The sentiment bias in the market for tennis betting

Saskia van Rheenen
347986
Behavioural Economics
April 2017

Supervisor
dr. T.L.P.R. Peeters

Second reader
dr. G.D. Granic
TABLE OF CONTENTS

List of Tables 3

1. Introduction 4

2. Theoretical framework 7
 2.1 The sports betting market 7
 2.2 Reasons for betting 9
 2.3 Types of bettors 11
 2.4 Market efficiency in the betting market 12
 2.4.1 The Efficient Market Hypothesis 12
 2.4.2 The sentiment bias 12
 2.4.3 The favorite-longshot bias 14
 2.5 The role of bookmakers 14
 2.5.1 Balance the books 14
 2.5.2 Set the market-clearing price 15
 2.5.3 Active odds setting 16

3. Literature review 17

4. Hypotheses 21

5. Data 23
 5.1 Betting data 23
 5.2 Google Trends data 24
 5.3 The final dataset 26

6. Methodology 27
 6.1 The probit model 27
 6.2 Model estimation 29
 6.3 Goodness-of-fit 30

7. Results 30
 7.1 Summary statistics 30
 7.2 The full sample 32
 7.2.1 Regression results 32
 7.2.2 Unit Bet & Unit Win 33
 7.3 Sentiment bias in tournament finals 33
 7.4 Sentiment bias in matches of the Big Four 35
 7.5 Exploiting the sentiment bias 36
 7.5.1 The full sample 36
 7.5.2 The tournament finals 37
 7.5.3 The Big Four 37

8 Conclusion 37

9 Limitations and future research 40

References 41

Appendices 45
 A. An overview of the ATP World Tour 45
 B. Probit model using random sampling 46
 C. The Average Partial Effects (APE) 47
 D. Analysis of the favorite-longshot bias 48
LIST OF TABLES

1. Decimal odds for the 2016 Australian Open final .. 7
2. An example of a set of odds for which a bookmaker makes a loss 9
3. An overview of the most important studies regarding the sentiment bias 20
4. Number of missing observations for each bookmaker 26
5. Correlation between the different bookmakers ... 26
6. Summary statistics ... 31
7. Clustered probit regression results .. 32
8. Profits for Unit Bet and Unit Win strategies ... 33
9. Clustered probit regression results Final and Non-final samples 35
10. Clustered probit regression results Big-Four and Non-Big Four samples 35
B1. Probit regression results random sampling ... 46
C1. The Average Partial Effect (APE) ... 47
D1. Z-test statistics .. 49
1. Introduction

In 2004, Gerry McIlroy placed a $200 bet on that his son would win the British Open before turning 25. Rory McIlroy managed to do this and his dad won $171,000 (Johnson, 2014). This is an example of people placing bets for reasons other than the objective outcome probability of an event. This market inefficiency is called the sentiment bias, defined by Avery and Chevalier (1999) as "any non-maximizing trading pattern among noise traders that can be attributed to a particular exogenous motivation" (p. 493). The main objective of this research is to determine to which degree the sentiment bias is present in the market for tennis betting. The findings challenge market efficiency because bookmaker odds do not reflect the true outcome probability. They strategically set the odds to rationally exploit sentimental bettor preferences. Bookmakers underestimate the winning probability for the high-sentiment players in tournament finals and in matches with any of the Big Four. As a result of this reversed sentiment bias, bookmakers offer a relatively high price for bets on popular players. The mispricing cannot be profitably exploited, but improves returns from placing random bets.

This study uses odds for men's single Grand Slam matches in seasons 2000-2016. The betting data is merged with a measure that reflects the level of sentiment that bettors have for a player, namely the number of searches on Google. It is assumed that Google Trends data is a proxy for all sources of sentiment that create popularity. Grand Slam tournaments are of most interest for four reasons. First of all, Grand Slams are played in a best-of-five sets format instead of the usual best-of-three sets. This implies longer matches that are less likely to be decided by a random event other than the players' performance, which minimizes noise. For this reason, women's matches (always played in best-of-three format) are left out. Second, Grand Slam tournaments pay out higher prize money and emit a high level of prestige. As a result, players will put in more effort to win a match, whereas they have the tendency to tank a match in low-tiered tournaments every now and then. For the same reasons there is a lower chance of match fixing in Grand Slam tournaments, which reduces the noise. Third, Grand Slam tournaments attract most attention from fans. This implies that they are responsible for the highest share of betting volume in tennis. This emphasizes the economic value of this research. Additionally, a higher number of market participants implies higher market

1 The Big Four consists of Roger Federer, Rafael Nadal, Novak Djokovic and Andy Murray.
2 The four Grand Slams are the Australian Open, the French Open (Roland Garros), Wimbledon and the US Open.
3 Bad behavior and unsportsmanship might lead to a higher amount of Google searches, which will as a result be included in the popularity measure. This makes sense, as negative sentiment can make a player popular as well. Nick Kyrgios is an example of a tennis player misbehaving on and off the court. Despite (or because of) his bad reputation, he is box office for tournament directors and fans because his matches always have a high entertainment value. (Steinberger, 2016).
efficiency, so this minimizes the noise. The fourth interesting feature of studying Grand Slam tournaments is the large draw (128 players, of which 16 qualifiers and 8 wildcards), which contains players from a wide range of rankings. This allows studying the difference in sentiment bias between matches of super star players (the Big Four) and less known players.

The tennis betting market is very suitable for examining the sentiment bias. First, it is an international sport with a strong emotional attachment across borders. Players such as Roger Federer and Rafael Nadal have active fan bases worldwide. Second, the way tennis tournaments are structured allows the world number one to play someone who barely qualified for the tournament. As explained by Forrest and McHale (2007), therefore, "this market allows the analysis of wagering opportunities across almost the complete odds range from zero to one probability-odds" (p. 754). Third, a tennis match has no possibility to end in a draw. This is suitable for measuring sentiment bias because individuals do not feel sentiment for a draw. Most importantly, the unambiguous outcome of a tennis match helps to measure the underlying value of a bet, which is either a payout or a loss. Finally, a men's single tennis match consists of only two players. This means that bettors have to process less complex information compared to, for example, an entire soccer team. This can also be framed as a measurement advantage. Do people place bets on Real Madrid because it is a popular club or rather because they like Cristiano Ronaldo? This ambiguity is not present in the market for tennis betting, which leads to a clearer measurement.

Levitt (2004) mentions three parallels between trading in financial markets and betting markets. First of all, individuals in both markets are heterogeneous, profit-maximizing investors with different information levels, dealing with risk that diminishes over time until the trading period is over. Secondly, both market are zero-sum games, with one trader on each side of the deal. Finally, large amounts of money are at stake in both markets.

Important differences between the two markets exist as well, which make it hard to translate concluding remarks from this study into theories for financial markets. Sports betting markets are simple financial markets and therefore suitable to study the information content of market prices (Sauer, 2005). The main advantage of the sports betting market is that "it is characterized by a well-defined termination point at which each asset (or bet) possesses a definitive value" (Williams, 1999, p. 1). As mentioned previously, the impossibility of a draw leads to a binary and clear termination value. This is contrary to financial markets, where the value of an asset depends on both the discounting of future cash flows and the uncertain price market players are willing to pay for the asset (Thaler & Ziemba, 1988). A second dissimilarity between the two is that the existence of well-informed traders, and in turn...
market efficiency, is more likely in betting markets. The complexity of valuing assets in financial markets and the increased level of inside information make it difficult for individuals to become well-informed traders and collect superior information that noise traders do not have.

The first research question of this study is whether bettor sentiment affects the odd-setting strategy of bookmakers in the market for tennis betting. If so, there is market inefficiency. Second, I ask whether there is a difference in how bookmakers respond to the sentiment bias in earlier rounds compared to tournament finals. Third, this research analyzes the effect of the presence of the Big Four on the bookmaker pricing strategy. I ask whether the response to bettor sentiment is higher for matches of these players. If, in any of the samples, there is evidence for sentiment bias, the final research question is whether well-informed traders can profitably exploit the bias. Depending on the direction of the sentiment, this is equivalent to the monetary value of engaging in a betting strategy against or in favor of the high-sentiment players.

This research contributes to the existing literature in two ways. First of all, previous studies have primarily documented the favorite-long shot bias: bettors tend to over bet the underdog and under bet the favorite. The robustness of this inefficiency has been tested extensively (Abinzano, Muga & Santamaria, 2016; Cain, Law & Peel, 2000; Gandar et al., 2002; Williams & Paton, 1997; Woodland & Woodland, 1994), whereas research on the sentiment bias is in a relatively early phase. Secondly, within the academic research on behavioral biases, this is, to the best of my knowledge, only the second study to use data from the tennis betting market. Forrest and McHale (2007) were the first to find market inefficiency in the tennis betting market, in terms of the favorite-longshot bias. Previous studies have documented the sentiment bias in the National Basketball Association [NBA], the National Football League [NFL], the Premier League and the Primera División. The results were ambiguous, which emphasizes the importance of additional research on this topic.

The next chapter provides the theoretical foundation of this research. This section is followed by a literature review of existing research on the sentiment bias. Chapter 4 introduces the hypotheses that will be tested in this study. Chapter 5 describes the data used to test the hypotheses. Chapter 6 contains an explanation on the methodology. This is followed by Chapter 7, which presents the results of the analyses. Chapter 8 concludes and discusses the results. Finally, Chapter 9 discusses the limitations of this research and provides opportunities for future studies.
2. Theoretical framework

2.1 The sports betting market

The global sports betting industry is expected to reach a gross revenue (stakes minus prizes) of $70 billion in 2016 (ESSA Sports Betting Integrity, 2014). The exact worth is expected to be much higher, however difficult to estimate because of the inconsistency of sports betting regulation across the world. According to Adam Silver, NBA commissioner, the annual value of illegal sports betting in the US is $400 billion (Weissman, 2014), which is only two-third of the value of the illegal sports gambling market in China (Porteous, 2016). In Europe, Internet betting is the biggest player, with bettors having the choice from several bookmakers. Traditionally, the bookmaker acts as a trader announcing the prices against which bettors can place their bets. In recent years, after the bookmaker has determined its odds, bets can also be traded among bettors on online betting exchanges (Franck, Verbeek & Nüesch, 2010).

Bookmakers operate both in a service and information market (Kuypers, 2000). They offer bettors a service by giving them the opportunity to place a bet. On the other hand it is an information market because supply and demand lead to an equilibrium price, just like in any other financial market. Bookmakers use two formats to express the odds on which bets can be placed: point spreads and decimal odds.

Schnytzer and Weinberg (2007) define point spreads as "odds that a team will win by more than a certain number of points, known as the line" (p. 6). In tennis, one can bet on the game line and the set line. Matches in Grand Slam tournaments, on which this study is based, are played in a best-of-five sets format. For these matches, the set line can be as high as 2.5. In that case a player needs to win in straight sets for you to win the bet.

This study uses decimal odds, where "the bookmaker offers to pay a ratio of the amount wagered if a certain team wins" (Schnytzer & Weinberg, 2007, p. 6). In tennis, this means that there are two possible outcomes $e \in \{i,j\}$: either player i or j wins the match. These payout ratios can have a very wide range, depending on the quality of the players in that match. As an example, Table 1 presents the odds for the final of the 2016 Australian Open (Bet365, 2016).

