
The Train Unit Shunting Problem
with Reallocation

Master Thesis Econometrics & Management Science
Specialization Operations Research & Quantitative Logistics

F.E. Wolfhagen
Student number: 362063

First supervisor: Dr. T. Dollevoet
Second supervisor: Prof. dr. D. Huisman
Supervisor NedTrain: Ir. B. Huisman

Erasmus School of Economics
Erasmus University Rotterdam

The Netherlands
March 23, 2017

Abstract

This thesis is concerned with formulating the Train Unit Shunting Problem (TUSP) with Reallo-
cation (TUSP-R) as an MIP and solving it using exact solution methods. The TUSP has been
formulated as an MIP in several different ways in previous works, but reallocation was never in-
corporated. Exactly solving the TUSP-R proved to be very challenging, so a method using a
combination of the exact solution method row generation and the heuristic method tabu search
was developed which solved the real life instances for shunting yard Utrecht OZ in acceptable
solution times. The instances for a simplified version of Kleine Binckhorst were solved up to a
certain problem size; hereafter the computation times became too long for practical use. Our
method performs best for problem instances with diverse train types and relatively many different
services on a LIFO style shunting yard layout. This keeps the size of the constraint matrix of the
initial problem without crossing constraints relatively small compared to other types of problem
instances.

2

Preface

This thesis was written for partial fulfillment of the graduation requirements of the master pro-
gramme Econometrics and Management Science, with a specialization in Operations Research and
Quantitative Logistics at Erasmus School of Economics. I was engaged in the research and writing
from October 2016 till March 2017.

This research was undertaken on request of NedTrain, where I did an internship during the course
of the project. As shunting yard capacity is becoming a more and more urgent topic, the need
for an exact formulation for the TUSP-R arose. The research is part of the challenging task to
integrate all aspects of the shunting problem, thus also service activities, in one MIP. It also serves
as reference, justification, and mathematical background for the current methods used by NedTrain
to determine shunting yard capacity.

There are a few people without whom I would never have finished this thesis. First of all, I
am very grateful to the great guidance I received from dr. Dollevoet from the Econometric de-
partment at Erasmus School of Economics. As my supervisor, he provided me with very useful
feedback and helped me across bumps along the way. I always left our meetings feeling more mo-
tivated and confident than before. His relaxed attitude and precise evaluation of my work greatly
contributed to its quality. I also want to thank professor Huisman, who is my second supervisor.
His experience at NS is a valuable addition to the critical evaluation of my work. Besides the
people in Rotterdam, I would like to thank NedTrain and especially Bob Huisman -a different
mister Huisman- for providing me with the opportunity to write my thesis at the Maintenance
Development department. I thoroughly enjoyed working there and many of my kind colleagues
were readily available to help me out whenever I needed it. Bob, our discussions on the topic
provided me with many valuable insights and alternative viewpoints which helped me try new
approaches when I was stuck and brought me further in the process. Besides Bob, Roel van den
Broek and Demian de Ruijter also deserve a special thank you for their help. Furthermore, I am
very grateful and owe a great deal to my parents for their support during the writing of this thesis
and my entire studies. Without them, all of this would never have been possible. Lastly, I would
like to thank my friend Elise den Dekker for her moral support during the last phase of the process.

I hope you enjoy reading it, and I advise you to take your time for the mathematical formula-
tions in this thesis. They can be rather complex and potentially frustrating, I know all about it,
but definitely have a certain charm to them.

- Floor Wolfhagen, March 2017

3

Contents

List of Tables 6

List of Figures 7

1 Introduction 8

2 Literature Review 13
2.1 Motion-Planning Puzzles and their Complexity . 13
2.2 General Shunting Problems . 13
2.3 Train Unit Shunting Problem . 14

3 Problem description 18
3.1 General terminology . 18
3.2 General notation . 21
3.3 Complexity . 22

4 MIP Formulation 23
4.1 Initial formulation . 24
4.2 Final formulation . 28

4.2.1 Resolving non-linearity issues . 33
4.3 Extensions . 34

4.3.1 Free tracks extension . 34
4.3.2 LIFO tracks on both sides of diagonal track extension 39
4.3.3 Flexible maximum train unit reallocation length 39
4.3.4 Coupling and decoupling . 42

5 Solution Approach 45
5.1 Row generation heuristic . 45
5.2 Consideration of column generation . 47

6 Data 50

7 Results 54
7.1 Results Utrecht OZ . 54
7.2 Results Kleine Binckhorst . 57
7.3 Comparison results Utrecht OZ and Kleine Binckhorst 61

8 Discussion 64

4

9 Conclusion 65
9.1 Further Research . 66

Bibliography 68

Appendices 70

A Notation 70
A.1 Overview variables initial formulation . 70
A.2 Overview variables final formulation . 70
A.3 Overview notation extensions . 71

B MIP formulation used for obtaining the computational results 73

5

List of Tables

1.1 Example: arriving and departing times and types of trains 1-8 10

3.1 Set overview . 21
3.2 Parameter overview . 21

4.1 Crossing overview LIFO track . 26
4.2 Crossing overview free tracks . 35

6.1 Train unit lengths . 51
6.2 Track lengths for shunting yard Kleine Binckhorst 52
6.3 Characteristics of data set for shunting yard Kleine Binckhorst 52
6.4 Track lengths for shunting yard Utrecht OZ . 53
6.5 Characteristics of data set for shunting yard Utrecht OZ 53

7.1 Solved instances and computation times of different solution methods Utrecht OZ . 54

6

List of Figures

1.1 Railway map of the Netherlands, 2016 . 8
1.2 Map of Kleine Binckhorst . 9
1.3 VIRM -4 . 10
1.4 SLT -6 . 10
1.5 Example: need for reallocation . 11
1.6 Rush Hour instance with solution steps . 11

3.1 Relations schedules, services, events, compositions, train units, and carriages . . . 19

4.1 Example track layout only LIFO tracks . 23
4.2 Crossing possibilities LIFO tracks . 27
4.3 Example track layout only free tracks . 34
4.4 Crossing possibilities free tracks . 37
4.5 Example track layout LIFO tracks on both sides of the diagonal track 39
4.6 Example track layout varying drive back distance 40

6.1 Simplified structure of Kleine Binckhorst . 52
6.2 Map of Utrecht OZ . 53

7.1 Overview objective values solutions NR-MIP, RG, and TS-RG, Utrecht OZ 55
7.2 Overview computation times TS-RG for different settings, Utrecht OZ 56
7.3 Overview objective values TS-RG for different settings, Utrecht OZ 56
7.4 Overview number of solved instances OPG, SAR, and TS-RG, Kleine Binckhorst . 57
7.5 Overview average number of reallocations and computation time TS-RG, Kleine

Binckhorst . 58
7.6 Overview average number of iterations TS-RG, Kleine Binckhorst 59
7.7 Overview number of solved instances with zero reallocations OPG and TS-RG,

Kleine Binckhorst . 60
7.8 Overview results number of solved instances and average number of reallocations

different settings TS-RG, Kleine Binckhorst . 61
7.9 Overview average number of reallocations TS-RG, Kleine Binckhorst and Utrecht OZ 62
7.10 Overview average computation times TS-RG, Kleine Binckhorst and Utrecht OZ . 62

7

Chapter 1

Introduction

The Netherlands has a rather complex rail network, on which multiple actors involved in both
passenger and freight transportation operate. De Nederlandse Spoorwegen, translated as the
Netherlands Railways and usually referred to by its abbreviation NS, is the biggest actor on
the passenger transportation market: the company transports over a million passengers a day. It
executes about 4800 daily train rides over a network of approximately 2100 km in length. The
company owns almost 3000 carriages with 260’000 passenger seats. Besides the NS, there are
six other passenger transportation operators active on the Dutch railway network. They cover
about 700 km of the total network. Most of these passenger train rides take place during the
day. Figure 1.1 gives an impression of the complexity and the ramified nature of the network.

Th
al

ys

In
te

rc
ity

 d
ire

ct

Intercity
direct

Sauwerd

R’dam Alexander

Capelle Schollevaar

Nieuwerkerk

a/d IJssel

RB20
RB20

RE1
3

RE1
3

RB51
RB51

RB64
RB64

Antwerpen

Brussel-Zuid

Paris

Lille

Brussel-Centraal

Brussel-Noord

Brussel-
Nationaal-Luchthaven

Sc
hie

da
m C

en
tru

m

Heerlen W
oonblvd

Voerendaal

Susteren

Echt

Sp
au

be
ek

Gele
en

 O
os

t

Sc
hin

ne
n

Nuth

Hoe
ns

br
oe

k

Ein
dh

. S
tri

jp-
S

Be
st

Oist
erw

ijk
Bo

xte
lGilz

e-R
ije

n

Til
bu

rg
Re

es
ho

f

’s-Hertogenb. Oost

Rosmalen

Til
bu

rg
Univ

ers
ite

it

Houten
Castellum

Houten

Utr. Lunetten

Beesd

Leerdam
Arkel

Gorinchem

Boven - HardinxveldDordrecht

Stadspolders Sliedrecht

Baanhoek

Sliedrecht

Hardinxveld

Blauwe Zoom Hardinxveld-

 Giessendam

Oss W
est

Oss
Ravenstein

W
ijchen

Vu
gh

t

Hee
zeGeld

rop

Maa
rh

ee
ze

W
ee

rt Reuver

Tegelen

Helm
on

d B
ran

de
vo

ort

Helm
on

d ’
t H

ou
t

Helm
on

d

Helm
on

d B
rou

whu
is

Deu
rne

Bl
eri

ck

Venray

Vierlingsbeek

Boxmeer

Mook Molenhoek

Cuijk

Nijmegen Heyendaal

Elst

 Arnhem Zuid

Arnhem

 Velperpoort
W

es
ter

vo
ort

Duiv
en

Arnhem

Presikhaaf

Velp

Rheden

Dieren

Brummen

Apeldoorn

 Osseveld

Twello

Ze
ve

na
ar

Dida
m
W

eh
l

Doetinchem De Huet

Doetinchem

Gaanderen
Terborg

Varsseveld

Aalten

Winterswijk
West

Lichtenvoorde-
 Groenlo

Ru
url

o

Vo
rd
en

Lo
ch

em

Voorst-Empe

Klarenbeek

Apeldoorn
De Maten

Holten

 Deventer

Colmschate

Rijssen

W
ierden

Vriezenveen

Daarlerveen

Vroomshoop

Geerdijk

Ommen

Mariënberg
Hardenberg

Beilen

Haren

Steenwijk

Kampen

Wolvega

Heerenveen

Akkrum

Grou - Jirnsum

Le
eu

ward
en

 C
am

ming
ha

bu
ren

Dein
um

Dron
ryp

Mantgum
Sneek Noord

Sneek
IJlst

Workum
Hindeloopen

Stavoren
Koudum-Molkwerum

Fra
ne

ke
r

Harl
ing

en

Harl
ing

en
 H

av
en

Fe
an

wald
en

Hurd
eg

ar
yp

De W
es

ter
ee

n

Bu
ite

np
os

t

Grijp
sk

erk

Zu
idh

orn Groningen
Noord

Be
du

m
Winsum

Baflo

St
ed

um

Lo
pp

ers
um

W
arf

fum

Usq
ue

rt

Uith
uiz

en

Uith
uiz

erm
ee

de
n

Ro
od

es
ch

oo
l

Ap
pin

ge
da

m

Delf
zij

l W
es

t

Delf
zij

l

Kr
op

sw
old

e

Mart
en

sh
oe

k

Hoo
ge

za
nd

-S
ap

pe
mee

r

Sa
pp

em
ee

r O
os

t

Zu
idb

roe
k

Sc
he

em
da

Veendam

W
ins

ch
ote

n

Ba
d N

ieu
wes

ch
an

s

Hoogeveen

Meppel

Gramsbergen
Coevorden

Dalen
Nieuw Amsterdam

Emmen Zuid

Emmen

Dalf
se

n

Kampen Zuid

Dronten

Wijhe

Olst

Bo
rne

Hengelo
Oost

Oldenzaal

En
sc

he
de

De E
sc

hm
ark

e

Glan
erb

rug

Gron
au

Alm
elo

De R
iet

Goor

Delden

Winterswijk

W
olf

he
ze

Oos
ter

be
ek

Bu
nn

ik

Soest
Zuid

Den Dolder
Bilthoven

Utr. Overvecht

Utre
ch

t

Zu
ile

nMaa
rss

en

Br
eu

ke
len

Ab
co

ud
eAm

ste
rd
am

Hole
nd

rec
ht

 Soest

Hollandse
Rading

Soestdijk

Almere
Oostvaarders

Almere Buiten

Lelystad Centrum

Almere Parkwijk

Almere Muziekwijk

Almere Poort

BaarnHilv
ers

um

Med
ia

Pa
rkBu

ssu
m
Zu

idNaa
rd
en

-

Bu
ss

um

Hilversum
Sportpark

Maa
rn

Veenendaal
West

Veenendaal
Centrum

Rhenen

 Tiel
Passewaaij

Tiel
Kesteren

Opheusden

Hemmen-

Dodewaard

Zetten-
Andelst

Drie
be

rge
n-

Ze

ist

 Veenendaal

De Klomp

Ed
e-W

ag
en

ing
en

Ede
Centrum

Lunteren

Barneveld
Centrum

Barneveld
Zuid

Barneveld
Noord

Hoevelaken

Amersfoort

Schothorst

Amersfoort

Vathorst

Nijkerk

ErmeloPutten

Harderwijk

Nunspeet

’t Harde

W
ezep

 Nijmegen Lent

Nijm.
Dukenburg

Hors
t-S

ev
en

um

Swalmen

Hee
rle

n d
e K

iss
el

La
nd

gra
af

Ey
ge

lsh
ov

en

Ey
ge

lsh
ov

en
 M

ark
t

Herz
og

en
rat

h

Ka
lde

nk
irc

he
n

Ch
ev

rem
on

t

Ke
rkr

ad
e

Ce
ntr

um

Klimmen - Ransdaal

Schin Op Geul

Valkenburg

Houthem - St. Gerlach

Meerssen

Bunde

Beek-Elsloo

Geleen-Lutterade

Maastricht

Randwijck

Den Haag

Laan van N.O.I

Den Haag

Mariahoeve

Voorschoten

De Vink

DiemenZuid

Vo
orb

urg

Den
 H

aa
g Y

pe
nb

urg

Zo
ete

rm
ee

r

Zo
ete

rm
. O

os
t

Bloemendaal

Santpoort Zuid

Santpoort Noord

Driehuis

Beverwijk

Heemskerk

Uitgeest

Castricum

Heiloo

Alkmaar

Alkmaar Noord

Heerhugowaard

Schagen

Anna Paulowna
Den Helder Zuid

Den Helder

Br
ed

a P
rin

se
nb

ee
k

Za
nd

vo
ort

 aa
n Z

ee

Ove
rve

en

Alp
he

n

a/d

 R
ijn

Le
ide

n

La

mmen
sc

ha
ns

Den
 H

aa
g

Moe
rw

ijk

Voorhout

Hillegom

Heemstede-
Aerdenhout

Nieuw Vennep

Hoofddorp

Haarlem

Spaarnwoude

Halfweg-

Zwanenburg

Zaandam Kogerveld

 Purmerend
Weidevenne

Purmerend
Overwhere

Purmerend

Hoorn Kersenboogerd

Hoogkarspel

Bovenkarspel-

Grootebroek

Bovenkarspel Flora

Enkhuizen

Hoorn

Obd
am

Zaandam

A’dam Lelylaan

Duivendrecht

A’dam
Amstel

W
ee

sp
A’dam RAI

A’dam
Bijlmer
ArenA

Rijs
wijk

Bo
sk

oo
p

Bo
de

gra
ve

n

W
ad

din
xv

ee
n

 N
oo

rd

W
ad

din
xv

ee
n

Gouda Goverwelle

W
oerden

 Utrecht

Terwijde

Sc
hie

da
m N

ieu
wlan

d

Vla
ard

ing
en

 O
os

t

Vla
ard

ing
en

 C
en

tru
m

Vla
ard

ing
en

 W
es

t

Maa
ss

lui
s

Maa
ss

lui
s W

es
t

Hoe
k v

. H
oll

an
d

Hav
en

Hoe
k v

. H
oll

an
d

St
ran

d
Delf

t

Ko
og

-

Za
an

dij
kW

orm
erv

ee
r

Kr
om

men
ie-

As
se

nd
elf

t

Bergen op Zoom

Rilland-Bath

Krabbendijke

Kruiningen-Yerseke

Kapelle-Biezelinge

Goes
Arnemuiden

Middelburg

Vlissingen Souburg

Vlissingen

R’da
m B

laa
k

R’da
m Zu

id

R’da
m Lo

mba
rd
ije

n

Ba
ren

dr
ec

ht

Zw
ijn

dr
ec

ht

Dord
rec

ht
Zu

id

La
ge

Zw
alu

we

Zevenbergen

Etten-Leur

Oudenbosch

Essen

Ba
d B

en
th
eim

Sassenheim

Ko
og

 B
loe

mwijk

Le
er

W
ee

ne
r

Assen

En
sc

he
de

Ke
nn

isp
ark

Groningen
Europapark

Hein
o

Ra
alt

e

Nijv
erd

al

 Utrecht

Leidsche Rijn
R’dam Noord

Vleuten

A’d
am

 M
uid

erp
oo

rt

A’d
am

 Sc
ien

ce
pa

rk

Diem
en

Geldermalsen

Zaltbommel

CulemborgDelf
t

Zu
id

Goffert
 Nijm.

Maastricht Noord

Eijsden

Hengelo
Gezond-

heidspark

Gouda

Schiphol Airport

Haarlem

A’dam
 Zuid

Am
ste

rd
am

 C
en

tra
al

A’dam
 Sloterdijk

Den
 H

aa
g C

en
tra

al

Rott
erd

am
 C

en
tra

al

Dor
dr

ec
ht

Den
 H

aa
g H

S

M
aastricht

Hee
rle

n

Sittard

Roermond

Ei
nd

ho
ve

n

Bred
a

Roosendaal

Til
bu

rg

’s-Hertogenbosch

Ar
nh

em
 C

en
tra

al

Deventer

Zu
tp

he
n

Al
melo

Hen
ge

lo

En
sc

he
de

Apeldoorn

Almere Centrum

Zwolle

Groningen
Le

eu
war

de
n

Amersfoort
Hilv

ers
um

Utre
ch

t C
en

tra
al

Ve
nlo

Leiden Centraal

Nijmegen

IC Brussel
Mö
nc
he
ng
lad
ba
ch

Dü
ss
eld
or
f

Ha
mm

Do
rtm

un
d

Kö
ln

Fra
nk
fu
rt
am
 M
ain

Ba
se
l

M
ün

st
er

Be
rli
n

Th
aly

s

City Night Line

7
x p
er
da
g

Liège

Stoptrein
richting
Antwerpen

16 x per dag

Rijdt alleen
in spitsrichting

Rijdt alleen
in spitsrichting

IC Brussel

ICE
ICE

ICE
ICE (sluit per 30 april 2016)

1 x per uur (ma/vr 7-20u)

2 x per uur (ma/vr 7-20u)

4 x per uur (ma/vr 7-20u)

2 x per uur alleen in spitsuren*

4 x per uur alleen in spitsuren*

*(7-9 en 16-18 u)

1 x per uur (ma/vr 7-20u) en
2 x per uur in spitsuren*

Station

Lijn onderbroken bij station:
lijn stopt op station

Lijn loopt door station:
lijn stopt niet op dit station

www.spoorkaart2016.nl
2016

Spoorkaart

Figure 1.1: Railway map of the Nether-
lands, 20161

Because of the immense numbers mentioned above, most of
the rolling stock is in use during the day, especially dur-
ing the peak hours. At night, when freight transportation
takes over, and outside day peak hours, however, passen-
ger rail operators do not use all of their rolling stock. This
means that during these times the passenger railway op-
erators have to deal with a surplus of rolling stock. Due
to the complex nature of the Dutch network, the surplus
cannot be efficiently stalled on tracks that are part of the
main network without blocking operations that need to be
carried out by other passenger or freight trains. There-
fore, the superfluous rolling stock of a rail operator is usu-
ally stored in a so-called shunting yard, also for the per-
formance of maintenance activities. Seeing the NS owns
almost 3000 carriages, this can become quite a puzzle. Ned-
Train is NS 's subsidiary in charge of performing these main-
tenance activities. NedTrain is in charge of the trains
from the moment they enter the shunting yards and the
company is required to perform all necessary maintenance
activities before the trains are needed for transportation
services again. Besides scheduling all required activities,
such as cleaning from the inside, washing from the out-
side, inspecting, and repairing, fitting all trains on the avail-
able tracks and routing them feasibly is a real challenge as
well.

Shunting yards have some specific characteristics that make routing and parking so complex. In
figure 1.2 a map of shunting yard Kleine Binckhorst is displayed. This map shows some of the
characteristics a shunting yard may have. First of all, it can be seen that routing over the available
tracks is not as straightforward as one might think. Obviously, trains can only move horizontally

1www.spoorkaart2016.nl

8

and can only move over tracks, as opposed to for example cars or trucks. This complicates the
matter greatly as it imposes multiple restrictions on the possible movements of the trains. The
horizontal orientation implies that some turns cannot be made, even if the tracks are connected
to one another. For example, a train cannot go directly from track 52 to track 53 in figure 1.2. It
needs to use track 104a. It generally cannot use the diagonal track on the right side of the image
to reach track 53, because in order for it to fully exit track 52, it would have to use track 906a (in
case of normal length trains). However, this track is part of the main rail network and it is not
allowed to use such tracks when not performing passenger duties. This would induce violations of
safety regulations. The obvious feature that trains can only move over tracks is especially relevant
when multiple trains are parked on the same track. If train A is parked on the left side of a track,
and train B on the right side of the track, train A cannot reach the right side of the track without
train B having moved out of the way first. In other words, overtaking is not possible. This is
perhaps the greatest restrictive property of trains and shunting yards. In figure 1.2, the cleaning
and inspecting platforms and tracks are marked, as well as the external washing machine. It can
also be seen that some tracks can be approached from both ends, such as tracks 52, 53, etcetera,
while others, such as track 104a or 63, can only be approached from one end. The former tracks
are referred to as free tracks; the latter as one-sided or LIFO tracks. As can be deduced from the
name, the one-sided or LIFO tracks act as Last In First Out (LIFO) stacks.

In this research, we focus solely on the parking and routing of trains in a shunting yard rather than
also on the execution of service activities. When considering the parking and routing of trains, we
also need to consider coupling and decoupling of train units. Trains can be made up of multiple
train units. Train units have different types and only train units with the same type can form a
train together. Train types include the VIRM and the SLT, pictures of which can be found in fig-
ure 1.3 and 1.4. The displayed VIRM has four carriages, while the SLT has six. NS Reizigers, the
department of NS that is in charge of the train schedules, decides the composition of the arriving
and departing trains. Sometimes, a certain arriving train unit is assigned to a specific departing
service. Other times, it does not matter which train unit is assigned to a departing service, as
long as it is of a predefined type with the predefined number of carriages and all required service
activities have been performed on it. This means it can be necessary to couple and decouple train
units to and from one another during their stay in the shunting yard.

We aim to formulate the described problem as a Mixed Integer Programming Problem (MIP).
MIPs for similar problems have been formulated by others, but they all lack one essential property
that we do incorporate: the possibility of reallocation. Reallocation can best be explained by
means of an example. We consider the train data as depicted in table 1.1.

Figure 1.2: Map of Kleine Binckhorst

9

Figure 1.3: VIRM-4 Figure 1.4: SLT-6

As can be seen in table 1.1, all of the considered trains consist of one train unit only. Further-
more, all of the arriving (departing) train units are of different types (and number of carriages).
Therefore, no coupling and decoupling will take place, and the trains all have a fixed arrival and
departure time. That is, train 1, arriving at 8:00 consisting of a single train unit with type A, will
leave as train 5, consisting of a single train unit with type A at 10:15; train 2, arriving at 8:30
consisting of a single train unit with type B, will leave as train 6, consisting of a single train unit
with type B. Similarly, train 3 will arrive at 9:15 and leave as train 7 at 12:00 and train 4 will
arrive at 9:40 and leave as train 8 at 12:10.

