and the a Solvency II Capital Require-
ment (SCR). The former defines a threshold at which insurance companies will no longer be
permitted to trade. The latter corresponds to the VaR of an insurance companies own funds
subject to a confidence level of 99.5 percent over a one-year period.

The details of the Solvency Capital Requirement are laid down in EIOPA’s Report on the
fifth Quantitative Impact Study (QIS5) for Solvency II and the Delegated Regulation (EU)
2015/35. The reports determine that the Solvency Capital Requirement is, in most cases,
calculated by making use of a standard model.i The standard model is designed to follow a
modular based approach as exhibited in figure 18, and is divided into six different risk modules,
including market, health, default, life and non-life risk as well as intangibles. As shown in figure
18 Appendix E each of the modules can be further divided into different sub-modules. The
total SCR is then calculated by following a bottom up approach. Firstly, the gross SCR’s of
the individual sub-models are calculated and aggregated to compute the SCR of the six differ-
ent risk modules. Secondly, the Basic Solvency Capital Requirement is computed by using the
so-called ”square-root formula” given by:

BCSR =

√∑
ij

Corrij × SCRi × SCRj + SCRintangibles (1)

where SCRi represents the risk module’s capital requirement and Corrij the entries of a pre-
defined correlation matrix Corr between the different risk modules. Finally, the total SCR will
be obtained by adding the operational risk SCR and the adjustments for loss absorbency of
technical provisions and deferred taxes to the BSCR.

One of the sub-modules that comprises the market module is the equity module. The SCR
of the equity module under Solvency II is calculated by aggregating the SCR of two different
classes of equities. The first class contains equities that are listed in regulated markets in coun-
tries that are a member of the European Economic Area or the Organization for Economic
Co-operation and Development (OECD). The second class comprises of equities only listed in
emerging markets, non-listed equities, hedge funds and other investments that are not included
elsewhere in the market risk module. The total Solvency Capital Requirement of the equity
module is then given by:

SCReq =
√
SCR2

Other + SCR2
Global + 2 ∗ ρtail ∗ SCROther ∗ SCRGlobal (2)

The SCR’s of the individual equity classes are obtained by multiplying the total market value
of each equity class times a shock. According to the 2009 EU Directive, this shock should
correspond with a one-year 99.5 percent, which leads to the following expression:

SCRi = V aRi ∗MVeq,i

= V aRi ∗MVeq ∗ wi
(3)

iIt should be noted that insurance companies can replace the standard model with an internal model, when
it can be shown to be better able to fulfill the directive requirements given a insurance companies risk profile.
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where i ∈ [global, other], MVeq,i the market value of an equity class, V aRi the Value-at-Risk,
MVeq the total market portfolio and wi the equity class weight in the total market portfolio.

The QIS5 calibration papers also determined the calibration of the VaR of the global and
other equity type. The VaR was calculated by adding two parts: the first is the standard
capital stress and the second part an adjustment term that has been set in place to mitigate
potential pro-cyclical effects of adverse capital market developments.

The standard capital stress (SCS) of the global and other equities were calibrated by mak-
ing use of a number of benchmark time series. The SCS of the global equities was based on
the MSCI World Price index and the SCS for the other equities based on the LPX 50 Total
Return index, the HFRX Hedge Fund Total Return index, the MSCI BRIC Price index and the
S&P GSCI Commodities Total Return index. One of the problems concerning the use of these
indexes was the relative scarcity of data. Only around 8 and 40 years of data were available to
calculate the SCS’s for the indexes, which gave too little non-overlapping returns to construct a
one-year ahead VaR using the HS method. To solve this problem the QIS5 based the calibration
on a rolling window of daily measured annual returns for the longest available sample period.

The SCS for the global equities was determined by applying a number of parameter and non-
parametric VaR techniques on the MSCI World Price Index. For comparison reasons QIS5 also
considered some other time series and data frequencies.

The results showed some variety, depending on the data frequency and the VaR estimation
technique used. The QIS5 calibration noticed that there was a large difference between the
empirical and normality VaR estimates. However, this could be explained by the non-normality
of the indexes. In the end, taking the SCS’s of all methods into account, the QIS5 calibrated
the SCS for the global class to 45 percent.

The SCS for the the other equities was computed by using only empirical VaR techniques.
The QIS5 calibrations observed that there was a wide variety between the different classes
of other equities. Furthermore, QIS5 mentioned that the private equity shock was somewhat
overstated and the shocks to the hedge fund equities slightly understated. Based on these ob-
servation the QIS5 calibration sets the SCS of equity type other equal to 55 percent.

To allow for diversification effects between the global and other equities the QIS5 calibration
also calibrated the tail correlation between the two equity classes. The QIS5 calibrations deter-
mined the tail correlation between the two equity classes to be equal to 0.75. It should be noted
that this calibration was rather arbitrary. In QIS5 the tail correlation between the MSCI World
Price Index and the indexes from the other groups were calculated. The QIS5 then randomly
picked a correlation value that was somewhat close to the obtained tail correlations.

Eventually the VaR was determined in a political decision. The final VaR estimates were
set equal to 39 percent for the global equities and 49 percent for the other equities, this value
included the 9 percent adjustment term derived from the symmetric adjustment mechanism.
This results in the following total Solvency Capital Requirement of the equity module:

SCReq = MVeq ∗
√
w2

1V aR
2
1 + w2

2V aR
2
2 + 2 ∗ 0.75w1w2V aR1V aR2 (4)

where type 1 and 2 correspond to global and other equity class respectively.
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2.1 Research on Solvency II

The design of the new Solvency II regulation has been subject to a lot of research in the last
couple of years. One of the major discussions focusses on the option to choose between an
internal model or a regulatory standard model (Eling, 2014). Liebwein (2006), argues that the
internal risk models are more able to quantify a company’s risk position because they model the
individual company’s situation (risk concentration, diversification; specific investment strate-
gies). Therefore, they reflect that insurance companies risks more accurately than a standard
approach can do. Gatzer and Martin (2012) compare the standard model of Solvency II and an
internal approach in quantifying the credit and market risk for a non-life insurer. The authors’
major result shows that even though the standard approach is easier to use, the insurance com-
pany’s risk situation is inadequately reflected by the predefined scenario’s; leading to an under-
and overestimation of the underlying risks.

A different aspect of the Solvency II regulation is the aggregation of the standard formula.
Christian et al. (2012), examines the aggregation formula used to derive the life underwriting
risk in the Solvency II standard model. The authors use a stochastic model for an internal ap-
proach to determine that the correlation matrix used in the life underwriting risk module under
Solvency II is not appropriate. The authors find that this leads to an overestimation of the risk
for the underlying German data. Further critical notes can be found in Sandstrom (2007) and
Pfeifer and Strassburger (2008). Sandstrom (2007) shows that the standard formula needs to
be recalibrated in case the underlying risks are skewed (instead of the risk being symmetric and
normally distributed) to ensure consistency. Pfeifer and Stressburger (2008) show that if the
individual risks have skewed distribution, then the SCR requirements are likely to be under-
and overestimated.

The equity module is criticized in the papers written by Mittnik (2011) and Eling and Pankoke
(2014). Mittnik (2011), analyzes the QIS5 calibration procedure and finds that the annualiza-
tion procedure, of transforming daily return data into annual returns, tends to induce spurious
dependence patterns, both over time and across assets, which are not present in the observed
data. The author concludes that this leads to highly unreliable and erratic VaR and correlation
estimations. In Eling and Pankoke (2014), the authors show that the SCR is backward looking
and far away from a realistic calibration. The SCR is highly sensitive to the considered data pe-
riod and underlying definition of return. Furthermore, the aggregation formula underestimates
the true risk of the capital requirements due to the fixed correlations used in the correlation
matrix.

9



3 Methods

In this section I discuss the concept of VaR and some general methods used to estimate this
VaR. Then I elaborate on the simulation study set-up and the methods used to incorporate
parameter uncertainty in both the Clayton and Gaussian data generating processes.

3.1 Value-at-Risk

The VaR measure has become an important tool in quantifying market risk of a portfolio and
can be defined as the worst expected loss over a given time interval, under normal market
conditions, at a given confidence level η, for an investment portfolio (Jorion, 2006). That is,

η = Pr(rt < V aRt|It−1) (5)

where rt is a return, η the confidence level and It−1 the information set at time t− 1. The VaR
is a quantile in the conditional one-step-ahead forecast distribution of the returns.

In the literature numerous estimation methods for VaR are available, which can be separated
in three categories:

• Parametric: includes methods that make fully parametric distributional and model form
assumptions on the asset returns, e.g. RiskMetrics and GARCH models.

• Non−Parametric: includes the non-parametric methods by which no parameters have
to be estimated, e.g. historical simulation.

• Semi−Parametric: includes methods which make some assumption on either the error
distributions, its extremes, or the model dynamics; e.g. Extreme Value Theory, quantile
regression (CAViaR).

The purpose of VaR estimation generally determines what method to choose. For example, the
first category of estimation methods is relatively easy to use. However, the problem is that
the data generating process is not known and can therefore lead to under- or overestimation
of the VaR. The second category has the advantage that it does not assume a data generating
process and is also relative easy to use. However, they do implicitly assume that past returns
have the same distribution as future returns. Moreover, in case a very strict confidence level is
needed, sufficient data should be available to construct the historical distribution of the asset
returns. The third category suffers from the same problems as the first category though to a
lesser extent. Again assumptions on the error terms may be needed and/or parameters need to
be estimated.

The literature often considers a fourth category which has some overlap with the above men-
tioned categories or is within one of the categories. This category includes methods which follow
an algorithmic approach to calculate the VaR. Often, a high number of paths of future asset
returns are simulated using the current values as starting point; then the VaR is calculated in a
similar way as the historical simulation approach. Examples of these methods are Monte Carlo
Simulation and Filtered Historical Simulation. The advantage of using this type of method is
that non-linear portfolios can also be considered. A disadvantage, however, can be that some
of those methods are computational burdensome (Kuester et al., 2006 and Szular, 2014).
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3.2 Simulation Study

In the simulation study I consider a portfolio Rp = wR1 + (1 − w)R2, constructed from R =
(R1, R2) a two dimensional return vector where R1 and R2 equal the asset types global and
other respectively. I assume i.i.d normally distributed marginals, p(R1) ∼ N(µ1, σ

2
1) and p(R2)

∼ N(µ2, σ
2
2). I also impose two dependency structures between the marginals: the first is a

Gaussian Copula and the second a Clayton copula with parameter α.

It is important to mention that copula models do not determine the marginals for R1 and
R2, but only account for the dependency between R1 and R2. The figure below shows for
example the difference between dependency structure imposed by the copulas. The Gaussian
copula imposes a symmetric dependence with no tail correlation between the returns, while the
Clayton copula imposes asymmetric dependence with left tail correlation.

Figure 2: Copula Scatterplots

(a) (b)

Note: The left figure shows a scatterplot of returns under the Gaussian Copula with correlation
parameter value equal to 0.75. The right figure shows returns under the Clayton copula with
alpha equal to 2.41.

The bivariate distribution that is constructed by combining a copula model and marginals is in
most cases unknown. However, combining a bivariate Gaussian copula with normal distributed
marginals results in a bivariate normal distribution. This implies the following:

R =

[
R1

R2

]
∼ N

([
µ1

µ2

]
,

[
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2

])
(6)

where ρ is the correlation parameter between the assets. Because R follows a bivariate normal
distribution Rp is also normally distributed. Consequently, the true VaR can be obtained
analytically and equals:

V aR(1−η) = q−1
(1−η)

√
w2σ2

1 + (1− w)2σ2
2 + 2w(1− w)ρσ1σ2 − (wµ1 + (1− w)µ2) (7)

where q(1−η) is the (1− η) quantile of a standard normal distribution.
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In case of the Clayton copula the bivariate distribution of the returns is of a not known form
and therefore there is no analytical expression for the true VaR of the portfolio. Instead, the
true VaR can be estimated by means of simulation. First a sufficient amount of returns are
simulated from the Clayton copula. Then the portfolio returns are calculated and the empirical
VaR is computed by taking the (1− η) quantile of the portfolio returns.

