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Abstract. Pricing is a cornerstone in almost every business. Increased
price pressure, due to better informed customers online, enhances the
need for a sophisticated understanding of price effects. In this paper,
we add to existing pricing literature by thoroughly studying effects of
competitor prices on price sensitivity of customers in e-commerce. We
test our hypothesis that price sensitivity increases as the price approaches
the competitor median price. We employ a hierarchical Bayes model,
which allows non-linear effects, to test our hypothesis. Furthermore, the
model is used to forecast sales and we propose a pricing strategy, based
on prices that are optimized by our model. We test the performance of
our pricing strategy in a field experiment, implementing our prices in an
e-commerce store. We find a high increase in price sensitivity if a product
is the cheapest in the market and a linear increase in price sensitivity if
the price relative to the market increases. Furthermore, we find that our
model is not useful for forecasting and our field experiment results in a
10% sales growth for relatively cheap products, but a 14% decrease in
sales for relatively expensive products.
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1 Introduction

Pricing is an essential tool in good marketing. Superior pricing analyses and
techniques lead to competitive advantages for companies and therefore research
on price sensitivity is essential to these companies. The opportunities of digital-
ization and advanced analytics are exploited to improve pricing, see for example
den Boer (2013) and Cope (2007). In contrast, the rapid digitalization of business
and the Internet also reduced the search costs for customers and price compar-
ison search engines lead to better informed customers (Bakos, 2001; Ratchford,
2009). Customers who are better aware of prices increase the necessity of com-
petitive prices. As this information is mostly found online, the increase in price
transparency is even more important to e-commerce companies than to tradi-
tional offline retailers. In addition, the possibilities of product differentiation are
limited and customer loyalty is harder to achieve in e-commerce compared to
non-Internet markets, this is caused by the lack of the provision of human service
(Gefen, 2002).

The need for good pricing policies has been known for a long time and there-
fore pricing is a well-developed field of research. However, most of the studies
assessing price sensitivity limit their research to estimating a constant value
for price elasticity, neglecting the complex behavior of price sensitivity in com-
petitive markets (Phillips, 2005). Bijmolt et al. (2005) and Tellis (1988) have
written reviews on price elasticity research and all reviewed papers assume con-
stant price elasticity. By assuming a constant price elasticity for all prices, the
model is forced to let sales increase as a constant percentage of a price decrease,
independent of the absolute value of the price or competitor prices. While these
models sometimes incorporate competitor effects on sales, these are indepen-
dent of price effects. We add to the existing literature by studying the effect
of competitor prices on price sensitivity of customers. Our proposed model can
reveal these complex effects, as we specify a non-linear model that allows price
sensitivity to depend on price and competitor prices.

In an effort to create a model which allows price sensitivity to depend on
price, Fok et al. (2007) and Van Heerde et al. (2002) propose models that use
regime switching and non-parametric approaches to model price effects respec-
tively. However, these models focus on changes in price sensitivity for different
sizes of price changes and do not consider competitor prices in their price sensi-
tivity analysis. The scope of this paper is analyzing changes in price sensitivity
as price changes relative to competitor prices. In order to measure the price rel-
ative to the competitor prices, we define the price position of a product. The
price position of a product is the price of a product divided by the median price
of both competitor prices and its own price. A price position of 0.5 means that
the price of the product is half the price of the median price and a price position
of 2 denotes a price twice as high as the median price.

Modern pricing experts support the theory that demand curves are sigmoidal
in shape when plotted against price position (Phillips, 2005). The theory states
that price elasticity changes as the price changes relative to the competitors on
the market. The intuition behind the theory is that price sensitivity is higher
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Fig. 1: Demand and price elasticity curves for constant price elasticity in the first
row and non-constant price elasticity in the second row.

around the competitor prices, since a small price change can be the difference
between being the highest or lowest price in the market. Once price deviates from
the competitor prices, we expect price sensitivity to decrease. When a product
price is half the price of competitors, increasing or decreasing the price by a
percentage should not influence sales a lot, hence price sensitivity is low.

Figure 1 shows the difference in demand and price elasticity curves between a
convex and sigmoidal demand model. We can clearly see that ignoring the change
in price elasticity leads to biases in expected sales. Pricing strategists therefore
over- or underestimate the effects of price changes, missing opportunities to
increase profits.

Our model is created in a way that it can estimate the sigmoid demand curve.
The model uses state-of-the-art Bayesian techniques to estimate the position,
slope and height of the sigmoid curve for products of e-commerce companies.
Especially in e-commerce, we expect the sigmoid shaped curves to be present,
since price transparency is relatively high (Kocas, 2002; Ratchford, 2009). In
addition, we specify the model in a way that it can reject our hypothesis of the
sigmoid demand curve, so we can test our hypothesis.

The research is based on data provided by an e-commerce company in the
Netherlands. We use daily sales, profit, company and competitor price data of
a period consisting of 24 weeks on the level of 65,900 individual products. The
sigmoid curve is modeled with respect to the price position of the product, rather
than the absolute price. The price position is calculated as a percentage of the
median competitor price. The competitors prices are used to determine these
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Fig. 2: Aggregated sales plotted against the price position of the product category
Jewelry, Watches & Accessories, the resulting shape is an example of a sigmoid
demand function.

price positions. Figure 2 shows the aggregated sales of the product category
Jewelry, Watches & Accessories plotted against the price position. These sales
are an example of a sigmoid demand function, which strengthens our hypothesis.

Additionally to the price position, we measure the additional impact when
a company offers a product as cheapest in the market. In the remainder of this
paper, we refer to this as the minimal price effect. Lastly, we analyze the effect of
the price ticket on price sensitivity of the product. The price ticket is a measure
of the absolute value of the price compared to other products, where a product
with a low price ticket denotes a cheap product and a product with a high price
ticket denotes an expensive product.

Our proposed model uses the well-known Multiplicative Sales Model (MSM)
or loglog model as a basis to explain product sales and estimate the price effects.
In order to incorporate the changing price elasticities in the model, we employ a
hierarchical Bayesian specification. We add a second level regression to the price
effect parameter and allow this parameter to depend on the price position. We
call this model the Changing Price Response Model (CPRM).

Research by Tellis (1988) and Bijmolt et al. (2005) show a high dispersion in
price elasticities for different products and categories, so the model is used to an-
alyze price sensitivity for every product uniquely. This results in a high number
of parameters, proportional to the number of products in the model. The hierar-
chical Bayesian specification allows us to shrink the high number of parameters
to reasonable values, by assuming that the parameters for individual products
are draws from a common distribution. We call this the Random Effects Specifi-
cation (RES). This method limits the unwanted variation in the estimation that
separate estimations would have. In addition, it allows us to use information of
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other products, for products that do not have a lot of price changes. Previous re-
search has shown that the hierarchical framework reduces parameter instability
and improves forecasting performance, examples of research using the hierar-
chical Bayesian specification are, among others, Van Nierop et al. (2008) and
Boatwright et al. (1999). In addition, this state-of-the-art Bayesian technique is
suitable to consider uncertainties in price effects and is therefore capable to find
optimal prices even under uncertainty. This makes it an excellent tool to man-
age risks. We use Markov Chain Monte Carlo (MCMC) simulation techniques
to estimate the parameters of the model.

We use the results of the model to assess the opportunities of competitor
prices to improve three themes of marketing research. First, we use estimation
results to create new insights in price sensitivity. Second, we evaluate forecast
possibilities of our new model and lastly, we test the value of our model as a
pricing strategy in practice, conducting a field experiment of five weeks.

By studying the estimation results of the CPRM, we find that average elas-
ticities in e-commerce at a price position of the market median is -4.27. Much
higher than the average price elasticity found by Bijmolt et al. (2005), -2.62.
We find a number of explanations for this difference. First, price sensitivity in
e-commerce is higher than price sensitivity in traditional retail. Secondly, we
study price elasticity at a certain price position, therefore, other price positions
might yield lower price elasticities. Furthermore, we find that high price ticket
products are significantly more price sensitive than low price ticket products.

For the effects of price position on price sensitivity, we find that in general
price sensitivity increases when price position increases. As a result, the most
sensitive price position is also the maximum price position. We do not find evi-
dence for the hypothesized sigmoid shape, however, our model is flexible enough
to model the more concave shape suggested by our estimations. In addition,
price sensitivity increases when a product has the lowest price position in the
market. Lastly, we find very different price sensitivity characteristics across cat-
egories and individual products, emphasizing the opportunities for companies of
studying products on an individual level.

Besides the estimation of our model, we measure the forecasting performance
of the model. We use an out of sample validation technique for one day ahead
forecasts. We compare predictive densities of sales forecast of the CPRM to a
regular MSM model to study the forecasting power of the changing price elas-
ticity specification. However, our model proves not to be suitable for forecasting
sales, as it does not outperform the more simple MSM, without the extensive
specification for price position. The complex model is likely to have over fitted
the data, finding patterns that only exist in the data sample used for estimation,
resulting in an inferior forecasting performance. However, the main scope of our
research is analyzing competitor prices and creating a pricing strategy based on
those competitor prices. Although lacking forecasting power, the model is still
very suitable for these purposes.

The framework is used to create a pricing strategy, applicable for an e-
commerce company. The pricing strategy uses optimal prices for multiple prod-
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ucts generated by the CPRM. We use draws from the posterior distributions
to calculate expected profits and sales of a range of price positions, based on
the lagged market price median, considering both the change in price elasticity
and the distribution of the price elasticity. The price position that maximizes
sales and profitability is determined to be the optimal price. Profits are com-
puted as expected sales multiplied by profit margin of the product. Since we use
the proposed framework to optimize prices of numerous different products, the
framework is constructed in a way that it is applicable for all products when the
appropriate data is available.