Now, we take a look at figure 1.5. In this figure, an example shunting yard is laid out and the arriv-
ing trains are parked on the tracks. The thick line represents the main rail network, while the thin
lines represent the tracks of the actual shunting yard. As can be seen from the figure, this example
shunting yard consists of LIFO tracks only. The figure is to scale. Note that in the figure, train 1
and 4 (later on to leave as train 5 and 8, respectively), cannot change tracks without driving back
the way they came from, moving up the diagonal connecting track until they fully exit their current
track, and effectively using the track that belongs to the main railway network. It does not matter
on which track they are parked: they will always need to use this main railway network track to
switch tracks. Remember this is not allowed during their stay in the shunting yard. When we look
at train 2 (later train 6), we see that it has the possibility to switch between all three tracks without
using the main railway network, and train 3 (later train 7) can feasibly move between the bottom
two tracks. We can also see in the image that train 2 and 3 need to be parked on the same track,
since there is no room to park another train next to either train 1 or train 4. If we park train 2
and 3 on separate tracks, we need to move one of them to the track of the other in order to provide
enough space to park train 4. Now, we will get a situation similar to the one in figure 1.5. Com-
parable situations arise when trains 2 and 3 are parked on the bottom track and train 1 is parked
on the middle track. We will now see why we cannot initially park trains 2 and 3 on the top track.

When the trains are leaving, train 5 (formerly train 1) leaves first. Train 6 (train 2) is next
in line to move, but train 3 is in the way. Since we concluded earlier on that there was no other
way to park the trains than to assign trains 2 and 3 to the same track, there would be no feasible
solution if we would not allow train 3 to be moved to another track. If train 2 and 3 were initially
parked on the top track, we would not be able to move train 3 to another track, thus rendering no
feasible solution. Now, we move train 3 to the former track of train 1, train 6 (formerly train 2)
can leave, and consequently train 7 (train 3) and train 8 (train 4) can leave the shunting yard
without further ado. If we initially park trains 2 and 3 on different tracks and then move train 2
to the track of train 3 before the arrival of train 4, all trains can leave the shunting yard without

Train unit ID
Train units

(displayed by type)
Arrival time Train unit ID

Train units
(displayed by type)

Departure time

1 A 8:00 5 A 10:15
2 B 8:30 6 B 11:05
3 C 9:15 7 C 12:00
4 D 9:40 8 D 12:10

Table 1.1: Example: arriving and departing times and types of trains 1-8

10

Figure 1.5: Example: need for reallocation

moving the trains in between anymore. Note an exception applies to the upper track: we should
not park train 3 here in this example, since train 4 must be parked on this track as it is the only
track it fits on. We call the process of moving trains to park them -possibly temporarily- on other
tracks than their initial parking tracks reallocation.

As follows from the previous example, reallocation of train units in order to make room for others
can be very useful and we will incorporate it in our MIP. Our MIP will be inspired by two more
broadly studied problems, for which several MIPs have already been formulated: the Train Unit
Shunting Problem (TUSP) and the Rush Hour Problem (RHP). The former is identical to our
problem without considering reallocation. This means that the train units need to be initially
parked in such a way that they can all leave the shunting yard in the correct configuration without
need for reallocation. Reallocation greatly complicates the formulation of our problem with respect
to the formulation of the TUSP, since we face the possibility of an almost unlimited amount of
variables and/or constraints if we allow an unlimited number of reallocations. The latter refers to
the game Rush Hour, which is a children's game in which several ‘cars’ are located on a grid, and
one specific car needs to exit the grid. All cars can only move either vertically or horizontally, and
there is one exit, located in line with the car required to exit the grid. The user wants to move the
cars in such a way that there is free passing for the specified car to leave the grid. In figure 1.6 an
example of the game including possible solution steps is given.

The upper left corner image shows the start configuration of the problem, and the following images
show the moves that lead to the solution. In our problem, we deal with a situation in which parked
trains are moved around in order to allow for one train to leave the yard without any other trains
blocking the way. This contains elements of Rush Hour and the related RHP. In a shunting yard,
all trains can move in only one orientation, namely horizontally (we can choose the orientation of

Figure 1.6: Rush Hour instance with solution steps2

2www.thinkfun.com

11

our shunting yard ourselves).

Our problem thus contains elements of both the TUSP and the RHP. From now on, we will
refer to our problem as the Train Unit Shunting Problem with Reallocation (TUSP-R). Although
a good working heuristic as developed by Van den Broek [3] to solve the TUSP-R is currently being
evaluated and used by NedTrain, there exists a need for an exact, mathematically justified, and
scientifically supported foundation. The overall goal of this research is to formulate the TUSP-R as
an MIP and use mathematical programming techniques to solve it. We will compare our method
to the currently used methods in order to evaluate its performance and evaluate its possible use
for planning purposes.

The remainder of this thesis is structured as follows. In chapter 2 relevant literature on the
problem and related problems is discussed and reviewed. Chapter 3 gives a more detailed descrip-
tion of the problem and introduces definitions and notations. The complexity of the problem is
discussed in this chapter as well. Next, we formulate the problem as an MIP in chapter 4. We start
with a basic formulation and work from there. Several extensions to the proposed formulation are
provided as well. The solution approach is discussed in chapter 5 and the data sets we will apply
it to are introduced in chapter 6. Chapter 7 discusses the results of our methods and a discussion
of possible limitations of our model and methods is included in chapter 8. Our conclusion and a
discussion of possible further research can be found in section 9.

12

Chapter 2

Literature Review

In this chapter we will provide an overview on relevant literature for this thesis. In the first
section literature on several motion-planning problems including the RHP is discussed and their
complexity is considered. In the second section we review works on general shunting problems and
the third section is focused more specifically on the TUSP.

2.1 Motion-Planning Puzzles and their Complexity

The work of Flake and Baum [8] provides the foundation for a lot of articles on complexity of
mathematical games, sliding block puzzles in particular. They elaborate on the complexity of the
Rush Hour game, proving this to be PSPACE-complete. Van Rijn [24] provides some extra aspects
and clarifications of this proof. Flake and Baum [8] consider their main contribution to be their
proof technique, which uses a lazy form of dual-rail reversible logic, requiring only three types of
devices, which they claim makes it easily generalizable for other types of problems. Indeed, Hearn
and Demaine [17] construct a framework which is a generalization of [8]. This framework is used
to prove PSPACE-completeness of several motion-planning problems. Hearn continues to work on
complexity theory of different types of sliding-block and plank puzzles in [16]. He provides clear
examples of such puzzles and elaborates on their complexity (which is thus PSPACE-complete).

DePuy and Taylor [5] discuss several board puzzles which they claim encourage creativity in op-
erations research students. One of the puzzles they discuss is Rush Hour. The authors formulate
the problem as a mathematical programming problem. They use variables for the representation
of vehicle moves, and variables for the board status. The objective function minimizes the number
of moves needed to free the way to the exit for the target car. To keep the problem somewhat
scalable, a maximum number of moves is allowed. We will also allow a maximum number of re-
allocations. They find that a maximum number of moves of four times the number of vehicles is
reasonable. As for the computational results, they solve a simple instance in a computation time
of only seconds using cplex 9.0.2.

2.2 General Shunting Problems

Blasum et al. [2] wrote one of the first works on depot scheduling problems. They focus on parking
and dispatching trams in a depot and prove NP-completeness for determining whether trams can
be assigned to departure times without any shunting movements. This problem is also defined as
the Tram Dispatching Problem. In their Tram Dispatching Problem, the depot consists only of
LIFO tracks. The authors focus on a subproblem of the Tram Dispatching Problem, namely that
of assigning already stored trams to departing services, while minimizing the number of necessary
shunt movements. This subproblem is defined as the Scheduling-Trams-in-the-Morning Problem.
In the Scheduling-Trams-in-the-Morning Problem it is assumed that operators do not take into
account the departing services the next morning when assigning arriving trams to depot stacks.
The latter is consistent with the current situation at transport companies, and it is also motivated

13

by the wish for real time planning: trams can very well arrive in a different order than scheduled
due to delays, upsetting the entire planning.

In [25], Winter and Zimmermann elaborate on real-time dispatch problems in tram storage yards.
Again, the storage yard or depot consists of LIFO tracks only. They define several dispatch
problems. Among others, they consider the problem of minimizing the number of pairs of trams
(both arriving and departing) that need to be shunted, the Minimum Shunting Problem. They
also consider the Minimum Shunting at Departure Problem, which is identical to the Scheduling-
Trams-in-the-Morning Problem in [2], meaning this is the Minimum Shunting Problem without
considering the departing services while assigning arriving trams to stacks. The other problems
they consider allow for type mismatches, which we do not allow for in this thesis, so these are
of little relevance for us. The Minimum Shunting Problem is very relevant when formulating the
complete TUSP-R, and the Minimum Shunting at Departure Problem is particularly relevant in
case we would consider real time planning. NP-completeness for all considered problems is proven.
For the Minimum Shunting Problem the authors propose a binary problem and they model the
Minimum Shunting at Departure Problem as a binary quadratic assignment problem. Considering
several theorems, several constraints are added to the Minimum Shunting Problem resulting in a
tightened quadratic assignment problem and this problem is linearized using a method by Kaufman
and Broeckx [18]. This problem is solved exactly using the cplex 6.5 MIP-Solver. The Minimum
Shunting at Departure Problem can be solved exactly in a similar manner. For both problems,
some heuristic solutions are proposed as well.

In both [2] and [25], parking spaces are of fixed and identical size, which is impractical in the
case there are vehicles of different lengths. Gallo and Di Miele [10] deal with city buses of different
lengths that need to be parked in a parking depot. This depot consists of First In First Out
stacks. The authors use the solution approach proposed in [25], meaning the problem is viewed as
a quadratic assignment problem with side constraints. They proceed to extend this model to take
into account buses with different lengths, thus the assumption of fixed parking spaces is abandoned.
The problem is solved using a Lagrangean Decomposition approach as developed by Guignard and
Kim [12].

2.3 Train Unit Shunting Problem

From 2002 on, multiple articles on the TUSP have appeared in literature. In [9] the TUSP is split
up in two subproblems, namely the Matching Problem and the Track Assignment Problem. The
Matching Problem entails matching the arriving and departing shunt units and the Track Assign-
ment Problem involves parking these on a shunt track. The solution is a shunt plan, of which
the costs are minimized. The problem is not treated as a whole, but as separate subproblems.
The Matching Problem is formulated as a mathematical model and solved using the standard
MIP solver of cplex 6.5. The Track Assignment Problem is also formulated as a mathematical
model, using a set partitioning formulation with side constrains. In this formulation, all feasible
track configurations are translated into a set, which the authors claim to be a major advantage
since difficult constraints with respect to feasibility are avoided; they are incorporated into the
set of feasible track configurations. The downside of this approach is the exponentially large set
of track configurations. This downside is overcome by using a column generation heuristic. In
this heuristic columns are generated using dynamic programming. Their approach does not allow
for reallocation of parked shunt units and includes the matching problem. Also, routing is not
included. In [21], a four-step solution approach is proposed to solve the TUSP. The first step is
again matching arriving to departing shunt units, whereafter the routing costs of train units are
estimated. Next, the shunt units are parked on shunt tracks and finally the actual routing is done.
The Matching Problem is solved in a similar manner as in [9], and the Track Assignment Problem
is also very similar. They do, however, include routing of shunt units, where [9] fails to do so. The
Routing Problem is solved using the Occupied Network A∗ search algorithm extended with a 2-opt
improvement strategy.

14

Di Stefano and Koči [6] focus on the subproblem in which they try to arrange the shunting units on
the available tracks in such a manner that no shunting operations on outgoing trains are necessary
in the morning. They use a graph theoretical approach in which they construct several algorithms
and heuristics and do not use a mathematical program to formulate their problem. Their main
goal is to investigate the constraints that make the shunting problem hard, and to that end they
ignore constraints related to for example track lengths and shunt unit sizes. The constraints they
say make the shunting problem hard are constraints that handle the shunting yard lay-out and the
arrival and departure sequences of trains due to the timetable.

Di Stefano also worked on the Track Assignment Problem with Cornelsen [4]. To solve the prob-
lem, they use a conflict graph. In their conflict graph, the vertices correspond to the train units.
Two train units are adjacent if they cannot be put on the same track. They show that the Track
Assignment Problem is equivalent to coloring the conflict graph. In this case, the colors correspond
to different tracks. For linear or aperiodic timetables, which are the ones discussed in this thesis,
it is shown that the conflict graph is a permutation graph which hence can be colored in O(n log n)
time if the midnight constraint is respected. The midnight constraint states that arrivals and
departures cannot be mixed in time.

Where [9] uses multiple subproblems to solve the TUSP in several steps, [19] and [20] solve the
matching and parking subproblem simultaneously. They aim to include all possible extensions and
configurations of trains and shunt yards, including trains consisting of multiple shunt units and
both LIFO and free tracks. In their integrated approach, the authors aim to minimize the number
of shunt units that arrive in the same train, but depart in different trains, meaning they need to
be split up, as well as the number of tracks with multiple subtypes of train units parked on it. The
complexity of their formulation is increased step by step in the paper, with only the possibility of
reallocation missing compared to the formulation we aim to construct in this thesis. [20] lays out
the basis for OPG, the planning system currently used by NedTrain. OPG is a MIP that decides on
the parking and matching for each unit. OPG decides on which train units are assigned to which
tracks and in which compositions they will leave the shunting yard again. Routing is added in
the second step, using the timefixer method. Timefixer is concerned with the process between
entering the station and entering the park track.

In their 2007 article on circulation of railway rolling stock, Peeters and Kroon [23] develop a
branch-and-price algorithm to assign trains to the daily train services. Their problem is not pro-
jected on a shunting yard, but the methods and formulations used can be useful for this thesis. They
use a transition graph to build the mathematical formulation, on which they apply Dantzig-Wolfe
decomposition. In this reformulation, a variable is associated with each path in the previously de-
fined transition graph. Since this results in a huge number of path variables, a linear programming
relaxation of the problem is solved using column generation. Subsequently, a branch-and-price
approach is used to obtain an optimal integer solution. Fioole et al. [7] extend this model to
incorporate the possibility of splitting and combining trains underway.

Den Hartog, in his 2010 thesis on shunt planning [15], discusses OPG and builds on the work
of Lentink [20]. After analyzing this method, he concludes that the disadvantages of the sequential
approach (that is, first applying OPG and subsequently applying timefixer) can only be fully
overcome by integrating the two steps. To this end, the author formulates the sets Arrival on
Park Track (APT) and Departure on Park Track (DPT). These sets are essential in formulating
his APT model, an MIP that relies heavily on these sets. The set APT contains for all units all
feasible, unique and full descriptions of the way a unit is handled between its arrival and its arrival
at the park track. The set DPT is defined similarly: it contains descriptions for all units for the
time between its departure from the park track and its overall departure from the shunting yard.
Two methods are suggested for solving the APT model: a one- and a two-stage solution method.
Since the APT and DPT sets are very large, they are only partially created to begin with in both
solution methods. These initial sets are named start sets. Compared to the full sets, the start sets
do not have any shunt time flexibility. The start sets contain for every composition and park track
only the APT and DPT instances with the smallest dwelling time on the platform track. The

15

two-stage solution method starts with the same sets, but the flexibility in shunt time is added for
some compositions in the second stage. The formulation and solution methods proposed in this
thesis are interesting to use as inspiration for our formulation, since this thesis tackles the TUSP
with all possible shunting yard lay outs incorporated, which we aim to do as well. Other papers
often focus on one specific type of shunting yard lay out.

In [14] multiple methods for solving the TUSP are reviewed, developed, and compared. The
authors introduce three new methods for solving the TUSP: they use a constraint programming
formulation, develop a column generation approach, and construct a randomized greedy construc-
tion heuristic. They compare these methods to the existing methods using problem decomposition
and the MIP formulation. In the latter, the possibility of delayed constraint generation is consid-
ered to decrease its memory consumption. The MIP formulation is very much based on the work
of Kroon et al. [19]. The development of the constraint programming method is motivated by the
nature of the TUSP, namely that it is mainly a feasibility problem. Not events, but compositions of
multiple shunt units are assigned to tracks. The main sets used are the set of possible compositions
of shunt units on tracks and the set of possible composition changes when an event happens. One
can imagine these sets become extremely large, especially if we do not work with a preassigned
matching of arriving to departing shunt units. This makes the memory consumption when solving
the model with a constraint programming solver excessive. To prevent this, a heuristic variant is
introduced in which the number of different train types allowed on one track is restricted. The
column generation method decomposes the problem by track, and each track is assigned to a
matching pattern. A matching pattern is a subset of matchings that can be feasibly parked on a
given track over the planning horizon. This method is based on the work of Freling et al. [9], but
the matching and parking subproblems are solved simultaneously. Column generation is applied
to the problem, but since both matching and parking subproblems are solved at the same time,
very large networks are constructed in the pricing problem resulting in large computation times.
Therefore, the authors choose to not evaluate this approach thoroughly in the result section. The
randomized greedy construction heuristic is not as interesting for this thesis. The paper only fo-
cuses on finding a feasible solution; no objective functions are taken into account. Besides this, only
LIFO tracks are considered. Haahr, Lusby, and Wagenaar [14] also introduce infeasibility checks.
If a problem instance fails the infeasibility checks, there is no reason to consider the instance at
all. For example, if the aggregated track capacity is less than the sum of the train lengths that
need to be parked at any moment in time, the instance will always be infeasible. This concept can
help us to decrease computation times.

In another article by Haahr et al. [13], multiple methods for solving the Train Unit Parking Problem
are considered. The Train Unit Parking Problem is similar to the TUSP, but the matching part is
left out. They model the Train Unit Parking Problem using both a compact formulation focused
on events, similar to the MIP formulations in [19] and [21], and a column generation model, also
proposed in [9], obtained applying Dantzig-Wolfe Decomposition to the compact formulation. The
first formulation is solved using a direct approach using the Gurobi solver, while they also test an
approach in which they use a relaxed version of the model in which some constraints are removed.
These constraints are gradually reintroduced using a Branch-and-Cut procedure. This second ap-
proach is motivated by the fact that there is a very large number of constraints in the compact
formulation, which the authors claim might not all need to be generated from the start. We will
keep this idea in mind when developing our solution methods. The second model is characterized
by exponentially many variables, which motivates the choice for using the column generation model
as proposed by [9], extended to a full Branch-and-Price framework through constraint branching.
They finally propose a unit swapping algorithm in case not all units can be parked in a solution to
the Train Unit Parking Problem and a framework that solves the Train Unit Parking and Matching
Problem in an integrated loop, effectively solving the TUSP. They conclude that a direct solve of
the full MIP gives the best results, rendering the more complicated column generation approach
unnecessary, although they state it would be interesting to see which method would scale better
for larger instances. This is an interesting conclusion to keep in mind in this thesis.

Finally, Van den Broek [3] focused on constructing a simulated annealing algorithm for finding

16

shunt plans for the TUSP with Service Activities. The shunt plans include the matching, the
scheduling of the service tasks, the assignment of trains to parking tracks, and the routing of
trains. He developed an integrated approach that evaluates all of the components of the shunt
plans simultaneously rather than subsequently. The performance of the heuristic is considerably
better than the OPG-method. His method is currently being used by NedTrain for determining
service site capacities. His work will be very useful for measuring the effectiveness and evaluating
the results of our methods, since he also generated results for the TUSP without Service Activities,
since our models will solve the matching, parking, and routing subproblems simultaneously as well.
However, we will aim to construct an exact approach, where Van den Broek [3] proposed a heuristic
one.

17

Chapter 3

Problem description

This chapter will provide a formal problem description of the TUSP-R. The general terminology
will be introduced and we will provide the general notation for the sets, parameters, and (decision)
variables used later on. We will also comment on the time complexity of the problem.

3.1 General terminology

We need to introduce a clear definition of concepts that will be used throughout this paper to clearly
define the problem. First of all, we define a shunting yard as the place where train units are parked
when they are not needed for (passenger) transportation on the main railway network and where
maintenance activities can be performed on them. For each shunting yard, we define an A- and a
B-side. For a horizontally orientated shunting yard, the A-side usually refers to the left side of the
shunting yard, while the B-side refers to the right side of the yard. The A- and B-sides of tracks are
the sides that are closest to the A- or B-sides of the shunting yard, respectively. Shunting yards can
have different layouts and makeups, with LIFO and free tracks. LIFO tracks are tracks that can
only be accessed from either the A- or B-side; free tracks can be accessed from both sides. As one
can imagine, the shunting yard layout has considerable implications for the used parking strategies.

On a given day, train units arrive at and depart from a shunting yard from and to the main
rail network at pre-determined moments in time in pre-defined compositions.Compositions are
multiple train units coupled together, but they can also consist of only one train unit. Compo-
sitions can only consist of train units with the same type. However, these train units can have
different numbers of carriages. Train units are the smallest indivisible units of which compositions
can consist and they can drive independently of one another. Carriages are the separate compart-
ments in a train unit. We refer to a composition with a pre-defined makeup of train unit type and
numbers of carriages arriving at or departing from the shunting yard according to a certain time
schedule as a train service. Arrivals of train units at the shunting yard and departures of train units
from the shunting yard are referred to as events. Events are train unit based: if a service consists
of multiple train units, a separate event is defined for each train unit in this service. However,
each train unit has its own position within this service, for example the front, back, or middle. An
overview of these definitions is given in figure 3.1.

The right side of figure 3.1a represents a schedule, which consists of services, that on their turn
consist of one or more events. Services have three characteristics (see figure 3.1b): whether they
are arrivals or departures, their time stamp, and the composition they are linked to. As can be
seen in figure 3.1c, events have similar characteristics: whether they are arrivals or departures,
their time stamp, and the train unit they are linked to. Compositions consist of one or more train
units, which consist of multiple carriages. In this case, the schedule consists of two services, one
consisting of two events and the other consisting of three events. The composition linked to the
former thus consists of two train units, of which one contains two carriages, and the other contains
three carriages. There are certain restrictions to the follow up times of different train services in a
schedule: there needs to be a window of at least 4 minutes between two train services that move

18

(a) Make up of schedules and compositions

(b) Characteristics of a train service (c) Characteristics of an event

Figure 3.1: Relations schedules, services, events, compositions, train units, and carriages

in the same directions (that is between two arrivals or between two departures) and of at least 7
minutes between two train services that move in opposite directions (that is between an arrival
and departure or vice versa).

In this thesis, the aim is to find a way to feasibly park train units arriving in the train services
in the shunting yard such that they can depart in suitable departing train services. We assume
no train units are present in the shunting yard at both the start and the end of the planning
period, which means that all train units arrive and depart in a train service. This also means that
the train unit types and the number of carriages should be of equal numbers in the arriving and
departing compositions, otherwise train units would have to stay behind in the shunting yard or
there would be shortages of train units in the departing services. Seeing that all train units arrive
in an arriving service and depart in a departing service, some sort of link or connection must be
made to assign arriving to departing units and vice versa. We call this a matching: an overview
of the train services a train unit arrives and departs in. Each train unit in an arriving service is
matched to a train unit in a departing service, and the other way around. Train units can only be
matched if the type and the number of carriages are equal. Also, a matching between an arriving
train unit and a departing train unit can obviously only be made when the arrival takes place
before the departure. For some train units, a predefined matching exists, which means we can not
freely match the unit to a service in which a unit with the same type and number of carriages is
required. That is, only one specific matching can be made for these units. This can occur when
we want a particular train unit to be at a specific location at a given day, for example to execute a
specialized maintenance service or update. If this is the case, the train unit is not interchangeable.
Otherwise, the train unit is interchangeable. Compositions consisting of multiple train units can be
split up into smaller compositions and train units; compositions can also be ‘merged’ to together
form a composition of even more train units. The former is referred to as decoupling, the latter
as coupling. The need to couple and decouple train units exists for example when the train units
in the composition of a specific arriving service do not all depart (in the same order) in the same
departing service or when the arriving composition forms only part of the departing composition.