In the simulation study I consider four different types of simulations. The table below pic-
tures these simulations and indicates that I simulate both DGP two times. Subsequently, I
estimate the VaR using a Gaussian copula and a Clayton copula model specification for each
DGP. By considering a Clayton copula on a Gaussian DGP and a Gaussian copula on a Clayton
DGP I also determine the impact of model misspecification.

Table 1: Simulations

DGP \ Model Gaussian Clayton
Gaussian X ×
Clayton × X

Note: Four simulations are considered. The X indicates a correct model specification and × an
incorrect model specification.

The VaR will be computed by using three different methods. The MLE method computes the
VaR using parameter estimates obtained by means of Maximum Likelihood Estimation. The
Bayesian I and Bayesian II method calculates the VaR by accounting for parameter uncertainty
in two different ways: 1) either by taking the VaR of the posterior predictive return distribution
given the simulated returns from the DGP or, 2) by taking the average of the VaR estimates
from (7) using the sampled parameters from the posterior distribution. Within the simulation
I differentiate between the impact of parameter uncertainty on the VaR for the correlation, the
variances and the Clayton copula parameter.
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3.3 Estimation Methods for Gaussian Copula Model

In the following section I elaborate on the methods used to calculate the VaR in case of the
Gaussian copula model specification.

3.3.1 Uncertainty in Correlation Parameter

To estimate the correlation parameter, I use three methods: two that include parameter uncer-
tainty and one that does not.

Method MLE: this method estimates the correlation parameter by performing maximum
likelihood estimation. I consider T observations from R ∼ N(µ,Σ), which gives the following
likelihood function:

p(R|µ,Σ) =

(
1√

(2π)2|Σ|

)T
exp {−1

2

T∑
i=1

(Ri − µ)′Σ−1(Ri − µ)}

= (
1

2πσ1σ2

√
1− ρ2

)T

× exp {−
T∑
i=1

σ2
2(Ri1 − µ1)2 + σ2

1(Ri2 − µ2)2 − 2ρσ1σ2(Ri1 − µ1)(Ri2 − µ2)

2σ2
1σ

2
2(1− ρ2)

}

(8)

where R is a matrix (R1, R2, . . . , RT ) containing the observations, Ri is the ith observation, ρ the
correlation parameter, µ1, µ2 and σ2

1, σ2
2 the mean and variance of R1 and R2 respectively. The

correlation parameter estimate is then obtained by numerically optimizing the expression in (8).

To incorporate parameter uncertainty I consider a Bayesian approach. This approach offers
the ability to incorporate parameter uncertainty by specifying a prior distribution p(θ) on the
parameter θ of interest. The prior distribution is then updated by including the data and
making use of Bayes’ rule. This framework can be pictured as follows:

p(θ|y) =
p(y|θ)p(θ)
p(y)

∝ p(y|θ)p(θ) (9)

where p(θ) is the prior parameter distribution which specifies the subjective believes about the
parameter vector, p(y|θ) the likelihood function given a parameter vector, p(y) the marginal
likelihood and p(θ|y) the posterior distribution which includes the subjective believes and the
data.

The main advantage of the Bayesian framework is that it assumes that the ”true” parame-
ter is unknown and follows a certain distribution. This offers the ability to include subjective
knowledge in the distribution and makes it possible to make inferences on the posterior distri-
bution in case of data scarcity (Fosdick and Raftery, 2012). However, the choice of the prior
distribution has a large impact on the posterior distribution and therefore a suitable prior should
be chosen. In case of the correlation parameter ρ, I consider an uniformly distributed prior:

ρ ∼ U [ρl, ρu] (10)

where ρl and ρu are the uniform distribution’s parameters. There are two reasons for adopting
this prior distribution. Firstly, the probability on a certain ρ value is equally likely therefore it
does not include any information on ρ. Moreover, the uniform distribution is very suitable to
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restrict ρ values. Secondly, Fosdick and Raftery (2012) found that uniform priors outperformed
other prior specification in case the true ρ was not extreme and the variances were known.

To construct the posterior distribution p(ρ|R); the prior distribution and the likelihood function
need to be combined as in (9). This results in the following posterior distribution:

p(ρ|R, θ) ∝ p(ρ)p(R|ρ, θ)

∝ 1

ρu − ρl

(
1

2πσ1σ2

√
1− ρ2

)T

× exp {−
T∑
i=1

σ2
2(Ri1 − µ1)2 + σ2

1(Ri2 − µ2)2 − 2ρσ1σ2(Ri1 − µ1)(Ri2 − µ2)

2σ2
1σ

2
2(1− ρ2)

}

(11)

where θ = (µ1, µ2, σ
2
1, σ

2
2).

In my research I impose the general restriction ρ ∈ [0,0.995] on the prior and set ρl equal
to 0 and ρu equal to 0.995.

Method Bayesian I: this method uses the posterior predictive distribution of portfolio re-
turns. The posterior predictive distribution of the portfolio returns p(Rp,T+1|R, θ) can be
obtained as follows:

p(Rp,T+1|Rp, θ) =

∫ ρu

ρl

p(Rp,T+1, ρ|R, θ)dρ

=

∫ ρu

ρl

p(Rp,T+1|ρ,R, θ)

× p(ρ|R, θ)dρ

=

∫ ρu

ρl

p(Rp,T+1|ρ,R, θ)p(ρ|R, θ)dρ

(12)

Filling in the corresponding distributions gives the following expression:

p(Rp,T+1|R, θ) ∝
∫ ρu

ρl

1

ρu − ρl

(
1

2π
√
w2σ2

1 + (1− w)2σ2
2 + 2ρw(1− w)σ1σ2

)T+1

× exp {−
T+1∑
i=1

(Rp,i − γ′µ)2

2(w2σ2
1 + (1− w)2σ2

2 + 2ρw(1− w)σ1σ2)
}dρ

(13)

You can observe that p(Rp,T+1|R, θ) is not analytically tractable and therefore cannot be com-
puted easily. To solve this problem I estimate the VaR numerically and adopt the following
grid algorithm:

Step 1: Create a grid [R0
p,T+1, R1

p,T+1 . . . , R
G
p,T+1] where R0

p,T+1 is the lower bound (LB) of

the grid, Rip,T+1 = R0
p,T+1 + i*0.01, RGp,T+1 the upper bound (UB) of the grid and G =

100 * (UB - LB).

Step 2: Numerically estimate p(Rip,T+1|R, θ) for i = 1, 2, . . . , G.
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Step 4: Numerically estimate c=
∫ UB
LB p(Rp,T+1|R)dRT+1 using the grid values, function values

from step 2 and the trapezoid rule. Divide p(Rip,T+1|R, θ) by c for i = 1, 2, . . . , G.

Step 5: Define the empirical CDF as P (Rp,T+1) = G−1
∑G

j=1 I[Rp,T+1 < Rjp,T+1].

Step 6: Then V aR1−η = -1*P (Rkp,T+1) such that
∑k

j=1 P (Rjp,T+1) = η.

Method Bayesian II: This method estimates the VaR by sampling ρ from the posterior
distribution in (11). Again this distribution is not analytically tractable therefore I apply an
Accept-Reject (AR) simulation to numerically estimate the posterior distribution. The basic
idea behind the AR algorithm is that values from the density function f(.) can be simulated if
it is possible to simulate values from another proposal density function g(.) and if a number c
can be found such that f(Y ) ≤ cg(Y ), c ≥ 1 for all Y in support of f(Y ). The simulated value

Y is then accepted if u ≤ f(Y )
cg(Y ) , where u is a randomly drawn value from U(0, 1) (Greenberg,

2008). I consider a proposal function g(ρ) which is uniformly distribution on the interval [0,
0.995]. The value c should be equal to p(ρmode|R, θ) divided by g(ρ) in order for the constraint
to hold. The mode of p(ρ|R, θ) will be obtained by means of numerical optimization. The AR
algorithm can be summarized as follows:

Step 1: Set m = 1

Step 2: Draw u1,m from U(ρl, ρu) and u2,m from U(0, 1).

Step 3: if u2,m ≤ p(u1,m|R,θ)
cg(u1,m) set ρm equal to u1,m and compute V aRm. Otherwise reject and

go to step 1.

Step 4: Set m = m +1 and go to step 2.

Step 5: Repeat 20.000 iterations.

Step 6: The VaR equals 1
20000

∑20000
i=1 V aRi.

To get a first impression of the impact of parameter uncertainty I construct a density plot of the
VaR estimates using density kernel estimation. The kernel that I consider is a standard normal
Gaussian kernel and the bandwidth is chosen by means of the Silverman’s Rule of Thumb. To
measure the performance of the three estimation methods I consider statistical and economic
impact measures. The statistical measures I consider are the relative VaR computed as the
mean of the VaR estimates divided by the true VaR, the standard deviation of the relative VaR
and Root Means Squared Error (RSME) of the VaR estimates. The economic impact measures
determine the impact of misspecifying the VaR. I consider the probability of underestimating
the true VaR and probability of underestimating the true VaR times the average additional
percentage underestimation. Both measures are also constructed for overestimating the true
VaR.
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3.3.2 Uncertainty in Variances

This section discusses the methods that are used to determine the impact of uncertainty in the
variance of R1 and R2, while ρ is fixed.

Method MLE: This method uses the sample variances to estimate the variance parameters.

To include uncertainty in the variance I use an inverse gamma prior distributions: p(σ2
i |νi, βi)

∼ β
ν1
i

Γ(νi)
σ

2(−νi−1)
i exp (− βi

σ2
i
) for i = 1, 2 and where σ2

i > 0 and F (.) denotes the gamma function.

I set (ν1, β1) = (1e-100, 1e-100) and (ν2, β2) = (1e-100, 1e-100). By choosing low values for
(νi, βi) the inverse gamma distribution becomes almost non-informative, but remains a proper
distribution.

Combining the prior with the likelihood function in (8) results in the following posterior distri-
bution:

p(σ2
1, σ

2
2|R, φ) ∝ p(σ2

1)p(σ2
2)p(R|φ)

∝ σ−2(ν1+1)
1 σ

−2(ν2+1)
2

(
1

2πσ1σ2

√
1− ρ2

)T

× exp {−
T∑
i=1

σ2
2(Ri1 − µ1)2 + σ2

1(Ri2 − µ2)2 − 2ρσ1σ2(Ri1 − µ1)(Ri2 − µ2)

2σ2
1σ

2
2(1− ρ2)

}

× exp {−β1

σ2
1

− β2

σ2
2

}

(14)

Method Bayesian I: This method computes the VaR by using the posterior predictive dis-
tribution of portfolio returns p(Rp,T+1|R, θ), which is defined as follows:

p(Rp,T+1|R, φ) =

∫ ∞
0

∫ ∞
0

p(Rp,T+1, σ
2
1, σ

2
1|R, φ)dσ2

1dσ
2
2

=

∫ ∞
0

∫ ∞
0

p(Rp,T+1|σ2
1, σ

2
1,R, φ)p(σ2

1, σ
2
2|R, φ)dσ2

1dσ
2
2

(15)

filling in the corresponding distributions gives the following expression:

p(Rp,T+1|R, φ) =

∫ ∞
0

∫ ∞
0

1

σ
2(ν1+1)
1 σ

2(ν2+1)
2

(
1

2πσ1σ2

√
1− ρ2

)T+1

× exp {−
T+1∑
i=1

(Rp,i − γ′µ)

2(w2σ2
1 + (1− w)2σ2

2 + 2ρw(1− w)σ1σ2)
}

× exp {−β1

σ2
1

− β2

σ2
2

}dσ2
1dσ

2
2

(16)

This expression does not have an analytical solution. Therefore I adopt the same algorithm to
obtain the posterior predictive distribution as in case of the correlation parameter. Only now
the predictive posterior distribution is changed to the expression (16)
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Method Bayesian II: This method estimates the parameter by sampling σ2
1 and σ2

2 from
their posterior distribution. The posterior distribution does not look to be of any known form
therefore I resort to a Metropolis Hastings algorithm based on a Markov Chain. The idea is
to simulate a value from a known candidate density function, which has a similar shape to
the unknown density. The value is then either accepted or rejected with a certain probabil-
ity αaccept (Greenberg, 2008). To determine a correct candidate density function I separate
the joint distributions in two conditional distributions: p(σ2

1|R, φ) and p(σ2
2|σ2

1,R, φ). In Ap-
pendix A Derivation II you can observe that σ2

1|R, φ follows an Inverse Gamma distribution
and σ2

2|σ2
1,R, φ an unknown distribution which looks similar to an Inverse Gamma. Therefore,

my candidate function will be an Inverse Gamma distribution. This results in the following
Metropolis Hastings algorithm:

Step 1: Specify starting values σ2
1,m, σ

2
2,m and m = 1.

