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Abstract	

	
This	study	aims	to	investigate	the	effects	of	capacity	constraints	driven	by	renewable	energy	on	the	forward	

premium.	The	 introduction	of	renewable	energy	sources	has	 imposed	 increased	uncertainty	 in	 the	power	

market.	Renewable	energy	sources	are	highly	volatile	and	thereby	difficult	to	predict.	The	uncertainty	in	the	

day-ahead	 power	 market	 is	 enhanced	 by	 the	 load	 prediction	 errors	 and	 failure	 of	 power	 plants.	 This	

uncertainty	 can	 cause	 sudden	 short-term	 frictions	 in	 demand	 and	 supply,	 referred	 to	 as	 capacity	

constraints.	High	capacity	constraints	along	with	the	complexity	of	electricity	as	a	commodity	could	induce	

large	price	spikes	in	the	intraday	market.	It	is	of	interest	to	examine	whether	these	capacity	constraints	will	

also	affect	derivative	pricing.	 Interpreting	 the	results	of	 the	Markov	regime-switching	models,	 the	models	

indicate	that	capacity	constraints	do	not	have	a	significant	effect	on	the	forward	premium.	The	non-normal	

regime	 involves	 lower	and	more	volatile	 forward	premia	compared	to	 the	normal	regime.	Generally,	high	

capacity	constraints	induce	a	higher	probability	of	remaining	in	the	normal	regime	across	all	seasons	or	a	

higher	probability	of	migrating	from	the	non-normal	regime	to	the	normal	regime	in	the	summer.	However,	

in	 the	winter,	 the	 probability	 of	migrating	 from	 the	 non-normal	 regime	 to	 the	 normal	 regime	 decreases	

under	tight	market	conditions	due	to	the	positive	skewness	in	the	distribution	of	the	spot	price	and	flexible	

hydropower	 plants.	 The	 results	 suggest	 that	 capacity	 constraints	 are	 anticipated	 and	 do	 affect	 power	

derivative	pricing.		
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1 Introduction	
	

The	 environment	 of	 the	 energy	market	 has	 changed	 significantly	 in	 the	 past	 years.	 Inevitable	

global	warming	and	the	plummeted	oil	prices	have	forced	energy	producers	and	speculators	to	

widely	diversify	the	power	positions	in	their	portfolio	and	thereby	to	invest	in	renewable	energy.	

Renewable	 energy	has	become	 the	 focus	of	many	energy	 companies	 as	part	 of	 their	 long-term	

strategy	 to	 gradually	 transition	 from	 fossil	 fuels	 to	 renewable	 energy.	 Not	 only	 are	 energy	

companies	increasingly	interested	in	green	energy,	renewable	energy	has	been	highly	prioritized	

by	 the	 European	Union	 (EU).	 By	 using	more	 renewable	 sources	 to	meet	 energy	 needs,	 the	 EU	

lowers	 its	 dependence	 on	 imported	 fossil	 fuels	 and	 makes	 the	 energy	 production	 more	

sustainable.	The	EU	has	 set	a	binding	 target	of	20%	 final	 energy	consumption	 from	renewable	

sources	 by	 2020	 in	 the	 ‘Renewable	 energy	 directive’.	 	 The	EU	 already	 has	 plans	 to	 extend	 the	

target	beyond	2030	to	a	new	energy	target	of	at	least	27%	of	final	energy	consumption	in	the	EU	

(European	 Commission,	 2016).	 Local	 governments	 have	 implemented	 incentive	 and	 support	

schemes	 in	 order	 to	 realise	 these	 renewable	 energy	 targets.	 As	 the	 importance	 of	 renewable	

energy	 is	 increasing,	 it	 is	 interesting	to	analyse	the	 impact	 it	has	on	the	pricing	of	electricity	 in	

market	and	more	specifically	in	the	financial	market.		

	

The	 pricing	 of	 electricity	 as	 a	 commodity	 is	 not	 straightforward	 and	 its	 price	 behaviour	 is	

different	 from	other	 commodities.	 Electricity	 is	 economically	non-storable	or	 at	 least	 it	 is	 very	

costly	to	store.	The	inability	to	store	electricity	causes	the	extreme	price	behaviour	of	electricity	

because	 there	 is	 no	 storage	 capacity	 to	 act	 as	 buffer	 to	 smooth	 price	 deviations.	 The	 most	

prominent	 features	 of	 its	 price	 dynamics	 are	 the	 presence	 of	 seasonality,	 high	 volatility,	mean	

reversion	 and	 spikes/jumps.	 The	 inability	 to	 store	 electricity	 means	 that	 cost-of-carry	

relationships	 between	 the	 spot	 price	 and	 forward	 price	 do	 not	 apply	 to	 electricity	 as	 a	

commodity.	 Instead,	 electricity	 behaves	 according	 to	 the	 expectations	 theory	 (Fama	&	 French,	

1987).	The	expectations	theory	departs	from	the	fact	that	the	forward	price	is	composed	of	the	

expected	spot	price	and	the	time-varying	risk	premium.	The	time-varying	risk	premium	could	be	

considered	 a	 compensation	 for	 risk	 (Longstaff	 &	Wang,	 2004).	 According	 to	 the	 expectations	

theory,	 the	 forward	 premium	 is	 equal	 to	 the	 change	 in	 the	 expected	 spot	 price	 plus	 the	 risk	

premium.	 Bessembinder	 and	 Lemon	 (2002)	 show	 that	 the	 forward	 premium	 decreases	 when	

demand	variance	is	modest	and	expected	demand	is	low.	The	forward	premium	increases	when	

either	expected	demand	or	demand	variance	is	high	due	to	positive	skewness	in	the	distribution	

of	the	spot	price.			

	

One	important	implication	of	renewable	energy	sources	is	that	they	pose	a	source	of	uncertainty	

on	 the	 electricity	 market	 as	 the	 day-ahead	 spot	 prices	 are	 quoted	 one	 day	 prior	 to	 physical	

delivery	 of	 the	 electricity.	 Renewable	 energy	 sources	 are	 highly	 volatile	 and	 therefore	 hard	 to	

forecast.	 The	 uncertainty	 from	 renewable	 energy	 sources	 is	 accompanied	 by	 load	 prediction	
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errors	 and	 failure	 of	 power	 plants.	 The	 uncertainty	 on	 the	 supply	 and	 demand	 side	 can	 cause	

sudden	 short-term	 frictions	 between	demand	 and	 supply	 at	 any	 point	 in	 time.	 The	 short-term	

frictions	 in	 expected	demand	and	 supply	 are	 referred	 to	 as	 capacity	 constraints.	High	 capacity	

constraints	 along	with	 the	 complex	 features	of	 electricity	 as	 commodity	 can	 induce	 large	price	

spikes	 in	 the	 intraday	power	market.	 In	 a	 system	with	 a	well-functioning	 intraday	market,	 the	

effects	 of	 the	 day-ahead	 capacity	 constraints	 are	 transferred	 to	 the	 intraday	 market,	 as	 the	

intraday	market	provides	balance	to	the	day-ahead	market	(Kilic	&	Truijillo-Baute,	2015).		

	

However,	it	is	not	established	if	the	effect	of	capacity	constraints	on	the	intraday	spot	prices	will	

spill	 over	 to	 the	 financial	 market	 for	 electricity.	 It	 is	 of	 interest	 to	 examine	 whether	 capacity	

constraints	will	affect	derivative	pricing.	Hence,	this	study	aims	to	investigate	whether	capacity	

constraints	 driven	 by	 renewable	 energy	 sources	 at	 any	 point	 in	 time,	will	 have	 impact	 on	 the	

forward	 premium	 the	 next	 day.	 The	 relevance	 of	 this	 research	 lies	 in	 the	 fact	 that	 the	 risk	

premium	 in	 electricity	 forward	 prices	 is	 considered	 to	 be	 some	 sort	 of	 risk	 compensation.	

Studying	the	effects	of	capacity	constraints	on	the	forward	premium,	also	allows	to	analyse	the	

risk	 compensation	on	 the	 financial	market	 due	 to	 the	 increased	 risk	 imposed	by	high	 capacity	

constraints.	The	results	could	provide	insights	for	market	participants	and	speculators.		

	

This	study	analyses	the	forward	premium	in	the	Nord	Pool	market	from	2013	to	2016.	The	Nord	

Pool	market	is	one	of	the	oldest	spot	and	futures	electricity	markets	in	the	world	and	is	known	

for	the	large	contribution	to	renewable	energy	generation	from	hydropower.	As	the	Nord	Pool	is	

dominated	by	renewable	energy,	the	respective	market	data	serves	for	the	purpose	of	this	study.	

The	 one-factor	model	 aims	 to	model	 the	 expected	 spot	 prices	 at	 maturity	 based	 on	 observed	

ELSPOT	day-ahead	prices.	The	 forward	premium	 is	 constructed	using	one-month	 (M1)	 futures	

contracts	acquired	 from	NASDAQ	Commodities.	The	 forward	premium	is	analysed	by	means	of	

Markov	regime-switching	models.	To	investigate	the	effects	of	capacity	constraints,	the	transition	

probabilities	 will	 be	 modelled	 as	 time-varying	 including	 a	 dummy	 variable	 for	 capacity	

constraints,	distinguishing	between	summer	and	winter	months.	

	

The	results	indicate	that	the	forward	premium	could	be	in	two	regimes,	the	normal	regime	and	

the	non-normal	regime.	The	normal	regime	 is	denoted	by	the	mean	of	 the	natural	 logarithm	of	

the	forward	premium	and	its	mean	reverting	behaviour.	The	non-normal	regime	involves	a	mean	

that	 is	 lower	 than	 the	 mean	 in	 the	 normal	 regime.	 In	 addition,	 the	 mean	 in	 the	 non-normal	

regime	is	more	volatile	than	the	mean	in	the	normal	regime.		

	

High	capacity	constraints	induce	an	increase	in	the	probability	of	remaining	in	the	normal	regime	

in	 both	 winter	 and	 summer	 months.	 High	 capacity	 constraints	 also	 induce	 in	 increase	 in	 the	

probability	of	migrating	from	the	non-normal	regime	to	the	normal	regime	in	the	summer.	This	is	

the	result	of	higher	expected	demand	relatively	to	the	available	supply	induced	by	high	capacity	

constraints.	 The	 higher	 expected	 demand	 causes	 a	 positively	 skewed	 distribution	 of	 the	 spot	
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prices,	which	will	lead	to	higher	forward	premia.	As	result,	it	is	likely	that	the	forward	premium	

will	 be	 in	 the	 normal	 regime,	 which	 represents	 the	 higher	 and	 less	 volatile	 forward	 premia.	

However,	 the	 probability	 of	 migrating	 from	 the	 non-normal	 regime	 to	 the	 normal	 regime	

decreases	in	the	winter	under	tight	market	conditions.	The	probability	of	remaining	in	the	non-

normal	 regime	 increases	 in	 the	 winter	 under	 tight	 market	 conditions.	 This	 is	 related	 to	 the	

positive	 skewness	 in	 the	 distribution	 of	 the	 spot	 price	 in	 the	 winter	 and	 the	 flexibility	 of	

hydropower	plants.	Power	producers	are	reluctant	to	adjust	their	output	downwards	such	that	

the	 market	 can	 return	 to	 normal	 again	 due	 to	 higher	 potential	 power	 prices	 imposed	 by	 the	

positive	skewness	in	the	distribution	of	the	spot	price.	Hence,	the	probability	of	remaining	in	the	

non-normal	 regime	 increases	 during	winter	months,	 despite	 the	 fact	 that	 the	market	 is	 under	

tight	market	conditions.		

	

It	can	be	concluded	that	in	general,	the	forward	premium	is	at	the	normal	and	stable	level	instead	

of	the	lower	and	more	volatile	level.	It	is	expected	that	the	expected	spot	price	should	increase	as	

result	of	high	capacity	constraints.	This	means	that	the	forward	premium	should	decrease	at	the	

maturity	 date.	 In	 fact,	 the	 forward	 premium	 does	 not	 decrease.	 This	 suggests	 that	 power	

producers	have	anticipated	the	positive	skewness	in	the	distribution	of	the	spot	price	induced	by	

high	 capacity	 constraints	by	 increasing	 the	 forward	price.	Consequently,	 the	 forward	premium	

will	be	higher	in	order	to	compensate	for	the	increased	revenue	risk.	This	study	shows	evidence	

that	capacity	constraints	do	affect	power	derivative	pricing.		

	

This	study	proceeds	as	follows.	Section	2	discusses	the	theoretical	framework.	Section	3	explains	

the	 applied	methodology	 and	 section	 4	 describes	 the	 data	 thoroughly.	 Section	 5	 presents	 the	

results	and	section	6	concludes	and	discusses	the	results.			
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2 Theoretical	framework	
	

In	this	section	outlines	the	dynamics	in	the	electricity	market	and	explains	the	concepts.	After	a	

short	introduction	into	electricity	markets,	the	characteristics	of	electricity	as	a	commodity	will	

be	 described.	 This	 section	 elaborates	 on	 forward	 and	 futures	 contracts	 and	 the	 relationship	

between	 the	 electricity	 spot	 price	 and	 the	 forward	price.	Based	on	 the	 literature,	 a	 hypothesis	

will	 be	 formed	 about	 the	 research	 question.	 At	 last,	 an	 overview	 of	 existing	 models	 will	 be	

presented.		

	

2.1	 The	electricity	market	and	the	role	of	capacity	constraints	

The	deregulation	of	the	power	industry	has	led	to	a	global	trend	towards	the	commoditization	of	

electricity.	 However,	 electricity	 is	 not	 like	 every	 other	 commodity.	 As	 mentioned	 before,	

electricity	 cannot	 be	 economically	 stored	 and	 reliability	 on	 the	 transmission	 grid	 is	 still	 not	

perfect	 (Bierbrauer,	 Truck,	 &	 Weron,	 2004).	 Nowadays,	 more	 electricity	 is	 generated	 by	

renewable	energy	sources.	The	Nord	Pool	power	market	is	already	largely	developed	in	the	field	

of	 renewable	 energy.	 The	Nord	 Pool	 is	 the	 single	 power	market	 for	Norway,	 Sweden,	 Finland,	

Denmark,	Estonia	and	Lithuania.	The	annual	average	power	generation	in	the	Nordic	countries	is	

around	 420	 TWh	 in	 total.	 Norway‘s	 power	 generation	 is	 dominated	 by	 hydropower	 while	

Sweden	and	Finland	have	a	mixture	of	hydro,	nuclear	and	thermal	power	(steam	driven).	Demark	

uses	predominantly	thermal	power,	however	wind	power	is	becoming	more	important.	Estonia	

and	Lithuania’s	 generation	 is	mainly	driven	by	 thermal	power.	 In	 a	 year	with	normal	 rain	and	

snowfall,	 hydropower	 accounts	 for	 half	 of	 the	 Nordic	 countries’	 power	 demand	 (Nord	 Pool,	

2016).		

	

Table	1:	Nordic	power	generation	by	energy	source	(2013)	

Energy	source	 Capacity	(TWh)	 %	

Hydro	 203	 53	

Nuclear	 86	 23	

Fossil	 47	 12	

Wind	 24	 6	

Biomass	 23	 6	

	

Besides	 the	 reduction	 of	 CO2	 emission,	 the	 use	 of	 renewable	 energy	 sources	 also	 provides	

economic	benefits	as	it	produces	lower	wholesale	market	clearing	prices	due	to	the	low	variable	

costs	and	supporting	incentive	schemes	as	feed-in	tariffs	or	premiums	provided	by	governments	

(Kilic	 &	 Truijillo-Baute,	 2015).	 For	 the	 Nordic	 countries	 hydropower	 is	 the	 cheapest	 power	

source	 (Nord	Pool,	2016).	As	 the	Nordics	are	 largely	reliant	on	hydropower,	 the	 level	 in	hydro	

reservoirs	 is	a	measure	 for	the	 level	of	production	costs.	 If	 the	 level	of	hydro	reservoirs	 is	 low,	
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more	expensive	generation	assets	will	be	activated	causing	higher	production	cost.	However,	the	

use	 of	 renewable	 energy	 sources	 poses	 increased	 uncertainty	 in	 the	 electricity	 market	 as	

renewable	energy	sources	are	difficult	to	forecast	and	very	volatile.	In	addition,	uncertainty	also	

arises	from	load	prediction	errors,	failure	of	power	plants	and	demand	variability	in	the	market.	

The	 uncertain	 generation	 of	 power	 by	 renewable	 energy	 sources	 in	 combination	 with	 the	

mechanics	 of	 the	 power	 industry	 and	 the	 non-storability	 of	 electricity	 can	 cause	 very	 volatile	

power	prices.		

	

The	mechanics	 in	 the	 power	market	 are	 different	 from	 other	 commodity	markets.	 The	 power	

industry	is	divided	in	three	different	markets,	namely	the	day-ahead	market	for	physical	delivery,	

the	 intraday	market	 to	balance	out	 the	day-ahead	market	and	the	 financial	market	 for	 forward	

and	futures	contracts.		