During their stay in the shunting yard, train units need to be parked on one of the parking
tracks. Parking tracks are tracks on which we can park train units, and they are usually connected
with the main railway network through (a) diagonal track(s). We do not park any train units
on diagonal tracks. Train units are parked on a parking track directly after their arrival in the
shunting yard. This track is referred to as the arrival track. We call the track on which they are

19

parked right before their departure from the shunting yard the departure track. A train unit can
be parked on multiple tracks during its stay in the shunting yard and the arrival and departure
track can be different. The arrival and departure track are part of the main railway network. The
arrival and departure track are both part of the shunting yard, and not of the main railway net-
work. When a train unit moves from one parking track to another during its stay in the shunting
yard, we say the train unit reallocates. If a train unit does not reallocate during its stay in the
shunting yard, it occupies only one track during its stay in the yard, which is both the arrival and
departure track. If it reallocates once during its stay in the shunting yard, the parking tracks it
occupies are the arrival and departure track. If it reallocates multiple times, it first occupies the
arrival track, then some track(s) in between, and finally the departure track. Reallocation and
the other definitions and concepts discussed in this paragraph have already been introduced in
section 1 by means of table 1.1 and figure 1.5. In the figure, the thin lines form the shunting yard
and the diagonal track on the right is the connecting track on which we do not park train units.
The horizontal tracks with train units parked on them are parking tracks. When elaborating on
the example illustrated in table 1.1 and figure 1.5, the concept of drive back distance was also
introduced: the drive back distance is the maximum length a train unit can have to feasibly move
between two parking tracks without using the main railway network. For a shunting yard layout
such as the one in figure 1.5, the drive back distance to move from one parking track to another is
equal to the length of the diagonal track from the highest parking tracks of the two to the main
railway network. Reallocations are useful to avoid crossings. Crossings occur when a train unit
would have to move through another unit in order to be able to leave the shunting yard in its train
service. The train unit that is preventing free passage is said to be blocking the departing train
unit. Crossings are obviously not allowed. If reallocation is not allowed, train service 6 would not
be able to depart in time, since train service 3 (7) would be blocking the way, which would mean a
crossing would occur. This would also be the case if reallocation were allowed but the drive back
distance would not be sufficient to reallocate train service 3 (7). For LIFO tracks, crossings occur
if a train unit arrives on a certain track before another train unit, and this first train unit also
departs from this track before the second one, but after the arrival of the second train unit on the
track.

We can now formulate the problem as follows:

Given

· a shunting yard;
· and a train service schedule;

we need to

· assign arriving and departing train units to tracks;
· match arriving and departing train units to each other;
· choose reallocation times for the matchings;
· and route the train units over the tracks;

such that

· at no point in time the cumulative length of train units on a track exceeds the track
length;
· no crossings occur at either reallocation or final departure of train units from the

shunting yard;
· the main railway network is not used in the process of reallocating train units;
· and no simultaneous movements of train units take place;

while minimizing the number of reallocations.

Although we aim to minimize the number of reallocations, it is mainly a feasibility problem. Note
that previously defined linear programming formulations for the TUSP as discussed in chapter 2
generally implicitly include the routing element: they use shunting yard layouts in which train units
can easily reach all tracks when arriving in the shunting yard. To be able to feasibly reallocate
between tracks, we need some extra constraints to force correct routing. Extra restrictions on
routing apply as well when we consider more complicated shunting yard layouts.

20

Set Definition
F Set of tracks
T Set of all train units/events
T+ ⊂ T Set of arriving train units/events
T− ⊂ T Set of departing train units/events
L Set of all possible matches between arriving and departing train units

Table 3.1: Set overview

Parameter Definition
kt Length of train unit t ∈ T
lf Effective track length of track f ∈ F

nf,g
Maximum length of a train composition to be able to go from track f to track g,
f, g ∈ F

τt Type of train unit t ∈ T

vt =

{
1 if train unit t ∈ T is an arriving train unit, that is t ∈ T+
−1 otherwise1

ω Fixed moving time from one location to another in the shunting yard

wt
The number of reallocations that can take place between event t and t− 1, t ∈ T ,
that is the time between event t and t− 1 in terms of the moving time ω minus 1 if wt > 0

Table 3.2: Parameter overview

3.2 General notation

In order to mathematically formulate the problem, we introduce some notation on amongst others
the concepts discussed in section 3.1. First of all, we define the set of tracks F , with parameter
lf the length of track f ∈ F . T+ is the set of arriving train units or events, while T− is the set
of departing train units or events. Together, sets T+ and T− form set T and they are disjoint. In
mathematical notation, we have:

T = T+ ∪ T−, T+ ∩ T− = ∅.

The parameter kt gives us the length of each train unit t ∈ T and τt assigns the type to each
unit t ∈ T . We define a unique type τt for each existing combination of train unit type and
number of carriages: if two train units are both of the train type SLT , but one has 4 carriages
and the other 6, their τt value is different. We also use parameter vt, which is equal to 1 if unit
t is an arriving train unit, i.e. t ∈ T+ and equal to -1 if unit t is a departing train unit, i.e. t ∈ T−.

The elements in set T do not only refer to train units, but also to their associated events and
thus the event times. Therefore we can sort the sets T , T−, and T+. This ordering is taken from
[19] and we order the elements of these sets based on event time and position in the service the
train unit belongs to. A train unit t1 appears before train unit t2 in the ordering (denoted by
t1 < t2) if and only if one of the following conditions is satisfied:

1. The event time of train unit t1 is smaller than the event time of train unit t2;

2. Train units t1 and t2 are arriving train units that arrive in the same train service, and train
unit t1 is positioned more to the front of the composition than train unit t2;

3. Train units t1 and t2 are departing train units that depart in the same train service, and
train unit t1 is positioned more to the front of the composition than train unit t2.

Because of the restrictions on the follow up times between services in a schedule as discussed in
section 3.1, we do not need to consider cases where we have simultaneous events that do not belong
to the same service. Therefore, we will for example never encounter cases where the event time of

1I.e. if train unit t ∈ T is a departing train unit, that is t ∈ T−

21

an arriving train unit is equal to the event time of a departing train unit.

We can now define wt as the time between event t and t − 1, t ∈ T , in terms of the moving
time, minus 1 if wt is larger than 0, meaning that wt is equal to the number of reallocations that
can take place between event t and t−1. We consider the moving time a fixed constant ω, meaning
it is independent from the distance that needs to be covered. The drive back distance between two
tracks is defined by nf,g, which means that nf,g is the maximum length of a train composition to
be able to go from track f ∈ F to track g ∈ F , set to M > maxt∈T {kt} if there is no limit on this
length.

Next, the set L contains all possible matches (t, u) between arriving train units t ∈ T+ and
departing train units u ∈ T−. Since matches can only made if the arriving train unit was already
present in the shunting yard before the departing service departs, we can formulate the set L as
follows:

L = {(t, u)|t ∈ T+, u ∈ T−, t < u, τt = τu}.

In table 3.1 and table 3.2, an overview of the used sets and parameters is given.

3.3 Complexity

The complexity of the TUSP and similar problems has been discussed in several articles appearing
in literature. Blasum et al. [2] and Winter and Zimmerman [25] prove for several of their tram
dispatching problems that they are NP-hard, which Freling et al. [9] consider sufficient proof for
their TUSP to be NP-hard. Haahr et al. [14] consider the TUSP a feasibility problem and they
prove NP-hardness of their TUSP by reduction from the Graph Coloring problem.

The TUSP-R is an NP-hard problem, since it can be verified in polynomial time whether a certain
assignment of values to variables (an instance) is a solution to the problem and by comparison to
the TUSP. We can verify the matching constraints by counting the number of assignments. We
ensure that each arriving (departing) train unit is matched to exactly one departing (arriving)
train unit and that the assignment is mutual. We can verify the capacity constraints by iterating
over the ordered events and updating the cumulative lengths of the train units on the tracks and
the number of movements in a time interval. These should be within the allowed limits. Each
event should be assigned to a track as well. By pairwise comparison of the matchings in combina-
tion with their track assignments and reallocation times, we can ensure no crossings occur. Thus
we can verify in polynomial time whether an instance is a solution. Furthermore, if we find the
optimal solution to the TUSP-R and in this solution zero reallocations occur, the solution to the
TUSP-R is a solution to the TUSP as well. If we find an optimal solution to the TUSP-R with
multiple reallocations in it, no solution will exist for the TUSP- Therefore, if the TUSP-R would
be solvable in polynomial time, the TUSP would be as well. However, the TUSP is an NP-hard
problem as shown in [9] and [14] and therefore the TUSP-R is as well.

22

Chapter 4

MIP Formulation

In order to work towards the most efficient formulation for our problem, we start with a basic
formulation and work from there. In this initial formulation in section 4.1, we use variables with
a lot of indices, which we expect will not be the most practical. However, this will give us a feel
for the problem dynamics. Later on in section 4.2 we adapt the choice of variables to find a more
appropriate formulation.

We assume all train services consist of one train unit only. That means no couple and/or decouple
actions need to be performed. Although we will provide extensions to dismiss this restriction in
section 4.3, we will still work with a simplified model: we will work under the assumption that
compositions consisting of multiple units are decoupled directly after their arrival in the shunting
yard and coupled right before their departure. This means all models will operate on the train
unit level. Also, we use a track layout with LIFO tracks, that are all on the same side of one track
that connects them to the main rail network. An example of such a layout can be found figure 4.1.
In section 4.3 adaptions will be provided to make the model suitable for all shunting yard layouts.
In our models, only one train unit can be moved at the same time and the operation of switches
is not considered.

Our starting point for finding a formulation for the TUSP-R is the assumption that realloca-
tion is given in by a train unit trying to leave a track, but being unable to do so since other train
units have arrived later on the LIFO track and have not left the track yet. In this case, the latter
train unit will need to reallocate. From this point of view, we build our formulation. We will allow
at most one reallocation per train unit in our MIP formulation. Allowing for more reallocations
will greatly complicate solving the model exactly, as the number of variables and constraints will
both increase roughly by a factor n each time, where n is the number of extra reallocations allowed.
Since the dimensions of the constraint matrix are already quite big as can be seen in the formula-
tions in this chapter, the computation time is expected to increase drastically. Besides this, we do
not expect allowing for multiple reallocations will greatly reduce the number of unsolvable cases,
unless we deal with very uncommon sorts of shunting yard layouts with very few, but very long
tracks. We do not expect our solution to improve a lot when allowing for multiple reallocations
per train unit, since reallocations take time and we expect the marginal benefit of reallocations

Figure 4.1: Example track layout only LIFO tracks

23

decreases rapidly with each extra reallocation allowed.

We assign a time window to reallocations in the formulations in this section, where between each
event and its successor event a time window exists. Since we only allow one train unit to move at
a time in the shunting yard, time windows cannot span multiple events, as a train unit will always
be moving during an arrival at or departure from the shunting yard. For the same reason, we limit
the number of reallocations that can be assigned to a time window to ωt as discussed in chapter 3.
However, we do not determine the order of reallocations within a time window. We assume we will
always be able to reallocate during the time window such that no crossings occur. Furthermore, we
assume that when departing from the shunting yard, the reallocation order of train units that have
used the same reallocation time window as the departing unit can always be chosen such that no
crossings involving these train units will occur. These assumptions simplify the model and reduce
the number of variables used, but do not always hold. In the situation where we reallocate two
train units from the same arrival track to the same departure track during the same reallocation
time window, the train unit that arrived last on the arrival track must be reallocated first. We
will refer to this train unit as train unit A. The train unit that is reallocated second is referred
to as train unit B. Now, train unit A will arrive at the departure track before train unit B. The
first assumption holds, because we just found a reallocation order in which no crossings occur at
reallocation. The second assumption, however, does not necessarily hold: if train unit A needs to
depart from the shunting yard before train unit B, a crossing will occur. If we would have reversed
the order of reallocation of units A and B, no crossing would occur, but since their arrival tracks
are identical, this is not possible. So when dealing with identical reallocation times, arrival tracks,
and departure tracks, our assumption might not hold. We do not expect this situation to arise often.

We found the biggest challenge in formulating our problem as an MIP to be formulating the
constraints that prohibit crossings. Since we have to deal with a variable matching and a variable
reallocation time, it is difficult to determine the exact time period during which a train unit is
present on a certain track, which is vital information when dealing with crossings. For two match-
ings (t, u) and (t′, u′), (t, u), (t′, u′) ∈ L, crossings occur if one matching arrives on a certain track
before the other one, and this first matching also departs from this track before the other one. We
use several different variables in the sections of this chapter to formulate our problem as smartly
as we can. An overview of all the used variables per section is given in appendix A.

4.1 Initial formulation

In this section we will define an introductory notation. In the formulation, we assign arriving train
units to tracks. When these train units need to depart the track for reallocation or final departure,
train units that are blocking free passage can be moved. We minimize the number of reallocations,
but this objective can easily be adapted to suit the planner’s wishes.

In order to determine which train units will be matched to each other and where they will be
parked throughout their stay in the shunting yard, we will need several decision variables. We use
the variables xt,f , xt,u,f,g, yt,u,f,g,z, and bf,t. The x-variables are all concerned with the parking
tracks of train units and their matchings, while the y-variables also incorporate the reallocation
time.

xt,f is equal to 1 if train unit t ∈ T is assigned to track f ∈ F , and 0 otherwise. Note that
if we are dealing with an arriving train unit t (vt = 1), the track assignment f will be the arrival
track, while if we are dealing with a departing train unit t (vt = −1), the track assignment f
will be the departure track. xt,u,f,g equals 1 only if arriving train unit t assigned to track f ∈ F
is matched to departing train unit u assigned to track g ∈ F , (t, u) ∈ L. Next, yt,u,f,g,z is just
like the previous ones a binary variable that is only equal to 1 if arriving train unit t assigned
to track f ∈ F is matched to departing train unit u assigned to track g ∈ F , (t, u) ∈ L, and
reallocated between event z − 1 and z, z ∈ T . Finally, bf,t equals the cumulative length of the
train units on track f ∈ F right after event t ∈ T .

24

The above sets of variables account for a very large number of total variables. The formulation
will contain |T | · |F | xt,f -variables; |L| · |F |2 xt,u,f,g-variables; approximately |L| · |F |2 · |T | yt,u,f,g,z-
variables; and |F | · |T | bf,t-variables. Note that |L| is in the order of magnitude of (1

2 |T |)
2 = 1

4 |T |
2.

Therefore, the number of columns in the constraint matrix will be in the order of magnitude of

2(|T | · |F |) + (1 + |T |)(|L| · |F |2) ∈ O(
1

4
|T |3 · |F |2).

We can now formulate the problem as follows.

Minimize: ∑
(t,u)∈L

∑
f∈F

∑
g∈F

∑
z∈T :
z 6=t

yt,u,f,g,z (4.1)

Subject to: ∑
f∈F

xt,f =1 ∀t ∈ T (4.2)

∑
u:

(t,u)∈L

∑
g∈F

xt,u,f,g =xt,f ∀t ∈ T+, f ∈ F (4.3)

∑
t:

(t,u)∈L

∑
f∈F

xt,u,f,g =xu,g ∀u ∈ T−, g ∈ F (4.4)

∑
z∈T :
t<z≤u

yt,u,f,g,z =xt,u,f,g ∀f, g ∈ F : f 6= g, (t, u) ∈ L (4.5)

yt,u,f,f,t =xt,u,f,f ∀f ∈ F, (t, u) ∈ L (4.6)∑
f∈F

yt,u,f,g,z +
∑
z′∈T :

u<z′≤u′

∑
g′∈F

yt′,u′,g,g′,z′ ≤1 ∀(t, u) ∈ L, z ∈ T : t ≤ z ≤ u
(t′, u′) ∈ L : z ≤ t′ < u, u′ > u, g ∈ F

(4.7)∑
f∈F

yt,u,f,g,z +
∑
z′∈T :

t′≤z′≤u,
z′>z

∑
f ′∈F

yt′,u′,f ′,g,z′ ≤1 ∀(t, u) ∈ L, z ∈ T : t ≤ z ≤ u
(t′, u′) ∈ L : t′ < u, u′ > u, g ∈ F (4.8)

∑
g∈F

yt,u,f,g,z +
∑
z′∈T :
z<z′≤u

∑
g′∈F

yt′,u′,f,g′,z′ ≤1 ∀(t, u) ∈ L, z ∈ T : t < z ≤ u
(t′, u′) ∈ L : t < t′ < z, u′ > z, f ∈ F

(4.9)∑
g∈F

yt,u,f,g,z +
∑
z′∈T :
t<z′<z

∑
f ′∈F

yt′,u′,f ′,f,z′ ≤1 ∀(t, u) ∈ L, z ∈ T : t < z ≤ u
(t′, u′) ∈ L : t′ < z, u′ ≥ z, f ∈ F (4.10)

bf,0 =0 ∀f ∈ F (4.11)

bf,t−1 + vtktxt,f +
∑

(t′,u′)∈L
t′<t≤u′

∑
f ′∈F\f

yt′,u′,f ′,f,tkt′

−
∑

(t′,u′)∈L
t′<t≤u′

∑
g′∈F\f

yt′,u′,f,g′,tkt′ =bf,t ∀t ∈ T, f ∈ F (4.12)

bf,t ≤lf ∀t ∈ T, f ∈ F (4.13)∑
u:

(t,u)∈L

xt,u,f,gkt ≤nf,g ∀f, g ∈ F, t ∈ T (4.14)

25

∑
(t,u)∈L:
t<z≤u

∑
f∈F

∑
g∈F

yt,u,f,g,z ≤wz ∀z ∈ T (4.15)

xt,f ∈{0, 1} ∀t ∈ T, f ∈ F (4.16)

xt,u,f,g ∈{0, 1} ∀t, u ∈ T, f, g ∈ F (4.17)

yt,u,f,g,z ∈{0, 1} ∀t, u, z ∈ T, f, g ∈ F (4.18)

bf,t ≥0 ∀f ∈ F, t ∈ T (4.19)

First of all, the objective function (4.1) minimizes the number of reallocations. In constraints (4.2),
each event is assigned to a track. Constraints (4.3) and (4.4) ensure that each arriving train unit
is matched to exactly one departing train unit and vice versa. In case

∑
f∈F

∑
g∈F :
g 6=f

xt,u,f,g = 1 for a

certain matching (t, u), which means the arrival track of unit t ∈ T+ is not equal to the departing
track of unit u ∈ T− and these train units are matched to each other, the train unit will have to
move from track f to track g at a certain time during the planning period. Therefore, we introduce
constraints (4.5). These constraints ensure the unit is actually moved at a certain point in time
when this is necessary and help decide on the moment in time on which the reallocation takes
place. If no reallocation needs to take place, we define the reallocation time to be equal to the
arrival time, which is shown in constraints (4.6).

Next, constraints (4.7)-(4.10) ensure that no crossings occur. Crossings occur when a match-
ing arrives at a track after the arrival of another matching at the track, but before the departure
of this matching from the track, and departs from the track after the departure of the matching
already present at the shunting yard. If we define αt,u,f as the arrival time of matching (t, u) on
track f , and we define δt,u,f as the departure time of matching (t, u) from track f , we can dis-
tinguish four situations for any combination of matchings (t, u) and (t′, u′) that occupy a track f
simultaneously for any period of time in the planning period. These options are given in table 4.1.
There is no need to consider both columns of the table in the future, since the second column
illustrates the same situations as the first for the opposite choices of (t, u) and (t′, u′). In short, we
can say that a train unit uses two tracks when reallocating. It can be blocked by other train units
when it departs from either of these tracks. In constraints (4.7) and (4.8), crossings at departure
from the second track are prevented, which is the track a matching has been reallocated to and
from which it departs to leave the shunting yard for good. We refer to this situation as situation a.
In these constraints, we also prevent crossing for train units that are never reallocated. These train
units only use one track during their stay in the shunting yard. Therefore, in these cases, they
can only be blocked at their departure from the shunting yard. In constraints (4.9) and (4.10),
crossings at departure from the first track are prevented, which is the track a matching is initially
parked at and from which it reallocates to its final departure track. We refer to this situation as
situation b. Train units can be blocked at their departure from a track by train units that use
the same track as arrival track or departure track. If they use the same track as arrival track,
they are reallocated away from this track at a certain point in time, in which case their stay on
a track lasts from their arrival time to their reallocation time. If they use it as departure track,
the blocking train units are reallocated to this track at a certain point in time, in which case their
stay on a track lasts from their reallocation time to their departure time from the shunting yard.
We refer to the former as situation i, and to the latter as situation ii. Situation i is prevented in
constraints (4.7) and (4.9), while situation ii is prevented in constraints (4.8) and (4.10). If a train
unit is not reallocated during its stay in the shunting yard, the reallocation time equals the arrival
time, so this case is incorporated in the latter blocking possibility. In figure 4.2, an overview of
the above is given by the means of four timelines. In this figure, a crossing occurs if the stated

δt,u,f < δt′,u′,f δt,u,f > δt′,u′,f
αt,u,f < αt′,u′,f Crossing No crossing
αt,u,f > αt′,u′,f No crossing Crossing

Table 4.1: Crossing overview LIFO track

26

matchings are made and they are parked at the same track in one of the illustrated situations.

(a) Situation a-i: Matching (t, u) with reallocation time
z blocked at departure by matching (t′, u′) with reallo-
cation time z′ at (t′, u′)’s arrival track

(b) Situation a-ii: Matching (t, u) with reallocation time
z blocked at departure by matching (t′, u′) with reallo-
cation time z′ at (t′, u′)’s departure track

(c) Situation b-i: Matching (t, u) with reallocation time
z blocked at reallocation by matching (t′, u′) with real-
location time z′ at (t′, u′)’s arrival track

(d) Situation b-ii: Matching (t, u) with reallocation time
z blocked at reallocation by matching (t′, u′) with real-
location time z′ at (t′, u′)’s departure track

Figure 4.2: Crossing possibilities LIFO tracks

Summarizing, in constraints (4.7) situations of type a-i, as illustrated in in figure 4.2a, are pre-
vented. We sum over f ∈ F in the first summation and over g′ ∈ F in the third summation, since
the arrival and departure track of matchings (t, u) and (t′, u′), respectively, are not relevant here.
In constraints (4.8) situations of type a-ii, as illustrated in in figure 4.2b, are prevented. Here,
we again sum over f ∈ F in the first summation and we sum over f ′ ∈ F in the third, since the
arrival tracks of matchings (t, u) and (t′, u′) are not relevant here. In constraints (4.9) situations of
type b-i, as illustrated in in figure 4.2c, are prevented. This time, we sum over g ∈ F and g′ ∈ F in
the first and third summation, respectively, since the departure tracks of both matching (t, u) ∈ L
and (t′, u′) are not relevant here. In constraints (4.10), situations of type b-ii, as illustrated in in
figure 4.2d, are prevented. We sum over g ∈ F in the first summation and we sum over f ′ ∈ F in
the third, since the departure track of matching (t, u) and the arrival track of matching (t′, u′) ∈ L
are not relevant here. In each of the constraints (4.7)-(4.10) we choose the combinations of (t, u),
(t′, u′), and z and sum over z′ ∈ T in the second summation in such a way that we are actually
dealing with a potential crossing of the type we aim at in the particular constraints.

The cumulative length of the train units occupying a certain track at a certain point in time
is updated and regulated by constraints (4.11) and (4.12). Since constraints (4.12) use a recursive
relation by means of variable bf,t−1, we need to initialize bf,0 for all f ∈ F in constraints (4.11).
Constraints (4.12) then update the occupied track lengths by adding (subtracting) the length of
the current arriving (departing) train unit if it is assigned to the track under consideration and
adding (subtracting) the length of all train units that are reallocated to (from) the track right
before the current event. To ensure this cumulative length does not surpass the effective track
length, we introduce constraints (4.13). Constraints (4.14) make sure a unit can actually reach the
track they need to be reallocated to, while constraints (4.15) limit the number of reallocations in
a time period to the maximum possible number of reallocations in this time period: the maximum
number of reallocations right before an event is limited to wz. Finally, constraints (4.16)-(4.19)
define the domain of the used variables.

The number of constraints in the formulation discussed in this section is in the order of mag-

27

nitude of

2|T |+ |F |+ 3(|T | · |F |) + |F |2(|T |+ |L|) + |F | · |L|+ 4(|L|2 · |T | · |F |) ∈ O(
1

4
|T |5 · |F |),

which is approximately the number of rows in the constraint matrix, excluding domain restrictions.
Therefore, the dimensions of the constraint matrix will be in the order of magnitude of[

2(|T | · |F |) + (1 + |T |)(|L| · |F |2)
]

×[
2|T |+ |F |+ 3(|T | · |F |) + |F |2(|T |+ |L|) + |F | · |L|+ 4(|L|2 · |T | · |F |)

]
4.2 Final formulation

The model we described in section 4.1 is rather extensive, using variables with a lot of indices,
which means the number of variables and constraints quickly grows as the number of train units
and tracks considered becomes larger. When reconsidering, we see that we may not always need all
the information enclosed in the indices, which could lead to a smaller model and less complicated
constraints.

In the objective function (4.1), for example, we do not need information on the tracks that train
units reallocate between, or in which matching they belong. Also, we see that the information en-
closed in the indices g and f in xt,u,f,g if we take a look at constraints (4.2) and (4.3), respectively,
is superfluous. In these constraints, no relevant information is enclosed in them and they cause
the summations in these constraints to be unnecessarily extensive. Similarly, in constraints (4.7)-
(4.10), we want to ensure that no crossings occur. To this end, we need information on the arrival
and departure times of train units on the considered track. It is, however, not relevant in this case
where they originate from or where they leave to - hence the summations over the tracks. Compa-
rable reasoning can be done for constraints (4.12). In constraints (4.14), we only need information
on between which tracks a train unit reallocates and timing is not important, and contrarily in
constraints (4.15) we are only interested in the timing of a reallocation.