<table>
<thead>
<tr>
<th>Player</th>
<th>Odds</th>
<th>Player</th>
<th>Odds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novak Djokovic</td>
<td>1.20</td>
<td>Andy Murray</td>
<td>5.15</td>
</tr>
</tbody>
</table>

Table 1 shows that a $1 bet on Novak Djokovic (Andy Murray) pays out $1.20 ($5.15) if he wins the match. Obviously, the player with the lower odds is the favorite to win the match.
Dividing 1 by the decimal odds results in the corresponding 'probabilities' of that player winning the match (Franck et al., 2010). In this case, the 'probabilities' of Novak Djokovic and Andy Murray winning the match are 0.8333 and 0.1942, respectively. The sum of these 'probabilities' is larger than 1, which is because of the bookmaker's commission (Forrest & Simmons, 2008). Therefore, they cannot be considered as the real winning probabilities until they have been adjusted for the overround.

The betting market can be split into two frameworks: pari-mutuel (moving odds) betting and fixed odds betting. Pari-mutuel betting is mainly used in horse racing, where fixed odds betting is applied in both individual (tennis and boxing) and team sports (basketball, American football and soccer). In a pari-mutuel betting environment, all bets on the participating horses are put together in a pool. Next, the bookmaker's commission is taken from the total amount wagered on the race. This is the profit for bookmakers and it is a fixed percentage. In other words, pari-mutuel betting is a low-risk strategy for bookmakers, as their income only depends on the amount of money that is bet on the race, but not on the outcome of the race (Australia Sports Betting, 2016).

The fixed odds betting market is most relevant for this research, as this framework is used in the tennis betting market. In contrast to the pari-mutuel structure, the odds that one receives are fixed before the start of the match. However, the odds received may differ between different bettors, depending on when they placed their bet. As in the pari-mutuel framework, the odds change over time due to the quantity of additional bets placed. In the fixed odds structure, however, you receive the odds stated at the moment you place the bet. As an example, suppose that you place a bet on Roger Federer winning his first round at Wimbledon 2016, receiving the odds stated at the moment of placing your bet. Someone else places a bet four hours later. In the meantime, additional bets have been placed on Roger Federer and Guido Pella (his opponent) and the bookmakers have adjusted the odds. Therefore, you bet on different odds than your fellow bettor, but the odds are fixed for both of you.

The main difference between the fixed odds and the pari-mutuel framework is the degree of risk for bookmakers. The profit margin for bookmakers is uncertain in the fixed odds betting market. The level of profit is different for every outcome of the match. This is why fixed odds bookmakers, as a compensation for this risk, require a higher margin than pari-mutuel bookmakers (Makropoulou & Markellos, 2011). It explains why bookmakers have a reason to be more strategic in setting fixed odds than moving-odds. As a result, moving odds will be a cleaner representation of bettor preferences. Bookmakers divert the fixed odds away from the
true winning probabilities to shield themselves from losses. Therefore, fixed odds betting is the best market to measure violations of market efficiency, e.g. the sentiment bias.

The example below shows why fixed odds bookmakers would move away from the true winning probabilities to prevent a loss. As mentioned before, tennis legend Roger Federer played his 2nd round match at Wimbledon 2016 against Marcus Willis, ranked 772th in the world. Table 2 shows the average odds (of 17 different bookmakers) for both players in this match, obtained by Oddsportal (2016).

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Odds</th>
<th>Total betting volume</th>
<th>Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roger Federer</td>
<td>1.01</td>
<td>$1,200,000</td>
<td>$1,210,000 - (1.01 x 1,200,000) = -$2,000</td>
</tr>
<tr>
<td>Marcus Willis</td>
<td>20.29</td>
<td>$10,000</td>
<td>$1,210,000 - (20.29 x 10,000) = $1,007,100</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$1,210,000</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. An example of a set of odds for which a bookmaker makes a loss

The amount of money placed on each outcome in Table 2 is hypothetical, to show the possibility of bookmakers losing money. The share of people placing money on Roger Federer is so high that when he wins, the amount of money bookmakers have to payout is higher than their income. Bookmakers can adjust their odds to make sure they make a profit regardless of the outcome of a match. However, the level of profit (the profit margin) will always be uncertain. The ability of bookmakers to adjust their odds will be further elaborated on in section 2.5.

2.2 Reasons for betting

The 11-for-10-rule is common in the betting market, meaning that you need to place a bet of $11 to earn $10. So, as stated by Vergin & Scriabin (1978), a bettor needs to pick the winner 52.4% of the time to break-even. This implies that the average wager trades at a loss. Therefore, betting behavior cannot be explained with assumptions of rational expectations, expected utility maximization and a convex utility function. The expected utility theory assumes that people are risk-averse. Risk aversion implies that people would reject a bet with an outcome of zero, let alone a bet with a negative expected value. There are several theories that explain the betting phenomenon. Quandt (1986) argues that individuals accepting bets with a negative expected value is evidence of them being locally risk seeking. This also reverses the risk-return relationship, and implies that people should accept a lower return for a higher level of risk. However, this is not consistent with results of studies on financial decision-making outside the betting market. Regarding investing savings, it is not expected
that people accept a lower return for a higher level of risk. There are several theories to explain this inconsistency.

According to Thaler and Ziemba (1988), the fact that bettors are risk seeking should be explained by the characteristics of betting. In other words, "the term "locally risk seeking" may apply to racetrack bettors, but only if the term "locally" refers to physical location rather than wealth level" (p. 170). In case of racetrack betting, this refers to the local track where bettors place their bets. The atmosphere of the racetrack, fans, fellow bettors and the excitement for the race might turn people into risk-seeking bettors. Decisions on retirement savings have different characteristics, and do not elicit this excitement to place a risk-seeking bet and are therefore treated with a risk-averse attitude.

A second explanation is the mental accounting theory by Thaler (1985) He defines mental accounting as "the set of cognitive operations used by individuals and households to organize, evaluate and keep track of financial activities" (Thaler, 1999, p.183). People have separate accounts for current and future assets and act as if the assets in these groups are not fungible. They obtain a different level of utility from each separate account, which affects the way they invest the money (Thaler & Ziemba, 1988). The fact that individuals have a mental "betting account" that they treat so differently compared with other assets can be further explained by one of the pillars of mental accounting: prospect theory (Kahnemahn & Tversky, 1979). In this theory, value is assigned to gains and losses relative to some reference point, rather than the final value of assets. One of the characteristics of this s-shaped value function is that the gain function is concave and the loss function is convex. In other words, individuals are risk seeking for losses. This explains why individuals accept bets in the first place, as on average they trade at a loss. Second, it clarifies why someone who lost money in a bet on a tennis match will not quit betting. The loss of money increases the tendency to make up for the loss by placing additional risk-seeking bets.

Conlisk's (1993) "utility of gambling"-model is a third explanation of the inconsistency in how people treat different type of bets. He argues that people are risk-neutral in small distances from their reference point. In small-risk gambles likes sports betting, wagers only need a small push to move from risk-neutral to risk-seeking behavior. Conlisk (1993) defines this small push as the utility of gambling. He adds this element to the expected utility theory model, which makes it applicable to all types of gambles. In bets like buying fire insurance or investing retirement savings, the utility of gambling term might be lower than the risk-aversion term from the expected utility function. The same person might place a risk-seeking
bet on his favorite boxing player because the utility of gambling term exceeds the risk-aversion term for this type of bet.

2.3 Types of bettors
The previous section explained why individuals engage in betting. In the decision stage of whether someone places a bet or not, all participants in the betting market are similar and assumed to be risk loving. However, once individuals have entered the betting market, the betting behavior among wagers may differ significantly. Makropoulou and Markellos (2011) explain this in their heterogeneous betting market model. The authors distinguish between three types of bettors, categorized by the extent to which they are informed about the match outcome.

First of all, noise bettors place their bet without it being based on any kind of objective information regarding the match. Sentimental bettors, who place a bet based on the degree of sentiment for a player, fall into this category as well. The fact that a player has high sentiment does not automatically imply that he is the favorite to win the match, so this information is not necessarily relevant for the objective probability of the match outcome. Forrest and McHale (2007) argue that tennis will not be subject to sentiment traders because tennis is a specialized betting field. However, almost ten years later, the media extensively covers tennis and all necessary information about odds, matches and players is easily accessible on the Internet.

The second type of bettors is defined as informed bettors. They collect and exploit public information about the match and the players, and make a betting decision based on that afterwards. As will be explained later, bookmakers fall into this category as well (Makropoulou & Markellos, 2011). They collect public information about bettors’ behavior and set the odds accordingly.

The final category of bettors is called insiders. They bet on private information, which is unknown to the other market participants, including the bookmaker. Match fixing, which falls under insider trading, is a serious problem in tennis. This is the result of the fact that half of the prize money is paid to 1% of the tennis players, which makes it attractive for, especially lower-ranked, players to engage in match-fixing. There is even evidence that a former Grand Slam winner lost matches in obscure circumstances (The Economist, 2016).
2.4 Market efficiency in the betting market

2.4.1 The Efficient Market Hypothesis

This study examines the market efficiency of the online tennis betting market. The Efficient Market Hypothesis (EMH) assumes a market to be efficient if asset prices reflect all available information in the market. In terms of betting markets, efficiency is reached when bookmaker odds are an unbiased predictor of the match outcome. Previous literature on market efficiency in betting markets distinguishes between two types of market efficiency. First, a betting market is considered to be weak efficient if "the odds are sufficiently reflective of objective probabilities so that no strategy exists that would give bettors a positive expected return" (Forrest & Simmons, 2008, p. 119). This is known as the broad view. A betting market is strong efficient if "the odds are sufficiently reflective of objective probabilities so that no strategy exists that would improve on the (negative) expected return from betting randomly" (Forrest & Simmons, 2008, p. 119). This is known as the narrow view. The definition implies that the expected loss from a betting strategy should be equal to the bookmaker's take out (Gray & Gray, 1997). If the loss from a betting strategy is smaller than the bookmaker's take out, it means that a part of the bookmaker's commission is compensated by a profitable strategy. This would improve the expected return from placing a random bet and violates strong efficiency.

2.4.2 The sentiment bias

The existence of behavioral biases in the sports betting market is a violation of market efficiency, because the odds reflecting the match outcome are biased. The competitive price deviates from the true winning probability. This study tests for the sentiment bias, which occurs when beliefs are based on heuristics rather than rational expectations. In turn, this creates inefficient prices. In terms of this research, this implies that if there is sentiment bias in the market for tennis, the odds are influenced by the degree of sentiment for a player, measured by their popularity on Google Trends. In that case, individuals overstate the probability the high-sentiment player wins the match (Kuypers, 2000). Avery and Chevalier (1999) distinguish between two types of sentiment: anticipated and unanticipated. Anticipated sentiment and the corresponding shift in demand for bets can be predicted in advance of setting the odds. On the other hand, unanticipated sentiment appears during the period of betting. In this case, the unanticipated effect "will lead to an observable trend in prices whenever it distorts the equilibrium price from the true expected value of the asset" (Avery & Chevalier, 1999, p. 496).
The sentiment bias can be explained by three (behavioral) phenomena: the availability bias, the loyalty bias and the fact that people enjoy being entertained. First of all, "one may estimate probability by assessing availability, associative distance" (Tversky & Kahneman, 1973, p. 163). As a result of the availability bias, individuals place bets on players with the shortest associative distance. Players with high sentimental value are covered in the media relatively often. In terms of this research, this means that these players have a high score on Google Trends. Players with high sentiment are easily retrieved and this makes bettors overstate the probability of this player winning the match.