Step 2: Simulate σ2
1,∗ from g(σ2

1) ∼ IG
(
αig = T

2 + ν1, βig =
∑T

i=1
(Ri1−µ1)2

2(1−ρ2)
+ β1

)
and U ∼

U(0, 1)

Set σ2
1,m+1 = σ2

1,∗ if U ≤ αaccept, otherwise set σ2
1,m+1 = σ2

1,m

where αaccept = min

(
p(σ2

1,∗|σ2
2,m,R,φ)g(σ2

1,∗)

p(σ2
1,m|σ2

2,m,R,φ)g(σ2
1,m)

)
Step 3: Simulate σ2

2,∗ from g(σ2
2) ∼ IG

(
αig = T

2 + ν2, βig =
∑T

i=1
(Ri2−µ2)2

2(1−ρ2)
+ β2

)
and U ∼

U(0, 1)

Set σ2
2,m+1 = σ2

2,∗ if U ≤ αaccept, otherwise set σ2
2,m+1 = σ2

2,m

where αaccept = min

(
p(σ2

2,∗|σ2
1,m,R,φ)g(σ2

1,∗)

p(σ2
2,m|σ2

1,m,R,φ)g(σ2
2,m)

)
Step 4: Compute V aRm using the expression in 7.

Step 5: Set m = m+ 1 and go to step 2.

Step 6: Repeat m∗ iterations.

Step 7: The VaR equals 1
m∗
∑m∗

i=1 V aRi.

To check whether the Markov Chain has converged and to determine an appropriate burn in
sample I use mean reverting plots. I also inspect the lag function and determine a thinner such
that the first autocorrelation of the draws is below 0.05. This is stipulated as best practice
according to Greenberg (2008). I stop the algorithm if in total 20.000 samples will be acquired.

To measure the performance of the three estimation methods I use the same methods as in
case of the correlation parameter.
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3.3.3 Joint Uncertainty

This section discusses the methods used to include uncertainty in the covariance matrix Σ.

Method MLE: this method estimates the covariance matrix by maximizing the likelihood
function in (8) of which the solution equals the sample covariance. The VaR is then computed
by filling in the parameter estimates from the sample covariance in equation (7).

To simplify later calculation when parameter uncertainty is accounted for I define R̂= (R1, R2, . . . , RT )′

a matrix containing T observation. Then R̂ follows a matricvariate normal distribution, R̂ ∼
MN(02T , IT ⊗Σ), where IT is a T × T identity matrix and 02T a vector containing 2 ∗ T zeros.
The distribution of R̂ is then given as follows:

p(R̂|Σ⊗ IT ) = (
1

2π
)(2T )|Σ|−T/2 × exp(−1/2tr[Σ−1R̂′R̂]) (17)

where tr is the trace operator. To include joint uncertainty I choose a non-informative prior p(Σ)
∝ |Σ|−3/2. Combining this prior with the likelihood using Bayes’ theorem yields the following
posterior distribution:

p(Σ|R̂, µ) ∝ |Σ|−(T+3)/2 exp {−1

2
tr[Σ−1R̂′R̂]} (18)

You can observe that this posterior distribution is proportional to an Inverted Wishart distri-
bution with parameters R̂′R̂ and T degrees of freedom.

Method Bayesian I: this method computes the VaR by making use of posterior predictive
distribution:

p(RT+1|R̂) =

∫
p(RT+1,Σ|R̂)dΣ

=

∫
p(RT+1|Σ, R̂)p(Σ|R̂)dΣ

(19)

This expression is derived in Derivation III Appendix B and is identified as a multivariate
Student’s distribution:

RT+1|R̂ ∼MT (02, A, v) (20)

where A = R̂′R̂
T−1 is the scale matrix, 02 the location parameter and v = T − 1 the degrees of

freedom. The portfolio return prediction Rp,t+1 is a linear combination of Rt+1, according to
Appendix C, that follows a univariate distribution with location parameter 0, scale parameter
γ′Aγ and v degrees of freedom. The corresponding VaR can be obtained by taking the (1− η)
quantile of this distribution.
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Method Bayesian II: this method computes the VaR by sampling covariance matrices from
posterior distributions as follows:

Step 1: Set m = 1

Step 2: Draw Σm from an Inverted Wishart distribution with parameters: R̂′R̂ and T degrees
of freedom.

Step 3: Compute V aRm using equation (7).

Step 4: Set m = m +1 and go to step 2.

Step 5: Repeat 20.000 iterations.

Step 6: The VaR equals 1
20000

∑20000
i=1 V aRi.

To measure the performance of the three estimation methods I use the same methods as in case
of the correlation parameter.
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3.4 Estimation Methods for Clayton Copula Model

This section gives an outline on the copula framework and discusses the Clayton copula model.
It also elaborates on the methods used to estimate the Clayton parameter and a simulation that
calculates the VaR.

3.4.1 Copulas

A p dimensional copula C(u1, u2, . . . , up) is a multivariate distribution defined on the unit cube
[0, 1]p, where the marginal distributions are uniformly distributed on the interval (0,1). More
precisely:

C(u1, u2, . . . , up) = Pr(U1 ≤ u1, U2 ≤ u2, . . . , Up ≤ up) (21)

where Ui ∼ for i = 1, 2, . . . , p. Furthermore, it can been shown (see Sklar, 1959) that given
a fixed set of continuous marginal distributions, distinct copulas define distinct joint densities
function. Thus, given any joint distribution F (x1, x2, . . . , xp) with continuous marginals, there
is an unique copula function C:[0, 1]p → [0, 1] of F such that:

F (x1, x2, . . . , xp) = C(F1(x1), F2(x2), . . . , Fp(xp)) (22)

for all (x1, x2, . . . xp) ∈ Rp and where Fi(xi) = Pr(Xi ≤ xi), xi ∈ R for i = 1, 2, . . . , p. The
associated copula density function is given by:

c(x1, x2, . . . , xp) =
∂pC(x1, x2, . . . , xp)

∂x1, ∂x2, . . . , ∂xp
(23)

and the joint density will be

f(x1, x2, . . . , xp) =

p∏
j

fj(xj)c(x1, x2, . . . , xp) (24)

In my simulation study I use a bivariate Clayton copula which is part of the Archimedean
copula family. Archimedean copulas are constructed by making use of a generator function
Ψ(u) that is strictly convex and monotonic decreasing with Ψ(1) = 0 and limu→0 Ψ(u) = ∞.
The corresponding Archimedean copula is then given as:

C(u1, u2, . . . , up) = Ψ−1(Ψ(u1) + Ψ(u2) + · · ·+ Ψ(up)) (25)

in case of the Clayton copula the generator function equals Ψ(u) = α−1(u−α−1) and the inverse
of the generator function equals Ψ−1(x) = (αx + 1)−1/α. This results in the following copula
function:

C(u1, u2, . . . , up;α) = (u−α1 + u−α2 + · · ·+ u−αp + 1)−1/α (26)

and a density function equal to:

c(u1, u2, . . . , up) = (1− p+

p∑
i=1

u−αi )−p−(1/α)
p∏
j=1

(uα−1
j ((j − 1)α+ 1)) (27)

There were a number of reasons to consider the Clayton copula. Firstly, the Clayton copula has
positive lower tail dependence with lL = 2−1/α and no upper tail dependence. Lower positive
tail dependence is a stylized fact of multivariate returns. Secondly, the Clayton copula only has
one parameter that needs to be estimated. This is relevant because only little data is available
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therefore too many parameters would result in high estimation uncertainty. Thirdly, simulating
from the Clayton copula is straightforward in comparison to other Archimedean copulas (Fan-
tazzini, 2008). This will be useful when the VaR needs to be simulated.

For the marginals of R1 and R2 I consider the same distributions as under the Gaussian model.

3.4.2 Uncertainty in the Clayton Copula parameter

In this section I first discuss the simulation used to obtain a VaR from a Clayton copula model.
Then I elaborate on the three methods used to estimate the Copula parameter.

There is no analytical expression for the VaR of the Clayton copula, therefore I use the follow-
ing simulation to obtain an estimate. First, I simulate 20.000 returns from the Clayton copula
with parameter α using the conditional approach.ii. Then the portfolio returns are computed,
ordered and the empirical VaR is estimated by picking the (1−η) quantile of the empirical port-
folio returns. For computational conveniences I estimate the empirical VaR for α values on the
grid [0.001, 0, 002, . . . , 50] beforehand. This offers the ability to pick the closest empirical VaR
to an estimated α. In case an estimated α is outside the grid I simulate the VaR individually.

Method Kendall’s Tau: this method uses the relationship τ = α
α+2 , where τ corresponds

to Kendall’s tau, to estimate the alpha parameter.

Method MLE: this method estimates α by performing maximum likelihood estimation on
the likelihood function, which is derived in Appendix C. Because the marginals’ parameters
are known, expression (49) is further simplified and α can be obtained by solving the following
expression:

α̂ = ArgMaxα(−2− 1/α)
T∑
t=1

ln
(
−1 + u−α1t + u−α2t

)
+ (−α− 1)

T∑
t=1

(lnu1t + lnu2t) + T ln(α+ 1)

(28)

where u1t = Φ1(R1t; θ1), u2t = Φ2(R2t; θ2), θ1 = (µ1, σ
2
1) and θ2 = (µ2, σ

2
2)

To incorporate parameter uncertainty I consider an uninformative Jeffrey’s prior α ∝ α−1.
Combining this prior with the joint density in (47) gives the following posterior distribution:

p(α|R, θ1, θ2) ∝ p(R|α, θ1, θ2)p(α)

∝ α−1
T∏
t=1

(
−1 + u−α1t + u−α2t

)(−2−1/α)

× u(−α−1)
1t u

(−α−1)
2t (α+ 1)(

√
2πσ1)−1 exp

(
−(R1t − µ1)2

2σ2
1

)
× (
√

2πσ2)−1 exp

(
−(R2t − µ2)2

2σ2
2

)
(29)

iiFor a full explanation on the conditional approach I refer to Luciano et al. (2004)
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Because the marginals’ parameters are known the expression can be further simplified to:

p(α|R, θ1, θ2) ∝ α−1
T∏
t=1

(
−1 + u−α1t + u−α2t

)(−2−1/α)

× u(−α−1)
1t u

(−α−1)
2t (α+ 1)

(30)

Method Bayesian I: this method computes the VaR by using the posterior predictive dis-
tribution of returns p(RT+1|α,R, θ1, θ2) which is defined as follows:

p(RT+1|R, θ1, θ2) ∝
∫ ∞

0
p(RT+1, α|θ1, θ2)dα

∝
∫ ∞

0
p(RT+1|R, θ1, θ2, α)p(α|R, θ1, θ2)dα

(31)

filling in the corresponding distributions gives the following expression:

p(RT+1|R, θ1, θ2) ∝ α−1
T+1∏
t=1

(
−1 + u−α1t + u−α2t

)(−2−1/α)

× u(−α−1)
1t u

(−α−1)
2t (α+ 1)

(32)

This expression cannot be solved analytically, therefore I adopt the same algorithm to obtain the
posterior predictive distribution as in case of the correlation parameter. However, the problem
is that the grid should be extended to a two-dimensional grid because the return vector has
two dimensions. This resulted in an algorithm that was computational too burdensome and
therefore I will not consider this method.