To overcome the issues of using large amounts of variables that contain too much detail, we
propose a new formulation, again based on an integrated approach for parking and matching as
described by Kroon et al. [19]. We try to find a balance between the number of variables and
constraints and to keep both as small as we can. To this end, it is sometimes convenient to use
the product of variables and other non-linear features. For practical solving purposes, however, we
will provide methods to rewrite elements of the formulation in such a way that we have a linear
formulation again in subsection 4.2.1.

Besides the already introduced variables xt,f and bf,t, we will need to introduce some extra vari-
ables for this formulation. First of all, we have binary variables x1t,u,f and x2t,u,f . x1t,u,f is equal to
1 if and only if arriving train unit t ∈ T+ is matched to departing train unit u ∈ T− and the arrival
track is f ∈ F , which means xt,f is also equal to 1; x2t,u,f is equal to 1 if and only if arriving train
unit t ∈ T+ is matched to departing train unit u ∈ T− and the departure track is f ∈ F , which
means xu,f is also equal to 1. Next, we have mt,u,z, again a binary variable, which is equal to 1
if arriving train unit t ∈ T+ is matched to departing train unit u ∈ T− and is reallocated between
event z − 1 and z, and equal to 0 otherwise. Note that mt,u,t = 1 implies that a train unit is
never reallocated: it is moved to its departure track at time t, which means the arrival track and
departure track are the same. The mt,u,z-variables are used to identify and set the timing of the
reallocation of the matchings. Finally, we introduce variables γt,u and γt,u,f , that are concerned
with whether matchings are reallocated or not. We define γt,u as a binary variable which is only
equal to 1 if train unit t matched to train unit u, (t, u) ∈ L reallocates during its stay in the
shunting yard, and γt,u,f as a binary variable equal to 1 if and only if train unit t matched to train
unit u, (t, u) ∈ L reallocates from or to track f during its stay in the shunting yard. We are more
interested in γt,u, but the γt,u,f -variables aid us in setting the correct values for the γt,u-variables.

28

The above sets of variables account for a very large number of total variables. The formula-
tion will contain |T | · |F | xt,f -variables; |F | · |T | bf,t-variables; |L| · |F | x1t,u,f -variables and the same

number of x2t,u,f -variables; approximately |L| · |T | mt,u,z-variables; |L| γt,u-variables; and |L| · |F |
γt,u,f variables. Therefore, the number of columns in the constraint matrix will be in the order of
magnitude of

2(|T | · |F |) + 3(|L| · |F |) + |L|(1 + |T |) ∈ O(
1

4
|T |3),

since generally 3|F | < |T |. This is almost always less than the number of variables in the formu-
lation in section 4.1, unless the shunting yard consists of only one or two tracks.

The formulation is now as follows:

Minimize:

∑
(t,u)∈L

γt,u (4.20)

Subject to:

∑
f∈F

xt,f =1 ∀t ∈ T (4.21)

∑
u:

(t,u)∈L

x1t,u,f =xt,f ∀t ∈ T+, f ∈ F (4.22)

∑
t:

(t,u)∈L

x2t,u,f =xu,f ∀u ∈ T−, f ∈ F (4.23)

∑
f∈F

x1t,u,f =
∑
f∈F

x2t,u,f ∀(t, u) ∈ L (4.24)

γt,u,f =
∣∣x1t,u,f − x2t,u,f ∣∣ ∀(t, u) ∈ L, f ∈ F (4.25)∑

f∈F

γt,u,f ≤2γt,u ∀(t, u) ∈ L (4.26)

γt,u ≤
1

2

∑
f∈F

γt,u,f ∀(t, u) ∈ L (4.27)

∑
z∈T
t<z≤u

mt,u,z =γt,u ∀(t, u) ∈ L (4.28)

∑
z∈T
t≤z≤u

mt,u,z =
∑
f∈F

x1t,u,f ∀(t, u) ∈ L (4.29)

mt,u,zxu,f + xt′,f −
∑

u′∈T−:
(t′,u′)∈L,
u′<u

∑
z′∈T :

t′≤z′≤u′

mt′,u′,z′

−
∑

u′∈T−:
(t′,u′)∈L,
u′>u

∑
z′∈T :
t′<z′≤u

mt′,u′,z′ ≤1 ∀(t, u) ∈ L, z ∈ T : t ≤ z ≤ u,

t′ ∈ T+ : z ≤ t′ < u, t′ 6= t, f ∈ F
(4.30)

29

mt,u,zxu,f + xu′,f −
∑
t′∈T+:

(t′,u′)∈L,
t′>u

∑
z′∈T :

t′≤z′≤u′

mt′,u′,z′

−
∑
t′∈T+:

(t′,u′)∈L,
t′<u

∑
z′∈T :
t′≤z′≤z
u<z′≤u′

mt′,u′,z′ ≤1 ∀(t, u) ∈ L, z ∈ T : t ≤ z ≤ u,

u′ ∈ T− : u′ > u, f ∈ F (4.31)

mt,u,zxt,f + xt′,f −
∑

u′∈T−:
(t′,u′)∈L,
u′<z

∑
z′∈T :

t′≤z′≤u′

mt′,u′,z′

−
∑

u′∈T−:
(t′,u′)∈L,
u′≥z

∑
z′∈T :
t′<z′≤z

mt′,u′,z′ ≤1 ∀(t, u) ∈ L, z ∈ T : t < z ≤ u,

t′ ∈ T+ : t < t′ < z, f ∈ F (4.32)

mt,u,zxt,f + xu′,f −
∑
t′∈T+:

(t′,u′)∈L,
t′≥z

∑
z′∈T :

t′≤z′≤u′

mt′,u′,z′

−
∑
t′∈T+:

(t′,u′)∈L,
t′<z

∑
z′∈T :
t′≤z′≤t
z≤z′≤u′

mt′,u′,z′ ≤1 ∀(t, u) ∈ L, z ∈ T : t < z ≤ u,

u′ ∈ T− : u′ ≥ z, f ∈ F (4.33)

bf,0 =0 ∀f ∈ F (4.34)

bf,t−1 + vtktxt,f +
∑

(t′,u′)∈L:
t′<t≤u′

xu′,fmt′,u′,tkt

−
∑

(t′,u′)∈L:
t′<t≤u′

xt′,fmt′,u′,tkt =bf,t ∀f ∈ F, t ∈ T (4.35)

bf,t ≤lf ∀t ∈ T, f ∈ F (4.36)

x1t,u,fxu,gkt ≤nf,g ∀(t, u) ∈ L, f, g ∈ F (4.37)∑
(t,u)∈L:
t<z≤u

mt,u,z ≤wz ∀z ∈ T (4.38)

xt,f ∈ {0, 1} ∀t ∈ T, f ∈ F (4.39)

x1t,u,f ∈ {0, 1} ∀(t, u) ∈ L, f ∈ F (4.40)

x2t,u,f ∈ {0, 1} ∀(t, u) ∈ L, f ∈ F (4.41)

mt,u,z ∈ {0, 1} ∀t, u, z ∈ T (4.42)

γt,u,f ∈ {0, 1} ∀(t, u) ∈ L, f ∈ F (4.43)

γt,u ∈ {0, 1} ∀(t, u) ∈ L (4.44)

bf,t ≥ 0 ∀f ∈ F, t ∈ T (4.45)

In this formulation, the objective function (4.20) minimizes the number of reallocations, by sum-
ming over the γt,u-variables. Constraints (4.21) assign each train unit to a track. Arriving and
departing train units can be assigned to different tracks. If this is the case, the train unit will
reallocate during its stay in the shunting yard. The arrival and departure tracks of the matchings
are set equal to the tracks the arriving and departing units in the matchings are assigned to in
constraints (4.22) and (4.23), respectively, and in combination with constraints (4.24) they make
sure that train units are involved in exactly one matching. Constraints (4.25) force γt,u,f to 1 if
a matching is reallocated from or to track f during its stay in the shunting yard -that is x1t,u,f
is unequal to x2t,u,f for a certain matching (t, u) ∈ L and a certain track f ∈ F - and to 0 if it is

30

not reallocated or if the matching is not made at all -that is x1t,u,f is equal to x2t,u,f for a certain
matching (t, u) ∈ L and a certain track f ∈ F . Since γt,u,f is set to 1 for two tracks f in case
of reallocation in these constraints (namely for the arrival and departure track of the matching),∑
f∈F

γt,u,f will be equal to 2 if the matching is reallocated and equal to 0 otherwise. To set the

correct value for the γt,u-variables, we add constraints (4.26) and (4.27), which set γt,u to 1 if
the matching is reallocated, and 0 otherwise. Adding the constant 1

2 to the right hand side of
constraints (4.27) strengthens the LP bound. In constraints (4.28) the time of reallocation is
determined in case a matching is reallocated, since the summation over z ∈ T does not include
time t, which is the z-value for which the mt,u,z-variable would be set to 1 if a matching is made
that is not reallocated. To correctly assign the value to the mt,u,z-variable in case the matching
is not reallocated, we use constraints (4.29), which contrary to constraints (4.28) do include t in
the summation on the left hand side, and in combination with constraints (4.28) set mt,u,z to 1
for z = t in case a matching is made that is not reallocated during its stay in the shunting yard.
To summarize the first part of the problem, we can state that constraints (4.21)-(4.29) assign the
correct values to the variables for the matchings that are made and the tracks these matchings
arrive at and depart from, as well as the variables concerning the reallocation and reallocation times.

Constraints (4.30)-(4.33) prevent crossings from happening. They serve the same purpose as con-
straints (4.7)-(4.10), therefore we again refer to figure 4.2 in section 4.1 for a visual clarification. In
constraints (4.32) and (4.33), crossings at departure from the first track are prevented, which is the
track a matching is initially parked at and from which it reallocates to the final departure track. In
constraints (4.30) and (4.31), crossings at departure from the second track are prevented, which is
the track a matching has been reallocated to and from which it departs to leave the shunting yard
for good. In these constraints, we also prevent crossings for train units that are never reallocated.
These train units use only one track during their stay in the shunting yard. Therefore, in these
cases, they can only be blocked at their departure from the shunting yard. As mentioned before
in section 4.1, train units can be blocked at their departure from a track by train units that use
the same track as arrival track or by train units that use the same track as departure track. In
the former, the train units are reallocated away from the track and in the latter, train units are
reallocated to this track at a certain point in time. If a train unit is not reallocated during its stay
in the shunting yard, the reallocation time equals the arrival time, so this case is incorporated in
the latter blocking possibility. We refer to figure 4.2 again for an overview of the above by the
means of four timelines.

Summarizing, in constraints (4.30) and (4.31) we look at possible crossings when train units depart
from a track to depart from the shunting yard, while in constraints (4.32) and (4.33) we look at pos-
sible crossings when train units depart from a track to reallocate. In constraints (4.30) and (4.31)
we consider the case where for a matching (t, u) ∈ L, a moving time z ∈ T , and a track f ∈ F both
mt,u,z and xu,f are equal to 1, which means that the matching (t, u) departs from track f and it
is moved to this track anytime between event z− 1 and z. Then, we prevent matching placements
that can possibly block the departure of train unit u. On the other hand, in constraints (4.32)
and (4.33), we consider the case where for a matching (t, u) ∈ L, a moving time z ∈ T , and a
track f ∈ F both mt,u,z and xt,f are equal to 1, which means that the matching (t, u) is reallocated
from track f anytime between event z− 1 and z, where it arrived at the time of event t. Note that
we have t < z ≤ u, since for z = t the matchings would not be reallocated, and these cases are
incorporated in constraints (4.30) and (4.31). Again, we prevent matching placements that can
possibly block the departure of train unit u. We now take a closer look at the individual constraints.

In constraints (4.30), we do not allow for a train unit t′ ∈ T+, that arrives in the shunting yard
after the arrival of matching (t, u) on track f and before the departure of matching (t, u) from the
shunting yard, to have track f as arrival track, unless it departs track f before matching (t, u)
departs from the shunting yard and thus from track f . In case the matching t′ is involved in
leaves the shunting yard before matching (t, u) departs from the shunting yard, that is u′ < u, no
blocking can occur, thus we sum over all possible mt′,u′,z′ -variables in the first double summation.
Train unit t′ can be parked on track f without the risk of crossings. In case the matching t′ is

31

involved in leaves the shunting yard after matching (t, u), that is u′ > u, train unit t′ can only be
parked on track f if it reallocates before the departure of matching (t, u), and therefore we sum
only over the mt′,u′,z′ -variables with t′ < z′ ≤ u in the second double summation. We have z′ > t′

and not z′ ≥ t′, since mt′,u′,z′ = 1 for z′ = t′ would indicate that train unit t′ does not reallocate,
which would result in a blocking since u′ > u. We have z′ ≤ u, since it needs to reallocate before
the departure of matching (t, u), and this is still the case if mt′,u′,z′ = 1 for z′ = u since the reallo-
cation would then take place between events u−1 and u. This situation is illustrated in figure 4.2a.

For constraints (4.31), we again consider the case where for a matching (t, u) ∈ L, a moving
time z ∈ T , and a track f ∈ F both mt,u,z and xu,f are equal to 1. In this case, we do not
allow for a train unit u′ ∈ T−, that departs from the shunting yard after the departure of match-
ing (t, u) from track f , unless it arrives at track f before matching (t, u) arrives at track f or after
matching (t, u) departs from the shunting yard and thus from track f . In case the matching u′

is involved in arrives in the shunting yard after matching (t, u) departs from the shunting yard,
that is t′ > u, no blocking can occur, thus we sum over all possible mt′,u′,z′ -variables in the first
double summation. Train unit u′ can depart from track f without the risk of crossings. In case
the matching u′ is involved in arrives in the shunting yard before the departure of matching (t, u),
that is t′ < u, train unit u′ can only be assigned to track f if it arrives at this track before the
arrival of matching (t, u) on this track or if it arrives at this track through reallocation after the
departure of matching (t, u) from this track. Therefore we sum over the mt′,u′,z′ -variables with
t′ ≤ z′ ≤ z, which corresponds to the former case, and with u < z′ ≤ u′, which corresponds to
the latter case, in the second double summation. We have z′ ≥ t′, which is simply a natural limit
of z′ since a matching cannot be reallocated before it even arrived in the shunting yard. We have
z′ ≤ z, since it cannot arrive at track f after the arrival of matching (t, u) at track f without a
crossing occurring. Next, we have u < z′ since the matching u′ is involved in cannot arrive at the
track through reallocation before matching (t, u) has departed the shunting yard. We have z′ ≤ u′,
which is again a natural limit of z′, since a train unit cannot be reallocated after its departure from
the shunting yard. In case either mt,u,z or xu,f would be equal to 0, constraints (4.30) and (4.31)
impose no restrictions on other train units parked on track f . This situation is illustrated in fig-
ure 4.2b.

Next, in constraints (4.32), we do not allow for a train unit t′ ∈ T+, that arrives in the shunting
yard after the arrival of matching (t, u) on track f at time t and before the reallocation of match-
ing (t, u) from track f to its departure track, to have track f as arrival track, unless it departs
track f before matching (t, u) departs from track f when reallocating between event z − 1 and z.
In case the matching t′ is involved in leaves the shunting yard before matching (t, u) departs from
track f , that is u′ < z, no blocking can occur, thus we sum over all possible mt′,u′,z′ -variables in
the first double summation. Train unit t′ can be parked on track f without the risk of crossings.
In case the matching t′ is involved in leaves the shunting yard after matching (t, u) leaves track f ,
that is u′ ≥ z, train unit t′ can only be parked on track f if it reallocates before matching (t, u)
reallocates, and therefore we sum only over the mt′,u′,z′ -variables with t′ < z′ ≤ z in the second
double summation. This situation is illustrated in figure 4.2c.

Subsequently, in constraints (4.33) we do not allow for a train unit u′ ∈ T− that departs from
the shunting yard after the reallocation of matching (t, u) from track f at time z, to have track f
as departure track, unless it arrives at track f before matching (t, u) arrives at track f , or after
matching (t, u) departs from track f . In case the matching u′ is involved in arrives in the shunting
yard after matching (t, u) departs from track f , that is t′ ≥ z, no blocking can occur, thus we sum
over all possible mt′,u′,z′ -variables in the first double summation in the constraint and train unit u′

can be assigned to track f without the risk of crossings. In case the matching u′ is involved in
arrives at track f before matching (t, u) leaves track f , that is t′ < z, train unit u′ can only be
assigned to track f if it arrives on track f before matching (t, u) arrives there or if it arrives at
this track through reallocation after the departure of matching (t, u) from this track. Therefore
we sum over the mt′,u′,z′ -variables with t′ ≤ z′ ≤ t, which corresponds to the former case, and
with z ≤ z′ ≤ u′, which corresponds to the latter case, in the second double summation in the
constraint. We have z′ ≥ t′, where t′ is simply the natural limit of z′ on the down side, and we

32

have z′ ≤ t, since the matching u′ is involved in should arrive before matching (t, u). Next, we
have z ≤ z′ since the matching u′ is involved in cannot arrive at the track through reallocation
before matching (t, u) has departed the track. We have z′ ≤ u′, which is again a natural limit
of z′, since a train unit cannot be reallocated after its departure from the shunting yard. In case
either mt,u,z or xt,f would be equal to 0, constraints (4.32) and (4.33) impose no restrictions on
other train units parked on track f . This situation is illustrated in figure 4.2d.

The occupied track length is updated and restricted in constraints (4.34)-(4.36). Constraints (4.34)
simply set the initial values of the occupied track lengths to 0. Constraints (4.35) have a more
complicated nature. The occupied track length at time t ∈ T is updated by adding or subtracting
the length of the train unit that respectively arrives or departs at time t if it is assigned to the
track. Then, the cumulative length of all matchings that are reallocated to the track between
time t − 1 and t is added, and the cumulative length of all matchings that are reallocated away
from the track between time t − 1 and t are subtracted. We only sum over mt′,u′,t with (t′, u′)
such that t′ < t < u′, because for t′ = t or u′ = t the occupied track length is already updated in
the second term of the left hand side. Next, the occupied track length at all times is limited to the
actual track length in constraints (4.36).

In constraints (4.37), the length of a matching moving between two tracks is limited to the max-
imum drive back length, while constraints (4.38) limit the number of reallocations that can take
place between two events. Finally, constraints (4.39)-(4.45) set the domains of all used variables.

The number of constraints in the formulation discussed in this section is in the order of mag-
nitude of

2|T |+ |F |+ 5|L|+ 3(|T | · |F |) + 6(|L| · |T | · |F |) + (1 + |F |)(|L| · |F |) ∈ O(
3

2
|T |3 · |F |).

However, the number of rows in this matrix will likely be increased since we need to linearize the
non-linear constraints.

4.2.1 Resolving non-linearity issues

An issue we briefly mentioned in the introductory paragraphs of this section is the non-linearity of
this model: constraints (4.30)-(4.33), (4.35), and (4.37) contain multiplications of variables, which
makes these constraints non-linear which can be an issue when applying most common solution
methods. Furthermore, constraints (4.25) contains an absolute value, which also complicates exact
solution methods.

The issue of non-linearity can usually be resolved rather easily. If we are dealing with a mul-
tiplication of binary variables x1 and x2, we define q = x1x2, which is also a binary variable.
Subsequently, we define the following constraints using q, x1, and x2:

q ≤x1
q ≤x2
q ≥x1 + x2 − 1

q, x1, x2 ∈{0, 1}

The above constraints will always assign the correct value to q, since it will be equal to 0 if either
x1 or x2 equals zero, and equal to 1 if both x1 and x2 equal 1. This will result in approximately
|L| · |T | · |F |+ |L| · |F |2 extra variables and three times this number of extra constraints.

The absolute value issue that arises in constraints (4.25) is resolved by replacing this constraint by

33

the following set of constraints:

γt,u,f ≥x1t,u,f − x2t,u,f ∀(t, u) ∈ L, f ∈ F (4.46)

γt,u,f ≥x2t,u,f − x1t,u,f ∀(t, u) ∈ L, f ∈ F (4.47)

γt,u,f ≤x1t,u,f + x2t,u,f ∀(t, u) ∈ L, f ∈ F (4.48)

γt,u,f ≤2− x1t,u,f − x2t,u,f ∀(t, u) ∈ L, f ∈ F (4.49)

If a matching (t, u) ∈ L reallocates during its stay in the shunting yard and x1t,u,f is thus un-

equal to x2t,u,f for a certain track f ∈ F , the corresponding variable γt,u,f is forced to 1 due to

constraints (4.46) and (4.47). If matching (t, u) does not reallocate, x1t,u,f and x2t,u,f will either
both be equal to 1 or both equal to 0 for a certain track f ∈ F and γt,u,f should be forced
to 0. The former situation is handled by constraints (4.49) and the latter in constraints (4.48).
Constraints (4.48) also ensure γt,u,f is set to 0 if the matching is not realized. This linearization
method will result in 4(|L| · |F |)− |L| · |F | = 3(|L| · |F |) extra constraints.

Applying the linearization methods as discussed in this subsection will result in a constraint matrix
with dimensions of the order of magnitude[

2(|T | · |F |) + 3(|L| · |F |) + |L|(1 + |T |) + |L| · |T | · |F |+ |L| · |F |2
]

×[
2|T |+ |F |+ 5|L|+ 3(|T | · |F |) + 9(|L| · |T | · |F |) + (4 + 2|F |)(|L| · |F |)

]
,

where the number of columns is in complexity order O(1
4 |T |

3 · |F |) and the number of rows in
complexity order O(9

4 |T |
3 · |F |).

4.3 Extensions

In this section, we discuss several extensions to the formulation as proposed in section 4.2. We
look for example at a formulation in which free tracks are included in subsection 4.3.1 and we
also look at track lay-outs with LIFO tracks on both sides of the diagonal connecting track in
subsection 4.3.2. Next, we look into other more complicated track layouts and their effect on
drive back distances in subsection 4.3.3. Besides this, in subsection 4.3.4, we discuss how we can
validate the formulation to also be applicable to multiple train units per train service, which will
result in couple and decouple actions. Although the subsections on the possible extensions of our
formulation are all written to be applied to the global formulation as proposed in section 4.2, they
can be combined as well when some adaptions are made.

4.3.1 Free tracks extension

The formulation in section 4.2 only considers shunting yards consisting of only LIFO tracks on
one side of the diagonal track. However, we sometimes encounter shunting yards with free tracks.
Figure 4.3 gives an example of such a shunting yard layout. One can easily see that a layout like
the one in figure 4.3 provides us with more routing opportunities. This requires us to define some
extra parameters and variables.

Figure 4.3: Example track layout only free tracks

34

δt,u,f < δt′,u′,f δt′,u′,f < δt,u,f
ψ1

t,u, φu = 0 ψ1
t,u, φu = 1 ψ1

t′,u′ , φu′ = 0 ψ1
t′,u′ , φu′ = 1

αt,u,f < αt′,u′,f ψ2
t′,u′ , φt′ = 0 Crossing No crossing No crossing Crossing

ψ2
t′,u′ , φt′ = 1 No crossing Crossing Crossing No crossing

αt′,u′,f < αt,u,f ψ2
t,u, φt = 0 No crossing Crossing Crossing No crossing

ψ2
t,u, φt = 1 Crossing No crossing No crossing Crossing

Table 4.2: Crossing overview free tracks

We have parameter φt, which is equal to 0 if train unit t ∈ T arrives or departs via the A-
side of the shunting yard (and thus the A-side of its arrival or departure track) and equal to 1
if train unit t ∈ T arrives or departs via the B-side. Naturally, in case t ∈ T+, φt refers to the
arrival side of the train unit at the arrival track it is assigned to, and in case t ∈ T−, φt refers to
the departure side of the train unit from the departure track it is assigned to, so to the track f
such that xt,f = 1. In case the arrival or departure side of a train unit is not predetermined in the
schedule, φt becomes a variable rather than a parameter, meaning it will be chosen most conve-
niently with respect to our objective value. In figure 4.3, this would be the case if it were allowed
for a train unit arriving from the A-side to pass the first shunting yard entrance it encounters,
subsequently pass the second entrance it encounters, reverse driving directions, and enter via the
second entrance on the B-side, and vice versa. However, this is generally not allowed and we will
not be discussed further in this extension.

