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1 Introduction 
 

During the preparations of this analysis in late 2016, political events presented ample 

opportunity to observe how media may influence decision making in a democratic society. 

Influencing the opinion of US voters led to an unprecedented power shift in their country. 

After the US presidential elections in September 2016, the political landscape shifted from 

conventional to non-conventional and from predictable to unpredictable. Of course, not the 

media alone caused this political shift, but media echoed and multiplied populistic messages 

and thereby influenced election outcomes. Media are an excellent channel to report on past 

and present issues. However, media may also be used to predict future events. Predictability 

might enable democracies to foresee and in some cases, prevent specific political events in 

the future.  

More than anywhere else, predictability is a high valued asset in the financial world. Yet, the 

financial markets dynamics, too, are both reported and influenced by the media. Hence, media 

reporting could be a predictor to financial markets, considering its obvious impact elsewhere. 

Irrationality in markets has already been empirically shown in the behavioral finance 

literature. The notion of bringing news media into the predictor universe is therefore not that 

far-fetched. The question is: Does news text data have the potential to drive market returns? 

Retrieving information from text into quantifiable variables is likewise a barrier and 

opportunity to be mastered. The fact that information retrieval is quite imprecise is certainly 

a barrier because it is words and not numbers to be dealt with. Reducing imprecision could 

therefore enhance the opportunity that comes with the vast and ever growing amount of data 

stored in text.  

An important step to improve precision is to filter what is important. That is, ignoring those 

parts of the text that are irrelevant to what should be predicted. For any topic, large parts of 

a text are irrelevant. For example, when reading any text, only a fraction of what is written is 

of actual interest to a specific reader in a given moment. This fraction depends on the readers´ 

interest, one time we look for a quick overview and another time for detailed insights. Ignoring 

the rest of the text is easy for most humans but most tricky for algorithms. Now consider 

market returns: Which fraction of a news article is most prone to influence market participants 

and drive market returns? In an attempt to incorporate this fraction thinking into a text 
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processing model, a suitable approach is supervision. Supervision is the process of creating a 

connection between the independent variable and words, before text categorization happens. 

By doing so, irrelevant words are filtered out right from the beginning.  

For information retrieval, also known as text mining, a range of tools, broadly described as 

lexicon based and machine learning based approaches, can be used. Both approaches 

categorize words into topics. The latter does so by statistical indexing and the former with the 

help of predefined lexicons.  

The method chosen in this paper is a supervised machine learning approach. This tool, called 

Supervised Latent Semantic Indexing will be used to retrieve information from 35 thousand 

news articles from The New York Times, reporting on over 100 years of financial markets 

history. The resulting quantitative information will serve as a potential predictor for the Dow 

Jones Industrial Average. The aim of predicting the stock index is as ambitious as difficult 

because an entire range of other variables such as macroeconomics, momentum and sector 

metrics play a role.  

The remainder of this analysis will be structured as follows. First, related scientific work will 

be examined. The literature review will touch upon the topics of behavioral finance and the 

connection between finance, market sentiment and text mining. Machine learning based text 

mining and the basis for a supervision algorithm will be explored. In a subsequent 

methodology outline, the combination of supervision, automatic indexing and a predictive 

time series model will be set out. That section will refrain from technical details. Thereafter, 

the technical and programmatic side of the analysis is presented. It includes text pre-

processing and econometric peculiarities of time series modelling. Finally, results, alternative 

models and limitations will be presented. The conclusion section will conclude. 
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2 Literature Review 
 

The traditional approach to information retrieval is lexicon based text mining. Researchers in 

this domain are often linguists or psychologists, trying to disentangle text with sophisticated 

topic queries. A good example for such work is Lexicon-Based Methods for Sentiment Analysis 

(Taboada & et al., 2011). The authors describe a sentiment lexicon called Semantic Orientation 

Calculator (SO-CAL). Their method provides the polarity and strength of certain semantic 

patterns, mainly positive and negative polarization. In their paper, they describe a variety of 

steps and linguistic peculiarities for the creation of SO-CAL.  

To make their semantic lexicon as extensive as possible, the authors suggest two approaches. 

The first is to create the lexicon with seed words for a semantic direction and later take 

synonyms and antonyms for these seed words. The General Inquirer (Stone , Dunphy, Smith, 

& Ogilvie, 1966) and WordNet (Hu and Liu, 2004) are popular examples for lexicons that are 

created this way. The second approach is using automatic classifiers, where the classification 

algorithm is fed with seed words just like above and then searches for correlating words in a 

training set. This way, words that have similar frequency patterns across text documents are 

classified as synonyms. Reversely, if their frequency diverges, they are classified as antonyms. 

As this involves classification and training data, it is also known as machine learning approach 

to lexicon creation.  

Subsequently, intensification and negation are introduced to SO-CAL, as they pose a tricky 

part of lexicon based text processing. Both can have nested effects which can turn around the 

polarization of a text fragment. Finally, Taboada & et al. briefly comment on weighing 

schemes, which are important to the relative quantity of words used in text. Words that 

appear often are inflated when it comes to their impact on a semantic score. For this reason, 

they must be weighted down, otherwise they deteriorate model outcome. An important 

weighing scheme is called Term Frequency – Inverse Document Frequency (tf-idf) which will 

be discussed in depth in section 5.1.5 of this analysis.  

In text mining, the authors usually try to read out a variety of polarizations and semantic 

directions. The General Inquirer (Stone , Dunphy, Smith, & Ogilvie, 1966), for example has 77 

predetermined categories.  
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In this analysis, the direction of text mining is pointed towards financial markets and asset 

returns. Authors who deal with text mining with regard to asset returns, usually seek two 

directions: positive and negative. They refer to it as sentiment in the market.  

Sentiment can be broadly defined as collective buying or selling pressure which can emerge in 

short- and medium term horizons. Sentiment is mostly due to movements in macroeconomic 

fundamentals, which is a rather rational market reaction. However short term sentiment is 

often due to irrational and short sighted buying or selling behavior. This short horizon 

“chatter” about markets in the moment is assumed to be reflected in the news on a higher 

frequency than fundamentals. To provide a conceptual basis for sentiment in general, papers 

by Wurgler & Baker (2007) and Shleifer and Vishny (1998) are considered.  

Wurgler & Baker (2007) deal with sentiment in a top-down approach. They identify 

macroeconomic consequences and market dynamics resulting from irrational investor 

behavior and provide insights to quantifying the concept of sentiment. They start examining 

investor surveys and mood, then continue with trading quantities and capital flows. More 

specific figures are IPO- and insider trades as well as option implied volatility. Next, they 

construct an index out of the most reliable and available variables. These are trading volume, 

dividend premium, closed-end fund discounts, IPO data and new issues equity shares. 

Sentiment betas are calculated as coefficients of the sentiment index with stock returns. The 

stock picks range from safe and predictable to speculative and uncertain stocks. A central 

proposition is, that the latter are more likely to be subject to sentiment due to their nature. 

Because of a lack of information, uncertain stocks are prone to subjectivity in their valuation 

which leads to speculative and irrational buying behavior (DeLong, Shleifer, Summers and 

Waldmann, 1990). Finally, the proposition of high sentiment in uncertain stocks is confirmed 

empirically. Furthermore, high sentiment predicts relatively lower returns for speculative 

stocks compared to safe stocks Wurgler & Baker (2007).   

Shleifer and Vishny (1998) provide more insights on noise traders and arbitrageurs. Their work 

is important because it relativizes perfect arbitrage as defined in classic finance models. If 

perfect arbitrage was assumed in markets, no short-term sentiment would be present because 

it would be arbitraged away immediately. Shleifer and Vishny (1998) however describe 

situations where inflated security prices do not return to their fundamental value. During this 

period, arbitrage traders experience opportunity costs for an alternative investment or even 
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losses in case of a further price deterioration. Arbitrage traders face the pressure of 

performance based fund allocation. If their fund incurs temporary losses, investors might 

eventually withdraw money. Potentially profitable positions are then liquidated with a loss 

before they pay out. At the same time, only high volume arbitrage trades can bring asset prices 

back to their fundamental value. These trades are less likely to happen when the respective 

market participants have less funds available. Arbitrage trades in stocks whose fundamental 

value is difficult to estimate are even less likely to happen. These are the same stocks which 

are prone to sentiment trades in the first place (DeLong, Shleifer, Summers and Waldmann, 

1990). Arbitrage dynamics therefore plays a crucial role in market sentiment, making it much 

longer lasting than traditional models would suggest.   

Tetlock (2007) presents an analysis which links text mining to sentiment in stock markets. He 

analyses a column by The Wall Street Journal (WSJ) called Abreast of the Market. The 

methodology employed could be called a hybrid approach to text mining. This is because a 

lexicon based approach is used with the support of machine learning techniques. Text mining 

can be tackled in these two distinct ways. Tetlock uses The General Inquirer (GI) (Stone , 

Dunphy, Smith, & Ogilvie, 1966), the popular lexicon introduced above. GI software counts 

words and classifies them into 77 psychosocial categories. Each daily WSJ column over the 

period 1984 until 1999 has frequencies on each of these categories. Out of these variables, a 

media pessimism factor is constructed as follows. The extracted underlying media pessimism 

factor is a linear combination of the 77 GI categories. In order to capture the entire range of 

captured variation, Tetlock performs a Principal Component Analysis (PCA) on the term 

frequencies of all categories. With a PCA, several principal components are calculated, all are 

uncorrelated to each other by definition. Taking the first few strongest principal components 

from the PCA results in a lower-dimensional representation of the GI data. Here the author 

does not look for precise document representation but rather for a low-dimensional source 

of sentiment variation. In Tetlocks’ terminology, dimensions are the entire range of unique 

words appearing in all WSJ documents. These dimensions are in fact reduced twofold, first by 

categorizing them with the General Inquirer (lexicon based) and second by performing the 

Principal Component Analysis (machine learning based). Finally, the author uses only one 

principal component: the one that captures the highest variation in the underlying GI 

categories. This principal component turns out to have high loadings the GI categories 

pessimism and negativism, which is why it is called the media pessimism factor.  
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The pessimism factor enters a time series model predicting returns of the Dow Jones Industrial 

Average (DJIA), not disregarding a range of control variables such as past volatility, 

autocorrelation and a SMB variable. Small stocks are identified as being particularly prone to 

sentiment, having high loadings on the pessimism factor. This is because their ownership 

structure is more concentrated in individual investors, which are in turn more prone to 

irrational investment behavior. Tetlock finds that his pessimism factor indeed has a bigger 

impact on small stocks than on the market overall. This supports the statements about noise 

traders in Wurgler & Baker (2007). Tetlock´s sentiment index reasonably predicts market 

returns and could be subject to a trading strategy yielding 7.3% annual excess return. The 

same index is however not suitable to predict market volatility and the trading strategy does 

not consider trading costs. 

A second analysis on sentiment and media text is a plain lexicon based approach. Garcia (2012) 

uses a lexicon based text mining approach to extract positive and negative semantics from 

media text data. His working hypothesis is that the market will be more sensitive to news 

during recessions. The hypothesis rests upon research on subjects´ decision making abilities 

in different types of moods. It turns out that uncertainty and fear are collectively felt by 

traders during recessions and that this type of mood makes traders more prone to be 

influenced by media (Gino, Wood and Schweitzer, 2009). Garcia develops a sentiment index 

which he incorporates into a time series model predicting returns of DJIA. The text data used 

are two New York Times (NYT) columns which appear daily. Compared to other analyses, 

Garcia uses a relatively easy lexicon based approach, counting positive and negative words 

with a lexicon specified on finance jargon (McDonald, 2011). His sentiment index is the 

fraction of positive or negative words over all words of a column. The findings confirm the 

proposition that during recessions, investors buy more irrationally, therefore causing 

sentiment in the market which is measurable in news media text.  

The Garcia paper is important to this analysis because his dataset and the same stock index 

are used, however with an entirely different methodology.  

While lexicons and psychosomatic queries such as the General Inquirer can retrieve 

information on a specific topic, it is more difficult to perform a topic-unrelated information 

retrieval. A lexicon will return term frequencies on topics, but it will disregard how the same 

words can have different meanings in different phrase contexts. Creators of sophisticated 
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lexicons place great concern on this issue by working out things like negations, polarity flips, 

shift negation and intensifications (Taboada et al 2011). The core problem behind this issue in 

linguistics is called polysemy and synonymy. Polysemy means that in most languages many 

words have more than one meaning. Synonymy, as one might guess, is the fact that one topic 

can be described in myriads of different word combinations. These two linguistic issues are a 

major cause for poor precision in lexicon based text mining. Deerwester (1990) claims that 

Latent Semantic Indexing (LSI) is suitable to overcome these issues.  

Rather than manually sorting word groups into categories, in LSI, words are arranged into 

word clouds based on their occurrence patterns over documents. A document can include a 

number of words for a topic. Another document deals with the same topic but the author uses 

different wording to describe it. When many documents revolve around the same topic, 

however, specific words occur together often. These word clouds are referred to as latent text 

structure. To detect latent text structure, the authors employ a method called two mode 

factor analysis, which has the advantage that it creates representations of both the documents 

and the words in a text. Two mode factor analysis is also known as Singular Value 

Decomposition (SVD), almost the same dimensionality reduction technique as PCA (used in 

Tetlock, 2007). Deerwester describes it in the context of LSI as a method to derive 

uncorrelated (orthogonal) concepts which reasonably represent the underlying variables. 

While the original corpus can easily have several thousand dimensions, the number 

dimensions representing it after the SVD can be a few hundred or less. The author 

recommends to employ a higher dimensional representation of several hundred concepts to 

enhance precision. He goes on testing the LSI method with two text datasets against a lexicon 

and achieves better or equal performance on information retrieval. In these tests, an 

impoverished version of LSI is being used for demonstrational purposes. Impoverished in the 

sense that common text mining instruments such as stemming, sparse terms deletion and 

stop word deletion are not yet used. Drawbacks of LSI are that it typically needs large amounts 

of data to yield generalizable outcomes. Furthermore, it does not perform very well on noisy 

text data.  

LSI can be used to make a lower dimensional representation of text. It can also be used to look 

for specific word clouds and their impact on an external variable. However, in its classical 
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application, always the entire text corpus is taken into account by LSI, while only parts of it 

might be of interest regarding an external variable.  

An extension for a more channeled use of LSI is introduced by Bair et al. (2006). The authors 

come from the field of DNA biology and seek to predict survival rates of cancer patients based 

on characteristics in their DNA. They use gene expression measurements from DNA 

microarrays. More generally, the authors deal with the problem of predicting a variable with 

predictors whose quantity is much larger than the number of observations of it. Bair et al. also 

assume that many underlying gene characteristics are uncorrelated with survival rates. A large 

part of their variable set is thus noise which deteriorates meaningful conclusions from 

predicted characteristics. These DNA biologists face the same noise problem described above: 

In text mining, one can run into document quantity limitations while having a large set of terms 

and redundant text structure. 

Bair et al. introduce an augmented form of Principal Component Analysis (PCA) which they 

call Supervised Principal Component Analysis (SPCA). It has useful implications for the 

exploration of latent semantic structures, too, specifically with the aim of prediction. The 

underlying procedure is simple. Before performing PCA, the matrix of independent variables 

is reduced to only those variables that are correlated with the dependent variable. Any 

variables whose absolute linear univariate coefficient with the dependent variable is less than 

some cutoff value are left out. PCA is then performed only with the reduced set of 

independent variables. Bair fits only the largest principal component into a regression model. 