A field experiment with 9,800 products over 5 weeks is performed to assess
the effectiveness of both the CPRM prices and the prices of a simplified Point
Estimate-CPRM (PE-CPRM) method. The test is performed in a web shop,
using prices corresponding to the strategy proposed in the paper. The results
of the two strategies show the trade-off between sales and profit optimization
and data storage capacity. In addition, we compare our results with results of
a follow-stop pricing strategy to find the potential of this pricing strategy. The
follow-stop pricing strategy follows the price of the cheapest competitor until
the margins become negative.

The field experiment shows that the PE-CPRM pricing strategy increases
sales and profit growth for low ticket items, compared to the follow-stop strat-
egy, with only a small price increase relative to the follow-stop strategy. This
shows the capacity of the PE-CPRM to find prices that can be raised effectively.
Also, it outperforms the CPRM pricing strategy for low ticket items. The com-
plex CPRM distributions might reduce effectiveness of calculating optimal prices
compared to the more straightforward option to use point estimates, as the high
variance in the posterior distributions of the parameters are more sensitive to
extreme values. Therefore, the optimized prices can be of lower quality.

For high ticket items, sales and profit growth are reduced relative to the
follow-stop price strategy. This can be caused by the fact that the follow-stop
price strategy is superior for high ticket products, as we find high price sensi-
tivities for these products and following the cheapest competitor in the market
can be the best decision. Another explanation can be that our field experiment
for high ticket products is polluted, since category managers changed prices of
products during the field experiment.

The remainder of this paper is organized as follows. In the next section,
relevant research on non-constant price effects is reviewed. The third section
discusses data used in this research and in the fourth section we present the
technicalities of the CPRM. In the fifth section we illustrate the price optimiza-
tion approach and the set up of the field experiment. We present the results of
our research in the sixth section and we conclude in the seventh section of this
paper.
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2 Previous Research on Non-Constant Price Effects

The price variable is often considered the most important variable in the market-
ing mix, since it is the only variable that generates direct revenue (Rao, 1984).
Multiple studies have addressed the importance and complexity of good pricing
strategies (Gijsbrechts, 1993; Rao, 1984). The complexity of the subject often
forces academics to simplify the real world and in a lot of research, price elastic-
ity is assumed to be a constant value. For extensive reviews of papers considering
constant price elasticities, we refer to Tellis (1988) and Bijmolt et al. (2005). In
this study, we focus on relaxing the restriction of constant price elasticity and
modeling the sigmoidal demand curve (Phillips, 2005). For this reason, we pro-
vide a review of research conducted on non-constant price effects in this section.

Models such as the multinomial logit model (Nevo, 2000) and the Multi-
plicative Competitive Interaction Model (Bell et al., 1975; Fok et al., 2002) are
used to estimate the sigmoidal curve in market shares. The sigmoidal curve is a
natural shape when considering market shares, since market shares approach a
maximum of 100% as underlying modeled sales increase. The downside is that
these models require market shares or sales data of all competitors on the mar-
ket. This data is often unavailable to companies and these models are therefore
not suitable for pricing strategies.

Literature on sales models, which are truly flexible in price elasticity, is rel-
atively scarce. One paper that does address the concept of changing price elas-
ticities is Fok et al. (2007). Their focus is on customer responses to different
absolute sizes of price changes. The paper proposes a two stage Bayesian regres-
sion model, where the price effect is a non-linear function. The function allows
three regimes that model the effect of a relative large price decrease, a relative
small price change and a relative large price increase separately. The results
show clear non-linearities in price effects, which emphasizes the importance of
the subject.

Another method is proposed by Van Heerde et al. (2002). The research con-
cerns price promotion effects with store-level scanner data. Van Heerde et al.
(2002) allow a more flexible decomposition of price effects, more specifically,
they use a non-parametric approach that models the effect of the magnitude
of the discount. To estimate the parameters of this non-parametric function,
they use a local polynomial regression (Fan, 1992). Again, their results showed
significant improvement of the model fit, due to the non-linear decomposition
of price effects. Considering these two research results, there is enough reason
to believe price effects are non-linear and major improvement on understanding
price effects is possible when further analyzing these non-linearities.

Our research is an addition to the literature on reference prices (Mazumdar
et al., 2005). Research conducted on reference prices analyzes prices relative to
competitor and previous prices in a market. In this research we use the competi-
tor prices as reference prices by calculating the price position of our products.
This paper extends the line of research in non-linear price effects and reference
prices by thoroughly analyzing the changes of price elasticity when the price
position of a product changes.
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Table 1: Summary of all product categories, their corresponding products types,
unique products and the average frequency of price changes per product in the
category per month.

Product category # Product types # Products Freq. ∆ price

Home Improvement & Gardening 478 6,000 1.76

Sport & Leisure 266 4,000 0.98

Cooking, Dining & Houseware 305 6,800 1.64

Sound & Vision 231 5,800 2.06

Domestic Appliances 241 5,700 2.03

Computer & Games 177 8,300 1.60

Beauty & Care 237 9,900 1.24

Home Furnishing 144 5,300 1.57

Pet 148 3,500 0.78

Baby 140 6,300 0.82

Health & Intimacy 128 3,200 1.75

Jewelry, Watches & Accessories 53 2,600 0.44

Mobile & Tablet 53 4,200 1.33

3 Data

We use data provided by one of the biggest e-commerce companies in the Nether-
lands. The data concerns daily sales data at the product level over a period of 24
weeks. Additionally, data provided by Google Trends is used to indicate patterns
in sales, which are not caused by the retailer. Competitor prices are provided
daily by five comparison shopping engines. In this section we elaborate on the
content of the data and how we employ the data in our research.

We divide the data at four aggregation levels. The first level is the prod-
uct category level, the second level is the product group level, the third level is
the product type level and the fourth level is the product level. At the product
category level, the data is split into thirteen categories. Products groups are
similar products and the product type level contains products which have the
same functionality, but only differ in design or brand, e.g. ‘toaster’ or ‘vacuum
cleaner’. The product level consists of all unique products sold by the company.

Table 1 reports the different product categories and the number of products
and product types contained by each category. The last column shows the aver-
age number of price changes each month per product contained by the category.
We can clearly see a difference in the frequency of price changes per category.
Domestic Appliances and Sound & Vision are the categories that change their
prices most frequently. The prices of products in these categories are changed
up to 5 times as often as prices in the Jewelry, Watches & Accessories category.
The category Domestic Appliances contains over 63,000 price changes compared
to only 6,300 price changes in the same period by Jewelry, Watches & Acces-

8



Time

Sa
le

s

1−Nov 1−Dec 1−Jan 1−Feb 1−Mar 1−Apr

Fig. 3: Daily and holiday patterns in aggregated sales over all categories.

sories. Price elasticities and pricing analysis on the product level is impossible
for products which have almost no price changes. The RES enables us to still
analyze these price elasticities on the product level, while some categories do not
have an average higher than 1 price change per product per month. We do not
need a lot of price changes to evaluate price elasticities, since the RES allows us
to use the information of other products.

Our research analyses 168 days of sales data on the product level. For every
product and every day, sales, number of products sold, profits, variable costs and
price are provided. The calculation of profits is based on variable costs and ignore
fixed costs, so we use the difference between profits and sales divided by the
number of products sold to determine these variable costs. Higher aggregation
levels use the sum of the sales and profits, and the unweighted mean of the price
positions. Weighted means do not take products without sales into consideration,
which do contain valuable information.

Promotional data is not available. While Paap and Franses (2000) point out
that effects of promotions are an important factor addressing price effects and
Tellis (1988) warns for biases in estimation when omitting promotional variables,
we do not expect problems in our setting. Most promotions in the data set are
price discounts, which are analyzed by the price variable. These price discounts
are almost never combined with promotions, since promotion strategy of the
concerning e-commerce company is brand wide and SEA strategy is not based
on data of prices. Furthermore, the promotion pressure of the companies brand
is equal during the 24 weeks of our time period except for the holidays, which
we correct with a dummy variable.

Figure 3 shows the aggregated sales over all categories. We see two clear pat-
terns in the data. First, there is a decrease in sales every Saturday, since products
can’t be delivered on Sunday. Secondly, we observe a peak in sales during the
Dutch holidays, Sinterklaas and Christmas, which are in the period of November
22th until December 2nd and the 13th of December until the 23th of Decem-
ber. We correct both of these patterns in our model by adding a corresponding
dummy variable.
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In addition, the data contains patterns that can not be explained by the
explanatory variables in our model, such as popularity of a product or an adver-
tisement campaign by the producer of the product. These patterns are different
for each product, but can be found by using Google Trends. The Google Trends
data is an index of the search queries to a specific term relative to other days.
The day that had most search queries to the term has a Google Trends score of
a 100. The Google Trends data corresponds to these popularity patterns in the
data. By adding the Google Trends as an explanatory variable in the model, we
correct for these patterns.

We use Dutch product type names to determine Google Trend scores in the
Netherlands for each product type. Category names are too general to find a
pattern, e.g. ‘Domestic Appliances’ as a search term does not represent patterns
of the sales of the corresponding products. Individual products often do not
have enough queries to find a pattern. Google Trends returns 1,146 trends for
the 2,601 product type names, when the frequency of searches to a specific term is
not sufficient, Google Trends does not return a value. To represent the missing
trends, we use the mean values at the product group aggregation level. The
average trend within a product category serves as a trend for product groups
that do not have any products with a trend.

The competitor data consists of daily prices of all competing products of
2,500 competing online retailers. The resulting price data is enormous and very
volatile. For this reason, we consider the median of the price of the product
and its competitors per day and refer to this as the products market price. The
volatility of the price is the reason we use the median of the prices rather than
the mean. The volatility of the data is a result of a big number of outliers within
the data. These outliers are caused by mistakes in the dataset of competitors
or discounts of competitors. We do not want to take either of these cases into
consideration for determining price position. The mistakes in the data do not
describe the real world situation and considering big discounts of competitors
would have a big effect on the price position, while the market position relative
to most competitors does not change. By using a linear loss function and the cor-
responding metric, the median, we reduce the effect of these outliers compared to
using the outlier sensitive quadratic loss function and the corresponding metric,
the mean. In addition to the market price, we use provided competitor data to
determine the minimal price in the market.

