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Abstract

Affine term structure models (ATSM) are used to model bond prices and yields. In this the-
sis, I propose to estimate the term structure parameters by martingale estimating functions
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the behavior of the objective function with respect to parameters, as well as the actual con-
vergence to the true population parameters using different search algorithms. MEF works
very well in the simulated environment but requires a rescaling of the optimal MEF weights
for the most robust results. The method is also applied to an empirical dataset where MEF
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1 Introduction

Yields on risk-free assets form the foundation of finance and macroeconomics. They provide a
degree of certainty in future returns and form a fundamental component of the capital asset-
pricing model, the Black–Scholes formula, or the modern portfolio theory. These risk-free
assets come with different maturities and studying their relationship and dynamics is referred
to as the term structure interest rate modeling. It allows us to understand how bonds are
priced, how the yield curve is constructed from observable prices, and what variation are we
exposed to with time or policy changes.

Market participants face the uncertainty in the form of changing states of economies, im-
plying time-varying values of bond yields. They require a compensation for this uncertainty
which is priced by the market by a no-arbitrage assumption. Additionally, the affine term
structure describes bond yields in the sense that they are constant and linear functions of some
state vector, or factors. Such specification allows for nicer analytical solutions. However, the
modeling is numerically challenging and the estimation of structural parameters on multi-
dimensional non-linear likelihood surfaces is difficult.

Therefore, researchers develop and improve models that aim to identify and estimate the
structural parameters from the observed bond yields, while imposing the cross-sectional re-
striction of no-arbitrage. The arbitrage-free term structure models date back to Vasicek (1977)
and Cox et al. (1985) who focused on estimating one-factor models. Later research shows the
need to adjust for multiple — two, three, or more — factors. Dai and Singleton (2000) offer a
categorized view on various multi-dimensional affine models. With more complicated mod-
els, issues arise with the estimation and identification. There are several approaches to tackle
these difficulties.

Joslin et al. (2011) study the concepts of estimation of Gaussian dynamic term structure
models with the pricing factors being observable portfolios of yields, offering a lesser degree
of computational complexity than the previously used approaches. Hamilton and Wu (2012)
introduce the minimum chi-squared estimation (MCSE) method, which has become the base-
line estimation for the term structure models. Hamilton and Wu combine the findings of Joslin
et al. while pointing out the limitations of the observed portfolio approach, when compared to
the reduced-form approach of the MCSE. Complications in the estimation process arise from
the number of subjective choices that need to be made. Researchers need to impose parameter
restrictions, choose proper starting values for numerical algorithms, or deal with identification
issues. New methods are being explored to ease the burden of the estimation.

Recently, there has been a progress in the martingale estimating functions (MEF) that base
its theory on the martingale probability theory by Hall and Heyde (2014) with its first drafts
dating back to 1973. This area of probability theory kept growing rapidly with the most recent
application in the form of MEF, which allow us to fit the continuous-time structures, the mixed
frequency data, as well as the discrete-time models. These types of models produce martingale
increments and the MEF utilizes these increments by minimizing them under the optimal set
of time-varying weights.

Brix and Lunde (2013) apply the concepts of MEF to estimating stochastic volatility (SV)
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models. They compare the SV estimation to the GMM-type1 estimation and conclude that —
for some cases — there are gains in terms of lower bias and root mean square error. Christensen
et al. (2016) apply martingale estimating functions to the dynamic stochastic general equilib-
rium models, also implying the efficiency of the MEF estimator when compared to GMM,
while providing the theoretical framework on how to approach this type of estimation.

MEF is a new attempt to improve the efficiency of estimations, succeeding under some
conditions and beating the known methods, such as GMM. MEF focuses on modeling the
martingale increments and this paper uncovers the applicability of the method to the affine
term structure models. Its approach is based on minimizing the optimally-weighted error
terms in each time increment over the whole dataset, with respect to the model-dependent
parameters. For ATSM we need to account for the dynamics of the latent explanatory factors
and also the no-arbitrage cross-sectional relation of yields. MEF is flexible enough to account
for both measures in its estimation process. This allows us to identify the time-series structural
parameters that drive the dynamics of the factors as well as the risk-premium that investors
require to hold long-maturity bonds over short periods.

For the benchmark estimation method, we consider the commonly used minimum chi-
squared estimation (MCSE) method introduced by Hamilton and Wu (2012). The MCSE method
allows for a quick parameter estimation of Gaussian class of ATSM. It is — similarly to the MEF
— a minimum-distance type of estimation, which minimizes the quadratic form of differences
between the restricted and unrestricted statistics. Hamilton and Wu address the issues of iden-
tification with previously used model representations and point out the possibility to estimate
the parameters with OLS, while providing the asymptotic efficiency with the reduced-form
representation. MCSE is also flexible enough to estimate the structural parameters from any
Gaussian model representation.

The main objective of this paper is to apply the MEF method to the commonly used mean
reverting Vasicek model representation. The main challenges are how to analytically derive
the martingale increments for the model, how to optimally weigh them, how to treat the latent
factors, and how to calibrate the numerical optimizer. The MEF derivation is feasible for mod-
els with closed form analytical solutions to the affine structure of yields, such as the one-factor
Vasicek model. We extend the Vasicek model to include more factors, as well as consider the
model with separate time-varying and risk-neutral coefficients.

We treat the latent factors as observable through the yields themselves following Hamilton
and Wu (2012). They assume for the yields of N = Nl + Ne different maturities with Nl yields
observed without and Ne observed with the observational error. They assume for Nl to be
equal to the number of pricing factors M, such that the factors become observable given the
set of structural parameters. This implies that their reduced form representation is a restricted
VAR that can be estimated with OLS. We adopt the same approach to back out the factors
for the MEF from the observed yields, but use the martingale increment minimization for the
estimation itself. This approach simplifies the estimation procedure, since factors are uniquely
determined for each set of parameters.

Since this is a new area of modeling, the numerical optimization, the behavior of the ob-

1Generalized method of moment (GMM) estimation, Hansen (1982).
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jective function, the dependence on starting parameter values, and the overall goodness of the
convergence to the true parameter values are explored in a simulation study. We consider the
MEF, the MCSE, and the Kalman filter methods. We include the Kalman filter to the com-
parison (and assume all yields observed with errors), because it allows us to use the same
functional forms for the measurement and the transition equations that we use for the MEF,
implying the equal model representation. On the other hand, while the benchmark MCSE
incorporates the cross-sectional factor dependence, it is still the fastest and the most robust
method to estimate the structural parameters with. Thus we keep the MCSE methodology
intact while noting the differences in model representations.

We start the simulation by examining the behaviour of the objective function in a simulated
term structure with the Vasicek model specification and estimating the structural parameter
values with MEF. We examine the ability of MEF to find the structural parameters separately
by varying the values of each respective parameter and fixing others to their population val-
ues. This approach uncovers the issue of MEF for systems with too little observational noise,
which implies very low variance around the population parameter value and tremendous nu-
merical difficulties. We modify the methodology by rescaling the optimal weights to ensure
the convergence even in these systems.

For the numerical optimization we consider four different Matlab algorithms (fmincon, fmi-
nunc, fminsearch, patternsearch) to minimize the same MEF functional form. Fminunc and pat-
ternseach behave as expected, while fmincon and fminsearch turn out to be unsuitable for this
type of estimation. In the last part of the simulation study, we focus on the large sample con-
vergence. With the adjusted MEF specification, the best search algorithm, and other estimation
methods for the direct comparison, we show the efficiency of MEF by estimating 1000 simu-
lated term structures. Similarly to the traditional estimation methods, MEF also properly finds
the true parameters in the simulation, while providing a faster convergence than the Kalman
filter.

Empirical fit is examined on Fama and Bliss (1987) dataset. The one-factor model allows
us to match the MEF specification exactly to the MCSE and directly compare both approaches.
Empirically, both methods provide us with similar results. The three-factor model contains the
information from the first three principal components of yields that are interpreted as the level,
the slope and the curvature of the term structure and provides us with additional challenges.
The necessary analytical solutions for MEF matrices are found in the diagonal form, whereas
MCSE incorporates the cross-dependence of factors. This implies that the three-factor MEF
and MCSE specification do not match perfectly, but the empirical fits are still comparable.

An advantage of MEF approach comes from the parameter identification, as all the param-
eters are just identified. In MCSE, the parameters are just-identified if exactly one time-series
of yields is observed with observational error (Ne = 1), while several others (equal to the num-
ber of factors) are observed without any (Nl = M). By including the remaining unobserved
maturities, MCSE method faces over-identification (this can be dealt with, for example, by im-
posing a weighting scheme for the additional unobserved yields). MEF handles the optimal
weighting by construction. Nevertheless, even with the just-identified system Hamilton and
Wu (2012) are able to estimate the structural parameters with little computational effort and
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robust results.
MEF offers an alternative to other estimation methods. It is computationally heavy due to

the necessity of computing the martingale increments (time-varying matrices) separately and
minimizing them over time. With increasing number of factors the size of the optimal ma-
trices increases proportionally and the computational time increases as well. Different search
algorithms work for this setup, but some do work better than other which is addressed in the
simulation study.

Computational time is not the only difficulty the method faces. MEF relies on analytical
solutions for the optimal time-varying matrices that are only available for some models. More
complicated models work with recursive solutions to the affine structure of bond prices that
make the derivations of the optimal MEF matrices impractical. However, there are models
with analytical solutions to the affine structure such as the Vasicek model. This paper provides
the evidence that the MEF method works in this type of setting and can directly compete with
other methods of estimation.

The remainder of the thesis is organized as follows. Section 2 introduces the term structure
modeling and explains the modeling framework used in the subsequent sections. Section 3
summarizes and derives the estimation procedures used in this paper. Section 4 uncovers
concepts of the MEF estimation in the simulation study, whereas Section 5 focuses on empirical
findings on the Fama and Bliss (1987) dataset. Section 6 concludes the findings. The text is
supported by derivations, additional tables and figures in the Appendices.
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2 Models

This section starts by introducing the mathematics involved in the affine term structure mod-
eling in Subsection 2.1, with its direct application to a discrete time framework of Hamilton
and Wu (2012) in Subsection 2.2, and continues by a more general continuous time framework
in Subsection 2.3 which is necessary for martingale estimating functions. We also derive the
model specifications for the one- and three-factor Vasicek model specifications directly from
the continuous time framework which is used for MEF.

2.1 Introduction to interest rate term structure

Fixed income bases its theory on a fundamental security, termed the zero-coupon bond (also
the risk-free discount bond or the pure discount bond) that pays one unit of currency at the
maturity date with certainty. Let us denote the price of a such bond as P(t, n) = P(n)

t , with
t representing the current time and n the number of periods2 till the maturity date. Note
that t is used in the context of the price-variation in time for bonds of fixed duration n left
until maturity. Additionally to the boundary condition, prices P(n)

t < 1 for positive values of
interest rates. That is the bond maturing in n is not worth more than its face value of 1.

Continuously compounded yield on a zero-coupon bond maturing at n (the spot rate of
interest) is inverted directly from its price

y(n)t = −
ln
(

P(n)
t

)
n

. (1)

Since we assume that prices are smaller than 1, the yields are positive for all maturities. Nega-
tive yields are only possible for bond prices that are greater than their face value, which would
imply negative values of interest rates.

The short rate of interest is the yield on a very short bond and can be expressed as rt =

lim
n→0+

y(n)t . This short rate process forms the foundation of the interest rate modeling and is the

main determinant of prices of bonds. If the structure of these prices is

P(n)
t = exp(−A − Brt), (2)

with A = A(n) and B = B(n) being deterministic functions, then the model is said to posses an
affine term structure (Björk, 2009). In our setting, we assume that the short rate depends on
some unobserved factors Ft. We assume an affine specification for these factors, such that

rt
(1×1)

= δ0
(1×1)

+ δ⊤1
(1×M)

Ft
(M×1)

. (3)

Thus the bond price also depends on these factors and we can respecify the relation (2) to

2The units are set to correspond to the periodicity of data, that is observing the monthly periodic data we
conclude that the one unit of n corresponds to the time period of the one month. If we observe the yearly periodic
data the one unit of n would corresponds to the one year, e.t.c.
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depend on the factors themselves, that is

P(n)
t = exp(−Ā − B̄Ft), (4)

where Ā = A(n) + B(n)δ0 and B̄ = B(n)δ⊤1 are deterministic functions. Moreover, it follows
from (1) and (4) that the yields can be represented in the affine form as

y(n)t
(1×1)

=
Ā
n

(1×1)

+
B̄
n

(1×M)

Ft
(M×1)

, (5)

where Ft is the vector of factors. This can be viewed as the change of the coordinate system
and the given state variables Ft produce the same short rate process rt.

The price process needs to satisfy the pricing relation such that prices of bonds with differ-
ent maturities do not allow for a risk-free profit by trading these securities. There are two pop-
ular ways to enforce this internal consistency. First, assuming that the price Pt = Et[Pt+1Mt,t+1]

with the pricing kernel for affine term structure models Mt,t+1. This approach follows directly
from the asset pricing theory and is used, for example, in the benchmark estimation by Hamil-
ton and Wu (2012). Second, we can assure that the Feynman–Kac representation of the term
structure equation holds, following Björk (2009). We adopt the second approach for the deriva-
tions of solutions for the continuous time processes.

2.2 Discrete time framework

In this section we introduce the discrete time model formulation following Hamilton and Wu
(2012), which we generalize to the continuous time in subsequent Subsection 2.3. We denote
Ft to be an (M × 1) vector of variables, characterized by a vector autoregression

Ft+1 = c + ρFt + Σut+1, (6)

where ut ∼ i.i.d.N (0, Im). Therefore Ft+1|Ft, . . . F1 ∼ N (µt, ΣΣ⊤) with µt = c + ρFt. Let rt

denote the risk-free one period interest rate. Zero coupon bond price can then be expressed as
a function of factors Ft. Following the pricing kernel approach, they show that a risk-averse
investor holds Pt = Et[Pt+1Mt,t+1] with Mt,t+1 = exp(−rt − (1/2)λ⊤

t λt − λ⊤
t ut+1) with λt

being an (M × 1) vector of investor’s risk attitude. The risk neutral investor faces λt = 0.
The relation (6) shows how risk-averse investors value assets and that the same holds for a

risk-neutral investor under the Q-measure VAR given by

Ft+1 = cQ + ρQFt + ΣuQ
t+1, (7)

with a vector cQ = c − Σλ0, a matrix ρQ = ρ − ΣΛ, a vector uQ
t+1 of independent standard

normal variables, and λt = λ0 + ΛFt is the market price of risk in its affine form. λ0 is an
(M × 1) vector and Λ is an (M × M) matrix.