	

The	 spot	 electricity	market	 is	 essentially	 a	 day-ahead	market	 in	 which	 the	 electricity	 price	 is	

quoted	a	day	before	physical	delivery.	Therefore,	the	system	operator	needs	advanced	notice	to	

verify	that	the	demand	is	feasible	and	lies	within	the	transmission	constraints.	The	spot	contract	

is	 an	 hourly	 contract	with	 physical	 delivery.	 The	 system	price	 is	 calculated	 as	 the	 equilibrium	

price	of	 the	aggregated	demand	and	 supply	 for	 every	24	hours.	The	uncertainty	on	 the	 supply	

and	demand	side	can	cause	sudden	short-term	frictions	between	demand	and	supply	in	the	day-

ahead	market.	 	 The	 short-term	 frictions	 between	 demand	 and	 supply	 are	 considered	 capacity	

constraints.	Capacity	constraints	are	defined	as	a	ratio	in	which	the	demand	prognosis	is	divided	

by	the	production	prognosis.	Capacity	constraints	could	be	considered	a	measure	of	tightness	in	

the	power	market.	The	power	market	is	under	tight	market	conditions	if	the	capacity	constraints	

are	 higher	 than	 usual	 observed	 in	 the	 market.	 The	 power	 market	 is	 under	 normal	 market	

conditions,	if	the	capacity	constraints	are	equal	to	or	lower	than	usual	observed	in	the	market.		

	

Capacity	constraints:	daily	short-term	frictions	between	demand	and	supply,	defined	as	the	ratio	

of	demand	over	supply.	1	

	

As	 this	 study	 investigates	 the	 effects	 of	 capacity	 constraints	 on	 the	 forward	premium	 the	next	

day,	 the	 capacity	 constraints	 are	 day-ahead.	 Day-ahead	 capacity	 constraints	 mean	 that	 the	

capacity	constraints	are	recorded	one	day	before	physical	delivery	of	the	electricity.		

	

The	 intraday	market	balances	 the	day-ahead	market	when	a	deficit	or	oversupply	of	electricity	

occurs.	 The	 capacity	 constraints	 on	 the	 day-ahead	 market	 will	 be	 reflected	 on	 prices	 in	 the	

intraday	market.	 	The	capacity	constraints	could	induce	price	spikes	in	the	intraday	spot	prices	

as	prices	are	being	balanced	 in	 real	 time.	 Intraday	 spot	price	may	exhibit	upward	price	 spikes	

																																																								
1	The	concept	of	capacity	constraints	is	further	defined	in	section	3.2.1.	Two	regimes	based	on	capacity	constraints.		
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when	 demand	 exceeds	 supply	 significantly.	 Whereas	 intraday	 spot	 prices	 exhibit	 downward	

price	 spikes	 due	 to	 oversupply	 of	 electricity	 in	 the	 market.	 Sometimes,	 if	 the	 oversupply	 is	

substantially	large,	the	downward	pressure	could	induce	negative	prices	in	the	intraday	market.		

In	 addition	 to	 the	 upward	 or	 downward	 price	 spikes,	 electricity	 also	 exhibits	 ‘normal’	 price	

deviations.	These	normal	price	deviations	are	caused	by	seasonality	during	for	example	summer	

months	or	weekends.	These	normal	price	deviations	are	broadly	predictable	whereas	spikes	are	

unexpected.	Besides	these	two	features	of	electricity,	there	are	more	characteristics	of	electricity	

as	 a	 commodity.	 In	 the	 next	 section,	 the	 characteristics	 of	 electricity	 as	 a	 commodity	 will	 be	

explained.		

	

2.2	 Characteristics	of	electricity	as	a	commodity		

The	 inability	 to	 store	power	 is	 a	main	 reason	why	electricity	 exhibits	 extreme	price	dynamics.	

There	is	no	storage	capability	to	service	as	a	buffer	and	smooth	price	deviations	and	spikes.	The	

non-storability	 of	 electricity	 causes	 supply	 and	demand	 to	be	balanced	on	 a	 critical	 point.	 The	

special	 characteristics	 of	 electricity	 prices	 are	 captured	 in	 four	 stylized	 facts	 as	 seasonality,	

volatility,	mean	reversion	and	jumps	or	spikes.	The	discussion	of	the	four	stylized	facts	provide	

more	understanding	of	the	application	of	the	models	in	electricity	markets.		

	

2.2.1	 Seasonality		

Normal	price	deviations	are	caused	by	the	seasonality	of	electricity	prices.	Electricity	prices	do	

not	 follow	 a	 random	 walk	 as	 they	 fluctuate	 around	 a	 mean	 level	 due	 to	 the	 mean	 reverting	

character.	 The	 seasonality	 is	 the	 predicable	 element	 in	 the	 electricity	 prices.	 Seasonality	 in	

electricity	prices	is	more	profound	than	in	other	commodities	during	the	course	of	a	day,	week	

and	year.	This	arises	because	of	the	changing	level	of	business	activities	or	climate	conditions	as	

temperature	 or	 number	 of	 daylight	 hours	 (Bierbrauer,	 Menn,	 Rachev,	 &	 Truck,	 2007).	 One	

specific	 demand	 variation	 relates	 to	 intra-week	 seasonality,	 in	which	weekdays	 exhibit	 higher	

demand	and	weekends	and	public	holidays	exhibit	lower	demand.		

	

2.2.2	 Volatility	and	mean	reversion	

Electricity	spot	prices	exhibit	unusually	high	volatility.	The	high	volatility	can	be	attributed	to	the	

storage	capacity,	transmission	problems	and	the	need	for	the	markets	to	be	balanced	in	real	time.	

Inventories	 cannot	 be	 used	 to	 smooth	 price	 fluctuations,	which	 cause	 temporary	 demand	 and	

supply	 imbalances	 difficult	 to	 correct	 in	 the	 short-term.	 However,	 the	 high	 volatility	 is	 not	

persistent,	 as	 the	 electricity	 spot	 prices	 exhibit	 mean	 reversion.	 When	 a	 sudden	 increase	 in	

demand	occurs,	generation	assets	with	higher	marginal	costs	will	be	activated	on	the	supply	side,	

which	 will	 lead	 to	 higher	 prices	 incurred	 on	 the	 intraday	 market.	 When	 demand	 returns	 to	

normal	levels,	these	generation	assets	with	relatively	high	marginal	costs	will	be	turned	off	and	

prices	will	fall	(Karakatsani	&	Bunn,	2008).		
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2.2.3	 Price	spikes	and	jumps		

In	 addition	 to	mean	 reversion	 and	 strong	 seasonality,	 spot	 prices	 also	 exhibit	 infrequent	 large	

spikes	or	 jumps.	Price	 jumps	are	unpredictable	discontinuities	 in	 the	pricing	process	caused	at	

the	supply	side	(Bierbrauer,	Menn,	Rachev,	&	Truck,	2007).	In	the	literature,	spikes	are	different	

from	 jumps,	 as	 spikes	 are	 typically	 interpreted	 as	 the	 result	 of	 a	 sudden	 increase	 in	 demand	

related	to	the	demand	side.	Capacity	constraints	are	frictions	between	demand	and	supply	that	

induce	 price	 spikes	 in	 the	 intraday	 market.	 There	 is	 no	 distinction	 between	 frictions	 due	 to	

demand	factors	or	frictions	due	to	supply	factors.	Therefore,	in	this	study,	spikes	and	jumps	are	

considered	the	same	and	they	will	be	used	interchangeably.		

	

When	 demand	 reaches	 the	 limit	 of	 available	 generation	 capacity,	 electricity	 prices	will	 exhibit	

positive	 price	 spikes.	 Accordingly,	 in	 periods	 of	 lower	 demand	 relatively	 to	 the	 available	

generation	capacity,	prices	will	 fall	 and	negative	price	spikes	will	be	exhibited.	Negative	prices	

are	a	result	of	oversupply	caused	by	the	inflexibility	of	the	power	generation	assets	accompanied	

by	 low	demand.	 Price	 deviations	 and	 other	 price	 shocks	which	 are	 not	 considered	 to	 be	 price	

spikes	 are	both	 short-lived	which	means	 that	 the	market	 is	 back	 to	normal	within	 a	 few	days.	

They	are	both	brought	back	at	their	mean	level	by	mean	reversion.	However,	the	speed	of	mean	

reversion	of	non-price	 spikes	 is	 considerably	 lower	 than	 the	 speed	at	which	 large	price	 spikes	

fade	out	(Cartea,	Figueroa,	&	Geman,	2008).		

	

2.2.4	 Miscellaneous	factors		

The	inability	to	store	electricity	is	not	solely	responsible	for	the	unusual	pricing	characteristics	of	

power	 markets.	 The	 price	 formation	 of	 electricity	 is	 not	 only	 a	 result	 of	 seasonality,	 mean	

reversion,	high	volatility	 and	 spikes	but	 also	 characteristics	of	 the	power	market	 contribute	 to	

the	pricing	behaviour	of	electricity.	These	characteristics	include:	number	of	players	(generators	

and	retailers)	and	the	composition	of	the	generation	park.	In	most	power	markets,	the	generation	

plants	are	owned	by	a	small	number	of	companies,	which	means	that	the	supply	is	concentrated	

(Cartea	and	Villaplana,	2008).	As	consequence,	 the	actions	or	performance	of	any	player	 in	 the	

market	 may	 affect	 the	 equilibrium	 price.	 Furthermore,	 the	 marginal	 costs	 differ	 within	 a	

generation	park	as	the	park	consists	of	plants	which	each	employ	a	different	source	to	produce	

power.	Karakwatsani	and	Brunn	(2008)	examine	the	effects	of	spot	price	drivers	in	the	wholesale	

electricity	markets	focussing	on	their	intraday	dynamics	and	transitory	irregularities.	They	apply	

their	model	 to	 the	UK	market	 and	 analyse	 the	market	with	 an	original	 set	 of	 price	drivers.	All	

coefficients	 exhibit	 substantial	 intraday	 variation	 relating	 to	 the	 differing	 marginal	 costs	 and	

market	design.	Their	 research	points	out	 that	 the	market	 responds	 to	 economic	 fundamentals,	

plant	operating	properties	and	strategic	manipulation	of	capacity	which	is	most	often	exercised	

by	more	flexible	power	plants	(Karakatsani	&	Bunn,	2008).		
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2.3	 Forward	and	futures	contracts	

Forward	and	futures	contracts	are	widely	used	as	a	hedging	instrument	against	unexpected	price	

movements.	A	forward	contract	is	a	contract	in	which	the	buyer	agrees	to	commit	to	buying	the	

underlying	commodity	from	the	seller	at	some	future	time	at	a	price	that	is	fixated	in	advance.	A	

forward	contract	is	a	bilateral	contract	between	two	counterparts.	In	essence,	a	futures	contract	

is	the	same	as	a	forward	contract,	except	the	fact	that	a	futures	contract	is	traded	on	an	exchange,	

which	induces	a	pricing	difference	due	to	the	margining	system	imposed	by	exchanges	(Huisman,	

2009).	 Cash	 settlement	 takes	 place	 during	 the	 trading	 period	 for	 futures	 contracts.	 Cash	

settlement	for	forward	contracts	takes	place	starting	at	the	maturity	of	the	contract.	In	this	study	

I	consider	futures	and	forward	contracts	as	the	same	type	of	contract.	The	concepts	forward	and	

futures	 contract	 are	 used	 interchangeably,	 hence	 all	 the	 models	 apply	 to	 both	 forward	 and	

futures	contracts.	

	

2.4	 The	relationship	between	the	spot	price	and	forward	price		

The	 relationship	 between	 the	 electricity	 spot	 price	 and	 the	 forward	 price	 is	 explained	 by	 the	

work	of	Fama	and	French	(1987),	in	which	they	consider	two	theories	about	commodity	forward	

prices.	These	theories	are	the	theory	of	storage	and	the	expectations	theory.		

	

The	theory	of	storage	 implies	 that	 the	difference	between	the	 forward	price	and	the	spot	price	

depends	 on	 a	 risk	 premium	 consisting	 of	 the	 interest	 rate	 of	 forgone	 interest	 by	 storing	 the	

commodity,	the	convenience	yield	on	inventory	and	the	storage	costs.	This	theory	departs	from	

risk	neutral	valuation,	meaning	that	the	contract	 is	valued	considering	the	fact	that	traders	can	

make	 themselves	 risk-free.	This	 implies	 that	 risk	and	price	expectations	play	no	crucial	 role	 in	

the	valuation	of	the	forward	contract.	

	

The	alternative	theory	is	the	expectations	theory,	in	which	the	forward	price	is	disentangled	into	

the	 expected	 spot	 price	 and	 a	 risk	 premium	 as	 the	 noise	 on	 the	 expected	 spot	 price.	 The	

expectations	 theory	 states	 that	 the	 forward	 price	 may	 contain	 information	 about	 expected	

changes	 in	 the	 spot	 prices.	 The	 risk	 premium	 represents	 the	 equilibrium	 compensation	 for	

bearing	 the	price	and/or	demand	risk	 for	 the	underlying	commodity.	Fama	and	French	 (1987)	

contribute	to	the	existing	literature	by	testing	the	expectations	theory	and	the	theory	of	storage	

on	21	different	 types	of	 commodities.	They	 find	 for	 some	 commodities	 that	 their	 futures	price	

depend	heavily	on	the	interest	rate,	storage	costs	and	convenience	yield	according	to	the	theory	

of	 storage.	 As	 for	 the	 expectations	 theory,	 the	 results	 are	 mixed.	 They	 find	 for	 five	 out	 of	 21	

commodities	 that	 their	 forward	price	depends	on	 the	 time-varying	expected	 risk	premium.	On	

the	other	hand,	the	forward	price	contains	information	about	expected	spot	prices	for	ten	out	of	

21	commodities.		
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Electricity	is	a	non-storable	commodity,	which	means	the	expectations	theory	applies	according	

to	 the	 definition	 of	 Fama	 and	 French	 (1987).	 This	 means	 that	 the	 forward	 price	 depends	 on	

expectations	about	the	spot	price	plus	a	risk	premium	in	order	to	compensate	power	producers	

for	 the	 risk	 they	 bear	 when	 trading	 at	 a	 fixed	 price.	 However,	 electricity	 is	 fairly	 a	 peculiar	

commodity	 and	 seems	 to	 behave	 according	 to	 a	 combination	 of	 the	 theory	 of	 storage	 and	 the	

expectations	theory	depending	on	the	type	of	underlying	commodity.	Huisman	and	Kilic	(2011)	

applied	 the	methodology	 of	 Fama	 and	French	 (1987)	 on	 electricity	 in	which	 they	 test	 to	what	

extent	 the	 forward	prices	 for	electricity	reflect	changes	 in	expected	spot	prices	and/or	the	risk	

premium.	 The	 relationship	 between	 the	 forward	 price	 and	 the	 spot	 price	 is	 defined	 by	 the	

formula	below	

𝐹!,! = 𝐸!(𝑆!) + 𝑃!,! 	

	

In	 which	𝐸!(𝑆!)	is	 the	 expected	 spot	 price	 at	 maturity	 and	𝑃!,! 	is	 the	 risk	 premium.	 When	

subtracting	 the	 current	 spot	 price	 from	 both	 sides	 of	 the	 equation	 and	 rewriting	 the	 risk	

premium,	the	formula	becomes	

	

𝐹!,! − 𝑆! = 𝐸! 𝑆! − 𝑆! + 𝐹!,! − 𝐸! 𝑆! 	

	

The	forward	premium	is	then	equal	to	the	change	in	expected	spot	price	plus	a	time-varying	risk	

premium.		

	

Forward	premium:	the	change	in	expected	spot	price	and	the	time-varying	risk	premium.		

	

It	 depends	 on	 the	 underlying	 commodity	which	 element,	 the	 change	 in	 expected	 spot	 price	 or	

time-varying	risk	premium,	is	more	dominant	in	the	forward	premium.	Huisman	and	Kilic	(2011)	

find	 that	 in	markets	 in	which	electricity	 is	primarily	produced	by	perfectly	storable	underlying	

commodities,	 for	example	gas,	 the	 forward	price	contains	 information	about	both	 time-varying	

risk	premia	and	expected	spot	prices.	 In	markets	where	electricity	 is	produced	by	 imperfect	or	

non-storable	 underlying	 commodities,	 the	 forward	 price	 only	 contains	 information	 about	 the	

expected	spot	price.	The	Nordic	power	market	is	dominated	by	hydropower	produced	by	water.	

Water	 is	 imperfectly	storable,	but	not	non-storable.	Therefore,	 it	 is	expected	that	the	change	 in	

expected	spot	price	is	more	profound	in	the	forward	premium	in	the	Nord	Pool	market.2	

	

2.5	 Hypothesis	development	

The	 cost-of-carry	 relationship	 that	 links	 spot	 prices	 and	 forward	 prices	 as	 a	 no-arbitrage	

condition,	 does	 not	 apply	 to	 electricity	 as	 it	 is	 non-storable	 or	 at	 least	 imperfectly	 storable.	

Because	of	this	implication,	the	determination	of	the	forward	price	and	the	forward	premium	is	

not	straightforward.	Bessembinder	and	Lemon	(2002)	adopt	an	equilibrium	approach	in	pricing	

																																																								
2	See	the	regression	analysis	based	on	Fama	and	French	(1987)	in	section	5	Data.	
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forward	 contracts.	 The	 equilibrium	 approach	 relies	 on	 the	 assumption	 that	 prices	 are	

determined	 by	 industry	 participants	 rather	 than	 outside	 speculators.	 They	 argue	 that	 when	

expected	demand	is	low	and	demand	variance	is	modest,	there	is	little	skewness	in	spot	prices.	