4 The Changing Price Response Model

In this paper, we propose a model that allows price effects to depend on price
position. This results in a demand curve that has a sigmoid shape. The sigmoid
demand function is an alternative to constant price elasticities, which are often
used in price elasticity research (Bijmolt et al., 2005; Tellis, 1988). We use a
hierarchical Bayesian approach to allow price effects to depend on price position
in a second stage and to shrink the resulting high number of parameters within
the model. In addition, the Bayesian framework allows us to assess uncertainty
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in the estimations. In the remainder of the paper, we refer to this model as
the Changing Price Response Model (CPRM), because the changing price effect
measures the change in customers response as price position changes.

4.1 Capturing Changes in Price Sensitivity

To model the changing price elasticity, we propose a model with a Multiplicative
Sales Model (MSM) as a base. This model describes the sales of a product as
a function of the price of the product, lagged sales, indicators for Saturday and
holidays, a dummy to indicate whether a product is in stock or not and the
Google Trends. The MSM allows us to estimate price elasticity as a parameter
corresponding to the price variable. This model is often used to analyze price
elasticities in marketing research (Zenor et al., 1998; Desmet and Renaudin,
1998).

The disadvantage of the MSM is that it estimates a constant price elasticity.
In order to allow the price elasticities to depend on price position and create
a sigmoid demand function, we add a second stage to the model. This second
stage models the price elasticity as a function of the price deviation from a point
M , where M is the market price or a fraction of this market price. To find the
best value for M for every product, we include it as a parameter of the second
stage regression.

A problem of the MSM is a result of the logarithmic transformation of the
sales. The high number of products offered in the store results in products which
are not sold every day. Zero values of a logarithm do not exist, so the MSM does
not work for those data points. We do not offer a solution for this problem in
this paper, since it is outside the scope of this research. All products that did not
sell for 50% of the time period or more are aggregated to the product type level
or product group level, if necessary. The remaining zero values are replaced by
a value close to zero. Replacing the zero values with values close to zero should
not change the model or its economical interpretation a lot and therefore we do
not expect a big bias in the results.

We estimate the CPRM for a couple of different replacement values and
determine the best replacement value by comparing the forecasting power of the
estimated models. The test is conducted on the Domestic Appliances product
category. The replacement value of the model with the highest forecast power is
used for estimation of the models for the other categories. By separating the data
used to determine the substitute of zero values and the data used to evaluate
forecasts in later sections, we avoid over fitting the data.

We compute the price position of a product by dividing its price with the
market price. This allows us to analyze effects of prices relative to the competi-
tors, rather than the effect of solely the price. This procedure has two other
advantages, first, we are able to aggregate the prices of products which are of
the same product type. This aggregation can be performed because the price
variable is transformed into a price position index, which is comparable for dif-
ferent products. We aggregate the prices by taking the average price position.
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Secondly, we neutralize price patterns within the market. The resulting price
position variable is defined by function

Pt =
Prt
MPt

,

where Prt is the absolute price at time t and MPt is the market price at time
t. The market price is the median of the price of the product and all competitor
prices.

The sales of the products are modeled in the MSM. We regress the sales of
product i, Si,t, on the lagged sales, average price position Pi,t and add dummies
D1,t and D2,t, that indicate the Saturday and the holidays, since these represent
sales bottoms and peaks, respectively. Furthermore, we add a dummy D3,i,t to
the model that indicates whether product i is in stock, because delivery time
of products that are not in stock increases and these products are therefore
less likely to be bought. In case products are aggregated, we use the average of
D3,i,t. We include the lagged Google Trends of product type p, gtp,t−1, where
p is the product type of product i. We use lagged values of Google Trends,
since the present value can not be used for forecasting, as it is unknown. Lastly,
Day (1981) argues that the product live cycle influences sales. This effect is
not described by the Google Trends, because Google Trends are on a product
type level. Research has shown that ignoring this effect of time causes a bias in
the estimation of price elasticity (Tellis, 1988). We add a time variable to the
regression at the sales level to avoid this bias. This results into a multiplicative
regression formula described by

Si,t = exp (α1,i + εi,t)S
ρi
i,t−1P

φi,t
i,t β

D1,t

1,i β
D2,t

2,i β
D3,i,t

3,i gt
β4,i

p,t−1t
β5,i , (1)

with εi,t ∼ N
(
0, σ2

εi

)
.

The price elasticity is allowed to change over time by adding a second stage to
the model. We propose a second stage that corresponds to the sigmoid demand
function. A non-linear function of the price position, Ωi,t (Pi,t), is employed to
model this shape. Finally, we expect price elasticity to change when the product
is the cheapest in the market. We formalize these effect into the second stage of
the regression,

φi,t = α2,i +Ωi,t (Pi,t) + β6,iD4,i,t, (2)

where α2,i is the baseline price elasticity of product i, D4,i,t is a dummy that
indicates if the product is sold for the minimal price in the market or the mean
of this dummy in the aggregated case.

In order to model the sigmoid demand function, we use Ωi,t (Pi,t) to create
a price elasticity function as a special exponential function, which is shown in
Figure 4. The minimal value of the function is at the point Mi. This is the point
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price elasticity.

where a product is most sensitive to price. In addition, we are interested in the
shape of the sigmoid curve. The exponential function is therefore allowed to
change in slope by parameter γ2,i. We also allow the height of the function to
change with γ1,i. The function is formally described by

Ωi,t (Pi,t) = γ1,i exp
(
γ2,i (Mi − Pi,t)2

)
, (3)

where we expect γ2,i to be negative, since we expect price elasticity to increase
as price position approaches Mi.

The resulting second stage consists of a big number of parameters, while data
in price changes is limited. Additionally, not all products went out of stock in
our time period and not all Google Trends varied over time. We use the RES to
solve these three problems. Lastly, in previous research by Bekker et al. (2016),
it proves hard to estimate changing price effects, because of the high degree of
freedom given. The Bayesian framework allows us to add prior information to
the model, reducing the degree of freedom in the model. In the next section we
discuss how we use these Bayesian techniques to improve our model performance
and solve those data problems.

4.2 Bayesian Approach

We use a hierarchical Bayesian specification to be able to shrink the estimations
of the big number of parameters to more reasonable and less volatile estima-
tions. In order to do this, we assume that the population location parameters of
parameters on the product level are commonly distributed. The resulting com-
mon distributions are called the Random Effects Specifications (RES) of the
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Table 2: Priors of all variables, an indication whether we added a RES and the
prior of the location parameter of the RES, if applicable.

Parameter Prior RES RES prior Parameter Prior RES level RES prior

σ2
ε flat no γ2 N yes N
α1 flat no M N yes U

ρ flat no β3 N yes flat

β1 flat no β4 N yes flat

β2 flat no β5 N yes flat

α2 − logN yes − logN β6 − logN yes − logN
γ1 − logN yes − logN

parameters (Cameron and Trivedi, 2005). Another advantage of the RES is that
it allows us to use data points of other products, which is especially useful for
products that have low or no volatility in the explanatory variables.

There are three more advantages to the Bayesian approach. First, it allows
risks of pricing policies to be managed by analyzing the distributions of the sales
forecasts. Secondly, it enables commercial experts to add prior beliefs to the
model and lastly, it is easier to estimate, compared to the frequentist approach,
that requires maximization of the maximum likelihood of the complex model.

Table 2 shows the prior distribution and an indication if we added a RES
to the parameters, for all parameters in the model. Additionally, it shows the
priors on the population location parameter of the RES, if applicable. All prior
distributions of parameters, for which we did not provide a RES, have a flat
prior specification. We don’t have any prior beliefs on those parameters. That
is,

p
(
σ2
εi , α1,i, ρi, β1,i, β2,i,

)
∝ σ−2εi .

We shrink the remaining parameters, by adding a RES to the parameter specifi-
cation. This RES relates the parameters corresponding to the same explanatory
variable, reducing variance in the estimation. See Fok et al. (2007) for a similar
approach. Let Ki = {κi,s}ps=1 be the set of all parameters with a RES of product
i, where the exact elements of Ki are found in Table 2 and p is the total number
of parameters with a RES. Now we define the distribution of the parameters

κi,s ∼ Gκ
(
µκ, σ

2
κ

)
, ∀κi,s ∈ Ki,

where Gκ is the distribution corresponding to κi, reported in the second column
of Table 2. For each parameter in Ki, we define new parameters µκ and σ2

κ,
denoting the population location parameter and population scale parameter of
the corresponding RES distribution.
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We impose a negative log-normal distribution on α2, γ1 and β6. In Equation 2
and Equation 3 we can see that this results in a strictly negative price effect.
Positive price elasticities are inconvenient in pricing strategies, as they always
put prices to infinity to maximize profits and sales. Intuitively, this is incorrect
as sales always decrease if prices increase, ceteris paribus. Findings of Bijmolt
et al. (2005) make us feel comfortable imposing this restriction, as they find that
only 2.2% of price elasticities are positive.

However, a positive value for γ1 can still result in a negative price effect.
We choose to use a negative log-normal specification, as we want to analyze the
sigmoid shape hypothesized by Phillips (2005). Other shapes are not in the scope
of our research, and the model can reject the hypothesis of the sigmoid shape
by either estimating a small value for γ1 or estimating the values of M as a very
high or low value. In addition, we limit the degree of freedom of the model by
imposing this restriction. Since the model has a very high degree of freedom, we
expect this to improve model performance.

Finally, the negative log-normal distribution for β6 is chosen to reduce free-
dom in the model as well. As a result, our model can not deal with positive
effects in price sensitivity when price becomes the cheapest in the market. We
do not expect this to happen often, as price experts of our researched company
stated that they always experience a higher sales increase when price becomes
the lowest in the market. Furthermore, our model can still estimate a value close
to zero for β6, in the case that this hypothesis is false.