Furthermore, we have variables ψ1
t,u and ψ2

t,u. The former is equal to 0 if train unit t ∈ T+
matched to train unit u ∈ T− departs via the A-side during reallocation, and equal to 1 if train
unit t ∈ T+ matched to train unit u ∈ T− departs via the B-side during reallocation, with of course
(t, u) ∈ L. ψ2

t,u is defined similarly, but is concerned with the arrival side during reallocation and
is equal to 0 for arrival at the A-side during reallocation and equal to 1 for arrival at the B-side
during reallocation if train unit t ∈ T+ is matched to train unit u ∈ T−, (t, u) ∈ L. Naturally,
we have ψ1

t,u = ψ2
t,u for all matchings (t, u), meaning that when reallocating, the departure side

from the arrival track must be equal to the arrival side on the departure track. This is generally
true, since it is usually impossible to switch shunting yard sides when reallocating, as we cannot
use the main railway network. However, in case there is parking track unoccupied at the time of
reallocation and we can feasible route via this track when reallocating, ψ1

t,u and ψ2
t,u could differ.

However, this is outside the scope of this research. If no reallocation occurs, we set ψ2
t,u = φt and

ψ1
t,u = φu if train units t and u are matched to each other.

To get an overview of the constraints the introduction of free tracks imposes, we took a look
at all possible situations that can occur when two train units spend time on the same track dur-
ing their stay in the shunting yard. The overview is given in table 4.2. We again use αt,u,f and
δt,u,f as defined in section 4.1 for clarification purposes. As mentioned before in section 4.1, the
situations illustrated in table 4.2 only hold for matchings (t, u), (t′, u′) ∈ L that are a) made and
b) occupy a track f simultaneously for any period of time in the planning period. Furthermore, if
we consider the first track a matching (t, u) occupies during its stay in the shunting yard, we are
dealing with variables φt and ψ1

t,u, and if it is the second track, these are the variables φu and ψ2
t,u.

When focusing on the cases such that δt,u,f < δt′,u′,f , we see that in order to avoid crossings,
the arrival side of matching (t′, u′) cannot be equal to the departure side of matching (t, u) if
δt,u,f < δt′,u′,f and αt,u,f < αt′,u′,f . If δt,u,f < δt′,u′,f and αt′,u′,f < αt,u,f , the arrival and depar-
ture sides of matching (t, u) must be equal since we intend to prevent crossings. We only need to
formulate the constraints for one of the cases, since the other ones will be automatically included
for the opposite choices for (t, u) and (t′, u′). We focus on the cases such that δt,u,f < δt′,u′,f .
Attempts to formulate the constraints in a similar manner as in constraints (4.30)-(4.33) result
in very elaborate and complicated constraints. We again have four situations in which crossings
can occur. A train unit can be blocked at departure from its initial or departure track, by a train
unit for which the track is either its initial or its departure track. However, crossings do not only
occur when αt,u,f < αt′,u′,f , but also when αt,u,f > αt′,u′,f , since arrival and departure sides

35

co-determine the situations in which crossings occur. These situations are illustrated in figure 4.4.
Again, they only hold if the train units spend time together on the same track, so not in case
αt′,u′,f > δt,u,f . We will now take the situation where a train unit is blocked at final departure
from the shunting yard at its final departure track as in figure 4.4c and figure 4.4d and formulate
a set of constraints to replace constraints (4.31).

mt,u,zxu,f + xu′,f −
∑
t′∈T+:

(t′,u′)∈L

(∑
z′∈T :

u<z′≤u′

mt′,u′,z′ +
∑
z′∈T :
z≤z′≤u

mt′,u′,z′(
∣∣φu − ψ2

t′,u′

∣∣)
+
∑
z′∈T :
z′≤z

mt′,u′,z′(1−
∣∣φu − ψ2

t,u

∣∣)) ≤ 1

∀(t, u) ∈ L, z ∈ T : t ≤ z ≤ u, u′ ∈ T− : u′ > u, f ∈ F (4.50)

In constraints (4.50), we use the idea that we prohibit a combination of two train units on a track,
unless certain conditions hold. In case matching (t, u) uses track f as final departure track and
the same goes for train unit u′ with u′ > u, both mt,u,zxu,f and xu′,f are equal to 1 for a certain
value of z. This makes their sum equal to 2, and if we would not subtract any other terms, this
combination would not be allowed since 2 > 1. However, we subtract terms that refer to the cases
in which this combination of (t, u) and the matching u′ is involved in is allowed, which are the
following in order of appearance:

1. They do not spend time together on the track (αt′,u′,f > δt,u,f);

2. The matching u′ is involved in arrives at the track after (t, u) and before (t, u) departs, and
the arrival side of the matching u′ is involved in is not equal to the departure side of (t, u)
(αt,u,f < αt′,u′,f < δt,u,f ∧ φu 6= ψ2

t′,u′);

3. The matching u′ is involved in arrives at the track before (t, u), and the arrival side of (t, u)
is equal to the departure side of (t, u) (αt,u,f > αt′,u′,f ∧ φu = ψ2

t,u).

The terms that refer to cases that do not result in crossings consist of a summation over mt′,u′,z′

and possibly an extra element. The choice of bounds of the summations over mt,u,z determines
whether αt′,u′,f > δt,u,f , αt,u,f < αt′,u′,f < δt,u,f , or αt,u,f > αt′,u′,f and thus which case we are
dealing with. The extra element is concerned with the arrival and/or departure sides of the train
units. In the first case, the combination of (t, u) and the matching u′ is involved can never be
involved in a crossing, so we do not need any extra elements in the term. In the second case, we
need the arrival side of the matching u′ is involved to be different than the departure side of (t, u),
which means we multiply by the absolute value of the difference between the two (ψ2

t′,u′ and φu).
If they are equal to each other, this will be equal to 0, which means the term cancels out, the
summation over mt′,u′,z′ is not subtracted, and the two train units are not allowed on the same
track. If they are unequal, this will be equal to 1, and the summation over mt′,u′,z′ is subtracted
meaning the two train units are allowed on the same track. In the third case, we need the arrival
side of (t, u) to be equal to the departure side of (t, u), which means we multiply by 1 minus the
absolute value of the difference the two (φu and ψ2

t,u). If they are unequal to each other, this
will be equal to 1− 1 = 0, which means the term cancels out, the summation over mt′,u′,z′ is not
subtracted, and the two train units are not allowed on the same track. If they are unequal, this
will be equal to 1 − 0 = 1, and the summation over mt′,u′,z′ is subtracted meaning the two train
units are allowed on the same track.

Constraints (4.50) are complicated due to the strict and precise boundaries on the summations and
their non-linearity. The non-linearity is caused by the absolute value and the product of multiple
variables. We can resolve this with the methods discussed in section 4.2.1. First, we need to
add extra binary variables equal to the the absolute value of the difference of two arrival and/or
departure side variables and add the constraints similar to the ones discussed for constraints (4.25)
to assign the correct values to these variables. Subsequently, we define extra variables for the
product of these newly created binary variables and mt′,u′,z′ and add the appropriate constraints.
In section 4.2.1 a method for linearizing the product of two binary variables is given that can

36

(a) Departure track (t, u) equals arrival track (t′, u′),
crossing if φu = φt′

(b) Departure track (t, u) equals arrival track (t′, u′),

crossing if ψ2
t,u 6= φu

(c) Departure track (t, u) equals departure track (t′, u′),

crossing if φu = ψ2
t′,u′

(d) Departure track (t, u) equals departure track (t′, u′),

crossing if φu 6= ψ2
t,u

(e) Arrival track (t, u) equals arrival track (t′, u′), cross-

ing if ψ1
t,u = φt′

(f) Arrival track (t, u) equals arrival track (t′, u′), cross-

ing if φt 6= ψ1
t,u

(g) Arrival track (t, u) equals departure track (t′, u′),

crossing if ψ1
t,u = ψ2

t′,u′

(h) Arrival track (t, u) equals departure track (t′, u′),

crossing if φt 6= ψ1
t,u

Figure 4.4: Crossing possibilities free tracks, with on the left situations such that αt,u,f < αt′,u′,f and on
the right αt,u,f > αt′,u′,f ; on both sides δt,u,f < δt′,u′,f

37

be applied here. However, this results in many extra constraints and does not result in easy,
intuitive constraints. Therefore, we propose a different formulation of the constraints to replace
constraints (4.30)-(4.33) in section 4.2 that is similar to the formulation of the crossing constraints
in section 4.1 below.

mt,u,zxu,f +mt′,u′,z′xt′,f ≤1 + |φu − φt′ | ∀(t, u), (t′, u′) ∈ L, z, z′ ∈ T : z ≤ t′ < u < z′,

t ≤ z ≤ u, t′ < z′ ≤ u′ (4.51)

mt,u,zxu,f +mt′,u′,z′xt′,f ≤2−
∣∣ψ2
t,u − φu

∣∣ ∀(t, u), (t′, u′) ∈ L, z, z′ ∈ T : t′ < z ≤ u < z′,

t ≤ z ≤ u, t′ < z′ ≤ u′ (4.52)

mt,u,zxu,f +mt′,u′,z′xu′,f ≤1 +
∣∣φu − ψ2

t′,u′

∣∣ ∀(t, u), (t′, u′) ∈ L, z, z′ ∈ T : z < z′ ≤ u < u′,

t ≤ z ≤ u, t′ ≤ z′ ≤ u′ (4.53)

mt,u,zxu,f +mt′,u′,z′xu′,f ≤2−
∣∣ψ2
t,u − φu

∣∣ ∀(t, u), (t′, u′) ∈ L, z, z′ ∈ T : z′ < z ≤ u < u′,

t ≤ z ≤ u, t′ ≤ z′ ≤ u′ (4.54)

mt,u,zxt,f +mt′,u′,z′xt′,f ≤1 +
∣∣ψ1
t,u − φt′

∣∣ ∀(t, u), (t′, u′) ∈ L, z, z′ ∈ T : t < t′ < z < z′,

t < z ≤ u, t′ < z′ ≤ u′ (4.55)

mt,u,zxt,f +mt′,u′,z′xt′,f ≤2−
∣∣φt − ψ1

t,u

∣∣ ∀(t, u), (t′, u′) ∈ L, z, z′ ∈ T : t′ < t < z < z′,

t < z ≤ u, t′ < z′ ≤ u′ (4.56)

mt,u,zxt,f +mt′,u′,z′xu′,f ≤1 +
∣∣ψ1
t,u − ψ2

t′,u′

∣∣ ∀(t, u), (t′, u′) ∈ L, z, z′ ∈ T : t < z′ < z ≤ u′,
t < z ≤ u, t′ ≤ z′ ≤ u′ (4.57)

mt,u,zxt,f +mt′,u′,z′xu′,f ≤2−
∣∣φt − ψ1

t,u

∣∣ ∀(t, u), (t′, u′) ∈ L, z, z′ ∈ T : z′ ≤ t < z ≤ u′,
t < z ≤ u, t′ ≤ z′ ≤ u′ (4.58)

ψ1
t,u =ψ2

t,u ∀(t, u) ∈ L (4.59)

Constraints (4.51)-(4.58) prohibit the crossing situations in figure 4.4a-4.4h. They forbid to place
both matching (t, u) with reallocation time z and (t′, u′) with reallocation time z′ on the same
track if they spend time together on this track (indicated by the domain of the variables for which
the constraints hold), unless the arrival and departure sides make sure no crossing occurs. In case
we stated in figure 4.4 that crossings occur if the departure side of (t, u) equals the arrival side
of (t′, u′), the right hand side of the constraint equals 1 plus the absolute value of the difference
between the sides. If the sides are the equal to each other, the right hand side is equal to 1 and only
one of the two terms mt,u,zxt,f (or mt,u,zxu,f) and mt′,u′,z′xt′,f (or mt′,u′,z′xt′,f) can be equal to 1.
Otherwise, the constraints are not restricting, since the right hand side is equal to 2, thus they
can both be equal to 1 and can be placed on the same track. In case we stated in figure 4.4 that
crossings occur if the arrival and departure side of (t, u) differ, the right hand side of the constraint
equals 2 minus the absolute value of the difference between the sides. If the sides differ, the right
hand side is equal to 1 and only one of the two terms mt,u,zxt,f (or mt,u,zxu,f) and mt′,u′,z′xt′,f (or
mt′,u′,z′xu′,f) can be equal to 1. Otherwise, the right hand side is equal to 2 and the constraints
are again not restricting. Constraints (4.51)-(4.58) still contain non-linear elements, but these
non-linear elements are easily linearized cases as discussed in section 4.2.1 and do not contain a
non-linear element which is the multiplication of other non-linear elements as in constraints (4.50).
Finally, constraints (4.59) state that the departure side from the arrival track must be equal to the
arrival side on the departure track when reallocating, as discussed before in this section.

If we are dealing with both LIFO and free tracks, we will need some special constraints for the
LIFO tracks. We now define FA ⊂ F the set of LIFO tracks opened at the A-side, and FB ⊂ F
the set of LIFO tracks opened at the B side. We can now formulate the following constraints in
order to ensure the correct usage of LIFO tracks.

xt,f + φt ≤1 ∀t ∈ T, f ∈ FA (4.60)

xt,f − φt ≤0 ∀t ∈ T, f ∈ FB (4.61)

x1t,u,f + ψ1
t,u ≤1 ∀(t, u) ∈ L, f ∈ FA (4.62)

38

Figure 4.5: Example track layout LIFO tracks on both sides of the diagonal track

x1t,u,f − ψ1
t,u ≤0 ∀(t, u) ∈ L, f ∈ FB (4.63)

x2t,u,f + ψ2
t,u ≤1 ∀(t, u) ∈ L, f ∈ FA (4.64)

x2t,u,f − ψ2
t,u ≤0 ∀(t, u) ∈ L, f ∈ FB (4.65)

In constraints (4.60) and (4.61) the arrival or departure side for a train unit at initial arrival in or
final departure from the shunting yard is forced to the appropriate side. It is forced to the A-side
for tracks that are open at the A-side in constraints (4.60): if xt,f = 1 for a train unit t ∈ T and a
track f ∈ FA, φt is forced to 0 to meet the restriction. On the other hand, it is forced to the B-side
for B-side opened tracks in constraints (4.61): if xt,f = 1 for a train unit t ∈ T and a track f ∈ FB ,
φt is forced to 1 to satisfy the constraint. Constraints (4.62) and (4.63) work in a similar manner
for the side train units use for reallocation from LIFO tracks, and constraints (4.64) and (4.65)
assign appropriate arrival sides for reallocations of matchings to LIFO tracks.

Lastly, the positioning of train units on a track is of importance too when parking on a free
track: if a train unit arriving via the A-side of a track is parked close to the B-side of this track,
there might be enough track length available for a new train unit arriving from the B-side, but the
first train unit should be moved more to the A-side of the track for the second train unit to use
this available space. However, that is outside the scope of this research.

4.3.2 LIFO tracks on both sides of diagonal track extension

Where we consider only track layouts with LIFO tracks on one side of the diagonal track as in
figure 4.1, shunting yards with LIFO tracks on both side of the diagonal track exist as well, as in
figure 4.5. If we want to park train units on the left hand side of the diagonal track in figure 4.5,
we need to use the diagonal track to drive past the intended parking track and then reverse the
driving direction to enter the track. For departure from the track the opposite route is followed.
This means there exist restrictions on the maximum length a train unit can have when assigning it
to the tracks on the left side of the diagonal track: they cannot be longer than the distance between
the track and the end of the diagonal track. We denote this distance by parameter qf∀f ∈ F . For
tracks on the right hand side where no restrictions on train unit length apply, we set qf to a large
value M � maxt∈T kt so the corresponding constraints will not be restricting. Now, we introduce
the following set of constraints:

ktxt,f ≤qf ∀f ∈ F (4.66)

By adding constraints (4.66) to the formulation in section 4.2, we also account for shunting yard
layouts similar to the one displayed in figure 4.5.

4.3.3 Flexible maximum train unit reallocation length

Until now, we have assumed that we have a fixed maximum train unit length that can move be-
tween two certain tracks, which is logical if we assume a track layout similar to the ones in figure 4.1
and figure 4.3. However, this might not always be the case, this length may vary. This is best
explained by means of an example. Consider the track layout in figure 4.6. If we want to reallocate
a train unit from the red to the green track in this figure (provided there is enough room available
on the green track), we can drive back on the black diagonal track connected to the red and green
track, and subsequently enter the green track. However, it is likely the train unit will be too long
to drive back on the black diagonal track up to the green track without using the main railway
network, which is not allowed. In this case, it might be possible to reallocate to the blue track,

39

which can be entered directly from the red track, using the part of the diagonal track between the
red and blue track and subsequently crossing the diagonal track to reach the green track. This
is only possible if there is enough space available on the blue track. The available space on the
blue track may vary however, due to the cumulative length of train units already parked on this
track. Another possibility is to reallocate using the diagonal track and the pink track. In this case,
enough space must be available on the pink track. However, we do not need as much space as
on the blue track, since only part of the train unit needs to access the pink track: as soon as the
train unit has passed the intersection between the diagonal and green track, the driving direction
can be reversed and the train unit can access the green track. In order to incorporate this, the
maximum length of a train unit to feasibly move from one track to another, nf,g, f, g ∈ F , as
defined in chapter 3 will be a variable rather than a parameter, which will need to be updated
with each event. This means it will also need the extra index z ∈ T , the time of the event. We
will use an asterisk in its notation as a variable (n∗f,g,z) to avoid confusion. Now, n∗f,g,z is equal to
the maximum length for a train unit reallocating between track f and g between event z and z−1.

We need to define the set O, which contains the pairs of tracks f, g ∈ F with a fixed maxi-
mum train unit length to reallocate from track f to g. This means that n∗f,g,z should be equal to
nf,g for all z ∈ T if (f, g) ∈ O. The set O also contains the pairs of tracks where the allowed train
unit length to reallocate between them is unrestricted, as is the case when reallocating between
the blue and red track in figure 4.6. Next, we define the set J , which contains all routes between
all possible pairs of tracks f and g such that (f, g) /∈ O. The set Jf,g ⊂ J contains all routes
between track f and g. We also define the set Fj ⊂ F , which contains for a route j ∈ J the
parking tracks h ∈ F that are used in this route. Fj often consists of only one track, but when
for example reallocating from the yellow to the blue track in figure 4.6, a possible route is to exit
the yellow track and drive straight onto the pink track, use the diagonal track to reach the green
track, and from there on access the blue track. The parameter dj,h equals the length of the part
of the train unit that does not need to enter track h when reallocating via route j, as would be
the case for the pink track when reallocating from the red to the green track via the pink track
in figure 4.6 as explained in the example. Parameter ej equals nf,g in case route j ∈ Jf,g does
not use any parking tracks when reallocating, but only uses the diagonal track as in the original
formulation. Otherwise, it is equal to 0. Now, to assign the correct values to n∗f,g,z, we need the
following constraints:

n∗f,g,z =nf,g ∀f, g ∈ F : (f, g) ∈ O, z ∈ T (4.67)

n∗f,g,z = max
j∈Jf,g

{min
h∈Fj

{lh − bh,z−1 + dj,h}, ej} ∀f, g ∈ F : (f, g) /∈ O, z ∈ T (4.68)

n∗f,g,z ∈R ∀f, g ∈ F, z ∈ T (4.69)

n∗f,g,z ≥0 ∀f, g ∈ F, z ∈ T (4.70)

Here, constraints (4.67) assign a fixed value to n∗f,g,z for the pairs of tracks with a fixed maximum
train unit length to reallocate from one to another. Constraints (4.68) update the value of n∗f,g,z:
they set the value of n∗f,g,z to the largest of the maximum allowed train unit lengths on all possible
routes between track f and track g. The maximum allowed train unit length of a route is equal to
the smallest available length on the parking tracks that are part of the route if the train unit fully
enters the parking track on the route. If the train unit does not fully enter the track, we add dj,h.
We formulate this as lh − bh,z−1 + dj,h. Note that we use z − 1 as an index for the occupied track
length bh,z−1, since bh,z−1 is equal to the occupied track length of track h right after event z − 1.
Since n∗f,g,z is the maximum train unit reallocation length between event z − 1 and event z, this
works out. If no parking tracks are used on route j, the maximum allowed train unit reallocation

Figure 4.6: Example track layout varying drive back distance

40

length on this route is equal to ej as discussed before. Finally, constraints (4.69) and (4.70) define
the domain for n∗f,g,z.

As can be seen fairly easy, constraints (4.68) are non-linear. We start their linearization by replac-
ing the expression within the maximum value function, that is {minh∈Fj

{lh−bh,z−1 +dj,h}, ej}, by
the variable rj,z. This variable is equal to the maximum allowed reallocation length of route j ∈ J
when reallocating between event z − 1 and z. We assign the correct value to rj,z by means of the
following set of constraints:

rj,z ≤lh − bh,z−1 + dj,h ∀j ∈ Jf,g : Fj 6= ∅, h ∈ Fj , z ∈ T (4.71)

rj,z ≤ej ∀j ∈ Jf,g : Fj = ∅, z ∈ T (4.72)

rj,z ∈R ∀j ∈ J, z ∈ T (4.73)

rj,z ≥0 ∀j ∈ J, z ∈ T (4.74)

Now, we can finish the linearization by the introduction of a binary variable sj,z which is equal
to one if the maximum train unit reallocation length for a time z is equal to at least rj,z, and 0
otherwise. We introduce the following set of constraints:

n∗f,g,z ≥rj,z ∀f, g ∈ F : (f, g) /∈ O, j ∈ Jf,g, z ∈ T (4.75)

n∗f,g,z ≤rj,z + (1− sj,z)M ∀f, g ∈ F : (f, g) /∈ O, j ∈ Jf,g, z ∈ T (4.76)∑
j∈Jf,g

sj,z ≥1 ∀f, g ∈ F : (f, g) /∈ O, z ∈ T (4.77)

sj,z ∈B ∀j ∈ J, z ∈ T (4.78)

Here, we have M � 0. Constraints (4.75)-(4.77) state the maximum train unit reallocation length
between track f and g at time z is equal to at most the maximum of all rj,z such that j ∈ Jf,g,
since sj,z must be equal to 1 for at least one route j such that j ∈ Jf,g. This does not necessarily
mean that it will be equal to 1 for the route j with maximum value rj,z: if the train unit length is
smaller than the maximum allowed length, another route with a large enough maximum allowed
length will do as well. However, if we need the maximum length for reallocation, sj,z will automat-
ically be equal to 1 for the route j with maximum value rj,z for feasibility purposes. Summarizing,
we can linearize the discussed extension by replacing constraints (4.68) by constraints (4.71)-(4.78).

Finally, besides only adding the constraints discussed in this section to the formulation discussed
in section 4.2, we need to update constraints (4.37) to the following:

x1t,u,fx
2
t,u,gmt,u,zkt ≤n∗f,g,z ∀(t, u) ∈ L, f, g ∈ F, z ∈ T : t < z ≤ u (4.79)

This extension makes the order in which train units are reallocated between two events very rele-
vant, reallocations that occur earlier in the time window might result in less or rather more track
capacity available for reallocation. As mentioned before we do not determine the order of reallo-
cation in our model, which can be a problem when applying the current extension.

Constraint (4.79) is non-linear since it contains the product of three binary variables, so a lin-
earization method similar to the one in section 4.2.1 needs to be applied. For three binary variables
x1, x2, and x3, we define q2 = x1x2x3, which makes q2 a binary variable as well. The constraints
belonging to this linearization can now be formulated as follows:

q2 ≤x1
q2 ≤x2
q2 ≤x3
q2 ≥x1 + x2 + x3 − 2

q2 ∈{0, 1}

Just as before, the above constraints will always assign the correct value to q2, since it will be
equal to 0 if either x1, x2, or x3 equals zero, and equal to 1 if all x1, x2, and x3 equal 1.

41

4.3.4 Coupling and decoupling

Since we assume train units are decoupled right after their arrival at their initial park track and
coupled right before their departure from the shunting yard, we need them to be parked in the
correct order at the same departure track. Because of the specific ordering on the train units we
use as explained in chapter 3, the demand regarding the order on the track is trivially satisfied.
Furthermore, since we use constraints (4.38), it is not possible to reallocate between the arrival and
departure of two train units belonging to the same train service. Since their arrivals or departures
take place at the same time, constraints (4.38) will not allow for reallocations in between, as wz
will be equal to 0 for all event indices z of train units in the same service but the train unit that
is last in the ordering. Combined with a still to be defined constraint stating that train units
belonging to the same service need to be parked at the same track right after their arrival at or
right before their departure from the shunting yard, this implies that no train units belonging to a
different train service will be parked in between two train units belonging to the same train service
right after their arrival in or departure from the shunting yard.