Method Bayesian II: this method computes the VaR as follows:

Step 1: Set m = 1

Step 2: Draw αm from the posterior distribution in 30.

Step 3: Pick the V aRm corresponding to αm from the table, or simulate.

Step 4: Set m = m +1 and go to step 2.

Step 5: Repeat 20.000 iterations.

Step 6: The VaR equals 1
20000

∑20000
i=1 V aRi.

Because the posterior distribution is not analytical tractable I consider a Markov Chain based
slice sampler proposed by (Neal, 2003) to obtain α estimates. The reason for this choice is that
(Silva and Lopes, 2008) showed that the sampler, under similar model specifications, had good
properties such as: low autocorrelations and a fast convergence rate. As an additional check
I also inspect the mean reverting plots and the autocorrelation function just as in case of the
Metropolis Hastings algorithm.

22



4 Results

In the following section I elaborate on the simulation study set-up and the obtained results.

The simulation study uses parameter values that correspond with the calibrated parameter
values in Solvency II. In total, 1000 paths were generated with lengths T = 10 and T = 25, µ1

and µ2 were set equal to 0, σ2
1 and σ2

1 equal 0.0229 and 0.0361, ρ equal to 0.75, α equal to 2.41,
η equal to 0.05, and m∗ equal to 20.000.

Several parameters need to be determined for the estimation methods. For the Bayesian I
method, I find grid bound values equal to (-1,1) and (-0.6,0.6) for the correlation parameter and
variance parameters respectively. For the Metropolis Hastings algorithm, used in the Bayesian
II method, I initialize the algorithm with the simulation study variances, then I determine a
burn-in sample of 10.000 and a thinner of every 8th draw to get the first autocorrelation below
0.05 and I set w∗ in such a way that 20.000 correct draws are obtained. For the Neil Slice
sampling I use the same burn-in sample and thinner.

4.1 Correlation Uncertainty

Figure 3 shows the density plots of the VaR estimates when using the MLE method, Bayesian
I method, and Bayesian II method under a Gaussian DGP. The dotted line corresponds with
the MLE method, the solid line with the Bayesian I method, and the dashed line with the
Bayesian II method. We notice that the VaR estimates of all three estimation methods have a
considerable amount of variation. This variation is larger when uncertainty is incorporated in
the correlation parameter. Furthermore, the amount of variation in the VaR estimates appears
to be larger for the Bayesian II method than for the Bayesian I method. We also observe that
the VaR density plots of the Bayesian methods are positioned more distant from the true VaR
than the VaR density of the MLE method.

Figure 3: Density plots of the VaR estimates (correlation uncertainty).
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Note: VaR estimates are estimated by using the MLE method, the Bayesian I method, and the
Bayesian II method under a Gaussian DGP. The dotted line is the VaR density of the MLE
method, the solid line the VaR density of the Bayesian I method and the dashed line the VaR
density of the Bayesian II method. The dotted vertical line is the true VaR.
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Table 2 shows the economic impact measures of misspecifying the VaR when the MLE method,
Bayesian I method, and Bayesian II method are used with respect to a Gaussian DGP and
a Clayton DGP. In case of a Gaussian DGP, we notice that the probability of underestima-
tion equals 0.456 for the MLE method, 0.967 for the Bayesian I method, and 0.782 for the
Bayesian II method. The impact of underestimating the true VaR equals 0.4 percent for the
MLE method, 1.73 percent for the Bayesian I, and 1.0 percent for Bayesian II method. Hence,
incorporating parameter uncertainty results in more underestimation of the VaR compared to
the MLE method.

Table 2: The economic impact of misspecifying the VaR (correlation uncertainty).

T = 10 Gaussian Clayton
Economic Impact. MLE Bay. I Bay. II MLE Bay. I Bay. II
Probability Underestimation 0.456 0.967 0.782 0.108 0.379 0.266
Probability times Underestimation 0.4 1.73 1.0 0.13 0.19 0.25
Probability times Overestimation 0.379 0.008 0.12 1.93 0.531 1.1
T = 25
Probability Underestimation 0.45 0.902 0.72 0.04 0.294 0.093
Probability times Underestimation 0.27 1.4 0.57 0.02 0.247 0.059
Probability times Overestimation 0.262 0.030 0.109 1.8 0.819 1.4

Note: this table reports the probability of underestimating the true VaR, the probability of
underestimating the true VaR times the average percentage of underestimation, and the prob-
ability of overestimation times the average percentage of overestimation. These measures are
reported for VaR estimates obtained using the MLE method, the Bayesian I method, and the
Bayesian II method. The table shows the measures both for 10 and 25 observations under a
Gaussian DGP and a Clayton DGP

Moreover, from table 2 we can deduce that the MLE method, the Bayesian I method, and the
Bayesian II method overestimate the true VaR on average with 0.379, 0.008 and 0.12 percent
respectively. These values are relatively low compared to the impact of underestimating the true
VaR for each method. Increasing the number of observations to 25 results in better economic
impact performance for all methods.

Table 3 reports the statistical measures of the VaR estimates. We observe that, under the
Gaussian DGP, the VaR estimates of the MLE method have a negative bias of 0.2 percent, the
Bayesian I method a negative bias of 4.4 percent, and the Bayesian II method a negative bias
of 2 percent. Incorporating parameter uncertainty therefore results in more negative bias. An
explanation for the increase in negative bias is that the uniform prior distribution does include
some information concerning ρ. The prior distribution assigns equal probability to each possi-
ble ρ, but this implies that the chance of a value below 0.75 is larger than a value above 0.75.
This extra information causes the posterior distribution of ρ to shift more towards the left and
therefore results in lower VaR.
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From table 3 we can also infer that the Bayesian II method has the highest standard deviation
of relative VaR, followed by the Bayesian I method, and the MLE method. Because the VaR
estimates of the MLE method have the lowest bias and uncertainty this method is also the
best performing in terms of RMSE. Increasing the number of observations results in a better
performance for all estimation methods in terms of biasedness, and RMSE.

Table 3: The statistical impact of misspecifying the VaR (correlation uncertainty).

T = 10 Gaussian Clayton
Statistical Measures. MLE Bay. I Bay. II MLE Bay. I Bay. II
Relative VaR 0.998 (0.028) 0.956 (0.022) 0.98 (0.029) 1.05 (0.038) 1.009 (0.022) 1.024 (0.038)
RMSE VaR 0.011 0.019 0.014 0.023 0.009 0.017
T = 25
Relative VaR 1.00 (0.017) 0.963 (0.029) 0.99 (0.019) 1.05 (0.024) 1.015 (0.031) 1.037 (0.027)
RMSE VaR 0.007 0.019 0.009 0.020 0.013 0.017

Note: The MLE method, the Bayesian I method and the Bayesian II method are used under
a Gaussian and Clayton DGP for estimating the VaR. Reported in the table is the relative
VaR, the standard deviation of the relative VaR (between brackets) and the Root-Mean-Square
Error.

Figure 4 shows the VaR estimate density plots of the estimation methods with respect to the
Clayton DGP. From the figure we can infer that, compared to the Gaussian DGP, less probabil-
ity mass is located to the left of the true VaR for all VaR densities. The amount of variation in
the VaR estimates appears to increase slightly when using the MLE method and the Bayesian
II method.

Figure 4: Density plots of the VaR estimates (correlation uncertainty and Clayton DGP).

0

10

20

30

40

0.30 0.35 0.40 0.45

Estimated Value-at-Risk

D
en

si
ty

VaR estimates Clayton (T=10)

Note: VaR estimates are estimated by the MLE method, the Bayesian I method, and the
Bayesian II method under a Clayton DGP. The dotted line is the VaR density when the MLE
method is used, the solid line the VaR density when the Bayesian I method is used and the
dashed line the VaR density when the Bayesian II method is used. The dotted vertical line is
the true VaR.

In case of the Clayton DGP, table 2 indicates that the MLE method is still the best perform-
ing method in terms of underestimation. Furthermore, we observe that the economic impact
of underestimating the true VaR decreases for all three estimation methods compared to the
Gaussian DGP. In terms of overestimation we notice an opposite effect, namely an increase
for all methods. Expanding the sample dimension leads to more underestimation in the VaR
estimates for the Bayesian I method, which is a different outcome than under the Gaussian DGP.

25



The statistical measures in table 3 show that the VaR estimates of all three method become
positively biased in case of a Clayton DGP. As a result the Bayesian I method becomes the best
performing method, instead of the MLE method. Furthermore, we notice that the uncertainty
in the VaR estimates increases for the MLE method and Bayesian II method. Increasing the
number of observations to 25 results in less uncertain VaR estimates for the latter two methods
and in more uncertain VaR estimates for the Bayesian I method.

Overall, we observe that incorporating parameter uncertainty using a uniform prior results
in VaR estimates that underestimate the true VaR. It is also clear that the MLE method is
the best performing method in terms of RMSE, probability of underestimation and economic
impact of underestimation. With respect to the Clayton DGP, the MLE method performs best
in terms of probability of underestimation and the economic impact of underestimation. The
Bayesian methods performs better in statistical terms. However, this is mainly due to a negative
change in the true VaR.
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4.2 Variance Uncertainty

Figure 5 shows the density plots of the VaR estimates obtained using the MLE method (dot-
ted line), the Bayesian I method (solid line), and the Bayesian II method (dashed line) with
respect to a Gaussian DGP. The Bayesian VaR density plots indicate that a majority of the
VaR estimates overestimate the true VaR. Furthermore, the width of these density plots is
larger compared to the VaR density plot of the MLE method. This demonstrates that the VaR
estimates obtained using the Bayesian methods have more variation. We also observe that the
probability mass of the MLE VaR density inclines slightly to the left of the true VaR, which
suggests a negative bias in the VaR estimates.

Figure 5: Density plots of the VaR estimates (variance uncertainty).
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Note: VaR estimates are estimated by using the MLE method, the Bayesian I method, and the
Bayesian II method under a Gaussian DGP. The dotted line is the VaR density of the MLE
method, the solid line the VaR density of the Bayesian I method and the dashed line the VaR
density of the Bayesian II method. The dotted vertical line is the true VaR.

Table 4 shows the economic impact of misspecifying the VaR when the MLE method, the
Bayesian I method, and Bayesian II method are used under a Gaussian DGP and a Clayton
DGP.

Table 4: The economic impact of misspecifying the VaR (variance uncertainty).

T = 10 Gaussian Clayton
Economic Impact. MLE Bay. I Bay. II MLE Bay. I Bay. II
Probability Underestimation 0.65 0.303 0.119 0.59 0.229 0.09
Probability times Underestimation 5.12 1.7 0.5 4.1 1.3 0.3
Probability times Overestimation 2.2 6 12 2.6 6.6 12.9
T = 25
Probability Underestimation 0.692 0.401 0.014 0.57 0.298 0.011
Probability times Underestimation 3.6 1.6 0.3 2.6 1 0.02
Probability times Overestimation 1.1 2.9 12.9 1.7 3.8 14.6

Note: This table reports the probability of underestimating the true VaR, the probability
of underestimating the true VaR times the average percentage of underestimation, and the
probability of overestimation times the average percentage of overestimation. These measures
are reported for VaR estimates obtained using the MLE method, the Bayesian I method, and
the Bayesian II method. The table shows the measures both for 10 and 25 observations under
a Gaussian DGP and a Clayton DGP

In case of the Gaussian DGP, we observe that incorporating parameter uncertainty using the
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Bayesian II method results in the lowest economic impact of underestimation. The results indi-
cate that the probability of underestimating the true VaR equals 0.65 for the MLE method, 0.30
for the Bayesian I method and 0.119 for the Bayesian II method. Furthermore, the impact of
underestimation equals 5 percent for the MLE method, 1.7 percent for the Bayesian I method,
and 0.5 percent for the Bayesian II method.

Moreover, table 4 shows that the MLE method is the best performing method in terms of
overestimation. On average this method overestimates the true VaR with an additional 2.2
percent, while the Bayesian I method and Bayesian II method overestimate the VaR with an
additional 5 and 12 percent respectively. Increasing the number of observations to 25 generates
better results for all methods, excluding the Bayesian II method with respect to the impact of
overestimation.