We impose informative priors on some of the newly identified population
parameters µκ and σ2

κ. For all population scale parameters σ2
κ with κ ∈ K,

we impose relatively uninformative priors. Hobert and Casella (1996) show that
imposing a relative uninformative prior on scale parameters in second levels
improves convergence and do not have a substantial effect on the results. An
inverted Gamma distribution with shape parameter λ1 and scale parameter λ2
is a good candidate with limited influence, if parameters are chosen correctly.
If we set both λ1 and λ2 as 0.1, the shape of the inverted Gamma distribution
is nearly flat, resulting in a close to uniform distribution. This means that the
prior is relatively uninformative and is therefore a good candidate. Formally, this
results in the following prior,

p
(
σ2
ηκ

)
∼ IG-2(0.1, 0.1), ∀κ ∈ K.

We impose proper priors on population location parameters on all parameters in
the non-linear function Ωi,t (Pi,t) and β6, because the RES is the third level in
the model. While parameters in a second level model have already been proven
to be difficult to estimate (Bekker et al., 2016), we think adding prior informa-
tion to reduce freedom in the model can highly improve estimation accuracy. All
parameters that have negative log-normal distributions in the second level are
assumed to have a negative log-normal distributed population location parame-
ter as well. This results in a maximal value of -1 for the population mean of the
parameters. We impose this prior to improve convergence and a value of -1 is
reasonable for these parameters. The prior of the population location parameter
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of γ2 is a normal distribution. To reduce the influence of the priors, we assume
relatively uninformative priors on those population location parameters,

µκ ∼ − logN (0, 100) κ ∈ {α2, γ1, β6} ,
µγ2 ∼ N (0, 100)

For µM , the population location parameter of the most sensitive price position,
we impose a uniform prior on the price position interval [0.5, 1.5],

µM ∼ U (0.5, 1.5) .

Again, we want to limit the freedom of our model. In our dataset, 96% of the 12
million price positions we study are inside this interval, which makes this interval
interesting to study. Note that the prior is only imposed on the population
location parameter, this allows parameter draws of the normal distribution on
the product level to be outside the interval.

The remaining population location parameters do not have information added
through priors, as the RES of these parameters are only in the second level of
the model and we do not expect estimation difficulties. Formally, that is,

p (β3, β4, β5) ∝ 1.

To estimate the posterior distributions of the parameters, we use Markov Chain
Monte Carlo (MCMC) techniques (Tierney, 1994). More specifically, we use the
Gibbs sampling technique proposed by Geman and Geman (1984)1 and the
Metropolis-Hasting sampler which was developed by Metropolis et al. (1953)
and subsequently generalized by Hastings (1970).

The Gibbs sampler requires the full conditional probability density function
of all the parameter distributions. These distributions are of known form for all
parameters, except for γ2,i and Mi. The distributions can be found in Green-
berg (2012). The remaining parameters γ2,i and Mi have unknown full condi-
tional posterior distributions. We estimate the posterior distribution with the
Metropolis-Hasting technique. A detailed explanation of the Metropolis-Hasting
technique is found in Chib and Greenberg (1995). We use a normally distributed
candidate function and use the first 4,000 draws from the sampler to calibrate
parameters of the candidate. The candidate is calibrated in such a fashion that
it attempts to realize an acceptance rate between 20% and 40%.

4.3 Forecast Evaluation

The draws of the posterior distributions are used to forecast sales. These forecasts
are compared to forecasts of a Bayesian MSM with constant elasticities. The

1 For a thorough elaboration of the Gibbs sampler we refer to Casella and George
(1992).
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only difference between the CPRM and the MSM is the second level in the
CPRM, where we allow price sensitivity to depend on price position. Insights in
forecasting performance allows us to assess the added value of the changing price
sensitivity specification. In addition, we use forecasting evaluation to determine
the best substitute value for the remaining data points with sales values of zero,
as described in Subsection 4.1.

We evaluate the forecast performance of the model by analyzing the pre-
dictive Bayes factor. This is a well established concept for model comparison
(Geweke, 1994). Geweke and Whiteman (2006) present a thorough elaboration
on the predictive Bayes factor, in this section, we recapitulate the technique for
a one step ahead forecast, as we only use these in our paper. The purpose of our
model is optimizing prices, and as the parameters of the model can be estimated
every day, there is no need to forecast further in the future. In addition, we
evaluate over 65.000 products, so we do not need more forecasts to increase reli-
ability of our results. We use 167 days to estimate the parameters of the model
and 1 day to evaluate forecasts. Although one could argue that a cross-validation
method generates more reliable results and Kohavi (1995) argues that ten-fold
stratified cross validation performs best in real-world datasets, we do not use
those advanced techniques. Our dataset is extensive enough to return reliable
results and the computational expensive method is not suitable for these high
number of validation runs.

The predictive Bayes factor is a technique to compare the posterior predic-
tive densities of two models. These posterior predictive densities represent the
likelihood of future values, conditional on all available data and the model. Let
yi,T+1 be the sales of product i in future period T + 1, YT the set of all sales

data of all products from time 1 to time T , {yi,t}Ni=1 ∀t = 1, . . . , T , where N is
the number of products. We define XT as the set of all explanatory variables
of all products at time 1 to time T and θi,A as the set of all the parameters of
product i and model A. To compare model A and B, we calculate the predictive
Bayes factor,

PBFA|B =
p (YT+1|YT , XT , A)

p (YT+1|YT , XT , B)
=

∏N
i=1 p (yi,T+1|YT , XT , A)∏N
i=1 p (yi,T+1|YT , XT , B)

. (4)

The predictive likelihood of model A for product i can be rewritten as

p (yi,T+1|YT , XT , A) =

∫
θi,A

p (yi,T+1, θi,A|YT , XT , A) dθi,A

=

∫
θi,A

p (yi,T+1|θi,A, YT , XT , A) p (θi,A|YT , XT , A) dθi,A.

The Gibbs sampler provides us with draws from the posterior density of the
parameters, p (θi,A|YT , XT , A). We can use these draws to approximate the pre-
dictive likelihood,
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p (yi,T+1|YT , XT , A) ≈ 1

M

M∑
j=1

p
(
yi,T+1|θ(j)i,A, YT , XT , A

)
where (j) denotes the jth draw of the Gibbs sampler and M is the total number
of draws.

The full conditional posterior distribution of yi,T+1 is known for our CPRM
and the MSM. Equation 1 shows the mathematical representation of Si,T+1, that
corresponds to yi,T+1 in the example. This results in the distribution

yi,T+1|θ(j)i,A, YT , XT , A ∼ logN
(

log ŷ
(j)
i,T+1, σ

(j)2
εi

)
,

with

ŷ
(j)
i,T+1 = exp

(
α
(j)
1,i

)
y
ρ
(j)
i

i,T P
φ
(j)
i,T+1

i,T+1 β
(j)D1,T+1

1,i β
(j)D2,T+1

2,i β
(j)D3,i,T+1

3,i gt
β
(j)
4,i

p,T (T + 1)
β
(j)
5,i .

We calculate φ
(j)
i,T+1 using Equation 2, that is,

φ
(j)
i,T+1 = α

(j)
2,i +Ω

(j)
i,T+1 (Pi,T+1) + β

(j)
6,iD4,i,T+1, (5)

where Ω
(j)
i,T+1 (Pi,T+1) is the result of Equation 3 for draw j of the parameter

distribution,

Ω
(j)
i,T+1 (Pi,T+1) = γ

(j)
1,i exp

(
γ
(j)
2,i

(
M

(j)
i − Pi,T+1

)2)
.

The resulting predictive Bayes factor indicates the predictive performance of
model A compared to model B. A predictive Bayes factor higher than 1 repre-
sents superior performance of model A and a predictive Bayes factor lower than
1 represents superior performance of model B.

5 Price Optimization

The proposed CPRM enables us to forecast sales in units and profits for differ-
ent price positions of products and can therefore be used to determine optimal
prices corresponding to these forecasts. In this section, we discuss the process
of determining those prices and set up an empirical test to assess the quality of
the CPRM pricing strategy.

5.1 Determining Optimal Prices

Because of the complex construction of the multiple stages in the model, an
analytical solution for optimal prices using derivatives in infeasible. For this
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reason, we use a simulation method to determine optimal prices. First, we study
the distributions of expected profits and sales for a grid of different prices. We
use draws from the Gibbs sampler to simulate from these distributions. Secondly,
we use the distributions of the expected profits and sales for all different prices to
determine the optimal price. We employ an objective function to allow managers
to balance profits and sales, as both are important targets.

E-commerce companies can change their prices with almost no time costs.
This causes companies to continuously change prices. Since companies can alter
their price the next day, we decide to optimize the price for a one day ahead
forecasts.

First, we determine expected sales distributions given all data, as profits are
easily computed when expected sales are known. For each draw j of the Gibbs
sampler, we calculate the expected sales conditional on the model parameters.
All draws are combined to create the unconditional posterior distribution of
sales.

To decrease computation time of the algorithm and storage space required,
we simplify the optimization of the sales to a sales multiplier. By the construction
of the sales, Si,t, described in Equation 1, we can see that the effect of the price
on Si,t is fully captured by Pi,t and φi,t. All other variables and parameters are
multiplied constants. These parameters and the error term can be ignored, as
we only want to optimize the sales for the price position.

Let Xt be a collection of all explanatory variables used in the CPRM at time
t and Ψi,t a collection of all parameters in the CPRM of product i at time t. The
draws from the expected sales multiplier distribution are calculated by

ESF
(j)
i,t (Pi,t) = E

[
S∗i,t (Pi,t) |Ψ (j)

i,t , Xi,t

]
= P

φ
(j)
i,t

i,t ,

where the ESF
(j)
i,t is the expected sales multiplier forecast of product i at time

t conditional on parameter draw j and all data, we removed the conditional
notation to simplify notation in later parts of this section. The asterisk denotes
a sales multiplier, rather than absolute sales and Pi,t is the price position subject
to optimization.