Compared to other, more sophisticated methods, the authors find SPCA to be performing 

equally well or better, given its relative simplicity. 
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3 Model Outline 
 

The following section provides an overview to the entire methodology to illustrate the step-

wise approach that was taken. Not one part of the methodology is most important, but the 

process and combination as a whole. This overview is also important to embed more specific 

research hypotheses into the methodological context. These hypotheses will be formulated 

after this section. Two directions of research questions motivated this analysis. Not only the 

general relationships between news media and index returns are explored but also the benefit 

of supervision, which will be explained directly after this introduction.  

RQ 1: Does news text data consist of detectable latent semantic structures which are potential 

predictors for the market? 

RQ 2: Does supervision enhance the detection of relevant latent semantic structures which are 

potential predictors for the market? 

The following methodology assembles several concepts from the literature into one 

framework, which is best described as Supervised Latent Semantic Indexing in combination 

with a time series regression model. Figure A provides a graphical guidance through five steps 

of this framework with each step explained separately in the following paragraphs.  
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Figure A: Flow- Chart of Supervised Latent Semantic Indexing and Time Series Modelling  
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Step 1: Document Collection, Supervision and Cross – Validation 

The first step taken is the quantification of a large collection of financial news text documents. 

The occurrence or frequency of every unique term in any of the text documents is counted. 

The result is called term frequency per document. Since the news documents appear daily, 

every term is turned into a daily variable through its term frequency. Market index returns are 

also reported daily, which enables matching news document to every return observation. 

Every term is then related to the index returns by calculating a linear univariate regression 

coefficient between its frequency and the market returns. Terms with absolute coefficients 

close to zero have low correlation with the index returns, implying that their frequency is 

irrelevant to the market returns. These terms are left out of further analysis, providing a 

restriction to the text information at an early stage. This restriction is called supervision.  

Supervision happens in ten stages, also known as ten-fold cross-validation. On every stage, 

the term coefficient threshold for the term to enter further analysis is set higher. This is 

because it is unknown how high the threshold should be for an optimal filtering of relevant 

terms. At every cross-validation stage, a specific number of terms enters the following steps 

of the model. These following steps are thus calculated ten times in a parallel fashion, resulting 

in ten sub-models in any step. The ten “filtering” stages are also referred to supervision 

strength because restriction through supervision gets stronger with every cross-validation 

stage. The effectiveness of supervision in text analysis and prediction is uncertain. For this 

reason, it is subject to a separate research question and hypothesis. 

Any methodological steps taken regarding text data, term frequencies, cross-validation and 

supervision strength are derived in detail in sections 4, 5.1 and 5.2. 

 

Step 2: Latent Semantic Indexing 

Subsequently, text data is reorganized into the form of a term-document matrix. The collection 

of text documents is displayed in a matrix where documents are in the row names, terms are 

in the column names and the cells contain the corresponding term frequencies per document. 

This matrix only contains those terms in the columns that are not filtered in during supervision.  
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Latent Semantic Indexing (LSI) is then applied to the term-document matrix. As touched upon 

earlier, Latent Semantic Indexing is a two-mode factor analysis, designed to reduce the 

dimensionality of the text data. For the term-document matrix, the document dimensions are 

the terms because every document has a number of terms it is made of. LSI creates alternative 

dimensions whose quantity is smaller than the number of terms and documents, respectively. 

The result is a lower-dimensional representation of the term-document matrix. These 

dimensions are called concepts and they represent mentioned latent text structures with 

concentrated information out of the underlying text. The concepts might contain channeled 

and concentrated information from news media. This information might drive market index 

returns when it is relevant to buying and selling behavior.  

Documents have loadings on concepts, indicating how much of the corresponding 

informational channel is present in each document. Document loadings are processed in the 

following Step 3. A detailed derivation of the term-document matrix, Latent Semantic Indexing 

and a discussion about concepts is presented in section 5.1, 5.2 and 5.3.  

 

Step 3 and 4: Prediction through Document Loadings as Independent Variables  

After performing SLSI (Steps 1 and 2), document loadings are used as independent variables 

in a linear time series regression model to predict index returns. On any given day, the index 

returns might be related to some concept, or informational channel, being prevalent in that 

day´s news text. Theoretically, some concepts could be associated with particularly high or 

low returns and could thus be used to predict them. The document loadings enter the linear 

time series regression together with autoregressive terms from the index returns, serving as 

correction variables. The quality of this model is judged by letting it predict index returns out 

of sample. This test set consists documents that have not entered SLSI. Index return prediction 

with out-of-sample documents is evaluated by how far predicted returns deviate from the 

actual returns. Mean prediction errors give indication about the model´s accuracy. Note, that 

every model is calculated ten times, one time for each supervision strength stage (Step 1). This 

implies multiple prediction errors whose distribution depends on the supervision strength. 

The set of prediction errors is subject to the second research question which puts them in 

relation to supervision strength.  
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Furthermore, out-of-sample testing happens in two different text samples. This is of minor 

importance at this point but will later serve as robustness test. If concepts are extracted from 

a different text sample than they are tested on, the outcome of such testing gives information 

on the generalizability of these concepts. Generalizable concepts imply sample-independent 

text structure. Similar prediction errors on two different test samples point toward 

generalizable concepts.  

The time series model and testing schemes are derived section 5.2 and 5.3.  

 

Step 5: Concept representation by Word Clouds 

Apart from predictability, a qualitative method called word clouds is used to illustrate the 

informational topic of chosen concepts. Word clouds are graphs that print words of higher 

numerical importance bigger. An example is printed on the cover if this paper. Concepts, 

whose document loadings are significant in time series models with low prediction errors 

contain significant concentrated information. Terms that occur in these concepts carry their 

information and are therefore displayed in a word cloud. Section 6.6 provides more detail.  

 

Research Hypotheses 

Four research hypotheses are formally tested with the described methodology:  

H1: There is a detectable correlation between document concept loadings from news text 

media and market index returns.  

H2: Document concept loadings from news text media can serve as predictors for market index 

returns.  

H3: Supervision improves model prediction when tested on the same text sample source. 

H4: Supervision improves model prediction when tested on a different text sample source. 
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4 Data 
 

4.1 Text Data  
 

The news media text dataset is a collection of columns from the New York Times (NYT) and 

the Wall Street Journal (WSJ). These columns are available in the newspapers archives all the 

way back to its origins in 1851 for the NYT and until mid-1980 for the WSJ.  

For the NYT, two financial columns were published in the daily print continuously until the 

present. These two columns, called “Financial Markets” and “Topics in Wall Street” have long 

been viewed as the most read financial columns in the world. Both columns are around 700-

900 words long and have the purpose of summarizing the market dynamics on that day with 

a clear focus on finance, industry and macroeconomics. Compared to industry earnings 

announcements or market specific news, these daily briefings are more likely to contain 

semantic structures. The former will always be based on quantitative indicators wrapped in 

text. Columns however, package the market dynamics in words which also contain collective 

opinion about the present and the future. Collective, because the journalists that wrote the 

columns are not professional market analysts. They rather reproduce what the professionals 

tell them on a daily basis and from a wide range of opinions (Garcia, 2012). Most of the time 

span, these columns are only available as scanned pictures. Optical character recognition 

(OCR) was used to digitalize scanned text which is crucial to enable word counts. Before 1905, 

the quality of the scans was too poor to recognize characters correctly which is why the 

dataset starts in that year.  

The NYT dataset was collected originally by Garcia (2012) just like described above. It was 

taken over digitalized and time-stamped. It starts on the 4th of January 1905 and ends on the 

23rd of December 2015 which amounts to 35492 unique documents on trading days. For 

Garcia´s work, this large amount of data was certainly helpful but assumingly not crucial. 

Clearly, to this analysis it is. Due to the law of big numbers, automatic indexing such as SLSI 

works most reliably with large amounts of data, which makes the size of this dataset an 

enabler for this analysis. 

 The Wall Street Journal (WSJ) dataset is digitalized available on Factiva (Dowjones, 2017) and 

includes several columns that have the same purpose as the NYT columns and approximately 
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the same length. The ones covering most trading days are called “Abreast of the market” and 

“Business Finance”. The dataset starts on the 1st of January 1984 and ends on the 3rd of 

October 2016, amounting to 8486 unique documents on trading days. It is therefore too short 

to be used in SLSI. Here, it serves as cross-sample testing set, enabling a longer part of the NYT 

dataset to be used for training and providing test data from a different sample source.   

 

4.2 Market Index Data  
 

The default index used is the Dow Jones Industrial Average (DJIA) retrieved from the Center 

for Research in Security Prices (CRSP, 2016) during the last century. This index was the oldest 

stock index on the American market and the first worldwide. It is today comprised of the 30 

largest US companies. The DJIA´s components are not determined by performance metrics 

but rather by their public reputation, sustained growth and investor interest in a qualitative 

sense. The index does not include dividend payments and thus reflects only price movements 

based on buying and selling pressure (S&P Global, 2017). In many financial analyses, the 

authors use an index that represents a proxy to the market portfolio. The market portfolio in 

theory reflects all stocks that are traded in the market, which is considered diversified up until 

pure market risk. For such a portfolio, the S&P 500 is usually considered because it reflects a 

much larger percentage of the market compared to the DJIA. However, not the market 

portfolio is needed here, but rather the one that tracks the largest and most popular stocks. 

For this, the DJIA more suitable.  

It is also attractive because of its long-term availability. In fact, when using a supervised model 

together with a time series model the index must be available throughout the entire text data 

coverage. This is because the index (as of now being referred to as market index) is 

incorporated twice in this analysis. First, it is used for supervision by identifying correlations 

with term frequencies and second it is the dependent variable on which a time series model 

is fitted. The Dow Jones is the only financial index that exists this long. 
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5 Methodology 
 

Some details have intentionally been omitted in above´s outline. These are less important for 

an overview but vital to the specificity of this analysis. The following section will examine these 

details. First, the preprocessing of the New York Times and Wall Street Journal text dataset 

will be examined. Then, a brief, but more mathematical explanation to Supervised Latent 

Semantic Indexing will be given. Third, market index data will be explained including standard 

time series corrections. This section will conclude with a brief discussion of the number of 

concepts entering the time series regression model, as well as testing schemes of the same.  

 

5.1.1 Data Sorting 
 

Before being able to use the NYT dataset, it had to be cleaned and sorted. This is often taken 

for granted but it was very time consuming and therefore deserves a paragraph. 

The first challenge is, that the dataset sometimes shows multiple entries per day. Theoretically 

it should have one to three articles per trading day, depending on the time. Unfortunately, 

some other NYT columns got mixed into the dataset and were not clearly tagged. On top of 

that, most trading days in the earlier part of the dataset have more than three entries. From 

this, it is concluded that there might be copies of the same articles on the same trading day.  

In order to identify copies, the R-package stringdist (van der Loo, 2016) is used to calculate 

the text distance of two documents. The metric is based on how many single character edits 

would have to be made to change one text string to the other. This method is also known as 

Levenshtein-Method (Levenshtein, 1965) and gives a good indication whether two strings are 

equal. A straightforward indicator per two strings is calculated with the string distance divided 

by the sum of the character length of the two strings. Equal strings turn out to have an 

indicator of below 0.1. Unequal strings have an indicator of around 0.5 because it takes almost 

all characters to change an unequal string into another, which is around half of the sum of 

both if they have approximately the same length. With this procedure, around 3000 identical 

strings, thus copies were identified and deleted. After all, the above method is obsolete once 

a properly tagged dataset is available. Nevertheless, it is a handy approach to deal with messy 

text datasets and might add value to the text mining in general.  



20 
 

5.1.2 Preprocessing 
 

After the clear allocation to calendar dates and text columns, some preprocessing is being 

done, which is standard for any text-mining related work. Most of the preprocessing is an 

attempt to reduce noise in the data, which later deteriorates the actual outcome from it. The 

R-package tm (Feinerer and Hornik, 2015) for basic text mining does a good job for these 

general modifications. As of now, the collection of text documents is referred to as text corpus.  

First, stopwords are removed. Stopwords are non-indicative words such as what, she and yes.  

These words are unlikely to add semantic indication value to the data but are likely to add 

noise to the data. For this reason, stopwords are not desired and deleted. In order to define 

the words that are deleted, I use a list of stopwords from the SMART Information Retrieval 

System (Buckley, 1985). This list also includes negation words such as not, and neither. 

However, negation words add to a more pronounced polarization of a text, which is why I 

manually remove them from the original stopword list. Removing them from the stopword list 

means that they remain in the text (Appendix 1).  

Furthermore, punctuation, numbers and extra whitespace are removed and all words are set 

to lowercase. Doing so avoids that an uppercase word is counted separately from a lowercase 

word while being the same.  

Subsequently, Porter´s stemming algorithm (Porter, 1980) is applied to the data. Stemming 

reduces words to their word stem. It enables summarizing of two words that have the same 

meaning but different word application. For example, the words cancellation and cancel are 

very similar in terms of their linguistic meaning. The stemming algorithm reduces both words 

to cancel, enabling them to be counted as one word.  

 

5.1.3 Negation Tagging and Part-of-Speech 
 

It is generally possible to extend preprocessing by tagging, thereby categorizing certain words 

in various topics at this stage. However, doing so goes into the domain of lexicon based text 

mining. Therefore, only two, very straightforward tagging schemes are introduced here.  
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The first is to make more active use of negations and negative words. These words provide 

the option to tag other words as negated or negatively polarized words, based on their 

distance to a negation- or negative word in the text. In case economy appears one or two 

words after the word bad, it is likely that economy actually has a negative polarization. In order 

to acknowledge this polarization, its occurrence is measured separately from another, ‘non-

negative’ economy in the text. Here, this is being done by tagging it with the tag _neg at the 

end of the word. Tagging negatively polarized words artificially augments the number of 

unique words in the text corpus. Adding negative tagging constitutes an alternative corpus 

and model, whose relative quality will be judged in the result section.  

The second optional preprocessing stage is part-of-speech (POS) tagging. POS tagging classifies 

words into their grammatical meaning such as nouns, articles and verbs. POS-tagging, too 

could create a more nuanced text representation. It is possible to weigh term frequencies 

differently, depending on the terms´ POS-tag. The R-package NLP (Hornik, 2016) offers useful 

tools to do so, but it is computationally too slow to be implemented on the current corpus in 

this analysis. 

Having mentioned these steps, it is important to note that the Base Model of this analysis does 

not include them. Only an alternative model is tested with negation tagging.  

 

5.1.4 Word Count 
 

The occurrence of a term in the text, called term frequency is the quantitative metric this 

analysis is based on. First, the number of unique terms per document are counted (𝑡𝑓𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒) 

as well as the total number of occurrences of all terms in the clean document (𝑙𝑒𝑛𝑔𝑡ℎ𝑑𝑜𝑐). 

Term frequencies in the absolute form are biased for the length of the document they occur 

in. The more words a document contains overall, the higher is the probability for occurrence 

per word. To make term frequencies comparable across documents, absolute term 

frequencies must be converted into the ratio of term frequency over document length. 

Conversion is done by (1) on the document level.  

𝒕𝒇 =
𝒕𝒇𝒂𝒃𝒔𝒐𝒍𝒖𝒕𝒆

𝒍𝒆𝒏𝒈𝒕𝒉𝒅𝒐𝒄
×𝟏𝟎𝟎          (1) 
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The next variables are on a global basis, the number of documents in the corpus (𝒏_𝒅𝒐𝒄𝒔), the 

global term frequency (𝒕𝒇_𝒈𝒍𝒐𝒃) which is the overall occurrence of that term in the corpus and 

the global proportion of a word in the entire corpus (𝒕𝒇_𝒑𝒓𝒐𝒃𝒈𝒍𝒐𝒃).  