Table 5 shows the statistical measures of the VaR estimates. We infer that using the MLE
method results in the lowest bias in the VaR estimates. We notice that the VaR estimates of
the MLE method have a 7.6 percent negative bias, the VaR estimates of the Bayesian I method
a 9.9 percent positive bias, and the VaR estimates of the Bayesian II method a 28.4 percent
bias. Furthermore, we observe that variation in VaR estimates is lowest using the Bayesian I
method. Looking at the RSME, we observe that the Bayesian I method estimates the VaR most
accurately and the Bayesian II method the VaR the least. Expanding the sample dimension
lowers the biasedness, the variation and RSME for both the MLE method and the Bayesian
I method. The VaR estimates of the Bayesian II method become less uncertain, however the
positive bias increases slightly.

Table 5: The statistical impact of misspecifying the VaR (variance uncertainty).

T = 10 Gaussian Clayton
Statistical Measures. MLE Bay. I Bay. II MLE Bay. I Bay. II
Relative VaR 0.924(0.22) 1.099(0.194) 1.284(0.247) 0.958(0.22) 1.146(0.204) 1.337(0.254)
RSME VaR 0.091 0.083 0.149 0.0834 0.095 0.158
T = 25
Relative VaR 0.937(0.132) 1.034(0.135) 1.328(0.16) 0.975(0.141) 1.075(0.142) 1.391(0.171)
RSME VaR 0.055 0.055 0.145 0.053 0.063 0.158

Note: The MLE method, the Bayesian I method and the Bayesian II method are used under
a Gaussian and Clayton DGP for estimating the VaR. Reported in the table is the relative
VaR, the standard deviation of the relative VaR (between brackets) and the Root-Mean-Square
Error.

We notice that, in case of uncertainty in the variances, the Bayesian methods overestimate the
true VaR, while the opposite effect occurs when uncertainty in the correlation is considered.
Furthermore, the impact of under- and overestimation is larger. A possible explanation of the
increasing impact could be that two parameters are estimated instead of one.
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Figure 6 shows the VaR density plots of the three estimation methods in case of a Clayton DGP.
We observe that the VaR density plots are similar compared to the Gaussian DGP. The only
difference is that the VaR densities of the MLE method and the Bayesian I method become
more peaked.

Figure 6: Density plots of the VaR estimates (variance uncertainty and Clayton DGP).
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Note: VaR estimates are estimated by the MLE method, the Bayesian I method, and the
Bayesian II method under a Clayton DGP. The dotted line is the VaR density when the MLE
method is used, the solid line the VaR density when the Bayesian I method is used and the
dashed line the VaR density when the Bayesian II method is used. The dotted vertical line is
the true VaR.

With respect to the Clayton DGP, table 4 indicates that the Bayesian I method still performs
the best in terms of underestimation, while the impact of overestimating the true VaR remains
lowest for the MLE method. Overall, we observe a decrease in the impact of underestimation
and an increase of overestimation in the VaR estimates for all methods.

Table 5 shows that, in case of the Clayton DGP, the VaR estimates of the Bayesian meth-
ods become more negatively biased compared to the Gaussian DGP. We also observe that the
variation in the VaR estimates increases slightly for all estimation methods. Expanding the
sample dimension results in better performance of the VaR estimates in terms of biasedness,
variation and the RSME, using the MLE method and the Bayesian I method. The VaR esti-
mates of the Bayesian II method become more positively biased.

Overall, we observe that incorporating parameter uncertainty using the Bayesian II method
results in VaR estimates that hardly underestimate the true VaR, but do have a large economic
impact of overestimation. The MLE method underestimates the VaR most often in comparison
to the methods which incorporate parameter uncertainty, but has the lowest impact of over-
estimation. The Bayesian I method performs good in terms of both the economic impact of
underestimation and the economic impact of overestimation. Furthermore, its VaR estimates
are the most accurate in statistical terms.
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4.3 Joint Uncertainty

Figure 7 shows the VaR density plots of the MLE method (dotted line), the Bayesian I method
(solid line), and the Bayesian II method (dashed line) under a Gaussian DGP. We notice that
the VaR estimates of the MLE method and Bayesian II method center partially to the right
of the true VaR, while the VaR estimates of the Bayesian I method center almost entirely to
the right of the true VaR. The shape of the VaR density plots of the MLE method and the
Bayesian I method appears to be equal. This can be explained by the fact that the MLE
estimates converge to an Inverted Wishart distribution if the number of observations increases.
The variation in the VaR estimates is the highest for the Bayesian I method, while the variation
in the VaR estimates of the MLE method and Bayesian II method appears to be equal.

Figure 7: Density plots of the VaR estimates (joint uncertainty).
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Note: VaR estimates are estimated by using the MLE method, the Bayesian I method, and the
Bayesian II method under a Gaussian DGP. The dotted line is the VaR density of the MLE
method, the solid line the VaR density of the Bayesian I method and the dashed line the VaR
density of the Bayesian II method. The dotted vertical line is the true VaR.

Table 6 shows the economic impact measures of misspecifying the VaR for the MLE method,
the Bayesian I method, and Bayesian II method under a Gaussian and Clayton DGP.

Table 6: Economic impact of misspecifying the VaR (joint uncertainty).

T = 10 Gaussian Clayton
Economic Impact. MLE Bay. I Bay. II MLE Bay. I Bay. II
Probability Underestimation 0.471 0.041 0.313 0.365 0.027 0.235
Probability times Underestimation 3.0 0.2 1.9 2.0 0.1 1.2
Probability times Overestimation 4.3 25.4 7.0 5.0 26.5 8.2
T = 25
Probability Underestimation 0.508 0.049 0.401 0.364 0.024 0.285
Probability times Underestimation 2.1 0.14 1.6 1.32 0.046 0.096
Probability times Overestimation 2.4 12.4 3.2 3.4 13.9 4.3

Note: This table reports the probability of underestimating the true VaR, the probability
of underestimating the true VaR times the average percentage of underestimation, and the
probability of overestimation times the average percentage of overestimation. These measures
are reported for VaR estimates obtained using the MLE method, the Bayesian I method, and
the Bayesian II method. The table shows the measures both for 10 and 25 observations under
a Gaussian DGP and a Clayton DGP.
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From the table we can infer that, in case of the Gaussian DGP, the probability of underestimat-
ing the VaR equals 0.471, 0.041, and 0.313 for the MLE, Bayesian I, and Bayesian II method
respectively. The economic impact of underestimation equals 3 percent for the MLE method,
0.2 percent for the Bayesian I method, and 1.9 for the Bayesian II method. Looking at the
impact of overestimation we notice that the Bayesian I overestimates the true VaR on average
with 25.4 percent, the Bayesian II method with 7 percent, and MLE method with 4.3 percent.
This outcome indicates that incorporating parameter uncertainty results in a VaR estimate
that overestimates the true VaR, especially in case of the Bayesian I method. However, the
economic impact of underestimation is small. Increasing the number of observations results in
convergence of performance between the Bayesian II method and MLE method. Furthermore,
all estimation methods perform better in terms of over- and underestimation.

Table 7 shows the statistical measures of the VaR estimates. We observe that the VaR estimates
of the MLE method, the Bayesian I method, and the Bayesian II method have a positive bias
of 3.3 percent, 64.4 percent, and 13 percent respectively. The amount of variation in the VaR
estimates for all three methods is considerable. In terms of RSME the MLE method estimates
the VaR most accurate, while the Bayesian I method estimates the VaR least accurate.

Table 7: The statistical impact of misspecifying the VaR (joint uncertainty).

T = 10 Gaussian Clayton
Statistical Measures. MLE Bay. I Bay. II MLE Bay. I Bay. II
Relative VaR 1.033 (0.233) 1.641(0.382) 1.131 (0.255) 1.086 (0.235) 1.710(0.387) 1.188 (0.257)
RSME VaR 0.095 0.293 0.11 0.095 0.302 0.118
T = 25
Relative VaR 1.009 (0.147) 1.313(0.192) 1.042 (0.152) 1.055 (0.147) 1.373(0.191) 1.090 (0.152)
RMSE VaR 0.058 0.158 0.062 0.058 0.155 0.066
True parameters: VaR = 0.393 ρ = 0.75 σ2

1\σ2
2 = 0.0229 \ 0.0361 VaR = 0.373 ρ = 0.727

Note: The MLE method, the Bayesian I method and the Bayesian II method are used under
a Gaussian and Clayton DGP for estimating the VaR. Reported in the table is the relative
VaR, the standard deviation of the relative VaR (between brackets) and the Root-Mean-Square
Error.
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Figure 8 shows the VaR density plots of the MLE method (dotted line), the Bayesian I method
(solid line), and the Bayesian II method (dashed line) under a Clayton DGP. The figure shows
no large differences compared to the VaR density plots in figure 7.

Figure 8: Density plots of the VaR estimates (joint uncertainty and Clayton DGP).
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Note: VaR estimates are estimated by the MLE method, the Bayesian I method, and the
Bayesian II method under a Clayton DGP. The dotted line is the VaR density when the MLE
method is used, the solid line the VaR density when the Bayesian I method is used and the
dashed line the VaR density when the Bayesian II method is used. The dotted vertical line is
the true VaR.

In case of the Clayton DGP, table 6 indicates that the Bayesian I method remains the best
performing method in terms of underestimation and the MLE method the best in terms of
overestimation. In general, we observe that the impact of underestimation increases, but over-
estimation decreases for all estimation methods. Increasing the number of observations results
in better performance for all three estimation methods.

Table 7 also shows that estimating the VaR, with respect to a Clayton DGP, results in an
increase of biasedness for all estimation methods compared to the Gaussian DGP. The amount
of variation does decrease slightly for all three estimation methods. In case of the Bayesian
methods this decrease is insufficient to balance the increase of biasedness and therefore the
RSME increases.

Overall, we observe that including parameter uncertainty results in VaR estimates that over-
estimate the true VaR, especially in case of the Bayesian I method. However, incorporating
parameter uncertainty results in lower economic impact of underestimation. The MLE method
performs well both in terms of statistical accuracy and the economic impact of overestimation.

I also look at the impact portfolio weights have on the VaR estimates for all three meth-
ods. For this purpose, I have used the Gaussian DGP with T = 10 and vary weights on the
interval (0, 1, . . . , 1) and, subsequently, computed for each portfolio the VaR estimates’ under-
and overestimation.
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Table 8 shows the impact of underestimating the true VaR for the MLE method, the Bayesian
I method, and Bayesian II method. Reported are the portfolio weights, the probability of
underestimation times the average percentage of underestimation and the relative increase in
underestimation for each portfolio weight step.

Table 8: The economic impact of underestimating the VaR when portfolio weights vary.

Economic Impact Underestimation Relative Underestimation
Weights. MLE Bay. I Bay. II MLE Bay. I Bay. II
w = 0 0.040 0.0048 0.016
w = 0.1 0.038 0.0047 0.015 0.05 0.021 0.063
w = 0.2 0.037 0.0045 0.015 0.026 0.043 0
w = 0.3 0.035 0.0044 0.014 0.054 0.022 0.067
w = 0.4 0.034 0.0042 0.013 0.029 0.045 0.071
w = 0.5 0.033 0.0040 0.012 0.029 0.048 0.077
w = 0.6 0.032 0.0040 0.011 0.030 0 0.083
w = 0.7 0.031 0.0039 0.011 0.031 0.025 0
w = 0.8 0.030 .0038 0.011 0.032 0.026 0
w = 0.9 0.030 0.0037 0.011 0 0.026 0
w = 1 0.030 0.0037 0.011 0 0 0

Note: The MLE method, the Bayesian I method and the Bayesian II are used for estimating
the VaR. The reported measures are the portfolio weights, the probability of underestimation
times the average percentage of underestimation, and the relative increase in underestimation
for each portfolio weight step.