Another explanation of sentimental noise traders is the loyalty bias, which keeps bettors from betting against their 'own' team (Braun & Kvasnicka, 2013). Massey, Simmons and Armor (2011) define the loyalty bias as the desirability bias, which means that predictions about match outcomes are optimistically biased if people have a strong preference for a player or team. This may refer to the observation that people tend to over bet on their home and national team (Gandar, Zuber & Lamb, 2001). In tennis, these two biases play less of a role because it is an individual sport and matches are played all over the globe. Players might play a tournament in their home country once a year, but they do not have their own stadium where they play every other week. Therefore, in tennis, the loyalty bias refers to bettors that have sentiment for a player for reasons other than nationality or residence. This might be a player's style, his appearance or his off-court activities. As a result of these loyalty-eliciting factors, fans do not want to bet against that player. Massey, Simmons and Armor (2011) found that even when people learn from their betting experience throughout a season, the optimism bias persists. This theory explains why people keep placing optimistic bets on a player with high sentiment, even though they know about the high risk of losing money.

Third, the sentiment bias is explained by the fact that people enjoy entertainment. Flepp, Nüesch and Franck (2016) showed that betting volumes are strongly biased towards over 2.5 goals-bets. "Cheering for an exciting high-scoring match is more attractive than cheering for a dull low-scoring match and the entertainment value is therefore certainly higher for the over 2.5 goals bet than for the under 2.5 goals bet. Hence, at least part of the betting volume wagered on the over bet is expected to be sentimentally driven due to this preference" (p. 5). This can be applied to tennis betting as well, where high sentiment players are expected to play a match with a high entertainment value.
2.4.3 The favorite-longshot bias
The most robust behavioral bias in betting markets is the favorite-longshot bias. Cain et al. (2000) define it as the bias where “favorites win more often than the subjective market probabilities imply, and long shots less often” (p.25). In other words, the odds are out of line with the objective market probabilities as bettors over bet on outsiders and under bet on favorites.

The favorite-longshot bias has four behavioral causes. According to Thaler and Ziemba (1988), individuals overestimate the probability that outsiders will win the match. In calculating the utility of placing a bet, they overweight the small probability that the outsider wins the match. Second, bettors may derive utility from placing a bet on the outsider; they enjoy the risk-loving feature of holding a long shot ticket (Thaler & Ziemba, 1988). Third, Golec and Tamarkin (1998) explain the favorite-longshot bias by the fact that people are skewness loving. Long shot bets have a low return and high variance, both unattractive features. However, the skewness of a long-shot bet compensates for these two factors. The fourth explanation argues that bettors discount a fixed fraction of their losses (Henery, 1985). This makes them underweight losses and overweight gains in their evaluation of a longshot bet.

In case of a favorite-longshot bias, bookmakers underestimate the probability that the favorite wins. If the high-sentiment player is also the favorite to win the match, the sentiment bias and the favorite-longshot bias work in the same direction. In case of reversed sentiment bias, when bookmakers overestimate the probability of the high-sentiment player, the two effects work in the opposite direction. Therefore it is important to control for the favorite-longshot bias when doing research on any other behavioral bias in betting markets.

2.5 The role of bookmakers
Shin (1991) was the first to state the importance of the supply side in explaining the sentiment bias. As displayed in Table 2, it could be the case that bookmakers make a loss for a certain outcome of a match. However, bookmakers can adjust their odds to change their income and ensure a profit. According to the Levitt's model (2004), bookmakers can choose from three profitable pricing strategies.

2.5.1 Balance the books
First of all, bookmakers can decide to balance the books. In this model, bookmakers play a passive role in setting odds. In terms of the earlier example, this basically means that if bettors...
bet heavily on Roger Federer, the bookmaker will increase the price (lower odds) on Roger Federer and reduce the price (increase odds) on Marcus Willis, to induce more betting on the latter. They will continue doing this until the prices equalize the quantity of money placed on each side. The balancing strategy reduces the bookmaker's risk, because the eventual payout will be the same whoever wins the match. Therefore, bookmakers who balance their books are considered as risk averse (Avery & Chevalier, 1999). With balancing the books, bookmakers do not need any skill in forecasting the outcome of the match. They only have to be able to predict bettor behavior. If fixed odds bookmakers use this strategy, they act as bookmakers in a pari-mutuel betting market because the strategy results in a fixed profit margin (Forrest & Simmons, 2008). Note that the odds that bookmakers set when they balance the books are not the efficient market prices, since they do not reflect the true outcome probability of the match.

2.5.2 Set the market-clearing price

It is unrealistic that all bookmakers fully adjust their odds to the point where the books are balanced. The second pricing strategy for bookmakers is to set the odds according to their prediction of the true match outcome (Flepp et al., 2016). Amongst others, Forrest, Goddard and Simmons (2005) prove that this is feasible, as they found that bookmakers are at least as good at predicting match outcomes as statistical models. When bookmakers set odds based on the true outcome probability, the corresponding odds are called efficient because the price reflects all available information about the match and its players (Humphreys, 2010). It is different from the first strategy in the sense that with these odds, the amount of money placed on each side of the bet is not necessarily equal. This strategy carries a higher risk because if it turns out that wagers are actually better at predicting the match outcome, bookmakers will lose money. On average, however, the bookmakers will earn a fixed profit equal to the commission. Bookmakers may opt for this strategy in case of very price sensitive bettors (Flepp et al., 2016). If bookmakers increase the price on a popular bet too much, sentimental traders switch to another bookmaker or do not place a bet at all. On the other hand, if they decrease the price on a high sentiment bet below the true outcome price, the betting volume on that bet increases but the bookmakers run a higher risk of losing money. To summarize, there is a limit to what extent bookmakers can deviate from the true outcome probability. Within this limit, however, they will deviate from the true winning probabilities in order to rationally exploit bettor preferences. This is discussed in the next section.
2.5.3 Active odds setting

The third and final pricing strategy for bookmakers is to actively set odds, which is to strategically deviate from the true outcome probability to exploit bettor preferences and achieve higher profits. In terms of Levitt's (2004) model, it is applied when bookmakers are better than bettors at predicting the match outcome and when they are able to predict betting behavior. Makropoulou and Markellos (2011) offer a competing explanation, where active odd setting can be explained as “the optimal pricing response of bookmakers to information uncertainty” (p. 521). Individual betting behavior is public information for bookmakers, and they set their odds accordingly. However, because noise traders bet randomly, there is always a minimal level of uncertainty regarding the direction of future bets. In their view, the adjustment of odds in the direction of the expected bias is a correction for this uncertainty.

Bookmakers run more risk by actively setting their odds. As a result of the risk-return relationship, moving from efficient to inefficient odds will increase their expected profits (Kuypers, 2000). If bookmakers decide to actively set their odds, there are two strategies on how to make it profitable for them. If they know that people prefer to bet on players with high sentiment, they can either increase or decrease the prices for the high-sentiment bet.

In the first case, they adjust the odds by offering less favorable prices (lower odds) for high-sentiment players. In other words, they skew the odds against the player with the relatively high sentiment. By doing this, the bookmaker takes advantage of the bettors' preference by increasing the price on the most popular bet (Levitt, 2004). Put differently, it is price discrimination to take advantage of sentimental bettors. Bookmakers only engage in this shading of odds when placing a bet on the high sentiment player is less likely to pay off for the bettors, holding the odds constant (Humphreys, 2010). Otherwise, increasing the price for high-sentiment players would lead to a higher pay out for bookmakers. If bookmakers cross this line, well-informed bettors who know the correct probability can earn a positive return by combining bets at different bookmakers.

On the other hand, bookmakers can decrease the price for the high-sentiment bet. Rather than punishing the loyal bettors by letting them pay a higher price, they try to induce more people to bet on this player. The increased betting volume compensates for the lower price bettors pay per unit bet, in terms of revenue. But, as mentioned before, the increased betting volume will increase the payout in case the high-sentiment player or team wins the match.

According to Australia Sports Betting (2016), there is an arbitrage opportunity if the sum of the best available inversed odds is less than 1. Because odds across bookmakers are highly correlated, which will be proven with data from the tennis betting market, arbitrage
opportunities are limited. This is positive for bookmakers, as "the presence of small numbers
of bettors whose skills allow them to achieve positive expected profits could prove financially
disastrous to the bookmakers" (Levitt, 2004, p. 224).

3 Literature review

In 1999, Avery and Chevalier were the first to document the effect of investor sentiment on
the betting market. They examine the hypothesis that bettors on NFL matches between 1976
and 1994 bet on sentiment, rather than on the probabilities posted by the bookmakers. They
use three sentiment measures to account for the investor sentiment: expert opinions, a
measure of how well teams performed in the past two weeks (hot-hand bias) and a measure of
a team's past-year performance (prestige bias). They find that investors bet in the same
direction as all these sentiment measures. Bookmakers go in the opposite direction and offer
less generous point spreads for NFL teams with the highest sentiment. In other words,
bookmakers rationally exploit the bettor preferences. This is negative for the sentimental
bettors, as they have to pay a higher price to place a bet. However, the strategy to exploit this
bias, to bet on the relatively cheap low-sentiment player, is only "borderline profitable"
(Avery & Chevalier, 1999, p520), depending on the time period. In their late (early) period
subsample, the success rate of this betting strategy is 54% (50.5%), while a wager strategy
must have a winning ratio of 52.4% to be profitable, taking the bookmaker's commission into
account.

Strumpf (2003) also found that bookmakers shade prices against teams that receive a large
fraction of sentimental bets. He studied the sentiment bias using data on football, basketball,
baseball and ice hockey matches from illegal bookmakers in New York City. By using the
betting history of individual bettors, he elicited their bettor preferences. For example, he
assumed a bettor to be New York Yankees loyalist if he bet in favor of the Yankees 90% of
the bets involving the Yankees. He finds that bookmakers offer these sentimental bettors
unfavorable betting prices, explained by the fact that these loyal wagers have a higher
willingness to pay for a bet involving the team with the high sentiment.

Hong and Skiena (2010) built on the research of Avery and Chavelier (1999) by studying the
sentiment bias in the betting market of NFL matches. Their approach is different from the rest
of the studies. The authors look at the sentiment bias on match level rather than finding the
aggregate direction (positive or negative) of the mispricing. Their measure of sentiment is the
public opinion of teams, expressed in blogs and social media. This is computed by the
analytics system Lydia, which counts the number of positive and negative words about a
team. If, for a given match, the predicted point spread is higher (lower) than the real point spread, a bet is placed on the underdog (favorite) team. Using this strategy for 30 bets per year during their late-period subsample (2006-2009) identified the winner 60% of the time (as predicted by the sentiment measure). This is a profitable strategy, as their required success rate including the bookmaker's commission is only 53%. However, the small amount of data raises concerns about the robustness of this study.