Let one period risk-free yield also have an affine structure given by (3), where δ0 is a con-
stant, δ1 a (M × 1) vector, and Ft a (M × 1) vector of factors. Then the yield on a risk-free
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n-period zero-coupon bond from (5) can be calculated recursively by

y(n)t =
Ā
n
+

B̄
n

Ft = an + b⊤n Ft, (8)

where

bn =
1
n
[IM + ρQ⊤ + . . . + (ρQ⊤)n−1]δ1, (9)

an = δ0 + (b⊤1 + 2b⊤2 + . . . + (n − 1)b⊤n−1)c
Q/n

− (b⊤1 ΣΣ⊤b1 + 22b⊤2 ΣΣ⊤b2 + . . . + (n − 1)2b⊤n−1ΣΣ⊤bn−1)/2n, (10)

as was demonstrated by Ang and Piazzesi (2003). Therefore by knowing cQ, ρQ, δ0, δ1 and Σ we
can compute the yield of zero-coupon bond for any maturity. The normalization of Hamilton
and Wu (2012) impose Σ = INl , δ1 ≥ 0, c = 0 and ρQ upper triangular.

For yields with N = Nl + Ne different maturities, Hamilton and Wu (2012) estimate Nl

linear combinations of yields as being observed with no error, and Ne linear combinations
to contain a measurement error. Denoting the first vector Y1

t and second Y2
t we specify the

measurement as 
Y1

t
(Nl×1)

Y2
t

(Ne×1)

 =

 A1
(Nl×1)

A2
(Ne×1)

+

 B1
(Nl×M)

B2
(Ne×M)

 Ft +

 0
(Nl×Ne)

Σe
(Ne×Ne)

 ue
t

(Ne×1)
, (11)

where Σe = σe INe is typically taken to be diagonal, determining the deviation of the mea-
surement error ue

t ∼ N (0, INe), Ai and Bi are a vector and a matrix respectively, containing
elements (10) and (9). Hamilton and Wu numerically compute the structural coefficients from
(11) by minimizing the value of the chi-squared statistic for testing whether the restrictions are
consistent with the observed reduced-form estimates. Details on the estimation procedure are
provided in Subsection 3.1.

2.3 Continuous time framework

A more general approach is to define the processes in the continuous time and utilize the
benefits of the stochastic calculus. Note that we observe the bond prices at some frequency,
therefore even with the continuous framework we discretize the equations and map them to
the discrete time equivalent. Let the unobserved M-dimensional state variables Ft follow a
diffusion process

dFt = µP(Ft)dt︸ ︷︷ ︸
non-random drift term

+ σ(Ft)dWP
t︸ ︷︷ ︸

random diffusion term

, (12)

where µP is an (M × 1) vector, σ(Ft) an (M × M) matrix, and dWP
t an M dimensional standard

Brownian motion under the real world probability measure P.
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The instantaneous drift of each state variable is assumed to be an affine function of Ft

µP(Ft) = aP + bPFt, (13)

with aP an (M × 1) vector, and bP an (M × M) matrix. Instantaneous covariance between two
pairs of factors Ft is an affine function of Ft[

σ(Ft)σ
⊤(Ft)

]
ij = αij + βT

ijFt,

with ij denoting the row i and the column j, αij is a scalar, and βij is an (M × 1) vector.
There also exists an equivalent risk-neutral measure Q, such that

dFt = µQ(Ft)dt + σ(Ft)dWQ
t ,

where µQ is an (M× 1) vector, σ(Ft) an (M× M) matrix, and dWQ
t an M dimensional standard

Brownian motion under the risk-neutral probability measure Q. The drift of the factors is then
an affine function of Ft

µQ(Ft) = aQ + bQFt,

with aQ an (M × 1) vector, and bQ an (M × M) matrix.
The existence of the solution to the above mentioned setup was explored before by Feller

(1951) in the univariate case and by Duffie and Kan (1996) in the multivariate case. Cheridito
et al. (2007) generalize the existence of the solution for the cases when the state vector Ft re-
mains in the areas with σ(Ft)σ(Ft)⊤ being positive semidefinite. Cheridito et al. additionally
show that there are no separate conditions for uniqueness and if a solution to (12) exists, it is
unique. However, restrictions are needed to ensure parameter identification, such as σ(Ft) to
be diagonal (Dai and Singleton, 2000).

The probability measure Q measure is linked to the P measure by defining the market price
of risk being proportional to the volatility term. Since this paper considers Gaussian models
(that this

[
σ(Ft)σ⊤(Ft)

]
ii = αii) the market price of risk is also available in its affine form

λ(Ft) = [σ(Ft)]
−1(µP(Ft)− µQ(Ft)) = λ0 + ΛFt

with an (M × 1) vector λ0 and an (M × M) matrix Λ. Dai and Singleton (2000) further dis-
tinguish between several classes of models. Models with unrestricted λ(Ft) are referred to as
the essentially affine models. Alternatively, the completely affine class of models restricts the
matrix Λ to be equal to zero, making the market price of risk constant.

2.3.1 One-factor model

With the general continuous time framework established in Subsection 2.3, we continue by
examining its relation to the model specification introduced by Vasicek (1977). This is a one-
factor model specification and therefore assumed matrices become scalars. Let us start from
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(3) by assuming an affine form of the short rate which depends on factors

rt
(1×1)

= δ0
(1×1)

+ δ1
(1×1)

Ft
(1×1)

, (14)

and continue with (12) to illustrate the necessary restrictions for unique identification.
Let us derive the dynamics of rt in the univariate case by combining (12) with (13) and (14).

It follows that

drt
(1×1)

= ( δ1
(1×1)

aP

(1×1)
− bP

(1×1)
δ0

(1×1)
+ bP

(1×1)
rt

(1×1)
)dt + δ1

(1×1)
σ(Ft)
(1×1)

dWP
t

(1×1)
.

It is apparent that such a model does not uniquely determine the values of the intercept δ1aP −
bPδ0 and the volatility term δ1σ(Ft). Thus without the loss on generality we can normalize
either δ1 = 1, aP = 0 (denoted S1) corresponding to for example de Jong (2000); δ0 = 0, δ1 = 1
(denoted S2) corresponding to Bolder (2001); or σ(Ft) = 1, aP = 0 (denoted S3) corresponding
to Hamilton and Wu (2012). I parametrize consistently with the benchmark parametrization
S3 that is σ(Ft) = 1, aP = 0 such that

dFt
(1×1)

= bP

(1×1)
Ft

(1×1)
dt + dWP

t
(1×1)

. (15)

The equivalent Q measure then follows

dFt
(1×1)

= ( aQ

(1×1)
+ bQ

(1×1)
Ft

(1×1)
)dt + dWQ

t
(1×1)

, (16)

implying for the market price of risk to be in the form of

λ
(1×1)

= [σ(Ft)]
−1(µP(Ft)− µQ(Ft)) = −aQ + (bP − bQ)Ft = λ0

(1×1)
+ Λ

(1×1)
Ft

(1×1)
.

This specification belongs to the essentially affine class of models. Vasicek (1977) specifies
his model to be completely affine that is the Λ matrix being restricted to zero with only the
constant λ0 determining the market price of risk.

Let us proceed by deriving the dynamics of the short rate from (14), (15), and (16) with the
parametrization S3 to get

drt = (−bPδ0 + bPrt)dt + δ1dWP
t , (17)

drt = (δ1aQ − bQδ0 + bQrt)dt + δ1dWQ
t . (18)

Recall that (17) captures the short rate dynamics under the subjective measure which we di-
rectly observe, whereas (18) denotes the risk-neutral measure under which we price the bonds.

Additionally, Vasicek (1977) specifies his model with dynamics of the short rate labeled
as drt = µrtdt + σdWt, with µ = κ

(
γP(Q) − rt

)
and σ = η, where κ represents the speed of

reversion, γ the target rate, and η the constant volatility term. Specifications (17), (18) coincide
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with the Vasicek model and can be relabeled as

drt = κP(γP − rt)dt + ηdWP
t , (19)

drt = κQ(γQ − rt)dt + ηdWQ
t , (20)

where γP = δ0, η = δ1, κP = −bP for the P measure, the market price of risk λ = λ0 = −aQ, the
risk-neutral mean γQ = δ0 − δ1aQ

bQ = γP − λη
κ , and the same κQ = −bQ = κP and the volatility

term η for the Q measure. Note that since the model is completely affine, market price of risk
λ does not vary with time and the only parameter affected by the change of measure is the γQ.

Under the Vasicek parametrization, for some price process (2) with dynamics (19) and (20),
we can analytically solve for A(n) and B(n) to be in the form

B(n) =
1
κ
(1 − e−κn), (21)

A(n) =

(
η2

2κ2 − γP +
λη

κ

)
(B(n) − n) +

η2

4κ
(B(n))2, (22)

derivided previously for example in Vasicek (1977). The full derivation of the solution to the
Feynman–Kac theorem for this parametrization can be found in Appendix B2.

Alternatively, for a price process (4) that depends directly on factors Ft with normalization
S3 we can write in the one-factor case

B̄(n) = B(n)η, (23)

Ā(n) = A(n) + B(n)γP. (24)

By assuming the dependence of rt on some factor Ft in an affine form and introducing ad-
ditional parameters, we can express the same dynamics of rt with different parametrizations
and relabel them to the same functional forms (19) and (20). Therefore by taking a different
parametrization route, the solutions (21), (22) would still hold but the mapping to the factors
would depend on the chosen parametrization.3

Taking the route of Hamilton and Wu (2012), we suppose that there exist a yields vector
Y1

t observed without the observational error. For the single factor case we assume the num-
ber of such yields Nl = 1, with the remaining Ne = N − 1 yields to be observed with the
observational error. We can therefore follow with (11)

Y1
t

(1×1)

Y2
t

(Ne×1)

 =

 A1
(1×1)

A2
(Ne×1)

+

 B1
(1×1)

B2
(Ne×1)

 Ft +

 0
(1×Ne)

Σe
(Ne×Ne)

 ue
t

(Ne×1)
, (25)

with Σe = σe INe diagonal and its value determines the deviation of the measurement error
ue

t ∼ N(0, INe). Vectors Ai and Bi contain stacked elements Ā(n)/n, B̄(n)/n for different times
till maturity n.

3For completeness and comparison of different specifications — S1: y(n)t = Ā(n)

n + B̄(n)

n Ft, with B̄(n) = B(n),

Ā(n) = A(n) + B(n)γP; S2: y(n)t = Ā(n)

n + B̄(n)

n Ft, with B̄(n) = B(n), Ā(n) = A(n).

10
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Since we assume Y1
t to be observed without observational error, we can obtain the values

of factors Ft directly from yields4

Ft = [B1]
−1(Y1

t − A1), (26)

following the dynamics

dFt = −κFt−∆dt + dWP
t , (27)

which can be solved to obtain in the form

Ft = e−κ∆Ft−∆ + e−κ∆
∫ t

t−∆
eκ(s−(t−∆))dWP

s , (28)

with its conditional expectation and variance

E(Ft|Ft−∆) = e−κ∆Ft−∆,

Var(Ft|Ft−∆) =
1 − e−2κ∆

2κ
.

For the estimation purposes we further rewrite the system (25) as

 Ft
(1×1)

Y2
t

(Ne×1)

 =

 0
(1×1)

A2
(Ne×1)

+

e−κ∆Ft−∆
(1×1)

B2Ft
(Ne×1)

+


ση

(1×1)
0

(1×Ne)

0
(1×1)

Σe
(Ne×Ne)

 ue
t

(Ne+1×1)
, (29)

where we substitute the first observed yield by the solution to the short rate time-series, with
its expectation e−κ∆Ft−∆ and variance σ2

η = 1−e−2κ∆

2κ . Having the model specification (29) we
can capture both the time-series dynamics (P measure) as well as the cross-sectional relation
(Q measure) at the same time. With these specifications in place, we can apply the estimation
method of choice to numerically solve for the parameter vector ϕ⊤ = (γP, κ, λ, η, σe).5 More
specifically for a given parameter vector ϕ we can observe the previously unobservable time-
series of factor Ft from (26) and compute all elements of A2, B2 from (29) that describe the
whole term structure and compare the goodness of fit with the observed data.

Table 1 maps the parameters from the Vasicek specification from equations (19), (20) to the
more general affine continuous time framework from equations (17), (18), as well as the Hamil-
ton and Wu (2012) specification from Subsection 2.2. Note that do not match the Hamilton and
Wu (2012) specification exactly since Vasicek (1977) restricts κQ = κP with the matrix Λ = 0.
By estimating both the P and Q dynamics together we expect for the κ coefficient to lean either
to the Q-side, or the P-side dynamics, depending on how we approach the estimation, which
is further analyzed in a simulation and an empirical study.

4Factors become observable through the yields themselves (Dai and Singleton, 2000; Duffee, 2002).
5Note the equivalence in finding the information about vector ϕ1 = (γP, κ, λ, η, σe)⊤ and a vector ϕ2 =

(γP, κ, γQ, η, σe)⊤, with γQ = γP − λη
κ .
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Table 1: Parameter mapping for one-factor Vasicek
Table compares three different specifications used in the modeling. Vasicek specification is chosen to be as close to the original
paper as possible. This is then mapped to the continuous time framework from Subsection 2.3. Additionally, we can match the
coefficients to Hamilton and Wu from Subsection 2.2. Note that then we have essentially affine model, whereas Vasicek uses the
completely affine model.

Vasicek Continuous time Hamilton and Wu

κP −bP (1 − ρ)/∆

κQ = κP −bQ = −bP (1 − ρQ)/∆

γP δ0 δ0

λ = λ0 −aQ −cQ

0 0 Λ

η δ1 δ1

σe Σe Σe

2.3.2 Three-factor model

So far we have derived the solutions to the one-factor model. However, multi-factor model
is more complicated. In order to use the same analytical solutions for the dynamics of factors
that are implied by Itô’s lemma, we need to diagonalize the involved matrices. For clarity, we
repeat the same derivation steps in the three-factor setting. Three factors are selected to repre-
sent the information contained in the first three principal components of yields and represent
the level, the slope and the curvature of the term structure. Following Hamilton and Wu (2012)
we take the n = 3-, 12-, and 60-month maturities to be the representative yields for factors.

Let us start from the short rate equation (3)

rt
(1×1)

= δ0
(1×1)

+ δ⊤1
(1×3)

Ft
(3×1)

,

followed up by the P dynamics from (12)

dFt
(3×1)

= bP

(3×3)
Ft

(3×1)
dt + I

(3×3)
dWP

t
(3×1)

, (30)

where we — similarly to the one-factor case — normalize the mean (aP = 0, equivalent to
normalizing c = 0 in the discrete case) and volatility (σ(Ft) = I, equivalent to Σ = I in the
discrete case) in order to assure the parameter identification.

The equivalent Q measure then follows

dFt = (aQ + bQFt)dt + IdWQ
t . (31)

Implying for the market price of risk to be in the form of

λ
(3×1)

= [σ(Ft)]
−1(µP(Ft)− µQ(Ft)) = −aQ + (bP − bQ)Ft = λ0

(3×1)
+ Λ

(3×3)
Ft

(3×1)
.

This specification belongs to the essentially affine class of models. Again, we assume that the
market price of risk is constant such that we can use the analytical solutions for Ā(n) and B̄(n)

from the one-factor case.
To summarize the model specification — the P dynamics is restricted and described by (30)
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and its coefficients can be obtained from the time-series of factors, while the Q dynamics used
for pricing bonds follow (31). The two measures are linked through the unobserved variable
λ, which can be computed from the P and Q estimates, or estimated directly with one of the
two measures. Moreover it holds that aQ = aP − σ(Ft)λ0, bQ = bP − σ(Ft)Λ, again with Λ
restricted to 0.