Table 8 shows that underestimation decreases when the weight on asset type global increases,
regardless of the chosen method. The relative decrease in underestimation ranges from 0 to 5
percent for the MLE method, 0 to 4.8 percent for the Bayesian I method and 0 to 8 percent for
the Bayesian II method. It is important to mention that the economic impact of underestimation
increase more strongly on the weight interval 0 to 0.6 for the Bayesian I and Bayesian II method
than on the interval 0.6 to 1.
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Table 9 shows the economic impact of overestimating the true VaR for the MLE method, the
Bayesian I method and Bayesian II method. We observe that, if the weights on asset type global
increases with 0.1, the relative overestimation decreases for all estimation methods. Moreover,
the decrease is the largest on the weight interval 0.1 to 0.4, regardless of the chosen method.

Table 9: The economic impact of overestimating the VaR when portfolio weights vary.

Economic Impact Overestimation Relative Overestimation
Weights. MLE Bay. I Bay. II MLE Bay. I Bay. II
w = 0 0.051 0.23 0.083
w = 0.1 0.047 0.22 0.080 0.06 0.043 0.036
w = 0.2 0.047 0.21 0.077 0 0.045 0.0375
w = 0.3 0.046 0.21 0.075 0.021 0 0.026
w = 0.4 0.044 0.20 0.073 0.043 0.048 0.027
w = 0.5 0.043 0.197 0.071 0.023 0.015 0.027
w = 0.6 0.043 0.193 0.070 0 0.020 0.014
w = 0.7 0.042 0.190 0.069 0.023 0.016 0.014
w = 0.8 0.042 0.188 0.069 0 0.011 0
w = 0.9 0.042 0.188 0.069 0 0 0
w = 1 0.042 0.189 0.069 0 -0.005 0

Note: The MLE method, the Bayesian I method and the Bayesian II are used under for estimat-
ing the VaR. The reported measures are the portfolio weights, the probability of overestimation
times the average percentage of overestimation, and the relative increase in overestimation for
each portfolio weight step.
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4.4 Clayton Parameter Uncertainty

The bandwidth obtained using the Silverman’s Rule of Thumb results in VaR density plots that
are undersmoothed. To solve this problem I apply different scaling factors on the bandwidth
and I find that scaling the bandwidth with 2 results in VaR density plots that are not under-
or oversmoothed.

The figure below shows the obtained VaR density plots of the MLE method (dotted line),
Kendall’s method (solid line), and the Bayesian II method (dashed line) under the Clayton
DGP. We notice that the VaR density of the Bayesian II method centers more to the left of the
true VaR, while the VaR density of Kendall’s method and MLE method position around the
true VaR. The variation in the VaR estimates is the highest for the Bayesian II method and
Kendall’s method.

Figure 9: Density plots of the VaR estimates (Clayton parameter uncertainty).
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Note: VaR estimates are estimated by the MLE method, Kendall’s method, and the Bayesian
II method under a Clayton DGP. The dotted line is the VaR density when the MLE method
is used, the solid line the VaR density when Kendall’s method is used and the dashed line the
VaR density when the Bayesian II method is used. The dotted vertical line is the true VaR.

Table 10 reports the economic impact of misspecifying the VaR for the MLE method, Kendall’s
method, and Bayesian II method with respect to a Gaussian DGP and a Clayton DGP. From
the table we can infer that, in case of the Clayton DGP, the probability of underestimating
the true VaR equals 0.594, 0.599, and 0.901 for the MLE, Kendall’s, and Bayesian II method
respectively. The economic impact of the underestimation equals on average 0.40 percent for
the MLE, 0.62 percent Kendall’s method, and 1.09 percent for Bayesian II method. Thus, in
terms of underestimation the MLE method is the best performing method.
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Table 10: The economic impact of misspecifying the VaR (Clayton parameter uncertainty).

T = 10 Gaussian Clayton
Economic Impact. MLE Kendall Bay. II MLE Kendall Bay. II
Probability Underestimation 1 1 1 0.594 0.599 0.901
Probability times Underestimation 2.5 2.4 4.6 0.403 0.62 1.09
Probability times Overestimation 0 0 0 0.185 0.177 0.007
T = 25
Probability Underestimation 1 1 1 0.598 0.664 0.887
Probability times Underestimation 2.4 2.3 3.1 0.086 0.19 0.22
Probability times Overestimation 0 0 0 0.14 0.12 0.005

Note: This table reports the probability of underestimating the true VaR, the probability
of underestimating the true VaR times the average percentage of underestimation, and the
probability of overestimation times the average percentage of overestimation. These measures
are reported for VaR estimates obtained using the MLE method, Kendall’s method, and the
Bayesian II method. The table shows the measures both for 10 and 25 observations under a
Gaussian DGP and a Clayton DGP.

Moreover, table 10 also shows that the Bayesian II method is the best performing in terms of
overestimation. This method overestimates the true VaR on average with 0.007 percent, while
the MLE method and Kendall’s method overestimate with 0.185 and 0.177 percent. Expanding
the sample dimension results in less under- and overestimation for all estimation methods.

Table 11 shows the statistical measures of the VaR estimates. In case of the Clayton DGP we
can infer that the VaR estimates using the MLE method, Kendall’s method, and the Bayesian
II method have a negative bias of 0.7, 1.2, and 3.2 percent respectively. We also notice that
the Bayesian II and Kendall’s method have the largest variation in the VaR estimates with a
standard deviation equal to 0.037 and 0.04 respectively. Overall, looking at the RMSE, the VaR
estimates obtained using the MLE method are the most accurate.

Table 11: The statistical impact of misspecifying the VaR (Clayton parameter uncertainty).

T = 10 Gaussian Clayton
Statistical Measures. MLE Kendall’s Bay. II MLE Kendall’s Bay. II
Relative VaR 0.937(0.028) 0.939(0.035) 0.884(0.046) 0.993(0.027) 0.988(0.04) 0.968(0.037)
RSME VaR 0.027 0.028 0.049 0.01 0.016 0.0184
T = 25
Relative VaR 0.938(0.016) 0.941(0.015) 0.920(0.0252) 0.996(0.015) 0.992(0.017) 0.993(0.009)
RSME VaR 0.025 0.024 0.032 3.31e-5 4.48e-5 4.3e-3
True parameters: VaR = 0.393 ρ = 0.75 VaR = 0.373 ρ = 0.727

Note: The MLE method, Kendall’s method and the Bayesian II method are used under a
Gaussian and Clayton DGP for estimating the VaR. Reported in the table is the relative VaR,
the standard deviation of the relative VaR (between brackets) and the Root-Mean-Square Error.
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Figure 10 shows the VaR estimate density plots of the MLE method (dotted line), Kendall’s
method (solid line), and the Bayesian II method (dashed line) with respect to a Gaussian DGP.
We notice that the VaR density plots of all estimation methods are centered left of the true
VaR. Furthermore, the amount of variation in the Bayesian II VaR density plot is considerable
larger compared to the Clayton DGP.

Figure 10: Density plots of the VaR estimates (Clayton uncertainty and Gaussian DGP).
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Note: VaR estimates are estimated by using the MLE method, Kendall’s method, and the
Bayesian II method under a Gaussian DGP. The dotted line is the VaR density of the MLE
method, the solid line the VaR density of Kendall’s method and the dashed line the VaR density
of the Bayesian II method. The dotted vertical line is the true VaR.

From table 10 we can infer that the probability of underestimating the true VaR becomes equal
to 1 for all estimation methods. This can be explained by the increase in the true VaR in case
of the Gaussian DGP. We also notice that the economic impact of this underestimation is the
largest for the Bayesian II method, followed by the MLE method. This indicates that Kendall’s
method becomes the best performing method. Increasing the number of observations results in
a lower impact of underestimation for all three method.

The reported statistical measures in table 11 indicate that the negative bias increases for all
estimation methods. The amount of variation in the VaR estimates increases strongly for the
Bayesian II method and decreases for the MLE method and Kendalls method. Looking at the
RSMW we notice that the MLE method estimate the VaR most accurately. Expanding the
sample dimension results in a better performance for all methods.

Overall, we observe that the MLE method is the best estimation method in terms of statis-
tical accuracy and impact of underestimation.

Finally, I also compared the performance of the MLE method and Bayesian II method in
estimating the dependency parameters of the copulas. Table 2 and 6 show that both methods
have a lower probability of underestimating the true VaR in case of the correlation parameter.
The impact of underestimation is also slightly lower. In terms of overestimation we notice that
both the MLE and Bayesian II method are better able to estimate the Clayton parameter than
the correlation parameter.

37



Part II

Empirical Part
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5 Empirical example: Solvency II

In this section I use the results obtained from the simulation study to investigate the impact
of incorporating parameter uncertainty on the Solvency II Capital Requirement for equity risk.
First, I elaborate on the used data and then I discuss the results.

5.1 Data

I use the same Indexes as in the parameter calibration procedure of Solvency II, namely: MSCI
World Developed Price Equity Index and the MSCI Emerging Markets BRICS. Before any
analysis can be conducted I need to convert the total returns to actual returns. For this purpose
I apply the same return definition as in QIS5 where:

Rt =
Pt − Pt−1

Pt−1
(33)

I use yearly returns of the indexes, computed by using the last trading day of each year, to
estimate the one year VaR and will abstain from using the annualization rolling window as
applied in the QIS5 calibration papers. The reason for this choice is that Mittnik (2011) showed
that this procedure leads to an unreliable correlation parameter and VaR estimates. Table 12
shows that none of the return indexes have a normal distribution. Furthermore, the Emerging
Market indexes are indeed more volatile than the World Price Index and the kurtosis of both
indexes are large, which indicates fat tails.

Table 12: Summary Statistics

Mean. Min. Max. Std. Skew. Kurt. JB p-value Correlation
MSCI World PR 0.113 -0.403 0.428 0.177 -0.77 0.510 5.053
MSCI EM 0.148 -0.532 0.79 0.344 0.311 -0.726 1.067 0.665

Note: Reported are the mean, minimum, maximum, standard deviation, skewness, kurtosis,
Jarque Bera p-value and the MSCI World Price Index and the MSCI Emerging Markets BRICS
Price Index. The MSCI World Price Index starts on 31-12-1970, the MSCI Emerging Markets
Brics Price Index on 30-12-1988 and both end on 08-06-2008. The correlation between the
Indexes is also reported.

In the empirical part I investigate if the current Solvency II Capital Requirement for equity risk
is sufficient when uncertainty is accounted for. I calibrate the Solvency II Capital Requirement
using three models: the Gaussian copula model with fixed variances, the Clayton copula model
with fixed variances and the Gaussian copula model in which no parameters are fixed. To
account for parameter uncertainty I apply the same Bayesian methods as in the simulation
study. I use two different data sets to perform my analysis on. The first data set consists of
the MSCI World Price Index and the MSCI EM Price Index during the period 31-12-1987 until
31-12-2015. The second data set includes the same Indexes only now the lowest 10 observations
of the MSCI EM Price Index are considered. The purpose of the second data set is to account
for a higher correlation in the tail of the bivariate return distribution. The first data set is
called the full data set and the second the adverse market scenario data set.
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5.2 Results

In order to conduct the analysis the variance parameter values need to be determined. For the
Gaussian and the Clayton copula model I use the sample variances of the full data set. The
same applies to the adverse market scenario. The portfolio weights are set equal to 0.75.

Table 13 shows the VaR estimates of the MLE method, the Bayesian I/Kendall’s method,
and the Bayesian II method using a Gaussian copula with fixed variances, a Clayton copula
with fixed variances and a Gaussian copula without fixed variances. We observe that the VaR
estimate, under the Gaussian copula, equals 0.525 for the MLE method, 0.531 for the Bayesian
I method, and 0.52 for the Bayesian II method. Under the adverse market scenario the VaR
estimate of the MLE method, the Bayesian I method, and Bayesian II method becomes 0.522,
0.499, and 0.528 respectively.