We have no forecasts of the market price, so we assume that it remains
constant over time. Although this assumption is unlikely to hold, we do not
expect market price to change a lot in one day. For this reason, we neglect the

estimation bias caused by the omitted forecasts. φ
(j)
i,t is calculated similar to the

method shown in Equation 5.
The expected profit πi,t given Xt is calculated by multiplying the margin

with the expected sales,

E
[
πi,t (Pi,t) |Ψ (j)

i,t , Xi,t

]
= E

[
Si,t (Pi,t) |Ψ (j)

i,t , Xi,t

]
(Pri,t − Ci) ,

where Ci are the variable costs of product i and Pri,t is the absolute price of
product i at time t.
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We can simplify the profits to a profit multiplier, by eliminating all irrelevant
parameters, similar to the method we used to simplify sales to a sales multiplier.
We determine the expected profit multiplier forecast, EPFi,t, similar to the
ESF ,

EPF
(j)
i,t (Pi,t) = E

[
π∗i,t (Pi,t) |Ψ (j)

i,t , X
(j)
i,t

]
= P

φ
(j)
i,t

i,t (Pri,t − Ci) ,

After calculating all distributions of expected profit and sales multipliers for a
different number of price positions, we determine the optimal price by selecting
a price that optimizes an objective function. This objective function can be
adjusted to optimize both the average expected profits and average expected
sales, because both can be relevant in determining a price. To incorporate this
multi component objective, we need to be able to compare both sales and profit
multipliers. We do this by calculating maximum forecast sales multiplier and
profit multiplier in our price grid and divide forecast sales multiplier and profit
multiplier by these numbers.

Maximum profit multiplier is calculated by evaluating the average expected
profit multipliers for all price positions on the price grid, that is,

EPFmax
i,t = max

P

 1

M

M∑
j=1

EPF
(j)
i,t (Pi,t)

 .

The maximum sales multiplier is always at the lowest price position, as we impose
a restriction for price elasticity to be negative and sales are in units. To determine
the maximum sales multiplier, we calculate the ESF for the minimal price,

ESFmax
i,t =

1

M

M∑
j=1

ESF
(j)
i,t

(
Pmin
i,t

)
,

where Pmin
i,t is the minimal price position on the price grid.

In order to compare both revenue and sales, these two metrics are used to
scale the averages of the EPF and ESF distributions and calculate EPF and
ESF scores, denoted as EPFS and ESFS respectively, that is,

EPFSi,t (Pi,t) =
1
M

∑M
j=1EPF

(j)
i,t (Pi,t)

EPFmax
i,t

,

ESFSi,t (Pi,t) =
1
M

∑M
j=1ESF

(j)
i,t (Pi,t)

ESFmax
i,t

.

Note that these metrics of the multipliers are slightly different from the metrics
of the absolute sales and profits, caused by the correlation between the draws of
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the Gibbs sampler for different parameters. We do not expect a large difference,
as the sales and profit multipliers are very correlated with the absolute sales and
profits. Thus, the benefits of calculating all the expected sales and profits do not
outweigh the costs of performing the exorbitant number of computations needed
to compute the absolute values.

We combine these two metrics with two weights to create the objective func-
tion, subject to optimization,

Γ (ω1, ω2) = max
P

(ω1EPFSi,t (Pi,t) + ω2ESFSi,t (Pi,t)) , (6)

with ω1 + ω2 = 1. The price position that yields the highest value for Γ (ω1, ω2)
is determined to be the optimal price position. Managers can determine their
own weights for ω1 and ω2, so price optimization corresponds to their chosen
strategy.

One could extend the objective function to enable managers to reduce the risk
of their price policy. This can be done by adding a metric of risk to the objective
function, such as the variance in the profit and sales multiplier distributions.

Although the algorithm is a theoretical solid method, it requires a lot of
storage capacity to store all the draws for these products. To limit the required
storage, we propose a simplified method to the previously proposed simulation
method. We calculate forecast loss and efficiency gain to assess the quality of the
procedure. The simplified procedure uses the mean of the parameter distribution
as a point estimation for the parameters, so we do not need to store all draws.
Using a point estimate is an accepted method to simplify posterior Bayesian
distribution results (Greenberg, 2012). We refer to this pricing strategy as the
Point Estimate CPRM strategy (PE-CPRM strategy).

5.2 Field Experiment

Rather than only assessing the theoretical value of our model, we test our pricing
strategy in a field experiment. In this field experiment we analyze and compare
the effects of the CPRM price strategy and the PE-CPRM price strategy in
the store of an e-commerce company. Figure 5 shows the set-up of the field ex-
periment. First, we divide the products into three groups. Three different price
strategies are used to price the products in these three groups, the CPRM strat-
egy, PE-CPRM strategy and the follow-stop strategy, in which we always follow
the cheapest competitor unless the profit margin is negative. Secondly, we eval-
uate resulting revenues, sales (in units), profits, objective score and the price
indices in the test period. Objective scores denote the weighted percentage in-
crease in sales and profits, corresponding to the weights of the objective function
subject to optimization in the field experiment, described in Equation 6. We use
percentage increase rather than absolute sales and profits, because these metrics
can be compared.

The products are assigned by stratified sampling to each group (Cochran,
1953). We divide all products into four price ticket groups: low prices, medium-
low prices, medium-high prices and high prices. In addition, we split the products
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Fig. 5: Set-up of the field experiment.

into four revenue groups: low revenue, medium-low revenue, medium-high rev-
enue and high revenue. The final result is a grid of 16 product groups. Each of
the three samples contain an equal share of products from each group. Using this
procedure allows us to compare results of the three samples, since our samples
contain comparable products.

Neyman (1934) argues that sampling methods are not always perfectly rep-
resentative. We correct this problem by evaluating our results with a difference-
in-difference (DiD) evaluation. The DiD approach is a widely used method to
correct for differences in groups, if pre-treatment information is available. We
refer to Lechner (2011) for an overview of research conducted with DiD. Rather
than comparing absolute values of profit, sales and revenues of the three strategy
groups, we compare growth of the three groups relative to a benchmark period
before our test. We show a graphical representation of this growth in Figure 6,
where ∆ represents the growth. To make the benchmark period comparable to
the test period, our benchmark period consist of the same number of weeks as
the test period. Additionally, our benchmark period is the period right before the
experiment starts. This is the most comparable period, due to the high number
of changes in the e-commerce business.

Let Sg,b be the sales of strategy group g in the benchmark period and Sg,e the
sales of strategy group g in the test period. We can now calculate the difference
∆g by
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Fig. 6: Example of Difference-in-Difference evaluation of our field experiment.

∆g = Sg,e − Sg,b

for all strategy groups. In addition, we compute the percentage change, ∆%,g,
and the average change per product per week, ∆p.p.p.w,g,

∆%,g =
Sg,e − Sg,b

Sg,b
,

∆p.p.p.w,g =
1

T

1

Ng

T∑
t=1

Ng∑
i=1

Sg,e,i,t − Sg,b,i,t,

where i denotes a product, t the week in the test or benchmark period, Ng is
the total number of products in strategy group g and T is the length of the test
and benchmark period in weeks.

Comparing the different changes gives us the DiD results. The results of the
CPRM group compared to the follow-stop group show us the potential of the
pricing strategy. The results of the PE-CPRM sample assess the trade-off be-
tween storage capacity and sales and profit optimization of using the simulation
method compared to the point estimate method.
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We analyze the effect of price changes during the test period to see what
the effect of the strategies is on the prices. We assess these price changes by
measuring the price index of the products in the strategy group. The price index
is the average indexed change in price relative to the week before the experiment
starts. Let Pg,i,t be the price of product i in strategy group g at time t. We denote
t0 as the week before the test starts, the last week of the benchmark period. This
is our benchmark for price changes. The price index, PIg of a strategy group is
calculated as follows,

PIg =
1

T

1

Ng

T∑
t=1

Ng∑
i=1

Pg,i,t
Pg,i,t0

.

The resulting price index is used to analyze the results of price changes, but also
to confirm hypotheses about the sales and profit results in the next section.

6 Empirical Results

In this section, we discuss the results of the CPRM model. We estimate the
parameters of our model for all product categories described in Section 3. The
results are used to evaluate three subjects of marketing research. First, we ana-
lyze the effects of price position on price sensitivity, using the estimation results.
Secondly, we investigate the forecasting possibilities of the model, calculating
the predictive Bayes factor, and lastly, we asses the practical use of our model
as a price strategy in a field experiment.

6.1 Estimation Results

We estimate the parameters of the CPRM using a combination of Gibbs sampling
and Metropolis Hasting sampling, as described in Subsection 4.2. The results
are based on 30,000 draws. Unreported plots of parameter draws show that the
Markov chain is converged after 3,000 draws, so the first 3,000 are used as burn
in. To remove autocorrelation in the Markov chain, we use a thin value of 10,
which means that we only consider every tenth draw of the sampler. The analyses
below only concern price effects, as all other effect are out of the scope of our
research.

Before we estimate the parameters of the model, we solve a problem of the
logarithmic transformation we employ. The logarithmic transformation does not
allow for zero values in the sales, as described in Subsection 4.1. The CPRM
is estimated for different replacement values for the zero values. To determine
the replacement value with the best model fit, we assess forecasting power of
the different estimated models for one day ahead forecasts of 5,657 products
in the Domestic Appliances product category. The predictive Bayes factor is
used to evaluate forecasts, as described in Subsection 4.3. We perform a t-test
on the average predictive likelihood to test the significance of the difference
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Table 3: Heat map of average price elasticities of all products per product cat-
egory and price ticket group. Darker color represents a higher price elasticity.
Elasticities are calculated at a price position of 1, excluding the minimal price
effect. The cells that are empty do not contain enough products to produce re-
liable results. Averages denote the average price elasticity of all products in the
category or price ticket group.