Similarly to the one-factor case, we re-define the system (11) as
Y1

t
(3×1)

Y2
t

(Ne×1)

 =

 A1
(3×1)

A2
(Ne×1)

+

 B1
(3×3)

B2
(Ne×3)

 Ft
(3×1)

+

 0
(3×Ne)

Σe
(Ne×Ne)

 ue
t

(Ne×1)
, (32)

with Ne = N − 3, with Ai, Bi containing stacked elements Ā(n)/n and row vectors B̄(n)/n
defined in (38), (37), with n being the respective time till maturity. We back out the factors of
interest from yields as

Ft = B−1
1 (Y1

t − A1). (33)

Since we need to capture the Ft dynamics in P measure, we need analytical solutions for
(30), obtainable with the Itô’s lemma for a diagonal matrix ebP

with bP = diag(−κ1, . . . ,−κn)

in the form

Ft = ebP∆Ft−∆ + ebP∆
∫ t

t−∆
e−bP(s−(t−∆) IdWP

s , (34)

with its expectation and variance

E(Ft|Ft−∆) = ebP∆Ft−∆ = e−κ∆Ft−∆,

Var(Ft|Ft−∆)ii =
1 − e−2κi∆

2κi
.

From this derivation it is apparent that for this problem formulation we had to further simplify
the estimation problem such that the loadings on factors are diagonalized that is independent
of each other. With this restriction in place we can apply the same analytical solutions for the
factor loadings in the yield equations similarly to the one-factor case.

Thus by recalling the one-factor analytical solutions for Ā(n) and B̄(n) for a price process
(4), we can generalize the three-factor case

y(n)t
(1×1)

=
Ā(n)

n
(1×1)

+
B̄(n)

n
(1×3)

Ft
(3×1)

, (35)

B̄(n)

(1×3)
= B(n)

(1×3)
diag(η)
(3×3)

, (36)

Ā(n) = γPn +
3

∑
i=1

(
η2

i
2κ2

i
+

λiηi

κi

)
(B(n)

i − n) +
η2

i
4κi

(B(n)
i )2, (37)
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with elements of B̄(n)

B(n)
i =

1
κi
(1 − e−κin). (38)

(39)

Finally, we arrive at the system

F1
t

(1×1)

F2
t

(1×1)

F3
t

(1×1)

Y2
t

(Ne×1)


=



0
(1×1)

0
(1×1)

0
(1×1)

A2
(Ne×1)


+



e−κ1∆ 0 0
0 e−κ2∆ 0
0 0 e−κ3∆


(3×3)

Ft−∆
(3×1)

B2
(Ne×3)

Ft
(3×1)


+



ση1 0 0
0 ση2 0
0 0 ση3


(3×3)

0
(3×Ne)

0
(Ne×3)

Σe
(Ne×Ne)


ue

t
(3+Ne×1)

,

(40)

from which we model the martingale increments (the error terms) and minimize them with
MEF.
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3 Methods

With the model representations derived in the previous section we continue by explaining
how do the considered methods of estimation work. Firstly, the MCSE is shortly summarized
in Subsection 3.1, followed by the method of the Kalman filter in Subsection 3.2, and lastly, a
greater emphasis is put on the estimation with MEF in Subsection 3.3. That is explaining the
proper MEF methodology as well as applying it to the one-factor and three-factor cases.

3.1 Minimum-Chi-Squared Estimation

MCSE is — similarly to GMM — a minimum-distance estimation method in which we min-
imize the quadratic difference between restricted and unresticted statistics. When we con-
sider the unrestricted maximum likelihood estimation (MLE) for the unrestricted statistics and
weights from their asymptotic variance, MCSE is asymptotically efficient (Hamilton and Wu,
2012). This is an advantage over the GMM estimation, which is not. Additionally, MCSE al-
lows us to estimate the structural coefficients without the computational complexity of other
methods, while solving their shortcomings as well (the presence of the unit root with highly
persistent data, or its applicability to any model representation).

For a latent 3 factor model, there are still 37 parameters to be estimated. Following restric-
tions are enforced to assure parameter identification — Σ = IM, ρ is lower triangular, c = 0,
δ1 ≥ 0 — making it 14 restrictions, with remaining 23 identifiable parameters. That is 3 in cQ, 6
in ρQ, 9 in ρ, 1 in δ0, 3 in δ1, 1 in σe (the case of a just identified structure and Ne = 1). Following
directly from (11), Ft become observable

Ft = B−1
1 (Y1

t − A1).

Moreover, an invariant transformation of (6) yields a reduced form VAR

Y1
t = A∗

1 + ϕ∗
11Y1

t−1 + u∗
1t,

A∗
1 = A1 − B1ρB−1

1 A1,

ϕ∗
11 = B1ρB−1

1 ,

Y2
t = A∗

2 + ϕ∗
21Y1

t + u∗
2t,

A∗
2 = A2 − B2B−1

1 A1,

ϕ∗
21 = B2B−1

1 ,[
u∗

1t

u∗
2t

]
∼ N

([
0
0

]
,

[
Ω∗

1 0
0 Ω∗

2

])
,

Ω∗
1 = B1B⊤

1 =
1
T

T

∑
t=1

(Y1
t − A∗

1 − ϕ∗
11Y1

t−1)(Y
1
t − A∗

1 − ϕ∗
11Y1

t−1)
⊤,

Ω∗
2 = ΣeΣ⊤

e =
1
T

T

∑
t=1

(Y2
t − A∗

2 − ϕ∗
21Y1

t )(Y
2
t − A∗

2 − ϕ∗
21Y1

t )
⊤.

The estimation procedure involves guessing (ρQ, δ1), calculating respective B(ρQ, δ1) and
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defining π̂ = (vec(ϕ̂∗
21Ω̂∗

1)
⊤, vech(Ω̂∗

1)
⊤)⊤, g(ρQ, δ1) = (vec(B2B⊤

1 )
⊤, vech(B1B⊤

1 )
⊤)⊤, while

numerically finding (ρ̂Q, δ̂1) = argmin
ρQ,δ1

(π̂ − g2(ρQ, δ − 1))⊤(π̂ − g2(ρQ, δ − 1)), which is just

identified for Ne = 1, and overidentified for Ne > 1. With an estimate of (ρQ, δ1), we find
ρ̂ = B̂−1

1 ρ̂∗11B̂1. Furthermore, we find (δ0, cQ) from Â∗
1 = (I − B̂1ρ̂B̂−1

1 )Â1, Â∗
2 = Â2 − B̂2B̂−1

1 Â1.
That is we guess (δ0, cQ) and calculate A(cQ, δ0, ρQ, δ1) and minimize the squared differences
in the equations. That is the minimum chi-square estimation.

Asymptotic standard errors can be obtained by assuming the hypothesis π = g(ϕ) and
defining the Fisher information matrix

R = − 1
T

E

[
∂2logL(π, Y)

∂π∂π⊤

]
,

with π being the vector of reduced-form parameters and ϕ the structural parameter vector. A
linear approximation g(ϕ) ≃ γ + Γϕ for Γ = ∂g(ϕ)/∂ϕ⊤|ϕ=ϕ0 and γ = g(ϕ0) − Γϕ0, where
we assume that there exists a true value of ϕ0 for which g(ϕ0) = π0. Hamilton and Wu (2012)
show that since

√
T(π̂ − π0)

L∼ N (0, R−1), it follows

ϕ̂MCSE
L∼ N

(
ϕ0,

(Γ⊤RΓ)−1

T

)
,

with the var-covariance matrix approximated with (Γ̂⊤R̂Γ̂)−1/T with Γ̂ = ∂g(ϕ)/∂ϕ⊤|ϕ=ϕ̂MCSE
.

3.2 Kalman filtering

A more traditional method of the model likelihood maximization is provided by the Kalman
filter (applied to finance, for example, by Hamilton (1994)), which allows us to model the term
structure with the state-space model representation with unobserved values of factors. In the
state-space system we consider a measurement equation for the yields of different maturities
and a transition equation for the latent factors. We follow the methodology of de Jong (2000)
and allow for all measurement equations to have the measurement error and integrate out
the latent factors with the Kalman filter. With the use of the quasi-likelihood method we can
construct the conditional mean and variance of the latent factors and compute the value of the
likelihood.

We follow with the de Jong (2000) specification

yt = A + BFt + et, Var(et) = H,

Ft = C + DFt−∆ + ηt, Var(ηt) = Q,

along with some initial conditions

F0 = E(Ft)

P0 = Var(Ft).
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The prediction step is defined as

Ft|t−∆ = C + DFt−∆,

Pt|t−∆ = DPt−∆D⊤ + Q,

with the likelihood contributions

ut = yt − A − BFt|t−∆,

Vt = BFt|t−∆B⊤ + H,

−2lnLt = ln|Vt|+ u⊤
t V−1

t ut,

and the updating step, including computing the Kalman gain, adjust conditional variance and
factor value

Kt = Pt|t−∆B⊤V−1
t ,

Ft = Ft|t−∆ + Ktut,

Pt = (I − KtB)Pt|t−∆.

We therefore minimize the sum of the −2lnLt to obtain a set of parameters that maximizes the
model likelihood.

Asymptotic standard errors can be obtained from the Fisher information matrix evaluated
at the maximum likelihood estimates of the parameter vector ϕ. Since we minimize the nega-
tive log-likelihood −lnL, the hessian matrix

H(ϕ) =
∂2

∂ϕi∂ϕj
(−lnL),

is exactly equal to the Fisher information matrix. We therefore estimate the covariance matrix
of the optimal ϕ̂ML with

Var(ϕ̂ML) = [H(ϕ̂ML)]
−1,

and the estimates are then asymptotically normally distributed

ϕ̂ML
a∼ N (ϕ0, Var(ϕ̂ML)),

with standard errors obtained as square-roots of the diagonal elements of Var(θ̂ML).

3.3 Martingale estimating functions

In both the discrete and the continuous time models generate martingale increments. The
main explanatory variable in ATSM are the values of unobserved factors. These factors follow
some stochastic processes that produce martingale increments. This can be further generalized
for the prices of the yields themselves as they are affine functions of the factors and also pro-
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duce martingale increments. Therefore, ATSM form a feasible setup for MEF and allowing the
identification and estimation of the structural parameter vector ϕ.

We need to capture two separate measures — the subjective P measure and the risk-neutral
Q measure. The P measure can be inferred from the dynamics of the unobserved factors (more
specifically from the discrete solution to the stochastic process for the factor dynamics). Re-
call that the assumed approach allows for factors to become observable through yields them-
selves. The Q measure then needs to hold for the pricing relation and is obtained by fitting the
observed bond prices with the P parameters while letting the model to determine the market
price of risk. The measures combined allow to specify a vector mt(ϕ) of martingale increments
and minimize it over time with MEF.

Martingale estimating functions are defined as weighted sums of martingale increments.
MEF assume the same number of estimating equations as the number of parameters, allowing
for a just identified structure. Additionally, Christensen et al. (2016) point out that “optimal
weights are time-varying matrices in the information set one period earlier and depend on the condi-
tional variance of the martingale increment and the conditional mean of the parameter derivatives”.
Intuitively, we minimize the time-varying error terms given the available information set at
respective time-increment, subject to optimal weights. The optimal weights can be viewed as
instruments that satisfy the first order optimality conditions (first order partial derivatives) and
are further weighted by “the precision matrix” (the inverse of the covariance matrix), which
approximates the amount of certainty that the optimal parameters are indeed optimal.

Formally, we define martingale estimating function following Christensen et al. (2016) as

MT =
T

∑
t=1

wtmt, (41)

which is a zero-mean martingale for any wt, that depends on the data up to t − 1. MEF is given
by specifying wt as a series of dim(ϕ)× dim(m) matrices. Parameter vector ϕ is estimated by
solving MT(ϕ) = 0 and E(MT) = 0 at the true value of ϕ. The conditional moment restriction
is then defined as Et−1(mt) = 0.

We obtain wt by computing

wt = ψ⊤(Ψt)
−1, (42)

where Ψt is the conditional variance matrix of the vector martingale increment

Ψt = Vart−1(mt) = Et−1(mtm⊤
t ) , (43)

and ψt the matrix of conditional means of its parameter derivatives

ψt = Et−1

( ∂mt

∂ϕ⊤

)
. (44)

Then the optimal MEF estimator is the MEF estimator using instruments wt = ψ⊤
t Ψ−1

t .
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The optimal MEF estimator is consistent and asymptotically normally distributed

ϕ̂
a∼ N

(
ϕ0,

1
T

VMEF

)
,

with asymptotic covariance matrix

VMEF =
(
E[ψT

t (Ψt)
−1ψt]

)−1,

and consistently estimated by the inverted sample average

V̂MEF =

(
1
T

T

∑
t=1

ψT
t (Ψt)

−1ψt

)−1

.

With the derived model representation — which for ATSM is obtainable in a purely analyt-
ical form — we apply the MEF methodology and derive the vector of martingale increments
mt(ϕ) (depending on the parameter vector ϕ) and the optimal weighting matrices ψ⊤

t (consist-
ing of partial derivatives of mt(ϕ) with respect to each element of ϕ) and Ψ−1

t that scales the
ψ⊤

t weights by the inverse of the amount of the implied noise (“the precision matrix”) in each
of the martingale increments. This system is time-varying in the sense that in each time point
we need to compute these matrices separately, implying a degree of numerical complexity.

3.3.1 MEF with one-factor

The one-factor setting allows us to track the estimation process closely. We therefore explain
the procedure thoroughly with all necessary steps, together with stating all relevant matrices
that enter the MEF. A similar setup is used for the three-factor model with highlighted differ-
ences in the subsequent section. We proceed with following steps.

Step 1. We solve for Ft from (26), with A1, B1 being solved analytically and depending
on parameter vector ϕ = (γP, κ, λ, η). That is for a given parameter vector we can directly
compute the values or Ft form the chosen yield Y1

t . This also allows us to compute the implied
volatility σ2

e of the observational noise.
Step 2. Solve the SDE from (28) to arrive at the discrete time formulation of Ft. This time-

series is used to estimate the P dynamics of Ft.
Step 3. Apply Martingale Estimating Functions for (29) with estimated Ft from Step 1,

along with the result from Step 2. We derive the (5× 1)6 vector mt (identifying the P dynamics
of Ft time-series as well as the Q measure thanks to the cross-sectional no-arbitrage pricing
dependence) but also the ψ⊤

t and Ψ−1
t for the weighting vector wt.

6Elements of ϕ extended by the deviation of the observational noise σe.
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Martingale increments under Vasicek parametrization are defined from (29) as

mt(ϕ) =


 Ft

(1×1)

Y2
t

(Ne×1)

−

 0
(1×1)

A2
(Ne×1)

−

e−κ∆Ft−∆
(1×1)

B2Ft
(Ne×1)




=


Ft − e−κ∆Ft−∆

y(n2)
t − Ā(n2)/n2 − B̄(n2)/n2 · Ft

...

y(nN)
t − Ā(nN)/nN − B̄(nN)/nN · Ft

 .