Table 13: Empirical VaR estimates

MSCI EM Gaussian
MLE Bay. I\Kendall’s Bay. II

Gaussian fixed variances
Full data set 0.525 0.531 0.52
Adverse market scenario 0.522 0.499 0.528
Clayton fixed variances
Full data set 0.51 0.508 0.501
Adverse market scenario 0.487 0.471 0.457
Gaussian no fixed variances
Full data set 0.588 0.66 0.605
Adverse market scenario 0.466 0.667 0.513
Current capital requirement = 0.393

Note: VaR estimates are estimated by using the MLE method, the Bayesian I method, and the
Bayesian II method in case of the Gaussian copula model. The Bayesian I method is replaced
by Kendall’s method in case of the Clayton copula. The VaR estimates are estimated on the full
data set and the adverse market scenario data set. The current capital requirement corresponds
to the capital requirement of equity risk under the Solvency II regulation.

When using the Clayton copula, we notice that the VaR estimate of the MLE method, Kendall’s
method, and the Bayesian II method equals 0.51, 0.508, and 0.501 respectively. The VaR esti-
mates of the three methods do not differ much, which is in line with the results obtained in the
simulation study in case of a Clayton DGP. Under the adverse market scenario, the VaR esti-
mate decreases to 0.487, 0.471, and 0.457 for the MLE method, Kendall’s method, and Bayesian
II method respectively. We observe that the difference between the VaR estimates of the three
methods increases under the adverse market scenario and the VaR estimate is lowest for the
Bayesian II method. The simulation study shows similar results when fewer data is considered.

We expected that the VaR estimates under adverse market scenario would be higher; because
correlation tends to be higher in the tail of the returns’ distribution. However, the sample cor-
relation of the returns under the adverse market scenario turns out to be lower than the sample
correlation of the returns in the full data set. One explanation could be that the chosen trading
day, used to compute the yearly returns, affects the correlation. To rule out this potential
influence, I therefore also compute the VaR estimates when the first day of the month June is
used to construct the yearly returns.

Table 15 in Appendix D shows the VaR estimates when the first trading day of June is used
to compute the yearly returns. We infer from the results that the VaR estimates of the MLE
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method increase, as expected, under the adverse market scenario. However, the VaR estimates
of the Bayesian methods do not decrease. This difference can be explained by the decrease in
number of observations in the data set. When few data is available, the amount of uncertainty
in the posterior distribution of the parameters increases. As a result, the probability of having
a correlation lower than the sample correlation also increases, which results in lower VaR esti-
mates.

We also notice that the VaR estimates of all methods are lower than the VaR estimates in
table 13. To further mitigate the impact of the chosen trading day on the VaR estimates I com-
pute the VaR estimates on 12 yearly return data sets, where the yearly returns are computed
by taking the first trading day of each month. Subsequently I take an equally weighted average
over the VaR estimates obtained from each data set.

Table 14 shows the equally weighted combination of the VaR estimates using the MLE method,
the Bayesian I method, Kendall’s method and Bayesian II method. We observe that most of
the VaR estimates are between 0.40 and 0.48. Only the Bayesian II method, under the Clayton
model, has a VaR estimate equal to 0.362 and 0.33 for the full data set and the adverse market
scenario respectively. These relative low VaR estimates can be explained by figure 10 which
shows that the Bayesian II method heavily underestimates the true VaR in case of an incorrect
model specification.

Table 14: Empirical equally weighted VaR estimates

MSCI EM Gaussian
MLE Bay. I\Kendall’s Bay. II

Gaussian fixed variances
Full data set 0.468 0.48 0.469
Adverse market scenario 0.465 0.451 0.457
Clayton fixed variances
Full data set 0.452 0.453 0.362
Adverse market scenario 0.452 0.444 0.331
Gaussian no fixed variances
Full data set 0.437 0.502 0.453
Adverse market scenario 0.507 0.693 0.548
Current capital requirement = 0.393

Note: VaR estimates are estimated by using the MLE method, the Bayesian I method, and
the Bayesian II method in case of the Gaussian copula model. The Bayesian I method is
replaced by Kendall’s method in case of the Clayton copula. The VaR estimates are an equally
weighted combination of the VaR estimates obtained using the full data set and the adverse
market scenario data set. In case of the Gaussian model with no fixed variances the mean of
the returns is subtracted from the VaR estimates. The current capital requirement corresponds
to the capital requirement under the Solvency II regulation.

I also estimate the VaR by using a Gaussian copula model without fixed parameters. Table
13 shows that the MLE method has a VaR estimate equal to 0.588, the Bayesian I method a
VaR estimate equal to 0.66 and the Bayesian II method a VaR estimate equal to 0.605. Under
the adverse market scenario the VaR estimates decrease for all estimation methods. An expla-
nation for this decrease is that the variance estimates under the adverse market scenario are
lower than the variance estimates under the full data set. Because the mean is set equal to zero,
the VaR only depends on the estimated variances and correlation. In case the latter becomes
higher while the former becomes lower, the VaR estimate can still decrease. To account for
this effect, I subtract the mean of the returns from the VaR for all three methods. This results
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in a VaR estimate of 0.486, 0.560, and 0.503 for the MLE method, the Bayesian I method,
and the Bayesian II method respectively. Under the adverse market scenario the VaR estimate
equals 0.579, 0.780, and 0.622 for the MLE method, the Bayesian I method, and the Bayesian
II method respectively. These results indicate that the VaR increases in an adverse market
scenario.

Table 14 also shows the equally weighted VaR estimates, with the mean substracted, under the
Gaussian copula model. We observe that the VaR estimate of the MLE method, the Baysian
I method, and the Bayesian II method equals 0.437, 0.502, and 0.453 respectively. Under the
adverse market scenario the VaR estimates of the MLE method increases to 0.507, the VaR esti-
mate of the Bayesian I method to 0.693 and the VaR estimate of the Bayesian II method to 0.548.

Overall, we observe that almost all equally weighted VaR estimates are higher than the current
Solvency II Capital Requirement of 0.393, except for the equally weighted VaR estimates of the
Bayesian II method with respect to a Clayton copula model.

Based on the simulation study and the empirical example results, the best Solvency Capi-
tal Requirement estimate equals 54 percent when a portfolio weight of 0.75 on asset type global
is considered. There are a number of reasons for this estimate. First, the capital requirements
obtained in the full data set are too low, because the Gaussian copula model does not account
for higher correlations in the tail of the Indexes. Secondly, the simulation study shows that the
Bayesian I method overestimates the true capital requirement with an additional 24 percent,
therefore a capital requirement of 69 percent would be too strict. Furthermore, the simulation
study shows that the MLE method underestimated the true capital requirement on average with
3 percent. Thus, a Solvency II Capital Requirement higher than the VaR estimate of the MLE
method would be desirable. Adding the 3 percent results in a Solvency Capital Requirement
estimate of 54 percent.

42



6 Conclusion and Discussion

In this thesis I investigated the impact of incorporating parameter uncertainty on the 99.5
percent one year VaR. The simulation study results show that including uncertainty in the
correlation parameter resulted in VaR estimates that underestimate the true VaR more often
compared to the MLE VaR estimates. Furthermore, the economic impact of underestimation is
larger. In case of including uncertainty in the variances I found that incorporating parameter
uncertainty results in a lower probability of underestimation and a lower economic impact of
underestimating the true VaR as compared to the MLE estimates. The inclusion of param-
eter uncertainty in the both correlation and variances results in almost no underestimation
of the true VaR. However, the economic impact of overestimation is rather large. Including
uncertainty in the Clayton copula parameter results in more underestimation as compared to
the MLE estimates, however the economic impact was low. Overall, my conclusion is that
incorporating parameter uncertainty using the posterior predictive distribution results in more
variation in the VaR estimates, a lower probability of underestimation, a lower economic impact
of underestimation, and a higher economic impact of overestimation compared to the VaR esti-
mates obtained using the posterior distribution. I also found that the current Solvency Capital
Requirements are too low if yearly return data is used and parameter uncertainty is accounted
for.

The conclusions above are subject to some constraints. Firstly, I adopted a uniform prior
on the correlation parameter that included some information. A more uninformative prior
could produce different results. Secondly, I only considered uncertainty in the Clayton copula
parameter, while the variance parameters where kept fixed. This makes the results obtained un-
der the Clayton copula model less relevant in practice, because then the variances are not known.

The analysis in my thesis could be further developed in several ways. Firstly, the impact
of incorporating uncertainty in both the variance parameter and the Clayton copula parameter
could be determined. Secondly, the impact of incorporating parameter uncertainty could be
determine while estimating the variances with monthly data.

The empirical example shows that including parameter uncertainty results in a higher capi-
tal requirement than under the current Solvency II calibration. The question that remains is
whether including parameter uncertainty is necessary from a practical point of view. To answer
this question I consider three stakeholders: the policyholder, the insurance company and the
supervisor authority.

The policyholder interests are twofold: On the one hand the policyholder benefits from a low
premium on the insurance product, while enough capital should be available to pay for any
possible claims on the other hand. Therefore, the capital requirement needs to be chosen in a
way that plenty of capital will be available to make a profit and maintain a low premium, but
enough capital should remain to secure future obligation by the insurance company. Based on
the simulation study results, the policyholder should prefer the Bayesian II method, because it
strikes a good balance between unnecessarily high premiums on the one hand (low overestima-
tion), and enough security that the insurance company fulfills future obligations on the other
hand (low underestimation).

The insurance company is mostly interested in making profit for its shareholders and main-
taining a competitive advantage over the other insurance companies by keeping the insurance
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premium low. The simulation study shows that the MLE method underestimates the true VaR
most often. Applying this method would most likely result in a VaR lower than the true VaR,
but since the insurance company interest is to have more capital available, a low capital re-
quirement will be desirable.

The main interest of the supervisory authorities is to protect stability of the financial sector,
to keep insurance companies financially healthy, and to make sure that the policyholders are
protected in a way that insurance companies will fulfill their future obligations. The Bayesian
I method offers the most certainty that the true VaR is not underestimated as has been shown
in the simulation study. However, this extra security makes the capital requirement too high,
which implicitly impacts the amount of premium the policyholder has to pay. The Bayesian II
method offers less overestimation, but at the expense of a higher chance on underestimation.
Based on the results of both methods, incorporating parameter uncertainty would be desirable.
However, the question which method to use depends on the weight a supervisory authority
attributes to stability of the insurance sector and financial health of the insurance companies
on the one hand and keeping an affordable insurance products on the other hand.
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7 Appendix A: VaR Densities

7.1 Correlation Uncertainty

Figure 11: VaR estimates density plots (correlation uncertainty).

(a) VaR estimates under a Gaussian DGP
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(b) VaR estimates under a Clayton DGP
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(c) VaR estimates under a Gaussian DGP
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(d) VaR estimates under a Clayton DGP
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Note: VaR estimates are estimated by using the MLE method, the Bayesian I method, and
the Bayesian II method under a Gaussian DGP and Clayton DGP. The dotted line is the VaR
density of the MLE method, the solid line the VaR density of the Bayesian I method and the
dashed line the VaR density of the Bayesian II method. The dotted vertical line is the true
VaR.
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7.2 Variance Uncertainty

Figure 12: VaR estimates density plots (variance uncertainty).

(a) VaR estimates under a Gaussian DGP
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(b) VaR estimates under a Clayton DGP
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(c) VaR estimates under a Gaussian DGP
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(d) VaR estimates under a Clayton DGP
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Figure 13: Note: VaR estimates are estimated by using the MLE method, the Bayesian I
method, and the Bayesian II method under a Gaussian DGP and Clayton DGP. The dotted
line is the VaR density of the MLE method, the solid line the VaR density of the Bayesian I
method and the dashed line the VaR density of the Bayesian II method. The dotted vertical
line is the true VaR.
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7.3 Joint Uncertainty

Figure 14: VaR estimates density plots (joint uncertainty).

(a) VaR estimates under a Gaussian DGP
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(b) VaR estimates under a Clayton DGP
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(c) VaR estimates under a Gaussian DGP
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(d) VaR estimates under a Clayton DGP
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Figure 15: Note: VaR estimates are estimated by using the MLE method, the Bayesian I
method, and the Bayesian II method under a Gaussian DGP and Clayton DGP. The dotted
line is the VaR density of the MLE method, the solid line the VaR density of the Bayesian I
method and the dashed line the VaR density of the Bayesian II method. The dotted vertical
line is the true VaR.
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7.4 Clayton Uncertainty

Figure 16: VaR estimates density plots (Clayton parameter uncertainty).