Forrest and Simmons (2008) were the first to document bookmakers who shade prices in favor of bettors of high-sentiment teams. They studied the betting market of Spanish soccer during the period of 2001-2005 and concluded that more favorable odds were offered to bets on clubs with higher sentiment. This is positive for sentimental wagers, as it becomes cheaper to place a bet on the team with higher sentiment. The result is obtained by means of a multivariate model with the bookmaker's probabilities, the sentiment measure and a variable to control for home bias. The sentiment measure used is the difference in home attendance in the stadiums between the two teams, a proxy to measure the active fan base. Forrest and Simmons (2008) contribute to the literature by determining the monetary value of two possible strategies to exploit the positive sentiment bias. The first strategy is to place a one-unit bet when the sentiment measure is larger than a certain threshold. This results in a loss between -5.7% and -8.9%, depending on the threshold. Even though the strategy results in a smaller loss than when betting randomly (approximately -16%), the sentiment bias is not high enough to compensate for the bookmaker’s commission. The second strategy is to place a one-unit bet when the difference between the win probability forecasted by the model and the bookmaker's probability exceeds a certain threshold. Returns lie between -10.6% and +12.8%, depending on the threshold. In other words, when the gap is large enough, this strategy is profitable. Forrest and Simmons (2008) perform a robustness check by repeating their study for data on matches in the Scottish soccer league between 2001 and 2005. Opposed to the results in the Spanish soccer league, they find neither a home bias nor a favorite-longshot bias. However, the results for the sentiment bias in betting prices are similar, the effect of a team's sentiment on the probability of winning a bet on that team is positive and significant. This strengthens their main results and the conclusion that bookmakers adjust the odds in favor of bettors of high-sentiment clubs.

Research by Franck, Verbeek and Nüesch (2011) concerns the sentiment bias in the betting market for English soccer matches between 2000-2008 and can be considered as a robustness check for the study by Forrest and Simons (2008). They use a similar measure to proxy for the sentiment of home and away teams, "taking the difference between their standardized mean
home attendances in the previous season" (Franck et al., 2011, p.510). Franck et al. (2011) predict the outcome of a bet with the bookmaker's implied probabilities, the sentiment measure and a control variable for the home bias. The results run parallel with Forrest and Simmons (2008). Franck et al. (2011) find that more favorable bets are offered to wagers on clubs with a larger number of supporters. In other words, the betting prices on the market for English soccer are cheaper for bets on high-sentiment teams. In addition, this study examined the difference of the sentiment bias between weekdays and weekends. Bookmakers decrease prices (increase odds) for popular teams even more when wagers face lower opportunity costs to follow the match and place a bet. Put differently, the market inefficiency is larger during weekends.

Feddersen, Humphreys and Soebbing (2013) find positive sentiment bias in the betting prices for NBA matches between 1981 and 2012. In this extensive dataset, they look for the presence of sentimental investors by measuring the difference between the average arena capacity utilization of the home and away teams in the previous year. An OLS model explaining variation in point spreads shows that favorable point spreads are offered for games involving teams with a high sentiment measure. Additional analysis in the form of a probit model explains the variation in bet outcomes. It shows that the higher the difference in arena utilization between home and away teams, the higher the probability that a bet on the home team wins. Put differently, bookmakers underestimate the probability that teams with high arena utilization, considered as popular, win. However, the effect is only less than 0.1%, which is not enough to exploit the sentiment bias when the bookmaker's commission is taken into account. The authors obtain similar results in a robustness check, where they use the difference in the share of All Star votes for the two competing teams as a sentiment measure. When the difference in the share of All Star votes increases, the spread is more in favor of the popular team. In other words, bookmakers underestimate the spread for teams with a lot of All Star votes. However, the effect is again not strong enough to compensate for the bookmaker take out. This supports their earlier conclusion that "point spread shading cannot be exploited as a profitable strategy" (p.19).

Flepp et al. (2016) examine the influence of sentiment betting on bookmaker pricing in over/under 2.5 goals bets, for matches in 220 different soccer leagues. They are the first to use betting volume as a measure for betting behavior. The over-2.5 goals bet is considered as the high-sentiment bet, because this implies a match with a high entertainment value. Analysis finds evidence for sentiment bias, i.e. 80% of betting volume is placed on the high-sentiment bet. However, this imbalance in betting volume does not affect the betting prices and bettor
returns. Put differently, bookmaker prices do not deviate from the true outcome probability. The authors argue that this is the result of price transparency among different bookmakers, which make bettors price sensitive and prevents bookmakers from actively setting odds to exploit sentimental preferences.

Table 3. An overview of the most important studies regarding the sentiment bias

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Subject</th>
<th>Method</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>Avery and Chevalier</td>
<td>Sentiment bias in the National Football League, measured by expert opinions and past performance.</td>
<td>OLS & Probit model</td>
<td>Reversed sentiment bias which leads to a profitable betting strategy.</td>
</tr>
<tr>
<td>2003</td>
<td>Strumpf</td>
<td>Sentiment bias in the illegal betting market for baseball, football, ice hockey and basketball, measured by team loyalty in betting behavior of individual bettors.</td>
<td>OLS</td>
<td>Reversed sentiment bias.</td>
</tr>
<tr>
<td>2008</td>
<td>Forrest and Simmons</td>
<td>Sentiment bias in the betting market for the Spanish soccer league, measured by the difference in home attendance between home and away team.</td>
<td>Probit model</td>
<td>Positive sentiment bias, which leads to a profitable betting strategy with a return of 12.8%. The robustness check with data from the Scottish soccer league leads to similar results.</td>
</tr>
<tr>
<td>2010</td>
<td>Hong and Skiena</td>
<td>Sentiment bias measured on match-level in the National Football League, proxied by the public opinion of teams.</td>
<td>OLS</td>
<td>The profitable strategy to exploit this bias identifies the winner 60% of the time, where the required success rate is only 54%.</td>
</tr>
<tr>
<td>2011</td>
<td>Franck, Verbeek and Nüesch</td>
<td>Sentiment bias in the betting market for the English soccer league.</td>
<td>Probit model</td>
<td>Positive sentiment bias, which is larger during the weekends.</td>
</tr>
<tr>
<td>2013</td>
<td>Feddersen, Humphreys and Soebbing</td>
<td>Sentiment bias in the betting market for National Basketball Association matches, measured by the difference in arena capacity utilization between home and away teams.</td>
<td>OLS Probit model</td>
<td>Positive sentiment bias. The strategy to exploit this bias is not profitable.</td>
</tr>
<tr>
<td>2016</td>
<td>Flepp, Nüesch and Franck</td>
<td>Sentiment bias in the soccer betting market for over/under 2.5 goals bets, determined by betting volumes.</td>
<td>Two-stage least squares model</td>
<td>Positive sentiment bias, which does not lead to extremely high or low bettor returns.</td>
</tr>
</tbody>
</table>
In summary, previous research has studied the sentiment bias in betting markets for soccer, American football, basketball, baseball and ice hockey. Table 3 presents an overview of the most important studies on the sentiment bias in sports betting. The main conclusion is that the ambiguous results emphasize the need for additional research on this topic. The current study contributes to the literature by focusing on the sentiment bias in the betting market for Grand Slam tennis matches. The results will serve as new proof in the discussion of whether, and in which direction, bookmakers distort their odds to exploit the sentiment preferences among bettors.

4. Hypotheses
Previous literature in behavioral economics found evidence for violations of market efficiency in financial markets. The same applies to betting markets, which are subject to various behavioral biases. Foremost, evidence on the favorite-longshot bias has led to the rejection of the hypothesis that bookmakers' odds in the tennis betting market include all public available information (Forrest & McHale, 2007). More recently, researchers have been studying the sentiment bias in various sports betting markets and found mixed but significant results. Avery & Chevalier (1999) and Strumpf (2003) found a reversed pricing reaction on sentiment bias in the NFL and the illegal betting markets for several American sports, respectively. This means that bookmakers offer less favorable odds to bettors of popular teams. Ever since, studies have only found evidence for the opposite price shading: bookmakers offer more favorable odds to bettors of popular teams. Returns of backing the high-sentiment player (or team) have therefore been abnormally high. These results are robust for betting on matches in the NBA (Feddersen et al., 2013), the NFL (Hong & Skiena, 2010), the English (Franck et al., 2011) and Spanish soccer leagues (Forrest & Simmons, 2008). As this is a wide variety of betting markets, it is expected to find similar results for the tennis betting market. The sentiment measure used is data from Google Trends. It is expected that the higher the Google Trends score for a player, the lower the prices that are offered for bets on these players. To summarize, previous results and theories lead to the expectation that the market for tennis betting is inefficient:

Hypothesis 1: Bookmakers underestimate winning probabilities for high-sentiment players, whereas they overestimate winning probabilities for players with low sentiment.
Grand Slam tournaments are played over the course of two weeks. The final is played on the second Sunday. In finals, odds are expected to lie closer to each other than for matches in the first rounds of the tournament. As a result, the difference in the sentiment measure between both between players will be relatively small as well. However, this implies that high ranked, glamorous players with high sentiment are playing finals relatively often. Based on this, one would expect that bookmakers deviate their odds further away from the true winning probability. Independent of the characteristics of the players that reached the final, there is another factor at work. In weekends, when finals are played, the fraction of noise bettors is higher because of lower opportunity costs (Sung, Johnson & Highfield, 2009). As a result, bettors are expected to be less price sensitive. These theories are strengthened by the result of Franck et al. (2011), who report that the sentiment bias in soccer is higher during weekends. As a result, it is expected that the level of sentiment has a stronger effect on the probability of winning a bet in finals than in earlier rounds. This is summarized in the second hypothesis:

Hypothesis 2: The bookmaker's deviation from the true winning probabilities of high sentiment players is larger during tournament finals than during earlier rounds.

The dataset in this research runs from 2004 until 2016, including the years in which the so-called Big Four (Roger Federer, Rafael Nadal, Novak Djokovic and Andy Murray) dominated the ATP World Tour. Together they have won 42 of the last 47 Grand Slam tournaments. These players have become immensely popular over the years and are expected to elicit high sentiment among noise traders. This sentiment might translate into loyal betting behavior, and bookmakers are expected to exploit this lower price sensitivity. The imbalance between the bookmaker probability and the predicted probability of the match outcome is expected to be larger for matches of these players. The large number of observations ensures enough data points for the Big Four sample to compare the two groups. All together, it is expected that the sentiment bias is higher in matches with the Big Four. This is summarized in the third hypothesis:

Hypothesis 3: The bookmaker's deviation from the true winning probabilities of high sentiment players is larger in matches with the Big Four than in matches without the Big Four.
Hypotheses 1 through 3 present the expectation of a positive sentiment bias, where bookmakers underestimate the probability that popular players win. This implies that bookmakers offer relatively cheap prices for bets on players with high sentiment. They know that players with high sentiment are overbet and players with low sentiment are underbet. Engaging in a strategy of placing a bet whenever the difference in the number of searches on Google exceeds a certain threshold could result in a positive expected return. Forrest and Simmons (2008) find that a betting strategy to exploit the positive sentiment bias in the Spanish soccer league yields a profit of -5.7%, which is better than the return from random betting. The same strategy is found to be profitable in betting on matches in the NFL (Hong & Skiena, 2010). On the other hand, Feddersen et al. find a positive sentiment bias in the NBA that cannot be profitably exploited by betting on the high sentiment players. The conflicting results may depend on the variety of the bookmaker’s commission in different betting markets. The profitability of the strategy partly depends on this take out ratio because it is subtracted from bettors' revenues. So even if the strategy provides positive revenue, it does not have to be profitable. Forrest & McHale (2007) argue that the tennis betting market, on average, has low transaction costs and well-informed bettors. These are both factors that work as an advantage in exploiting the positive sentiment bias, if present. This, together with results of previous studies, leads to the fourth hypothesis, which will be tested for each of the samples used in Hypothesis 1 through 3:

Hypothesis 4: By engaging in a strategy of betting in favor of the high-sentiment player in case of positive sentiment bias, and against the high-sentiment player in case of reversed sentiment bias, bettors can earn a positive return.