The latter (𝒕𝒇_𝒑𝒓𝒐𝒃𝒈𝒍𝒐𝒃) is an important variable helping to identify whether a term is a term. 

The algorithm does not know how a term looks like. It just counts the number of unique 

combinations of letters. In most cases these are indeed words but in sometimes they can be 

random combinations of letters such as stknfh. Random noise words can occur when a word 

has not been read properly by OCR or for other reasons. Unlike actual words, random noise 

words are unlikely to occur the same way very often. The variable 𝒕𝒇_𝒑𝒓𝒐𝒃𝒈𝒍𝒐𝒃  gives 

reasonable information about the nature of a word because if its value is very low, the word 

rarely occurs in the overall corpus. The benchmark value for a minimum 𝒕𝒇_𝒑𝒓𝒐𝒃𝒈𝒍𝒐𝒃 required 

is set at 0.0025. Any words occurring in less than 0.25% of all documents will be left out. This 

value was chosen after realizing that the number of unique terms increases rapidly for lower 

thresholds.  

 

5.1.5 Term Frequency Inverted Document Frequency 
 

The plain term frequency ratio 𝒕𝒇 represents a biased picture about the importance of a word 

in the overall text. Take for example the word York (of The New York Times). Since it is part of 

the name of the text source, it is likely to occur in the header of every document. Its global 

(overall) term frequency is thus quite high, which would give York a high importance in the 

model. York, however has no added value in terms of semantics because it occurs too often: 

Newspaper readers pay no attention to the newspaper name printed on every page.  

A word occurring in a large part of a document cannot serve as a semantic discriminator. It 

should be given a lower weight on its term frequency than one that occurs in less documents 

(Zhang et al., 2011).  This results from the assumption that words generally have so-called  

eliteness, which represents the relevance of the term any given topics (Robertson, 2004). The 

word York does not add to any topic except the title of the newspaper, so it has low eliteness. 

Another example could be the word economy which does add to the topic of economy; quite 

relevant for financial markets? Not really, because the known content of the columns at hand 

is financial markets. The word economy is thus likely to occur more often in such content and 
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has low eliteness, too. Suppose the text data was about contemporary art. There, economy 

might have a higher eliteness because contemporary art journalists care less about the 

economy and use the word less frequently.  

To correct for this phenomenon, words with a low eliteness are downgraded with a weighting 

scheme, which also upgrades words with a high eliteness on a relative basis. This weighting 

scheme is called term frequency inverse document frequency (tf_idf). It weights the term 

frequency based on the global occurrence of the word. The tf_idf weighting scheme is formally 

represented below.   

𝒕𝒇_𝒊𝒅𝒇 = 𝒕𝒇×𝐥𝐨𝐠 (
𝒏_𝒅𝒐𝒄𝒔

𝒕𝒇_𝒈𝒍𝒐𝒃
).                                  (2) 

In words, it means that the term frequency per document is multiplied with the logarithm of 

the ratio between the number of documents in the corpus and the global term frequency. 

𝑻𝒇_𝒊𝒅𝒇 is a standard weighting scheme for both lexicon based and machine learning based 

text mining (Zhang et al., 2011).  

 

5.1.6 Data Cast  
 

As mentioned, the above steps including data cleaning, preprocessing, word count and the 

weighing scheme are just setting the stage for the actual core of the analysis. The following 

variables will enter the actual SLSI. Date matches a word occurrence with its document date 

point. Term are the words in that document and 𝒕𝒇_𝒊𝒅𝒇 are the weighted term frequencies 

used as quantitative variable. From the long form data format the data will be casted into wide 

form, which is a more compact, less detailed, matrix format of data representation. This wide 

form is called term-document matrix (𝑻𝑫𝑴). 𝑻𝑫𝑴 has terms as column names and 

documents as row names. The cells are filled with 𝒕𝒇_𝒊𝒅𝒇. Any further steps are taken with 

𝑻𝑫𝑴. 
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5.2 Supervised Latent Semantic Indexing 
 

The following section derives what was briefly introduced in the framework outline. The term 

Supervised Latent Semantic Indexing (SLSI) has not been established in the literature and is 

used here merely to summarize a concept in a name. Parts of it were theoretically examined 

in the literature review. The two approaches Supervised Principal Component Analysis (SPCA) 

and Latent Semantic Analysis (LSA) are combined based on their common root which is a 

Singular Value Decomposition (SVD). The document corpus is involved in the form 𝑻𝑫𝑴 from 

preprocessing.  

 

5.2.1 Supervision Strength 
 

Supervision means the process of filtering words whose 𝒕𝒇_𝒊𝒅𝒇 have no correlation with the 

independent variable index returns. It thereby channels words and excludes irrelevant or 

insignificant words in the LSA training stage. The process can be described as guiding or 

supervising the indexing algorithm, which would otherwise take every word into account.  

For this purpose, linear univariate regression coefficients between the index return data and 

each term of 𝑻𝑫𝑴 (each term´s weighted frequency in the corpus) are calculated. The linear 

univariate regression formula has the following form:  

𝑹𝑫𝑱𝑰𝑨 = 𝜷×𝒕𝒇_𝒊𝒅𝒇𝒕𝒆𝒓𝒎 +  𝜺        (3) 

The coefficient 𝜷 gives information if a term´s weighted term frequency has correlation with 

the index data. The coefficients are taken in its absolute form |𝜷| because the direction of the 

correlation is irrelevant1 at this point. Based on |𝜷|, it is determined whether that particular 

term in 𝑻𝑫𝑴 stays, or is omitted. To determine what a minimum |𝜷| must be, for the term 

not to be omitted, the threshold 𝜽 is introduced. The distribution of |𝜷|over the word corpus 

can be examined as a density plot (Figure B).  

A ten-fold cross validation is employed which means that the model is entirely calculated with 

ten different thresholds 𝜽. Then, the model with the best prediction value is considered to 

                                                      
1 Making the estimate direction relevant (i.e. acknowledging positive and negative values) is a possible 
alternative model as described in section 5.7 
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have the best balance between quantity and relevance of words. The ten values of 𝜽 are a 

function of the distribution of |𝜷|, representing the deciles of the sample. Using deciles 

gradually and equally decreases the number of unique words with every higher 𝜽 threshold. 

With the highest 𝜽, the least words and with the lowest 𝜽, all words enter the training stage 

LSI. This span of benchmarks is referred to as supervision strength. High 𝜽 means high strength 

and low 𝜽 means low strength. 𝑻𝑫𝑴 under supervision turns into 𝑻𝑫𝑴𝜽. The case of 𝜽 = 𝟎 

implies 𝑻𝑫𝑴𝜽 = 𝑻𝑫𝑴. The higher 𝜽 gets, the fewer columns 𝑻𝑫𝑴𝜽 has.  

 

Figure B: Distribution of univariate linear coefficients of all unique terms in the corpus
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5.2.2 Latent Semantic Indexing 
 

After supervised dimensionality reduction, a Singular Value Decomposition (SVD) is 

performed. SVD is a generalized matrix dimensionality reduction technique. Latent Semantic 

Indexing is the process of applying SVD specifically to a matrix of the form term-document 

matrix representing the text corpus, here on 𝑻𝑫𝑴𝜽. 

The text corpus is represented in the matrix 𝑻𝑫𝑴𝜽 of dimensions 𝒕 × 𝒅, with 𝒕  and 𝒅 equal 

to the number of unique terms and documents, correspondingly. The number of word 

dimensions are equal the rank of 𝑻𝑫𝑴𝜽. The rank is defined as the maximum number of 

columns or rows of which no nonzero combination equals the zero vector 0. These columns 

are considered independent. Since the values at hand are term frequencies it can be assumed 

that independence holds. As a result, the rank 𝒓 of 𝑻𝑫𝑴𝜽 equals the number of columns 𝒕. In 

case the SVD was performed on a document-term matrix 𝑫𝑻𝑴𝜽, or (𝑻𝑫𝑴𝜽)′, r would equal 

𝒅, with the same implications.  

In SVD, 𝑻𝑫𝑴𝜽 is displayed in an 𝒓 ≪ 𝒕 dimensional coordinate system either as a document- 

or term space (hence two-mode factor analysis). The SVD rotates around the dimensions, so 

that the dimensions better fit the data and overall more variation is captured by them. This 

process is also known as clustering because groups of observations are clustered on new 

dimensions. The resulting new dimensions are referred to as concepts for the remainder of 

this text and the coordinate system as concept space.  

Figure C: Three-dimensional representation of concept space with three concepts 
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The concept space is represented in the decomposition matrices 𝑼𝜽, 𝚺𝜽 and 𝑽𝜽 and is an 

approximation of 𝑻𝑫𝑴𝜽 of the following form:  

𝑻𝑫𝑴𝜽 = 𝑼𝜽×𝚺𝜽×(𝐕𝜽)′        (4) 

𝑼𝜽 is a 𝒕 × 𝒓 column-orthonormal matrix and relates terms to concepts. It is the matrix 

representation of the term space: Cells contain coordinates per term in the document 

dimensions. 𝑽𝜽 is a 𝒅×𝒓  column-orthonormal matrix. It relates documents to concepts. It is 

the matrix representation of the document space and the rows are the coordinates of each 

document in the document space with term dimensions. The matrix 𝐕𝜽is always used 

transposed, hence (𝐕𝜽)′. Finally, 𝚺𝜽 is a 𝒓 × 𝒓  diagonal matrix with singular values on its 

diagonal and 0´s everywhere else. The singular values indicate the strength of the underlying 

concepts. Multiplication of the form (4) returns the original matrix 𝑻𝑫𝑴𝜽, or its 

approximation.  

An example for the document space is provided in Figure C where graphically, only three 

dimensions and 20 documents are displayed. In the document space, documents are displayed 

as coordinates in their concept dimensions. The axes of Figure C correspond to the concept 

dimensions. The dots, or coordinates represent 20 documents with loadings on all of the three 

displayed dimensions. 

At this point, the number of concepts is still equal to the number of terms 𝒕. However, the 

concepts have more diverged variation strengths, which is the whole point of rotating. 

Concepts with low strength, indicated by a low singular value can be dropped until the concept 

space equals 𝒌 concepts.  

This results into the term space 𝑼𝒌
𝜽 of size 𝒕 × 𝒌, the diagonal matrix 𝚺𝒌

𝜽 of size 𝒌 × 𝒌 and the 

document space 𝐕𝒌
𝜽 of size 𝒅×𝒌. The approximation of 𝑻𝑫𝑴𝜽, 𝑻𝑫𝑴𝒌

𝜽∗ is calculated with (4a). 

𝑻𝑫𝑴𝒌
𝜽∗ =  𝑼𝒌

𝜽×𝚺𝒌
𝜽×(𝐕𝒌

𝜽)′         (4a)  

As mentioned, setting low singular values to zero is the process of dimensionality reduction. 

Concepts with high singular values are retained, being important to the concept space. They 

are called concepts of high rank for the remainder of this text. 

The R-package lsa (Wild, 2015) offers convenient functions to perform an SVD in the context 

of LSI. The benchmark for dimensionality reduction is set to 𝑘 beforehand. A plot of the 
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diagonal vector of Σ𝑘
𝜃 illustrates the distribution of concept strengths for the 𝑘 retained 

concepts. The function takes the shape of a convex decreasing curve as marginal variation 

explained by an additional concept decreases (Figure D). Calculating an SVD for a matrix of 

several thousand rows and columns can challenge a computers capacity. That is because most 

packages calculate all concepts first and kick all but 𝑘 out later. The R-package irlba (Baglama, 

Reichel, Lewis, 2016) calculates only the 𝑘 concepts needed which dramatically decreases 

calculation time. 

 

5.2.3 Number of Concepts  
 

The parameter 𝒌 is subject to different approaches in the literature. The purpose of LSI for 

any analysis must be acknowledged. Using all concepts (𝒌 = 𝒕) would exactly represent the 

original matrix which is precise, but no dimensionality reduction would happen. Using fewer 

dimensions means less precision. In Derweester et al (1990) the purpose of LSI is information 

retrieval. The authors want a lower-dimension of text but still seek minimal loss of 

information. Then, precision is important while the number concepts can be a few hundreds. 

In Bair et al. (2006) the authors seek only the most important of underlying dimensions which 

means that precision becomes less important. In fact, they will not make an approximation of 

the data and thus use only the first concept with the highest singular value. Clearly, some 

balance between dimensionality reduction and precision must be found. The first objective in 

this analysis is generalizable prediction, which calls for fewer concepts. On the other hand, a 

thorough exploration of latent semantics requires more concepts.  

The parameter 𝒌 could, just like 𝜽 be determined by cross-validation. Another 10-fold cross-

validation for 𝒌 would however result in a 100-fold cross-validation combined with the one 

for 𝜽. This requires large calculation time with little added value since 𝒌 can also be evaluated 

with the plot of singular values. The first few singular values in Figure D are clearly the 

strongest and after the tenth singular value the curve becomes much flatter. For this reason, 

𝒌 is set to 10. Note, that in the result section of this analysis, concepts will be addressed as 

their rank in the singular value ranking. For example, the concept with the second highest 

singular value is called “rank 2 concept” for better identification. 
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As introduced in the outline, the data of interest is the loadings of documents on the concepts, 

or in other words the matrix 𝐕𝟏𝟎
𝜽 . The matrix 𝐕𝟏𝟎

𝜽  is finally the matrix of independent variables, 

entering the linear time series regression.  

Of similar importance are the implications of 𝑼𝟏𝟎
𝜽 . Being the other mode of this two-mode 

factor analysis, 𝑼𝟏𝟎
𝜽  is shows the strength of terms on the concepts. There is no quantitative 

use for 𝑼𝟏𝟎
𝜽  in time series modelling but it is essential to make literal sense of the concepts. 

This can be done by ranking the terms based in their loading on each concept separately and 

represent them in a word cloud as presented in the result section.  

Figure D: Ranked Singular Values in a k=20 Concept Space

 

5.2.4 Training and Test Data 
 

Automatic indexing such as LSI can provide more useful results if the calculated concepts are 

generalizable. For the daily news media, this means recognition of consistent latent structures 

over time. Without generalizable concepts LSI would merely be a temporary snapshot of 

random data patterns. Generalization, however, is only possible if sufficient training data is 

available for machine learning. Here, 35492 documents and roughly 350 million word 
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occurrences are available for training. This amount is just enough given the heterogeneity of 

the data. The English language, news reporting and the economy constantly changed over the 

century. Therefore, any training data available should be used.  

Furthermore, model predictions must be tested on a test data set. For this analysis, two test 

approaches are considered. The first is out-of-sample testing with the same sample as used 

for training. Thereby, the dataset is split and the first part is used as training set and the second 

as test set. Same sample testing implies less data available for training and ignoring things that 

happen in the test set. This also means ignoring important time effects. For example, if the 

model is trained before 1980 and tested after, anything after 1980 is ignored, quite a loss of 

information. Of course, the model cannot be trained and tested on the same data because it 

would not truthfully represent the model´s predictive power. The advantage of within-sample 

testing is that the training and test set come from the same sample distribution.  