Now, to define the constraints needed to extend the formulation to incorporate the possibility
of multiple train units per train service, we need the extra set A and the parameter at, t ∈ T ,
which are also used in [19]. Parameter at is defined as the train service in which train unit t ∈ T
arrives at or departs from the shunting yard and A is the set of pairs of train units t and t + 1,
(t, t + 1) ∈ T 2, that arrive or depart in the same train service, that is at = at+1. We can now
define the following constraint:

xt,f =xt+1,f ∀(t, t+ 1) ∈ A, f ∈ F (4.80)

Please note that the possibility of keeping multiple train units that arrive and depart in the same
composition, without actually needing to be coupled or decoupled, or the possibility to couple or
decouple at a different time than right after or right before departure from the shunting yard is
not incorporated. Also, this extension does not incorporate the couple and decouple times. We
assume there will always be enough time to decouple train units right after the arrival of a train
service at the shunting yard and to couple train units right before the departure of a train service
from the shunting yard.

However, if we were to include couple and decouple times, we would need to add constraints
that state that train units that are part of an arriving composition cannot be reallocated between
the time of arrival and the time of arrival plus the decouple time. For train units that are part
of a departing composition we would need to add constraints forbidding reallocation between the
departure time minus the couple time and the departure time. We introduce the set T c ⊂ T ,
which contains the train units that are part of a composition with multiple train units. Similarly
as before for set T , we define sets T c+ and T c− which contain the train units that are part of an
arriving or departing composition, respectively, and they are disjoint. In mathematical notation,
we have:

T c ⊂ T, T c = T c+ ∪ T c−, T c+ ∩ T c− = ∅.

We now define for each train unit t ∈ T c the parameter χt, which is equal to the earliest allowed
reallocation time for arriving train units and equal to the latest allowed reallocation time for
departing train units. Now, we can formulate the following constraints:∑

u∈T−:
(t,u)∈L

∑
z∈T :
t<z<χt

mt,u,z =0 ∀t ∈ T c+ (4.81)

∑
t∈T+:
(t,u)∈L

∑
z∈T :

χu<z≤u

mt,u,z =0 ∀u ∈ T c− (4.82)

By summing mt,u,z over all possible matches u ∈ T− to train unit t ∈ T c+ and all reallocation times
z ∈ T that are forbidden and setting this expression equal to 0 in constraints (4.81), we ensure
that no reallocation of train units that arrive in a composition of multiple train units takes place

42

until the composition has been decoupled. In the summation bound in the second summation in
the constraints, we have t < z and not t ≤ z, since for t = z the train unit would not reallocate
at all. In constraints (4.82), we sum over all possible matches t ∈ T+ to train unit u ∈ T c− and
all reallocation times z ∈ T that are forbidden and set this expression equal to 0. This way, train
units will have a reallocation time of at most χu.

If we would want to use a model where services with compositions of multiple train units are
included as discussed in this subsection, but applied to a shunting yard layout like the one in
figure 4.5 where there are LIFO tracks on both sides of the diagonal track, some extra adaptions
to the existing model would need to be made. First, the entire length of the composition could not
be longer than qf when assigning track f to a train unit. To this end, we introduce the parameter
ct, which is equal to the length of the composition train unit t ∈ T is a part of. Furthermore, we
would include the following constraints instead of constraints (4.66):

ctxt,f ≤qf ∀f ∈ F (4.83)

Furthermore, if a composition of multiple units were to be parked on the left side in figure 4.5,
the order in which they would enter the track would be different than the order in which they
arrive in the shunting yard, since the moving direction is reversed. Therefore, for these tracks,
the ordering of train units as discussed in section 3 will not be sufficient and we introduce an
extra ordering of train units which was also introduced in [19]. In this alternative ordering, a train
unit t1 appears before train unit t2 in the ordering (denoted by t1 <

∗ t2) if and only if one of the
following conditions is satisfied:

1. The event time of train unit t1 is smaller than the event time of train unit t2;

2. Train units t1 and t2 are arriving train units that arrive in the same train service, and train
unit t2 is positioned more to the front of the composition than train unit t1;

3. Train units t1 and t2 are departing train units that depart in the same train service, and
train unit t2 is positioned more to the front of the composition than train unit t1.

This new ordering is particularly relevant when considering the crossing constraints and therefore
we will have to adapt constraints (4.30)-(4.33). They will stay the same for tracks entered similarly
as the tracks on the right side of figure 4.5, but the new ordering will be used for tracks on the left
side of the figure. We use sets FD ⊂ F and FN ⊂ F for the tracks on the right and left side of the
diagonal track, respectively. In this notation, D stands for directly accessible, and N stands for not
directly accessible. We can now formulate the set of constraints to replace constraints (4.30)-(4.33):

mt,u,zxu,f + xt′,f −
∑

u′∈T−:
(t′,u′)∈L,
u′<u

∑
z′∈T :

t′≤z′≤u′

mt′,u′,z′

−
∑

u′∈T−:
(t′,u′)∈L,
u′>u

∑
z′∈T :
t′<z′≤u

mt′,u′,z′ ≤1 ∀(t, u) ∈ L, z ∈ T : t ≤ z ≤ u,

t′ ∈ T+ : z ≤ t′ < u, t′ 6= t, f ∈ FD (4.84)

mt,u,zxu,f + xt′,f −
∑

u′∈T−:
(t′,u′)∈L,
u′<∗u

∑
z′∈T :

t′≤∗z′≤∗u′

mt′,u′,z′

−
∑

u′∈T−:
(t′,u′)∈L,
u′>∗u

∑
z′∈T :

t′<∗z′≤∗u

mt′,u′,z′ ≤1 ∀(t, u) ∈ L, z ∈ T : t ≤ z ≤ u,

t′ ∈ T+ : z ≤∗ t′ <∗ u, t′ 6= t, f ∈ FN (4.85)

43

mt,u,zxu,f + xu′,f −
∑
t′∈T+:

(t′,u′)∈L,
t′>u

∑
z′∈T :

t′≤z′≤u′

mt′,u′,z′

−
∑
t′∈T+:

(t′,u′)∈L,
t′<u

∑
z′∈T :
t′≤z′≤z
u<z′≤u′

mt′,u′,z′ ≤1 ∀(t, u) ∈ L, z ∈ T : t ≤ z ≤ u,

u′ ∈ T− : u′ > u, f ∈ FD (4.86)

mt,u,zxu,f + xu′,f −
∑
t′∈T+:

(t′,u′)∈L,
t′>∗u

∑
z′∈T :

t′≤∗z′≤∗u′

mt′,u′,z′

−
∑
t′∈T+:

(t′,u′)∈L,
t′<∗u

∑
z′∈T :

t′≤∗z′≤∗z
u<∗z′≤∗u′

mt′,u′,z′ ≤1 ∀(t, u) ∈ L, z ∈ T : t ≤ z ≤ u,

u′ ∈ T− : u′ >∗ u, f ∈ FN (4.87)

mt,u,zxt,f + xt′,f −
∑

u′∈T−:
(t′,u′)∈L,
u′<z

∑
z′∈T :

t′≤z′≤u′

mt′,u′,z′

−
∑

u′∈T−:
(t′,u′)∈L,
u′≥z

∑
z′∈T :
t′<z′≤z

mt′,u′,z′ ≤1 ∀(t, u) ∈ L, z ∈ T : t < z ≤ u,

t′ ∈ T+ : t < t′ < z, f ∈ FD (4.88)

mt,u,zxt,f + xt′,f −
∑

u′∈T−:
(t′,u′)∈L,
u′<∗z

∑
z′∈T :

t′≤∗z′≤∗u′

mt′,u′,z′

−
∑

u′∈T−:
(t′,u′)∈L,
u′≥∗z

∑
z′∈T :

t′<∗z′≤∗z

mt′,u′,z′ ≤1 ∀(t, u) ∈ L, z ∈ T : t < z ≤ u,

t′ ∈ T+ : t <∗ t′ <∗ z, f ∈ FN (4.89)

mt,u,zxt,f + xu′,f −
∑
t′∈T+:

(t′,u′)∈L,
t′≥z

∑
z′∈T :

t′≤z′≤u′

mt′,u′,z′

−
∑
t′∈T+:

(t′,u′)∈L,
t′<z

∑
z′∈T :
t′≤z′≤t
z≤z′≤u′

mt′,u′,z′ ≤1 ∀(t, u) ∈ L, z ∈ T : t < z ≤ u,

u′ ∈ T− : u′ ≥ z, f ∈ FD (4.90)

mt,u,zxt,f + xu′,f −
∑
t′∈T+:

(t′,u′)∈L,
t′≥∗z

∑
z′∈T :

t′≤∗z′≤∗u′

mt′,u′,z′

−
∑
t′∈T+:

(t′,u′)∈L,
t′<∗z

∑
z′∈T :

t′≤∗z′≤∗t
z≤∗z′≤∗u′

mt′,u′,z′ ≤1 ∀(t, u) ∈ L, z ∈ T : t < z ≤ u,

u′ ∈ T− : u′ ≥∗ z, f ∈ FN (4.91)

When combining the current extension with free tracks, one would have to add constraints stating
that train units arriving or departing in the same train service also need to arrive at or depart
from the same side of the track, respectively:

φt =φt+1 ∀(t, t+ 1) ∈ A (4.92)

44

Chapter 5

Solution Approach

For smaller problem instances, a cplex solver is able to find exact, optimal solutions using branch-
and-cut methods in reasonably small computation times. Branch-and-cut is a widely used combi-
natorial optimization method that is used to solve integer linear programming problems by means
of a combination of branch-and-bound and cutting plane methods. Shortly said, branch-and-cut
methods work by sequentially solving a series of LP relaxations of the original integer program-
ming problem. In the nodes of the branch-and-bound tree, cutting plane methods improve the
LP relaxation to closer fit the original integer programming problem [22]. The LP relaxations are
solved using the regular simplex method. However, the larger and more complex the problem in-
stance, the more the computation times increase, to sometimes over 30 minutes without finding the
optimal solution. This is very undesirable, which is why we developed a row generation heuristic
to solve the generally large problem instances, on which the specifics can be found in section 5.1.
We considered applying a column generation approach as well, but due to several considerations
that can be found in section 5.2 we did not pursue this option.

5.1 Row generation heuristic

Since many variables will be equal to zero in the optimal and any other feasible solution as only one
matching is realized for each train unit - meaning all other possible matchings are not made and
all their associated variables will be equal to zero - crossing constraints (4.30)-(4.33) are often not
restricting and thus unnecessary. These constraints are restricting if and only if we have (t, u) ∈ L,
z ∈ T , and f ∈ F such that mt,u,z = 1 and xu,f = 1, so in a large percentage of the cases
they are superfluous and their inclusion only increases the computation time. Therefore, a row
generation approach is considered. In row generation, certain constraints are excluded from the
model and the remaining model is referred to as the master problem. Subsequently, the model
is solved and if a solution can be found, the separation problem is addressed. The separation
problem involves checking whether any of the left out constraints are violated. If this is the case,
the violated constraints are added to the master problem, which is then solved again. This process
is repeated until no violated constraints can be found anymore. In our model, the separation model
is straightforwardly solved as it is rather easy and quick to check which of the crossing constraints
in (4.30)-(4.33) is violated, and therefore we apply this technique on our model. The global steps of
row generation applied to our problem are set out in algorithm 1. A sequence of models is solved
in which at each iteration constraints are added for combinations of matchings and train units
that are involved in crossings. If a matching (t, u) is involved in a crossing at departure from the
shunting yard by matching (t′, u′), constraints (4.30) are generated for the specific combination of
(t, u) and t, and (4.31) are added for the specific combination of (t, u) and u. If the crossing occurs
at reallocation, constraints (4.32) and (4.33) are generated for the specific matchings involved in
the crossing.

45

Algorithm 1: Row Generation algorithm

1 Construct BasicModel without crossing constraints;
2 Set FeasibleSolution to false;
3 while FeasibleSolution is false do
4 Find CurrentSolution by solving CurrentModel;
5 if No solution found in CurrentSolution then
6 No solution can be found overall;
7 break;

8 else
9 Find BlockingsCurrent in CurrentSolution;

10 if BlockingsCurrent = ∅ then
11 Set FeasibleSolution = true;
12 else
13 Add crossing constraints current blockings to CurrentModel;
14 end

15 end

16 end

We see that in the algorithm, in each iteration we solve the model with only a subset of the con-
straints included and iteratively add constraints until the solution to the master problem is also
feasible for the complete problem. Note that in the first iteration, the solution will never include
a reallocation, since crossings are not prohibited and we minimize reallocations, unless our data
contains services with compositions with multiple train units. The model is solved by cplex soft-
ware, using branch-and-cut.

Although algorithm 1 can potentially decrease the computation times for finding a solution to
our problem, the search through the solution space is not as structured as it could be and the
solution structure does not use all the information it could get from the previous solution. By
iteratively adding the crossing constraints, the method will seemingly randomly jump through the
solution space, since it might use the current matching and add some reallocations or switch track
assignments, but it might as well adapt the matching. Some preliminary tests show that we can
often find a feasible solution for the first matching we find in algorithm 1 and we want to exploit
that feature. By fixing the matching in the first iteration, the solution algorithm will try to pre-
vent crossings by adding reallocations and changing track assignments in subsequent iterations.
Not only do we use more information from previous iterations this way, the solution time could
decrease considerably as well, since many variables will be forced to zero and excluded from the
problem as we have fixed the matching. However, in case we do not find a feasible solution for
the first found matching, we want to be able to explore other regions of the solution space, i.e.
other matching patterns. We do this by starting with the basic model without crossing constraint,
but in order to explore different regions of the solution space and to smartly make use of previous
information, we need to prohibit (some elements of) the previous matching(s). We can simply
prohibit the exact combination of matched train units that we previously fixed, but this might not
be the most efficient approach. The algorithm could now use almost exactly the same matching
pattern, with only slight differences. In many cases, we will again not be able to find a feasible solu-
tion and we might need many iterations to arrive at a matching pattern that satisfies our demands.

Let us consider the hypothetical situation where we have 20 arriving train units -i.e. 40 train
units in total in our problem definition- of 4 different types. Of these 20, 9 are of type A, 2 are
of type B, 4 are of type C, and 5 are of type D. We assume the arrivals and departures are not
mixed in time, meaning an arriving unit can be matched to any departing unit provided it is of the
correct type. In our example case, a staggering 9!× 2!× 4!× 5! = 2′090′188′800 matching patterns
would exist, of which many are nearly identical. Iterating through them all has disastrous effects
on the computation time. In general, if we have |T+| arriving train units of m different types,

and for each of the types 1, . . . ,m there are n1, . . . , nm arriving with
m∑
i=1

ni = |T+|, there exist

n1!× n2!× · · · × nm! different matching patterns.

46

So instead of randomly jumping between all corners of the solution space, focusing on the ele-
ments of the previous matching pattern(s) that most often were the cause of the infeasibility might
lead to a much faster convergence to a feasible solution. Therefore we will exclude certain elements
of the matching pattern, that is one or more specific matchings of arriving to departing train units
that have been involved in crossings most often in previous iterations, as opposed the exact match-
ing pattern. The matching possibilities left to be explored will be diminished considerably, and we
will search our solution space more smartly. In our previous example, fixing only one matching
between an arriving and departing unit of type A would lower the number of matching patterns
left to be searched by a factor 9.

In our new solution method, we use a tabu search heuristic [11]. We first fix a matching and
if the row generation approach applied on this subset of the solution space does not result in a
feasible solution, we add the most problematic elements of this matching pattern to a tabu list.
Subsequently, we return to the basic model and prohibit the matching elements from the tabu list.
Of course, we do need to check whether the elements do not exclude all matching possibilities for
a certain train unit. If this were the case, no feasible solution could be found in any case. If such
an element is included, we remove it from the candidate tabu list.

In algorithm 2 we add matchings of arriving to departing train units that were most often involved
in a crossing to the tabu list, but we will also explore the possibilities of adding the combinations
that were involved in a crossing in the first iteration of the inner loop as described in algorithm 2
and/or combinations that were involved in a crossing in the last iteration. Furthermore, we can
decide whether we want to prohibit combinations that were blocked by other combinations when
reallocating or departing from the shunting yard, or combinations that were blocking other combi-
nations when reallocating or departing from the shunting yard. Once a matching element is placed
on the tabu list, it will never be removed. Experiments for removing elements from the tabu list
after a certain number of iterations is outside the scope of this research. The general steps for this
tabu search-row generation approach can be found in the overview of algorithm 2.

In algorithm 2, the tabu list is denoted by ProhibitedMatchings. We fix and prohibit a matching
element (t, u) ∈ L by adding a constraint that sets

∑
f∈F

x1t,u,f equal to 1 or 0, respectively. Note

that the algorithm described in algorithm 2 stops after finding the first feasible solution and thus
will not necessarily find the optimal solution. Also, note that the approach described in algorithm 2
is heuristic and not exact, since we use a tabu search.

The underlying principles used in the solution method we described here were taken from Ben-
der’s decomposition method as described in [1]. After solving the master problem without crossing
constraints generated, we fix some variables to their current value (the matching) and solve the
separation problem. However, after solving the separation problem, we do not immediately re-
turn to the master problem and ‘unfix’ the fixed variables, but we continue solving the separation
problem until we find a feasible solution, or until there are no constraints left to be added. In the
latter case, we return to the original basic master problem to which we do not add the violated
constraints found in the matching problem, but we alter it by prohibiting some elements of the
previously fixed matching pattern(s) by fixing the values of their associated variables equal to zero.
Then, the procedure is repeated.

5.2 Consideration of column generation

The overarching idea behind column generation is that in the optimal solution, but actually in
any feasible solution to our problem since we have almost solely binary variables, many variables
will have an associated value of zero. Therefore, we choose to exclude a number of variables
and their associated columns in the objective function and constraint matrix from the problem,
to make it more computationally tractable. The remaining problem, with only a subset of the
variables incorporated, is referred to as the master problem. Subsequently, variables that have the

47

Algorithm 2: Tabu Search and Row Generation algorithm

1 Construct BasicModel without crossing constraints and without prohibiting or enforcing
matching constraints;

2 Set CurrentModel = BasicModel;
3 Initialize ProhibitedMatchings = ∅;
4 Initialize BlockingsCurrent = ∅;
5 Initialize BlockingsAll = ∅;
6 Set FeasibleSolution to false;
7 Set Basic to true;
8 while FeasibleSolution is false do
9 Find CurrentSolution by solving CurrentModel;

10 if No solution found in CurrentSolution then
11 if Basic = true then
12 No solution can be found overall;
13 break;

14 else
15 No solution can be found for current matching;
16 Set CurrentModel = BasicModel;
17 Set Basic = true;
18 Find matchings to prohibit based on blockings in previous iteration and store in

AddToProhibited;
19 Remove matchings from AddToProhibited if their inclusion prohibits all

matching possibilities for a certain train unit;
20 if AddToProhibited = ∅ then
21 No solution can be found;
22 break;

23 else
24 Update ProhibitedMatchings with AddToProhibited;
25 Generate constraints to prohibit matchings in ProhibitedMatchings and

update CurrentModel;

26 end

27 end

28 else
29 Find BlockingsCurrent in CurrentSolution;
30 if BlockingsCurrent = ∅ then
31 Set FeasibleSolution = true;
32 else
33 if Basic = true then
34 Fix current matching and update CurrentModel;
35 Set Basic = false;

36 end
37 Add crossing constraints current blockings to CurrentModel;
38 Add BlockingsCurrent to BlockingsAll

39 end

40 end

41 end

48

potential to improve the objective function value are generated and added to the master problem.
Identifying appropriate variables with positive or negative (for a maximization or minimization
problems, respectively) reduced costs to enter the basis is referred to as the subproblem. This
procedure is repeated until no variables with positive reduced costs can be identified anymore.
The power of column generation is that the subproblem, although often also NP hard, has a clear
structure for which exact algorithms or dynamic programming algorithms exist, like shortest path
or knapsack problems. Unfortunately, our subproblem lacks such a clear and easily identifiable
structure. Also, it would be quite difficult to determine which subset of columns to start with in
the master problem such that a solution to the master problem would also be a feasible solution to
the original problem. With small adaptions, however, such as adding a variable zt which is equal to
1 if train unit t is assigned to no track at all and equal to 0 if train unit t is assigned to a track, to
the left hand side of constraints (4.21), and adding the zt variables to the objective function with a
large penalty M � 0, we could rather easily construct an appropriate initial master problem. This
would entail only including the zt variables in the basis to start with, which would be equal to one
for all t ∈ T in the optimal solution and would have an objective value of M ∗ |T |. To illustrate,
in the original problem the objective function (4.20) should be replaced by expression:∑

(t,u)∈L

γt,u +
∑
t∈T

Mzt (5.1)

and constraints (4.21) should be replaced by:∑
f∈F

xt,f + zt = 1 ∀t ∈ T. (5.2)

The initial master problem would become:

{min Mz|z = 1, z ∈ B|T|}, (5.3)

where M would be a 1 × |T | sized vector with at every location value M , 1 would be a |T | × 1
sized vector consisting of only ones, and z would be a |T | × 1 sized vector with variable zt at index
t for all |T | indices. However, it would still be difficult to determine which variable could most
beneficially enter the basis, since we cannot find an intuitively logical and clear structure for the
subproblem.

For column generation to work, one could imagine it would be fruitful to rewrite the problem
such that the variables would correspond to possible paths through the shunting yard for arriving
train units for different matching possibilities. Paths should include the arrival and departure
track of a train unit and its reallocation time if applicable. For each arriving train unit, only one
path would be allowed to be chosen and additional constraints would be needed to ensure that
for each departing train unit exactly one path is chosen as well, and constraints that would pre-
vent combinations of routes that would result in crossings and combinations of routes that would
result in exceeding track length capacity. These additional constraints, however, complicate the
problem in such a way that the column generation subproblem is not a straightforward resource
constrained shortest path problem anymore. Haahr et al. [14] already discussed the application of
column generation for the TUSP without reallocation. They conclude that an exact application
of column generation without heuristic procedures will result in very extensive and complicated
networks and will likely be very slow.

As an alternative, we could work with ‘half routes’ for matchings. These ‘half routes’ would
describe the path of an arriving train unit from its arrival until after its reallocation. For a de-
parting train units, a ‘half route’ would describe its path from right after reallocation until its
departure from the shunting yard. Then, we would have to link for each arriving unit one ‘half
route’ to a departing ‘half route’ and vice versa. Although this resolves some of the problems
we discussed, it poses new ones and therefore we decided to not explore this option any further.
Considering the above, we pursued a row generation approach instead, which is a more logical and
intuitive choice for a problem of our structure and with our characteristics.

49

Chapter 6

Data

We have two data sets with service schedules to which we can apply our solution methods to ex-
amine the results and practical applicability of our methods. Each data set applies to a different
shunting yard: one applies to the shunting yard Kleine Binckhorst near The Hague Central Station
and the other one to shunting yard Utrecht OZ near Utrecht Central Station. A map of the former
is given in the introduction figure 1.2; a map of the latter is displayed in figure 6.2 at the end of
this section.

For Kleine Binckhorst, the available track lengths are given in table 6.2. We are allowed to use all
tracks with a non-black label as parking track, except tracks 51a, 64, and 104a, i.e. tracks 52-63.
When solving the model for data sets that apply to Kleine Binckhorst, we merge tracks 62 and 63
to simplify the shunting yard lay out. Compositions arrive at and depart from the shunting yard
via track 906a, but we assume they use track 51a to reach track 104a, and from there on they will
be parked. When departing, they will follow the opposite route. Reallocation cannot take place
via track 906a. This creates a simplified shunting yard structure with a diagonal track with LIFO
tracks on both sides as discussed in subsection 4.3.2. A schematic overview of this structure can be
found in figure 6.1 at the end of this section. Note that the orientation of this overview is upside
down with respect to the map in figure 1.2. Since the moving direction is always changed at arrival
and departure on track 104a, we assign tracks 52-59 to set FN and tracks 60-62 to set FD. This
way, the ordering and constraints as defined in subsection 4.3.4 are respected.

For Utrecht OZ, the available track lengths are given in table 6.4 at the end of this section. We
can use all tracks but 102, 103, 116, and 117 for parking, i.e. tracks 104-109 and tracks 115, 118,
and 119. We merge tracks 105b and 105c and tracks 106b and 106c and use all tracks as LIFO
tracks that can be reached through diagonal track 117, which is also the track via which train
units arrive at and depart from the shunting yard. Again, the shunting yard consists of a diagonal
track with LIFO tracks on both sides as discussed in subsection 4.3.2. A schematic overview of
this new structure is displayed by the red lines in the map in figure 6.2. To apply the extensions
discussed in subsection 4.3.4, we assign all tracks on the left of the diagonal track 117 to set FN
and all tracks on the right of the diagonal track 117 to set FD.