5. Data

5.1 Betting data

Betting data for Grand Slam tournaments in the period 2004 - 2016 is collected from www.tennis-data.co.uk. The first tournament in the dataset is the 2004 Australian Open and the final tournament is the 2016 French Open. Different bookmakers offer different odds, and wagers can choose where they want to place their bet. The dataset contains closing odds from eight different bookmakers. Closing odds have the advantage of being adjusted for betting volumes. Therefore, they represent the market prices of the bets on each player (Woodland &
Woodland, 1991). The initial dataset consists of 6350 matches, comprised of 127 matches in each of the 50 tournaments.

5.2 Google Trends data

These 6350 matches contain 546 unique players. The sentiment for these players is measured by Google Trends data. It is a service from Google to measure the popularity of search terms over time. Data is available from 2004 onwards, which is the reason why the Australian Open in 2004 is the first tournament in the dataset. When one enters a search term in Google Trends, it shows the search popularity relative to the highest score of popularity, for that search term, in the chosen time period. A value of 100 equals the peak popularity within the time frame. A value of 50 means that at that time, the search term is half as popular as it was on its peak. A score of 0 means that the search term has less than 1% popularity compared to the peak. Google Trends data is measured on a weekly basis.

Google Trends has a function to compare two search terms with each other. This function is important for the following reason. In order to be able to compare the sentiment for different players, the Google Trends data for the 546 unique players need to have the same normalization factor. This could have been realized by comparing the 546 search terms at once. However, there is a maximum of entering five search terms in one session. To solve this issue, all players have been compared, one by one, to the same player: José Acasuso. He is chosen for the simple reason of being on top of the player list in alphabetical order. José Acasuso’s popularity has been normalized against 545 different players. All matches with him as either winner or loser have therefore been eliminated from the dataset.

Another important aspect of the data collected from Google Trends is the category in which one searches. When entering the name of a tennis player in Google Trends, one can choose to search for these words literally, or within the category of ‘tennis player’. The first option gives data on all searches for that name, regardless if it concerns the tennis player or someone else with the same name. This is risky, since it might be the case that e.g. a singer has the same name as a tennis player. Sentiment data on the singer would be included in the data that was supposed to be on the tennis player only. In this research, therefore, data was only collected when Google Trends recognized the player’s name as being a tennis player. Six players (and the matches they play) have been removed from the sample because there was no data in Google Trends. This is not expected to bias the results, since these six players are unknown and low-ranked players. Furthermore, all observations that needed to be removed were first-round matches. There are 64 first round matches in each tournament, so the removal of
several of these observations is not expected to influence the results. Altogether the sample consists of 439 unique players.

After merging all individual reports, the weekly data is used to calculate the average sentiment score in quarter q for player i: $S_{q,i}$. The sentiment is measured on a quarterly basis to spread the relatively high sentiment during Grand Slams and to include the sentiment created in additional important tournaments like Masters and the World Tour Finals4. This quarterly sentiment measure is merged with the betting data, on match level, as follows: for a match during a tournament in quarter q, player i receives his sentiment score of quarter $q-1$: $S_{q-1,i}$. This is done to ensure that the influence of sentiment for players on betting odds during a tournament is measured in terms of sentiment created in the previous quarter of the year. Otherwise, sentiment earned by a player because of reaching the final of Wimbledon is included in the sentiment measure that determines bettor behavior for the first round of the same player in the same Wimbledon tournament. Secondly, it is assumed that bettors and bookmakers determine winning probabilities based on players' results and behavior in recent tournaments, i.e. the previous quarter. These tournaments are easy to retrieve and will, according to the availability bias, mainly influence the behavior of bookmakers and bettors.

As the Australian Open takes place in January, the chosen method implies that the sentiment measure for the Australian Open is based on data from the final quarter of the previous year. Even though no Grand Slam takes place in this quarter, it is an important part of the tennis season including several Masters tournaments and the year-end ATP World Tour Finals (considered as the unofficial World Championships). Betting data during the French Open, played in June, is matched with data in the first quarter of the year and thus includes the sentiment during the Australian Open. Wimbledon is officially split between two quarters because it is played during the final week of June and the first week of July. However, all observations during Wimbledon are seen as taking place in the third quarter, using sentiment data from the second quarter. Thus, the French Open is included in the popularity measure that influences betting decisions during Wimbledon. The US Open takes place during the first two weeks of September, also in the third quarter. As such, sentiment data from the second quarter is matched to US Open observations. The 2004 Australian Open is removed from the sample since Google Trends data is available as of January 2004, so it is impossible to match it with sentiment data from the previous quarter.

4 A full overview of the ATP (Association of Tennis Professionals) World Tour and its tournament categories is presented in Appendix A (ATP World Tour, 2017).
5.3 The final dataset

Betting data is collected from eight bookmakers. For the sake of consistency, the data analysis in this research is performed with odds from only one bookmaker. Table 4 lists all bookmakers and the number of missing observations in the dataset. There is large discrepancy between the different bookmakers, with Centrebet, Interwetten and Unitbet being least complete. Bet365 has the highest coverage, with unavailable odds for only 25 matches.

Table 4. Number of missing observations for each bookmaker

<table>
<thead>
<tr>
<th></th>
<th>Bet365</th>
<th>Centrebet</th>
<th>Expekt</th>
<th>Interwetten</th>
<th>Ladbrokes</th>
<th>Pinnacles</th>
<th>Stan James</th>
<th>Unibet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bet365</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centrebet</td>
<td>0.983</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expekt</td>
<td>0.979</td>
<td>0.978</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interwetten</td>
<td>0.956</td>
<td>0.963</td>
<td>0.959</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ladbrokes</td>
<td>0.973</td>
<td>0.675</td>
<td>0.971</td>
<td>0.639</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinnacles</td>
<td>0.977</td>
<td>0.942</td>
<td>0.952</td>
<td>0.862</td>
<td>0.974</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stan James</td>
<td>0.952</td>
<td>-</td>
<td>0.977</td>
<td>-</td>
<td>0.947</td>
<td>0.911</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Unibet</td>
<td>0.989</td>
<td>0.970</td>
<td>0.983</td>
<td>-</td>
<td>0.984</td>
<td>0.973</td>
<td>0.925</td>
<td>1</td>
</tr>
</tbody>
</table>

Using the data from Bet365 as default is not expected to influence the reliability of the results. Table 5 shows the correlation between the odds of the eight bookmakers. The correlation between the set of odds from Bet365 and the other bookmakers is almost equal to 1. For some pairs of bookmakers there is no overlapping data. In other words, there are no matches for which betting odds are available for both bookmakers. Choosing Bet365 as the bookmaker whose odds will be used for the analysis removes another 25 matches from the sample. The total number of observations, with complete data for both players on Google Trends and betting odds, is 6156 matches.

Table 5. Correlation between the different bookmakers

<table>
<thead>
<tr>
<th>Bookmaker</th>
<th>Number of missing observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bet365</td>
<td>25</td>
</tr>
<tr>
<td>Centrebet</td>
<td>4330</td>
</tr>
<tr>
<td>Expekt</td>
<td>38</td>
</tr>
<tr>
<td>Interwetten</td>
<td>5314</td>
</tr>
<tr>
<td>Ladbrokes</td>
<td>1767</td>
</tr>
<tr>
<td>Pinnacles</td>
<td>538</td>
</tr>
<tr>
<td>Stan James</td>
<td>3160</td>
</tr>
<tr>
<td>Unibet</td>
<td>4199</td>
</tr>
</tbody>
</table>

As mentioned in the theoretical chapter, bookmakers require bettors to pay a commission to ensure that they make a profit. This commission is included in the odds set by Bet365 and
causes the sum of the odds (expressed as probabilities) to be higher than unity. The 'probabilities' of each player winning the match, including the commission, are calculated as follows:

\[\text{probcom}_{i,m} = \frac{1}{\text{odd}_{i,m}} \]

, with \(\text{odd}_{i,m} \) being the payout if one places a bet of 1$ on player \(i \) winning match \(m \) and \(\text{probcom}_{i,m} \) being the 'probability' of player \(i \) winning match \(m \). These probabilities in the dataset need to be adjusted for the overround. The average overround of Bet365 in the dataset is 6.61%. This means that in order to break-even, on average bettors need to win 51.60% of their bets. In line with previous studies, it is assumed that the bookmaker’s commission is equally distributed over the two outcome probabilities for a match (Franck et al., 2010). The implied probabilities, which will then sum to 1 for both players, are calculated as follows:

\[\text{improb}_{i,m} = \frac{\text{probcom}_{i,m}}{\sum_{m} \text{probcom}_{i,m}}. \]

6. Methodology

6.1 The probit model

The multiple linear regression model with a binary dependent variable is called the linear probability model (LPM) because the response probability is linear in the parameters. This model is easy to estimate and interpret but it has two main drawbacks (Wooldridge, 2015). First, the fitted probability predicted by LPM can be less than zero or greater than one. Second, the LPM assumes constant marginal effect for an independent variable. For example, the LPM would predict that the effect of a player going from none to one injury reduces the probability of winning by the same amount as the player going from one to two injuries. The probit model overcomes these shortcomings and is therefore used in this paper.

The probit model is a binary response model with a limited dependent variable for which the range of values is restricted. In the current study it is a binary variable that takes either value 1 or 0. The general probit model is formulated as follows:

\[P(y = 1|x) = G(\beta_0 + x\beta) \]

, where \(G \) is standard normal cumulative distributive function, expressed as an integral. \(^5\)

This study tests whether the market for tennis betting is subject to sentiment bias. If so, our measure of sentiment has some explanatory power to the true winning probabilities. This

\[^5\] \(G(x) = \Phi(x) = \int_{-\infty}^{x} \phi(v) \, dv \) with \(\Phi(x) = (2\pi)^{-1/2} \exp(-\frac{x^2}{2}) \)
implies that there is market inefficiency, since the odds set by Bet365 do not contain all publicly available information and deviate from the efficient level at which each bet is, on average, equally profitable (Franck et al., 2011). The hypothesis is tested by estimation of the following probit model:

\[Y_i = \Phi(\beta_0 + \beta_1 DGT_i + \beta_2 prob_i + \beta_3 home_i + \beta_4 opp_i + u_i) \]

\(Y_i \) is the binary dependent variable explaining the actual outcome of the bet, which equals 1 for a winning bet and 0 for a losing bet. The actual outcome of the bet is explained in terms of four independent variables. \(DGT_i \) is the proxy for sentiment and measures the difference in the Google Trends score in the previous quarter between player \(i \) and his opponent. \(prob_i \) is the implied bookmaker probability of a win for player \(i \) minus the implied bookmaker probability for his opponent. This will show whether bookmakers give favorites enough, too much or too little credits. It is important to note that this is not a control for the favorite-longshot bias, as this variable does not tell anything about behavior of extreme favorites or underdogs in particular. An extra analysis will be performed to provide evidence in favor or against the favorite-longshot bias.