We derive the components of the weighting matrix wt = ψt
⊤Ψt

−1 as

ψt
⊤ =



0 −1 · · · −1

∆Ft−∆e−κ∆

−
[(

(e−κn2−1)
κ2 +

n2e−κn2
κ

)(
η2

2κ2 −γP

+ ηλ
κ

)
+
(

n2+
(e−κn2−1)

κ

)(
η2

κ3 +
ηλ

κ2

)
− 3η2(e−κn2−1)2

4κ4 + γP(e−κn2−1)
κ2 +

γPn2e−κn2
κ − η2n2e−κn2 (e−κn2−1)

2κ3

]
1

n2

− Ftηe−κn2
κ − Ftη(e−κn2−1)

κ2n2

· · ·

−
[(

(e−κnN −1)
κ2 +

nN e−κnN
κ

)(
η2

2κ2 −γP

+ ηλ
κ

)
+
(

nN+
(e−κnN −1)

κ

)(
η2

κ3 +
ηλ

κ2

)
− 3η2(e−κnN −1)2

4κ4 + γP(e−κnN −1)
κ2 +

γPnN e−κnN
κ − η2nN e−κnN (e−κnN −1)

2κ3

]
1

nN

− Ftηe−κnN
κ − Ftη(e−κnN −1)

κ2nN

0 η
κn2

(
n2 +

e−κn2−1
κ

)
· · · η

κn2

(
n2 +

e−κn2−1
κ

)
0

[(
n2+

(e−κn2−1)
κ

)(
ηκ2+λκ

)
− η(e−κn2−1)2

2κ3

]
1

n2
+

Ft(e
−κn2−1)
κn2

· · ·
[(

nN+
(e−κnN −1)

κ

)(
ηκ2+λκ

)
− η(e−κnN −1)2

2κ3

]
1

nN
+

Ft(e
−κnN −1)
κnN

0 0 · · · 0



Ψ−1
t =


1

σ2
η

0 . . . 0

0 1
σ2

e
. . . 0

...
...

. . .
...

0 0 . . . 1
σ2

e


with σ2

η = 1−e−2κ∆

2κ representing the volatility of the factor process, σ2
e represents the constant

volatility term of all yields observed with observational error that is Σe = σe INe .
7

Since we know the analytical representation of MT = ∑T
t=1 ψt

⊤Ψt
−1mt, we can solve for the

optimal parameter vector ϕ, such that MT(ϕ) = 0. This is done by a numerical minimizer in
Matlab. Note that we have the set of five equations with the equal number of parameters. We
therefore minimize the objective function defined as a scalar

f (ϕ) = M⊤
T Mt.

Moreover, even though σe enters the estimation it is not identified by the system by construc-

7The derivations from this section can be found in the Appendix B3.
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tion. We use the implied volatility σe for each set of parameters (γP, κ, λ, η) instead and con-
tinue with the estimation as described.

Based on the simulated and empirical findings we additionally extend the methodology
as follows. First, next to estimating the completely affine Vasicek model we also consider
the unrestricted essentially affine model that lets κQ ̸= κP. This way we match perfectly the
one-factor estimation of Hamilton and Wu (2012) and can directly compare results. Note the
necessity to adjust the mt, ψ⊤

t , Ψ−1
t matrices to account for the two separate κ coefficients.

Secondly, we propose an extension to the standard MEF methodology (labeled estimation
E1), because of the uncertainty in estimated values coming from “the precision matrix” Ψt

−1,
which is prone to exploding. We consider a second estimation setting (labeled estimation E2)
with rescaled Ψ−1

t matrix in such a way that the diagonal elements sum up to one. That way
we keep the property of shifting the weights ratios for different processes, but provide them
with a certain boundary. As an example consider the estimation of just two yields — we label
Ψ−1

t,11 = 1/σ2
η = w1 and Ψ−1

t,22 = 1/σ2
e = w2. The proposed method rescales these weights such

that Ψ−1
t,11 = w1/(w1 + w2) and Ψ−1

t,22 = w2/(w1 + w2).

3.3.2 MEF with three-factors

The three-factor model in more challenging than its one-factor equivalent. By solving the term
structure equation for a price process P = exp(−Ā− B̄Ft) we arrive at a set of Ricatti equations.
These have — under the affine model setting discussed in this paper — known solutions. An
n-period zero coupon bond yield from (5)

y(n)t = an + b⊤n Ft,

has the coefficients an, bn given recursively by (9) and (10).
We quickly realize that deriving the optimal weights for MEF under this setting is not be an

easy task to do, especially assuming the longest maturity of 120 months which translates to a
bn consisting of a polynomial of degree 119 of which we need to take derivatives with respect
to every coefficient (that is every member of each matrix). Such derivation is not feasible.
Nevertheless, when we diagonalize the loadings on factor dynamics, we can proceed with the
same one-factor analytical solutions. This allows us to analytically specify all MEF matrices,
define proper martingale increments and minimize them.8

The estimation steps are identical to the one-factor steps taken in Subsubsection 3.3.1. The
parameter vector is extended to account for multiple factors, that is

ϕ⊤ = (γP, κ1, κ2, κ3, λ1, λ2, λ3, η1, η2, η2),

along with the observational noise σe. Similarly to the one-factor case we follow with Matlab
minimizer of the objective function f (ϕ) = M⊤

T Mt. We also consider the same extensions
— estimating the κQ and κP coefficients separately and extending the MEF methodology by
estimation E2 with rescaled matrix Ψ−1

t such that diagonal elements sum up to one.

8The derived three-factor matrices can be found in the Appendix C.
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4 Simulation Study

In order to better understand the MEF method and its applicability to the ATSM we perform
an extensive simulation study for the one-factor model. In Subsection 4.1, we explain the
simulation setup. In Subsection 4.2, we focus on numerical convergence of different Matlab
search algorithms. In Subsection 4.3, we discuss values of the objective function with respect to
changes in each coefficient in a great detail. Lastly in Subsection 4.4, we report findings about
the objective function and resulting convergence from different Matlab algorithms, while also
comparing the results to other estimation methods.

4.1 Setup

We repeatedly simulate the term structure of 480 monthly observations (equal to the size of
the empirical dataset) of maturities equal to 3- and 36-months. These maturities are chosen
because 3-month is the shortest yield available in our empirical dataset and 36-month is the
only unobserved yield used by Hamilton and Wu (2012). Nevertheless, MEF already handles
optimal weighting of multiple yields so an extension of the framework is possible. We report
all results under the Vasicek parametrization for the direct comparability.

The first 3-month maturity is assumed to be observed with no observational error, whereas
36-month is simulated with the observational error σe. We simulate the factor time-series from
dFt = −κPFtdt + dWP

t which implies the conditional normal distribution

Ft|t−∆ ∼ N
(

e−κP∆Ft−∆,
1 − e−2κP∆

2κP

)
,

and fit the term structure in the form y(n)t = Ā(n)/n + B̄(n)/n · Ft. Note that the short rate is
defined as an affine function of the factor in form rt = γP + ηFt. Additionally, we consider the
Vasicek model which assumes κP = κQ and we therefore drop the upper index for now.

The parameter estimates for the simulation are matched to the one-factor empirical values
of monthly periodic data9

ϕ =


γP = 0.0038
κ = 0.0141

λ = −0.1179
η = 0.0005

σe

 ,

with σe denoting the observational noise and we consider two values of this noise — a very
small value of 1E-6 and 0.0006 which is close to the empirical value. These true population
values are also referred to as the data generating process (DGP).

For the MEF starting values we pick "smart" values with an OLS regression on the shortest
yield time-series (that is by a slight abuse of notation we set y(3)t = rt and estimate the P

9If we were to assume annualized data all coefficients would be estimated at higher levels. We use monthly
periodic data similarly to Hamilton and Wu (2012).
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dynamics of rt by OLS from y(3)t ). This provides a good proxy for γP, κ, η to start our search
algorithms from. For the market price of risk λ which in the one-factor setting is set to a
really high value we take the negative average of the longest yield available and multiply it
by 20. This way we consistently start in a reasonable vicinity to the population values. This is
necessary especially for the gradient-based solvers.

4.2 Numerical minimization in Matlab

Since MEF is a new methodology it is unclear which numerical optimizers behaves well with
the objective function and does not have a tendency to get stucked in local optima. We there-
fore consider four popular Matlab search algorithms — fmincon, fminunc, fminsearch and pat-
ternsearch. Fmincon and fminunc are gradient based algorithms that work with numerically
computed Hessian matrices. Fminsearch and patternsearch do not make any assumptions on
the gradients of the objective surface and cleverly search in the parameter space for values
that may fit the objective function. Fminsearch draws n + 1 sized simplexes around the n-
dimensional starting vector, whereas patternsearch draws four directional steps away from
each of the starting parameter values and adjusts the step size when no better value exists
until the convergence is achieved.

Fmincon and patternsearch allow us to directly specify parameter bounds that are enforced
by a direct comparison of parameter values and not by the transformation of the parameter
space.10 This is an important quality as the part of our optimal weighting matrix ψt

⊤ needs to
be adjusted by the Jacobian of the given transformation. This is well illustrated with fminsearch
and patternsearch for which we assume an exponential transformation of parameters γP, κ,
and η to ensure their positive values. This transformation scales each column of our optimal
weighting matrix ψt

⊤ by the J matrix

J(ϕ) =



∂eγP

∂γP = eγP

∂eκ

∂κ = eκ

∂λ
∂λ = 1

∂eη

∂η = eη

∂σe
∂σe

= 1


.

Note that for the σe the transformation is unnecessary as this coefficient is not identified by
the system by construction and is backed out as implied volatility of the yields observed with
error when given a parameter vector (γP, κ, λ, η).

4.3 Objective function and the sensitivity to parameter changes

Matlab optimizers operate by minimizing an objective function that is a scalar value, thus
we optimize f (ϕ) = M⊤

T MT. Let us start by examining this objective function in a single
simulated term structure. Note that for replicability we set rng(1) in Matlab to fix the pseudo

10We set reasonable bounds for coefficients — γP ∈ [0, 0.5], κ ∈ [0, 0.5], λ ∈ [−0.5, 0] and η ∈ [0, 0.5].
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number generator which assures the same term structure each time we re-run the code with
modified settings.

We analyze two settings for the term structure of two maturities 3- and 36- months. Estima-
tion E1 assumes the proper MEF methodology — the part of the optimal weights in Ψ−1 is as
stated in the methodology, that is Ψ−1

11 = 1/σ2
η and Ψ−1

22 = 1/σ2
e with σ2

e being computed as im-
plied volatility for the given parameter vector ϕ. Due to troubles in finding the true population
values under some conditions we alter the setting by fixing σe to the true population value. It
turns out that this part of the weighting scheme is causing our objective function to misbehave
and such a restriction fixes the issue. Nevertheless, we cannot know the true population value
of the observational noise in the empirical setting and that is why we suggest a solution in the
second estimation method.

In estimation E2 we realize that Ψ−1
11 = 1/σ2

η = w1 approaches one, whereas Ψ−1
22 = 1/σ2

e =

w2 is of a much bigger magnitude close to 1E+12, 2.78E+6 for σe = 1E-6 and σe = 0.0006
respectively. This causes our objective function to blow up. Therefore even in the undesirable
case of increasing the observational noise σe, while not producing a better fit, we can in fact
decrease the value of the objective function, because not enough weight is being put on the
factor dynamics equation. We limit this property by rescaling the optimal weights.

We note that this part of optimal weights are inverted volatilities which are always posi-
tive. We rescale the Ψ−1 part of weights in such a way that the elements sum up to one that is
Ψ−1

11 = w1/(w1 + w2) and Ψ−1
22 = w2/(w1 + w2) for the setting of just two yields. This has the

same effect as the original weights — the more observational noise there is the smaller weight
is assigned to that part of MEF equations, giving it a smaller importance weight in the estima-
tion and vice versa. It also smoothens out the previously troublesome shape of our objective
function, as is illustrated in figures in Subsection 4.4. Additionally, it turns out that estima-
tion E2 results in the same shape of the objective function in the simulation as the estimation
method E1 with σe fixed to its population value, which is exactly what we tried to achieve.

4.4 Results

In Subsubsection 4.4.1, we focus on a one simulated term structure and analyze the behaviour
of the MEF objective function under different settings. In Subsubsection 4.4.2, we report the
MEF, MCSE and Kalman filter convergence in larger samples. We first repeat the simulation
100 times and estimate the structural parameters with four search algorithms to pick the best
one. With the best search algorithm we simulate 1000 times and report the results.

4.4.1 Objective function and the sensitivity to parameter changes

For the analysis of the single simulated term structure we fix all coefficients to their true pop-
ulation values, except for the one that we vary and evaluate our objective function repeatedly.
This way we get the information on how do the marginal changes in one of the parameters
impact the objective function for MEF. We illustrate the importance of signal-to-noise ratio for
MEF methodology by considering two noise settings — extremely low noise σe = 1E-6, and
moderate (close to empirical) noise level σe = 0.0006.
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Figure 1 introduces the behavior of the objective function with respect to changes in all co-
efficients that enter the estimation E1, that is the proper MEF weighting. Part (a) of the figure
shows the behavior of the objective function in a low noise setting. We can observe that we
correctly find the values of γP, λ, η, whereas the coefficient κ is not possible to locate, because
the objective function is lower for κ-values extremely positive, or close to zero. This causes
our search algorithms to slide to the boundaries and fail to find all population parameters.
The variance around the optimal coefficient κ gets so small that the optimal coefficient is ef-
fectively a single point, yet the objective function is defined at broader vicinity, which causes
tremendous numerical challenges for the proper MEF methodology.

Part (b) of Figure 1 considers the same setting as (a) but introduces a noisier environment
with σe = 0.0006. We can already see a dramatic improvement over the initial setting in the
shape of the objective function. Here we are more likely to find the optima, provided a good
starting point. The issue remains that we can never know how much noise-to-signal we are
dealing with. The methodology proposed by Christensen et al. (2016) is highly dependent
on this property in the ATSM setting. That is why we propose an extension to the original
methodology by rescaling the optimal weighting matrix, that is estimation E2.

Part (c) of Figure 1 captures the low-noise environment with rescaled part of optimal
weights according to estimation E2. We can observe that the convergence in parameters re-
mains the same in all parameters except for κ, where we observe the flattening of the objective
function. This way we are much more likely to find the true optimal values of all parameters
without the dependence on the amount of noise in the data.

Part (d) of Figure 1 adds further evidence in favor of E2 in a moderately noisy setting. We
can again see that the objective function keeps the same shape as in the original E1 setting
except for κ coefficient that is much easier to find. We also note that the functional minima in
the noisy setting E1 (b) and E2 (d) are exactly matched. The estimation E2 seems to be much
more robust, while keeping all the properties of MEF methodology that cleverly adjusts the
weights based on the amount of the implied signal-to-noise ratio.