Consequently,	 power	 retailers	 feel	 no	 need	 to	 hedge	 themselves	 against	 unexpected	 price	

movements.	This	leads	to	a	downward	adjustment	in	the	forward	price.	The	forward	power	price	

is	 a	downward	biased	predictor	of	 the	 future	 spot	price,	 in	other	words	 the	 forward	premium	

becomes	negative.	In	contrast,	when	the	expected	demand	is	high	and	demand	variance	is	high,	

the	 distribution	 of	 the	 spot	 price	 becomes	 positively	 skewed.	 Short	 positions	 could	 incur	 high	

losses	if	upward	spikes	occur.	As	compensation	for	this	risk,	the	forward	price	will	be	bid	up,	and	

the	 forward	 price	 will	 be	 an	 upward	 biased	 predictor	 of	 the	 future	 spot	 price.	 The	 results	 of	

Bessembinder	and	Lemon	(2002)	are	confirmed	by	Longstaff	and	Wang	(2004).	They	show	that	

price	peaks,	due	to	the	positive	skewness	in	the	distribution	of	the	spot	price,	positively	affect	the	

forward	premium.	They	study	the	properties	of	the	electricity	spot	and	forward	prices	by	using	a	

high	 frequency	PJM	dataset.	The	authors	 find	 that	 the	 forward	premium	 is	 time-varying	and	 is	

significantly	affected	by	risk	measures	of	price,	quantity	and	revenue	risk.	They	show	evidence	

that	the	forward	premium	is	essentially	a	compensation	for	risk.			

	

Based	on	these	findings,	 it	 is	expected	that	high	capacity	constraints	cause	an	upward	pressure	

on	the	forward	price,	leading	to	higher	a	high	forward	premium.	The	intuition	can	be	explained	

as	 follows.	 High	 capacity	 constraints	 prior	 to	 the	 maturity	 of	 the	 forward	 contract	 imply	 a	

significant	increase	of	demand	relatively	to	the	supply	(in	other	words,	a	significant	deficit	of	the	

supply	of	power	relatively	to	the	expected	demand)	at	a	certain	point	in	time.	Thus,	high	capacity	

constraints	 induce	 higher	 expected	 demand	 and	 demand	 variance.	 As	 consequence,	 the	

distribution	of	 the	 spot	power	prices	becomes	positively	 skewed.	This	means	 that	 the	 forward	

price	 should	 increase	 in	 order	 to	 compensate	 for	 the	 skewness	 in	 the	 spot	 price	 distribution.	

Hence,	 the	 forward	 premium	 will	 increase	 by	 the	 anticipated	 skewness	 of	 the	 spot	 price	

distribution	 (Bessembinder	 &	 Lemmon,	 2002).	 Following	 this	 reasoning,	 the	 relationship	

between	 capacity	 constraints	 and	 the	 forward	 premium	 should	 be	 positive	 due	 to	 (higher)	

positive	skewness	in	the	distribution	of	the	spot	price.		

	

Hypothesis:	high	capacity	constraints	induce	an	increase	in	the	forward	premium	due	to	increased	

anticipated	skewness	in	the	spot	price	distribution.		

	

It	is	clear	that	electricity	is	a	complex	commodity	whose	characteristics	also	differ	across	energy	

markets	as	the	composition	of	generation	parks	and	market	players	differ.	Electricity	deals	with	

several	 factors	making	 it	hard	 to	properly	model	 the	spot	prices	whilst	 taking	 into	account	 the	

uncertainties.	Before	continuing	to	the	methodology,	several	existing	models	will	be	discussed	in	

the	next	section	in	order	to	define	an	appropriate	model.		
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2.6	 Existing	models		

In	 most	 of	 the	 existing	 literature,	 the	 authors	 attempt	 to	 model	 the	 power	 prices	 by	 using	 a	

simplified	approach.	These	models	mainly	address	the	typical	characteristics	of	electricity	prices:	

seasonality,	spikes,	high	volatility	and	mean	reversion.		

	

Schwartz	and	Smith	(2000)	propose	a	 two-factor	model	applied	 to	modelling	oil	 futures	prices	

that	later	has	found	applications	for	the	electricity	market.	The	authors	define	a	two-factor	model	

in	order	to	model	oil	prices.	They	separate	the	spot	price	in	two	components,	the	mean	reverting	

process	 in	 the	 short-term	 deviation	 and	 an	 equilibrium	 level.	 In	 the	 long	 run	 the	 short-term	

deviations	 are	 assumed	 to	 approach	 zero,	 which	means	 that	 in	 the	 long-run	 the	 spot	 price	 is	

equal	to	the	equilibrium	level.	The	authors	conclude	that	their	two-factor	model	performs	better	

than	the	one-factor	models	as	two-factor	models	give	better	representation	of	real-time	market.	

	

Lucia	 and	 Schwartz	 (2002)	 extend	 the	 two-factor	 model	 of	 Schwartz	 and	 Smith	 (2000)	 by	

defining	 a	 model	 composed	 of	 a	 deterministic	 and	 a	 stochastic	 component.	 The	 deterministic	

seasonal	 component	 is	 responsible	 for	 capturing	 any	 relevant	 predictable	 component	 of	

electricity	 prices.	 The	 stochastic	 component	 is	 responsible	 for	 unpredictable	 short-term	

deviations	and	is	assumed	to	follow	a	particular	continuous	time	diffusion	process.	In	their	study	

they	find	a	closed	form	solution	to	determine	the	electricity	forward	prices.	In	doing	so,	they	use	

a	risk-neutral	or	risk-adjusted	valuation	of	the	expected	spot	prices	to	the	valuation	date.	In	their	

study	 they	estimate	 the	spot	price	of	electricity	based	on	 four	models	 that	differ	 in	 time	series	

and	in	the	way	the	deterministic	component	is	defined.	Lucia	and	Schwartz	(2002)	conclude	that	

of	 all	 four	models,	 the	 ones	 that	 are	 based	 on	 normal	 prices	 and	 not	 the	 natural	 logarithm	 of	

prices,	perform	better.	In	addition,	a	simple	sinusoidal	function	is	more	adequate	in	capturing	the	

seasonality	embedded	in	forward	prices.		

	

As	electricity	prices	are	highly	volatile	and	the	existence	of	spikes	is	obvious,	one	needs	to	take	

this	characteristic	into	account	when	modelling	spot	prices.	Cartea	and	Figueroa	(2005)	present	

a	mean	reverting	jump	diffusion	model	for	the	electricity	spot	price	and	derive	the	corresponding	

forward	 price	 in	 closed-form.	 The	 authors	 suggest	 that	 mean	 reversion	 can	 only	 be	 properly	

captured	 by	 a	 Brownian	 motion	 and	 that	 jumps	 can	 be	 modelled	 adequately	 by	 means	 of	 a	

Poisson	 process.	 They	 take	 a	 hybrid	 approach	 in	 calibrating	 the	 parameters	 by	 using	 both	

historical	spot	market	data	and	forward	market	data.	The	results	indicate	that	the	use	of	specific	

distributions	 accounting	 for	 fat	 tails	 is	 desired	 in	 order	 to	 deal	 with	 the	 complexity	 of	 the	

calibration	 of	 the	 spot	 prices.	 The	 authors	 recommend	 the	 use	 of	 Gaussian	 distributions	 for	

further	research.		
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An	 alternative	way	 of	modelling	 electricity	 spot	 prices	 is	 to	 apply	 regime-switching	models	 to	

deal	 with	 high	 volatility	 of	 power	 prices.	 These	 models	 depart	 from	 the	 assumption	 that	 the	

variable	that	is	being	modelled,	can	be	in	more	than	one	state	or	regime.		

	

Bierbrauer	 et.	 al.	 (2004)	 employ	 regime-switching	models	 by	 specifying	 four	 different	 regime-

switching	models	to	forecast	electricity	spot	prices.	The	four	models	consist	of	three	two-regime-

switching	 models	 and	 one	 three-regime-switching	 model.	 They	 all	 include	 a	 deterministic	

component	 that	 takes	 into	 account	 the	 seasonality	 and	 the	 effects	 of	 temperature	 and	 the	

number	 of	 daylight	 hours.	 The	 models	 differ	 in	 terms	 of	 distributions.	 The	 authors	 utilise	

Gaussian,	 log-normal	and	Pareto	distributions	in	their	models.	The	results	point	out	that	all	the	

models	overestimate	spikes.	However,	 the	magnitude	of	the	 largest	spikes	 in	either	direction	is	

underestimated	 in	 the	 normal	 and	 log-normal	 models,	 but	 overestimated	 by	 the	 Pareto	

distribution.	These	results	may	suggest	the	use	of	more	heavy-tailed	distributions.	All	in	all,	they	

conclude	 that	 three-regime-switching	models	 are	 superior	 to	 two-regime-switching	models	 in	

capturing	real	time	price	spikes.		

	

Regime-switching	models	can	also	be	used	in	combination	with	jump	diffusion	models	in	which	a	

jump	 component	 is	 added	 to	 the	mean-reversion	model.	 The	 jump	 is	 dependent	 on	 a	 regime-

switching	variable	that	could	be	in	two	regimes.	A	high	regime	is	denoted	by	a	higher	likelihood	

of	the	occurrence	of	a	price	spike	and	a	low	regime	is	a	regime	in	which	the	occurrence	of	spikes	

is	less	likely.	The	mean-reversion	component	is	separated	in	a	normal	mean-reversion	parameter	

and	a	jump-reversion	parameter.	The	jump-reversion	parameter	is	higher	than	the	normal	mean-

reversion	parameter	such	that	in	case	a	jump	occurs,	the	model	has	sufficient	power	to	revert	to	

normal	levels.		

	

Huisman	and	Mahieu	(2003)	propose	a	regime-switching	model	with	three	different	regimes	in	

which	they	disentangle	the	normal	mean	reversion	and	jumps.	They	argue	that	the	existence	of	a	

normal	mean	reverting	process	 is	not	directly	related	to	 jumps	and	that	regular	 jump	diffusion	

models	do	not	account	for	the	fact	that	price	spikes	are	rather	short-lived.	The	idea	behind	their	

specification	 differs	 significantly	 from	 the	 two-state	 regime	 models.	 They	 define	 the	 three	

regimes	as	follows:	i)	a	base	regime	that	can	contain	a	mean	reversion	component,	 ii)	an	initial	

jump	regime	and	iii)	a	regime	that	describes	how	prices	move	back	to	the	base	regime	after	the	

initial	 jump	 has	 occurred.	 In	 contrast	 to	 the	 two	 regime	 switching	 models,	 the	 three	 regime	

switching	models	do	not	allow	for	two	consecutive	spikes	to	occur.			

	

Cartea	et.	al	(2008)	model	electricity	spot	prices	with	forward-looking	capacity	constraints	using	

a	 regime	 jump	model.	 The	 authors	 assume	 spot	 prices	 are	 composed	 of	 a	 deterministic	 and	 a	

stochastic	 component,	 in	 which	 the	 stochastic	 component	 contains	 a	 regime-switching	 factor.	

They	 argue	 for	 the	 first	 time	 that	 spot	 prices	 should	 incorporate	 forward-looking	 information	

that	 is	 made	 available	 to	 all	 players	 by	 the	 system	 operator.	 The	 authors	 assume	 that	 the	
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deterministic	component	is	based	on	the	forward	price	of	gas	rather	than	historical	power	spot	

prices.	 Furthermore,	 they	 propose	 a	 measure	 of	 ‘tight	 market	 conditions’	 based	 on	 capacity	

constraints.	 Capacity	 constraints	 define	 the	weeks	 of	 the	 year	 in	which	 price	 spikes	 are	more	

likely	to	occur.	They	model	the	capacity	constraints	as	an	exogenous	switching	parameter	in	the	

stochastic	component	 that	alternates	between	a	high	and	a	 low	regime.	A	 low	regime	refers	 to	

periods	 in	which	electricity	prices	do	not	exhibit	 large	price	spikes	and	a	high	regime	refers	 to	

periods	in	which	price	spikes	are	likely	to	occur.	

	

An	 alternative	 type	 of	 regime-switching	 models	 is	 the	 Markov	 regime-switching	 model	 with	

(time-varying)	 transition	 probabilities.	 The	 Markov	 regime-switching	 model	 consists	 of	 a	

deterministic	and	a	stochastic	component.	The	stochastic	component	behaves	according	to	two	

regimes:	mean-reverting	in	regime	1	and	a	spike	in	regime	2.	The	transition	probabilities	specify	

how	the	processes	switch	between	regimes	1	and	2.	The	transition	probabilities	are	specified	as	

follows:	𝑝!,! = Pr 𝑆! = 𝑗 𝑆!!! = 𝑖 .	This	is	the	probability	that	the	market	was	in	state	i	at	time	t-1	

and	migrates	to	state	j	at	time	t.	For	example,	𝑝!,!	is	the	probability	that	the	market	was	in	state	1	

at	t-1	and	remains	in	state	1	at	t.	By	definition,	𝑝!,! = 1 − 𝑝!,!,	which	is	the	probability	of	being	in	

state	1	at	t-1	and	migrating	to	state	2	at	t.			

	

Mount	 et.	 al.	 (2006)	 apply	 a	 Markov	 regime-switching	 model	 with	 time-varying	 transition	

probabilities.	The	mean	prices	in	the	two	regimes	and	the	transition	probabilities	are	specified	as	

functions	of	the	offered	reserve	margin	and	the	system	load.	The	authors	 find	that	price	spikes	

are	 most	 likely	 to	 occur	 during	 summer	 months	 and	 the	 probability	 of	 switching	 to	 the	 high	

regime	is	negatively	related	to	the	reserve	margin.	A	high	reserve	margin	means	that	it	is	unlikely	

that	 spikes	 will	 occur.	 The	 authors	 note	 that	 accurate	 information	 about	 reserve	 margin	 is	

required	in	order	to	predict	price	spike	adequately.		

	

Huisman	(2008)	includes	the	effect	of	temperature	in	modelling	the	day-ahead	prices	by	means	

of	 a	 Markov	 regime-switching	 model.	 The	 author	 departs	 from	 the	 fact	 that	 information	 on	

reserve	margins	or	load	could	help	to	forecast	price	spikes.	Huisman	(2008)	uses	temperature	as	

a	 proxy	 for	 information	 on	 the	 reserve	 margins,	 as	 information	 about	 reserve	 margins	 lacks	

general	 availability.	 On	 the	 contrary,	 temperature	 information	 is	 widely	 available.	 The	 author	

includes	 temperature	 in	 both	 the	 time-varying	 transition	 probabilities	 and	 the	 deterministic	

component	 in	 order	 to	 capture	 seasonality.	 The	 results	 show	 that	 the	 probability	 of	 a	 spike	

increases	significantly	when	temperature	deviates	substantially	from	mean	temperature	levels.		

	

Kilic	and	Trujillo-Baute	(2015)	performed	a	study	on	the	stabilisation	of	 intraday	power	prices	

through	more	flexibility	in	power	generation.	Forecast	errors	will	 increase	the	need	of	intraday	

markets	to	adjust	the	excess	or	deficit	of	wind	power	on	an	hourly	basis.	In	this	study	the	authors	

question	 to	what	 extent	hydropower,	has	as	 a	 stabilizing	effect	on	 the	 impact	of	wind	 forecast	
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errors	 on	Nord	 Pool	 intraday	 prices.	 They	 apply	 a	Markov	 regime-switching	model	 in	 periods	

including	 transition	probabilities	dependent	on	 reservoir	 levels	 and	 the	wind	 forecast	 error	 to	

examine	the	peak	and	off-peak	intraday	power	prices.	Results	indicate	that	during	high	reservoir	

levels	wind	power	deficits	are	absorbed	by	hydropower	but	wind	power	excess	is	not	absorbed	

by	 hydropower.	 This	 shows	 that	 hydropower	 is	 effective	 in	 controlling	 for	 volatility	 on	 the	

intraday	market	but	not	at	all	times.		

	

Another	class	of	spot	price	models	concerns	the	equilibrium	models.	The	equilibrium	models	rely	

on	the	assumptions	that	prices	are	determined	by	the	industry	participants.	The	spot	price	is	the	

market	clearing	spot	price	at	which	demand	meets	supply.	Bessembinder	and	Lemmon	(2002)	

present	an	equilibrium	model.	The	primary	goal	is	to	assess	the	equilibrium	forward	prices	and	

optimal	 hedge	 positions	 of	 power	 firms.	 They	 assume	 that	 the	 forward	 power	 price	will	 be	 a	

biased	forecast	of	the	future	spot	prices.	Results	indicate	that	the	forward	premium	decreases	by	

the	 anticipated	 variance	 of	 wholesale	 spot	 prices	 and	 increased	 by	 the	 anticipated	 positive	

skewness	of	wholesale	spot	prices.	In	addition,	they	document	a	positive	bias	in	forward	power	

prices	 for	 summertime	delivery,	while	 the	bias	 in	 forward	prices	 for	 spring	and	 fall	delivery	 is	

zero	or	negative.		

	

The	 results	of	Bessembinder	 and	Lemon	 (2002)	are	 confirmed	by	Longstaff	 and	Wang	 (2004).	

They	examine	the	pricing	of	electricity	forward	contracts	 in	the	day-ahead	forward	market	and	

their	 relation	 to	 the	 corresponding	 spot	prices.	The	 authors	 conduct	 a	high-frequency	 analysis	

using	 hourly	 data	 and	 find	 significant	 risk	 premia	 in	 electricity	 forward	prices,	 although	 these	

premia	 vary	 throughout	 the	 day.	 Longstaff	 and	 Wang	 (2004)	 explicitly	 examine	 whether	 the	

forward	premium	reflects	compensation	 for	risk-taking	by	regressing	 the	 forward	premium	on	

measures	 of	 price,	 quantity	 and	 revenue	 risk.	 Results	 indicate	 that	 the	 forward	 premium	 is	

significantly	affected	by	these	risk	measures	and	that	the	forward	premium	is	essentially	a	risk	

compensation	in	addition	to	the	expected	spot	prices.	Their	study	concludes	that	forward	prices	

are	 less	 volatile	 than	 expected	 spot	 prices,	 and	 therefore	 provides	 empirical	 support	 for	 time-

varying	risk	premia.		