(a) VaR estimates under a Gaussian DGP
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(b) VaR estimates under a Clayton DGP
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(c) VaR estimates under a Gaussian DGP
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(d) VaR estimates under a Clayton DGP
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Figure 17: Note: VaR estimates are estimated by using the MLE method, Kendall’s method,
and the Bayesian II method under a Gaussian DGP and Clayton DGP. The dotted line is the
VaR density of the MLE method, the solid line the VaR density of Kendall’s method and the
dashed line the VaR density of the Bayesian II method. The dotted vertical line is the true
VaR.
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8 Appendix B: (Predictive) Posterior Derivations

8.1 Derivation I

We know that p(ρ|Rp, θ) ∝ p(ρ)p(Rp|θ, ρ) and that p(Rp|θ, ρ) is normally distributed with
mean equal to γ′µ and variance γ′Σγ. Combine both distributions to obtain:

p(ρ|Rp, θ) ∝
1

ρu − ρl

(
1

2π
√
w2σ2

1(1− w)σ2
2 + 2ρw(1− w)σ1σ2

)T

× exp {−
T∑
i=1

(Rp,i − γ′µ)2

2(w2σ2
1 + (1− w)σ2

2 + 2ρw(1− w)σ1σ2)
}

(34)

where Rp includes all the portfolio return observations.

8.2 Derivation II

From expressions (16) it follows that:

p(σ2
1, σ

2
2|R, φ) ∝ σ−2(ν1+1)

1 σ
−2(ν2+1)
2

(
1

2πσ1σ2

√
1− ρ2

)T

× exp {−
T∑
i=1

σ2
2(Ri1 − µ1)2 + σ2

1(Ri2 − µ2)2 − 2ρσ1σ2(Ri1 − µ1)(Ri2 − µ2)

2σ2
1σ

2
2(1− ρ2)

}

× exp {−β1

σ2
1

− β1

σ2
1

}

(35)
by re-arranging the terms we obtain:

p(σ2
1, σ

2
2|R, φ) ∝ σ−(T+2+2ν1)

1 exp {
T∑
i=1

−(Ri1 − µ1)2 + 2(1− ρ2)β1

2(1− ρ2)σ2
1

}

× σ−(T+2+2ν2)
2 exp {

T∑
i=1

−(Ri2 − µ2)2 + 2(1− ρ2)β2

2(1− ρ2)σ2
2

+
ρ(Ri1 − µ1)(Ri2 − µ2)

σ1σ2(1− ρ2)
}

(36)
We know that p(σ2

1, σ
2
2|R, φ) = p(σ2

2|σ2
1,R, φ)p(σ2

1|R, φ) and by combining all terms of σ2
1 we

obtain:

p(σ2
2|σ2

1,R, φ) ∝ σ−(T+2+2ν2)
2

× exp {
T∑
i=1

−(Ri2 − µ2)2 + 2(1− ρ2)β2

2(1− ρ2)σ2
2

+
ρ(Ri1 − µ1)(Ri2 − µ2)

σ1σ2(1− ρ2)
}

(37)

and

p(σ2
1|R, φ) ∝ σ−(T+2+2ν1)

1 exp−
T∑
i=1

(Ri1 − µ1)2 + 2(1− ρ2)β1

2(1− ρ2)σ2
1

(38)

where σ2
1|R, φ is proportional to an Inverse Gamma distribution with parameters α = T

2 + ν1

and β =
∑T

i=1
(Ri1−µ1)2

2(1−ρ2)
+β1. It should be noted that p(σ2

2|σ2
1,R, φ) is almost an Inverse Gamma

distribution, however there is an extra term ρ(Ri1−µ1)(Ri2−µ2)
σ1σ2(1−ρ2)

.
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8.3 Derivation III

From expression (19) it follows that:

p(RT+1|R̂) =

∫
p(RT+1|Σ, R̂)p(Σ|R̂)dΣ (39)

The density functions within the integral are:

p(Σ|R̂) ∝ |Σ|−(T+3)/2 exp(−1/2tr[Σ−1R̂′R̂]) (40)

and

p(RT+1|Σ, R̂) ∝ |Σ|−1/2 exp(−1/2tr[Σ−1RT+1R
′
T+1]) (41)

Combining both expressions gives the following formula:

p(RT+1|Σ, R̂)p(Σ|R̂) ∝ |Σ|−(T+4)/2 exp(−1/2tr[Σ−1(R̂′R̂+RT+1R
′
T+1)]) (42)

by defining V = (R̂, RT+1) I obtain V ′V = R̂′R̂+RT+1RT+1 and (39) becomes:

p(RT+1|R̂) ∝
∫
|Σ|−(T+4)/2 exp(−1/2tr[Σ−1(V ′V )])dΣ (43)

It should be noted that the integral can be solved by using the Inverted Wishart integration
step: ∫

|Σ|−M/2exp(−1/2tr[Σ−1A])dΣ ∝ |A|−1/2(M−J−1) (44)

where J is the row/column dimension of Σ. Applying this step to (43) and further simplifying
the expression leads to the following:

p(RT+1|R̂) ∝ |V ′V |−(T+1)/2

∝ |R̂′R̂+RT+1R
′
T+1|−(T+1/2)

∝ |R̂′R̂(I2 + (R̂′R̂)−1RT+1R
′
T+1)|−(T+1)/2

∝ |R̂′R̂|−(T+1)/2|I2 + (R̂′R̂)−1RT+1R
′
T+1|−(T+1)/2

∝ |R̂′R̂|−(T+1)/2(1 +R′T+1(R̂′R̂)−1RT+1)−(T+1)/2

(45)

By multiplying and dividing (45) by (T−1
T−1)−(T+1)/2 I obtain:

p(RT+1|R̂) ∝ |V ′V |−(T+1)/2

∝

(
|R̂′R̂|
T − 1

)−(T+1)/2
(T − 1) +R′T+1

(
R̂′R̂

T − 1

)−1

RT+1

−(T+1)/2

∝

(
|R̂′R̂|
T − 1

)−1/2
(T − 1) +R′T+1

(
R̂′R̂

T − 1

)−1

RT+1

−(T+1)/2

(46)

which shows that p(RT+1|R̂) follows a Multivariate T distribution with scale parameter A =
R̂′R̂
T−1 , location parameter 02 and T-1 degrees of freedom.
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9 Appendix C: Copula Derivations

9.1 Derivation I

Recall that the joint density of the returns can be written as:

f(R1, R2;α, θ1, θ2) = c(F1(R1; θ1), F2(R2; θ2);α)f1(R1; θ1)f2(R2; θ2) (47)

where α is the Clayton parameter and θ1 = (µ1, σ
2
1) and θ2 = µ2, σ

2
2) the parameter vectors of

the marginals. Considering R = (R1t, R2t)
T
t=1 the sample matrix then the likelihood function is

given by:

f(R;α, θ1, θ2) =
T∏
t=1

(
−1 + u−α1t + u−α2t

)(−2−1/α)
u

(−α−1)
1t u

(−α−1)
2t (α+ 1)

× (
√

2πσ1)−1 exp

(
−(R1t − µ1)2

2σ2
1

)
(
√

2πσ2)−1 exp

(
−(R2t − µ2)2

2σ2
2

) (48)

where u1t = F−1
1 (R1t; θ1) and u2t = F−1

2 (R2t; θ2). The log-likelihood of (47) then equals:

L(R;α, θ1, θ2) =

T∑
t=1

(ln c(F1(R1t; θ1), F2(R2t; θ2);α) + ln f1(R1t; θ1) + ln f2(R1t; θ2))

=
T∑
t=1

(ln c(u1t, u2t; θ1, θ2, α) + ln f1(R1t; θ1) + ln f2(R1t; θ2))

=
T∑
t=1

(−2− 1/α) ln
(
−1 + u−α1t + u−α2t

)
+

T∑
t=1

(−α− 1)(lnu1t + lnu2t)

+ T ln(α+ 1) +
T∑
t=1

(
− ln(

√
2πσ1)− 1

2

(R1t − µ1)2

σ2
1

)

+
T∑
t=1

(
− ln(

√
2πσ2)− 1

2

(R2t − µ2)2

σ2
2

)

(49)
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10 Appendix D: Empirical Part Extra Table

Table 15: Empirical VaR estimates (trading day June).

MSCI EM Gaussian
MLE Bay. I\Kendall’s Bay. II

Gaussian fixed variances
Full data set 0.383 0.403 0.384
Adverse market scenario 0.397 0.381 0.38
Clayton fixed variances
Full data set 0.374 0.372 0.377
Adverse market scenario 0.385 0.387 0.347
Current capital requirement = 0.393

Note: VaR estimates are estimated by using the MLE method, the Bayesian I method, and the
Bayesian II method in case of the Gaussian copula model. The Bayesian I method is replaced
by Kendall’s method in case of the Clayton copula. The VaR estimates are estimated on the
full data set and the adverse market scenario data set. The yearly return data is computed by
using the first trading day of June. The current capital requirement corresponds to the capital
requirement under the Solvency II regulation.
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11 Appendix E: Matricvariate Distributions

11.1 Matricvariate Normal Distribution

The probability density function of a matricvariate normally distributed K × J random matrix
Z with mean M (K × J) and covariance matrix S ⊗ L (S : J × J,L : k × k), that is, Z ∼
MN(M,S⊗ L), is given by:

p(Z|M,S⊗ L) = (
√

2π)−kJ |S|−k/2|L|−J/2

× exp

(
−1

2
tr[S−1(Z−M)′L−1(Z−M)]

)
.

(50)

This implies that vec[Z] ∼ N(vec[M],S⊗ L)

p(vec[Z]|M,S⊗ L) = (
√

2π)−kJ |S⊗ L|−1/2

× exp

(
−1

2
vec[Z−M]′(S⊗ L)−1vec[Z−M]

)
,

(51)

and shows that it is just another parameterization of a multivariate normal distribution with a
restricted covariance matrix.

11.2 Inverted Wishart Distribution

The probability density function of an inverted Wishart distributed random J × J positive
definite symmetric matrix Z with parameters J × J positive definite symmetric matrix S and
degrees of freedom v ≥ J − 1, that is, Z ∼ IW (S, v), is given by:

p(Z|S, v) = c× |S|v/2|Z|−(v+J+1)/2 exp

(
−1

2
tr[Z−1S]

)
, (52)

where c is an integrating constant.

The mean of Z is:

E[Z] =
1

v − J − 1
S (53)

If Z ∼ IW (S, v) then Z−1 ∼ W (S, v) (Wishart Distribution)

11.3 Multivariate Student’s T Distribution

Cornish (1994), and Dunnett and Sobel (1954) defined the multivariate Student’s T distribution
for T a p× 1 vector as:

p(T) =
Cp|Σ|−1/2

[n+ (T− θ)′Σ−1(T− θ)](n+p)/2
(54)

where −∞ < Tj < ∞ for j = 1, 2 . . . , p , n ≥ 0 the degrees of freedom, θ: p × 1 the location
parameter, Σ: p× p, Σ > 0 the scale matrix, and where

Cp =
nn/2Γ

(n+p
2

)
πp/2Γ

(
n
2

) (55)

The mean and covariance matrix of T are easily shown to be

E(T) = θ, n > 1, (56)
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V (T) =
n

n− 2
Σ, n > 2. (57)

In my paper I use the result that γ′T is univariate Student’s T distributed if T is multivariate
Student’s T distributed. This follows from the following theorem:

Let T be a multivariate Student’s T distribution with density given by (54). Then, if y =
AT + b, where A: q × p, b: q × 1, q ≤ p, the density of y is given by:

p(y) =
Cp|Φ|−1/2

[n+ (y −Aθ − b)′Φ−1(y −Aθ)− b](n+q)/2
, (58)

where Φ = AΣA′ (James, 2005).
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12 Appendix F: Figure Solvency II Standard Model

Figure 18: Solvency II Standard Model
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