4.4.2 Large sample convergence

After examining the behavior of the objective function we look at MEF convergence in large
samples. We start by simulating a representative sample of 100 term structures and estimate
E1, E2 with four suitable Matlab algorithms to see their behavior. Additionally, we estimate
the same term structures with Kalman filter and MCSE for a direct comparison. Note that by
construction, MCSE separates estimated measures and assumes a time-varying market price of
risk which implies that κP ̸= κQ. This also has an effect on the estimated long run mean of short
rate γP and the market price of risk λ. Nevertheless, the pricing κQ coefficient corresponds to
κ of our setting closely and we therefore report this value for a quick comparison of methods.
We again consider a low noise environment (σe = 1E-6) and a moderately noise setting (σe =

0.0006).
Table 2 and Table 3 summarize the results of the algorithm comparison for all considered

settings. Out of the four different search algorithms fminunc performs the best (in terms of the
closes mean and the lowest average variance of estimates) and in the quickest time for MEF
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(a) E1, population with σe = 1E-6
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(b) E1, population with σe = 0.0006
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(c) E2, population with σe = 1E-6
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(d) E2, population with σe = 0.0006

Figure 1: MEF estimation E1 and E2, f-val denotes the value of objective function f (ϕ) = M⊤
T MT

MEF E1 uses the proper MEF weights, whereas MEF E2 uses the rescaling of Ψ−1 such that diagonal elements sum up to one.

estimations E1, E2 in both the noisy and the low-noise environments. Second best algorithm
for this type of problem is patternsearch which provides similarly good estimates and is able
to jump over local optima and can in some situations be more robust. The computational time
is much longer and we therefore prefer fminunc. Fminsearch provides good estimates only in a
moderately noisy environments with estimation E2 and still struggles to properly identify the
volatility η of factors, while taking much larger computational time than other algorithms. We
conclude fminsearch to be not sufficiently robust for this type of estimation. Fmincon has the
largest tendency to slide to boundary values and provides the worst estimates of all considered
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Table 2: DGP1, Kalman filter, MCSE and MEF estimates, 100 simulations
This table reports the coefficients used for creating the population (DGP), "smart" OLS start values for MEF, and the resulting
mean, median and variance of 100 term structures estimated by Kalman filter, MCSE, and MEF. MEF estimation E1 assumes the
proper weighting, whereas E2 assumes the sum of weighting elements Ψ−1 to be rescaled to one. MEF estimations with fminunc,
fminsearch Matlab algorithms use the exponential transformation of γP, κ, and η. MEF estimations with fmincon, patternsearch
Matlab algorithms use the parameter bounds γP ∈ [0, 0.5], κ ∈ [0, 0.5], λ ∈ [−0.5, 0] and η ∈ [0, 0.5]. For MCSE we report κQ as it
corresponds to the κ used for pricing.

γP κ λ η σe Iterations Time [s]

DGP1 true value 0.0038 0.0141 −0.1179 0.0005 0.000 001 - -

Kalman filter mean 0.0035 0.0141 −0.1195 0.0005 0.000 001 40 13
median 0.0038 0.0141 −0.1163 0.0005 0.000 001 39 12
var 1.70E-6 2.67E-12 1.07E-3 5.60E-10 6.04E-16 - -

MCSE mean 0.0035 0.0140 −0.1282 0.0005 0.000 001 - <1
median 0.0036 0.0140 −0.1244 0.0005 0.000 001 - <1
var 1.95E-6 2.62E-12 1.58E-3 2.71E-10 9.65E-16 -

OLS start mean 0.0035 0.0242 −0.0892 0.0005 - - -
median 0.0037 0.0210 −0.0928 0.0005 - - -

PANEL A: ESTIMATION E1

MEF patternsearch mean 0.0031 0.1138 −0.5000 0.0005 0.001 125 1891 124
median 0.0000 0.0322 0.0429 0.0001 0.000 000 81 032 403
var 1.02E-2 1.92E-1 −1.15E-1 9.05E-3 9.69E-4 - -

MEF fmincon mean 0.0027 0.0999 −0.0548 0.0054 0.000 911 100 11
median 0.0005 0.0454 0.0234 0.0001 0.000 000 921 641 3878
var 3.19E-3 6.86E-2 −9.40E-1 6.23E-4 7.90E-4 - -

MEF fminunc mean 0.0002 0.0611 −1.2561 0.0003 0.000 746 63 6
median 0.0001 0.0066 1.0267 0.0000 0.000 000 937 7
var 5.01E-1 5.49E-1 3.76E-1 5.98E-2 1.00E-3 - -

MEF fminsearch mean 0.1100 0.0639 0.0585 0.0029 0.000 858 2096 123
median 1.8503 0.5882 1.6164 0.0108 0.000 000 5 021 747 2287
var 3.47E-3 1.40E-2 −1.28E-1 4.93E-4 1.00E-6 - -

PANEL B: ESTIMATION E2

MEF patternsearch mean 0.0036 0.0142 −0.1261 0.0010 0.000 006 473 36
median 0.0037 0.0141 −0.1205 0.0005 0.000 001 321 23
var 2.17E-6 2.14E-6 1.76E-3 4.04E-6 1.18E-9 - -

MEF fmincon mean 0.0386 0.1557 −0.1714 0.0414 0.000 901 129 11
median 0.0194 0.1001 −0.1051 0.0166 0.000 908 115 11
var 5.00E-3 2.00E-2 2.07E-2 2.74E-3 3.58E-7 - -

MEF fminunc mean 0.0035 0.0141 −0.1304 0.0005 0.000 001 18 2
median 0.0037 0.0141 −0.1260 0.0005 0.000 001 18 2
var 1.88E-6 2.69E-12 1.69E-3 3.77E-10 9.81E-16 - -

MEF fminsearch mean 0.0052 0.0138 0.0400 0.0004 0.000 012 140 4
median 0.0052 0.0141 −0.0911 0.0004 0.000 001 117 3
var 2.52E-6 3.90E-6 1.60+00 7.78E-8 5.13E-9 - -

algorithms.
With the best algorithm in hand — that is fminunc — we continue by simulating 1000 term

structures in the low noise environment and 1000 term structures in the noisy environment.
Table 4 summarizes the results. We report the mean, median and variance of estimates for the
Kalman filter, MCSE and MEF methods. We can see in PANEL A of Table 4 that the proper MEF
methodology E1 in the low noise environment fails to identify the population optima. Note
that both Kalman filter and MCSE had no such struggle with the estimation. However, when
estimating with the adjusted weights E2 we observe a large improvement in the convergence
and obtain very good results.
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Table 3: DGP2, Kalman filter, MCSE and MEF estimates, 100 simulations
This table reports the coefficients used for creating the population (DGP), "smart" OLS start values for MEF, and the resulting
mean, median and variance of 100 term structures estimated by Kalman filter, MCSE, and MEF. MEF estimation E1 assumes the
proper weighting, whereas E2 assumes the sum of weighting elements Ψ−1 to be rescaled to one. MEF estimations with fminunc,
fminsearch Matlab algorithms use the exponential transformation of γP, κ, and η. MEF estimations with fmincon, patternsearch
Matlab algorithms use the parameter bounds γP ∈ [0, 0.5], κ ∈ [0, 0.5], λ ∈ [−0.5, 0] and η ∈ [0, 0.5]. For MCSE we report κQ as it
corresponds to the κ used for pricing.

γP κ λ η σe Iterations Time [s]

DGP2 true value 0.0038 0.0141 −0.1179 0.0005 0.0006 - -

Kalman filter mean 0.0037 0.0124 −0.1289 0.0005 0.000 45 35 11
median 0.0037 0.0124 −0.1293 0.0005 0.000 45 35 10
var 8.27E-8 1.28E-6 2.07E-4 6.84E-10 2.00E-10

MCSE mean 0.0035 0.0140 −0.1282 0.0005 0.000 60 - <1
median 0.0036 0.0139 −0.1251 0.0005 0.000 60 - <1
var 1.95E-6 9.48E-7 1.61E-3 2.72E-10 3.47E-10

OLS start mean 0.0035 0.0242 −0.0892 0.0005 - - -
median 0.0037 0.0210 −0.0928 0.0005 - - -

PANEL A: ESTIMATION E1

MEF patternsearch mean 0.0038 0.1109 −0.0962 0.0052 0.000 85 741 60
median 0.0038 0.0145 −0.0973 0.0005 0.000 61 460 38
var 1.89E-6 3.18E-2 1.65E-3 6.99E-5 2.15E-7

MEF fmincon mean 0.0091 0.0315 −0.0761 0.0024 0.000 68 341 27
median 0.0040 0.0141 −0.0710 0.0010 0.000 61 31 5
var 4.60E-4 4.19E-3 1.73E-3 1.63E-5 4.13E-8 - -

MEF fminunc mean 0.0038 0.0141 −0.1205 0.0005 0.000 60 28 4
median 0.0038 0.0140 −0.1153 0.0005 0.000 60 18 3
var 1.91E-6 1.16E-6 1.71E-3 1.57E-9 4.03E-10 - -

MEF fminsearch mean 0.0626 0.0136 0.0107 0.0008 0.000 61 2947 72
median 0.0038 0.0140 −0.0823 0.0007 0.000 60 2325 56
var 2.33E-1 7.42E-6 1.61E+0 2.95E-7 4.05E-9 - -

PANEL B: ESTIMATION E2

MEF patternsearch mean 0.0039 0.0139 −0.1214 0.0009 0.000 60 404 38
median 0.0038 0.0140 −0.1202 0.0005 0.000 60 264 25
var 2.40E-6 5.19E-6 1.73E-3 4.30E-6 4.74E-10 - -

MEF fmincon mean 0.0647 0.1798 −0.0817 0.0709 0.001 29 148 16
median 0.0243 0.2165 −0.0836 0.0647 0.001 28 122 13
var 9.18E-3 1.63E-2 3.24E-4 3.88E-3 2.48E-7 - -

MEF fminunc mean 0.0035 0.0141 −0.1286 0.0005 0.000 60 23 3
median 0.0037 0.0140 −0.1253 0.0005 0.000 60 19 2
var 1.87E-6 9.78E-7 1.62E-3 1.05E-9 3.53E-10 - -

MEF fminsearch mean 0.0037 0.0141 −0.0833 0.0009 0.000 61 2787 77
median 0.0037 0.0140 −0.0801 0.0007 0.000 60 2046 51
var 2.38E-6 1.19E-5 2.24E-3 3.49E-7 1.42E-9 - -

PANEL B of Table 4 reports the results from the noisy environment. We can see that MEF
methodology E1 catches up and provides a better convergence, but still has a few very extreme
outliers. On the other hand, the estimation with the adjusted weights E2 results in similar
parameter distributions (can be examined in reported histograms) close to the population val-
ues while removing extreme outliers. Note how do Kalman filter and MCSE deal with the
noisy environment. MCSE locates the true population values very well. On the other hand,
the Kalman filter tries to de-noise the measurement and the transition equations and it indeed
succeeds, estimating the measurement noise with σ̂e = 0.00045 which is lower than for other
estimating methods and the true population value σe = 0.0006. Similar findings are observed
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Table 4: DGP1,2, Kalman filter, MCSE and MEF estimates, 1000 simulations
This table reports the coefficients used for creating the population (DGP), "smart" OLS start values for MEF, and the resulting
mean, median and variance of 1000 term structures estimated by Kalman filter, MCSE, and MEF. MEF estimation E1 assumes the
proper weighting, whereas E2 assumes the sum of weighting elements Ψ−1 to be rescaled to one. MEF estimations use fminunc
Matlab algorithms with the exponential transformation of γP, κ, and η. For MCSE we report κQ as it corresponds to the κ used
for pricing.

γP κ λ η σe Iterations Time [s]

PANEL A: LOW NOISE ENVIRONMENT σe = 1E-6

DGP1 true value 0.0038 0.0141 −0.1179 0.000 50 0.000 001 0 - -

OLS start mean 0.0039 0.0238 −0.0939 0.000 49 - - -
median 0.0039 0.0212 −0.0941 0.000 49 - - -

Kalman filter mean 0.0039 0.0141 −0.1108 0.000 52 0.000 000 8 41 12
median 0.0040 0.0141 −0.1089 0.000 52 0.000 000 8 39 11
var 1.89E-6 3.75E-9 1.33E-3 1.53E-9 3.24E-15 - -

MCSE mean 0.0039 0.0140 −0.1171 0.000 49 0.000 001 0 - <1
median 0.0039 0.0140 −0.1165 0.000 49 0.000 001 0 - <1
var 2.46E-6 2.95E-12 2.01E-3 2.50E-10 9.95E-16 - -

MEF E1 mean 0.0074 0.0855 −0.7330 0.001 92 0.000 860 4 67 7
median 0.0003 0.0630 −1.1739 0.000 33 0.000 774 4 65 7
var 6.95E-4 9.50E-3 1.11E+0 3.50E-5 1.14E-7 - -

MEF E2 mean 0.0039 0.0141 −0.1191 0.000 48 0.000 001 0 18 1
median 0.0039 0.0141 −0.1178 0.000 48 0.000 001 0 18 1
var 2.40E-6 3.04E-12 2.28E-3 4.37E-10 9.94E-16 - -

PANEL B: MODERATE NOISE ENVIRONMENT σe = 0.0006

DGP2 true value 0.0038 0.0141 −0.1179 0.000 50 0.000 600 - -

OLS start mean 0.0039 0.0238 −0.0939 0.000 49 - - -
median 0.0039 0.0212 −0.0941 0.000 49 - - -

Kalman filter mean 0.0038 0.0125 −0.1264 0.000 46 0.000 454 35 9
median 0.0038 0.0126 −0.1260 0.000 46 0.000 454 35 9
var 8.70E-8 1.43E-6 1.88E-4 5.83E-10 2.00E-10 - -

MCSE mean 0.0039 0.0140 −0.1172 0.000 49 0.000 600 - <1
median 0.0039 0.0140 −0.1167 0.000 49 0.000 600 - <1
var 2.46E-6 1.07E-6 2.04E-3 2.50E-10 3.58E-10 - -

MEF E1 mean 0.0039 0.0141 −0.1610 0.000 49 0.000 602 28 4
median 0.0039 0.0141 −0.1154 0.000 48 0.000 600 18 3
var 3.14E-6 2.02E-6 2.34E+0 3.03E-9 1.52E-9 - -

MEF E2 mean 0.0039 0.0141 −0.1169 0.000 49 0.000 600 25 2
median 0.0040 0.0141 −0.1150 0.000 49 0.000 600 18 2
var 2.26E-6 1.10E-6 1.92E-3 1.81E-9 3.58E-10 - -

for the transition noise η.
Further evidence is provided by added histograms in Figure 2 and Figure 3 that show

how well does the MEF estimation E2 compare to the best estimation methods. The proper
MEF estimation E1 fails to estimate the structural parameters in the environment with low
observational noise (Figure 2). For the noisy environment (Figure 3), we can observe that the
estimations E1 (part (c)) and the estimation E2 (part (d)) both hold very similar distributions
for all structural parameters, while E1 having extreme outliers that affect the mean, median,
and variance measures reported in Table 4.