	

Cartea	 and	Villaplana	 (2008)	 apply	 an	 equilibrium	model	 in	which	 they	 explain	 the	wholesale	

power	prices	by	means	of	two	state	variables:	demand	and	capacity.	By	doing	so,	they	derive	the	

analytical	expression	for	forward	contracts	and	calculate	the	forward	premium.	The	authors	find	

that	 the	 volatility	 of	 demand	 and	 load	 is	 strongly	 seasonal	 and	 that	 high	 volatility	 of	 demand	

induces	 a	 higher	 forward	 premium	 in	 line	with	 earlier	 research.	 The	 authors	 assume	 that	 the	

volatility	of	capacity	and	the	market	price	of	risk	are	constant	factors.	Under	this	assumption,	the	

dynamics	 of	 the	 forward	 premium	 depend	 on	 the	 market,	 the	 period	 under	 study	 and	 the	

hedging	needs	of	market	participants.		
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Several	 models	 are	 discussed	 here	 and	 the	 most	 common	 models	 applied	 in	 the	 electricity	

market	 are:	 factor	 models,	 equilibrium	 pricing	 models	 and	 regime-switching	 models.	 Factor	

models	 find	 their	 application	 in	 pricing	 of	 derivatives	 and	 consist	 of	 a	 deterministic	 and	 a	

stochastic	component.	The	deterministic	component	is	responsible	for	capturing	the	seasonality	

in	electricity	prices	and	the	stochastic	component	is	responsible	for	the	unpredictable	short-term	

deviations.	Regime-switching	models	assume	that	the	variable	that	is	being	modelled,	could	be	in	

more	 than	one	 regime.	Regime-switching	models	 incorporate	a	mean	reversion	component	 for	

short-lived	 normal	 deviations,	 however	 they	 could	 also	 include	 a	 jump	 component.	 The	mean	

reversion	 of	 this	 jump	 component	 is	 higher	 than	 the	mean	 reversion	 from	 normal	 short-lived	

deviations.	 Alternatively,	 regime-switching	 models	 could	 also	 be	 modelled	 with	 transition	

probabilities.	 These	 type	 of	 models	 are	 known	 as	 the	 Markov	 regime-switching	 models.	 The	

transition	 probabilities	 indicate	 the	 probability	 of	 switching	 between	 regimes.	 In	 addition,	 the	

transition	probabilities	could	also	be	modelled	as	 time-varying.	At	 last,	equilibrium	models	are	

based	 on	 the	 assumption	 that	 prices	 are	 determined	 by	market	 participants.	 The	 price	 is	 the	

equilibrium	price	where	demand	meets	 supply.	A	 summary	of	 the	 results	 in	 existing	 literature	

can	be	found	in	table	2.		
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Table	2:	Summary	of	models	in	the	literature	

Author(s)	 Data	 Methodology	 Results	

Fama	and	French	

(1987)	

CBT,	CME,	

Comex,	

CSCE,	CTN	

and	NYM	

Regression	analysis	 Mixed	results,	some	commodities	are	related	to	

a	 time-varying	 risk	 premium	 whereas	 others	

exhibit	 both	 forecasting	 power	 and	 time-

varying	expected	risk	premia.	

Schwartz	and	

Smith	(2000)	

NYM	crude	

oil	futures	

data	&	

Enron	

futures	data	

Two-factor	model	

including	short-term	

deviations	and	an	

equilibrium	level	

Both	 datasets	 show	 more	 volatile	 spot	 prices	

than	 equilibrium	 prices,	 indicating	 short-term	

volatility	is	profound.	

Lucia	and	

Schwartz	(2002)	

Nord	Pool	

market	

One-factor	model	and	

two-factor	model	

Two-factor	 models	 are	 superior	 to	 one-factor	

models.	 Models	 based	 on	 normal	 prices	 and	

incorporating	 a	 sinusoidal	 function	 perform	

better	 than	 models	 based	 on	 log-prices	 and	

seasonal	dummies.		

Bessembinder	

and	Lemmon	

(2002)	

PJM	and	

CALPEX	

market	

Equilibrium	pricing	

model	

The	 forward	 premium	 decreases	 by	 the	

anticipated	 variance	 of	 wholesale	 spot	 prices	

and	 increases	 by	 the	 anticipated	 positive	

skewness	of	wholesale	spot	prices.	Preliminary	

results	 show	 that	 the	 premium	 is	 highest	

during	summer	months.			

Huisman	and	

Mahieu	(2003)	

APX,	LPX	

and	UK	

market	

Three	regime	jump	

model		

The	three	regime-switching	model	 is	based	on	

the	assumption	that	normal	mean	reversion	 is	

not	 directly	 related	 to	 jumps.	 The	 model	

performs	better	than	regime-switching	models	

that	simultaneously	model	mean	reversion	and	

spikes.	

Longstaff	and	

Wang	(2004)	

PJM	market	 Regression	analysis	

	

Results	 in	 line	with	Bessembinder	 and	Lemon	

(2002).	 Forward	 premia	 are	 time-varying	 and	

represent	risk	compensation.		

Bierbrauer	et.	al.	

(2004)	

Nord	Pool	

market	

Two	regime-switching	

models	and	a	three	

regime-switching	

model	

The	 three	 regime-model	 performs	 better	 in	

capturing	 the	 real	 time	 price	 spikes	 than	 the	

two	regime-switching	model.		

Cartea	and	

Figueroa	(2005)	

UK	market	 Jump	diffusion	model			 The	 jump	 diffusion	model	 performs	 well,	 and	

the	 simulated	 price	 path	 resembles	 the	

electricity	 spot	 prices	 as	 observed	 in	 the	

market.		
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Mount	et.	al.	

(2006)	

PMJ	market	 Markov	regime-

switching	model		

The	probability	of	migrating	to	the	high	regime	

increases	 when	 reserve	 margin	 is	 low.	 The	

probability	 of	 remaining	 in	 the	 low	 regime	

increases	when	reserve	margin	is	high.		

Cartea	et.	al.	

(2008)	

UK	market	 Regime	jump	model		 The	 model	 performs	 well	 as	 it	 is	 able	 to	

simulate	 spot	prices	 in	 reasonable	 accordance	

with	observed	historical	price	paths.	Forward-

looking	seasonality	enables	the	model	to	mean	

revert	to	more	realistic	scenarios.		

Cartea	and	

Villaplana	

(2008)	

UK,	PJM	and	

Nord	Pool	

market	

Equilibrium	pricing	

model		

	

In	 line	with	Bessembinder	and	Lemon	(2002).	

Demand	 volatility	 is	 positively	 related	 to	 the	

forward	 premium.	 The	 forward	 premium	

dynamics	 depend	 on	 the	 market,	 hedging	

needs	of	market	participants	and	the	period.	

Huisman	(2008)	 APX	market	 Markov	regime-

switching	model	

The	 probability	 of	 the	 occurrence	 of	 a	 price	

spike	 increases	 in	 times	 of	 extreme	

temperatures.	 The	 higher	 probability	 of	 the	

occurrence	 a	 price	 spike	 in	 the	 summer	 may	

also	 stem	 from	 consumption	 planning	

problems.	

Huisman	and	

Kilic	(2011)	

APX	and	

Nord	Pool	

market	

Regression	analysis	 Electricity	 generated	 by	 perfectly	 storable	

commodities	 exhibit	 time-varying	 risk	 premia	

and	 forecasting	 power	 in	 the	 forward	 price	

whereas	imperfectly	storable	and	non-storable	

commodities	only	exhibit	forecasting	power	in	

the	forward	price.	

Kilic	and	

Trujillo-Baute	

(2015)	

Nord	Pool	

market	

Markov	regime-

switching	model	

Hydropower	capacity	is	effective	in	controlling	

for	volatility	in	the	intraday	market	only	when	

hydropower	 is	 used	 to	 absorb	 wind	 power	

deficits.		
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3 Methodology	
	

The	forward	premium	depends	on	two	factors:	the	expected	spot	price	at	the	maturity	date	and	

the	 forward	price	at	 the	maturity	date.	The	expected	 spot	price	will	be	modelled	based	on	 the	

observed	spot	price	data	on	the	day-ahead	market	by	means	of	a	one-factor	model.	 In	the	one-

factor	 model	 the	 deterministic	 component	 is	 disentangled	 from	 the	 stochastic	 component.	

Separating	 the	 deterministic	 component	 and	 the	 stochastic	 component	 allows	 to	 forecast	 the	

expected	spot	price	more	accurately.	Consequently,	the	forward	premium	will	be	constructed	by	

subtracting	 the	expected	spot	price	 form	the	observed	 futures	price	 in	 the	market.	As	Markov-

regime	 switching	 models	 outperform	 basic	 stochastic	 and	 mean	 reverting	 models	 (Higgs	 &	

Worthington,	2008),	the	effect	of	capacity	constraints	on	the	forward	premium	will	be	examined	

by	 applying	 a	 Markov	 regime-switching	 model.	 The	 advantage	 of	 Markov	 regime-switching	

models	 is	 that	 the	 transition	 probabilities	 can	 be	 modelled	 as	 time-varying,	 which	 allows	 to	

investigate	the	effect	of	capacity	constraints	over	time.		

	

In	this	section	is	organised	as	follows.	First,	model	1,	the	one-factor	model,	will	be	introduced.	In	

this	 paragraph	 the	 stochastic	 component	 and	 deterministic	 component	 will	 be	 defined	

separately.	Secondly,	the	Markov	regime-switching	models	will	be	defined.	Model	2	describes	the	

standard	Markov-regime	switching	model	and	model	3	extends	by	including	the	effect	of	capacity	

constraints.		

	

3.1	 Model	1:	The	one-factor	model	for	electricity	spot	prices	

	

3.1.1	 The	stochastic	component	

Following	 the	 methodology	 of	 Lucia	 and	 Schwartz	 (2002),	 the	 expected	 spot	 price	 will	 be	

modelled	 by	 applying	 a	 one-factor	 model.	 The	 one-factor	 model	 distinguishes	 between	 a	

deterministic	and	a	stochastic	component.		The	natural	logarithm	of	the	spot	price	is	modelled	as	

this	 allows	 to	model	 non-negative	 prices	 and	 utilise	 a	 normal	 distribution.	 Generally,	 negative	

prices	 are	 avoided	 because	 day-ahead	 spot	 prices	 cannot	 become	 negative	 in	 most	 cases.	

Although	 negative	 prices	 can	 occur,	 they	 are	 often	 more	 likely	 on	 intraday	 and	 balancing	

markets.		

	

The	 natural	 logarithm	 of	 the	 spot	 price,	 represented	 by	ln𝑃! ,	 is	 modelled	 as	 the	 sum	 of	 two	

components,	 namely	 the	 deterministic	 component	𝑓 𝑡  capturing	 the	 seasonal	 patterns	 of	

electricity	prices	and	a	stochastic	component	𝑋! .		

	

ln𝑃! = 𝑓 𝑡 +  𝑋!		 	 	 	 	 	 	 	 	 (1)	
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It	is	assumed	that	𝑋!	follows	a	stochastic	process	of	the	form	

	

𝑑𝑋! =  −𝜅𝑋!𝑑𝑡 +  𝜎𝑑𝑍		 	 	 	 	 	 	 	 	 (2)	

	

𝑋! 	is	the	only	source	of	uncertainty	as	it	is	the	only	stochastic	component.	𝑋! 	is	defined	as	a	state	

variable.	𝑋!	follows	a	 stationary	mean-reverting	process	with	a	 zero	 long-run	mean,	 a	 speed	of	

adjustment	 κ,	 with	 κ	 >	 0	 and	𝑋 0 = 𝑋!.	 dZ	 represents	 an	 increment	 to	 a	 standard	 Brownian	

motion	𝑍!	in	order	to	give	the	residuals	a	pure	random	structure.		

	

For	estimation	purposes	of	the	stochastic	process,	𝑋!		is	expressed	in	a	fully	discrete	form		

	

𝑋! = 1 − 𝜅 𝑋!!! + 𝜎		 	 	 	 	 	 	 	 	 (3)	

	

Using	the	fact	that	𝑋!		=	ln𝑃!	–𝑓 𝑡 ,	equation	(1)	and	(2)	can	be	rewritten	as	follows	

	

𝑑 ln𝑃! − 𝑓 𝑡 =  𝜅 𝑓 𝑡 − ln𝑃! 𝑑𝑡 +  𝜎𝑑𝑍	 	 	 	 	 	 (4)	

	

An	explicit	solution	for	(2)	can	be	obtained,	which	together	with	(1)	yields:	

	

ln𝑃! = 𝑓 𝑡 + 𝑋!𝑒!!" + 𝜎 𝑒! !!!!
! 𝑑𝑍(𝑠)		 	 	 	 	 	 (5)	

	

From	this	the	conditional	mean	and	variance	can	be	derived	using	𝑋! =	𝑃! −  𝑓 0 .	ln𝑃! has	a	

conditional	normal	distribution	with	conditional	mean	and	variance	given	by		

	

𝐸!(ln𝑃!) = 𝐸(𝑃!|𝑋!) = 𝑓 𝑡 + (ln𝑃! − 𝑓(0))𝑒!!"	 	 	 	 	 	 (6)	

	

𝑣𝑎𝑟!(ln𝑃!) = 𝐸 𝑃! 𝑋! = !!

!!
(1 − 𝑒!!!"), 	 𝜅 > 0	 	 	 	 	 	 (7)	

	

𝑓 𝑡 	is	the	mean	value	for	𝑃!	in	the	long	run	given	its	value	at	a	previous	moment	𝑃!.	The	higher	

κ,	 the	 faster	 the	 convergence	 to	 the	mean	 level	 as	 the	 variance	 and	 the	 stochastic	 component	

decreases	 with	 the	 time	 horizon.	 The	 variance	 has	 a	 finite	 limit	 as	 the	 horizon	 approaches	

infinity.	Hence,	the	price 𝑃! has	a	log-normal	distribution	with	mean	given	by	

	

𝐸 𝑃! = exp (𝐸 ln𝑃! + !
!
𝑣𝑎𝑟(ln𝑃!))	 	 	 	 	 	 	 (8)	

	

Essentially,	the	natural	logarithm	of	the	expected	spot	price	is	then	equal	to	the	natural	logarithm	

of	the	conditional	mean	plus	the	standard	deviation	of	the	spot	price.	Based	on	the	methodology	

of	Lucia	and	Schwartz	(2002),	the	closed	form	solution	for	the	valuation	of	expected	spot	prices	

using	(6),	(7)	and	(8)	becomes		



	

24	
	

𝐸 𝑃! 	= exp [𝑓 𝑇 + ln𝑃! − 𝑓(0) 𝑒!!" +
!!

!!
1 − 𝑒!!!" ]			 	 	 	 (9)	

	

Ln𝑃! − 𝑓(0) equals	the	stochastic	component	𝑋!	at	the	time	the	forward	contract	is	first	entered	

into.	According	to	the	theory,	this	element	together	with	the	noise	component	(𝜎	)	will	fade	away	

over	the	course	of	time	horizon	T.	T	is	the	amount	of	days	between	the	date	when	the	contract	is	

first	entered	into	and	the	maturity	date.	The	time	horizon	is	equal	to	six	months	for	M1-forward	

contracts	as	these	are	being	traded	six	months	prior	to	the	maturity	date.3	The	noise	component	

(𝜎)	and	the	stochastic	component	(𝑋!)	will	fade	away	by	the	speed	of	the	mean	reversion	κ	to	the	

mean	level.	This	mean	level	is	denoted	by	the	deterministic	component	upon	the	maturity	date,	

𝑓 𝑇 .	Hence,	the	deterministic	component	is	an	important	factor	in	determining	the	spot	price.	In	

the	following	section	the	deterministic	component	will	be	discussed	thoroughly.		

	

3.1.2	 The	deterministic	component	

The	 deterministic	 component 𝑓 𝑡 	is	 a	 constant	 function	 for	 time	 t	 including	 a	 deterministic	

general	 linear	 time	 trend.	 As	 shown	 in	 the	 literature	 (Lucia	 &	 Schwartz,	 2002;	 Cartea	 and	

Villaplana,	2008),	the	volatility	of	weekend	days	and	the	volatility	weekdays	differ	significantly.	

Therefore,	 the	 seasonality	 of	 the	 working	 and	 non-working	 days	 will	 be	 incorporated	 by	

including	a	dummy	variable	for	weekends.		

	

The	deterministic	component	is	modelled	as	accurate	as	possible	by	also	taking	into	account	the	

effect	of	 temperature.	According	 to	 the	 literature,	 the	volatility	of	 the	spot	price	 is	 consistently	

different	 between	 cold	 and	 warm	 seasons	 (Lucia	 &	 Schwartz,	 2002;	 Huisman	 R.,	 2008;	

Bessembinder	&	Lemmon,	2002).	Hence,	 it	 is	assumed	 that	 the	 level	of	 temperature	 influences	

the	spot	price.	The	effect	of	 temperature	 is	approximated	by	 introducing	a	dummy	variable	 for	

seasons.	 The	 dummy	 variable	 for	 seasons	 is	 defined	 as	 follows.	 Summer	 is	 assumed	 to	 be	 a	

season	 in	 which	 temperatures	 are	 high	 and	 winter	 is	 assumed	 to	 be	 a	 season	 in	 which	

temperatures	are	low.	Summer	months	are	assumed	to	be	May	to	September.	Winter	months	are	

assumed	to	be	January	to	April	and	October	to	December.	The	deterministic	component	is	then	

	

𝑓 𝑡 =  𝜇! +  𝛽𝐷! +  𝜕𝑆!	 	 	 	 	 	 	 	 (10)	

	

Where	𝐷!	=		 1	if	date	is	a	weekend	day	

	 	 0	if	otherwise;	date	is	a	weekday		

	

And		 𝑆! 	=		 1	if	summer	month	(M=5,	6,	7,	8	&	9)	

	 	 0	if	winter	month	(M	=	1,	2,	3,	4,	10,	11	&	12)	

	

																																																								
3	Six	months	are	assumed	to	be	182	days	based	on	365	days	in	a	year.		
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Finally,	the	expected	spot	price	at	maturity	is	obtained.	The	forward	premium	at	maturity	can	be	

calculated	as	

	

𝑃𝑅𝐸𝑀! =  𝐹!,! − 𝐸(𝑃!)		 	 	 	 	 	 	 	 	 (11)	

	

𝐹!,! 	is	the	forward	price	set	at	time	t	for	a	contract	maturing	at	time	T.	𝐸(𝑃!)	is	the	expected	spot	

price	at	maturity.		