The second approach is cross-sample testing. It allows training on the entire dataset. The 

testing happens on another dataset which is assumed to have a similar sample distribution as 

the training sample. This could be another financial newspaper than the New York Times but 

of similar impact and domain which is The Wall Street Journal. As explained in the data section, 

characteristics of these two datasets are quite alike because The Wall Street Journal provides 

similar daily columns for the same topic. The drawback is that training and testing does not 

happen on the same sample. After all, the major difference between the two newspapers is, 

that there are two different authors writing the text who choose different wording. However, 

this is the case also within one newspaper sample. Over the course of one century many 

different authors wrote the NYT columns.  

A graphical illustration of testing schemes can be found in Figure E. The base model of this 

analysis will use an out-of-sample testing on the same sample. Proportion of the training set 

is approximately 80%, whereas the test set proportion is approximately 20% of the entire 

sample. Cross-sample testing will be implemented in an alternative model, where the 

proportions between training and test set are similar, however the sample size is bigger. It 

implies that the entire NYT sample is used for training and the WSJ sample is used for testing. 

The WSJ sample is approximately 20% of the size of the NYT sample.   
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Figure E: Testing Schemes 

 

 

 

 

 

 

 

 

5.3 Market Index Returns 
 

Now that the independent variables, the matrix 𝐕𝟏𝟎
𝜽  is derived, the dependent variable of the 

time series model must be examined. The supervised nature of this analysis requires a model 

that includes the dependent variable right before the calculation of the concepts. In the 

restricted model, only text frequencies that correlate with the dependent variable are 

considered in LSI. This dependent variable is market index returns from the Dow Jones 

Industrial Average. The following steps are standard for time series modelling, it is the basic 

treatment for any financial return data2.  

 

 

 

 

 

                                                      
2 To be precise, the supervision part of SLSI must be done with the corrected return variable which comes out of 

the steps below. And so, programmatically, the below steps happen before supervision and thus before any text 

processing.  
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Figure F: Dow Jones Industrial Average absolute values 

 

𝑹𝑫𝑱𝑰𝑨
𝒄𝒐𝒎𝒑

= ∆ 𝐥𝐨𝐠(𝑫𝑱𝑰𝑨) ×𝟏𝟎𝟎        (5) 

Figure G: Dow Jones Industrial Average Compound Returns winsorized
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5.3.1 Compound Returns and Outliers  
 

The given time series of the index absolute value and the log index absolute value are 

presented in Figure F). Compound returns of the form (5) are then calculated and used for 

further time series modelling (Figure G).  

The market returns clearly show outliers in the data. Outliers in compound returns are 

extreme returns on some trading days which cannot be explained. To tackle them, a 

winsorizing algorithm is applied. Winsorizing returns is a common approach to deal with 

outliers especially in financial return data. The algorithm considers any value beyond a 

percentile limit in the sample distribution as outlier and resets it to the percentile value. In 

return data, extreme observations are not uncommon and neither can they be considered 

measurement errors. They are rather the result of external shocks, whose probability to 

happen is low. These tail events must be considered by the model as such, because they could 

indeed be echoed in the text data. By allocating percentile limits, outliers are incorporated 

with a lower weight, preventing them to create a skewness bias and maintaining a normal 

return distribution which is required for linear regression analysis (Barber & Lyon, 1997). In 

the case of DJIA compound returns, a rather low fraction of the distribution is being 

winsorized, namely 0.05% on both tails of the return distribution. 

 

5.3.2 Data Merging 
 

Not all 35 thousand text documents fall exactly on one perfectly matching trading day. Some 

of the columns are printed on weekends or other non-trading days. Therefore, the datasets 

must be matched, which is done by allocating the Date variables in the document identifiers 

and the index data. The Dates are merged in a rolling fashion. If there is, for example a Sunday 

publishing of a newspaper column, the index is not traded that day. The rolling merging 

function allocates a Date point from the document identifier to the next available trading day 

from the index returns because this is also the trading day on which the newspaper content 

actually impacts the market. This implies that Monday observations occur three times because 

they account for the weekend days, too. This way valuable information from weekends, 

flowing into trading day activity is captured.  
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5.4 Time Series model 
 

Compound returns come with two econometric conveniences: Stationarity and non-

exponentiality. Stationarity3 is achieved by differencing and is an important assumption for 

any time series modelling. It is formally tested below. The plain absolute index values (Figure 

F) show a pattern of exponentiality4. Linearity (that is non-exponentiality) is, also an 

assumption for linear regression analysis and so the data is made linear by taking the log. 

Still, compound returns are formally suspect to non-stationarity, autocorrelation5 and 

heteroskedasticity6 which is tested in the next paragraphs. Any tests below were executed 

separately for the Base Model and alternative models if they imply different sample sizes (see 

section 5.2.4). The statistical test outcomes were equal throughout. Autoregressive models, 

however, have slightly different outcomes for the alternative model, whose metrics are 

reported in the footnotes.  

  

5.4.1 Augmented Dickey-Fuller Test 
 

In some cases, variables can still be non-stationary after taking the first difference. Therefore, 

stationarity must be formally tested with the Augmented Dickey-Fuller (ADF) stationarity test, 

performed on the compound index returns (Dickey & Fuller, 1979). The ADF test formally tests 

the null hypothesis of the presence of a unit root, implying non-stationarity. Non-stationarity 

tested in an autoregressive model of the form (6). 

  𝑹𝒕 = 𝝆𝑹𝒕−𝟏 + 𝒖𝒕          (6) 

The null hypothesis translates into 𝝆 = 𝟏, an indication for the presence of a unit root. If the 

null hypothesis is rejected, it means that there is no unit root present in the sample and the 

variable is stationary. Here, the null hypothesis can be rejected with a p-value of nearly zero7, 

thus confirming stationarity for the compound returns. 

                                                      
3 Appendix 2 
4 Appendix 2 
5 Appendix 2 
6 Appendix 2 
7 Appendix 3 
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5.4.2 Autoregressive Integrated Moving Average (ARIMA) 
 

To investigate autocorrelation, the autocorrelation function (ACF) and the partial 

autocorrelation function (PACF) of the compound returns are presented8. The ACF suggests 

an AR(p) process: An autocorrelation process with lag p because of several significant lags. The 

PACF also shows significant lags, suggesting a MA(q) process: A moving average process with 

lag q. Together, and formally also including non-stationarity this can be corrected with an 

ARIMA (p, d, q) model, a catchall autoregressive model for time series, capturing any 

components of first or second order autocorrelation.   

An automated ARIMA model provided by the R-package forecast (Hyndman, 2016) calculates 

the best model by iteratively fitting lags (AR), integrations (I) and moving averages (MA) to the 

return data. The ARIMA model should also be represented with as few parameters as possible, 

which is why the model minimizes the Akaike Information Criterion (AIC), indicating the best 

tradeoff between goodness-of-fit and complexity of the model.  

The result is an ARIMA(5, 0, 3), or ARMA(5, 3) model9. It implies an AR(5) process, corrected 

with 5 return lags. The I(0) process is expected: No additional differencing has to be done as 

formally described with the ADF test. The MA(3) implies a 3-lags return moving average 

process.  

 

5.4.3 Autoregressive Conditional Heteroskedasticity (ARCH) 
 

Another issue is heteroskedasticity or non-constant volatility in the compound index returns. 

This can be observed through clustered volatility in Figure E, also known as the ARCH effect. 

The ACF and PACF of the squared residuals of the ARMA(5, 3) 10hint towards the presence of 

the ARCH effect if they display significant lags.  

To check for the ARCH effect, the Ljung-Box test (Ljung & Box, 1978) is performed11 (R-package 

tseries, Trapletti & Hornik, 2016). The LB test formally checks for the null hypothesis of 

independence of the residuals from the earlier estimated ARMA (5, 3) model. The null 

                                                      
8 Appendix 3 
9 The outcome for the alternative model is an ARMA(5, 2), see Appendix 4 
10 Appendix 4 
11 Appendix 3 
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hypothesis translates into no ARCH effect and would make fitting an GARCH model obsolete 

if not rejected. Here, the LB test shows a p-value close to zero, with which the null hypothesis 

must be rejected. The outcome confirms the suspicion about non-constant return volatility as 

formulated above, which requires the fitting of an GARCH(1, 1) model of the general form 

below (7).  

𝝈𝒕
𝟐 = 𝝎 + 𝜶𝜺𝒕−𝟏

𝟐 + 𝜷𝝈𝒕−𝟏
𝟐          (7) 

In words this means that the variance of 𝑹𝒕, 𝝈𝒕
𝟐 is a function of the lag of the squared residuals 

from the above estimated ARMA(5, 3), 𝜺𝒕−𝟏
𝟐  and the lag of the variance of 𝑹𝒕, 𝝈𝒕−𝟏

𝟐 . Specifics 

such as imposed standard deviation, the empirical density of standardized residuals and the 

norm _QQ plot as well as formal output can be found in Appendix 5.  

 

5.4.4 Time Series Equation 
 

Summarizing the ARMA(5, 3) and GARCH(1, 1) autoregressive terms in the vector 𝚨𝒕, it is 

possible to set up preliminary regression formulae of autoregressive terms and the intercept 

(8).   

𝚨𝒕 = 𝝁 + 𝝓𝟏𝑹𝒕−𝟏 + 𝝓𝟐𝑹𝒕−𝟐 + 𝝓𝟑𝑹𝒕−𝟑 + 𝝓𝟒𝑹𝒕−𝟒 + 𝝓𝟓𝑹𝒕−𝟓 + 𝜸𝟏𝝋𝒕−𝟏 + 𝜸𝟐𝝋𝒕−𝟐 + 𝜸𝟑𝝋𝒕−𝟑 + 𝜽𝟏𝜺𝒕−𝟏 + 𝜹𝜺𝒕−𝟏
𝟐   (8)  

Note, that 𝜙 corresponds to the AR process, 𝛾 to the MA process, and 𝜃 and 𝛿 to the GARCH 

process. Latent concepts from SLSI are stored in V10𝑡
′𝜃  (9) which leads to the final model (10). 

𝐕′
𝟏𝟎𝒕
𝜽

=  𝜷𝟏𝝂𝟏𝒕
′𝜽 + 𝜷𝟐𝝂𝟐𝒕

′𝜽 + 𝜷𝟑𝝂𝟑𝒕
′𝜽 + 𝜷𝟒𝝂𝟒𝒕

′𝜽 + 𝜷𝟓𝝂𝟓𝒕
′𝜽 + 𝜷𝟔𝝂𝟔𝒕

′𝜽 + 𝜷𝟕𝝂𝟕𝒕
′𝜽 + 𝜷𝟖𝝂𝟖𝒕

′𝜽 + 𝜷𝟗𝝂𝟗𝒕
′𝜽 + 𝜷𝟏𝟎𝝂𝟏𝟎𝒕

′𝜽  (9) 

𝑹𝒕 =  𝜷𝐕𝟏𝟎𝒕
′𝜽 + 𝜸𝚨𝒕 + 𝝐𝒕        (10) 

The independent variable 𝑅𝑡 is the compound index return on day 𝑡. The linear coefficient 

𝛽 indicates the relations between the daily compound returns 𝑅 and a vector of document 

concept loadings V10
′𝜃  on day 𝑡, calculated under supervision benchmark 𝜃. The vector 𝐴𝑡 

consists of autoregressive terms of 𝑅𝑡. 

Equation (10) formally translated into a GARCHX model, which is a GARCH(1, 1) based on 

ARMA(5, 3) residuals augmented with external regressors. In many cases, however such a 

GARCHX model does not converge which results in invalid outcome, especially invalid p-values 
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for coefficients. For this reason, the GARHX model is not used for results, but is merely 

reported in the appendix. The GARCH(1, 1) without external regressors is still used as 

prediction benchmark.  

 

5.4.5 Prediction 
 

To evaluate the model quality, out of sample testing is performed. Thereby the model is 

predicted with out-of-sample values of all independent variables. An out-of-sample V10
′𝜃  matrix 

is a concept representation of documents, that were not used during the indexing process. 

These documents are folded into the document space. They do not influence the calculation 

of the dimensions, but are merely mapped into the existing concept space.  

It is done formally by multiplying the vector representation 𝑞 of each document with the low 

dimensional representation of the term space 𝑈10
𝜃 . The equation of the form (11) results in 

the supervised low dimensional representation of 𝑞𝜃 in the document space.  

𝐕_𝐟𝐨𝐥𝐝𝟏𝟎
𝒕𝜽 = 𝒒𝜽× 𝑼𝟏𝟎

𝜽         (11) 

Supervision still holds because for new documents only filtered terms enter 𝑞𝜃.  

With these independent variables, �̂�𝑡 is calculated. Any deviation is measured with the Mean 

Absolute Error (MAE) displayed in (12).  

𝑴𝑨𝑬 =  
𝟏

𝒏
∑ |�̂�𝒕 − 𝑹𝒕|𝒏

𝒕=𝟏         (12) 

These prediction errors are aimed to be minimized and should be lower than a comparing 

autoregressive model which does not involve external variables. Any model with external 

variables should perform better than a plain autoregressive model if the external variables are 

assumed to serve as predictors. With these indicators, a truthful statement about model 

quality is presented in the following result section.  
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6 Results 
 

Apart from the base model, three alternative models were calculated, which is graphically 

presented in Figure H.  

Figure H: Model Specifics 

 

 

 

 

 

 

 

 

 

 

 

 

Alternative Model 2 and 3 differ from the Base Model and Alternative Model 1 in their 

allowance for negations tagging (neg tagging) in the text corpus. As described in section 5.1.4, 

words can be tagged as negatively nuanced or not. Where negations tagging is switched on, 

more unique words in the corpus can be expected, compared to the model where it is 

switched off. This results in two different corpora with which the entire methodology is 

calculated.  

Base Model and Alternative Model 2 differ from Alternative Model 1 and 3 in their testing 

schemes out-of-sample testing and cross sample testing. They are distinct through the size of 

their training sets and the fact that in cross sample testing, the generalizability of concepts is 

tested for robustness by letting them predict on a new sample. 

  Basic time series for prediction comparison   
ARMA (5, 0, 3) / ARMA (5, 0, 2) 

  

Base Model:                  10 - fold 
- No negation tagging in text corpus 
- Out-of-sample testing on the same sample 

  
ARMAX (5, 0, 3) 
with external regressors   

GARCHX(1, 1) (lacking conversion) 
with external regressors 

  
Alternative Model 3                   10 - fold 
- Negation tagging in text corpus 
- Cross-sample testing 

  
Alternative Model 1:                  10 - fold 
- No negation tagging in text corpus 
- Cross-sample testing 

  

Alternative Model 2:                 10 – fold 
- Negation tagging in text corpus 
- Out-of-sample testing on the same sample 

  
ARMAX (5, 0, 3) 
with external regressors   

GARCHX(1, 1) (lacking conversion) 
with external regressors 

  
ARMAX (5, 0, 3) 
with external regressors   

GARCHX(1, 1) (lacking conversion) 
with external regressors   

ARMAX (5, 0, 3) 
with external regressors   

GARCHX(1, 1) (lacking conversion) 
with external regressors 
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Any calculated models model the error terms from GARCH(1, 1) and ARMA(5, 3) (ARMA(5, 2)), 

also called ARMAX, and GARCHX models. However, GARCHX tends to not converge into 

meaningful outcomes, which is a technical problem. For this reason, the prediction errors are 

reported for ARMAX only. All models were calculated 10-fold, because of the cross-validation  

scheme of supervision strength. For comparison, ARMA(5, 3) GARCH(1, 1) were calculated 

without external regressors.  