Bettors are known to over bet on home teams and therefore the model needs a control for the home bias. If the home player is the player with the highest sentiment, the distortion in probabilities might be related to the player playing at his home tournament rather than being the most popular player. The inclusion of dummy variable \(home_i \) controls for these home player bets. It has a value of 1 for the matches where player \(i \) plays at his home tournament, and 0 otherwise. This concerns Australian players, French players, British players and American players for the Australian Open, Roland Garros, Wimbledon and the US Open respectively. A similar dummy variable is included to control for the home bias of the opponent.

The probit model is symmetric because all variables for player \(i \) are measured relatively to its opponent. This ensures that the winning probabilities for a player and its opponent estimated by the model sum to 1 for every match. Betting on a match is a zero-sum game, since a winning bet on a player implies that the bettor on the other side loses. As a result, observations are independent across matches but correlated within matches. The correlation of the error terms violates the independence assumption. This is corrected for by clustering observations within the same match. This method generates robust standard errors for the

6 The dummy variable indicating home tournaments is not measured relatively to the opponent. However, a dummy for the opponent's home matches is included to correct for this.
estimated coefficients. As a robustness check, the analysis is repeated with randomly sampling one observation from each match instead of creating clusters.

6.2 Model estimation

The probit model is estimated by Maximum Likelihood Estimation (MLE). The main advantage of this method is that "the general theory of MLE for random samples implies that, under very general conditions, the MLE is consistent, asymptotically normal, and asymptotically efficient" (Wooldridge, 2015, p. 588). The maximum likelihood estimator of β is equal to $\hat{\beta}$. If $G(\cdot)$ is equal to the standard normal cumulative distribution function, $\hat{\beta}$ is called the probit estimator.

The magnitude of the estimated coefficients, $\hat{\beta}_j$, can not be interpreted because of the nonlinear nature of $G(\cdot)$. To estimate the individual effect of DG_{Ti}, $prob_i$, $home_i$ and $hopp_i$ on the probability of winning the bet, $P(y = 1 \mid x)$, one needs to calculate the marginal effects:

$$\frac{\delta p(x)}{\delta x_j} = g(\beta_0 + x\beta)\beta_j$$

The scale factor of the partial effect depends on the value of all independent variables, x. To calculate the partial effect, DG_{Ti} and $prob_i$ are replaced with their average value and the home dummies are set equal to 0. This results into the partial effect at the average (PEA), the marginal effect of x_j for the average player in the sample. The average partial effect (APE) is calculated as a robustness check. This measure first calculates the partial effects on individual level before these individual marginal effects are averaged across the entire sample. The partial effect of the independent variables on the probability of winning the bet depends on x through $g(\beta_0 + x\beta)$. Therefore, the marginal effect always has the same sign as the coefficient β_j (Wooldridge, 2015).

Since the estimated coefficients have a robust standard error, the statistical significance of the three independent variables can be tested with a two-tailed t-test. This test decides whether the sentiment proxy, the home dummies and the bookmaker's implied probabilities have a significant effect on the probability of winning a bet. If the null hypothesis is rejected, one can conclude that the variable has a significant effect, implying market inefficiency.

7 The random sampling process has been repeated several times to ensure robust results.

8 $g(z) = \frac{\delta G(z)}{\delta z}$
6.3 Goodness-of-fit

The quality of the probit model will be evaluated with two goodness-of-fit measures. The first one is McFadden's pseudo R-squared:

\[R^2 = 1 - \frac{\mathcal{L}_{UR}}{\mathcal{L}_0} \]

\(\mathcal{L}_{UR} \) is the log-likelihood function for the unrestricted probit model, including the four independent variables. \(\mathcal{L}_0 \) is the log-likelihood function for the model with only an intercept. If the model in this research has no explanatory power, these two log-likelihoods function are equal to each other and the \(R^2 \) equals zero. The goodness-of-fit of the estimated model increases as McFadden's pseudo \(R^2 \) moves closer to unity. It should be noted, however, that it cannot be interpreted as the fraction of total variance explained by the model, the definition of the normal \(R^2 \). If you would put values for both measures in a diagram, it is not a straight line. Higher values of the \(R^2 \) are translated into lower values for McFadden's pseudo \(R^2 \). Therefore, values for the McFadden pseudo \(R^2 \) of 0.2 and higher are considered a good fit.

The second goodness-of-fit measure determines how well the probit model predicts the Grand Slam match results, compared with the bookmakers (Hvattum & Arntzen, 2010). A bet is placed when the probability of a player winning the match predicted by the probit model, multiplied by the Bet365 odds, is greater than one. These cases, defined as value bets, will be evaluated by two betting strategies. The first one is called Unit Bet, with a fixed stake of 1$. This will result into a gain of $\text{odds} - 1$ in case the player wins, and a loss of -$1 if he loses. The second strategy is called Unit Win, which has a betting size that results into a fixed gain of 1$ if the player wins. If the player loses, the loss equals the stake. The advantage of the Unit Win strategy is that it is less prone to heavy losses from bets that have high odds, because the stakes are lower (Hvattum & Arntzen, 2010).

7. Results

7.1 Summary statistics

The summary statistics of the independent and dependent variables estimated in the probit model are presented in Table 6. The mean value of the dependent variable, \(Y_t \), is equal to 0.5, explained by the fact that in tennis bets there is either a win or a loss. The sum of the implied probability odds for two players in a match is always equal to one, such that the mean value of the bet automatically equals 0.5. Franck et al. (2011) study the sentiment bias in soccer
matches and leave out draw bets. As a result, the implied probability odds sum up to less than 1, and the mean value is lower than 0.5.

The difference in sentiment value between two players has a mean value of zero. This is explained by the fact that every match comprises of two observations, one for the winner and one for the loser. The value of DGT_i for the former is equal to the Google Trends score of the winner minus the Google Trends score of the loser. This is opposite for the observations with the loser as subject player. As a result, the average value is equal to 0. The maximum absolute difference of sentiment between two players is equal to 42.538.

The same explanation applies to the symmetrical variable of the implied bookmaker probability. The value of $prob_i$ is determined by the implied winning probability for player i minus the bookmaker probability his opponent wins. Since both the winner and the loser are in the sample, the mean value of this variable is equal to 0. The maximum difference in bookmaker probabilities between two players is 0.995, which implies that the sample contains some very lopsided matches.

Table 6. Summary statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Min</th>
<th>Max</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Y_i</td>
<td>Outcome of bet i</td>
<td>0.500</td>
<td>0.309</td>
<td>0.04</td>
<td>0.96</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 DGT_i</td>
<td>Relative sentiment</td>
<td>0.000</td>
<td>7.228</td>
<td>-42.54</td>
<td>42.54</td>
<td>0.342</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 $prob_i$</td>
<td>Relative probability</td>
<td>0.000</td>
<td>0.558</td>
<td>-0.97</td>
<td>0.97</td>
<td>0.995</td>
<td>0.333</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 $home_i$</td>
<td>Home player i</td>
<td>0.091</td>
<td>0.228</td>
<td>0.00</td>
<td>1.00</td>
<td>-0.025</td>
<td>-0.072</td>
<td>-0.041</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>5 opp_i</td>
<td>Home opponent</td>
<td>0.091</td>
<td>0.228</td>
<td>0.00</td>
<td>1.00</td>
<td>0.025</td>
<td>0.072</td>
<td>0.041</td>
<td>0.001</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Table 6 shows negative correlation between the home dummy and the remaining variables. The negative correlation coefficient for variable $prob_i$ can be explained by the fact that Grand Slam tournaments give the majority of their wildcards to home players whose ranking is not high enough for direct qualification. Their low ranking is a reason for bookmakers to set a low winning probability for these players, as they are obviously not the favorite to win the match.

The correlation coefficient between the sentiment proxy and the bookmaker probabilities is equal to 0.333. This implies that a higher difference in bookmaker probability between two players is associated with an increase in the difference between the sentiment measures of both players. Put differently, players that are considered as being the favorite may, on average, also be the more popular player.
7.2 The full sample

7.2.1 Regression results

Table 7 presents the results of the clustered\(^9\) probit model that predicts the probability of winning the bet on player \(i\). The McFadden's pseudo-R\(^2\) is equal to 0.3091. Given the distribution of this measure, the value implies that the probit model is a very well fit. The value is higher than the McFadden pseudo R\(^2\) in similar models estimated by Franck et al. (2011) and Forrest & Simmons (2008), 0.062 and 0.115 respectively.

The coefficients in Table 7 do not represent the magnitude of the effect of the independent variables on the bet outcome. They do, however, reveal the significance and sign of the variables. The second line in Table 7 displays that the variable \(DGT_i\) has a p-value of 0.230, which means that the null hypothesis of market efficiency in terms of sentiment cannot be rejected. Put differently, the relative popularity of a player has no significant effect on the outcome of a bet on that player. Bookmakers do not underestimate the winning probabilities of high-sentiment players. The results are not in line with Hypothesis 1.

Table 7. Clustered probit regression results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Marginal effect</th>
<th>T-statistic</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(DGT_i)</td>
<td>0.003</td>
<td>0.001</td>
<td>1.20</td>
<td>0.230</td>
</tr>
<tr>
<td>(prob_i)</td>
<td>1.73</td>
<td>0.690</td>
<td>45.62***</td>
<td>0.000</td>
</tr>
<tr>
<td>(home_i)</td>
<td>0.077</td>
<td>0.031</td>
<td>1.69*</td>
<td>0.092</td>
</tr>
<tr>
<td>(hopp_i)</td>
<td>-0.077</td>
<td>-0.031</td>
<td>-1.69*</td>
<td>0.092</td>
</tr>
</tbody>
</table>

Number of observations 12312
Number of clusters 6156
Pseudo - R\(^2\) 0.3093

Notes: The dependent variable is equal to the outcome of bet \(i\). \(* = \) significant at 10% level, \(*** = \) significant at 1% level.

The difference in bookmaker probabilities between player \(i\) and his opponent has a significant and positive effect on the actual outcome of a bet. With a t-statistic of 45.62 and a p-value of 0.000, the variable is individually significant at the 1% level. When the difference of implied winning probabilities between the average player and his opponent increases by 10 percentage points, the probability that a bet on the average player is won increases by 6.90%, ceteris paribus.\(^10\) This marginal effect indicates that bookmakers give too much credit to favorites. However, this result does not show whether the bookmaker changes his pricing strategy for extreme probabilities in particular (extreme favorites and longshots). In order to properly

\(^9\) As a robustness check, the probit model was estimated with random sampling rather than clusters. The results are documented in Appendix B.

\(^10\) The Average Partial Effects (APE) have been calculated as a robustness check. The results are similar and documented in Appendix C.
examine whether the favorite-longshot bias is present in this sample, one needs to look at the behavior at different range of odds. An additional analysis, of which the results are documented in Appendix D, examines whether the sign and magnitude of the effect changes over the range of bookmaker probabilities for favorites. The results show that bookmakers actually underestimate the winning probability for extreme favorites (implied bookmaker probability > 0.75), which implies that bettors over bet long shots. This is in line with the favorite-longshot bias.