Product category \ Price �cket (€) < 10 10 - 19.99 20 - 49.99 50 - 99.99 > 100 Average

Beauty & Care -2.40 -2.67 -4.52 -7.96 -4.31 -2,99

Cooking, Dining & Houseware -2.38 -2.91 -3.79 -3.81 -3.62 -3.36

Sound & Vision -2.31 -3.04 -4.01 -5.32 -7.42 -5,07

Sport & Leisure -2.45 -2.97 -4.20 -5.01 -7.96 -4.11

Jewelry, Watches & Accessories -4.95 -8.45 -11.23 -6,14

Health & In�macy -2.42 -2.74 -2.97 -3.17 -2,66

Pet -3.01 -4.16 -6.87 -5.61 -4.82 -4.92

Home Furnishing -1.55 -3.17 -3.65 -4.32 -4.46 -3.66

Home Improvement & Gardening -2.88 -3.44 -3.57 -6.07 -5.42 -4.28

Domes�c Appliances -1.99 -4.00 -5.71 -7.12 -9.39 -6,60

Mobile & Tablets -1.66 -2.59 -4.02 -5.51 -7.32 -5,25

Computer & Games -2.92 -3.71 -4.11 -8.73 -6.74 -5.16

Baby -2.58 -3.10 -3.77 -4.12 -5.32 -3.31

Average -2.47 -3.19  *** -4.42  *** -5.52  *** -7.30  *** -4.55

Note: We perform a t-test to test for significant difference in average price elasticity
compared to the lowest price ticket group. *, ** and *** represent a significant
difference in average price elasticity with a 0.05, 0.01 and 0.001 p-value threshold
respectively.

in forecast performance for different replacement values. Because of the high
computational costs of estimating the model, we only analyze the difference in
forecasting performance for replacement values 0.01 and 0.001. We do not find
any significant differences in the results, so we decide to use a replacement value
of 0.001.

We start our analyses of price effects by summarizing the average estimated
price elasticities of all product categories for a number of price ticket groups. The
price elasticities are calculated at price position M = 1, because by definition,
this is the price position at which products are most likely to be priced. We do
not yet consider the increase of sensitivity caused by the minimal price position.
With a price position of M = 1, it is unlikely that the product is the lowest
price in the market, as this only occurs if almost all competitors have the same
price. The average elasticities are reported in Table 3. The darker colors in the
heat map represent a higher price elasticity and lighter colors a lower price
elasticity. The last column and row state the average price elasticities of the
corresponding product category or price ticket group. We use a t-test to test for
a significant difference in average price elasticities for the different price ticket
groups, compared to the lowest price ticket group.
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Table 4: Estimation results of the second level parameters. The first half of the table shows the average posterior mean of all products of the estimated
second level parameters in the CPRM per product category. In the second part we calculate points of interest, where the maximum price elasticity is
the maximum increase added to the baseline price elasticity without considering minimal price effect, the price position multiplier denotes the ratio
of the maximum price elasticity to the baseline price elasticity and the minimal price multiplier denotes the ratio of the price elasticity of products
with minimal price effects to products without minimal price effects, at the midpoint price elasticity. The midpoint price elasticity is calculated as
the average of the baseline and maximum price elasticity.

Beauty Cooking, Dining Sound Sport Jewelry, Watches Health Home Home Improvement Domestic Mobile Computer

& Care & Houseware & Vision & Leisure & Accessories & Intimacy Pet Furnishing & Gardening Appliances & Tablets & Games Baby

Coefficients

Baseline −1.69 −2.43 −3.20 −2.95 −4.98 −1.80 −3.34 −2.67 −3.12 −3.44 −3.27 −2.21 −2.48

Maximum increase −3.79 −2.57 −4.66 −3.46 −3.05 −2.21 −3.07 −2.80 −2.87 −4.57 −4.84 −6.04 −2.48

Slope −1.40 −0.71 −0.62 −0.50 −0.23 −0.61 −0.43 −0.44 −0.46 −0.68 −0.51 −0.96 −0.56

Most sensitive point 1.60 1.47 1.47 1.13 0.99 1.64 1.49 1.68 1.50 1.48 1.40 1.50 1.52

Minimal price effect −1.50 −1.84 −2.13 −2.60 −2.77 −1.59 −2.36 −2.23 −2.43 −2.38 −2.63 −1.97 −2.05

Points of interest

Maximum price elasticity−5.48 −5.00 −7.86 −6.41 −8.03 −4.01 −6.41 −5.47 −5.99 −8.01 −8.11 −8.25 −4.96

Price position multiplier 3.24 2.06 2.46 2.17 1.61 2.23 1.92 2.05 1.92 2.33 2.48 3.73 2.00

Minimal price multiplier 1.42 1.50 1.39 1.56 1.43 1.55 1.48 1.55 1.53 1.42 1.46 1.38 1.55



There are three remarkable results in the heat map. First, we see a significant
overall increase in price elasticity as price ticket increases. The average price
elasticity for high ticket products is more than twice as high as the average price
elasticity for low ticket products, more specifically the average price elasticity
rises from -2.47 to -7.30. We hypothesize that this increase in price elasticity
is caused by the fact that customers spent more time and energy in comparing
prices for more expensive products and therefore become more price sensitive.
Further research can improve our understanding of this subject.

Secondly, we find a clear difference in price sensitivity across product cate-
gories. More specifically, we find that the average elasticities differ from -2.66 to
-6.60. This is in line with our expectations and emphasizes the importance of es-
timating models for different product categories separately to reduce estimation
errors.

The last notable finding is that our estimated price elasticities are much
higher than the reported average price elasticities of the survey studies on price
elasticities. Tellis (1988) finds an average price elasticity of -1.76 and Bijmolt
et al. (2005) find an average price elasticity of -2.62. This is substantially lower
than our average price elasticity of -4.27 at price position M = 1. There are two
explanations for this finding. First, we consider the products price position, so
in our estimated price elasticity only the price elasticity at the market median is
considered, whereas the research of Tellis (1988) and Bijmolt et al. (2005) con-
sider all price positions. Other price positions than the median can result in lower
price elasticities. Secondly, our data is gathered solely by an e-commerce com-
pany. Customers on the Internet are better informed because of easily accessible
information (Bakos, 2001) and can therefore be more price sensitive.

To analyze the effect of price position on price elasticity, we summarize the
average posterior means of the second level parameters of all products in a
product category in Table 4. Most parameters are subject to a log-normal prior
distribution and are therefore never zero. For this reason, we do not test for
significant difference from zero. We report points of interests in the second part
of the table, which shows the average maximum price elasticity, the ratio of
the average maximum price elasticity to the average minimum price elasticity,
and the ratio of the price elasticity of products with minimal price effects to
products without minimal price effects, at the midpoint price elasticity. The
midpoint price elasticity is calculated as the average of the baseline and the
maximum price elasticity.

We find that price position has a strong influence on the price elasticity
of a product. The maximal price elasticities of almost all product categories are
twice as high as the baseline price elasticity. This confirms our hypothesis and the
theory of Phillips (2005) that price elasticity changes as price position changes.
Additionally, we see that both the baseline price elasticity and the increase
in price elasticity are different across categories. Products in the Computer &
Games product category have low price elasticities when their price position is
low, while their price elasticities increase relatively fast, when their price position
approaches 1.5. The opposite is true for the product category Jewelry, Watches
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Fig. 7: Overview of average price elasticities of all product categories from a price
position of 0.5 to 1.5, without considering minimal price effect.
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& Accessories. Products in this product category have high price elasticities and
price elasticities change relatively little when price position changes.

Contrary to our initial thoughts, the most price sensitive point in the market
turns out to be at a higher price position than the market median for most
categories. This means that in general, price sensitivity increases when price
position increases. Figure 7 shows the average price elasticities of all product
categories for price positions ranging from 0.5 to 1.5. We can clearly see the
substantial change in price elasticity when price position increases, but we also
see that, for most categories, this change is solely negative. Note that we did not
consider the minimal price effect, which increases price sensitivity again when
price decreases.

Our hypothesis that price elasticity of a product is higher when it has the
lowest price in the market, the minimal price effect, is confirmed by our results.
Average price elasticities increase between 39% and 56% when products become
the lowest in the market. This means that customers are very sensitive to price
comparisons and tend to buy products which have the lowest price in the market,
regardless of the store that offers the product.

Figure 8 shows the average price elasticity of the product categories of price
positions from 0.5 to 1.5, including the minimal price effect when price position
is lower than 0.75. We can see that the change of price elasticity, caused by
the minimal price effect, is considerable for all product categories. Relative to
the change in price elasticity, caused by price position, the minimal price effect
differs across product categories. Minimal price effect for products in the Sport
& Leisure category is high relative to the effect of a change in price position.
The opposite is true for products in the product category Computer & Games,
which are relatively more effected by changes in price position.

To assess the uncertainty in our estimations, we analyze the standard devi-
ations of the posterior distributions of the parameters in the second level of the
model. Figure 9 shows the standard deviation of the posterior distribution of
each product, for each parameter in the second level of the model.

An interesting finding is that the standard deviations of the log-normal dis-
tributed parameters (α2, γ1 and β6) are high. This means that the data did not
contain enough information to estimate the parameters with a high degree of
certainty on the product level. This uncertainty is caused by complex specifica-
tion in the second level of the model combined with the high degree of freedom.
Although there is a high degree of uncertainty in the parameters on the product
level, the conclusions made on the parameter estimations are valid, because of
the high number of evaluated products. The uncertainty might cause problems
for the models applications on the product individual level, such as forecasting.

For the most sensitive price position M , we also find relatively high standard
deviations, as the population location parameter, corresponding to the popula-
tion mean, is priori uniformly distributed on the interval [0.5, 1.5] and average
standard deviation is 1.66. This means that the data did not contain enough
information to find certainty in the distribution of M , possibly caused by the
fact that the population mean of M was not in the interval [0.5, 1.5].
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Fig. 9: Histogram of posterior standard deviations of the parameters in the sec-
ond level of the model across products. Every standard deviation corresponds to
one product in the model.