 

6.1 Correlation and Prediction (H1, H2) 
 

To present prediction performance, the lowest MAE out of the 10 folds of the Base Model 

ARMAX is taken. It equals 0.7015 as compared to an MAE of 0.6998 for the GARCH model. This 

implies, that a plain autoregressive model predicts index returns marginally better, although 

the difference is very small. Table A presents the coefficients for this sub model. Equivalent 

tables for all alternative models can be found in Appendix 6. 

 

In the Base Model and all alternative models, the lowest prediction errors coincide with at 

least one significant concept expressed in its document concept loadings. These variables are 

marked in Table A.  

Research hypothesis H1 tests whether there is a detectable correlation between document 

concept loadings from news text media and market index returns. With significant concepts in 

the Base Model, H1 is not rejected. Nevertheless, it is important to note that neither the Base 

Model nor one of the alternative models produce an MAE lower than its corresponding ARMA 

benchmark. This means that a plain autoregressive model is always predicting market returns 

better than any sub model. Research hypothesis H2 tests whether document concept loadings 

from news text media can serve as predictors for market index returns. Following this, H2 must 

Table A: Coefficients for the Base Model, lowest MAE out of Supervision Stage 

MAE: 0.7015   GARCH MAE: 0.6998 Supervision Stage: 4       

ARMA Terms AR1 AR2 AR3 AR4 AR5 MA1 MA2 MA3     

Coefficients  0.05 0.93*** -0.18*** -0.09*** 0.09*** 0.28*** -0.78*** -0.15**     

Variables C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

Coefficients  1.07 3.53 0.12 5.2*** 0.01 -2.35 -1.52 -0.68 -2.82** -0.53 

Coefficients are denoted for significance at the 10%, 5% and 1% level with *, **, and ***, respectively 
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be rejected. Latent semantic concepts as detected with this methodology do show correlation 

with index returns, but they do not serve as predictors.  

 

6.2 Supervision Strength (H3, H4) 
 

Research hypothesis H3 tests whether supervision improves model prediction when tested on 

the same text sample source. To evaluate the outcomes, MAE’s across cross-validation stages 

and for all alternative models are presented in Figure K.  

Figure K: Mean Absolute Errors

 

 

Note that supervision strength is measured in the deciles of the distribution of the univariate 

coefficients. The higher the threshold gets, the bigger share of terms is excluded from the 

model, indicated by the percentages. This leads to gradually excluding parts of the sample, i.e. 

the terms. Excluding 0% of the sample equivalents to no supervision, which is the starting point 

for evaluating supervision.  

The development of MAE´s in the Base Model is initially decreasing, indicating enhanced 

prediction compared to no supervision. Towards strong supervision and 80% exclusion of the 

term sample, the effect reverses and prediction gets worse. With this outcome, H3 is not 

rejected, as channeled exclusion of terms from processing does enhance prediction over cross-

validation. This effect, however cannot be confirmed for Alternative Model 1 and 3. These 

models are tested on different samples as they were trained. Compared to no supervision, 

MAE´s tend to increase towards higher supervision which is counterintuitive. Research 

hypothesis H4 tests whether supervision improves model prediction when tested on a different 
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text sample source. This outcome rejects H4 because benefits of supervision on a cross-sample 

testing scheme cannot be shown.  

 

6.3 Negations Tagging 
 

The neg-model and the non-neg-model behave very similarly within their testing schemes. 

The lowest prediction errors occur in the same supervision stages and so are significant 

concept coefficients. The effect of tagging negative pronounced words on prediction errors is 

therefore neglectable. Nevertheless, tagging does not result in deterioration of concept 

correlations. Despite an increased number of unique terms through tagging, Latent Semantic 

Indexing results in the same outcomes as for no negations tagging. 

 

6.4 Concepts Correlation and Topics  
 

The Base Model and all alternative models show at least one significant linear coefficient 

between document concept loadings and index returns. The coefficients and underlying 

concepts are subject to closer examination in the following paragraphs.  

As depicted in Figure K, the prediction errors for the Base Model are similar from the second 

to the sixth supervision stage with the fourth having the smallest MAE. In order to evaluate 

consistencies of significant concepts, Table B presents the distribution of significant concepts 

over supervision in the base model.  
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Table B: Distribution of Significant Concept Coefficients (Base Model)  

 

Coinciding with low prediction errors is the continuous significance of the rank 4 concept 

(marked in Table B, combined with parts of Figure K). Rank 4 concept means that its singular 

value is the fourth highest among the other concepts.  

Intuitively, it could be concluded that these rank 4 concepts represent the same information 

over the course of supervision as they have the same rank and show a pattern of consistency 

in significance. However, across supervision stages, terms drop out of the overall corpus. This 

is likely to change concepts even of the same rank. In addition, the direction of the coefficients 

of same ranked concepts change from one supervision stage to another (see extensive tables 

in Appendix 7). This points toward the fact that there is different information in the same 

ranked concepts from one supervision stage to another.  

Therefore, it is necessary to examine the information that these concepts contain, thereby 

examining the concept space from a different angle. Up until here, only document loadings 

have been considered. By ranking the term loadings in a concept, it is possible to see what 

terms have high loadings on concepts. The best way to do so are word clouds. In the following 

paragraph, four concepts from the Base Model are chosen for closer examination.  
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Supervision SV 1 SV 2 SV 3 SV 4 SV 5 SV 6 SV 7 SV 8 SV 9 SV 10 

Concept 1 **           ** *** * *** 

Concept 2 *       ** **       *** 

Concept 3   *** **     ** ***   *** *** 

Concept 4 ***   * *** *** *** ** *** ** ** 

Concept 5               ***   ** 

Concept 6 ***           ** * ***   

Concept 7 ***   ***       **   ***   

Concept 8 *** *         ** **     

Concept 9       ** **     **     

Concept 10 *** ** **             *** 
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6.5 Word Clouds 
 

The first two concepts chosen for word cloud representation are both rank 4 concepts but at 

supervision stages 4 and 8. They are tagged in Table B. Both have significant coefficients and 

the MAE´s of their supervision stage are among the lowest. However, supervision in stage 4 is 

much lower than in stage 8. Their word clouds are presented in Figure L.  

Figure L: Word Clouds of the rank 4 concepts from the fourth and eighth supervision stage (Base Model) 

 

 

 

 

 

The first concept contains words like economy, company, merger and policy which are all from 

the topic real economy. The second concept contains the words speculation, dealer, and 

shipment which is a much more specific and operational topic. Most important is, that these 

two concepts contain entirely different words although having the same rank. They clearly 

should be treated as distinct informational variables.  

The third concept presented is a rank 10 concept from the ninth supervision stage with an 

insignificant coefficient. The concept is presented to illustrate information has no correlation 

with index returns (Figure M). The concept contains terms related to politics with words like 

campaign, vice, opinion and favorite.   

Figure M: Word Cloud of the rank 10 concept from the ninth supervision stage (Base Model) 
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The last presented concept is a rank 1 concept from the first supervision stage. It is provided 

to examine an unsupervised concept. The first supervision stage corresponds to no 

supervision at all (Figure N). This concept, being significant at the 5% level, shows a clear focus 

on finance with words like bond, million, bank and investor. The rank 1 concepts generally 

have the highest term loadings of all, given their highest singular value. It is not surprising, 

that this concept contains finance words which are the most used in a financial markets 

column.    

Figure N: Word Cloud of the rank 1 concept from the first supervision stage (Base Model) 

 

 

 

 

 

 

 

6.6 Result Summary 
 

Out of the four research hypotheses, two important ones had to be rejected. The question if 

news text data consists of detectable latent semantic structures or concepts can be answered 

with yes, however the precision of these concepts for prediction of index returns is in doubt. 

Clearly, document concept loadings cannot serve as predictors for index returns at this stage. 

A similar answer can be given on the question if supervision enhances model outcomes. It 

does, indicated by lower prediction errors, but it does not lower prediction errors to levels 

below those of plain autoregressive models. Neither does supervision work at this stage on 

cross-sample testing schemes. As a result, H2 and H4 must be rejected, whereas H1 and H3 

are not rejected. 
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6.7 Limitations 
 

Several limitations to this analysis must be acknowledged.  

A possible alternation concerns supervision. When the thresholds are set based on the deciles 

of the |𝛽| distribution over words, their absolute value is taken. Allowing for negative 

coefficients and splitting words in sub models accordingly, could disentangle the two 

directions of the market and enable better prediction as well as better word clouds.  

In terms of model parameters, the number of concepts, here set to k=10 could also be 

estimated by cross-validation. This requires more calculation time but promises better 

variable selection.   

In terms of data, the observation can be aggregated to more than one day. This is a more 

complex approach because supervision and the time series would be computed in an 

aggregated fashion, but LSI should remain in a daily fashion in order to maintain high 

frequented data for machine learning. Additionally, time effects could be examined by leads 

and lags of document loadings. It is also possible to perform sub-sample time series, to capture 

time effects over the course of the century.  

Finally, the Dow Jones Industrial Average is not the most meaningful market index. The 

S&P500, momentum and fear indices, sector specific indices or particular stocks have the 

potential of representing markets much better. These are indices that allow for trading 

strategies. The problem is, that supervision cannot be executed the way it is here, because no 

other index is available this long. A solution to this comes from data. Modern news is available 

not daily, but secondly. Nowadays, a much richer text corpus can be gathered quickly with 

intraday news data from a variety of sources. All indices have intraday reporting, too. 

Consequently, this analysis could be performed on a more specific domain more precisely, 

with the help of modern data density. 
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7 Conclusion 
 

Supervised Latent Semantic Indexing combines into a novel approach to text mining and 

forecasting. The results presented in the preceding paragraphs paint a mixed picture.  

The Base Model and alternative models show significant coefficients between concepts and 

index returns. Nevertheless, a plain autoregressive model can predict market returns better 

than the concept based time series model. The ability to predict market returns from text data 

could, at least at this stage not be proven.  

Supervision does enhance model prediction when the model is tested out-of-sample with the 

same text dataset. However, when tested on a different text sample, supervision increases 

prediction errors. Supervision proves to be an asset to the Base Model, improving both 

concept significance and word clouds. A small step towards hybrid text mining by negative 

words tagging has shown no improvements, yet not a deterioration of the outcomes.  

Word cloud analysis yields interesting insights to the concept content and unveils actual topics 

out of the statistically retrieved concepts. Furthermore, a clear topic distinction across 

examined concepts could be observed. This outcome qualitatively backs the hypothesis, that 

Supervised Latent Semantic Indexing is suitable to uncover distinct latent text structures. 

The implementation of provided extensions might reach the goal of prediction at some point. 

Until then, it is unclear, how much sentiment in the market is intrinsically predictable through 

news text.  
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Appendix 1: stopwords (Buckley, 1985) amended 

 
> stopwords_en_pos 
  [1] "a"           "about"       "above"       "across"      "after"       "again"       
  [7] "against"     "all"         "almost"      "alone"       "along"       "already"     
 [13] "also"        "although"    "always"      "among"       "an"          "and"         
 [19] "another"     "any"         "anybody"     "anyone"      "anything"    "anywhere"    
 [25] "are"         "area"        "areas"       "around"      "as"          "ask"         
 [31] "asked"       "asking"      "asks"        "at"          "away"        "b"           
 [37] "back"        "backed"      "backing"     "backs"       "be"          "became"      
 [43] "because"     "become"      "becomes"     "been"        "before"      "began"       
 [49] "behind"      "being"       "beings"      "best"        "better"      "between"     
 [55] "big"         "both"        "but"         "by"          "c"           "came"        
 [61] "can"         "cannot"      "case"        "cases"       "certain"    "certainly"   
 [67] "clear"       "clearly"     "come"        "could"       "d"           "did"         
 [73] "differ"      "different"   "differently" "do"          "does"        "done"        
 [79] "down"        "downed"      "downing"     "downs"       "during"      "e"           
 [85] "each"        "early"       "either"      "end"         "ended"       "ending"      
 [91] "ends"        "enough"      "even"        "evenly"      "ever"        "every"       
 [97] "everybody"   "everyone"    "everything"  "everywhere"  "f"           "face"        
[103] "faces"       "fact"        "facts"       "far"         "felt"        "few"         
[109] "find"        "finds"       "first"       "for"         "four"        "from"        
[115] "full"        "fully"       "further"     "furthered"   "furthering"  "furthers"    
[121] "g"           "gave"        "general"     "generally"   "get"         "gets"        
[127] "give"        "given"       "gives"       "go"          "going"       "good"        
[133] "goods"       "got"         "great"       "greater"     "greatest"    "group"       
[139] "grouped"     "grouping"    "groups"      "h"           "had"         "has"         
[145] "have"        "having"      "he"          "her"         "here"        "herself"     
[151] "high"        "higher"      "highest"     "him"         "himself"     "his"         
[157] "how"         "however"     "i"           "if"          "important"   "in"          
[163] "interest"    "interested"  "interesting" "interests"   "into"        "is"          
[169] "it"          "its"         "itself"      "j"           "just"        "k"           
[175] "keep"        "keeps"       "kind"        "knew"        "know"        "known"       
[181] "knows"       "l"           "large"       "largely"     "last"        "later"       
[187] "latest"      "least"       "less"        "let"         "lets"        "like"        
[193] "likely"      "long"        "longer"      "longest"     "m"           "made"        
[199] "make"        "making"      "man"         "many"        "may"         "me"          
[205] "member"      "members"     "men"         "might"       "more"        "most"        
[211] "mostly"      "mr"          "mrs"         "much"        "must"        "my"          
[217] "myself"      "n"           "necessary"   "need"        "needed"      "needing"     
[223] "needs"       "new"         "newer"       "newest"      "next"        "non"         
[229] "noone"       "nothing"     "now"         "nowhere"     "number"      "numbers"     
[235] "o"           "of"          "off"         "often"       "old"         "older"       
[241] "oldest"      "on"          "once"        "one"         "only"        "open"        
[247] "opened"      "opening"     "opens"       "or"          "order"       "ordered"     
[253] "ordering"    "orders"      "other"       "others"      "our"         "out"         
[259] "over"        "p"           "part"        "parted"      "parting"     "parts"       
[265] "per"         "perhaps"     "place"       "places"      "point"       "pointed"     
[271] "pointing"    "points"      "possible"    "present"     "presented" "presenting"  
[277] "presents"    "put"         "puts"        "q"           "quite"       "r"           
[283] "rather"      "really"      "right"       "right"       "room"        "rooms"       
[289] "s"           "said"        "same"        "saw"         "say"         "says"        
[295] "second"      "seconds"     "see"         "seem"        "seemed"      "seeming"     
[301] "seems"       "sees"        "several"     "shall"       "she"         "should"      
[307] "show"        "showed"      "showing"     "shows"       "side"        "sides"       
[313] "since"       "small"       "smaller"     "smallest"    "so"          "some"        
[319] "somebody"    "someone"     "something"   "somewhere"   "state"       "states"      
[325] "still"       "such"        "sure"        "t"           "take"        "taken"       
[331] "than"        "that"        "the"         "their"       "them"        "then"        
[337] "there"       "therefore"   "these"       "they"        "thing"       "things"      
[343] "think"       "thinks"      "this"        "those"       "though"      "thought"     
[349] "thoughts"    "three"       "through"     "thus"        "to"          "today"       
[355] "together"    "too"         "took"        "toward"      "turn"        "turned"      
[361] "turning"     "turns"       "two"         "u"           "under"       "until"       
[367] "up"          "upon"        "us"          "use"         "used"        "uses"        
[373] "v"           "very"        "w"           "want"        "wanted"      "wanting"     
[379] "wants"       "was"         "way"         "ways"        "we"          "well"        
[385] "wells"       "went"        "were"        "what"        "when"        "where"       
[391] "whether"     "which"       "while"       "who"         "whole"       "whose"       
[397] "why"         "will"        "with"        "within"      "without"     "work"        
[403] "worked"      "working"     "works"       "would"       "x"           "y"           
[409] "year"        "years"       "yet"         "you"         "young"       "younger"     
[415] "youngest"    "your"        "yours"       "z"      
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Appendix 2 (Didactical Appendix) 

Stationarity: In case of stationarity, the probability distribution of a time series variable is constant over time. 