The third explanatory variable is the dummy that indicates whether a player is playing a match during his home tournament. With a t-statistic of 1.69 and a p-value of 0.092, this variable is borderline significant at the 10% level. In other words, bookmakers underestimate the probability that a bet on a home player is won. They offer relatively cheap prices for bets on home players. The marginal effect in Table 7 reveals that the probability of winning the bet on the average player is approximately 3.1% higher when it concerns a match at that player's home tournament, ceteris paribus. The results for variable \(\text{hom}_{p} \) are exactly opposite, given the symmetric characteristics of the model. Bookmakers overestimate the winning probability for a player of which the opponent plays a match in his home tournament.

7.2.2 Unit Bet and Unit Win
Table 8 displays the returns per dollar bet for the Unit Bet and Unit Win strategy. The Unit Bet strategy has a return of -0.1254 per 1$ bet, whereas the Unit Win strategy has a positive return of 0.7066 per 1$ bet. The large difference between the two is caused by the smaller bet size in the Unit Win strategy. If a player has very high odds, and a higher chance to lose the match, the stake that is lost if he indeed loses is very small. However, in the Unit Bet strategy, the loss is equal to $1 every time a bet is lost.

<table>
<thead>
<tr>
<th>Table 8. Profits for Unit Bet and Unit Win strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bet size</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>Unit Bet</td>
</tr>
<tr>
<td>Unit Win</td>
</tr>
</tbody>
</table>

7.3 Sentiment bias in tournament finals
The second question this research aims to answer is whether the bookmaker's response to bettor sentiment is higher during tournament finals compared with the rest of the tournament. Table 9 displays the results from the clustered probit model for two samples: finals and non-

11 Prior to the extra analysis, a squared term of the relative bookmaker probabilities was added to the probit model to measure behavior around extreme probabilities. However, this was insignificant.
finals. The samples have 98 and 12214 observations, respectively. Even though the final sample size is much smaller, the McFadden's pseudo-R² for both estimations are similar. The values of approximately 0.30 indicate that the model is a very good fit for both samples.

In the sample for tournament finals, the sentiment variable DGT_i is significant at the 10% level, with a p-value of 0.06. The sign of the coefficient is negative, which means that for bets on tournament finals the probability of winning a bet on a player decreases the higher his relative popularity. Put differently, bookmakers overestimate the probability that the high-sentiment player wins. When the difference in the Google Trends score between a player and its opponent increases by 1.00, the probability that a bet on the average player is won decreases by 2%, ceteris paribus. This is in line with earlier results from Avery and Chevalier (1999) and Strumpf (2003). There is no significant sentiment bias, either normal or reversed, in the non-final sample. In other words, bookmakers do not deviate their odds from the true winning probabilities. An unreported two-tailed t-test shows that the coefficients of DGT_i in the "Final" and the "Non-Final" samples are significantly different from each other at the 5% level, with a p-value of 0.04. The sentiment bias is larger in the final sample than in the non-final sample, even though it is in the reversed direction. The results are in line with Hypothesis 2.

The difference of bookmaker winning probabilities between player i and his opponent has a positive and significant effect on the probability of winning a bet on that player. The variable is significant on the 1% level in both samples. In the final (non-final) sample, the probability of winning a bet on the average player increases by 10.11% (6.89%) when the difference in bookmaker probability for the average player and his opponent increases by 10 percentage points, ceteris paribus. This implies that, in the final sample, favorites win more often than you would expect from the odds. On the other hand, in the non-final sample, favorites win less often than implied by the bookmaker odds. As mentioned previously, this does not allow one to conclude anything on the favorite-longshot bias.

The home dummies for a player and its opponent are significant at the 10% level in the non-final sample. The probability of winning a bet on player i increases (decreases) by 3.1% if he (his opponent) plays a match in his home country, ceteris paribus.
Table 9. Clustered probit regression results Final and Non-final samples

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Marginal effect</th>
<th>T-statistic</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Final</td>
<td>Other</td>
<td>Final</td>
<td>Other</td>
</tr>
<tr>
<td>DGT_i</td>
<td>-0.050</td>
<td>0.003</td>
<td>-0.020</td>
<td>0.001</td>
</tr>
<tr>
<td>$prob_i$</td>
<td>2.53</td>
<td>1.728</td>
<td>1.011</td>
<td>0.689</td>
</tr>
<tr>
<td>$home_i$</td>
<td>0.006</td>
<td>0.078</td>
<td>0.003</td>
<td>0.031</td>
</tr>
<tr>
<td>$hopp_i$</td>
<td>-0.006</td>
<td>-0.078</td>
<td>-0.003</td>
<td>-0.031</td>
</tr>
</tbody>
</table>

Observations 98 12214
Clusters 49 6107
Pseudo - R² 0.3095 0.3097

Notes: The dependent variable is equal to the outcome of bet i. * = significant at 10% level, *** = significant at 1% level

7.4 Sentiment bias in matches of the Big Four

The third hypothesis concerns the difference in sentiment bias between very popular players, the Big Four, and less popular players. Table 10 displays the estimations of the clustered probit model for the sample containing Big Four matches, and the sample with the remaining matches. The two samples have 1812 and 10500 observations, respectively. The McFadden's pseudo R² of 0.6421 indicates an extremely well fit for the Big Four sample.

Table 10. Clustered probit regression results Big-Four and Non-Big Four samples

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Marginal effect</th>
<th>T-statistic</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Big 4</td>
<td>Other</td>
<td>Big 4</td>
<td>Other</td>
</tr>
<tr>
<td>DGT_i</td>
<td>-0.021</td>
<td>0.004</td>
<td>-0.008</td>
<td>0.002</td>
</tr>
<tr>
<td>$prob_i$</td>
<td>2.272</td>
<td>1.650</td>
<td>0.907</td>
<td>0.658</td>
</tr>
<tr>
<td>$home_i$</td>
<td>-0.207</td>
<td>0.095</td>
<td>-0.082</td>
<td>0.038</td>
</tr>
<tr>
<td>$hopp_i$</td>
<td>0.207</td>
<td>-0.095</td>
<td>0.082</td>
<td>-0.038</td>
</tr>
</tbody>
</table>

Observations 1812 10500
Clusters 906 5250
Pseudo - R² 0.6421 0.2555

Notes: The dependent variable is equal to the outcome of bet i. ** = significant at 5% level, *** = significant at 1% level.

Table 10 displays that DGT_i for the Big Four sample is statistically significant at the 5% level. The sign is negative, which implies that the larger the difference in Google Trends scores between two players, the lower the probability that a bet on the high-sentiment player is won, ceteris paribus. Put differently, bookmakers overestimate the probability that the high-sentiment player wins. The marginal effect can be interpreted as follows: when the difference in the Google Trends score between a player and its opponent increases by 1.00, the probability that a bet on the average player is won decreases by 0.8%, ceteris paribus. The sentiment measure is not significant in the sample for matches without any of the Big Four players. In other words, bookmaker probabilities do not under or over estimate the probability that the high-sentiment player wins. An unreported two-tailed t-test confirms that the
coefficients of DGT_i in the Big Four and the non Big Four samples are significantly different from each other at the 1% level. The absolute value of the sentiment bias is larger in the big four sample than in the other sample, even though it is reversed sentiment bias. This is in line with Hypothesis 3.

The bookmaker probability is positive and highly significant at the 1% level for both samples. To be more precise, the probability of winning the bet on the average player in the Big Four (non Big Four) sample increases by 9.07% (6.58%) when the difference in the bookmaker's implied probabilities between the average player and his opponent increases by 10 percentage points, ceteris paribus. Since both marginal effects are lower than 1, favorites win less often than you would expect based on the odds.

Finally, the dummy variables indicating whether it is a player's (and his opponent's) home tournament is significant at the 5% level in the non Big Four sample. The marginal effect in Table 10 displays that the probability of winning the bet on the average player increases by 3.8% when it concerns a match at that players' home tournament, ceteris paribus. This indicates a positive home bias. Put differently, bookmakers underestimate the probability that players win matches at their home tournament, given it is a match without any of the Big Four players.

7.5 Exploiting the sentiment bias

The significance and sign of the sentiment bias determine the appropriate strategy to exploit bookmaker's mispricing. These strategies are presented below, for each of the three samples: the full sample, the tournament finals and the Big Four matches.

7.5.1 The full sample

In the full sample, the relative sentiment measure for a player has no significant quantitative effect on the probability of winning a bet on that player. Bookmakers do not over or underestimate the probability that high sentiment player win a match. There is market efficiency in terms of sentiment, as the implied probabilities reflect the true winning probabilities for both the winner and the loser. There is no possibility for well-informed bettors to capitalize on the sentiment bias, because there is no pricing advantage for any type of player. In terms of sentiment bias, the market for tennis betting is weakly and strongly efficient. There is no strategy to improve on the return from random betting nor to earn a positive return.
7.5.2 The tournament finals
The significant but reversed sentiment bias implies bookmakers overestimate the probability that high-sentiment players win a match, given it is a tournament final. In other words, they offer a relatively high price for bets on the high-sentiment player. This can be exploited by placing a unit bet on the finalist with the relatively low sentiment. The return per unit bet for this strategy is equal to -0.0280, or -2.80%. This is an improvement on the return of randomly betting on each of the two players for all matches in this sample, which equals -25.51%. This implies that the market for tennis betting in the sample for tournament finals is weakly efficient but not strongly efficient. The return from betting randomly can be improved, but not to an extent that there is a positive return. In other words, the revenues are not high enough to compensate for the bookmaker commission.

7.5.3 The Big Four
The measure for relative sentiment of a player has a significant and negative effect on the probability of winning a bet on that player, given it is a match starring any of the Big Four. Bookmakers therefore overestimate the probability that the high-sentiment player wins the match. In other words, they offer a relatively low price for betting on the low-sentiment player. This could possibly be exploited by placing a unit bet on the low-sentiment player for every match in the sample. The return for this strategy is equal to -35.76%. This is not an improvement on the return from placing bets at random in this sample, which equals -27.30%. Given that it is not possible to exploit the reversed sentiment bias by any means, the market for betting on Big Four matches is weakly and strongly efficient. The negative return could be the result of the low-sentiment player being very much the underdog compared to the high-sentiment player (any member of the Big Four). So even though there is a relative pricing advantage for low-sentiment players, this does not compensate for the fact that the high-sentiment player is the big favorite to win the match.

8. Conclusion
The empirical evidence on the direction to which bookmakers shade prices, as a result of bettor sentiment, is mixed. This study tested for market efficiency in the unexplored market of tennis betting. It is a question of whether bookmakers under or overestimate the winning probability for high-sentiment players in Grand Slam tournaments between 2004 and 2016. The results contribute to the existing literature on the sentiment bias, being the first to research data on tennis bets.
The full sample does not show any sentiment bias. Bookmakers do not under or overestimate the winning probabilities for popular players. The absence of a sentiment bias in bookmaker prices is in line with results of Forrest and McHale (2007), who argue that this is the result of tennis being a specialized betting market. However, the results are not in line with recent studies that found evidence for bookmakers actively setting odds in English and Spanish soccer (Franck et al., 2011), the NBA (Feddersen et al., 2013) and the NFL (Hong & Skiena, 2010). An explanation of the result, bookmakers setting unbiased odds equal to the true winning probabilities, is price sensitive bettors. This implies that tennis bettors are, on average, not extremely loyal to their favorite players. If the price of a sentimental bet increases to more than a certain threshold, they move to another bookmaker or do not place a bet at all. This is why bookmakers prefer to play safe and do not shade prices in favor or against high-sentiment players. All together, there is no evidence to accept Hypothesis 1.