The data sets contain all information regarding the services, the compositions linked to them,
the train units in the compositions, and the type and number of carriages of these train units. The
schedules are provided by NS Reizigers, and the task of NedTrain is to store the train units (and
perform maintenance activities on them) and deliver them back to the main railway network in
the correct compositions at the times as defined in the schedule. The data set for shunting yard
Kleine Binckhorst contains 200 artificial instances. For each even number of arriving train units
from 2 up until 40 -that is 2, 4, 6, . . . , 38, 40- ten artificial instances have been created that differ
in service characteristics, so the compositions can be different as well as the arrival and departure
times. The types and number of carriages of the train units used in the compositions and services
are identical for each of the ten instances created for a certain number of arriving events, and the
number of services is identical for each instance in an instance set as well. Naturally, the number

50

of train units in the planning problem is equal to two times the number of arriving train units,
since we need as many arriving as departing train units. The planning period spans from 8:00 on
one day till 8:00 the next day The OPG method as described in [20] and the methods as described
in [3] have both been applied to this data set in [3], so we can compare the performance of our so-
lution methods to the performance of their solution methods. An overview of the characteristics of
the instance sets that apply to Kleine Binckhorst can be found in table 6.3 at the end of this section.

The data set for shunting yard Utrecht OZ contains the schedules for each day of a a typical
week in December 2016. The schedules are modified such that the schedule again spans a 24-hour
time period, from 8:00 on the specified day till 8:00 the next day. We have for each day the
original schedule, and sometimes one or more schedules that are modified such that the number
of carriages in the shunting yard at any given moment during the planning period never exceeds
a certain number. The maximum number of carriages present in the shunting yard during the
planning period can be lowered by adapting the arrival and departure times of the services in the
schedule, or by adapting the number of carriages in the train units. This reduces track length
capacity issues. For this data set, the matching that NS Reizigers prefers is included. An overview
of the characteristics of the data set that applies to Utrecht OZ can be found in table 6.5. The
first two letters of the instance name refer to the day of the week the instance represents, where
‘MA’, ‘DI’, ‘WO’, ‘DO’, ‘VR’, ‘ZA’, and ‘ZO’ refer to Monday to Sunday, respectively.

Table 6.1 displays the train unit lengths for the different types that appear in the data sets.
Each row in the table refers to a unique type τt. In the data set for Kleine Binckhorst, types
VIRM -4, VIRM -6, SLT -4, SLT -6, and DDZ -6 occur. In the data set for Utrecht OZ, all types
but DDZ -6 occur.

Train Type # Carriages Length (m) Train Type # Carriages Length (m)
VIRM 4 109 SLT 4 70
VIRM 6 162 SLT 6 101
DDZ 4 101 ICMm 3 81
DDZ 6 154 ICMm 4 107

SGMm 3 79 DDAR 4 97

Table 6.1: Train unit lengths

51

Figure 6.1: Simplified structure of Kleine Binckhorst

Track Available
length (m)

51a 62
52 480
53 431
54 387
55 357
56 222
57 202
58 203
59 183
60 248
61 247
62 247
63 326
64 220

104a 475

Table 6.2: Track lengths for
shunting yard Kleine Binckhorst

Instance # Services # Train Instance # Services # Train
set units set units
2 4 4 22 30 44
4 4 8 24 32 48
6 8 12 26 35 52
8 11 16 28 37 56
10 14 20 30 40 60
12 17 24 32 44 64
14 18 28 34 44 68
16 20 32 36 48 72
18 23 36 38 51 76
20 26 40 40 54 80

Table 6.3: Characteristics of data set for shunting yard Kleine Binck-
horst

52

Figure 6.2: Map of Utrecht OZ

Track Available
length (m)

102 361
103 414
104 252
105a 174
105b 202
105c 179
106a 210
106b 198
106c 185
107a 301
107b 163
108 124
109 92
115 211
116 132
118 144
119 145

Table 6.4: Track lengths for
shunting yard Utrecht OZ

Instance # Services # Train # Max
units carriages

MA 24 49 40 44 49
MA 24 40 44

DI 24 44 44 50 44
DI 24 42 48

WO 24 41 48
DO 24 48 44 50 48

DO 24 43 50
VR 24 31 34
ZA 24 24 26

ZO 24 40 24 28 40
ZO 24 46 31 36 46

ZO 24 30 36

Table 6.5: Characteristics of data set for shunting yard Utrecht OZ

53

Chapter 7

Results

Since we have data sets that contain services with compositions consisting of multiple train units
that apply to the shunting yards discussed in chapter 6, we will use the model extended with the
couple and decouple constraints and the constraints for shunting yards with LIFO tracks on both
sides of a diagonal track. That is, the model consists of constraints (4.20)-(4.29), (4.34)-(4.45),
and (4.83)-(4.91). The full formulation is displayed in appendix B.

We will first discuss the results for the data set applied to Utrecht OZ in section 7.1. For this data
set, we will show results for different settings of the parameters in the solution methods to evaluate
the performance of the methods. Subsequently we will discuss the results for Kleine Binckhorst in
section 7.2. We will compare the results to those of Van den Broek [3]. Note that we leave out his
results for the instance set with two arriving events, since deliberation with the author learned that
his results for this instance set are likely to be faulty: probably, the wrong problem instance set
was used in his results. A comparison of the results for data set Utrecht OZ and Kleine Binckhorst
is included in section 7.3.

All computational experiments in this chapter are performed on a computer with one Intel(R)
Core(TM) i7-5500U CPU (2.39GHz) processor and 8 gigabytes of RAM. We use version 12.6 of
the cplex solver to solve the MIPs that occur in our solution methods. A maximum computation
time of 1800 seconds (30 minutes) is set for all experiments.

7.1 Results Utrecht OZ

We applied four solution methods to the instances in data set Utrecht OZ. We solved the model
for the TUSP as described in [19] (i.e. no reallocations allowed) for reference, we straightforwardly
solved our model, we solved our model using row generation as described in algorithm 1, and we
solved our model using the tabu search-row generation heuristic as described in algorithm 2. These
solution methods are referred to as NR-MIP, R-MIP, RG, and TS-RG, respectively, from now on.
In table 7.1 an overview of the results of applying these solution methods to our data instances is
displayed. First of all, we see in the results for the reference NR-MIP method that three out of
twelve data instances cannot be solved without using reallocation. The solution method is exact
and we never exceed the maximum computation time, so failure to find a feasible solution in this

Method
Number of solved

instances
Average solution

time (s)
Average solution
time if solved (s)

NR-MIP 9/12 2 1
R-MIP 5/12 1390 747

RG 6/12 1298 682
TS-RG 12/12 179 179

Table 7.1: Solved instances and computation times of different solution methods Utrecht OZ

54

Figure 7.1

M
A

24
49

M
A

24

D
I

2
4

44

D
I

2
4

W
O

24

D
O

24
48

D
O

2
4

V
R

24

Z
A

24

Z
O

2
4

4
0

Z
O

2
4

46

Z
O

2
4

0

1

2

3

4

5

Data instance

N
u

m
b

er
o
f

re
a
ll

o
ca

ti
o
n

s

Objective values R-MIP, RG, and TS-RG, Utrecht OZ

TS-RG

R-MIP

RG

method means we must use reallocation to find a feasible solution. The computation times for this
method are very short, since there are a lot less variables and constraints without reallocations
incorporated in the model. The R-MIP and RG solution methods, which are both exact as well,
find no solution in seven and six out of twelve instances, respectively. However, in the instances
in which they failed to find a solution, they were cut short by the solution time limit and not
necessarily by infeasibility. The RG method does result in slightly shorter computation times and
since the number of instances solved is larger, it outperforms the R-MIP method. Experimenting
with longer allowed computation times shows the R-MIP and RG solution methods can find the
optimal solution if we allow the program to run for a longer period of time, however this is not
useful for practical purposes. Finally, the TS-RG method finds a feasible solution in all twelve of
the problem instances. The solution time of this method is a lot shorter compared to the R-MIP
and RG methods, but a lot longer than the computation times of the reference NR-MIP method.
However, as already mentioned the latter does not incorporate reallocation which reduces the di-
mensions of the constraint matrix greatly.

When we look at the objective value, i.e. the number of reallocations, of the instances for the
R-MIP, RG, and TS-RG methods, we see that if they find a solution, the R-MIP and RG method
always outperform the TS-RG method. Their objective value is always lower than the objective
value when using TS-RG. This was to be expected, since the TS-RG method is a heuristic ap-
proach. An overview of the solution values is given in figure 7.1. If no solution is found, as is often
the case for the R-MIP and RG methods, the data point is omitted.

Overall, the TS-RG method gives the best results in terms of computation times and number of
solutions found. Since our problem is mainly a feasibility problem, we will continue with this
solution method from now on, even though the objective values are not always as good as we like
them to be.

As mentioned in chapter 6, NS Reizigers sometimes has a preferred matching for the train units.
When we fix this matching, we expect the number of reallocations to increase, since we have less
flexibility in our shunt plans. Also, the computation times will probably decrease, since the feasi-
ble region is considerably smaller. To reduce the computation time we can terminate cplex when

55

Figure 7.2

M
A

2
4

49

M
A

24

D
I

24
44

D
I

24

W
O

24

D
O

24
48

D
O

24

V
R

24

Z
A

24

Z
O

24
40

Z
O

24
46

Z
O

24

0

100

200

300

Data instance

C
om

p
u

ta
ti

o
n

ti
m

e
(s

)

Computation times different settings TS-RG, Utrecht OZ

Basic

Fixed match.

First feas.

Figure 7.3

M
A

24
49

M
A

24

D
I

24
44

D
I

24

W
O

24

D
O

24
48

D
O

24

V
R

24

Z
A

24

Z
O

24
40

Z
O

24
46

Z
O

24

0

5

10

15

Data instance

N
u

m
b

er
of

re
al

lo
ca

ti
on

s

Objective values different settings TS-RG, Utrecht OZ

Basic

Fixed match.

First feas.

56

solving the MIPs as soon as a feasible solution has been found, as well. However, this is expected to
increase the number of reallocations. The results of these experiments can be found in figures 7.2
and 7.3.

We see that the computation time when working with a single matching pattern is indeed a
lot shorter, especially for the larger problem instances. However, the computation times when
stopping after finding the first feasible solution and those when solving the MIPs in the TS-RG
method to optimality are of the same order of magnitude, while the objective values of stopping
after finding the first feasible solution are worse. Surprisingly, the objective values when solving
the model for a predefined matching are smaller and thus better than those of the basic model.
Since the first matching found using the TS-RG solution method always provided us with a feasi-
ble solution for all settings, we can draw the conclusion that this first matching is often not the
best matching for our problem. Therefore, for larger problem instances as in Kleine Binckhorst, it
might be interesting to fix the matching beforehand to reduce computation times.

Since we always find a feasible solution for the first matching we use in the TS-RG heuristic,
we find the same solution values when adjusting settings concerning the number of matchings to
prohibit in the outer loop of algorithm 2, or when prohibiting only matchings that are blocked
by others at departure from a track or alternatively prohibiting only matchings that are blocking
others when attempting to depart from a track. When increasing the fixed moving times, multiple
matchings are explored. However, in computational experiments we did not find any improvements
when adapting the discussed settings and therefore there is no need to alter them.

7.2 Results Kleine Binckhorst

We now apply our TS-RG solution method to the data instances of Kleine Binckhorst. An overview
of the number of instances solved by our TS-RG method compared to the number of instances solved
by the OPG method and the simulated annealing algorithm with reallocation (SAR) as described
in [3], which have been obtained by Van den Broek [3], is given in figure 7.4. In his results, the
time limit was also set to 30 minutes, but since a different computer is used the results are not one
on one comparable.

Figure 7.4

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

0

2

4

6

8

10

Instance set (denoted by number of arriving events)

N
u

m
b

er
of

so
lv

ed
in

st
an

ce
s

Performance OPG, SAR, and TS-RG, Kleine Binckhorst

TS-RG

OPG

SAR

57

Our method has a perfect record up until 18 arriving events. After that, the performance drops
drastically. Zooming in on the results for our TS-RG method, we find that the method results in
feasible solutions every time the solution time was not cut short by the solution time limit of 30
minutes. However, we run out of solution time for the first time for the instance set with 20 arriving
events (thus 40 events in total) and from the instance set with 26 arriving events onward, we run
out of solution time for every instance. This means that for these instances, our method might be
able to find a feasible solution, but the computation times are simply too excessive. There is no
time to fully explore all regions of the solution space. We can see that our method outperforms
the OPG for smaller problem instances, but for larger problem instances (from 22 arriving events
onward) it is outperformed by OPG. This is caused by the solution time limit. SAR outperforms
our method. The results are the same up to 18 events, and after that the performance of the
TS-RG drops. Again, the solution time required is the limiting factor. Note that although we
expect the solution time to be the main limiting factor, our method is limited by the use of a
simplified shunting yard layout as well, as explained in chapter 6. Since we do not fully exploit the
possibilities the free tracks in shunting yard Kleine Binckhorst offer, we might not find a solution
where there is one using the different routing possibilities free tracks offer. However, we cannot be
sure of this, since we have never actually not found a solution: we ran out of computation time
before this could be determined. The average computation times and solution values for the solved
instances and the overall computation times using TS-RG are displayed in figure 7.5.

In the figure, the results for the average number of reallocations up to the instance set with 24
arriving units are shown, since from 26 arriving units onward, we always ran out of computation
time when solving the model. The average number of reallocations is taken over the instances for
which we found a solution. We can see from the figure that the average number of reallocations in
the solutions increases with the problem size (the blue line), as do the computation times (the red
and green lines). This is as we expected. The increase in computation times comes to a stop at
around 1800 seconds, since this is the computation time limit. We also notice a sudden increase in
computation times around the instance set with 20 arriving events. Therefore, 20 arriving events
seems to be a breaking point in being able to feasibly solve the problem. This can also be seen in
the number of instances solved in figure 7.4. We find that the results differ considerably from the
results for instances with similar problem size in the Utrecht OZ data set. We will discuss possible

Figure 7.5

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0

2

4

6

8

Instance set (denoted by number of arriving events)

A
ve

ra
ge

n
u

m
b

er
of

re
al

lo
ca

ti
on

s

Average number of reallocations and computation time TS-RG, Kleine Binckhorst

0

500

1,000

1,500

2,000

1,800

A
ve

ra
ge

co
m

p
u

ta
ti

on
ti

m
e

(s
)

Reall.

Comp. time general

Comp. time if solved

58

Figure 7.6

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0

2

4

6

8

10

12

Instance set (denoted by number of arriving events)

A
ve

ra
g
e

n
u

m
b

er
o
f

it
er

a
ti

o
n

s

Average number of iterations TS-RG, Kleine Binckhorst

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
u

m
b

er
o
f

m
a
tc

h
in

g
s

fi
x
ed

Its. general

Its. if solved

Nr. matchings general

Nr. matchings if solved

causes in section 7.3. A closer comparison of the average computation times for the instances that
were solved versus the overall computation times shows big differences, especially for the larger
instances where for some instances we did not find a feasible solution within our time limit. We
can draw the conclusion that if we find a solution, we find it relatively fast. Therefore, we take a
look at the average number of iterations our method uses in figure 7.6.

In figure 7.6, the number of iterations refers to the number of times we add crossing constraints
to the current model, so the number of times we solve the model, find a solution, but this solution
turns out to be infeasible. The number of matchings refers to the number of times we fix a different
matching. We fix a different matching every time we cannot find a feasible solution for the current
matching after adding crossing constraints. Therefore, an average of zero iterations combined with
zero matchings refers to either the case where we instantly find a solution for the basic model in
which no crossings occur, so there is no need to fix a matching or add any crossing constraints, or
the case where we run out of solution time before we can even find a solution for the basic model.
The former is generally the case for very small problem instances, the latter for larger instances.
The number of iterations and the number of different matchings explored for the instances solved
is larger than the general average for the instances where there is a difference. This leads us to
believe that if we find a solution for the basic model, we can often go through multiple iterations
and sometimes matchings to find a feasible solution relatively quickly. If we do not find a solution,
this is often caused by inability to solve the basic model within the time limit. This is in line with
the computation times in figure 7.5. Therefore, we will do some experiments with a predetermined,
fixed matching later on in this section, so we can add more crossing constraints cuts and explore
more regions of the solution space.

Since OPG does not allow for reallocations, all solutions the method finds are without reallo-
cations. Therefore, we compare the number of solutions found without reallocations using TS-RG
to the number of solutions found by OPG. The results are shown in figure 7.7. From figure 7.7, we
can see that our method often does not find a solution with zero reallocations, while this solution
does exist, as can be seen from the result for the OPG method. This can be explained by multiple
factors. First of all, as we explained before, our method is a heuristic approach. For the fixed
matching for which we find a solution, the solution is optimal. However, since we stop as soon

59

Figure 7.7

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

0

2

4

6

8

10

Instance set (denoted by number of arriving events)

N
u

m
b

er
o
f

so
lv

ed
in

st
a
n

ce
s

w
it

h
ze

ro
re

al
lo

ca
ti

on
s

Number of solved instances with zero reallocations OPG and TS-RG, Kleine Binckhorst

TS-RG

OPG

as we find a solution without crossings for a matching, there might exist solutions without cross-
ings with fewer reallocations for a different matching. Second, our method does not fully exploit
the possibilities of the shunting yard layout of Kleine Binckhorst as already mentioned before. We
model the shunting yard as if it has LIFO tracks, however, in actuality it also has many free tracks.
Free tracks offer more routing possibilities, which likely results in fewer required reallocations. An
exception occurs for the instance set with four arriving events. In this case, our method finds a
solution with zero reallocations in five out of ten instances, where OPG finds one only in four out
of ten. We cannot readily find an explanation for this aberrant result, so further research is needed
to be able to correctly interpret it.

In the results for Utrecht OZ in section 7.1, we found that a fixed matching could help in re-
ducing the computation times. In the results for the problem instances that did not run out of
solution time for Kleine Binckhorst, we also find that the first matching found often results in a
feasible solution. Therefore, we find for the problem instances a predefined matching by solving
the Matching Problem as formulated in [9] before we apply our solution method. The results can
be found in figure 7.8.

The figure shows similar results for the number of instances solved by the model with a prede-
termined matching and the basic model. The computation times were very similar as well. Most
unsolved instances were caused by a lack of computation time, but the unsolved instances in the
instance sets with 4, 10 and 18 arriving events were truly unsolved. Our predetermined matching
was probably infeasible for these instances. The similar results for the number of solved instances
when working with a fixed matching are in line with the results for the data set Utrecht OZ. How-
ever, we would expect a reduction in computation time as was the case for Utrecht OZ. Therefore,
we expected more solved instances as well. We think this is caused by the ‘randomness’ of our
predetermined matchings. The predetermined matching for Utrecht OZ was made by planners,
who probably chose it smartly. The predetermined matching for Utrecht OZ also resulted in fewer
reallocations, which we did not find in our results. This can again be explained by the difference
in construction of the predetermined matching patterns.

These results strengthen our thoughts that the initial matching we choose might not be of main

60

Figure 7.8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

2

4

6

8

10

Instance set (denoted by number of arriving events)

N
u

m
b

er
o
f

so
lv

ed
in

st
a
n

ce
s

Overview results different settings TS-RG, Kleine Binckhorst

0

2

4

6

8

10

A
ve

ra
ge

n
u

m
b

er
o
f

re
a
ll

o
ca

ti
o
n

s

Solved inst. basic

Solved inst. fixed match.

Avg. reall. basic

Avg. reall. fixed match.

importance for a feasible solution, but can be very important for a further reduction of the com-
putation times. This can be very beneficial to improve the number of solved instances.

7.3 Comparison results Utrecht OZ and Kleine Binckhorst

We see that, compared to the results for instances applied to Utrecht OZ with comparable problem
size, the solutions for Kleine Binckhorst are often characterized by more reallocations and longer
computation times. Also, we run out of computation time for problem sizes that could be solved
within our time limit for Utrecht OZ. Figure 7.9 and 7.10 show an overview of the average number
of reallocations and average computation times of the two methods, respectively. The x-axis repre-
sents the number of arriving events in the problem instance. The average of the solution values for
each instance size for each data set is given. Note that the results apply to different instance sets,
meaning the instance set with 14 arriving events for Utrecht OZ is different than the instance set
with 14 arriving events for Kleine Binckhorst. However, we do apply the instances for Utrecht OZ
to the shunting yard layout of Kleine Binckhorst for better comparison. The data set for Utrecht
OZ is a lot smaller than the data set for Kleine Binckhorst, therefore the averages of the solution
values are taken over one to three instances, where they are taken over ten instances (or the num-
ber of solved instances) for Kleine Binckhorst. For data set Kleine Binckhorst, the figures also
show the average number of reallocations and computation time when we ignore constraints (4.80),
stating that train units that belong to the same composition should be parked on the same track.
We will explain why in the further discussion of the results in figure 7.9 and 7.10.

We can explain the aberrant results in number of reallocations for comparable problem sizes in
figure 7.9 by the difference in data characteristics: a quick comparison of table 6.3 and table 6.5
learns that in the problem instances for Utrecht OZ, the difference between the number of services
and the number of train units is a lot smaller than for Kleine Binckhorst. Therefore, in the data set
for Utrecht OZ, many more compositions exist of one train unit only, which means the constraint
stating that train units belonging to the same composition must be parked on the same track often
does not apply. This constraint increases the number of reallocations, since in practically all cases
a reallocation can be prevented by assigning a different track to one of the train units involved

61

Figure 7.9

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0

2

4

6

8

Instance set (denoted by number of arriving events)

A
ve

ra
g
e

n
u

m
b

er
of

re
al

lo
ca

ti
on

s
Average number of reallocations TS-RG, Kleine Binckhorst and Utrecht OZ

KB couple

KB no couple

OZ

Figure 7.10

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

500

1,000

1,500

2,000

1,800

Instance set (denoted by number of arriving events)

A
ve

ra
ge

co
m

p
u

ta
ti

on
ti

m
e

(s
)

Average computation times TS-RG, Kleine Binckhorst and Utrecht OZ

KB couple

KB no couple

OZ

62

in a crossing, as can be seen from the results for the model without including constraints (4.80)
(the red line). It must be noted that we do not find a solution in all cases before we run out
of computation time, so we might not be able to find a solution with zero reallocations for these
instances, or any solution at all. When excluding constraints (4.80), we find a solution before we
run out of computation time in slightly more instances as well.

The longer computation times can also partly be explained by this different number of services.
Solving the model without constraints (4.80) can generally be done much faster as can be seen from
the green line in figure 7.9. The longer computation times can also be caused by the difference in
the number of matching patterns that exist for the different data sets. Since in the data set for
Utrecht OZ many more different train types are used than in the data set for Kleine Binckhorst as
discussed in chapter 6, the number of possible matching patterns is a lot smaller than for Kleine
Binckhorst. Therefore, solving the basic model without crossing constraints and without having
fixed a matching yet can be done much faster for instances in the data set for Utrecht OZ.

63

Chapter 8

Discussion

Several limitations apply to the model and our results as discussed in the previous chapters. First
of all, the results for the OPG and SAR methods where obtained using different hard- and soft-
ware than the results for TS-RG, which means the results are not one on one comparable. This
is particularly relevant for the computation times and since the limited computation time played
a role in all instances for which we did not find a feasible solution, this could influence our re-
sults and findings. When comparing results of the different methods it should also be noted that
TS-RG does not fully exploit the shunting yard layout of Kleine Binckhorst. The yard consists
partly of free tracks, which we use as LIFO tracks. This limits the routing possibilities and can
thus increase the number of iterations and reduce the number of feasible solutions found. However,
modelling free tracks enlarges the constraint matrix, which can increase computation times as well.

As mentioned in the introduction of chapter 4, our method does not take into account the or-
der of reallocations in a time window. Crossings can occur in the particular case that two train
units with the same arrival and departure track are reallocated at the same time. Only one re-
allocation order is possible (namely the last train unit to arrive on the arrival track should be
reallocated first), while at departure from the departure track a different reallocation order could
be required. We assume we can always feasibly order the reallocations in a time window, but this
example shows this might not always be the case. As our formulation only considers one track at
a time when assessing feasible routing, we do not prevent such cases in our formulation and thus
our results could contain infeasibilities.