	

3.2	 Markov	regime-switching	models	for	forward	premia	

In	 this	 section,	 the	Markov	 regime-switching	models	 for	 the	 forward	premium	will	 be	defined.	

The	model	 alternates	between	 two	 regimes:	 	 a	 normal	 and	 a	non-normal	 regime.	Model	 2	 is	 a	

standard	 Markov	 regime-switching	 model	 with	 constant	 transition	 probabilities.	 Model	 3	 is	 a	

Markov	 regime-switching	 model	 with	 time-varying	 transition	 probabilities.	 The	 capacity	

constraints	 are	 included	 in	 the	 time-varying	 transition	 probabilities	 in	 model	 3.	 In	 addition,	

model	 3	 distinguishes	 between	 summer	 and	 winter	 months.	 In	 the	 next	 paragraph,	 the	 two	

regimes	will	be	described	and	capacity	constraints	will	be	defined.		

	

3.2.1	 Two	regimes	based	on	capacity	constraints	

The	Markov	regime-switching	model	departs	from	the	fact	that	the	forward	premium	can	be	in	

two	 different	 states:	 the	 normal	 regime	 and	 the	 non-normal	 regime.	 The	 forward	 premium	

alternates	between	the	two	regimes	induced	by	a	switching	parameter.	The	switching	parameter	

in	this	study	is	the	capacity	constraints	ratio.		

	

Recall,	 that	 capacity	 constraints	 are	 day-ahead	 short-term	 frictions	 between	 the	 demand	 and	

supply	of	electricity.	Capacity	constraints	are	defined	as	a	 ratio	 in	which	demand	 is	divided	by	

supply.	Capacity	constraints	could	be	considered	as	a	measure	of	tightness	in	the	power	market.	

High	 capacity	 constraints	 lead	 to	 tight	market	 conditions	 and	 low	 capacity	 constraints	 lead	 to	

normal	market	conditions.		

	

In	order	 to	define	a	period	 in	which	capacity	constraints	are	high	or	 low,	a	 threshold	value	 for	

capacity	constraints	is	required.	If	the	capacity	constraints	at	a	certain	point	in	time	exceed	this	

threshold	value,	the	capacity	constraints	are	high	and	the	market	could	be	considered	tight.	If	the	

capacity	constraints	are	equal	or	lower	than	the	threshold	value,	the	capacity	constraints	are	low	

and	the	market	could	be	indicated	as	normal.			

	

To	 determine	 the	 threshold	 value,	 first	 the	 capacity	 constraints	 ratio	will	 be	 constructed.	 The	

construction	of	the	capacity	constraints	ratio	is	based	on	the	methodology	of	Cartea	et.	al.	(2008).		
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The	capacity	constraints	ratio	will	be	constructed	as	follows	

	

𝜕(𝑡!  , 𝑡!) =
!(!!,!!)
!(!!  ,!!)

 	 	 	 	 	 	 	 	 	 (12)	

	

In	which	D	is	the	consumption	prognosis	and	P	is	the	production	prognosis.	This	ratio	shows	the	

relationship	between	 the	demand	and	supply	 forecasted	on	day	m	 for	day	n	 somewhere	 in	 the	

future.	 One	 can	 calculate	 the	 forecast	 ratio	𝜕(𝑡!  , 𝑡!) 	at	 every	 point	 in	 time	 where	 m,n	 Є	

{1,2.3…,365}	 denote	 the	 days	 of	 the	 year.	 Hence,	 for	 example	𝜕(𝑡!"  , 𝑡!")	is	 the	 forecast	 ratio	

calculated	upon	day	36	for	day	38	of	the	year.	In	this	study	the	ratio	will	be	calculated	between	

two	consecutive	days.	Therefore,	the	ratio	can	be	written	in	the	form 𝜕(𝑡!!!  , 𝑡!).	This	ratio	will	

show	forecasts	made	on	day	n-1	for	the	following	day	n.		

	

After	 constructing	 the	 capacity	 constraints	 ratios,	 a	 threshold	 value	 can	 be	 determined.	 The	

threshold	 value	 is	 equal	 to	 the	 average	 capacity	 constraint	 ratio	 from	 1	 January	 2013	 to	 31	

December	2016.4	This	threshold	value	indicates	the	average	capacity	constraint	in	the	electricity	

market	during	 the	 course	of	 four	years.	Consequently,	 the	 spike	 regime	 is	denoted	by	 capacity	

constraints	 higher	 than	 the	 threshold	 value	 and	 the	 normal	 regime	 is	 represented	 by	 capacity	

constraints	ratios	equal	or	lower	than	the	threshold	value 𝜕∗.		

	

High	capacity	constraints/	Tight	market	conditions:	 𝜕(𝑡!!!  , 𝑡!) >  𝜕∗		 (13)	

	

Low	capacity	constraints/	Normal	market	conditions:		 𝜕(𝑡!!!  , 𝑡!) ≤  𝜕∗	 (14)	

	

After	defining	low	and	high	capacity	constraints,	the	dummy	variable	for	the	capacity	constraints	

(𝐼!!)	 can	 be	 introduced.	 The	 dummy	 variable	 will	 be	 used	 in	 model	 3,	 the	 Markov	 regime-

switching	model	including	time-varying	transition	probabilities.		

	

𝐼!! 	 =	 1		 if	high	capacity	constraint/	tight	market	conditions	

			 =	 0		 if	low	capacity	constraint/	normal	market	conditions	

	

3.2.2	 Model	2:	The	two	regime-switching	model		

This	 standard	 regime-switching	model	 attempts	 to	model	 the	 forward	 premium	with	 constant	

transition	 probabilities.	 The	 Markov	 regime-switching	 models	 are	 based	 on	 Huisman	 (2008),	

Kilic	and	Trujillo-Baute	(2015),	Huisman	and	Mahieu	(2003)	and	Mount	et.	al.	(2006).		

	

Let 𝐹! 	be	the	natural	logarithm	of	the	forward	premium	at	day	t.	Note,	that	t	is	the	date	that	the	

physical	delivery	of	electricity	commences.	The	forward	premium	does	not	follow	a	random	walk	

																																																								
4	The	Nord	Pool	market	publishes	the	forecasted	demand	and	supply	from	1	January	2013	onwards.		
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(see	 figure	 1),	 but	 fluctuates	 around	 a	 mean	 level.	 Therefore,	 it	 is	 assumed	 that	 the	 forward	

premium	 embeds	 a	 mean	 value,	 denoted	 by	 the	 deterministic	 trend.	 However,	 the	 forward	

premium	 is	 also	 highly	 volatile	 (see	 figure	 1),	 which	 points	 out	 that	 there	 should	 also	 be	 a	

stochastic	component	incorporated	in	the	model.	The	high	volatility	in	combination	with	a	mean	

value	 implies	 that	 the	 forward	premium	exhibits	mean	reversion.	Therefore,	 it	 is	assumed	that	

the	 stochastic	 component	 should	 incorporate	 a	mean	 reversion	 component.	 It	 is	 assumed	 that	

the	 forward	 premium	 consists	 of	 a	 deterministic	 component	 (𝑑!	)	 and	 a	 stochastic	 component	

(𝑥!)	such	that		

	

𝐹! = 𝑑! + 𝑥!		 	 	 	 	 	 	 	 	 	 (15)	

	

The	deterministic	component	accounts	 for	 the	predictable	component	of	 the	 forward	premium	

and	is	essentially	the	long-term	mean	level	of	the	forward	premium.		

	

𝑑! =  𝜇!		 	 	 	 	 	 	 	 	 	 (16)	

	

The	stochastic	component	is	modelled	as	a	Markov	regime-switching	process.	At	any	time	t,	it	is	

assumed	 that	 the	 process	 can	 be	 in	 one	 of	 the	 two	 states.	 Let	𝑆! 	be	 the	 regime	 in	 which	 the	

process	 is	 at	 time	 t	 (𝑆! = 1,2). State	 1	 represents	 a	 normal	 regime	 in	 which	 the	 stochastic	

component	follows	a	mean	reverting	process.		

	

𝑋!! = 1 − 𝛼 𝑋!!! + 𝜎! ∈!,!      | 𝑆! = 1		 	 	 	 	 	 	 (17)	

	

𝛼	represents	 the	speed	of	mean	reversion	and	𝜎!	is	 the	standard	deviation	of	 the	error	 term	 in	

state	1	and	is	multiplied	with	the	error	term	in	state	1.		

	

State	2	denotes	a	non-normal	regime	in	which	the	likelihood	of	a	spike	occurring	is	higher.			

	

𝑋!! = 𝜇! + 𝜎! ∈!,!      | 𝑆! = 2		 	 	 	 	 	 	 	 (18)	

	

𝜇!	is	the	random	shock	mean	price	in	state	2,	which	is	an	increase	or	decrease	in	long-term	mean	

price	 level.	𝜎! represents	 the	 standard	 deviation	 of	 the	 error	 term	 in	 state	 2	 and	 is	multiplied	

with	 the	 error	 term	 in	 state	 2.	 The	 error	 terms	∈!,!	for	 regime	 1	 and	∈!,!	for	 regime	 2	 are	

assumed	to	be	IID(0,1),	mutually	independent	and	normally	distributed.		

	

Let	the	element	𝑝!,! 	be	the	conditional	probability	that	the	process	is	in	state	i	at	time	t	given	that	

the	 process	 was	 in	 state	 j	 at	 time	 t-1,	 so	𝑝!,! = Pr 𝑆! = 𝑖 𝑆!!! = 𝑗 . Accordingly,	𝑝!,! 	is	 the	

probability	that	the	power	market	was	in	state	1	and	remains	in	state	1	the	following	day.	Hence,		

𝑝!,! = 1 −  𝑝!,!	and	represents	the	probability	that	power	market	was	 in	state	1	at	 time	t-1	and	
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has	migrated	 to	 state	2	at	 time	 t.	The	 transition	probabilities	are	assumed	 to	be	 constant	over	

time	and	are	defined	as		

	

𝑝!,! = 𝜆! 		 	 	 	 	 	 	 	 	 	 (19)	

	

A	 logistic	 transformation	 is	 applied	 to	 restrict	 the	 probabilities	 to	 remain	 between	 0	 and	 1.	

Furthermore,	 the	 parameters	𝜆!	and	𝜆!	are	 introduced	 such	 that	 a	 logistic	 transformation	 of	

these	parameters	yields	the	actual	transition	probability	𝑝∗!,! 	

	

𝑝∗!,! =
!

!!!!!! 
		 	 	 	 	 	 	 	 	 	 (20)	

	

Figure	1:	Natural	logarithm	of	the	forward	premium

	
	

3.2.3	 Model	3:	The	two	regime-switching	model	with	capacity	constraints		

Model	3	is	an	extension	of	model	2	in	which	the	effect	of	capacity	constraints	is	incurred.	So	far,	

the	transition	probabilities	are	constant.	In	model	3,	the	transition	probabilities	are	time-varying.		

	

Huisman	 (2008)	 showed	 the	 importance	 of	 temperature	 on	 the	 probability	 of	 spikes	 in	 day-

ahead	power	 prices.	 The	 author	 distinguishes	 in	 the	Markov	 regime-switching	model	 between	

summer	 and	winter	months.	 By	 doing	 so,	 the	 author	 could	 separate	 the	 effect	 of	 temperature	

deviations	 on	 the	 probability	 of	 spikes	 in	 day-ahead	 prices	 in	 the	 winter	 and	 the	 summer.	

Following	this	methodology,	the	time-varying	transition	probabilities	in	this	model	separate	the	

effect	of	capacity	constraints	in	summer	and	winter	months	by	introducing	a	dummy	variable	for	

summer	 and	winter.	 According	 to	 Bessembinder	 and	 Lemon	 (2002),	 the	 premium	 in	 forward	

power	prices	is	highest	during	summer.	Therefore,	the	effect	of	delivery	during	summer	months	

is	also	directly	modelled	in	the	transition	probabilities.		

	

By	including	the	capacity	constraints	distinguishing	between	summer	and	winter	months	and	the	

effect	of	summer	in	the	time-varying	transition	probabilities,	the	equation	becomes	

-5

-4

-3

-2

-1

0

1

2

3

4

2013 2014 2015 2016



	

29	
	

𝑝!,! = 𝜆! +  Κ!!"𝐶!!!𝐼!!!!𝐼!! + Κ!!"𝐶!!!𝐼!!!!𝐼!! + Κ!!𝐼!!				 	 	 	 (21)	

	

In	which	𝐶! =
!"#$%&'()"#!
!"#$%!"#$%!

− 1	 	 	 	 	 	 	 	 (22)	

	

𝐶!	denotes	the	short-term	frictions	between	demand	and	supply	as	fraction	of	the	supply.	𝐶!	and	

𝐼!! 	are	lagged	in	order	to	examine	the	effect	of	capacity	constraints	on	the	forward	premium	the	

next	day.	Κ!!	represents	the	effect	of	summer	on	the	transition	probability.	The	related	dummy	

variables	 to	 indicate	 a	 summer	 or	 a	 winter	 month	 are	 defined	 as	 follows:	𝐼!!	is	 the	 dummy	

variable	 for	 summer	 months	 and	 takes	 the	 value	 1	 for	 the	 months	 May-September	 and	 0	

elsewhere.	𝐼!!	is	 the	 dummy	variable	 for	winter	months	 and	 takes	 the	 value	1	 for	 the	months	

January-April	and	October-December	and	0	elsewhere.		

	

Parameter	Κ!!"	captures	 the	 influence	 of	 the	 short-term	 frictions	 between	 demand	 and	 supply	

under	 tight	 market	 conditions	 in	 the	 summer.	 Parameter	Κ!!"	captures	 the	 influence	 of	 the	

short-term	frictions	in	demand	and	supply	under	tight	market	conditions	in	the	winter.		

	

As	mentioned	before,	𝐼!!	is	the	dummy	variable	that	takes	the	value	1	if	the	capacity	constraints	

are	 high	 (tight	 market	 conditions)	 and	 takes	 the	 value	 0	 if	 the	 capacity	 constraints	 are	 low	

(normal	market	conditions).	5	The	transition	probability	at	time	t	(𝑝!,!),	when	the	market	is	under	

normal	conditions,	is	equal	to	𝜆! 	plus	Κ!!.			

	

All	the	parameters	in	model	1,	2	and	3	are	estimated	using	maximum	likelihood.		

	 	

																																																								
5	See	section	3.2.1	Two	regimes	based	on	capacity	constraints	
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4 Data	

	
4.1	 The	Nord	Pool	market	

The	primary	data	is	retrieved	from	the	Nord	Pool	market.	The	Nord	Pool	is	divided	into	bidding	

areas	 in	 which	 all	 the	member	 have	 to	 submit	 orders.	 The	 system	 average	 is	 the	 equilibrium	

between	the	aggregated	supply	and	demand	curves	for	all	bidding	areas	and	is	calculated	as	one	

price	 for	 the	 entire	Nordic	power	market.	 The	day-ahead	market	 is	 referred	 to	 as	 the	ELSPOT	

market	 where	 contracts	 are	 made	 between	 seller	 and	 buyer	 for	 the	 delivery	 of	 power	 the	

following	 day.	 The	 deadline	 for	 the	 ELSPOT	market	 to	 submit	 bids	 for	 power	 is	 at	 12.00	 CET	

every	day.	The	hourly	prices	are	announced	to	the	market	at	12.42	CET	or	 later.	After	 this,	 the	

trades	 are	 settled.	 Physical	 delivery	 of	 electricity	 takes	 place	 the	 next	 day	 against	 the	 price	

quoted	 one	 day	 before.	 The	 financial	 contracts	 are	 traded	 through	NASDAQ	Commodities.	 The	

system	price	calculated	by	the	Nord	Pool	is	used	as	the	reference	price	for	the	financial	market.	

There	is	no	physical	delivery	for	financial	power	market	contracts	until	the	maturity	date.		

	

4.2	 Data	analysis		

The	main	dataset	for	this	study	consists	of	the	day-ahead	spot	prices	(ELSPOT	prices),	the	one-

month	 (M1)	 futures	 prices,	 the	 hourly	 consumption	 prognosis	 and	 the	 hourly	 production	

prognosis.	The	 futures	prices	are	accrued	from	Bloomberg.	The	ELSPOT	prices,	production	and	

consumption	prognosis	are	accrued	from	the	historical	market	database	of	the	Nord	Pool	market.	

The	 ELSPOT	 prices	 are	 quoted	 on	 day	 t-1	 for	 day	 t.	 The	 M1-futures	 contracts	 are	 traded	 six	

months	prior	to	the	month	of	delivery.	Throughout	the	entire	month	(1	month	for	M1	contracts)	

of	delivery	the	price	of	electricity	is	fixed	at	the	price	agreed	at	the	time	the	forward	contract	was	

entered	 into.	 The	ELSPOT	price	 and	 futures	 price	 range	 from	1	 January	2013	 to	 31	December	

2016.		