If it were not, it would be non-stationary, which means that the variable follows a unit root. Including non-

stationary variables in a regression model can result in a spurious regression, detecting correlation between 

two variables that are not causally related. 

Exponentiality in market data: Exponentiality yields from the nature of stock market prices. A market index is 

based on economic growth, which shows by nature an exponential growth pattern. Even if the economy 

would grow linearly (for example in a socialist economy) then the underlying population still grows 

exponentially. For this reason, any market data can be expected to show exponentiality.   

Autocorrelation: For the example of index returns, autocorrelation means that high returns are followed by 

high returns and low returns are followed by low returns, therefore ultimately putting the independence of 

observations in question.  

Non-constant volatility: For the example of index returns, heteroskedasticity means that high volatility is 

followed by high volatility and low volatility is followed by low volatility. More generally, the volatility in the 

data is not constant; it shows heteroskedasticity. This would violate the assumption that the residuals of a 

model are i.i.d (independently and identically distributed). 

Abreviations:  

Wall Street Journal (WSJ) 
New York times (NYT) 
Dow Jones Industrial Average (DJIA) 
Semantic Orientation Calculator (SO-CAL) 
Performance-Based Arbitrage (PBA) 
The General Inquirer (GI) 
Principal Component Analysis (PCA) 
Supervised Principal Component Analysis (SPCA) 
Latent Semantic Indexing (LSI) 
Supervised Latent Semantic Indexing (SLSI) 
Singular Value Decomposition (SVD) 
Optical character recognition (OCR) 
Within sample testing (ws) 
Cross sample testing (ws) 
Term frequency (tf) 
Term frequency – inverse document frequency (tf_idf) 
Term-document matrix (tdm)  
Augmented Dickey-Fuller (ADF) 
Autocorrelation function (ACF) 
Partial autocorrelation function (PACF) 
Akaike Information Criterion (AIC)   
Autoregressive integrated moving average  (ARIMA) 
Autoregressive Conditional Heteroskedasticity (ARCH) 
The Ljung-Box test (LB) 
Independently and identically distributed (i.i.d.) 
Part-of-speech (POS) 
Mean Square Error (RMSE) 
Mean Average Error (MAE) 
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Appendix 3, 4, 5: Test Outcomes and Autoregressive Models 
 

Auto ARIMA, GARCH Same-Sample testing 
 
> print(adf.test(ind_nyt[ , cprt_win])) 
 
Augmented Dickey-Fuller Test 
 
data:  ind_nyt[, cprt_win] 
Dickey-Fuller = -30.374, Lag order = 32, p-value = 0.01 
alternative hypothesis: stationary 
 

 

 

  
 
>ts_II = auto.arima(returns,  
                    d = 0, D = 0, stationary = TRUE, seasonal = TRUE,  
                    trace = TRUE, ic = "aic") 
 
Iterations: 
 
ARIMA(2,0,2) with non-zero mean : 84844.19 
ARIMA(0,0,0) with non-zero mean : 88593.82 
ARIMA(1,0,0) with non-zero mean : 85027.9 
ARIMA(0,0,1) with non-zero mean : 85647.07 
ARIMA(0,0,0) with zero mean     : 88594.04 
ARIMA(1,0,2) with non-zero mean : 84841.32 
ARIMA(1,0,1) with non-zero mean : 85005.78 
ARIMA(1,0,3) with non-zero mean : 84843.43 
ARIMA(2,0,3) with non-zero mean : 84790.81 
ARIMA(2,0,3) with zero mean     : 84789.55 
ARIMA(1,0,3) with zero mean     : 84842.55 
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ARIMA(3,0,3) with zero mean     : 84778.59 
ARIMA(3,0,2) with zero mean     : 84842.77 
ARIMA(3,0,4) with zero mean     : 84787.17 
ARIMA(2,0,2) with zero mean     : 84843.32 
ARIMA(4,0,4) with zero mean     : 84780.41 
ARIMA(3,0,3) with non-zero mean : 84779.71 
ARIMA(4,0,3) with zero mean     : 84773.56 
ARIMA(4,0,2) with zero mean     : 84777.6 
ARIMA(5,0,4) with zero mean     : 84754.23 
ARIMA(5,0,4) with non-zero mean : 84755.23 
ARIMA(5,0,3) with zero mean     : 84742.79 
ARIMA(5,0,3) with non-zero mean : 84744.06 
ARIMA(5,0,2) with zero mean     : 84744.9 
 
 Best model: ARIMA(5,0,3) with zero mean     
 
> ts_II 
Series: returns  
ARIMA(5,0,3) with zero mean      
 
Coefficients: 
         ar1     ar2      ar3      ar4     ar5     ma1      ma2      ma3 
      0.0662  0.9263  -0.1945  -0.0833  0.0908  0.2687  -0.7831  -0.1320 
s.e.  0.0589  0.0441   0.0652   0.0230  0.0067  0.0591   0.0448   0.0657 
 
sigma^2 estimated as 1.158:  log likelihood=-42360.68 
AIC=84739.36   AICc=84739.36   BIC=84813.64 
 
> ts_IV 
 
*---------------------------------* 
*          GARCH Model Fit        * 
*---------------------------------* 
 
Conditional Variance Dynamics   
----------------------------------- 
GARCH Model : sGARCH(1,1) 
Mean Model : ARFIMA(5,0,3) 
Distribution : norm  
 
Optimal Parameters 
------------------------------------ 
        Estimate  Std. Error    t value Pr(>|t|) 
mu      0.023060    0.006658    3.46335 0.000533 
ar1    -0.038615    0.047408   -0.81452 0.415346 
ar2     0.790830    0.002879  274.67379 0.000000 
ar3    -0.029083    0.138675   -0.20972 0.833888 
ar4    -0.093607    0.043559   -2.14900 0.031635 
ar5     0.057740    0.009771    5.90918 0.000000 
ma1     0.380971    0.047197    8.07195 0.000000 
ma2    -0.634322    0.002066 -307.04946 0.000000 
ma3    -0.234411    0.137615   -1.70338 0.088496 
omega   0.002850    0.000001 2020.72902 0.000000 
alpha1  0.073849    0.000854   86.47812 0.000000 
beta1   0.925151    0.000494 1872.50058 0.000000 
 
Robust Standard Errors: 
        Estimate  Std. Error    t value Pr(>|t|) 
mu      0.023060    0.008909    2.58833 0.009644 
ar1    -0.038615    0.036099   -1.06968 0.284763 
ar2     0.790830    0.004438  178.19521 0.000000 
ar3    -0.029083    0.264344   -0.11002 0.912395 
ar4    -0.093607    0.083077   -1.12676 0.259845 
ar5     0.057740    0.017487    3.30190 0.000960 
ma1     0.380971    0.035651   10.68617 0.000000 
ma2    -0.634322    0.004892 -129.65223 0.000000 
ma3    -0.234411    0.263132   -0.89085 0.373011 
omega   0.002850    0.000001 5008.39676 0.000000 
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alpha1  0.073849    0.001014   72.83879 0.000000 
beta1   0.925151    0.000365 2532.30272 0.000000 
 
LogLikelihood : -35338.87  
 
Information Criteria 
------------------------------------ 
                    
Akaike       2.4904 
Bayes        2.4939 
Shibata      2.4904 
Hannan-Quinn 2.4915 
 
Weighted Ljung-Box Test on Standardized Residuals 
------------------------------------ 
                         statistic   p-value 
Lag[1]                       18.16 2.034e-05 
Lag[2*(p+q)+(p+q)-1][23]     54.32 0.000e+00 
Lag[4*(p+q)+(p+q)-1][39]     64.21 0.000e+00 
d.o.f=8 
H0 : No serial correlation 
 
Weighted Ljung-Box Test on Standardized Squared Residuals 
------------------------------------ 
                        statistic p-value 
Lag[1]                      1.830  0.1762 
Lag[2*(p+q)+(p+q)-1][5]     2.250  0.5606 
Lag[4*(p+q)+(p+q)-1][9]     2.447  0.8455 
d.o.f=2 
 
Weighted ARCH LM Tests 
------------------------------------ 
            Statistic Shape Scale P-Value 
ARCH Lag[3]   0.01941 0.500 2.000  0.8892 
ARCH Lag[5]   0.18162 1.440 1.667  0.9698 
ARCH Lag[7]   0.25017 2.315 1.543  0.9951 
 
Nyblom stability test 
------------------------------------ 
Joint Statistic:  24.2393 
Individual Statistics:              
mu     0.1385 
ar1    0.5284 
ar2    2.8621 
ar3    0.1544 
ar4    0.1522 
ar5    0.1596 
ma1    0.7567 
ma2    3.3906 
ma3    0.2251 
omega  1.8229 
alpha1 3.3922 
beta1  1.1609 
 
Asymptotic Critical Values (10% 5% 1%) 
Joint Statistic:       2.69 2.96 3.51 
Individual Statistic:  0.35 0.47 0.75 
 
Sign Bias Test 
------------------------------------ 
                   t-value    prob sig 
Sign Bias           1.1518 0.24941     
Negative Sign Bias  1.5065 0.13195     
Positive Sign Bias  0.5343 0.59316     
Joint Effect        7.0149 0.07143   * 
 
 
Adjusted Pearson Goodness-of-Fit Test: 
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------------------------------------ 
  group statistic p-value(g-1) 
1    20     494.0    9.955e-93 
2    30     576.1   5.718e-103 
3    40     584.0    2.441e-98 
4    50     655.6   4.823e-107 
 
 
Elapsed time : 15.7289 

 

Auto ARIMA, GARCH Cross-Sample testing 
 
> print(adf.test(ind_nyt[ , cprt_win])) 
 
Augmented Dickey-Fuller Test 
 
data:  ind_nyt[, cprt_win] 
Dickey-Fuller = -30.374, Lag order = 32, p-value = 0.01 
alternative hypothesis: stationary 

 

 

 
>ts_I = auto.arima(returns,  
                    d = 0, D = 0, stationary = TRUE, seasonal = TRUE,  
                    trace = TRUE, ic = "aic") 
 
Iterations: 
 
 ARIMA(2,0,2) with non-zero mean : 105885.8 
 ARIMA(0,0,0) with non-zero mean : 109375.7 
 ARIMA(1,0,0) with non-zero mean : 106044.7 
 ARIMA(0,0,1) with non-zero mean : 106544.4 
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 ARIMA(0,0,0) with zero mean     : 109373.8 
 ARIMA(1,0,2) with non-zero mean : 105883.9 
 ARIMA(1,0,1) with non-zero mean : 106014 
 ARIMA(1,0,3) with non-zero mean : 105885.7 
 ARIMA(2,0,3) with non-zero mean : 105858.2 
 ARIMA(2,0,3) with zero mean     : 105856.5 
 ARIMA(1,0,3) with zero mean     : 105883.7 
 ARIMA(3,0,3) with zero mean     : 105825.2 
 ARIMA(3,0,2) with zero mean     : 105882.9 
 ARIMA(3,0,4) with zero mean     : 105833.3 
 ARIMA(2,0,2) with zero mean     : 105883.9 
 ARIMA(4,0,4) with zero mean     : 105825.9 
 ARIMA(3,0,3) with non-zero mean : 105828.6 
 ARIMA(4,0,3) with zero mean     : 105820.5 
 ARIMA(4,0,2) with zero mean     : 105823.2 
 ARIMA(5,0,4) with zero mean     : 105794.5 
 ARIMA(5,0,4) with non-zero mean : 105796.6 
 ARIMA(5,0,3) with zero mean     : 105794.3 
 ARIMA(5,0,3) with non-zero mean : 105796.3 
 ARIMA(5,0,2) with zero mean     : 105792.5 
 ARIMA(4,0,1) with zero mean     : 105821 
 ARIMA(5,0,2) with non-zero mean : 105794.5 
 ARIMA(5,0,1) with zero mean     : 105823.9 
 
 Best model: ARIMA(5,0,2) with zero mean      
 
> ts_IV 
 
*---------------------------------* 
*          GARCH Model Fit        * 
*---------------------------------* 
 
Conditional Variance Dynamics   
----------------------------------- 
GARCH Model : sGARCH(1,1) 
Mean Model : ARFIMA(5,0,3) 
Distribution : norm  
 
Optimal Parameters 
------------------------------------ 
        Estimate  Std. Error    t value Pr(>|t|) 
mu      0.023060    0.006658    3.46335 0.000533 
ar1    -0.038615    0.047408   -0.81452 0.415346 
ar2     0.790830    0.002879  274.67379 0.000000 
ar3    -0.029083    0.138675   -0.20972 0.833888 
ar4    -0.093607    0.043559   -2.14900 0.031635 
ar5     0.057740    0.009771    5.90918 0.000000 
ma1     0.380971    0.047197    8.07195 0.000000 
ma2    -0.634322    0.002066 -307.04946 0.000000 
ma3    -0.234411    0.137615   -1.70338 0.088496 
omega   0.002850    0.000001 2020.72902 0.000000 
alpha1  0.073849    0.000854   86.47812 0.000000 
beta1   0.925151    0.000494 1872.50058 0.000000 
 
Robust Standard Errors: 
        Estimate  Std. Error    t value Pr(>|t|) 
mu      0.023060    0.008909    2.58833 0.009644 
ar1    -0.038615    0.036099   -1.06968 0.284763 
ar2     0.790830    0.004438  178.19521 0.000000 
ar3    -0.029083    0.264344   -0.11002 0.912395 
ar4    -0.093607    0.083077   -1.12676 0.259845 
ar5     0.057740    0.017487    3.30190 0.000960 
ma1     0.380971    0.035651   10.68617 0.000000 
ma2    -0.634322    0.004892 -129.65223 0.000000 
ma3    -0.234411    0.263132   -0.89085 0.373011 
omega   0.002850    0.000001 5008.39676 0.000000 
alpha1  0.073849    0.001014   72.83879 0.000000 
beta1   0.925151    0.000365 2532.30272 0.000000 
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LogLikelihood : -35338.87  
 
Information Criteria 
------------------------------------ 
                    
Akaike       2.4904 
Bayes        2.4939 
Shibata      2.4904 
Hannan-Quinn 2.4915 
 
Weighted Ljung-Box Test on Standardized Residuals 
------------------------------------ 
                         statistic   p-value 
Lag[1]                       18.16 2.034e-05 
Lag[2*(p+q)+(p+q)-1][23]     54.32 0.000e+00 
Lag[4*(p+q)+(p+q)-1][39]     64.21 0.000e+00 
d.o.f=8 
H0 : No serial correlation 
 
Weighted Ljung-Box Test on Standardized Squared Residuals 
------------------------------------ 
                        statistic p-value 
Lag[1]                      1.830  0.1762 
Lag[2*(p+q)+(p+q)-1][5]     2.250  0.5606 
Lag[4*(p+q)+(p+q)-1][9]     2.447  0.8455 
d.o.f=2 
 