Furthermore, we assume a fixed moving time for all movements in a shunting yard, even though
some routes can be more time consuming than others. We use the average moving time. It can
therefore be the case that in some time windows, the cumulative moving time of all train units
moved in this window is larger than the the actual time available, which makes our solution infea-
sible. On the other hand, when moving times in a time window are below average, the number of
reallocations we allow in this window can be too limited, possibly resulting in cases where we can-
not find a feasible solution even though one does exist. Besides this, we allow only one movement
at a time in the shunting yard. However, in case their routes do not have overlapping segments,
train units are allowed to move simultaneously in the yard. Incorporating this could increase the
number of feasible solutions found.

Lastly, our routing only considers connections between tracks and available track length. Routing,
however, is also dependent on the operation of switches. Operating switches takes time, and in
some reallocation windows switches might have to be used in more than one setting. This might
not always be doable within the given time constraints. Our model lacks the incorporation of
switches and the time needed to change them. Therefore, some of our solutions might turn out to
be infeasible.

64

Chapter 9

Conclusion

We formulated the TUSP-R as an MIP in which each train unit is allowed to be reallocated once
during its stay in the shunting yard. Furthermore, multiple extensions to adapt the MIP to spe-
cific shunting yard layouts and data characteristics are provided. Since we are dealing with an
NP-hard problem, straightforwardly solving the MIP using cplex only results in optimal or even
feasible solutions for very small problem instances. Although delayed row generation of the cross-
ing constraints provided a small reduction of the computation times and increase of the number of
solutions found for data set Utrecht OZ, the results were not satisfactory. When simply generating
rows that correspond to crossings, the feasible region is still very large.

To more smartly search the solution space and to lower the computation times, a tabu search-row
generation heuristic was proposed. In this heuristic, the problem is solved without the crossing
constraints and when a solution is found, the current matching is fixed, which greatly reduces the
feasible region of the problem. For this matching, we apply delayed row generation of the crossing
constraints and if a feasible solution exists for the current matching pattern, the solution method
will find it. If not, the fixed matching is discarded and elements of the matching pattern that were
most often involved in crossings are prohibited when solving the model without crossing constraints
again. This iteration will be faster, since the number of matching patterns in the solution space is
reduced considerably.

The results of this tabu search-row generation heuristic are very good compared to straightfor-
wardly solving the MIP and only applying row generation to the MIP. Computation times are
reduced considerably and for real life problem instances as in data set Utrecht OZ, a feasible so-
lution can always be found. However, this solution is not optimal, thus more reallocations than
strictly needed will need to be performed. For the smaller artificial instances in Kleine Binckhorst,
our method outperformed OPG and all problem instances were solved, as was the case for SAR
as developed in [3]. However, for larger sized problem instances in this data set, the computation
time always exceeded acceptable limits so the method was cut short and no solution was found.
Interestingly, a solution could be found within time limits for similar sized instances in Utrecht OZ.

Closer investigation learned the excessive computation times were caused by the relatively large
amount of time needed to calculate the first matching and track assignment when solving the
model without crossing constraints. The subsequent iterations were considerably less time con-
suming with respect to this first step in the solution process. Instances for Kleine Binckhorst
were characterized by relatively fewer services, meaning that more train units arrive as part of a
composition. The requirement to park these units on the same track lead to less parking freedom
and complexer problems. Furthermore, generally more reallocations are required to find a feasible
solution which complicates and thus extends the solution process as well. Since it turned out that
a feasible solution could often be found for the first matching pattern, a predefined matching was
introduced to reduce the computation times. This predefined matching was obtained by solving
the Matching Problem as formulated in [9] using cplex for the instances in Kleine Binckhorst ;
for the instances in Utrecht OZ, we were provided with a predetermined matching. The reduction

65

in computation times was visible for the Utrecht OZ instances, but not for the Kleine Binckhorst
instances. We think this is caused by the difference in predefined matching that is used: we rather
arbitrarily choose a matching for Kleine Binckhorst, where for Utrecht OZ the matching is prob-
ably more smartly chosen by the planners. Since the data set for Kleine Binckhorst generally
contains instances with fewer different train types meaning more possible matching patterns exist,
the likelihood that we choose an unfavorable one where a more favorable one exists is greater as well.

Concluding, we can say that including the possibility of reallocation increases the chance of being
able to find a feasible shunt plan for a given problem instance. With the upcoming fleet expansion,
NedTrain should definitely include this in their planning tools. For smaller shunting yards with
smaller schedules, our model can be very useful in determining shunt plans; for larger instances,
Van den Broek’s SAR provides an outcome. For these instances, the tabu search-row generation
approach does not reduce the computation time of our NP-hard problem enough to be within
acceptable ranges. Our method performs best for problem instances with diverse train types and
relatively many different services on a LIFO style shunting yard layout. This keeps the size of the
constraint matrix of the initial problem without crossing constraints relatively small compared to
other types of problem instances.

9.1 Further Research

A real challenge proved to be modelling the specific shunting yard layouts and fully exploiting all
of their routing possibilities. Shunting yards do not simply consist of LIFO or free tracks. Some
structures do not provide for a connection between all tracks, unless some other parking track is
empty. Therefore, our formulation and other exact formulations in literature simplify the shunting
yard structure for general applicability of the models and for sake of simplicity. However, we believe
efficient modelling of such complicated structures can lead to a reduction of the number of realloca-
tions needed and an increase of the number of instances solved. Further research in smartly chosen
formulations is therefore essential for further development of exact solution methods, especially
when aiming to solve larger instances with relatively few services. For free tracks, the placement
of train units on tracks is also an important planning factor as mentioned in section 4.3. Research
should also be focused on finding smart ways to incorporate this element in the formulation.

Besides this, we think further development of our tabu search-row generation could benefit its
performance. Smartly chosen matchings can potentially reduce the computation time of the basic
model without crossing constraints and this allows for more iterations in the later steps of the
solution approach. We expect the more iterations we can do, the more solutions can be found.
On the other hand, it can also be interesting to switch between matching patterns sooner. If the
current fixed matching is expected to be infeasible already after a couple of crossing constraints
have been added, we might want to leave the current region of the solution space before having
fully searched this region. In our current results, for example, a matching pattern often turns out
to be infeasible if more and more crossings occur in the solution of each iteration, thus with every
set of crossing constraints we add to the model. When the number of crossings goes down as the
number of iterations goes up for a particular matching, we often do find a solution. However, these
are preliminary findings and further experiments should be conducted for verification.

Next, we assume that compositions consisting of multiple units are decoupled right after their
arrival at the shunting yard or coupled right before their departure from the yard. However, it
might be smart to couple or decouple at a different time, or if possible not couple and decouple at
all. The latter could be the case for train units both arriving and departing in the same service,
which means they can stay together throughout their entire stay in the shunting yard. This could
be very beneficial, since fewer reallocations would need to be performed since these train units
can be reallocated simultaneously as one composition. It must however be noted that this further
complicates the model as it would increase the number of variables and constraints.

To fully grasp the potential of our method compared to existing methods like OPG and SAR,

66

their performance should be evaluated for data set Utrecht OZ as well. Our simplified shunting
yard layout for Utrecht OZ was much more similar to the actual layout than was the case for
Kleine Binckhorst, meaning the results of the different methods can better be compared. We did
not include this in our research as the data were not readily available, but it can rather easily be
tested.

Lastly, it would naturally be very interesting to formulate the model such that multiple reallo-
cations per train unit are allowed. As stated before, we do not expect many train units to be
reallocated multiple times because of the limited time available for reallocations, but maybe one or
two repeatedly reallocated train units could improve the number of feasible instances. We do not
expect that in total many more reallocations would be executed in this option. Perhaps even less,
as it could lead to a different distribution of reallocations over the train units. Certain matching
elements could be reallocated multiple times, where others would not be reallocated at all. How-
ever, further research is needed to verify this hypothesis. Please note that incorporating multiple
reallocations would increase the dimensions of the constraint matrix considerably. Therefore, we
expect even more excessive computation times when applying the solution methods in this thesis
to a model which allows for multiple reallocations per train unit, especially for larger sized problem
instances.

67

Bibliography

[1] Benders, J. F. Partitioning procedures for solving mixed-variables programming problems.
Numerische Mathematik 4, 1 (1962), 238–252.

[2] Blasum, U., Bussieck, M. R., Hochstättler, W., Moll, C., Scheel, H.-H., and
Winter, T. Scheduling trams in the morning. Mathematical Methods of Operations Research
49, 1 (1999), 137–148.

[3] Broek, R. W. van den. Train shunting and service scheduling: an integrated local search
approach. Master’s thesis, Utrecht University, 2016.

[4] Cornelsen, S., and Di Stefano, G. Track assignment. Journal of Discrete Algorithms 5,
2 (2007), 250–261.

[5] DePuy, G. W., and Taylor, G. D. Using board puzzles to teach operations research.
INFORMS Transactions on Education 7, 2 (2007), 160–171.

[6] Di Stefano, G., and Koči, M. L. A graph theoretical approach to the shunting problem.
Electronic Notes in Theoretical Computer Science 92 (2004), 16–33.

[7] Fioole, P.-J., Kroon, L., Maróti, G., and Schrijver, A. A rolling stock circula-
tion model for combining and splitting of passenger trains. European Journal of Operational
Research 174, 2 (2006), 1281–1297.

[8] Flake, G. W., and Baum, E. B. Rush Hour is PSPACE-complete, or “Why you should
generously tip parking lot attendants”. Theoretical Computer Science 270, 1 (2002), 895–911.

[9] Freling, R., Lentink, R. M., Kroon, L. G., and Huisman, D. Shunting of passenger
train units in a railway station. Transportation Science 39, 2 (2005), 261–272.

[10] Gallo, G., and Miele, F. D. Dispatching buses in parking depots. Transportation Science
35, 3 (2001), 322–330.

[11] Glover, F. Future paths for integer programming and links to artificial intelligence. Com-
puters & Operations Research 13, 5 (1986), 533–549.

[12] Guignard, M., and Kim, S. Lagrangean decomposition: A model yielding stronger La-
grangean bounds. Mathematical Programming 39, 2 (1987), 215–228.

[13] Haahr, J. T., Lusby, R. M., Larsen, J., and Pisinger, D. Simultaneously recovering
rolling stock schedules and depot plans under disruption. In 13th Conference on Advanced
Systems in Public Transport (2015).

[14] Haahr, J. T., Lusby, R. M., and Wagenaar, J. C. A comparison of optimization
methods for solving the depot matching and parking problem. ERIM Report Series Research
in Management ERS-2015-013-LIS, Erasmus Research Institute of Management, 2015.

[15] Hartog, M. Shunt planning: an integral approach of matching, parking and routing. Master’s
thesis, University of Twente, 2010.

[16] Hearn, R. A. The complexity of sliding-block puzzles and plank puzzles. In Tribute to a
Mathemagician. A K Peters, 2004, pp. 173–183.

68

[17] Hearn, R. A., and Demaine, E. D. The nondeterministic constraint logic model of com-
putation: reductions and applications. In International Colloquium on Automata, Languages,
and Programming. Springer, 2002, pp. 401–413.

[18] Kaufman, L., and Broeckx, F. An algorithm for the quadratic assignment problem using
Bender’s decomposition. European Journal of Operational Research 2, 3 (1978), 207–211.

[19] Kroon, L. G., Lentink, R. M., and Schrijver, A. Shunting of passenger train units:
An integrated approach. Transportation Science 42, 4 (2008), 436–449.

[20] Lentink, R. M. Algorithmic decision support for shunt planning. PhD thesis, Erasmus
University Rotterdam, 2006.

[21] Lentink, R. M., Fioole, P.-J., Kroon, L. G., and Woudt, C. van ’t. Applying oper-
ations research techniques to planning of train shunting. In Planning in Intelligent Systems.
John Wiley Sons, Inc., 2006, pp. 415–436.

[22] Mitchell, J. E. Branch-and-cut algorithms for combinatorial optimization problems. In
Handbook of Applied Optimization. Oxford University Press, 2000.

[23] Peeters, M., and Kroon, L. Circulation of railway rolling stock: a branch-and-price
approach. Computers & Operations Research 35, 2 (2008), 538–556.

[24] Rijn, J. N. van. Rush Hour is PSPACE-complete. Tech. rep., Leiden Institute of Advanced
Computer Science, 2011.

[25] Winter, T., and Zimmermann, U. T. Real-time dispatch of trams in storage yards. Annals
of Operations Research 96, 1-4 (2000), 287–315.

69

Appendix A

Notation

In this appendix, we give an overview of the decision variables that are used in the different
formulations. Sets and parameters that do not occur in the overview in tables 3.1 and 3.2 are also
displayed.

A.1 Overview variables initial formulation

The following variables and definitions are used in the formulation in section 4.1:

· xt,f =

{
1 if train unit t ∈ T+ is is assigned to track f ∈ F (so xt = 1),

0 otherwise;

· xt,u,f,g =

1 if arriving train unit t ∈ T+ is matched to departing train unit u ∈ T−

with (t, u) ∈ L and the arrival track is f ∈ F and the departure track is
g ∈ F (so xt,f = 1 and xu,g = 1),

0 otherwise;

· yt,u,f,g,z=

1 if arriving train unit t ∈ T+ is matched to departing train unit u ∈ T−

with (t, u) ∈ L, the arrival track is f ∈ F and the departure track is g ∈ F
(so xt,f = 1 and xu,g = 1), and is reallocated between event z − 1 and z,
z ∈ T

0 otherwise;

· bf,t cumulative length of train units on track f ∈ F right after event t ∈ T ;

· αt,u,f arrival time of arriving train unit t matched to departing train unit u, (t, u) ∈ L,
on track f ∈ F ;

· δt,u,f departure time of arriving train unit t matched to departing train unit u, (t, u) ∈ L,
from track f ∈ F .

A.2 Overview variables final formulation

The following variables are used in the formulation in section 4.2:

· xt,f =

{
1 if train unit t ∈ T+ is is assigned to track f ∈ F (so xt,f = 1),

0 otherwise;

· x1t,u,f =

1 if arriving train unit t ∈ T+ is matched to departing train unit u ∈ T−
and the arrival track is f ∈ F (so xt = 1),

0 otherwise;

70

· x2t,u,f =

1 if arriving train unit t ∈ T+ is matched to departing train unit u ∈ T−
and the departure track is f ∈ F (so xu,f = 1),

0 otherwise;

· mt,u,z =

1 if arriving train unit t ∈ T+ is matched to departing train unit u ∈ T−
and moved to its departure track between event z − 1 and z,1

0 otherwise;

· γt,u =

1 if train unit t matched to train unit u, (t, u) ∈ L reallocates during its
stay in the shunting yard,

0 otherwise;

· γt,u,f =

1 if train unit t matched to train unit u, (t, u) ∈ L reallocates from or to
track f during its stay in the shunting yard,

0 otherwise;

· bf,t cumulative length of train units on track f ∈ F right after event t ∈ T .

A.3 Overview notation extensions

The following variables, definitions, parameters, and sets are used in the problem extensions in
section 4.3:

· αt,u,f arrival time of arriving train unit t matched to departing train unit u, (t, u) ∈ L,
on track f ∈ F ;

· δt,u,f departure time of arriving train unit t matched to departing train unit u, (t, u) ∈ L,
from track f ∈ F ;

· φt =

{
0 if train unit t ∈ T arrives or departs via the A-side,

1 if train unit t ∈ T arrives or departs via the B-side;

· ψ1
t,u =

0 if train unit t ∈ T+ matched to train unit u ∈ T− departs via the A-side

during reallocation,
1 if train unit t ∈ T+ matched to train unit u ∈ T− departs via the B-side

during reallocation;

· ψ2
t,u =

0 if train unit t ∈ T+ matched to train unit u ∈ T− arrives via the A-side

during reallocation,
1 if train unit t ∈ T+ matched to train unit u ∈ T− arrives via the B-side

during reallocation;

· qf maximum length for a train unit to be assigned to track f ∈ F ;

· n∗f,g,z maximum length for a train unit reallocating between track f and g, f, g ∈ F
between event z and z − 1, z ∈ T ;

· O the set of all pairs of tracks f, g ∈ F with a fixed maximum train unit length to
reallocate from track f to g;

· J the set that contains all routes between all possible pairs of tracks f and g such that
(f, g) /∈ O;

· Jf,g the set that contains all routes between track f and g such that (f, g) /∈ O, Jf,g ⊂ J ;

· Fj the set that contains for a route j ∈ J the parking tracks h ∈ F that are used in
this route, Fj ⊂ F ;

1Note that mt,u,t = 1 implies that a train unit is never reallocated: it is moved to its departure track at time
t, which means the arrival track and departure track are the same.

71

· dj,h the length of the part of the train unit that does not need to enter track h ∈ F
when reallocating via route j ∈ J ;

· ej =

nf,g if route j ∈ Jf,g does not use any parking tracks when reallocating, but
only uses the diagonal track as in the original formulation,

0 otherwise;

· rj,z the maximum allowed reallocation length of route j ∈ J when reallocating between
event z − 1 and z, z ∈ T ;

· sj,z =

nf,g if the maximum train unit reallocation length for a time z ∈ T is equal to
at least rj,z, j ∈ J ,

0 otherwise;

· at the train service in which train unit t ∈ T arrives at or departs from the shunting
yard;

· A set of pairs of train units t and t + 1, (t, t + 1) ∈ T 2, that arrive or depart in the
same train service, that is at = at+1;

· T c set of train units that arrive or depart in a composition of multiple train units;

· T c+ set of arriving train units that arrive in a composition of multiple train units;

· T c− set of departing train units that depart in a composition of multiple train units;

· χt the earliest allowed reallocation time for arriving train units, so t ∈ T c+, and the
latest allowed reallocation time for departing train units, so t ∈ T c−;

· ct the length of the composition train unit t ∈ T is a part of;

· FD set of tracks that are directly accessible from the diagonal track, FD ⊂ F ;

· FN set of tracks that are not directly accessible from the diagonal track, FD ⊂ F .

72

Appendix B

MIP formulation used for
obtaining the computational
results

The linearized version of the MIP formulation in this section is used to obtain the computational
results in this thesis.

Minimize:

∑
(t,u)∈L

γt,u

Subject to:

∑
f∈F

xt,f =1 ∀t ∈ T

∑
u:

(t,u)∈L

x1t,u,f =xt,f ∀t ∈ T+, f ∈ F

∑
t:

(t,u)∈L

x2t,u,f =xu,f ∀u ∈ T−, f ∈ F

∑
f∈F

x1t,u,f =
∑
f∈F

x2t,u,f ∀(t, u) ∈ L

γt,u,f =
∣∣x1t,u,f − x2t,u,f ∣∣ ∀(t, u) ∈ L, f ∈ F∑

f∈F

γt,u,f ≤2γt,u ∀(t, u) ∈ L

γt,u ≤
1

2

∑
f∈F

γt,u,f ∀(t, u) ∈ L

∑
z∈T
t<z≤u

mt,u,z =γt,u ∀(t, u) ∈ L

∑
z∈T
t≤z≤u

mt,u,z =
∑
f∈F

x1t,u,f ∀(t, u) ∈ L

73

mt,u,zxu,f + xt′,f −
∑

u′∈T−:
(t′,u′)∈L,
u′<u

∑
z′∈T :

t′≤z′≤u′

mt′,u′,z′

−
∑

u′∈T−:
(t′,u′)∈L,
u′>u

∑
z′∈T :
t′<z′≤u

mt′,u′,z′ ≤1 ∀(t, u) ∈ L, z ∈ T : t ≤ z ≤ u,

t′ ∈ T+ : z ≤ t′ < u, t′ 6= t, f ∈ FD

mt,u,zxu,f + xt′,f −
∑

u′∈T−:
(t′,u′)∈L,
u′<∗u

∑
z′∈T :

t′≤∗z′≤∗u′

mt′,u′,z′

−
∑

u′∈T−:
(t′,u′)∈L,
u′>∗u

∑
z′∈T :

t′<∗z′≤∗u

mt′,u′,z′ ≤1 ∀(t, u) ∈ L, z ∈ T : t ≤ z ≤ u,

t′ ∈ T+ : z ≤∗ t′ <∗ u, t′ 6= t, f ∈ FN

mt,u,zxu,f + xu′,f −
∑
t′∈T+:

(t′,u′)∈L,
t′>u

∑
z′∈T :

t′≤z′≤u′

mt′,u′,z′

−
∑
t′∈T+:

(t′,u′)∈L,
t′<u

∑
z′∈T :
t′≤z′≤z
u<z′≤u′

mt′,u′,z′ ≤1 ∀(t, u) ∈ L, z ∈ T : t ≤ z ≤ u,

u′ ∈ T− : u′ > u, f ∈ FD

mt,u,zxu,f + xu′,f −
∑
t′∈T+:

(t′,u′)∈L,
t′>∗u

∑
z′∈T :

t′≤∗z′≤∗u′

mt′,u′,z′

−
∑
t′∈T+:

(t′,u′)∈L,
t′<∗u

∑
z′∈T :

t′≤∗z′≤∗z
u<∗z′≤∗u′

mt′,u′,z′ ≤1 ∀(t, u) ∈ L, z ∈ T : t ≤ z ≤ u,

u′ ∈ T− : u′ >∗ u, f ∈ FN

mt,u,zxt,f + xt′,f −
∑

u′∈T−:
(t′,u′)∈L,
u′<z

∑
z′∈T :

t′≤z′≤u′

mt′,u′,z′

−
∑

u′∈T−:
(t′,u′)∈L,
u′≥z

∑
z′∈T :
t′<z′≤z

mt′,u′,z′ ≤1 ∀(t, u) ∈ L, z ∈ T : t < z ≤ u,

t′ ∈ T+ : t < t′ < z, f ∈ FD

mt,u,zxt,f + xt′,f −
∑

u′∈T−:
(t′,u′)∈L,
u′<∗z

∑
z′∈T :

t′≤∗z′≤∗u′

mt′,u′,z′

−
∑

u′∈T−:
(t′,u′)∈L,
u′≥∗z

∑
z′∈T :

t′<∗z′≤∗z

mt′,u′,z′ ≤1 ∀(t, u) ∈ L, z ∈ T : t < z ≤ u,

t′ ∈ T+ : t <∗ t′ <∗ z, f ∈ FN

mt,u,zxt,f + xu′,f −
∑
t′∈T+:

(t′,u′)∈L,
t′≥z

∑
z′∈T :

t′≤z′≤u′

mt′,u′,z′

−
∑
t′∈T+:

(t′,u′)∈L,
t′<z

∑
z′∈T :
t′≤z′≤t
z≤z′≤u′

mt′,u′,z′ ≤1 ∀(t, u) ∈ L, z ∈ T : t < z ≤ u,

u′ ∈ T− : u′ > z, f ∈ FD

74

mt,u,zxt,f + xu′,f −
∑
t′∈T+:

(t′,u′)∈L,
t′≥∗z

∑
z′∈T :

t′≤∗z′≤∗u′

mt′,u′,z′

−
∑
t′∈T+:

(t′,u′)∈L,
t′<∗z

∑
z′∈T :

t′≤∗z′≤∗t
z≤∗z′≤∗u′

mt′,u′,z′ ≤1 ∀(t, u) ∈ L, z ∈ T : t < z ≤ u,

u′ ∈ T− : u′ >∗ z, f ∈ FN

bf,0 =0 ∀f ∈ F

bf,t−1 + vtktxt,f +
∑

(t′,u′)∈L:
t′<t≤u′

xu′,fmt′,u′,tkt

−
∑

(t′,u′)∈L:
t′<t≤u′

xt′,fmt′,u′,tkt =bf,t ∀f ∈ F, t ∈ T

bf,t ≤lf ∀t ∈ T, f ∈ F
x1t,u,fxu,gkt ≤nf,g ∀(t, u) ∈ L, f, g ∈ F∑

(t,u)∈L:
t<z≤u

mt,u,z ≤wz ∀z ∈ T

∑
u∈T−:
(t,u)∈L

∑
z∈T :
t<z<χt

mt,u,z =0 ∀t ∈ T c+

∑
t∈T+:
(t,u)∈L

∑
z∈T :

χt<z≤u

mt,u,z =0 ∀u ∈ T c−

ctxt,f ≤qf ∀f ∈ F
xt,f ∈ {0, 1} ∀t ∈ T, f ∈ F

x1t,u,f ∈ {0, 1} ∀(t, u) ∈ L, f ∈ F
x2t,u,f ∈ {0, 1} ∀(t, u) ∈ L, f ∈ F
mt,u,z ∈ {0, 1} ∀t, u, z ∈ T
γt,u,f ∈ {0, 1} ∀(t, u) ∈ L, f ∈ F
γt,u ∈ {0, 1} ∀(t, u) ∈ L
bf,t ≥ 0 ∀f ∈ F, t ∈ T

75