Figure 10 shows the posterior distributions of the population location pa-
rameters of the parameters in the second level of the model for all categories.
One thing that stands out is the skewness of the posterior distribution of the
population location parameter of the most sensitive price position parameter M .
The prior distribution limits the possibility for a posterior population location
parameter above 1.5, while the results show that the posterior population lo-
cation parameter is probably higher than 1.5. This explains the high standard
deviation in Figure 9. A higher value of M , would result in a more linear decrease
in price elasticity as price position increases on the interval [0.5, 1.5]. Again, this
is in line with our earlier findings of Figure 7, where we see that most average
price elasticities increase as price position increases.

Given the results of Figure 7, Figure 9 and Figure 10, we reject our hypothesis
of the U-shaped price elasticity as price position changes proposed earlier in this
paper and conclude that, in general, there is a linear decreasing trend in price
elasticity if price position changes. Our model is able to incorporate this linear
decreasing trend by estimating a high value for the most price sensitive price
position. Note that the limits on M do not necessarily cause problems for our
model, as the slope parameter γ2 can still model the linear downward trend.
Rather than our hypothesized sigmoid shaped demand function, this creates a
more concave demand function, possibly to reduce the convex shape of the first
level, that is created by the MSM model shown in Figure 1. Further research
could prove this hypothesis by estimating the CPRM with an additive first level,
rather than a multiplicative level.
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Fig. 10: Posterior distributions of the population location parameters of the pa-
rameters in the second level of the model for all categories

The negative linear trend in price elasticity as price position changes, when
corrected for the minimal price effect, shows that a price decrease when price
position is high, results in a relative bigger customer increase than when price
position is low.

For the remaining parameters, we see multiple peaks at different values. This
represents the difference across categories. These findings are in line with our
earlier results, presented in Table 4.

6.2 Forecast Results

To determine predictive power of the changing price sensitivity specification, we
create one day ahead forecasts with the CPRM and the MSM. The only difference
between the models is the changing price sensitivity in the second level of the
CPRM, so the difference in forecast performance represents the added forecasting
power by the second level. We forecast sales of 65,900 products divided over all
product categories, except for the Domestic Appliances product category. We
use the forecasts of the product category Domestic Appliances to determine the
replacement of zero values and therefore these forecasts could be subject to over
fitting.

The MSM specification of the model can not forecast zero values, so we
replace all zero values in the forecast sample with 0.001. This corresponds to the
values used to estimate the parameters of the model.

Table 5 shows the average predictive likelihood of the forecast distributions of
all individual products by the CPRM and MSM, the predictive Bayes factor and
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Table 5: Forecast comparison of the CPRM and MSM. First two columns show
the average predictive likelihood, third column shows the predictive Bayes factor
and the final column shows the number of forecasts. The last row denotes the
aggregated results for all products.

CPRM MSM PBF # Forecasts

Home Improvement & Gardening 7.29 7.79 0 *** 6, 000

Sport & Leisure 7.37 7.97 0 *** 4, 000

Cooking, Dining & Houseware 10.82 11.40 0 *** 6, 800

Sound & Vision 7.44 7.79 0 *** 5, 800

Computer & Games 4.45 4.78 0 *** 8, 300

Beauty & Care 6.21 6.59 0 *** 9, 900

Home Furnishing 13.25 13.74 0 ** 5, 300

Pet 8.64 11.19 0 *** 3, 500

Baby 7.77 9.11 0 *** 6, 300

Health & Intimacy 7.14 8.31 0 *** 3, 200

Jewelry, Watches & Accessories 11.27 10.80 ∞ 2, 600

Mobile & Tablet 11.38 11.27 1, 900 4, 200

Total 8.17 8.77 0 *** 65, 900

Note: We perform a t-test to test for significant difference in average predictive
likelihood. *, ** and *** represent a significant difference with a 0.05, 0.01 and 0.001
p-value threshold respectively.

the number of unique products per category. The bottom row shows the results
for all products aggregated. The difference in the average predictive likelihood
of the CPRM and MSM is tested for significance with a t-test, to determine the
reliability of the results.

When we compare the predictive performance of the CPRM and the MSM,
aggregated over all categories, we find a predictive Bayes factor of 0. This means
that in general, the forecasts created by the MSM are better than the ones cre-
ated by the CPRM. Furthermore, all categories show either a Bayes factor of 0 or
an insignificant difference in predictive likelihoods. As a result, we conclude that
the second level specification does not improve forecasting performance. This is
caused by the fact that the second level has a complex specification for price
effects, which is useful for analyzing theoretical effects of price position on price
sensitivity, but not for forecasting purposes. One explanation for this problem
is that we over fit the data. This occurs when the high degree of freedom in our
model finds non general patterns, only existent in our data sample, but not in
future observations. We refer to Babyak (2004) for a more elaborate explanation
of overfitting. Another explanation is that the high degree of uncertainty in the
posterior distributions of the second level parameters reduced the forecast accu-
racy. Further research can find other applications of competitor prices that do
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improve forecasting. In the next subsection, we discuss the result of the CPRM
in a field experiment.

6.3 Field Experiment Results

The effectiveness of the CPRM price strategy is tested in a field experiment,
where the optimized prices described in Section 5 are used as prices in the store of
an e-commerce company. The results of this strategy are compared to the results
of the PE-CPRM strategy and the follow-stop strategy. The test period consist of
35 days. The benchmark period is equal in size, to make the metrics comparable
in our DiD approach. Prices are changed twice a week. We evaluate the metrics
revenue, sales (in number units sold), profits and objective score. The objective
score is the weighted percentage increase in sales and profits, corresponding to
the objective function employed in the field experiment. In addition, we analyze
the changes in average price indices as a result of the different price strategies.

The price grid used to find optimal prices consist of 100 price positions,
uniformly distributed in the range of the lowest competitor price and the price
5% higher than the highest competitor price. This range has two advantages.
First, we never price ourself lower than the market, avoiding a price war with
competitors. Secondly, the strategy is able to increase the price higher than all
competitors if deemed necessary, but we never increase price much above the
market price to protect the companies price perception.

We divide our products in two groups, low price ticket and high price ticket
groups. These price ticket groups contain products cheaper than e20,- and prod-
ucts equally or more expensive than e20,- respectively. The products are sep-
arated, because Table 3 shows a strong increase in price sensitivity as absolute
price increases. It is interesting to see whether this influences the performance
of the CPRM or not.

Our test group contains 9,824 products of the product category Domestic
appliances. These products are distributed over the three strategy groups, us-
ing the method described in Subsection 5.2. In the test period, numerous price
changes occurred that did not correspond to the pricing strategy. The prices are
changed by the category managers, if they put an item in promotion, the supplier
provides a special discount to lower the price or the product gets marked as dead
stock. We call these price changes pollution of the test. All polluted products
are removed from the test sample and we perform a quantitative analysis on the
remaining products.

Fortunately, the unpolluted products are almost distributed similar to the
segmentation prior to the test. The CPRM group contains 694 products, the
PE-CPRM group consist of the same number of products and the follow-stop
group holds 701 products. Evaluated metrics in the benchmark period are not
equal among the different groups. Our employed DiD method corrects for this
pollution.

The pricing expert of our studied company determined the weights in ob-
jective function to optimize prices, as these need to be in line with their own
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Table 6: Change of revenue, sales and profit of test products. Results are split in groups for low ticket products (<e20) and high
ticket products (≥ e20). The first column shows the absolute change in euro or units, where revenue and profit are in euro and
sales are in units, the second column shows the percentage increase and the third column shows average euro or units increase per
product per week (p.p.p.w.). The objective score denotes the weighted percentages of sales and profit increase, corresponding to
the objective function. The final column shows the number of unique products in each group.

Revenue Sales Profit Obj. # unique

Test group Increase % Increase p.p.p.w. Increase % Increase p.p.p.w. Increase % Increase p.p.p.w. score products

Low ticket products

CPRM −2, 298 −1.9% −1.58 −199 −2.7% −0.14 842 6.0% 0.59 0.78 287

PE-CPRM 9, 949 5.9% 6.17 ** 513 4.7% 0.32 ** 4, 447 27.8% 3.11 ** 13.91 303

Follow-stop −3, 577 −3.0% −2.24 −384 −5.5% −0.24 1, 662 13.8% 1.04 2.20 319

High ticket products

CPRM −39, 745 −8.6% −19.44 *** −1, 161 −14.5% −0.57 ** 8, 839 16.8% 4.35 ** −1.99 407

PE-CPRM −60, 558 −14.1% −31.09 *** −1, 222 −18.4% −0.63 *** 2, 109 4.4% 1.22 *** −9.25 391

Follow-stop 38, 524 10.6% 20.17 −413 −6.3% −0.22 17, 147 34.7% 8.98 10.08 382

Note: Significance is tested for the average increase per product per week. We perform a t-test to test for a difference in average increase
compared to the follow-stop strategy. *, ** and *** represent a significant difference in average increase with a 0.1, 0.01 and 0.001 p-value
threshold respectively.

pricing strategy. Effects of these weights are left to further research. We use a
weight for ω1 of 0.4 and 0.6 for ω2.

We begin by summarizing the resulting changes in revenue, sales, profit and
objective score, where sales always denote sales in units, revenue and profits are
in euro and the objective score denotes the percentage increase of both sales and
profits, corresponding to the weights of the objective function used in the price
test. We assess the effectiveness of optimizing the objective function with the
objective score.

Table 6 shows the absolute increase in euro or units, the percentage increase,
the average increase per product per week of our different metrics. In addition,
it shows the objective score and the last column shows the number of products
in each group. Significance is tested for average increase per product per week,
as total increases can be highly influenced by one or two products. To limit
these influences further, we evaluate both the average increase of revenue and
sales per unit to determine significance. The significance is tested for the CPRM
and PE-CPRM groups, compared to the results of the follow-stop group. The
null-hypothesis is an equal average increase per product per week.