	

The	 Nord	 Pool	 reports	 the	 consumption	 and	 production	 prognosis	 hourly	 and	 reports	 these	

according	to	different	bidding	areas.	First,	the	hourly	consumption	and	production	prognosis	are	

consolidated	into	daily	prognoses	by	taking	the	24-hour	average.	Secondly,	the	daily	prognoses	

are	transformed	into	one	system	value	by	taking	the	average	of	all	 the	bidding	areas.	After	this	

procedure,	 the	 hourly	 production	 and	 consumption	 prognoses	 are	 transformed	 into	 one	 daily	

system	value.	The	daily	production	and	consumption	prognosis	range	from	1	January	2013	to	31	

December	2016.		
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Figure	2:	ELSPOT	prices	in	€/MWh	

	
	

Figure	3:	Daily	relative	changes	in	ELSPOT	prices	and	capacity	constraints	ratio	

	
	

Figure	4:	Daily	relative	changes	in	futures	prices	and	capacity	constraints	ratio
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According	to	the	 literature,	electricity	prices	exhibit	seasonality,	high	volatility,	mean	reversion	

and	price	spikes.	From	figure	2,	it	becomes	clear	that	ELSPOT	prices	exhibit	high	volatility	but	the	

spot	 prices	 fluctuate	 around	 a	mean	 level.	 This	 shows	 that	 the	 electricity	 prices	 exhibit	mean	

reversion.	In	addition,	the	data	also	exhibits	large	peaks,	confirming	the	last	stylized	fact	of	high	

price	spikes.	When	considering	the	capacity	constraints	ratio	in	figure	3,	it	becomes	clear	that	the	

mean	 is	 close	 to	1.90,	which	 is	 the	average	capacity	constraints	 ratio	 in	 the	market.	A	capacity	

constraints	ratio	higher	than	approximately	1.90	indicates	that	the	capacity	constraints	are	high,	

meaning	that	the	market	is	under	tight	conditions.	A	ratio	lower	than	or	equal	to	approximately	

1.90	 indicates	 that	 the	 capacity	 constraints	 are	 low,	meaning	 that	 the	market	 is	 under	 normal	

circumstances.		

	

At	first,	it	seems	that	the	ELSPOT	prices	are	not	related	to	the	capacity	constraints	ratios	in	figure	

3.	 However,	when	 taking	 a	 closer	 look	 at	 figure	 3,	 it	 becomes	 clear	 that	 the	 effect	 of	 capacity	

constraints	on	the	spot	price	is	lagged.	A	large	downward	peak	of	the	capacity	constraints	ratio	is	

followed	by	a	slower	downward	price	pressure	in	the	spot	price.	Similarly,	a	large	upward	peak	

in	the	capacity	constraints	is	followed	by	a	slower	upward	price	pressure	in	the	spot	price.	These	

observations	are	 in	 line	with	 the	expectation	 that	high	 capacity	 constraints	 induce	higher	 spot	

prices	due	to	the	higher	expected	demand	or	demand	variance.	The	higher	expected	demand	or	

demand	variance	will	cause	positive	skewness	 in	the	distribution	of	 the	spot	price.	Hence,	high	

capacity	constraints	will	lead	to	higher	spot	prices.		

	

Considering	figure	4,	it	seems	that	the	capacity	constraints	ratio	and	the	futures	prices	move	in	

the	 same	 direction.	 	 From	 figure	 4,	 it	 can	 be	 concluded	 that	 a	 large	 downward	 peak	 in	 the	

capacity	 constraints	 ratio	 is	 accompanied	 by	 a	 large	 downward	 peak	 in	 the	 futures	 prices.	

Similarly,	large	upward	peaks	in	the	capacity	constraints	ratio	are	accompanied	by	large	upward	

peaks	 in	 the	 futures	 prices.	 The	 capacity	 constraints	 ratios	 are	 lagged	 one	 day	 to	 capture	 the	

effect	 on	 the	 forward	 premium	 of	 the	 next	 day.	 By	 lagging	 the	 capacity	 constraints	 ratios,	 the	

relationship	between	capacity	constraints	and	futures	prices	becomes	more	profound.		

	

Remarkably,	the	observations	suggest	that	the	spot	price	needs	more	time	to	adjust	to	the	new	

price	 level	 after	 a	 capacity	 constraint	has	occurred.	The	 futures	price	adopts	 faster	 to	 the	new	

price	level	and	thus	incorporates	the	effect	of	capacity	constraints	faster.	This	is	probably	related	

to	the	fact	that	futures	prices	contain	information	about	expected	spot	prices.	It	takes	some	time	

for	 the	 information	embedded	 in	 the	 futures	price,	 to	be	 incorporated	 in	 the	spot	prices	 in	 the	

day-ahead	market.	Hence,	it	seems	that	the	futures	price	adopts	faster	than	the	spot	price	to	the	

expected	price	level	after	a	capacity	constraint	has	occurred.		
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Table	3:	Descriptive	statistics	
The	data	ranges	 from	1	 January	2013	 to	31	December	2016.	The	winter	months	are	denoted	by	 January-

April	and	October-December.	The	summer	months	are	represented	by	May-September.	The	ELSPOT	price	

and	futures	price	are	in	€/MWh	and	the	consumption	and	production	prognosis	are	reported	in	MWh/day.	

	 Winter	 Summer	
	 Total	 Tight	 Normal	 Total	 Tight	 Normal	
ELSPOT	price		 	 	 	 	 	 	
Mean		 30.734	 34.413	 27.292	 26.353	 31.122	 23.276	
Min	 8.740	 14.950	 8.740	 3.880	 6.300	 3.880	
Max	 80.99	 80.990	 55.360	 43.740	 43.740	 41.670	
Std.	dev	 8.514	 8.599	 6.843	 8.482	 6.813	 8.024	
Skewness	 0.645	 0.651	 0.309	 -0.412	 -0.822	 -0.234	
Kurtosis	 4.370	 4.521	 3.587	 2.547	 3.626	 2.469	
Futures	price		 	 	 	 	 	 	
Mean		 49.656	 60.927	 39.182	 48.690	 60.759	 40.910	
Min	 13.930	 13.960	 13.930	 17.054	 19.027	 17.054	
Max	 96.924	 96.924	 93.015	 91.367	 91.367	 91.367	
Std.	dev	 23.700	 21.877	 20.296	 24.367	 23.604	 21.545	
Skewness	 0.096	 -0.302	 0.373	 0.249	 -0.558	 0.784	
Kurtosis	 1.911	 2.079	 2.051	 1.441	 1.719	 2.162	
Consumption	prognosis		 	 	 	 	 	
Mean		 6594.120	 6734.517	 6463.660	 4893.552	 4924.557	 4873.550	
Min	 4765.880	 4795.438	 4765.880	 4023.656	 4023.656	 4042.750	
Max	 9400.458	 9400.458	 8545.891	 6474.417	 6474.417	 5734.651	
Std.	dev	 847.551	 945.553	 722.016	 406.803	 481.447	 349.570	
Skewness	 0.552	 0.511	 0.270	 0.444	 0.609	 -0.026	
Kurtosis	 3.121	 2.713	 2.849	 3.685	 3.504	 2.584	
Production	prognosis		 	 	 	 	 	
Mean		 3431.130	 3371.162	 3486.854	 2583.482	 2484.847	 2647.117	
Min	 2418.822	 2418.822	 2552.275	 2019.208	 2019.208	 2128.519	
Max	 4646.193	 4646.193	 4499.453	 3130.269	 3127.372	 3131.269	
Std.	dev	 426.214	 462.9427	 381.145	 221.668	 234.647	 187.350	
Skewness	 0.311	 0.502	 0.214	 -0.271	 0.060	 -0.182	
Kurtosis	 2.718	 2.779	 2.668	 2.651	 2.364	 2.787	
N	 845	 407	 438	 612	 240	 372	

	

The	descriptive	statistics	are	reported	in	table	3.	It	can	be	concluded	that	on	average	the	forward	

premium	 (futures	 price	 –	 ELSPOT	 price)	 is	 higher	 during	 summer	 months	 (€22.337/MWh)	

compared	winter	months	(€18.922/MWh).	This	result	is	in	line	with	the	results	of	Bessembinder	

and	Lemon	(2002)	as	they	find	higher	forward	premia	in	the	summer.		

	

Regarding	the	ELSPOT	price,	it	can	be	concluded	that	the	ELSPOT	price	is	lower	during	summer	

months.	 The	 lower	 ELSPOT	 price	 can	 be	 explained	 by	 the	 expected	 demand,	 which	 is	 lower	

during	 summer	 month	 (6594.120	 MWh/day	 in	 the	 winter	 and	 4893.552	 MWh/day	 in	 the	

summer).	The	lower	demand	makes	sense	as	during	summer	months	the	utilisation	of	power	is	

lower	due	to	the	number	of	daylight	hours	and	temperature.	However,	the	coefficient	of	variance	

of	the	spot	prices	(std.	dev.	/	mean)	is	higher	in	the	summer	(0.277	in	the	winter	and	0.322	in	the	

summer),	which	means	that	the	spot	prices	are	more	volatile	during	summer	months.	Moreover,	

the	Nordic	power	market	is	largely	dependent	on	hydropower	generated	by	the	amount	of	snow	
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and	 precipitation.	 The	 amount	 of	 snow	 and	 precipitation	 determines	 the	 level	 of	 hydro	

reservoirs.	During	summer	the	level	of	hydro	reservoirs	is	highest.	6	The	level	of	hydro	reservoirs	

indicates	the	level	of	marginal	costs.	The	value	of	the	option	to	store	water	is	high	when	the	level	

of	 hydro	 reservoirs	 is	 low,	which	 leads	 to	 increased	marginal	 costs.	 Similarly,	 the	 value	 of	 the	

option	 to	 store	water	 is	 low	when	 the	 level	 of	 hydro	 reservoirs	 is	 high	 causing	 low	marginal	

costs.	Hence,	 the	marginal	 costs	are	 low	during	 summer	months	and	 induce	 lower	 spot	prices.	

The	lower	spot	prices	are	also	indicated	by	the	negative	skewness	in	the	distribution	of	the	spot	

prices	(-0.412	in	the	summer).		

	

On	 the	other	hand,	 the	 futures	price	 is	 higher	during	 the	winter.	 This	 can	be	 explained	by	 the	

expected	 demand	 or	 variance	 of	 demand.	 The	 expected	 demand	 (consumption	 prognosis)	 is	

substantially	 higher	 in	 the	 winter	 (6594.120	 MWh/day)	 than	 in	 the	 summer	 (4893.552	

MWh/day).	The	coefficient	of	variance	(st.	dev.	/	mean)	for	consumption	prognosis	is	0.129	and	

0.083	for	winter	and	summer	respectively.	This	means	that	the	dispersion	of	expected	demand	is	

higher	during	wintertime	 than	during	summertime.	Consequently,	 this	means	 that	 the	demand	

variance	 is	 higher	 during	 winter	 months.	 The	 higher	 expected	 demand	 and	 demand	 variance	

causes	the	positive	skewness	(0.645	in	the	winter)	in	the	distribution	of	the	spot	price.	As	result,	

the	forward	price	is	higher	in	order	to	compensate	for	this	increased	risk.		

	

When	considering	the	difference	between	tight	and	normal	market	conditions,	 it	becomes	clear	

that	the	forward	premium	is	higher	under	tight	market	conditions	(26.514	for	winter	and	29.637	

for	summer)	compared	to	normal	market	conditions	(11.89	for	winter	and	17.634	for	summer).	

Migrating	 from	 normal	 market	 conditions	 to	 tight	 market	 conditions	 induces	 an	 increase	 in	

futures	 prices,	more	 substantial	 than	 an	 increase	 in	 spot	 prices.	 The	 higher	 forward	 premium	

under	tight	market	conditions	can	be	explained	by	means	of	the	expected	demand	and	demand	

variance.	 The	 expected	 demand	 under	 tight	 market	 conditions	 are	 higher	 than	 under	 normal	

market	conditions	across	all	seasons.	The	expected	demand	is	6734.517	and	6463.660	MWh/day	

in	the	winter	and	4893.552	and	4873.550	MWh/day	in	the	summer	for	tight	and	normal	markets	

respectively.	 Furthermore,	 the	 coefficient	 of	 variance	 of	 the	 consumption	 prognosis	 (demand	

variance)	 during	winter	 is	 0.140	 and	 0.111	 for	 tight	 and	 normal	markets	 respectively.	 During	

summer	 the	 consumption	 prognosis	 coefficient	 of	 variance	 is	 0.098	 and	 0.072	 for	 tight	 and	

normal	 markets	 respectively.	 The	 coefficients	 of	 variance	 are	 higher	 under	 tight	 market	

conditions	than	under	normal	market	conditions	in	both	seasons.		

	

Higher	 expected	 demand	 and/or	 demand	 variance	 cause	 a	 positively	 skewed	 spot	 price	

distribution,	 which	 will	 lead	 to	 higher	 forward	 premia.	 The	 expected	 demand	 and	 demand	

variance	are	higher	under	 tight	market	conditions.	Based	on	 these	statistics,	 it	 is	expected	 that	

high	capacity	constraints	(i.e.	tight	market	conditions)	will	lead	to	high	forward	premia.	

																																																								
6	See	figure	5	Nord	Pool	hydro	reservoirs	in	GWh	(2016).		
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4.2.1 The	forward	premium	on	the	Nord	Pool	

In	this	section	the	forward	premium	will	be	examined	in	more	detail.	The	methodology	is	based	

on	Fama	and	French	(1987).	The	forward	premium	consists	of	the	change	in	expected	spot	price	

or	the	expected-to-be-realised	risk	premium.	A	regression	analysis	is	performed	to	analyse	which	

component,	 the	 change	 in	 expected	 spot	 price	 or	 the	 risk	 premium,	 is	 more	 dominant	 in	 the	

forward	premium.	According	to	 the	expectations	 theory,	 the	 forward	price	equals	 the	expected	

spot	price	plus	the	risk	premium	𝐹!,! =  𝐸!(𝑆! ) + 𝑃!,! .	From	this	equation	the	current	spot	price	

is	subtracted	on	both	sides	of	the	equation		

	

𝐹!,! − 𝑠! =  𝐸!(𝑆! ) −  𝑠! + 𝑃!,! 		 	 	 	 	 	 	 	 (21)	

	

The	risk	premium	could	be	restated	by	implying	that	the	risk	premium	is	equal	to	the	expected-

to-be	realised	risk	premium	

	

𝐹!,! − 𝑠! =  𝐸!(𝑆! ) −  𝑠! + [𝐹!,! − 𝐸!(𝑆!)]			 	 	 	 	 	 (22)	

	

[𝐹!,! − 𝑠!]	is	the	base,	[𝐸!(𝑆! ) −  𝑠!]	is	the	expected	change	in	spot	price	and	[𝐹!,! − 𝐸!(𝑆!)]	is	the	

time-varying	risk	premium.	To	test	which	component	is	more	present	in	the	base,	the	following	

regressions	are	performed	

	

𝐸(𝑆!) − 𝑆! =  𝛼! + 𝛽! 𝐹!,! −  𝑠! + 𝜖!	 	 	 	 	 	 	 (23)	

	

𝐹!,! − 𝐸(𝑆!) =  𝛼! + 𝛽! 𝐹!,! −  𝑠! + 𝜖!	 	 	 	 	 	 	 (24)	

	

If	the	theory	of	storage	applies	perfectly,	𝛽!	should	be	equal	to	0.	Should	𝛽!	be	equal	to	1	then	the	

expectations	theory	applies	perfectly.	Note,	that	𝛽!	+	𝛽!	=	1	based	on	equation	(22),	meaning	that	

𝛽!	reflects	the	fraction	of	the	forward	bias	that	is	attributable	to	expectations	about	the	spot	price	

and	𝛽!	is	the	fraction	of	the	forward	bias	that	is	attributable	to	the	time-varying	risk	premia.	The	

results	are	shown	in	table	3.		
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Table	4:	Regression	analysis	Nord	Pool	forward	premium	
Reported	are	the	results	of	the	regression	analysis	of	the	forward	premium	in	the	Nord	Pool	market.	𝛽!	is	

the	 fraction	of	 the	base	 that	 is	 related	 to	 the	change	 in	expected	spot	prices.	𝛽!	is	 the	 fraction	of	 the	base	

that	is	related	to	time-varying	risk	premia. 𝛼!	and	𝛼!	are	the	constant	terms	in	the	regressions.	The	number	

of	 observations	 is	 equal	 to	 1461.*,	 **	 denote	 a	 test	 statistic	 is	 statistically	 significant	 at	 the	 5%	 level	 of	

significance	or	1%	level	of	significance,	respectively.		

		 Coefficient	 Standard	error	 T-statistic	

	

𝛼!		

	

0.771**	

	

(0.155)	

	

(4.986)	

𝛽!		 0.962**	 (0.006)	 (170.975)	

𝛼!	 -0.771**	 (0.155)	 (-4.986)	

𝛽!		 0.038**	 (0.006)	 (6.711)	

	

From	 the	 results	 it	 becomes	 clear	 that	 3.8%	 of	 the	 base	 stems	 from	 the	 time-varying	 risk	

premium	 and	 96.2%	 of	 the	 base	 stems	 from	 the	 change	 in	 expected	 spot	 price.	 According	 to	

Huisman	and	Kilic	(2011),	futures	prices	from	markets	in	which	electricity	is	mainly	produced	by	

imperfect	 storable	 or	 non-storable	 commodities,	 contain	 information	 about	 changes	 in	 the	

expected	spot	price.	On	the	contrary,	 futures	prices	from	markets	 in	which	electricity	 is	mainly	

produced	by	perfectly	storable	commodities	contain	information	about	time-varying	risk	premia	

and	changes	in	expected	spot	prices.	The	Nord	Pool	market	shows	evidence	for	expectations	and	

less	 for	 time-varying	 risk	 premia.	 This	 result	 makes	 sense	 as	 the	 Nord	 Pool	 power	market	 is	

dominated	 by	 hydropower,	 which	 is	 produced	 by	 the	 imperfectly	 storable	 commodity,	 water.	