Weighted ARCH LM Tests 
------------------------------------ 
            Statistic Shape Scale P-Value 
ARCH Lag[3]   0.01941 0.500 2.000  0.8892 
ARCH Lag[5]   0.18162 1.440 1.667  0.9698 
ARCH Lag[7]   0.25017 2.315 1.543  0.9951 
 
Nyblom stability test 
------------------------------------ 
Joint Statistic:  24.2393 
Individual Statistics:              
mu     0.1385 
ar1    0.5284 
ar2    2.8621 
ar3    0.1544 
ar4    0.1522 
ar5    0.1596 
ma1    0.7567 
ma2    3.3906 
ma3    0.2251 
omega  1.8229 
alpha1 3.3922 
beta1  1.1609 
 
Asymptotic Critical Values (10% 5% 1%) 
Joint Statistic:       2.69 2.96 3.51 
Individual Statistic:  0.35 0.47 0.75 
 
Sign Bias Test 
------------------------------------ 
                   t-value    prob sig 
Sign Bias           1.1518 0.24941     
Negative Sign Bias  1.5065 0.13195     
Positive Sign Bias  0.5343 0.59316     
Joint Effect        7.0149 0.07143   * 
 
 
Adjusted Pearson Goodness-of-Fit Test: 
------------------------------------ 
  group statistic p-value(g-1) 
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1    20     494.0    9.955e-93 
2    30     576.1   5.718e-103 
3    40     584.0    2.441e-98 
4    50     655.6   4.823e-107 
 
 
Elapsed time : 15.7289 
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Appendix 6: Alternative Model Outcome 
 

Table A: Coefficients for the Base Model, lowest MAE out of cross-validation fold 

MAE: 0.7015   GARCH MAE: 0.6998 Cross-validation fold: 4       

ARMA Terms AR1 AR2 AR3 AR4 AR5 MA1 MA2 MA3     

Coefficients  0.05 0.93*** -0.18*** -0.09*** 0.09*** 0.28*** -0.78*** -0.15**     

Variables C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

Coefficients  1.07 3.53 0.12 5.2*** 0.01 -2.35 -1.52 -0.68 -2.82** -0.53 

Coefficients are denoted for significance at the 10%, 5% and 1% level with *, **, and ***, respectively 
 

Table C: Coefficients for Alternative Model 1, lowest MAE out of cross-validation fold 

MAE: 1.6169   GARCH MAE: 0.7241 Cross-validation fold: 2       

ARMA Terms AR1 AR2 AR3 AR4 AR5 MA1 MA2       

Coefficients  0.15*** 0.93*** -0.29*** -0.04*** 0.07*** 0.14*** -0.84***       

Variables C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

Coefficients  3.96*** -1.97 8.08*** 2.89*** 0.77 -1.44 0.62 -2.55** -1.55 -2.8*** 

Coefficients are denoted for significance at the 10%, 5% and 1% level with *, **, and ***, respectively 
 

Table D: Coefficients for Alternative Model 2, lowest MAE out of cross-validation fold 

MAE: 0.7060   GARCH MAE: 0.7002 Cross-validation fold: 4       

ARMA Terms AR1 AR2 AR3 AR4 AR5 MA1 MA2 MA3     

Coefficients  0.06 0.93*** -0.18*** -0.09*** 0.09*** 0.28*** -0.78*** -0.14**     

Variables C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

Coefficients  3.38 0.9 3.28* -4.97*** 3.9 1.69 -1.43 -2.49** 2 1.31 

Coefficients are denoted for significance at the 10%, 5% and 1% level with *, **, and ***, respectively 
 

Table E: Coefficients for Alternative Model 3, lowest MAE out of cross-validation fold 

MAE: 1.2985   GARCH MAE: 0.7241 Cross-validation fold: 2       

ARMA Terms AR1 AR2 AR3 AR4 AR5 MA1 MA2       

Coefficients  0.15*** 0.92*** -0.29*** -0.04*** 0.07*** 0.14*** -0.83***       

Variables C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

Coefficients  -4.63*** 1.59 -2.56** -4.13*** 1.55 -1.43 3.04*** -4.81*** 4.16*** 1.6 

Coefficients are denoted for significance at the 10%, 5% and 1% level with *, **, and ***, respectively 
 

 

 

 

 

 

 

Appendix 7: Model Outcome, extensive: Coefficients are denoted for significance at the 10%, 5% and 1% level with *, **, and ***, respectively 
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Table F: Prediction Errors and Coefficients Base Model across all submodels  

Supervision SV 1 SV 2 SV 3 SV 4 SV 5 SV 6 SV 7 SV 8 SV 9 SV 10 

MAE_I_LM 0.70 0.70 0.70 0.71 0.71 0.71 0.71 0.71 0.71 0.71 

MAE_II_ARIMA 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 

MAE_III_ARIMAX 0.74 0.71 0.71 0.70 0.70 0.70 0.71 0.71 0.71 0.83 

MAE_IV_GARCH 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 

MAE_V_GARCHX 0.71 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.71 0.78 

Estimates ARIMAX SV 1 SV 2 SV 3 SV 4 SV 5 SV 6 SV 7 SV 8 SV 9 SV 10 

AR1 0.06 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.05 0.04 

AR2 0.93*** 0.93*** 0.93*** 0.93*** 0.93*** 0.93*** 0.93*** 0.93*** 0.93*** 0.94*** 

AR3 -0.19*** -0.18*** -0.19*** -0.18*** -0.18*** -0.19*** -0.18*** -0.18*** -0.19*** -0.17*** 

AR4 -0.09*** -0.09*** -0.09*** -0.09*** -0.09*** -0.09*** -0.09*** -0.09*** -0.09*** -0.09*** 

AR5 0.09*** 0.09*** 0.09*** 0.09*** 0.09*** 0.09*** 0.09*** 0.09*** 0.09*** 0.09*** 

MA1 0.27*** 0.28*** 0.28*** 0.28*** 0.28*** 0.28*** 0.28*** 0.28*** 0.28*** 0.29*** 

MA2 -0.78*** -0.78*** -0.78*** -0.78*** -0.78*** -0.78*** -0.78*** -0.79*** -0.79*** -0.79*** 

MA3 -0.14** -0.15** -0.14** -0.15** -0.14** -0.14** -0.15** -0.14** -0.14** -0.15** 

Concept 1 -6.45** 3.15 3.12 1.07 -0.77 -1.22 4.81** -5.37*** 3.77* 20.2*** 

Concept 2 5.49* -1.27 -1.13 3.53 5.82** 5.66** -2.07 1.58 -5 -49.08*** 

Concept 3 0.25 4.83*** -3.96** 0.12 1.08 -3.36** 6.69*** -0.48 -8.35*** 9.57*** 

Concept 4 3.82*** -2.72 3.36* 5.2*** -4.07*** 5.44*** -4.06** 6.91*** -4.22** 2.7** 

Concept 5 -1.59 1.1 1.28 0.01 -4.19 -1.21 -0.26 6.92*** 3.05 2.26** 

Concept 6 -9.53*** -1.72 0.05 -2.35 -1.66 -0.07 -4.72** -3.52* 6.71*** -0.92 

Concept 7 9.49*** 0.31 4.4*** -1.52 1.77 2.03 3.44** -0.39 3.14*** -1.91 

Concept 8 13.15*** 2.63* -0.13 -0.68 -0.04 -1.32 6.45** -4.79** -0.87 -1.64 

Concept 9 -11.57 -1.93 -2.02 -2.82** 3.14** 0.59 0.1 5.56** 1.05 -1.86 

Concept 10 -4.64*** 3.34** -2.76** -0.53 0.55 0.28 -0.81 -0.76 -0.89 -4.02*** 

Estimates GARCHX SV 1 SV 2 SV 3 SV 4 SV 5 SV 6 SV 7 SV 8 SV 9 SV 10 

MU 0 0*** 0.02 -0.05*** 0.02 0.02 0.04** 0.04*** 0.02*** 0.03*** 

AR1 0.02 0.03*** 0.02 0.04*** 0.02 0.04 0.04 0.11*** 0.12*** 0.05 

AR2 0.54*** 0.55*** 0.54*** 0.59*** 0.54*** 0.55*** 0.55*** 0.64*** 0.76*** 0.55*** 

AR3 -0.37*** -0.36*** -0.37*** -0.36*** -0.38*** -0.37*** -0.36*** -0.35*** -0.15*** -0.38*** 

AR4 0.05 0.04*** 0.05 0.04*** 0.05 0.05** 0.05* 0.02*** -0.06*** 0.05*** 

AR5 0.06*** 0.07*** 0.06*** 0.07*** 0.06*** 0.07*** 0.07*** 0.07*** 0.06*** 0.07*** 

MA1 0.32*** 0.31*** 0.32*** 0.31*** 0.32*** 0.3*** 0.3*** 0.22*** 0.22*** 0.29*** 

MA2 -0.4*** -0.42*** -0.4*** -0.45*** -0.41*** -0.42*** -0.42*** -0.54*** -0.65*** -0.42*** 

MA3 0.2 0.17*** 0.2 0.16*** 0.2 0.18*** 0.17** 0.12*** -0.12*** 0.19*** 

Concept 1 3.88 -2.89*** -1.3 -14.42*** 3.23 0.88 4.16 -5.21*** 0.78*** 15.15*** 

Concept 2 5.12** -1.55*** -2.69 1.06*** 0.12 1.04 -4.41*** 3.44*** -6.46*** -37.88*** 

Concept 3 0.56 1.51*** -1.8 0.69*** 0.89 -2.84*** 1.63 -1.07*** -5.01*** 3.83*** 

Concept 4 2.22** 0.22*** -0.94 1.79*** -0.18 1.25 -1.25 2.23*** -1.84*** -0.6 

Concept 5 -1.32* -0.01*** 0.84 -0.49*** -4.78*** -0.05 0.13 2.25*** -1.64*** 1.54* 

Concept 6 -5.37** -1.46*** -0.31 -1.52*** -2.19** 0.67 -1.77 -0.96*** 2.03*** 1.01 

Concept 7 4.17* -0.35*** 1.05 0.26*** 1.96** 1.36 1.53 0.29*** 1.31*** 0.56 

Concept 8 5.24* 1.11*** -0.39 -0.12*** 0.14 -0.51 3.32* -2.44*** 0.59*** -1.59*** 

Concept 9 -7.38* -1.33*** -1.81** -1.77 0.48 0.63 -0.74 2.06*** -0.57*** -1.38* 

Concept 10 -0.75 0.82*** -1.51** 0.84*** 1.09 1.65* 1.14 -1.31*** -0.77*** -1.73* 

OMEGA 0.02*** 0*** 0.02*** 0*** 0.02*** 0*** 0*** 0*** 0*** 0*** 

ALPHA 1 0.1*** 0.07*** 0.1*** 0.07*** 0.1*** 0.07*** 0.07*** 0.07*** 0.07*** 0.07*** 

BETA 1 0.88*** 0.93*** 0.88*** 0.93*** 0.88*** 0.93*** 0.93*** 0.93*** 0.92*** 0.93*** 
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Table G: Prediction Errors and Coefficients Alternative  Model 1 across all submodels  

Supervision SV 1 SV 2 SV 3 SV 4 SV 5 SV 6 SV 7 SV 8 SV 9 SV 10 

MAE_I_LM 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 

MAE_II_ARIMA 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 

MAE_III_ARIMAX 2.46 1.62 2.20 2.51 2.49 2.80 2.59 2.09 2.39 2.17 

MAE_IV_GARCH 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 

MAE_V_GARCHX 39.21 1.15 13.10 33.77 4.01 25.39 19.63 7.82 4.18 1.19 

Estimates ARIMAX SV 1 SV 2 SV 3 SV 4 SV 5 SV 6 SV 7 SV 8 SV 9 SV 10 

AR1 0.16*** 0.15*** 0.16*** 0.16*** 0.16*** 0.16*** 0.16*** 0.16*** 0.17*** 0.16*** 

AR2 0.93*** 0.93*** 0.93*** 0.92*** 0.92*** 0.93*** 0.92*** 0.93*** 0.93*** 0.92*** 

AR3 -0.3*** -0.29*** -0.3*** -0.3*** -0.3*** -0.3*** -0.3*** -0.3*** -0.3*** -0.3*** 

AR4 -0.04*** -0.04*** -0.04*** -0.04*** -0.04*** -0.04*** -0.04*** -0.04*** -0.04*** -0.04*** 

AR5 0.08*** 0.07*** 0.08*** 0.07*** 0.07*** 0.07*** 0.07*** 0.07*** 0.07*** 0.08*** 

MA1 0.13*** 0.14*** 0.13*** 0.13*** 0.13*** 0.13*** 0.13*** 0.13*** 0.13*** 0.13*** 

MA2 -0.84*** -0.84*** -0.84*** -0.84*** -0.84*** -0.84*** -0.84*** -0.84*** -0.85*** -0.84*** 

Concept 1 0.32 3.96*** -0.15 -0.01 0.06 -0.11 -0.47 2.11 -3.08* 1.94 

Concept 2 -0.75 -1.97 0.69 0.6 2.11 4.1*** 4.19*** 0.82 -1.77 -0.31 

Concept 3 1.13 8.08*** 2.43** -1.83 -1.46 -0.26 -1.56 6.47*** -1.2 -7.19*** 

Concept 4 1.04 2.89*** -3.21** 3.9*** 4.81*** -4.02*** 6.06*** -4.57*** 6.65*** -4.35*** 

Concept 5 -0.5 0.77 1.63 1.9* -0.61 -3.21*** -2.46** -2.09* 5.96*** 2.75** 

Concept 6 -1.07 -1.44 -2.79** -0.22 -2.91** -0.63 -0.66 -5.11*** -3.22*** 4.49*** 

Concept 7 0.85 0.62 0.21 4.29*** -1.26 1.3 1.24 1.61 -0.6 2.87*** 

Concept 8 2.44* -2.55** 1.96* 0.03 -0.85 -0.61 -0.08 1.28 -3.37*** 0.01 

Concept 9 1.7 -1.55 -1.61 -0.75 -2.32** 2.8** -0.37 -0.77 5.09*** 1.73 

Concept 10 -3.1*** -2.8*** 1.86* -2.73** -0.18 0.39 0.16 0.11 -0.28 -2.03* 

Estimates GARCHX SV 1 SV 2 SV 3 SV 4 SV 5 SV 6 SV 7 SV 8 SV 9 SV 10 

MU -0.03 0.05*** 0.01 -0.05*** 0.03 -0.04*** -0.05*** 0.07*** 0.06*** 0.02*** 

AR1 -0.08*** -0.07*** -0.08*** -0.06*** -0.08*** -0.07*** 0.34*** -0.07*** -0.07*** 0.26*** 

AR2 0.76*** 0.76*** 0.76*** 0.73*** 0.76*** 0.73*** 0.52*** 0.76*** 0.76*** 0.88*** 

AR3 -0.21*** -0.22*** -0.21*** -0.21*** -0.21*** -0.21*** -0.18*** -0.22*** -0.22*** -0.28*** 

AR4 -0.02*** -0.02*** -0.02*** -0.01*** -0.02*** -0.02*** -0.03*** -0.02*** -0.02*** -0.03*** 

AR5 0.04*** 0.05*** 0.05*** 0.05*** 0.04*** 0.05*** 0.06*** 0.05*** 0.05*** 0.05*** 

MA1 0.37*** 0.36*** 0.37*** 0.36*** 0.37*** 0.37*** -0.02*** 0.36*** 0.36*** 0.03*** 

MA2 -0.62*** -0.63*** -0.62*** -0.6*** -0.62*** -0.59*** -0.53*** -0.63*** -0.63*** -0.84*** 

Concept 1 12.49** 2.39* -4.85 -13.78*** -2.05 13.91*** 13.21*** 5.97* -4.59* 0.77*** 