To summarize, we have estimated two MEF estimation settings E1, E2 in a low noise and
noisy environment next to the traditional estimation methods of Kalman filtering and MCSE.
Out of four different search algorithms for MEF the fminunc with the exponential transforma-
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Figure 2: Histograms for 1000 simulations with low noise σe = 1E-6
We report results for Kalman filter, MCSE, MEF estimation E1 with proper weights, MEF estimation E2 with adjusted weights.
The thick vertical line corresponds to population values γP = 0.0038, κ = 0.0141, λ = −0.1179, η = 0.0005, σe = 1E-6. Note that
x-axis is normalized for each estimation method to the same lower and upper limit and thus may not include extreme outliers.
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(d) MEF estimation E2

Figure 3: Histograms for 1000 simulations with moderate noise σe = 0.0006
We report results for Kalman filter, MCSE, MEF estimation E1 with proper weights, MEF estimation E2 with adjusted weights.
The thick vertical line corresponds to population values γP = 0.0038, κ = 0.0141, λ = −0.1179, η = 0.0005, σe = 0.0006. Note that
x-axis is normalized for each estimation method to the same lower and upper limit and thus may not include extreme outliers.
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tion of γP, κ, and η performs the best (in terms of the closest mean and the lowest average
variance of estimated coefficients) and in the quickest time, beating the average computational
time of Kalamn filtering by 2-4 times, yet still staying behind the quickest MCSE approach.
MEF estimation E2 is strictly faster in convergence than the proper MEF estimation E1 which
can be addressed to the tendency of E1 to occasionally slide to extreme values.

We identify the issue of MEF methodology E1 in the low noise environment and suggest the
solution to rescale the optimal weights with estimation E2 which solves the convergence issue
in the low noise environment. Both Kalman filter and MCSE in the low noise environment
behave very well. Comparing the results of all methods, we conclude that MCSE is the quickest
and the most robust method of estimation, closely followed by MEF E2 with adjusted weights.
Kalman filter also produces good estimates but does undervalue certain coefficient values to
obtain a better theoretical fit, which however does not match the population values as closely
as other methods. The proper MEF E1 is not sufficiently robust with respect the amount of
observed noise and is be placed last in this comparison.11

11Similar simulation results hold for the three-factor model and can be examined in the Appendix C2.
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5 Empirical Study

We have established the validity of MEF in Section 4. We continue by examining the empirical
applicability. In Subsection 5.1, we summarize the setup used for the empirical estimation. In
Subsection 5.2, we describe the chosen dataset. Lastly in Subsection 5.3, we report one- and
three-factor structural parameters and the corresponding empirical and theoretical fit.

5.1 Setup

Following the findings from the simulation study we fit the one-factor model in the empiri-
cal setting in four ways — using the Kalman filter, MCSE, MEF method E1 with proper MEF
weights and MEF method E2 which rescales weights of Ψ−1 to sum up to one and is more ro-
bust. Moreover, following the Hamilton and Wu (2012) we only consider one additional yield
next to the yields that correspond to factors, even though the methodology already handles the
proper optimal weighting for multiple additional yield equations. We use the 3-month yield
observed with no observational error and 36-month yield observed with the observational er-
ror.

Next to the one-factor model we also estimate the three-factor model with the Kalman
filter, the MCSE and the MEF estimations E1 and E2. We diagonalize κ matrices such that our
analytical results apply. Of the observed yields we again consider just one additional yield
next to the three yields representing factors. Following Hamilton and Wu (2012) we use the set
of 3-, 12-, 60- months observed yields with no observational error and 36-month maturity for
the yield with the observational noise.

For obtaining the empirical estimates we use the same setting as in the simulation. That
is for Kalman filter we minimize −2lnL with minimizer fminunc with exponential transforma-
tion of γP, κ, and η parameters. MCSE method follows the same estimation procedure as in the
original paper with fsolve algorithms and manually enforced restrictions. For MEF methodol-
ogy we use the fminunc12 with exponential transformation of γP, κ, and η parameters. Note that
since our optimal weighting matrix ψ⊤ contains partial derivatives, we need to properly scale
this matrix by the part of the Jacobian of the transformation.13 We start the search algorithms
from the “smart” OLS coefficients.

For the model comparison we use the mean absolute error (MAE) metric of the difference
between the observed data and the theoretical curve fitted by the estimated parameters. The
lower the value of MAE the closer to the empirical surface we are and the better fit we have ob-
tained. Asymptotic standard errors are also reported for each method of estimation. However,
we note that these errors are valid if and only if the model specifications are correct, which re-
mains uncertain. Noting that all used methods are slightly different in specifications, we avoid
drawing conclusions based solely on these standard error terms. For estimation E2 we use the
proper asymptotic theory derived for E1, since we view the change of involved matrices as a
type of rescaling that helps with the numerical convergence.

12The following set of options was used for the algorithm options = optimoptions(’fminunc’,’Algorithm’,’quasi-
newton’,’HessUpdate’,’bfgs’,’MaxFunctionEvaluations’,10000,’MaxIterations’,5000,’Disp’,’off’,’TolFun’, 1e-20, ’TolX’,
1e-20);. Note that these are mostly default fminunc options.

13Details are summarized in Subsection 4.2.
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5.2 Data

To verify the methodology introduced in Section 3 we examine the empirical fit on the chosen
dataset. The data contains monthly time-series of zero yields Fama and Bliss (1987) forward
rates, constructed from the CRSP Monthly Treasury Cross-Sectional File by Dijk et al. (2014).14

The data contains 480 time-series observations for 17 different maturities, ranging from 3 to
120 months. The oldest yields are from 30 January 1970, while the latest from 31 December
2009. We normalize the yields to contain periodic monthly observations.15

5.3 Results

5.3.1 One-factor results

Table 5 captures the results from the one-factor estimation. We estimate the one-factor param-
eters with the Kalman filter, the MCSE, the MEF method E1, the MEF method E2 and also the
extended MEF methods that unrestrict the condition κQ = κP. We therefore denote κQ for the
pricing coefficient and κP for the risk-neutral factor dynamics coefficient and have the model
directly comparable to the MCSE. We note that both the E1 and the E2 produce identical esti-
mates, because we are estimating in a moderately noisy environment as was explored in the
simulation study. Still, E2 is computationally faster than E1.

With the parametrization S3 the weighting scheme puts much bigger weight on the Q dy-
namics for the MEF and that is why we report the κ coefficient for E1 and E2 in the κQ column.
When we relax this condition and let the factor dynamics κP to vary independently on the pric-
ing κQ and estimate with our E1,2 methods we reproduce the same coefficients as Hamilton and
Wu (2012) with the MCSE. Note that we can directly compete in terms of computational times
with MCSE as well. This sort of estimation is numerically very challenging and MEF holds
its ground next to the MCSE method very well. The one-factor fit can be also examined in the
Figure 4.

5.3.2 Three-factor results

The empirical estimation is much more dependent on the chosen starting point than in the
simulated setup. We therefore adopt the “smart” OLS start where we estimate the γi, κi, ηi

from the yields themselves and use them for starting points. For the market price of risk we
assume the negative of the mean of 60-month yields.

Table 6 captures the results from three-factor estimation similarly to the one-factor results.
We note that both E1 and E2 yield slightly different estimates and the proposed E2 outperforms
the E1 in terms of the MAE. The computational times in the three-factor setting raise up to 53s,
170s, 160s for the Kalman filter, the MEF E1 and the MEF E2 respectively, while the MCSE is
still able to solve the three-factor problem instantly.

We note that our weighting scheme with parametrization S3 puts much bigger weight on
the Q dynamics in our MEF setup and that is why we report the κ coefficient for E1 and E2 in

14Available: http://qed.econ.queensu.ca/jae/datasets/van_dijk002/
15That is having annualized yields we divide each observation by 12 to get monthly periodic yields.
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(d) MEF E1,2,κQ ̸=κP

Figure 4: One-factor fit on empirical dataset
Coefficients are estimated with Kalman filter, MCSE, MEF E1,2 (plotted together due to the same coefficient values), and MEF
E1,2,κQ ̸=κP (plotted together due to the same coefficient values).

35



Table 5: One-factor model estimates
The table that reports "smart" OLS start values for MEF, and the resulting γP, κP, κQ, λ, η and σe estimated by the Kalman filter,
the MCSE, and the MEF. MEF E1 assumes the proper weighting, whereas E2 assumes the sum of weighting elements Ψ−1 to
be rescaled to one. MEF use fminunc Matlab algorithm with the exponential transformation of γP, κ, and η. The overall fit is
measured as the average MAE across all observed yields. Asymptotic standard errors are provided in the parentheses.

γP κQ κP λ η σe Iter Time [s] MAE

OLS start 0.0038 0.0070 0.0140 −0.1100 0.000 47 - - - -

Kalman filter 0.0060 0.0050 - −0.1172 0.000 34 0.000 45 117 30 5.57E-4
( 4.3E-4) ( 7.6E-4) - ( 1.0E-2) ( 1.8E-5) ( 1.2E-5)

MCSE 0.0038 0.0077 0.0140 −0.1192 0.000 47 0.000 68 - <1 5.21E-4
( 1.7E-3) ( 8.8E-4) ( 8.4E-3) ( 2.8E-2) ( 1.5E-5) ( 2.2E-5)

MEF E1 0.0038 0.0077 - −0.1220 0.000 46 0.000 68 19 3 5.37E-4
( 5.6E-5) ( 7.7E-3) - ( 4.5E-7) ( 6.3E-5) -

MEF E2 0.0038 0.0077 - −0.1213 0.000 47 0.000 68 18 1 5.37E-4
( 5.6E-5) ( 7.7E-3) - ( 4.5E-7) ( 6.4E-5) -

MEF E1,κQ ̸=κP 0.0038 0.0070 0.0142 −0.1173 0.000 47 0.000 68 17 4 5.36E-4
( 3.8E-5) ( 2.3E-7) ( 7.9E-3) ( 3.1E-7) ( 6.1E-6) -

MEF E2,κQ ̸=κP 0.0038 0.0077 0.0140 −0.1195 0.000 47 0.000 68 16 2 5.37E-4
( 3.8E-5) ( 2.4E-7) ( 7.9E-3) ( 3.1E-7) ( 6.1E-6) -

the κQ column. Relaxing the restriction that κQ = κP does not provide us with the better fit. In
fact the MEF E2 is the best of MEF methods in terms of the MAE from the four considered MEF
approaches. All estimation methods provide us with the overall good fit to the empirical term
structure which is well observable from Figure 5 of the fitted and the observed term structures.
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Table 6: Three-factor model estimates
The table that reports "smart" OLS start values for MEF, and the resulting γP, κP, κQ, λ, η and σe estimated by the Kalman filter,
the MCSE, and the MEF. MEF E1 assumes the proper weighting, whereas E2 assumes the sum of weighting elements Ψ−1 to
be rescaled to one. MEF use fminunc Matlab algorithm with the exponential transformation of γP, κ, and η. The overall fit is
measured as the average MAE across all observed yields. Asymptotic standard errors are provided in the parentheses.

γP κQ κP λ η σe

OLS start

0.0038 0.0070 0 0 0.0140 0 0 −0.0057 0.0005 -
0 0.0061 0 0 0.0122 0 −0.0057 0.0004
0 0 0.0047 0 0 0.0094 −0.0057 0.0003

Kalman filter, MAE: 2.92E-4

0.0052 0.3430 0 0 - - - −0.2391 6.76E-4 6.60E-5
( 4.5E-4) ( 2.4E-2) - - - - - ( 4.9E-2) (3.4E-5) (2.0E-6)

0 0.0495 0 - - - −0.0090 4.91E-4
- ( 2.1E-3) - - - - ( 3.7E-2) (2.2E-5)
0 0 0.0050 - - - −0.0422 4.03E-4
- - ( 4.9E-4) - - - ( 5.2E-3) (1.7E-5)

MCSE, MAE: 7.32E-5

0.0034 0.0043 1 1 0.0226 1.0097 0.9470 −0.0656 1.98E-4 8.23E-5
( 2.1E-3) ( 5.9E-3) - - ( 3.0E-2) ( 1.1E-2) ( 2.5E-2) ( 5.3E-2) (3.0E-5) (2.7E-6)

0.9885 0.0728 1 1.0047 0.1489 0.9011 −0.0339 1.25E-4
( 3.7E-3) ( 4.6E-4) - ( 2.5E-2) ( 1.0E-2) ( 2.5E-2) ( 2.8E-2) (2.2E-5)

0.9619 0.7741 0.2053 0.9768 0.8675 0.1697 −0.2113 4.44E-4
( 1.3E-2) ( 1.5E-2) ( 2.6E-2) ( 2.5E-2) ( 1.3E-2) ( 2.9E-2) ( 1.2E-1) (1.4E-5)

MEF E1, MAE: 8.62E-5

0.0013 0.2070 0 0 - - - −0.6276 3.48E-4 1.00E-4
( 6.1E-4) ( 1.1E-2) - - - - - ( 8.7E-7) (2.2E-5) -

0 0.0377 0 - - - −3.5621 1.15E-3
- ( 4.6E-4) - - - - ( 8.4E-6) (9.4E-6)
0 0 0.0007 - - - −0.6504 9.96E-5
- - ( 3.0E-4) - - - ( 1.1E-6) (5.8E-7)

MEF E2 , MAE: 7.67E-5

0.0023 0.2395 0 0 - - - −0.5552 3.46E-4 8.23E-5
( 1.3E-4) ( 3.3E-3) - - - - - ( 1.6E-7) (1.3E-5) -

0 0.0735 0 - - - 0.3802 5.68E-4
- ( 1.1E-3) - - - - ( 6.4E-7) (8.3E-6)
0 0 0.0043 - - - −0.2211 1.73E-4
- - ( 1.9E-3) - - - ( 3.8E-7) (5.6E-6)

MEF E1,κQ ̸=κP , MAE: 8.24E-5

0.0038 0.6612 0 0 0.0152 0 0 −0.0634 6.68E-4 1.00E-4
( 7.7E-6) ( 6.7E-8) - - ( 2.3E-2) - - ( 7.5E-9) (6.7E-5) -

0 0.0350 0 0 0.0062 0 −0.0171 1.10E-3
- ( 8.2E-8) - - ( 2.7E-2) - ( 1.0E-7) (5.2E-6)
0 0 0.0003 0 0 0.0278 −0.0460 6.66E-4
- - ( 3.3E-8) - - ( 6.2E-3) ( 9.2E-8) (1.5E-6)

MEF E2,κQ ̸=κP , MAE: 7.68E-5

0.0038 0.0737 0 0 0.0139 0 0 −0.1091 4.73E-4 8.99E-5
( 5.6E-6) ( 2.6E-8) - - ( 6.6E-3) - - ( 2.3E-8) (4.1E-6) -

0 0.1552 0 0 0.0122 0 0.0137 5.68E-4
- ( 4.5E-8) - - ( 9.8E-3) - ( 1.7E-8) (1.3E-5)
0 0 0.0002 0 0 0.0069 −0.0527 4.22E-4
- - ( 1.5E-8) - - ( 1.2E-2) ( 4.2E-8) (8.8E-7)
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(c) MEF E2

Figure 5: Three-factor fit on empirical dataset
Coefficients are estimated with Kalman filter, MCSE, MEF E1 , and MEF E2. MEF E1,2,κQ ̸=κP are not plotted, because the fit very
similar to E1,2.
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6 Conclusion

Affine term structure models (ATSM) provide us with attractive model representations that
can be used for the identification and the estimation of structural parameters. Popular esti-
mation methods that work efficiently are the Kalman filtering and the Minimum Chi-Squared
Minimization (MCSE). This paper provides the evidence that the method of martingale incre-
ment minimization using the martingale estimating functions (MEF) works as well. MEF is a
new method of estimation of stochastic and non-stochastic processes proposed by Christensen
et al. (2016). In the combination with Vasicek (1977) model we can estimate the structural
parameters in the one- and multi-factor settings with the fit comparable to the MCSE.