Knowing	this,	it	essential	that	the	expected	spot	price	is	estimated	properly	as	the	forward	price	

is	determined	by	the	expected	spot	price	for	the	most	part.			 	
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5 Results	
	

This	 section	presents	 the	 results	 of	 the	 three	models	 applied	 and	 the	 respective	 findings.	This	

section	 is	 organised	 as	 follows.	 First,	 the	 parameter	 estimates	 and	 findings	 of	 the	 one-factor	

model	 will	 be	 discussed.	 Secondly,	 the	 parameter	 estimates	 and	 the	 findings	 of	 the	 Markov	

regime-switching	 model	 with	 constant	 transition	 probabilities	 will	 be	 discussed.	 At	 last,	 the	

parameter	 estimates	 and	 findings	 of	 the	 Markov	 regime-switching	 model	 with	 time-varying	

transition	probabilities	including	capacity	constraints	will	be	presented.		

	

5.1	 The	one-factor	model	for	electricity	spot	prices	

		

Table	5:	Parameter	estimates	for	model	1	

Reported	 are	 the	 parameter	 estimates	 for	 the	 stochastic	 one-factor	 model	 in	 which	 the	 spot	 price	 Pt	

comprises	of	a	deterministic	component	f(t)	and	a	stochastic	component	Xt:	

ln𝑃! = 𝑓 𝑡 +  𝑋!	

The	 variables	 for	 β	 and	𝜕	are	 dummy	 variables.	 The	 sample	 period	 ranges	 from	 2	 January	 2013	 to	 31	

December	2016.	*,	**	denote	a	test	statistic	 is	statistically	significant	at	the	5%	level	of	significance	or	1%	

level	of	significance,	respectively.		

	 Estimate	 Standard	error	 T-statistic	

	

Mean	price		

	

µf	

	

3.434**	

	

(0.055)	 (62.180)	

Weekend	effect		 β	 -0.117**	 (0.005)	 (-23.516)	

Mean	reversion		 κ	 0.043**	 (0.008)	 (5.344)	

Summer	effect	 𝜕	 -0.074*	 (0.035)	 (-2.138)	

Volatility			 𝜎	 0.100**	 (0.002)	 (55.00)	

LogLik	 -1296.64	 	 	 	

N	 1461	 	 	 	

	

Table	5	shows	the	estimates	of	the	one-factor	model	for	expected	spot	prices.	All	the	parameters	

are	significantly	different	 from	zero.	The	mean	 log	price	µf		is	equal	 to	3.434	with	a	volatility	of	

0.100.	The	speed	of	mean	reversion	is	0.043	which	 is	 the	speed	at	which	price	deviations	from	

the	mean	level	fade	away.	In	the	weekends,	the	mean	log	price	is	lower	by	0.117.	During	summer	

months	the	mean	log	price	is	lower	by	0.074.	These	results	are	in	line	with	previous	studies.	The	

effect	of	weekend	days	is	expected	to	be	negative	as	weekend	days	usually	exhibit	lower	prices	

than	working	 days	 (Kilic	 &	 Truijillo-Baute,	 2015).	 The	 effect	 of	 summer	 on	 the	 expected	 spot	

price	is	also	negative.	Recall	that	hydropower	generation	contributes	significantly	to	the	Nordic	

power	generation.	Hydro	units	are	dependent	on	precipitation	and	snowfall,	which	varies	across	

seasons.	 During	 summer	 months,	 the	 level	 of	 hydro	 reservoirs	 is	 highest	 (see	 figure	 5).	

Hydropower	plants	are	highly	flexible	but	the	price	of	electricity	produced	by	hydropower	plants	

depends	on	marginal	costs.	The	marginal	costs	are	related	to	the	 level	of	hydro	reservoirs.	The	
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results	of	Huisman	et.	al.	(2013)	suggest	that	higher	levels	of	hydro	reservoirs	induce	more	hydro	

capacity	and	lead	to	significant	lower	power	prices.	From	this	they	conclude	that	an	increase	in	

the	 power	 supply	 of	 renewable	 energy	 with	 low	 marginal	 costs	 will	 reduce	 power	 prices	

significantly.	Hence,	the	spot	price	is	lower	during	summer	months	due	to	higher	levels	of	hydro	

reservoirs.		

	

Figure	5:	Nord	Pool	hydro	reservoirs	in	GWh	(2016)	

	
	

5.2	 Markov	regime-switching	models	for	forward	premia	

	

Table	6:	Parameter	estimates	for	model	2	
Reported	 are	 the	 parameter	 estimates	 of	 the	 Markov	 regime-switching	 model	 with	 constant	 transition	

probabilities	for	the	forward	premium.	The	transition	probability	can	be	transformed	into	actual	transition	

probabilities	by	means	of	the	following	formula:	𝑝∗!,! = 1/(1 + 𝑒!!!).	The	sample	period	ranges	from	2	July	

2013	 to	 31	 December	 2016.	 *,	 **	 denote	 a	 test	 statistic	 is	 statistically	 significant	 at	 the	 5%	 level	 of	

significance	or	1%	level	of	significance,	respectively.	

	 	 Estimate	 Standard	error	 T-statistic	

	

Mean	price	

	

µ1	

	

3.511**	

	

(0.164)	

	

(21.397)	

Mean	price	spike	 µ2	 -2.576**	 (1.785)	 (-14.433)	

Mean	reversion	 α	 0.020**	 (0.007)	 (2.644)	

Probability	|	St=	1	 𝜆!	 3.094**	 (0.185)	 (16.763)	

Probability	|	St=	2	 𝜆!	 2.035**	 (0.205)	 (9.922)	

Volatility	|	St=	1	 𝜎1	 0.148**	 (0.005)	 (32.982)	

Volatility	|	St=	2	 𝜎2	 1.272**	 (0.050)	 (25.384)	

𝑝∗!,!	 0.957	 	 	 	

𝑝∗!,!	 0.884	 	 	 	

LogLik	 330.444	 	 	 	

N	 1277	 	 	 	
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Reported	 in	 table	 6	 are	 the	 parameter	 estimates	 of	 the	Markov	 regime-switching	model	 with	

constant	 transition	 probabilities	 for	 the	 forward	 premium	 (model	 2).	 All	 the	 parameters	 are	

significantly	different	 form	zero.	The	mean	of	 the	natural	 logarithm	of	 the	 forward	premium	in	

the	first	state	µ1	is	3.511.	In	the	second	state	the	mean	level	will	be	lower	by	2.576.	The	negative	

sign	of	µ2	indicates	that	in	the	second	state	the	mean	level	is	lower	than	the	mean	level	in	the	first	

state	and	experiences	a	downward	spike.	When	considering	the	volatility,	it	is	noticeable	that	the	

volatility	in	the	second	state	is	substantially	higher	(>	8	times)	than	the	volatility	in	the	first	state.	

From	this	it	could	be	stated	that	the	second	state	is	the	non-normal	regime,	in	which	the	forward	

premium	is	lower	but	more	volatile	than	the	forward	premium	in	the	normal	regime.	This	means	

that	in	the	non-normal	regime,	the	exact	magnitude	of	the	spike	is	difficult	to	predict.		

	

The	model	performs	well	as	it	distinguishes	between	a	mean	reverting	regime	including	a	mean	

price	level	(normal	regime)	and	a	highly	volatile	regime	with	lower	forward	premia	(non-normal	

regime).	The	speed	of	mean	reversion	in	the	normal	regime	is	equal	to	0.020.	The	speed	of	mean	

reversion	 of	 expected	 spot	 prices	 in	model	 1	 (0.117)	 is	 slightly	 lower	 than	 the	 speed	 of	mean	

reversion	of	the	forward	premium.	This	means	that	the	forward	premium	reverts	to	their	normal	

price	levels	faster	than	expected	spot	prices.	The	mean	reversion	suggests	that	the	forward	price	

is	more	stable	than	the	expected	spot	price	since	the	forward	premium	is	able	to	move	faster	to	

its	 equilibrium	 level	 then	 the	 expected	 spot	 price.	 This	 finding	 provides	 evidence	 for	 time-

varying	risk	premia	in	the	Nord	Pool	market.		

	

The	 transition	probabilities	are	assumed	to	be	constant	over	 time.	𝜆!is	equal	 to	3.094	and	𝜆! is	

equal	 to	 2.035.	 After	 transforming	 these	 probabilities	 into	 actual	 probabilities,	 the	 transition	

probabilities	 become	Pr 𝑆! = 1 𝑆!!! = 1 	=0.957	 and	Pr 𝑆! = 2 𝑆!!! = 2 =	 0.884.	 This	 implies	

that	there	is	a	4.33%	probability	that	the	forward	premium	is	in	the	normal	regime	and	migrates	

to	non-normal	regime	the	next	day.	Similarly,	the	probability	that	the	forward	premium	is	in	the	

non-normal	 regime	and	moves	back	 to	 the	normal	 regime	 the	next	day	 is	11.56%.	From	 these	

results	it	can	be	concluded	that	the	probability	of	remaining	in	the	non-normal	regime	is	lower	

than	the	probability	of	remaining	in	the	normal	regime	for	two	consecutive	days.		
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Table	7:	Parameter	estimates	for	model	3	
Reported	 are	 the	 parameter	 estimates	 of	 the	 Markov	 regime-switching	 model	 including	 time-varying	

transition	 probabilities	 dependent	 on	 capacity	 constraints	 and	 seasonality	 for	 the	 forward	 premium.	

Observations	 in	 which	 the	 capacity	 constraints	 exceed	 the	 average	 capacity	 constraints	 are	 denoted	 as	

under	tight	market	conditions.	All	the	other	observations	are	denoted	as	under	normal	market	conditions.	

The	 winter	 months	 are	 indicated	 by	 January-April	 and	 October-December	 whereas	 summer	months	 are	

represented	 by	May-September.	 The	 sample	 period	 ranges	 from	2	 July	 2013	 to	 31	December	 2016.	 *,	 **	

denote	a	 test	 statistic	 is	 statistically	 significant	at	 the	5%	 level	of	 significance	or	1%	 level	of	 significance,	

respectively.	

	 	 Estimate	 Standard	error	 T-statistic	

	

Mean	price	

	

µ1	 3.505**	 (0.165)	 (21.248)	

Mean	price	spike	 µ2	 -2.572**	 (0.179)	 (-14.353)	

Mean	reversion	 α	 0.020**	 (0.007)	 (2.671)	

Probability	|	St=	1	 𝜆!	 3.212**	 (0.395)	 (8.126)	

Probability	|	St=	2	 𝜆!	 2.215**	 (0.356)	 (6.217)	

Volatility	|	St=	1	 𝜎1	 0.149**	 (0.004)	 (33.128)	

Volatility	|	St=	2	 𝜎2	 1.266**	 (0.050)	 (25.377)	

Effect	of	tight	market	|	summer	|	St=	1	 Κ!
!"	 0.665	 (0.583)	 (1.140)	

Effect	of	tight	market	|	summer	|	St=	2	 Κ!
!"	 -0.279	 (0.624)	 (-0.447)	

Effect	of	tight	market	|	winter	|	St=	1	 Κ!
!"	 0.178	 (0.585)	 (0.305)	

Effect	of	tight	market	|	winter	|	St=	2	 Κ!
!"	 0.231	 (0.853)	 (0.271)	

Effect	of	summer	|	St=	1	 Κ!
!	 -0.606	 (0.508)	 (-1.193)	

Effect	of	summer	|	St=	2		 Κ!
!	 -0.325	 (0.493)	 (-0.660)	

LogLik		 328.524	 	 	 	 	

N	 1277	 	 	 	 	

	
Table	7	reports	 the	estimates	of	 the	parameters	of	 the	second	Markov	regime-switching	model	

with	 time-varying	 transition	 probabilities	 for	 the	 natural	 logarithm	 of	 the	 forward	 premium.	

Model	 3	 is	 an	 extension	 of	 model	 2	 by	 incorporating	 the	 effect	 of	 capacity	 constraints	

distinguishing	 between	 summer	 and	 winter	 and	 the	 effect	 of	 summer	 months,	 creating	 time-

varying	 transition	probabilities.	 All	 the	parameters	 are	 significantly	 different	 from	 zero	 except	

the	 parameters	Κ!!" ,	Κ!!" ,	Κ!!" ,	Κ!!" ,	Κ!! and	Κ!! .	 Note	 that	 the	 estimates	 for	 the	 other	

parameters	remain	relatively	unchanged	reflecting	the	robustness	of	the	model.		

	

The	estimates	of	Κ!!	and	Κ!!	are	-0.606	and	-0.325	respectively.	The	probability	of	remaining	in	

the	normal	regime	is	lower	than	the	probability	of	remaining	in	the	non-normal	regime	as	result	

of	the	summer	effect.	Thereby,	the	probability	of	remaining	in	the	non-normal	regime	is	higher	

than	 the	 probability	 of	 remaining	 in	 the	 normal	 regime	 as	 result	 of	 the	 summer	 effect.	 The	

difference	 between	 the	 estimates	 of	 the	 parameters	 is	 significant	 at	 the	 1%	 and	 5%	 level	 of	

significance	 (t-statistic	 =	 -14.185),	 which	means	 that	 the	 probability	 of	 remaining	 in	 the	 non-

normal	regime	is	significantly	higher	than	the	probability	of	remaining	in	the	normal	regime	as	
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result	 of	 the	 summer	effect.	This	 finding	 implies	 that	 generally,	 the	 forward	premium	 is	 lower	

and	more	volatile	in	the	summer.		

	

The	behaviour	of	the	forward	premium	in	the	summer	is	related	to	the	anticipated	skewness	in	

the	 distribution	 of	 the	 spot	 price.	 Higher	 expected	 demand	 and/or	 demand	 variance	 induce	

positive	skewness	in	the	distribution	of	the	spot	price.	The	forward	premium	will	 increase	as	a	

result	of	 the	positive	skewness	 in	 the	distribution	of	 the	spot	price	 (Bessembinder	&	Lemmon,	

2002).	 During	 summer	months	 the	 skewness	 of	 spot	 prices	 is	 negative	 due	 to	 lower	 expected	

demand	 and	 demand	 variance.7	The	 power	 retailers	 do	 not	 feel	 the	 need	 to	 hedge	 themselves	

against	 unexpected	 losses	 as	 the	 distribution	 of	 the	 spot	 price	 is	 negative.	 This	 will	 lead	 to	 a	

downward	pressure	on	the	forward	premium.	Hence,	the	forward	premium	is	likely	to	migrate	to	

the	non-normal	regime	in	which	the	forward	premium	is	lower	but	more	volatile.	However,	being	

in	the	non-normal	regime	in	which	the	forward	premium	is	lower	due	to	lower	expected	demand	

or	 demand	 variance,	 the	 power	 producers	 could	 adjust	 their	 output	 downwards	 to	 meet	 the	

lower	demand.	By	doing	 so,	 the	distribution	of	 the	 spot	price	becomes	 less	negatively	 skewed,	

such	 that	 the	 market	 returns	 to	 normal	 again	 (Huisman	 R.	 ,	 2008).	 As	 result,	 the	 forward	

premium	 will	 migrate	 from	 the	 non-normal	 regime	 to	 the	 normal	 regime.	 The	 probability	 of	

migrating	 from	 the	 non-normal	 regime	 to	 the	 normal	 regime	 is	 lower	 than	 the	 probability	 of	

migrating	 from	 the	 normal	 regime	 to	 the	 non-normal	 regime	 as	 result	 of	 the	 summer	 effect,	

which	indicates	that	the	negatively	skewed	distribution	of	the	spot	price	is	more	profound	than	

the	adjustment	of	the	output	by	the	power	producers.		

	

Κ!
!"	and	Κ!!"	are	0.655	and	0.178	respectively.	The	positive	estimates	of	the	parameters	indicate	

that	 when	 high	 capacity	 constraints	 occur,	 the	 probability	 of	 remaining	 in	 the	 normal	 regime	

increases.	By	definition,	the	probability	of	migrating	to	the	non-normal	regime	decreases	because	

𝑝!,! = 1 − 𝑝!,! .	 The	 parameter	 estimates	 indicate	 that	 under	 tight	 market	 conditions,	 the	

probability	of	 lower	but	more	volatile	 forward	premium,	decreases.	Thereby,	 the	probability	of	

higher	and	less	volatile	forward	premia	increases	under	tight	market	conditions.	This	results	is	in	

line	with	 expectations	 as	 tight	market	 conditions	will	 induce	higher	 forward	prices	 due	 to	 the	

more	positively	skewed	distribution	of	the	spot	price.	Remarkably,	this	effect	 is	more	profound	

during	 summer	 months	 than	 during	 winter	 months.	 The	 difference	 between	 the	 parameter	

estimates	is	significant	at	the	1%	and	5%	level	of	significance	(t-statistic	=	14.711).	This	could	be	

explained	as	follows.	In	the	summer,	the	distribution	of	the	spot	price	is	negatively	skewed	and	in	

the	winter	the	distribution	of	the	spot	price	is	positively	skewed.	Under	tight	market	conditions,	

high	capacity	constraints	will	induce	higher	demand	and	thus	more	skewness	in	the	distribution	

of	 the	spot	price.	Considering	 this	effect	 in	 the	summer,	 the	distribution	of	 the	spot	prices	will	

become	less	negatively	skewed	and	the	spot	prices	will	become	more	normally	distributed.	In	the	

winter,	the	distribution	will	become	even	more	positively	skewed.	Hence,	the	forward	premium	

																																																								
7	See	the	descriptive	statistics	in	section	4.2	Data	analysis.	
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is	 more	 likely	 to	 be	 in	 at	 the	 normal	 level	 in	 the	 summer	 compared	 to	 the	 winter.	 It	 can	 be	

concluded	that	high	capacity	constraints	induce	a	higher	increase	in	the	probability	of	remaining	

in	the	normal	regime	during	summer	months	than	during	winter	months.		