For the low ticket products, we find that the CPRM strategy does not sig-
nificantly change the results of all metrics. However, the PE-CPRM strategy
does improve all three metrics significantly compared to the follow-stop group.
The PE-CPRM increases revenue growth by 9.9%, sales growth by 10.2%, profit
growth by 14.0% and the objective score by 11.7. We did not expect the PE-
CPRM to outperform the CPRM, as the CPRM uses more information to cal-
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Fig. 11: Revenue, sales and profits of each test group in the benchmark and test
period by ticket size. Reported numbers are in thousands.

culate optimal prices. Evidently, the complex information in the full distribution
of the price elasticity does not improve the calculation of optimal prices. This is
probably caused by the high variance in the posterior distributions of the param-
eters, which are more sensitive to extreme values. Therefore, the high variance
can reduce quality of the optimized prices.

In the high ticket group, both the CPRM and PE-CPRM reduce growth in
all metrics. Revenue, sales and profit growth are reduced up to 24.7%, 12.1%
and 30.4%. The objective score is reduced up to 19.3 points. Two arguments
can explain these results. First, the follow-stop strategy follows the cheapest
competitor in the market, as long as the margin is positive. Because of the
relative high price elasticity in the high ticket product group, this might always
be the best strategy. Note that our strategy is able to incorporate a strong

35



0.98

1.00

1.02

1.04

2 4 6
Week

Pr
ic

e 
in

de
x

CPRM PE−CPRM Follow−stop

Low Ticket Products

1.00

1.01

1.02

1.03

1.04

2 4 6
Week

Pr
ic

e 
in

de
x

CPRM PE−CPRM Follow−stop

High Ticket Products

Fig. 12: Price indices of the CPRM, PE-CPRM and follow-stop test groups rela-
tive to week 1, the week before the test started. Price indices are shown for each
week of the test period and for each price ticket group.

competitive strategy like this, by choosing a high weight on sales, rather than
profit.

The second reason is the result of pollution in the test. We hypothesize that
the prices of the high ticket products of the benchmark period of the follow-
stop group are relatively cheap. This can only be caused by pollution, because
the segmentation described in Subsection 5.2 also segmented the products into
equally priced groups. The origin of our hypothesis is that we find that revenue
and profits increase much more than sales in units. This indicates relatively
cheap products in the benchmark period and an increase in price during the
test period. Because the strategy does not change between benchmark and test
periods for the follow-stop strategy, the cheapest competitor must have raised
its prices during the test period or variable costs have risen, which is unlikely
as profits have risen as well. This increase in price index results in a good per-
formance of the follow-stop group, not caused by the strategy, which makes the
DiD results of the CPRM and PE-CPRM poor. To test this hypothesis we look
at our benchmark period.

Figure 11 shows revenues, sales and profits in the benchmark and test period
for the CPRM, PE-CPRM and follow-stop strategies for the low and high ticket
groups. As expected, we find low revenue for the benchmark period for high
ticket products of the follow-stop group, combined with relatively high sales. The
average price of sold products in the benchmark period is e59, compared to e68
and e80 for the CPRM and PE-CPRM groups respectively. The average price
index of the benchmark period can only increase if the market price increases,
which is not caused by the follow-stop strategy.

For the low ticket items, we find that nothing out of the ordinary appears,
except for the profit increase of the PE-CPRM. This indicates the ability of the
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Table 7: Percent point difference in average price index relative to the week
before the test started. Difference is measured as price index of the row group
minus price index of the column group.

Low ticket products High ticket products

CPRM PE-CPRM Follow-stop CPRM PE-CPRM Follow-stop

CPRM 0 −2.44%. **−0.86%. 0 −0.24%. −1.00%. *

PE-CPRM 0 1.58%. * 0 −0.76%. *

Follow-stop 0 0

Note: We perform a t-test to test for a significant difference in average price index. *,
** and *** represent a significant difference with a 0.1, 0.01 and 0.001 p-value
threshold respectively.

PE-CPRM to find prices which can be raised while increasing both revenue and
sales in units.

To test our hypotheses for both low and high ticket products, we first look
at the time line of the price indices during the price test, to find an indication
whether the price indices differences are structural. Secondly, we look at the
significance of the changes in price, to statistically confirm our hypotheses.

We show the movement in average price index of all products for the CPRM,
PE-CPRM and follow-stop groups in Figure 12. As hypothesized, the PE-CPRM
can raise prices of low ticket products, while improving the revenue, profits and
sales. The latter is impressive and unintuitive. This result can be explained with
the reasoning that the PE-CPRM raised products in price to increase profits and
lowered some too high prices to also increase sales. We see that the PE-CPRM
has a higher price index in all weeks, which indicates that the price increase of
the PE-CPRM might be structural.

In addition, we find that the low prices of the follow-stop strategy for high
ticket products in the benchmark period are raised over 4%. The only way the
follow-stop strategy can raise its price index is if the cheapest competitor raises
its prices. Additionally, this price index increase is an increase over time, which
indicates that the cheapest prices in the market of the follow-stop strategy group
steadily increased. This confirms our hypothesis that the pollution biased the
test results.

The increase in price index also appears in the follow-stop group for low ticket
products, however, the CPRM and PE-CPRM also show price index increases in
the latter weeks, when the follow-stop price index increase starts. This shows that
in the low ticket product groups, the pollution did not influence the segmentation
prior to the field experiment negatively.

Finally, Table 7 shows the percent point difference in average price index
per strategy group and price ticket, that is, the difference in average price index
of all products in all weeks of the test period, compared to the other strategy
groups. For the low ticket products, we find that the PE-CPRM raised its prices
significantly more than the other strategies. For the high ticket products, we see
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that the price index of the follow-stop strategy increased significantly compared
to the other strategies. Both confirm our earlier findings statistically.

7 Conclusion

Our paper provides new insights in the effects of competitor prices on price
sensitivity. In addition, we test the hypothesis of a sigmoid demand curve, hy-
pothesized by (Phillips, 2005), using our proposed Changing Price Response
Model (CPRM). We assess forecast performance of our model and we propose a
price strategy, based on our model, that determines optimal prices based using
information of competitor prices. The quality of these optimal prices is tested in
a field experiment, where products are priced according to our proposed strategy
for five weeks.

The CPRM is a hierarchical Bayes model with a multiplicative sales model
as first level and a second level to model the price effects. We propose a non-
linear second level, to model the sigmoid demand curve with respect to price
position. We estimate the parameters of our model for 13 product categories.
The parameter estimates are obtained using MCMC.

Our first findings are general findings on price sensitivity estimation. We
find that the average price elasticity is -4.27, much higher than the average price
elasticity of -2.62 found by Bijmolt et al. (2005). This is likely caused by the
fact that our research only concerns e-commerce, where price elasticity might be
higher than traditional offline retailers, because of better information streams.
Furthermore, we find that price elasticities of expensive products are higher than
cheaper products. The average price elasticities differ between -2.47 and -7.30,
for lowest and highest price tickets respectively.

Our most remarkable result is an unexpected one. Rather than the U-shaped
price elasticity curve we expected, we find that price elasticity, in general, when
corrected for the minimal price effect, decreases almost linearly when price po-
sition increases. This means that we do not find evidence of the hypothesized
sigmoid demand curve. Furthermore, this shows that returns of price decreases
for products with a higher price position are relatively higher than returns of
price decreases for products with a lower price position. Our model is able to
model this linear decrease, because of its high degree of freedom in the model-
ing of price effects through the second level. In addition, we find a considerable
minimal price effect. Price sensitivity for products with the lowest price in the
market can increase up to 56%.

The forecast results of the CPRM are not more accurate than the forecast re-
sults of the MSM. Therefore, the added second level, which is the only difference
between the two models, does not improve forecasting performance. Although
we do not improve sales forecast, we can still use the complex specification of
our model to study price effects and determine optimal prices.

The field experiment provided noteworthy results. First, the results of the PE-
CPRM strategy for low ticket products show a 10% increase in growth in both
sales and revenue compared to the follow-stop strategy. Profit growth increases
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by 14% compared to the follow-stop strategy. In addition, the average price index
of the products following the PE-CPRM strategy increases by 1.58% compared
to the follow-stop strategy, without reducing sales. The PE-CPRM is likely able
to both lower prices of products that are too highly priced and higher prices
that are priced too low.

Surprisingly, the CPRM strategy did not show significantly improved results
for the low ticket prices. This is probably caused by the high complexity and vari-
ance of the distributions of price elasticities in the CPRM, reducing effectiveness
of the strategy.

For the high ticket products, we find a negative performance of both the
CPRM and PE-CPRM. This result can be explained by two reasons. First, the
follow-stop strategy might be superior for high ticket products, as these are
relatively price sensitive and always following the cheapest competitor in the
market can be the best strategy. Secondly, we find pollution in our test, possibly
influencing the benchmark and therefore the outcome of our field experiment.
To eliminate the last option, another field experiment has to be conducted in a
non polluted environment.

A limitation of our research is the high number of zero values in the sales data.
These are transformed to 0.001, biasing our parameter estimates and forecasts.
A new research can transform our proposed CPRM to a model with either a
additive first level or a logit level to model zero values. The first option can
also test our hypothesis, that the linear decrease in price sensitivity as price
position increases is estimated to reduce the convex demand curve which the
multiplicative specification creates.

Another limitation are the weights of our objective function to optimize
prices, described in Equation 6. We did not study the effects of these weights
and a pricing strategist determined these for our field experiment, while this
can have a big impact on the results. Future research can assess the effects of
changing these weights on the performance of our model.

Furthermore, one might want to consider the effect of promotions on price
sensitivity and the effect of competitor prices on the effect of promotions. Pre-
vious research, such as Fok et al. (2007), have already shown the significant
interaction between price elasticities and promotions. Additional information on
those interactions in a competitive context as proposed in this paper, can lead
to high competitive advantages and useful insights for marketeers.

A lot of research on pricing strategies concern learning algorithms (den Boer,
2013). Incorporating learning algorithms in our framework could prove a useful
extension to our model, as the high variety of new price points can improve our
understanding of the complex price sensitivities and improve the performance of
the CPRM.
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