Concept 2 1.25 -1.19 -0.37 -2.08*** -0.44 1.52 2.33*** -3.34*** 2.55** -0.62*** 

Concept 3 0.97 2.13** 0.44 -1.36*** 0.65 0.67 -2.87*** 1.27 -1.48* -2.98*** 

Concept 4 0.83 0.06 -0.3 0.83*** 1.3 -0.89 1.83*** -0.91 2.04** -1.48*** 

Concept 5 -0.7 0.44 0.36 1.42*** -0.56 -3.48*** -0.41*** -0.62 1.81** 0.93*** 

Concept 6 -0.53 0.6 -2.65*** -0.92*** -2.21*** -2.36*** 1.26*** -0.83 -1.42* 1.58*** 

Concept 7 -0.51 2.05*** 0.27 1.27*** 0.59 1.83** 2.21*** -0.37 0.76 1.45*** 

Concept 8 0.01 -2.7*** 0.42 -0.78*** -0.91 -1.05 -0.05*** -0.4 -1.3* 1.03*** 

Concept 9 0.8 -1.02 -1.45** -1.27*** -1.98*** 0.8 -0.97*** -1.42** 1.16 0.36*** 

Concept 10 -0.52 -0.78 -0.09 -1.95*** 0.6 0.54 0.3*** 1.59** -0.54 -1.75*** 

OMEGA 0.02*** 0.02*** 0.02*** 0*** 0.02*** 0*** 0*** 0.02*** 0.02*** 0*** 

ALPHA 1 0.1*** 0.1*** 0.1*** 0.07*** 0.1*** 0.07*** 0.06*** 0.1*** 0.1*** 0.06*** 

BETA 1 0.88*** 0.88*** 0.88*** 0.93*** 0.88*** 0.93*** 0.93*** 0.88*** 0.88*** 0.93*** 
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Table H: Prediction Errors and Coefficients Alternative  Model 2 across all submodels  

Supervision SV 1 SV 2 SV 3 SV 4 SV 5 SV 6 SV 7 SV 8 SV 9 SV 10 

MAE_I_LM 0.70 0.70 0.70 0.71 0.71 0.71 0.71 0.71 0.71 0.71 

MAE_II_ARIMA 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 

MAE_III_ARIMAX 0.74 0.71 0.71 0.71 0.70 0.71 0.72 0.71 0.71 0.75 

MAE_IV_GARCH 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 

MAE_V_GARCHX 0.71 0.70 0.70 0.70 0.70 0.70 0.71 0.70 0.70 0.74 

Estimates ARIMAX SV 1 SV 2 SV 3 SV 4 SV 5 SV 6 SV 7 SV 8 SV 9 SV 10 

AR1 0.05 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.04 0.04 

AR2 0.93*** 0.93*** 0.93*** 0.93*** 0.93*** 0.93*** 0.93*** 0.94*** 0.94*** 0.94*** 

AR3 -0.18*** -0.19*** -0.19*** -0.18*** -0.19*** -0.18*** -0.17*** -0.18*** -0.17*** -0.17*** 

AR4 -0.09*** -0.09*** -0.09*** -0.09*** -0.08*** -0.09*** -0.09*** -0.09*** -0.09*** -0.09*** 

AR5 0.09*** 0.09*** 0.09*** 0.09*** 0.09*** 0.09*** 0.09*** 0.09*** 0.09*** 0.09*** 

MA1 0.28*** 0.28*** 0.27*** 0.28*** 0.28*** 0.28*** 0.29*** 0.29*** 0.29*** 0.29*** 

MA2 -0.78*** -0.78*** -0.78*** -0.78*** -0.79*** -0.78*** -0.79*** -0.79*** -0.79*** -0.79*** 

MA3 -0.15** -0.14** -0.14** -0.14** -0.13** -0.14** -0.15** -0.16** -0.15** -0.15** 

Concept 1 6.26** 4 -3.32 3.38 -1.19 -4.19* 4.72** -4.25* -1.56 -9.64*** 

Concept 2 -5.28* -2.47 -1.02 0.9 -6.62** 1.2 4.63* -0.17 -3.58 24.84* 

Concept 3 0.01 -5.48*** 3.29* 3.28* 1.08 -3.25** -3.69** 1.51 8.13*** -4.38** 

Concept 4 3.23** 4.76** 2.02 -4.97*** 0.68 6.53*** 8.41*** -10.2*** 6.6*** -5.26*** 

Concept 5 3.28** 0.53 4.52*** 3.9 4.07** -0.47 -5.43** 3.02 4.2* 0.47 

Concept 6 -9.05** -1.35 1.59 1.69 -5.35** -1.24 -6.72*** 2.18 -6.56*** 1.3 

Concept 7 -11.95** 0.81 -1.52 -1.43 -1.41 5.54** 4 -1.56 -2.93** 4.53*** 

Concept 8 -15.83** -2.63** 2.37* -2.49** -1.24 6.45** -0.76 4.16* -0.94 -4.1*** 

Concept 9 -1.22 -4.35** -1.57 2 3.76*** 1.49 -1.27 1.4 1.28 4.77*** 

Concept 10 4.49*** 1.57 2.34* 1.31 -1.46 -3.62*** 3.43*** 8.01*** -0.2 2.14* 

Estimates GARCHX SV 1 SV 2 SV 3 SV 4 SV 5 SV 6 SV 7 SV 8 SV 9 SV 10 

MU -0.02*** 0.03 0.01 0.05* 0.01 0.04* 0.01*** 0.03** 0.02** 0.04*** 

AR1 0.03*** 0.01 0.02 0.01 0.05*** 0.02 -0.16*** 0.09*** 0.03 0.04 

AR2 0.55*** 0.54*** 0.53*** 0.54*** 0.54*** 0.54*** 0.92*** 0.55*** 0.54*** 0.56*** 

AR3 -0.36*** -0.37*** -0.36*** -0.36*** -0.47*** -0.37*** -0.05*** -0.49*** -0.38*** -0.36*** 

AR4 0.04*** 0.05 0.05 0.05 0.08*** 0.05 -0.09*** 0.09*** 0.05 0.05* 

AR5 0.07*** 0.06*** 0.06*** 0.06*** 0.06*** 0.06*** 0.05*** 0.06*** 0.06*** 0.07*** 

MA1 0.31*** 0.32*** 0.32** 0.33*** 0.29*** 0.31*** 0.5*** 0.26*** 0.31*** 0.3*** 

MA2 -0.42*** -0.4*** -0.4*** -0.41*** -0.42*** -0.41*** -0.73*** -0.44*** -0.41*** -0.43*** 

MA3 0.17*** 0.19 0.18 0.18 0.29*** 0.19 -0.23*** 0.3*** 0.2 0.17** 

Concept 1 -5.96*** 0.89 1.34 4.82 -5.66 -2.92 -0.56*** -2.44 0.64 -8.25*** 

Concept 2 -4.01*** -3.71 -1.24 1.88 -2.37 4.47** 6*** -3.6** -5.27 23.02** 

Concept 3 -0.41*** -3.39*** 1.74 1.43 0.9 -2.19** -1.74*** 0.53 4.16** -1.29 

Concept 4 1.85*** 1.3 -1.47 0 -3.53* 2.38** 3.77*** -5.45*** 4.27*** -2.96*** 

Concept 5 2.5*** 1.26 1.34 2.59* 3.56*** -0.38 -2.89*** 1.68 0.34 -1.24 

Concept 6 -5.14*** -0.3 0.23 0.12 -1.32 -0.63 -4.36*** 2.3 -1.16 -0.81 

Concept 7 -5.43*** -0.11 -0.76 -1.84* -0.8 3.21** 1.15*** -1.09 0.06 0.76 

Concept 8 -7.83*** -0.7 1.87** -1.06 1.33 2.46 0.03*** 2.05 0.89 -1.82** 

Concept 9 -2.26*** -3.66*** 0.09 1.04 2.08*** -0.26 0.25*** 0.24 -0.35 0.75 

Concept 10 0.53*** -0.58 0.99 1.88** -0.87 -2.5*** 0.34*** 1.2 -0.02 1.22 

OMEGA 0*** 0.02*** 0*** 0.02*** 0.02*** 0.02*** 0*** 0*** 0.02*** 0*** 

ALPHA 1 0.07*** 0.1*** 0.09*** 0.1*** 0.1*** 0.1*** 0.07*** 0.07*** 0.1*** 0.07*** 

BETA 1 0.93*** 0.88*** 0.9*** 0.88*** 0.88*** 0.88*** 0.93*** 0.93*** 0.88*** 0.93*** 
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Table K: Prediction Errors and Coefficients Alternative  Model 3 across all submodels  

Supervision SV 1 SV 2 SV 3 SV 4 SV 5 SV 6 SV 7 SV 8 SV 9 SV 10 

MAE_I_LM 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 

MAE_II_ARIMA 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 

MAE_III_ARIMAX 1.95 1.29 2.01 1.97 2.28 2.81 2.00 2.14 2.60 2.30 

MAE_IV_GARCH 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 

MAE_V_GARCHX 29.47 1.10 35.54 10.95 27.75 5.84 2.85 2.35 2.43 1.10 

Estimates ARIMAX SV 1 SV 2 SV 3 SV 4 SV 5 SV 6 SV 7 SV 8 SV 9 SV 10 

AR1 0.16*** 0.15*** 0.16*** 0.16*** 0.15*** 0.16*** 0.16*** 0.16*** 0.17*** 0.16*** 

AR2 0.93*** 0.92*** 0.93*** 0.93*** 0.92*** 0.93*** 0.92*** 0.93*** 0.93*** 0.92*** 

AR3 -0.3*** -0.29*** -0.3*** -0.3*** -0.3*** -0.3*** -0.3*** -0.3*** -0.3*** -0.3*** 

AR4 -0.04*** -0.04*** -0.04*** -0.04*** -0.04*** -0.04*** -0.04*** -0.04*** -0.04*** -0.04*** 

AR5 0.08*** 0.07*** 0.08*** 0.07*** 0.07*** 0.07*** 0.07*** 0.07*** 0.07*** 0.07*** 

MA1 0.13*** 0.14*** 0.13*** 0.13*** 0.14*** 0.13*** 0.13*** 0.13*** 0.12*** 0.13*** 

MA2 -0.84*** -0.83*** -0.84*** -0.84*** -0.84*** -0.84*** -0.84*** -0.84*** -0.85*** -0.84*** 

Concept 1 -0.14 -4.63*** -0.06 -0.49 0.2 -0.2 -1.01 1.79 -2.25 -0.15 

Concept 2 0.29 1.59 0.1 -0.14 -0.44 -2.38* -2.81* -0.45 2.7* 0.39 

Concept 3 -1.19 -2.56** -2.27* 1.34 1.73 2.63** -2.96** -4.41*** 2.61** 7.55*** 

Concept 4 0.9 -4.13*** 4.01*** 1.78 -4.46*** 0.18 5.27*** 7*** -9.61*** 5.46*** 

Concept 5 0.66 1.55 1.32 4.65*** 3.46*** 4.86*** -1.21 -1.79 1.59 3.66*** 

Concept 6 -1.09 -1.43 -2.16* 2.63** 0.34 -3.73*** -0.14 -4.14*** 0.48 -5.1*** 

Concept 7 -0.91 3.04*** 0.91 -0.51 -0.74 -1.58 2.78** 3.83*** -0.59 -1.15 

Concept 8 -0.96 -4.81*** -1.85 1.32 -2.03* -1.16 4.7*** -0.3 3.02*** -0.18 

Concept 9 2.88** 4.16*** -1.2 -0.56 2.29** 3.38*** 1.51 -1.51 1.81 0.72 

Concept 10 3.58*** 1.6 1.07 1.71 -0.88 -0.06 -3.79*** 1.89* 6.45*** 0.11 

Estimates GARCHX SV 1 SV 2 SV 3 SV 4 SV 5 SV 6 SV 7 SV 8 SV 9 SV 10 

MU -0.01 0.05*** -0.04 0.06* -0.05*** 0.02 0.05*** 0.01*** 0.05*** 0.03*** 

AR1 -0.08*** -0.07*** -0.07*** -0.08*** 0.22*** -0.08*** -0.07*** 0.22*** -0.06*** -0.07*** 

AR2 0.76*** 0.76*** 0.73*** 0.76*** 0.72*** 0.76*** 0.76*** 0.96*** 0.77*** 0.76*** 

AR3 -0.21*** -0.22*** -0.21*** -0.21*** -0.24*** -0.22*** -0.22*** -0.32*** -0.22*** -0.22*** 

AR4 -0.02*** -0.02*** -0.01*** -0.02*** -0.01*** -0.02*** -0.02*** -0.02*** -0.02*** -0.01*** 

AR5 0.05*** 0.05*** 0.05*** 0.04*** 0.05*** 0.04*** 0.05*** 0.05*** 0.05*** 0.05*** 

MA1 0.37*** 0.37*** 0.37*** 0.37*** 0.08*** 0.37*** 0.36*** 0.08*** 0.36*** 0.37*** 

MA2 -0.62*** -0.63*** -0.59*** -0.62*** -0.66*** -0.62*** -0.63*** -0.91*** -0.63*** -0.62*** 

Concept 1 -9.53 -3.74*** -13.07** -4.05 -13.58*** -3.59 -2.06 -2.34*** -2.9 -0.72 

Concept 2 -1.11 1.24 -0.9 -0.28 2.64*** 0.16 0.7 1.37*** -1.03 -0.59 

Concept 3 -0.92 0.76 -0.78 0.26 1*** 0.79 -1.94** -2.08*** 0.42 2.8*** 

Concept 4 0.73 -1.07 1.64* -1.72** -0.81*** -2.89*** 1.45* 2.24*** -4.32*** 2.19*** 

Concept 5 0.74 -0.88 1.98** 0.84 2.42*** 3.25*** -0.2 0.03*** 0.61 1.67** 

Concept 6 -0.49 -2.08** -1.52** 2.35*** 0.09*** -1.63** 0.3 -0.55*** 0.78 -0.92 

Concept 7 0.61 0.19 -0.08 -0.19 -2.06*** -0.78 -0.32 2.1*** -0.71 0.69 

Concept 8 0.4 -1.65** -0.09 2.06*** -0.89*** 1.21 2.92*** 0.69*** 0.17 1.16 

Concept 9 0.84 0.9 -1.22 0.79 1.47*** 2.52*** -0.65 0.6*** -0.8 -0.7 

Concept 10 0.75 1.33* -0.5 0.83 -0.6*** 0.24 -2.76*** -0.14*** 2.05*** -0.26 

OMEGA 0.02*** 0.02*** 0*** 0.02*** 0*** 0.02*** 0.02*** 0*** 0.02*** 0*** 

ALPHA 1 0.1*** 0.1*** 0.07*** 0.1*** 0.07*** 0.1*** 0.1*** 0.06*** 0.1*** 0.09*** 

BETA 1 0.88*** 0.88*** 0.93*** 0.88*** 0.93*** 0.88*** 0.88*** 0.93*** 0.88*** 0.91*** 
 