	

The	 estimates	 of	 parameters	Κ!!"	and	Κ!!"	are	 -0.279	 and	 0.231	 respectively.	 The	 parameter	

estimate	of	Κ!!"	is	negative,	which	 indicates	being	 in	 the	non-normal	 regime,	 the	probability	of	

remaining	in	the	non-normal	regime	decreases.	Consequently,	the	probability	of	migrating	to	the	

normal	regime	increases	during	summer	months	under	tight	market	conditions.	The	distribution	

of	the	spot	price	tends	to	be	negative	in	the	summer.	The	skewness	of	the	distribution	of	the	spot	

price	becomes	less	negatively	skewed	and	more	normal	due	to	higher	demand	as	a	result	of	high	

capacity	 constraints.	 Consequently,	 the	 forward	 premium	 will	 move	 to	 the	 normal	 regime.	

Another	 explanation	 for	 the	 migration	 to	 the	 normal	 regime	 could	 be	 that	 power	 producers	

adjust	their	output	such	that	markets	can	return	to	normal	again	(Huisman,	2008).		

	

However,	 parameter	Κ!!"	is	 positive,	 which	 means	 that	 being	 in	 the	 non-normal	 regime,	 the	

probability	of	remaining	in	the	non-normal	regime	increases	under	tight	market	conditions.	This	

finding	seems	rather	peculiar.	During	winter	months	the	skewness	is	positive	and	the	expected	

demand	 and	 demand	 variance	 are	 high.8	According	 to	 these	 features,	 the	 forward	 premium	

should	 be	 high	 during	 winter	 months	 to	 compensate	 for	 this	 increased	 demand	 risk,	 and	

especially	under	tight	market	conditions.	In	this	case,	one	would	expect	the	forward	premium	to	

migrate	 back	 to	 the	 normal	 regime,	 in	which	 the	 forward	 premium	 is	 higher	 and	 less	 volatile.	

However,	 the	 forward	 premium	 remains	 in	 the	 non-normal	 regime,	 in	 which	 the	 forward	

premium	is	lower	and	more	volatile.		

	

Recall	that	the	Nord	Pool	is	dominated	by	hydropower	produced	by	flexible	hydropower	plants.	

Hydropower	creates	an	option	to	delay	power	production	based	on	current	power	prices	and	the	

expected	 opportunity	 loss	 that	 arises	 if	 the	 producers	 would	 use	 the	 hydro	 capacity	 for	

producing	at	a	later	time	when	power	prices	might	be	higher	(Huisman,	Stradnic,	&	Westgaard,	

2003).	 In	 the	winter,	 power	 producers	 are	 reluctant	 to	 adjust	 their	 power	 output	 downwards	

because	 of	 the	 positive	 skewness	 in	 the	 spot	 price	 distribution	 and	 higher	 expected	 demand,	

which	leads	to	potential	higher	power	prices.	As	consequence,	they	will	keep	producing	power	by	

deploying	 hydropower	 plants,	 leading	 to	 a	 surplus	 of	 power	 supply.	 This	 surplus	 of	 supply	

relatively	to	expected	demand	has	a	depressing	effect	on	power	prices.	The	depressing	effect	on	

the	 spot	 prices	 will	 eventually	 lead	 a	 downward	 spike	 in	 the	 forward	 premium,	 as	 power	

retailers	do	not	feel	the	need	to	hedge	themselves	against	spot	price	risk.	Hence,	the	probability	

of	remaining	in	the	non-normal	regime	in	increases	during	winter	months,	despite	the	fact	that	

the	market	is	under	tight	market	conditions.			

	

																																																								
8	See	the	descriptive	statistics	in	section	4.2	Data	analysis.	
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6 Conclusions	and	discussion	
	

The	introduction	of	renewable	energy	into	the	market	for	electricity	has	changed	the	dynamics	

significantly.	Generally,	renewable	energy	sources	cause	lower	wholesale	market	clearing	prices	

due	 to	 lower	 marginal	 costs	 and	 supporting	 incentives	 schemes	 provided	 by	 governments	 to	

stimulate	 the	use	of	sustainable	power	generation.	Lower	wholesale	market	clearing	prices	are	

clearly	economic	beneficial	to	power	retailers.	However,	the	implication	with	renewable	energy	

sources	stems	from	the	fact	 that	these	are	highly	unpredictable	and	very	volatile	 in	addition	to	

load	forecast	errors,	failure	of	power	plants	and	demand	variability.	The	uncertainty	imposed	by	

the	system	and	the	use	of	renewable	energy	sources	causes	electricity	prices	to	be	very	volatile	

as	electricity	 is	still	a	non-storable	commodity.	The	non-storable	character	of	electricity	mainly	

contributes	 to	 large	price	 spikes.	 Large	 spikes	 in	 intraday	 spot	 prices	 are	 the	 result	 of	 sudden	

high	 short-term	 frictions	 in	 the	 supply	 and	 the	 expected	 demand.	 The	 short-term	 frictions	 in	

demand	and	supply	are	 referred	 to	as	 capacity	constraints.	Capacity	constraints	are	defined	as	

the	ratio	of	demand	over	supply,	namely	the	capacity	constraints	ratio.	 If	 this	ratio	exceeds	the	

average	capacity	constraints	ratio	in	the	market,	the	capacity	constraints	are	denoted	as	high	and	

the	market	is	under	tight	conditions.	If	the	capacity	constraints	ratio	is	lower	than	or	equal	to	the	

average	ratio,	the	capacity	constrains	are	low	and	the	market	is	under	normal	conditions.		

	

The	 Nord	 Pool	 power	 market	 is	 known	 for	 the	 employment	 of	 hydropower	 sources	 and	

increasingly	wind	power	sources,	thus	one	can	consider	the	Nord	Pool	market	as	dominated	by	

renewable	energy.	Therefore,	this	study	analyses	the	Nord	Pool	market	in	order	to	measure	the	

effect	of	capacity	constraints	driven	by	renewable	energy	on	the	forward	premium.	The	goal	of	

this	study	is	to	examine	the	effect	of	capacity	constraints	in	the	Nord	Pool	market	on	the	forward	

premium	the	next	day.	In	doing	so,	the	expected	spot	price	at	maturity	are	forecasted	by	applying	

a	one-factor	model.	The	forward	premium	is	constructed	by	means	of	the	forecasted	spot	price	at	

maturity	and	the	observed	M1-futures	prices	acquired	from	NASDAQ	Commodities.	The	effect	of	

capacity	constraints	is	modelled	by	means	of	Markov	regime-switching	models	with	time-varying	

transition	 probabilities.	 This	 study	 analyses	 the	 effect	 of	 capacity	 constraints	 on	 the	 daily	

forward	 premium	 for	 the	 Nord	 Pool	 from	 2013	 to	 2016	 distinguishing	 between	 summer	 and	

winter	months.		

	

The	 results	 indicate	 that	 the	 expected	 spot	 price	 is	 lower	 during	 summer	months	 than	 during	

winter	months.	 Hydro	 units	 are	 dependent	 on	 precipitation	 and	 snowfall,	which	 varies	 across	

seasons.	The	level	of	hydro	reservoirs	is	highest	in	the	summer.	Higher	levels	of	hydro	reservoirs	

induce	 lower	 marginal	 costs	 of	 producing	 electricity	 and	 thereby	 lead	 to	 lower	 wholesale	

clearing	prices.		
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The	results	show	that	the	forward	premium	could	be	in	two	regimes,	the	normal	regime	and	the	

non-normal	regime.	The	normal	regime	is	a	state	 in	which	the	forward	premium	is	generally	at	

the	mean	 level	 and	 exhibits	mean	 reversion.	 The	 forward	 premium	 could	 also	 be	 in	 the	 non-

normal	 regime,	 in	which	 the	mean	 level	 is	 lower	 than	 the	mean	 level	 in	 the	normal	 regime.	 In	

addition,	the	mean	level	in	the	non-normal	regime	also	exhibits	high	volatility.	The	lower	mean	

level	 in	 the	 non-normal	 regime	 compared	 to	 the	mean	 level	 in	 the	 normal	 regime,	 indicates	 a	

downward	spike	in	the	non-normal	regime.	The	probability	of	remaining	in	the	normal	regime	is	

higher	than	the	probability	of	remaining	in	the	non-normal	regime.	From	this,	it	can	be	concluded	

that	the	forward	premium	is	generally	in	the	normal	regime	and	does	not	exhibit	spikes.			

	

Regarding	 the	 effect	 of	 summer	 on	 the	 forward	 premium,	 it	 can	 be	 concluded	 that	 during	

summer	months	the	forward	premium	is	more	likely	to	be	in	the	non-normal	regime	than	in	the	

normal	regime.	This	conclusion	is	based	on	the	fact	that	the	probability	of	remaining	in	the	non-

normal	regime	is	significantly	higher	than	the	probability	of	remaining	in	the	normal	regime.	In	

the	 non-normal	 regime,	 the	 forward	 premium	 is	 lower	 and	 more	 volatile.	 This	 finding	 is	 the	

result	of	the	negative	distribution	of	the	spot	price	due	to	lower	expected	demand	and	demand	

variance	 during	 summer	 months.	 However,	 being	 in	 the	 non-normal	 regime,	 the	 forward	

premium	returns	to	the	normal	regime	because	power	producers	adjust	their	output	downwards	

to	 meet	 het	 lower	 demand.	 As	 consequence,	 the	 distribution	 of	 the	 spot	 price	 becomes	 less	

negatively	skewed	such	that	markets	return	to	normal.		

	

The	 implication	of	high	capacity	constraints	does	not	 significantly	affect	 the	 forward	premium.	

However,	 the	probability	of	remaining	 in	 the	normal	regime	or	migrating	 from	the	non-normal	

regime	 to	 the	 normal	 regime,	 increases	with	 the	 implication	 of	 high	 capacity	 constraints.	 The	

probability	of	remaining	in	the	normal	regime	increases	during	winter	and	summer	under	tight	

market	 conditions.	 Hence,	 the	 probability	 of	 migrating	 to	 the	 non-normal	 regime	 decreases	

across	 both	 seasons.	 The	 probability	 of	 migrating	 from	 the	 non-normal	 regime	 to	 the	 normal	

regime	 increases	 only	 in	 the	 summer	 under	 tight	 market	 conditions	 (which	 means	 that	 the	

probability	of	remaining	in	the	non-normal	regime	decreases	in	the	summer	under	tight	market	

conditions).		

	

However,	during	the	summer,	the	probability	of	remaining	in	the	normal	regime	is	significantly	

higher	than	during	the	winter.	This	is	related	to	the	difference	in	skewness	in	the	distribution	of	

the	 spot	 price	 across	 seasons.	 The	 distribution	 of	 the	 spot	 price	 is	 negatively	 skewed	 in	 the	

summer	 however,	 it	 is	 positively	 skewed	 in	 the	 winter.	 Tight	market	 conditions	mean	 higher	

expected	 demand	 relatively	 to	 supply	 and	 cause	 a	more	 positively	 skewed	 distribution	 of	 the	

spot	price.	Under	tight	market	conditions,	the	spot	price	becomes	more	normally	distributed	in	

the	 summer.	 Nonetheless,	 the	 distribution	 of	 the	 spot	 prices	 becomes	 even	 more	 positively	

skewed	 in	 the	 winter.	 As	 result,	 the	 probability	 of	 remaining	 in	 the	 normal	 regime	 is	 higher	

during	summer	than	during	winter	under	tight	market	conditions.			
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The	 probability	 of	 remaining	 in	 the	 non-normal	 regime	 is	 positive	 in	 the	 winter	 under	 tight	

market	conditions.	This	finding	seems	rather	peculiar.	The	probability	of	remaining	in	the	non-

normal	 regime	 increases	 in	 the	 winter	 under	 tight	 market	 conditions,	 which	 means	 that	 the	

forward	premium	is	likely	to	be	lower	and	more	volatile	in	the	winter.	This	is	a	result	of	the	fact	

that	power	producers	are	unwilling	to	adjust	their	power	output	downwards	such	that	markets	

can	return	 to	normal.	They	are	reluctant	 to	adjust	 their	output	downwards	due	 to	 the	positive	

skewness	 in	 the	 distribution	 of	 the	 spot	 price	 and	 increased	 expected	 demand	 during	 winter	

months.	This	forms	an	incentive	to	keep	producing	power,	more	than	required	by	the	market.	As	

consequence,	 spot	 prices	 will	 decrease	 and	 the	 need	 of	 power	 retailers	 to	 hedge	 themselves	

against	spot	price	risk	 is	 low,	which	will	drive	down	 forward	premia.	Hence,	 the	probability	of	

remaining	in	the	non-normal	regime	increases	in	the	winter	in	spite	of	high	capacity	constraints.	

	

The	findings	in	this	study	provide	insights	about	the	effect	of	increased	uncertainty	of	renewable	

energy	on	the	valuation	of	financial	derivatives.	The	results	suggest	that	in	general,	the	forward	

premium	 is	at	 the	normal	and	stable	 level	 (normal	 regime)	 rather	 than	at	 the	 lower	and	more	

volatile	 level	 (non-normal	 regime).	 With	 the	 implication	 of	 high	 capacity	 constraints,	 the	

probability	of	remaining	 in	the	normal	regime	or	migrating	from	the	non-normal	regime	to	the	

normal	regime,	increases	(the	latter	with	the	exception	of	winter	months).	Expected	is	that	after	

the	 occurrence	 of	 high	 capacity	 constraints,	 the	 distribution	 of	 the	 spot	 price	 will	 become	

positively	 skewed	 as	 result	 of	 higher	 expected	 demand	 and	 demand	 variance.	 The	 positively	

skewed	distribution	of	the	spot	price	could	induce	higher	expected	spot	prices.	Assuming	that	the	

forward	 price	 is	 determined	 and	 fixed	 before	 the	maturity	 date,	 the	 forward	 premium	 should	

decrease.		

	

However,	 the	 results	 show	 evidence	 for	 the	 opposite,	which	means	 that	 the	 forward	premium	

does	 not	 decrease	 but	 remains	 at	 the	 normal	 level.	 This	 suggests	 that	 power	 producers	 have	

anticipated	the	(higher)	positive	skewness	in	the	distribution	of	the	spot	price	by	bidding	up	the	

forward	price.	Hence,	this	study	provides	evidence	that	capacity	constraints	do	affect	derivative	

pricing.	Power	retailers	respond	to	the	higher	expected	demand	and	demand	risk	by	increasing	

forward	purchases.	As	consequence,	the	forward	premium	does	not	exhibit	downward	spikes	in	

general	but	remains	at	the	normal	level.		

	

This	 study	 investigates	 the	 impact	 of	 capacity	 constraints	 on	 the	 magnitude	 of	 the	 forward	

premium	as	 the	model	departs	 from	the	natural	 logarithm	of	 the	 forward	premium.	Directions	

for	 further	 research	 could	 be	 to	 model	 the	 actual	 forward	 premium	 instead	 of	 the	 natural	

logarithm	of	the	forward	premium	as	the	forward	premium	could	be	negative	in	the	market.	By	

doing	 so,	 one	 could	 obtain	 estimates	 of	 the	 parameters	 that	would	 incorporate	 the	magnitude	

and	the	sign	of	 the	forward	premium.	Furthermore,	although	the	models	are	robust,	not	all	 the	

variables	in	model	3	are	significant.	This	is	probably	because	the	capacity	constraints	do	not	have	

a	 direct	 effect	 on	 the	 forward	 premium	 but	 rather	 on	 the	 expected	 spot	 prices.	 Hydropower,	
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which	dominates	the	Nord	Pool	power	market,	is	produced	by	an	imperfectly	storable	underlying	

commodity.	 According	 to	 Huisman	 and	 Kilic	 (2011),	 imperfectly	 storable	 underlying	

commodities	 imply	 that	 forward	 prices	 embed	 information	 about	 expected	 spot	 prices	 rather	

than	 time-varying	 forward	 premia.	 Future	 research	 could	 disentangle	 the	 expected	 spot	 price	

and	 the	 forward	price	 instead	of	 calibrating	 the	 forward	premium	to	obtain	 significant	 results.	

Even	though	the	variables	are	not	significant,	they	provide	economic	relevance	in	explaining	the	

forward	premium	under	tight	market	conditions.	

	

At	last,	the	forward	premium	is	able	to	be	at	the	normal	level	most	of	the	time	due	to	lack	of	risk	

sharing	with	outside	speculators.	When	outside	speculators	are	more	present	in	the	market,	they	

could	 share	 the	 power	 price	 risk	 embedded	 in	 the	 forward	 premium.	 The	 lack	 of	 risk	 sharing	

suggests	 that	 the	 power	 market	 is	 not	 well-integrated	 with	 the	 broader	 financial	 market	 as	

outside	speculators	do	not	show	their	presence	in	the	market	(Bessembinder	&	Lemmon,	2002).	

It	 is	of	 interest	to	see	 if	 the	power	markets	will	be	better	 integrated	in	the	financial	markets	 in	

the	future	such	that	the	risk	premium	will	decline.	This	is	also	for	future	research.		
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