The optimal MEF weights can be derived from the Vasicek model specification. With an-
alytical affine coefficients for bond prices the MEF estimation is very intuitive and works in
both the simulated and the empirical settings. The simulation implies that not all search al-
gorithms are equally efficient when searching on badly-behaved multi-dimensional surfaces.
Nevertheless, with the right search algorithm the convergence is reasonably quick and robust
in the large sample simulation. The simulation study also uncovers the shortcomings of MEF,
which are the behavior in low-noise environment the dependence on analytical solutions.

MEF struggles when identifying coefficients in the setting with very low observational
noise. This can be resolved by providing a boundary for the Ψ−1 weighting matrix of MEF such
that its diagonal elements sum up to one. Both the one- and three-factor simulation studies
provide us with the evidence in favor of this rescaling. The multi-factor setting estimates the
coefficients in much longer time that approaches the three minute mark. A lot of computational
power is required with the extension of the optimal MEF matrices. Nevertheless, the estimated
coefficients fit the term structure very well even in the empirical setting.

Further researchers may put focus on deriving the model with cross-correlated factors to
properly match the model specification of MCSE in the multi-factor setting. Additionally, the
emphasis should be put on dealing with the recursive solutions to the affine coefficients of
yields. Up until now these recursions were the best method for calculating the discretized
solutions to the Ricatti equations from the pricing constrains in ATSM. If we can find an alter-
native solution or a good method of computing the partial derivatives of these recursions the
MEF method would be applicable to a much wider range of models.

MEF is a new estimation method that can directly compete with the MCSE and the Kalman
filter. MEF can offer more flexibility by extending its time-varying matrices (for example
adding conditional moment restrictions) while providing the asymptotic efficiency, but the nu-
merical burden increases proportionally. With the increase in computational power the MEF
method can become one of the best methods for many types of estimations that work by clev-
erly minimizing the residuals of properly defined models.
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Appendices

A Conditional moments of factors

Starting from the factor dynamics in the P measure in the most general unrestricted form

dFt = aP + bPFtdt + σ(Ft)dWP
t ,

with [σ(Ft)σ(Ft)⊤]ij = αij + β⊤
ij Ft diagonal.We follow by premultiplying the dynamics equation

by e−bPt = diag(e−bP
1 t, . . . , e−bP

Mt) with −bP = diag(−bP
1 , . . . ,−bP

M) that is

e−bPtdFt = e−bPt(aP + bPFt)dt + e−bPtσ(Ft)dWP
t ,

noting the product rule d(u · v) = du · v + u · dv

e−bPtdFt − e−bPtbPFtdt = e−bPtaPdt + e−bPtσ(Ft)dWP
t ,

d(e−bPtFt) = e−bPtaPdt + e−bPtσ(Ft)dWP
t ,

taking the Itô integral from t − ∆ to t we solve for Ft as

∫ t

t−∆
d(e−bPsFs)ds =

∫ t

t−∆
e−bPsaPds +

∫ t

t−∆
e−bPsσ(Fs)dWP

s ,

[
e−bPsFs

]t
t−∆ = aP

[
e−bPs

−bP

]t

t−∆
+

∫ t

t−∆
e−bPsσ(Fs)dWP

s ,

Ft = ebP∆ − aP

bP (1 − ebP∆) + et,

where et =
∫ t

t−∆ e−bP(s−t)
√

α + β⊤FtdWP
s is the the martingale increment. It is easy to derive

the conditional expectation in the form

E(Ft|Ft−∆) = ebP∆Ft−∆ − aP

bP (1 − ebP∆), (A1)

and variance

Var(Ft|Ft−∆)ij =
∫ t

t−∆
e−(bP

i +bP
j )(s−t)(αij + β⊤

ij Et−s[Ft])ds,

=
∫ t

t−∆
e−(bP

i +bP
j )(s−t)

(
αij − β⊤

ij
aP

bP

)
ds +

∫ t

t−∆
e−(bP

i +bP
j )(s−t)β⊤

ij ebPs
(

Ft−∆ +
aP

bP

)
ds,

=
1 − e(bi+bj)∆

−bP
i − bP

j

(
αij − β⊤

ij
aP

bP

)
+ ∑

k

ebP
k ∆ − e(b

P
i +bP

j )∆

−bP
i − bP

j + bP
k

βij,k
(

Ft−∆,k +
aP

bP

)
. (A2)

Unconditional variance is then in the simple form

Var(Ft) =
αij − β⊤

ij
( aP

bP

)
−bP

i − bP
j

. (A3)

I



B MEF with one-factor Vasicek

Considering the Vasicek parametrization and normalizations S3 and following the solutions
from (A1), (A2) and (A3) we write

E(Ft|Ft−∆) = e−κ∆Ft−∆,

Var(Ft||Ft−∆) =
1 − e−2κ∆

2κ
,

Var(Ft) =
1

2κ
.

B1 Feynman–Kac solution

Let us define the price of the zero coupon bond P = e−A−Br. We denote A(t, T) and B(t, T)
for the bond P(t, T) at time t maturing at T. It holds that the price at maturity is exactly equal
to the payoff of the bond that is P(T, T) = 1, from which it directly follows that the affine
structure needs to satisfy the conditions A(T, T) = B(T, T) = 0. We assume that the short rate
is an affine function of factors rt = δ0 + δ⊤1 Ft and that the factors follows the P and Q dynamics

dFt = bPFtdt + dWP
t ,

dFt = (aQ + bQFt)dt + dWQ
t .

The short rate therefore follows

drt = −bP(δ0 − rt)dt + δ1dWP
t ,

drt = (aQδ1 − bQδ0 + bQrt)dt + δ1dWQ
t .

Define the term structure equation under the arbitrage-free bond market as

∂P(t, T)
∂t

+ µQ ∂P(t, T)
∂r

+
σ2

2
∂2P(t, T)

∂r2 − rP(t, T) = 0, (B1)

P(T, T) = 1.

The first and second order partial derivatives of P yield

∂P
∂t

= P ·
(
− ∂A

∂t
− ∂B

∂t
r
)

,

∂P
∂r

= P ·
(
− B

)
,

∂2P
∂t2 = P ·

(
B2).
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Continuing again from (B1) with solutions for partial derivatives(
− ∂A

∂t
− ∂B

∂t
r
)
− µQB +

σ2

2
B2 − r = 0,(

− ∂A
∂t

− µQB +
σ2

2
B2

)
−

(
∂B
∂t

+ 1
)

r = 0.

Additionally, to match our specification, we plug for the mean and volatility terms

µQ = aQδ1 − bQδ0 + bQr,

σ = δ1,

and continue (
− ∂A

∂t
− aQδ1B + bQδ0B +

δ2
1

2
B2

)
−

(
∂B
∂t

+ 1 + bQB
)

r = 0,

where each of the respective brackets need to equate to zero such that the condition is true for
all values of r. We can therefore solve separately(

∂B(t, T)
∂t

+ 1 + bQB(t, T)
)
= 0,∫ T

t

dB(s, T)
−1 − bQB(s, T)

=
∫ T

t
ds,

1
bQ

[
− ln|1 + bQB(s, T)|

]T
t = T − t,

ln(1 + bQB(t, T)) = bQ(T − t),

B(t, T) =
−1
bQ

(
1 − ebQ(T−t)).

Similarly for the first term(
− ∂A(t, T)

∂t
− aQδ1B(t, T) + bQδ0B(t, T) +

δ2
1

2
B2(t, T)

)
= 0,

dA(t, T) = (−aQδ1 + bQδ0)B(t, T)dt +
δ2

1
2

B2(t, T)dt,

−A(t, T) = (−aQδ1 + bQδ0)
∫ T

t
B(s, T)ds +

δ2
1

2

∫ T

t
B2(s, T)ds,

where ∫ T

t
B(s, T)ds =

−1
bQ

[
s + ebQ(T−s)]T

t =
B(t, T)− (T − t)

bQ ,∫ T

t
B2(s, T)ds =

1

bQ2

[
e2bQ(T−s)

−2bQ + s +
2ebQ(T−s)

bQ

]T

t
=

B2(t, T)
2bQ − B(t, T)− (T − t)

bQ2 ,
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and therefore

A(t, T) =
(

aQδ1

bQ − δ0 +
δ2

1

2bQ2

)
(B(t, T)− (T − t))− δ2

1
4bQ B2(t, T),

thus the price process P with analytical A and B is indeed a solution to the term structure
equation.

To summarize and re-label consistently with the Vasicek parametrization we can write for
the price process P(n)

t = e−A(n)−B(n)rt with drt = κ(γP − λη
κ − rt)dt + ηdWQ

t that prices zero
coupon bonds under the Q measure to be solved analytically by

B(n) =
1
κ
(1 − e−κn),

A(n) =

(
η2

2κ2 − γP +
λη

κ

)
(B(n) − n) +

η2

4κ
(B(n))2,

with n denoting the period till maturity. Note that the t indicates the price-variation of bonds
in time which have the full duration n = T.

B2 MEF derivation—Vasicek 1 factor

For a price P(n)
t = e−Ā(n)−B̄(n)Ft , the n-period yield y(n)t is defined as y(n)t = − lnP(n)

t
n = Ā(n)

n +
B̄(n)

n Ft, that is an affine function of factors linked to the short rate by the relation rt = γP +

ηFt (Vasicek parametrization). We can write down the martingale increment matrix for our
specification

mt(ϕ) =


 Ft

(1×1)

Y2
t

(Ne×1)

−

 0
(1×1)

A2
(Ne×1)

−

e−κ∆Ft−∆
(1×1)

B2Ft
(Ne×1)




=


Ft − e−κ∆Ft−∆

y(n2)
t − Ā(n2)/n2 − B̄(n2)/n2 · Ft

...

y(nN)
t − Ā(nN)/nN − B̄(nN)/nN · Ft

 ,

where B̄(ni), Ā(ni) come from (23) and (24) respectively for different times till maturity ni. We

take partial derivatives of mt with respect to each parameter of ϕ =
(

γP κ λ η σe

)⊤
to

get the parameter derivatives of the vectors martingale increments with σe being the constant
deviation term for all yields observed with observational error, that is Σe = σe I. We therefore
write16

16Differentiation was checked with Matlab symbolics toolbox to ensure the correct derivation from mt(ϕ).
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(
∂mt

∂ϕ⊤
t

)⊤
=



0 −1 · · · −1

∆Ft−∆e−κ∆

−
[(

(e−κn2−1)
κ2 +

n2e−κn2
κ

)(
η2

2κ2 −γP

+ ηλ
κ

)
+
(

n2+
(e−κn2−1)

κ

)(
η2

κ3 +
ηλ

κ2

)
− 3η2(e−κn2−1)2

4κ4 + γP(e−κn2−1)
κ2 +

γPn2e−κn2
κ − η2n2e−κn2 (e−κn2−1)

2κ3

]
1

n2

− Ftηe−κn2
κ − Ftη(e−κn2−1)

κ2n2

· · ·

−
[(

(e−κnN −1)
κ2 +

nN e−κnN
κ

)(
η2

2κ2 −γP

+ ηλ
κ

)
+
(

nN+
(e−κnN −1)

κ

)(
η2

κ3 +
ηλ

κ2

)
− 3η2(e−κnN −1)2

4κ4 + γP(e−κnN −1)
κ2 +

γPnN e−κnN
κ − η2nN e−κnN (e−κnN −1)

2κ3

]
1

nN

− Ftηe−κnN
κ − Ftη(e−κnN −1)

κ2nN

0 η
κn2

(
n2 +

e−κn2−1
κ

)
· · · η

κnN

(
nN + e−κnN−1

κ

)
0

[(
n2+

(e−κn2−1)
κ

)(
ηκ2+λκ

)
− η(e−κn2−1)2

2κ3

]
1

n2
+

Ft(e
−κn2−1)
κn2

· · ·
[(

nN+
(e−κnN −1)

κ

)(
ηκ2+λκ

)
− η(e−κnN −1)2

2κ3

]
1

nN
+

Ft(e
−κnN −1)
κnN

0 0 · · · 0


We apply (44), that is we take the expectation and condition on the time t − 1 to get

ψt = Et−1

[(
∂mt

∂ϕ⊤
t

)⊤]
With mt we can derive (N × N) matrix Ψt from (43) as

Ψt = Vart−1(mt) =


σ2

η 0 . . . 0
0 σ2

e . . . 0
...

...
. . .

...
0 0 . . . σ2

e

 .

We note that in such a setting, the Ψt does not depend on t and thus can be refered to as Ψ,
such that

Ψ−1
t = Ψ−1 =


1

σ2
η

0 . . . 0

0 1
σ2

e
. . . 0

...
...

. . .
...

0 0 . . . 1
σ2

e


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By plugging to (41) we get

MT =
T

∑
t=1

wtmt =
T

∑
t=1

ψ⊤
t Ψ−1mt ,

=
T

∑
t=1



0 −1 · · · −1

∆Ft−∆e−κ∆

−
[(

(e−κn2−1)
κ2 +

n2e−κn2
κ

)(
η2

2κ2 −γP

+ ηλ
κ

)
+
(

n2+
(e−κn2−1)

κ

)(
η2

κ3 +
ηλ

κ2

)
− 3η2(e−κn2−1)2

4κ4 + γP(e−κn2−1)
κ2 +

γPn2e−κn2
κ − η2n2e−κn2 (e−κn2−1)

2κ3

]
1

n2

− Ftηe−κn2
κ − Ftη(e−κn2−1)

κ2n2

· · ·

−
[(

(e−κnN −1)
κ2 +

nN e−κnN
κ

)(
η2

2κ2 −γP

+ ηλ
κ

)
+
(

nN+
(e−κnN −1)

κ

)(
η2

κ3 +
ηλ

κ2

)
− 3η2(e−κnN −1)2

4κ4 + γP(e−κnN −1)
κ2 +

γPnN e−κnN
κ − η2nN e−κnN (e−κnN −1)

2κ3

]
1

nN

− Ftηe−κnN
κ − Ftη(e−κnN −1)

κ2nN

0 η
κn2

(
n2 +

e−κn2−1
κ

)
· · · η

κnN

(
nN + e−κnN−1

κ

)
0

[(
n2+

(e−κn2−1)
κ

)(
ηκ2+λκ

)
− η(e−κn2−1)2

2κ3

]
1

n2
+

Ft(e
−κn2−1)
κn2

· · ·
[(

nN+
(e−κnN −1)

κ

)(
ηκ2+λκ

)
− η(e−κnN −1)2

2κ3

]
1

nN
+

Ft(e
−κnN −1)
κnN

0 0 · · · 0



·

·


1

σ2
η

0 . . . 0

0 1
σ2

e
. . . 0

...
...

. . .
...

0 0 . . . 1
σ2

e

 ·


Ft − e−κ∆Ft−∆

y(n2)
t − Ā(n2)/n2 − B̄(n2)/n2 · Ft

...

y(nN)
t − Ā(nN)/nN − B̄(nN)/nN · Ft

 , (B2)

which is out objective vector that we need to minimize. We proceed by numerical minimization
in Matlab where we minimize the objective scalar f (ϕ) = M⊤

T MT by a chosen minimizer.
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C MEF with three-factor Vasicek

In our multifactor parametrization we negligate the cross-dependencies of factors and because
of this generalization the one-factor results still apply. We continue directly with deriving the
MEF system for a parameter vector

ϕ⊤ = (γP, κ1, κ2, κ3, λ1, λ2, λ3, η1, η2, η2, σe).

C1 MEF derivation—Vasicek 3 factors

Following from the one-factor case we derive the martingale increment matrix for our specifi-
cation

mt(ϕ) =





F1
t

(1×1)

F2
t

(1×1)

F3
t

(1×1)

Y2
t

(Ne×1)


−



0
(1×1)

0
(1×1)

0
(1×1)

A2
(Ne×1)


−



e−κ1∆ 0 0
0 e−κ2∆ 0
0 0 e−κ3∆


(3×3)

Ft−∆
(3×1)

B2
(Ne×3)

Ft
(3×1)




,

=



F1
t − e−κ1∆F1

t−∆

F2
t − e−κ2∆F2

t−∆

F3
t − e−κ3∆F3

t−∆

y(n2)
t − Ā(n2)/n2 − B(n2)

1 η1F1
t /n2 − B(n2)

2 η2F2
t /n2 − B(n2)

3 η3F3
t /n2

...

y(nN)
t − Ā(nN)/nN − B(nN)

1 η1F1
t /nN − B(nN)

2 η2F2
t /nN − B(nN)

3 η3F3
t /nN


,

with

y(n)t
(1×1)

=
Ā(n)

n
(1×1)

+
B̄(n)

n
(1×3)

Ft
(3×1)

,

B̄(n)

(1×3)
= B(n)

(1×3)
diag(η)
(3×3)

,

B(n)
i =

1
κi
(1 − e−κin),

Ā(n) = γPn +
3

∑
i=1

(
η2

i
2κ2

i
+

λiηi

κi

)
(B(n)

i − n) +
η2

i
4κi

(B(n)
i )2.
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We proceed by deriving the optimal matrices ψ⊤
t and Ψ−1

t

ψ⊤
t =



0 0 0 −1 . . . −1
∆F1

t−∆e−∆κ1 0 0 ψ2,4 · · · ψ2,N

0 ∆F2
t−∆e−∆κ2 0 ψ3,4 · · · ψ3,N

0 0 ∆F3
t−∆e−∆κ3 ψ4,4 · · · ψ4,N

0 0 0 ψ5,4 · · · ψ5,N

0 0 0 ψ6,4 · · · ψ6,N

0 0 0 ψ7,4 · · · ψ7,N

0 0 0 ψ8,4 · · · ψ8,N

0 0 0 ψ9,4 · · · ψ9,N

0 0 0 ψ10,4 · · · ψ10,N

0 0 0 0 · · · 0



,

with

ψ2,4 =−
(

η2
1

2κ2
1
+

η1λ1

κ1

(
e−κ1n2 − 1

κ2
1

+ n2e−κ1n2κ1

)
+

(
n2 +

e−κ1n2 − 1
κ1

)(
η2

1

κ3
1
+

η1λ1

κ2
1

)
− 3η2

1(e
−κ1n2 − 1)2

4κ4
1

− η2
1n2e−κ1n2(e−κ1n2 − 1)

2κ3
1

)
/n2 −

F1
t η1e−κ1n2

κ1

− F1
t η1(e−κ1n2 − 1)κ2

1n2

ψ2,N =−
(

η2
1

2κ2
1
+

η1λ1

κ1

(
e−κ1nN − 1

κ2
1

+ nNe−κ1nN κ1

)
+

(
nN +

e−κ1nN − 1
κ1

)(
η2

1

κ3
1
+

η1λ1

κ2
1

)
− 3η2

1(e
−κ1nN − 1)2

4κ4
1

− η2
1nNe−κ1nN (e−κ1nN − 1)

2κ3
1

)
/nN − F1

t η1e−κ1nN

κ1

− F1
t η1(e−κ1nN − 1)κ2

1nN

ψ3,4 =−
(

η2
2

2κ2
2
+

η2λ2

κ2

(
e−κ2n2 − 1

κ2
2

+ n2e−κ2n2κ2

)
+

(
n2 +

e−κ2n2 − 1
κ2

)(
η2

2

κ3
2
+

η2λ2

κ2
2

)
− 3η2

2(e
−κ2n2 − 1)2

4κ4
2

− η2
2n2e−κ2n2(e−κ2n2 − 1)

2κ3
2

)
/n2 −

F2
t η2e−κ2n2

κ2

− F2
t η2(e−κ2n2 − 1)κ2

2n2

ψ3,N =−
(

η2
2

2κ2
2
+

η2λ2

κ2

(
e−κ2nN − 1

κ2
2

+ nNe−κ2nN κ2

)
+

(
nN +

e−κ2nN − 1
κ2

)(
η2

2

κ3
2
+

η2λ2

κ2
2

)
− 3η2

2(e
−κ2nN − 1)2

4κ4
2

− η2
2nNe−κ2nN (e−κ2nN − 1)

2κ3
2

)
/nN − F2

t η2e−κ2nN

κ2

− F2
t η2(e−κ2nN − 1)κ2

2nN
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ψ4,4 =−
(

η2
3

2κ2
3
+

η3λ3

κ3

(
e−κ3n2 − 1

κ2
3

+ n2e−κ3n2κ3

)
+

(
n2 +

e−κ3n2 − 1
κ3

)(
η2

3

κ3
3
+

η3λ3

κ2
3

)
− 3η2

3(e
−κ3n2 − 1)2

4κ4
3

− η2
3n2e−κ3n2(e−κ3n2 − 1)

2κ3
3

)
/n2 −

F3
t η3e−κ3n2

κ3

− F3
t η3(e−κ3n2 − 1)κ2

3n2

ψ4,N =−
(

η2
3

2κ2
3
+

η3λ3

κ3

(
e−κ3nN − 1

κ2
3

+ nNe−κ3nN κ3

)
+

(
nN +

e−κ3nN − 1
κ3

)(
η2

3

κ3
3
+

η3λ3

κ2
3

)
− 3η2

3(e
−κ3nN − 1)2

4κ4
3

− η2
3nNe−κ3nN (e−κ3nN − 1)

2κ3
3

)
/nN − F3

t η3e−κ3nN

κ3

− F3
t η3(e−κ3nN − 1)κ2

3nN

ψ5,4 =
η1(n2 + (e−κ1n2 − 1)/κ1)

κ1n2

ψ5,N =
η1(nN + (e−κ1nN − 1)/κ1)

κ1nN

ψ6,4 =
η2(n2 + (e−κ2n2 − 1)/κ2)

κ2n2

ψ6,N =
η2(nN + (e−κ2nN − 1)/κ2)

κ2nN

ψ7,4 =
η3(n2 + (e−κ3n2 − 1)/κ3)

κ3n2

ψ7,N =
η3(nN + (e−κ3nN − 1)/κ3)

κ3nN

ψ8,4 =

((
n2 +

e−κ1n2 − 1
κ1

)(
η1

κ2
1
+

λ1

κ1

)
− η1(e−κ1n2 − 1)2

2κ3
1

)
/n2 + F1

t (e
−κ1n2 − 1)κ1n2

ψ8,N =

((
nN +

e−κ1nN − 1
κ1

)(
η1

κ2
1
+

λ1

κ1

)
− η1(e−κ1nN − 1)2

2κ3
1

)
/nN + F1

t (e
−κ1nN − 1)κ1nN

ψ9,4 =

((
n2 +

e−κ2n2 − 1
κ2

)(
η2

κ2
2
+

λ2

κ2

)
− η2(e−κ2n2 − 1)2

2κ3
2

)
/n2 + F2

t (e
−κ2n2 − 1)κ2n2

ψ9,N =

((
nN +

e−κ2nN − 1
κ2

)(
η2

κ2
2
+

λ2

κ2

)
− η2(e−κ2nN − 1)2

2κ3
2

)
/nN + F2

t (e
−κ2nN − 1)κ2nN

ψ10,4 =

((
n2 +

e−κ3n2 − 1
κ3

)(
η3

κ2
3
+

λ3

κ3

)
− η3(e−κ3n2 − 1)2

2κ3
3

)
/n2 + F3

t (e
−κ3n2 − 1)κ3n2

ψ10,N =

((
nN +

e−κ3nN − 1
κ3

)(
η3

κ2
3
+

λ3

κ3

)
− η3(e−κ3nN − 1)2

2κ3
3

)
/nN + F3

t (e
−κ3nN − 1)κ3nN
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We continue with

Ψ−1
t = Ψ−1 =



1
σ2

η1
0 0 0 . . . 0

0 1
σ2

η2
0 0 . . . 0

0 0 1
σ2

η3
0 . . . 0

0 0 0 1
σ2

e
. . . 0

...
...

...
...

. . .
...

0 0 0 0 . . . 1
σ2

e


,

with

σ2
η1
=

1 − e−2κ1∆

2κ1
,

σ2
η2
=

1 − e−2κ2∆

2κ2
,

σ2
η3
=

1 − e−2κ3∆

2κ3
.
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C2 Additional results

Table C1: DGP, MCSE and MEF estimates, 300 simulations
This table reports the coefficients used for creating the population (DGP), "smart" OLS start values for MEF, and the resulting
mean, median and variance of 300 term structures estimated by Kalman filter, MCSE, and MEF. MEF estimation E1 assumes the
proper weighting, whereas E2 assumes the sum of weighting elements Ψ−1 to be rescaled to one. MEF estimations use fminunc
Matlab algorithms with the exponential transformation of γP, κ, and η. For MCSE we report κQ as it corresponds to the κ used
for pricing.

γP κ1 κ2 κ3 λ1 λ2 λ3 η1 η2 η3 σe

DGP

0.0034 0.0043 0.0728 0.2053 −0.0656 −0.0339 −0.2113 0.0002 0.0001 0.0004 0.00008

Random Start [mean; median; var]

0.0048 0.0049 0.0049 0.0048 −0.0053 −0.0052 −0.0050 0.0049 0.0050 0.0049 -
0.0049 0.0051 0.0050 0.0048 −0.0055 −0.0054 −0.0048 0.0049 0.0051 0.0049 -
8.33E-6 7.67E-6 8.10E-6 8.70E-6 8.00E-6 8.31E-6 8.32E-6 7.91E-6 8.49E-6 8.04E-6 -

Kalman filter [mean; median; var], average computational time 64s

0.0034 0.0033 0.0159 0.1861 −0.0904 0.0724 −0.2134 0.0002 0.0001 0.0004 0.00005
0.0034 0.0040 0.0133 0.1867 −0.0775 0.0067 −0.2152 0.0002 0.0001 0.0004 0.00005
2.55E-8 3.29E-6 8.10E-5 2.57E-5 1.30E-2 6.10E-1 1.89E-3 1.88E-9 2.40E-9 2.75E-10 1.98E-12

MCSE [mean; median; var], average computational time <1s

0.0033 0.0356 0.0556 0.1821 −0.0742 −0.0646 −0.2045 0.0002 0.0002 0.0003 0.05811
0.0036 0.0055 0.0463 0.1814 −0.0652 −0.0679 −0.2007 0.0002 0.0002 0.0003 0.02978
3.05E-5 1.73E-3 3.07E-3 3.72E-3 2.13E-2 2.32E-2 9.89E-3 4.49E-9 8.54E-9 5.67E-9 2.94E-3

MEF E1 [mean; median; var], average computational time 42s

0.0048 0.0201 0.0193 0.0190 −0.0126 −0.1308 −0.0135 0.0038 0.0039 0.0039 0.00014
0.0048 0.0045 0.0043 0.0052 −0.0355 −0.0801 −0.0529 0.0037 0.0033 0.0036 0.00016
8.19E-6 2.40E-3 1.84E-3 1.52E-3 1.19E+0 2.47E-1 1.20E+0 7.36E-6 8.27E-6 7.43E-6 1.32E-9

MEF E2 [mean; median; var], average computational time 21s

0.0034 0.0043 0.0752 0.2162 −0.0644 −0.0437 −0.2113 0.0002 0.0001 0.0005 0.00008
0.0034 0.0042 0.0735 0.2108 −0.0638 −0.0336 −0.2115 0.0002 0.0001 0.0004 0.00008
9.86E-9 1.14E-6 3.49E-4 1.41E-3 1.42E-4 8.05E-3 6.59E-3 4.99E-12 4.98E-10 1.10E-8 6.47E-12

XI



3 4 5

γP
×10

−3

0

5

10

F
r
e
q
u
e
n
c
y

0 0.005 0.01

κ1

0

20

40

0.05 0.1 0.15

κ2

0

10

20

0.2 0.4

κ3

0

100

200

300

-0.1 -0.05 0

λ1

0

10

20

30

-0.4 0 0.4

λ2

0

20

40

60

F
r
e
q
u
e
n
c
y

-0.6 -0.4 -0.2 0

λ3

0

50

100

1.8 2

η1 ×10
−4

0

1

2

2 4

η2 ×10
−4

0

2

4

6

0.5 1 1.5

η3 ×10
−3

0

5

10

8 9 10

σe ×10
−5

0

5

10

15

F
r
e
q
u
e
n
c
y

(a) MEF E1
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(b) MEF E2

Figure C1: Histograms for 300 simulations in three-factor setting
The population is simulated from the empirical values. MEF E1 uses the proper MEF weights, whereas MEF E2 uses the nor-
malization of Ψ−1 such that diagonal elements sum up to one. Both algorithms start from random starting points from uniform
distribution U(0.5/100, 1/1002) with market price of risk starting from negative values. Note that x-axis is normalized for each
estimation method to the same lower and upper limit and thus may not include extreme outliers.
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Figure C2: Histograms for 300 simulations in three-factor setting
The population is simulated from the empirical values. Note that we diagonalize the factor dynamics equations and that we also
restrict κQ

i = κP
i , whereas MCSE separated the measures. We report κQ used for pricing. Bear in mind that some coefficients are

off because of the setting.
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