Findings show that bookmakers overestimate the winning probabilities of high-sentiment players in tournament finals. This result is in line with studies by Avery and Chevalier (1999) and Strumpf (2003). The so-called reversed sentiment bias is significantly larger in tournament finals than in earlier rounds. It implies that bookmakers shade prices against the popular players in tournament finals, whereas they do not in earlier rounds. This is in line with previous results from Franck et al. (2011), who found that the sentiment bias is amplified during weekend bets on English soccer matches. There are two explanations for the difference between the two subsamples. Bookmakers might expect bettors to have a higher level of sentiment during finals, because if their favorite wins the match he wins the entire tournament. This increased sentiment will keep them from refraining their bet in case of a price increase. Put differently, the fact that bettors are less price-sensitive in tournament finals allows the bookmaker to exploit the sentiment. Secondly, bookmakers might increase prices for bets on high-sentiment players in tournament finals because they know that noise traders have lower opportunity costs during the weekend, when finals are played. The results are in line with Hypothesis 2.

Bookmakers also deviate from the unbiased odds in matches with any of the Big Four players. They overestimate the winning probability for popular players, a fact that implies a bet on these players is relatively expensive. Bookmakers do not shade prices for matches without superstars, which is in line with Hypothesis 3. There are three reasons why bettors are less price-sensitive in matches with these four players. The Big Four elicit more bettor sentiment than any other high-sentiment player. These players have strong fan bases around the world, which increases bettors' loyalty bias. People will extensively bet on Roger Federer until he
retires, even when he is the clear underdog, simply because he is so popular. Second, bettors are confronted with these players in interviews, on posters, social media and TV commercials on a daily basis. In other words, these players are easy to retrieve and they will more likely place sentiment bets on these players because they are familiar with the names. This is an effect of the availability bias. Third, people prefer matches with high entertainment value and there is always something at stake for these players, especially at Grand Slams. Whether it is Novak Djokovic completing his career Grand Slam, Andy Murray winning Wimbledon for the first time, Roger Federer winning his 18th Grand Slam or Rafael Nadal winning Roland Garros for the tenth time, history is always made. These are the reasons why bookmakers dare to increase their prices for bets on Big Four players, but not for any other high-sentiment players.

The reversed sentiment bias in the samples with tournament finals and Big Four players can be exploited by placing a relatively cheap bet on the low-sentiment player. In both samples, this strategy was not profitable. However, for tournament finals the return is higher than the return from placing random bets. This indicates that the low-sentiment player, on which a bet is placed, is not always the clear underdog. Otherwise, returns from placing a bet on the low-sentiment would not be higher than randomly placing a bet. Since the revenues were not enough to cover the bookmaker's commission, the online betting market for Grand Slam finals is efficient in the weak form. The market for Grand Slam matches with any of the Big Four players is strongly efficient, as the return from the betting strategy does not improve on returns from betting randomly. This is not in line with the results from Avery and Chevalier (1999), who found a reversed sentiment bias that led to a profitable betting strategy.

Additional analysis showed evidence for the favorite-longshot bias in the full sample. Bettors over bet longshots and under bet favorites, which can be attributed to the availability bias. Wagers remember the rare upsets (e.g. Denis Istomin beating Novak Djokovic in the 2nd round of the 2017 Australian Open) rather than the commonplace losses. As a result, they overweight the small probability that the underdog wins the match. Bookmakers exploit this by offering a relatively high price for bets on underdogs. This result is in line with previous studies by Woodland and Woodland (1994), Cain et al. (2000) and Berkowitz, Depken, and Gandar (2016) in betting markets for baseball, soccer and basketball, respectively.

To conclude, bookmakers deviate from the true winning probabilities in tournament finals and matches with any of the Big Four. The lower price sensitivity among bettors in these categories allows them to increase the price for bets on high-sentiment players. Additional analysis of the full sample revealed presence of the favorite-longshot bias. Bookmakers
underestimate the probability that extreme favorites win the match, and therefore offer a relatively high price for bets on underdogs. Finally, bookmakers underestimate the winning probability when players are playing at home. This is an indication of the home bias. Overall, this study found ample evidence for market inefficiency of the market for tennis betting. Well-informed bettors are advised to place bets on the low-sentiment player, but only if it concerns a Grand Slam final.

9. Limitations and future research
This study has some limitations, which can be corrected for by future studies. There are four main issues future research should focus on to improve on this study and contribute to the existing literature on the sentiment bias.

First of all, future research should repeat this study with additional measures of sentiment among tennis fans. Because of the competition format, this is harder for tennis than for any other sport. Popular sentiment proxies used in previous studies (mean home stadium attendance and the number of votes for the so-called 'All-Star' team) are not applicable in tennis because of its individual character. One could think of modern proxies like mentions on social media. It is important to look for additional measures because using Google Trends as a measure for sentiment has an important drawback. The data on Google Trends is available on a weekly basis, which prevents one from measuring sentiment bias across days within the same tournament. If data would be available on a daily basis, the sentiment proxy for a finalist includes the effect of him reaching that final. This effect is expected to be significant, especially for outsiders.

The second focus point for future research is to generalize the results of this study. The sentiment bias should be studies in the betting market for low-tiered tournaments and for the WTA tour, the association for professional women's tennis. Another theory that can be checked for robustness is the result that bookmakers increase the prices for high-sentiment players in periods in which superstars are dominant. This can be tested in betting markets for any sport that experienced periods of play in which a few players or teams won a remarkably high percentage of the matches.

Third, future research should focus on the explanation of the sentiment bias. The explanations mentioned in this study can be divided into behavioral (loyalty bias and availability bias) and rational (bettors prefer bets related to high-entertainment) explanations. Snowberg and Wolfers (2010) conclude that the favorite-longshot bias persists because bettors misperceive expectations, rather than being risk loving. Their study can be repeated for the sentiment bias,
by creating one model with unbiased expectations and one model with biased expectations, respectively representing the rational and behavioral explanations. Which model better fits the data then determines which explanation is dominant. This would increase the understanding of sentimental betting behavior.

The fourth and final way in which future research could improve on this study is by including a measure of insider trading and examine the effect it has on the ability of bookmakers to forecast the true outcome probability. Schnytzer, Lamers and Makropoulou (2009) found that insider trading causes deviations from the correct price in bets on horse races. This substantially reduced bettors' profits. To include a proxy for insider trading is important for tennis betting because match fixing has been a serious problem on the ATP World Tour in recent years. If it is found that insider trading also leads to deviations from the true outcome probability, one should be careful with assuming that bookmakers have the ability to set the correct price.

References

Appendix A: An overview of the ATP World Tour

2017 Season

<table>
<thead>
<tr>
<th>Week</th>
<th>Start Date</th>
<th>City</th>
<th>Current Tournament Name presented by</th>
<th>Surface</th>
<th>Draw</th>
<th>Prize Money</th>
<th>Total Guaranteed Commitment**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan 1</td>
<td>Doha 1</td>
<td>Qatar ExxonMobil Open presented by Sony</td>
<td>H</td>
<td>32</td>
<td>$1,257,190</td>
<td>$1,334,070</td>
</tr>
<tr>
<td>2</td>
<td>Jan 2</td>
<td>Dubai 1</td>
<td>Abu Dhabi Open presented by EMAH</td>
<td>H</td>
<td>32</td>
<td>$447,480</td>
<td>$503,730</td>
</tr>
<tr>
<td>3</td>
<td>Jan 3</td>
<td>Auckland 1</td>
<td>ASB Classic</td>
<td>H</td>
<td>32</td>
<td>$400,100</td>
<td>$518,360</td>
</tr>
<tr>
<td>4</td>
<td>Jan 4</td>
<td>Bogota 1</td>
<td>Braves of Medellín Open*</td>
<td>H</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Jan 5</td>
<td>Doha 2</td>
<td>Qatar ExxonMobil Open presented by Sony</td>
<td>H</td>
<td>32</td>
<td>$1,257,190</td>
<td>$1,334,070</td>
</tr>
<tr>
<td>6</td>
<td>Jan 6</td>
<td>Montpellier</td>
<td>Open Sud de France</td>
<td>H</td>
<td>32</td>
<td>$482,040</td>
<td>$540,310</td>
</tr>
<tr>
<td>7</td>
<td>Jan 7</td>
<td>Sofia 1</td>
<td>Bulgarian Open</td>
<td>H</td>
<td>32</td>
<td>$482,040</td>
<td>$540,310</td>
</tr>
<tr>
<td>8</td>
<td>Jan 8</td>
<td>Doha 3</td>
<td>Qatar ExxonMobil Open presented by Sony</td>
<td>H</td>
<td>32</td>
<td>$1,257,190</td>
<td>$1,334,070</td>
</tr>
<tr>
<td>9</td>
<td>Jan 9</td>
<td>Auckland 2</td>
<td>ASB Classic</td>
<td>H</td>
<td>32</td>
<td>$400,100</td>
<td>$518,360</td>
</tr>
<tr>
<td>10</td>
<td>Jan 10</td>
<td>Bangkok 1</td>
<td>闇 E. Open</td>
<td>H</td>
<td>32</td>
<td>$482,040</td>
<td>$540,310</td>
</tr>
<tr>
<td>11</td>
<td>Jan 11</td>
<td>Memphis</td>
<td>Memphis Open</td>
<td>H</td>
<td>32</td>
<td>$640,750</td>
<td>$706,410</td>
</tr>
<tr>
<td>12</td>
<td>Jan 12</td>
<td>Buenos Aires</td>
<td>Rio Open presented by Citibank</td>
<td>CL</td>
<td>32</td>
<td>$1,481,460</td>
<td>$1,605,940</td>
</tr>
<tr>
<td>13</td>
<td>Jan 13</td>
<td>Rio de Janeiro</td>
<td>Rio Open presented by Citibank</td>
<td>CL</td>
<td>32</td>
<td>$1,481,460</td>
<td>$1,605,940</td>
</tr>
<tr>
<td>14</td>
<td>Jan 14</td>
<td>Casablanca 1</td>
<td>Investors Open</td>
<td>H</td>
<td>32</td>
<td>$482,040</td>
<td>$540,310</td>
</tr>
<tr>
<td>15</td>
<td>Jan 15</td>
<td>Miami 1</td>
<td>Miami Open presented by BNP Paribas</td>
<td>H</td>
<td>96</td>
<td>$6,993,450</td>
<td>$7,913,450</td>
</tr>
<tr>
<td>16</td>
<td>Jan 16</td>
<td>Indian Wells 1</td>
<td>BNP Paribas Open</td>
<td>H</td>
<td>96</td>
<td>$6,993,450</td>
<td>$7,913,450</td>
</tr>
<tr>
<td>17</td>
<td>Jan 17</td>
<td>Houston 1</td>
<td>Fever-Tree Championships</td>
<td>H</td>
<td>32</td>
<td>$336,625</td>
<td>$400,345</td>
</tr>
<tr>
<td>18</td>
<td>Jan 18</td>
<td>Memphis 2</td>
<td>Commonwealth Open Presented by State Farm</td>
<td>H</td>
<td>32</td>
<td>$640,750</td>
<td>$706,410</td>
</tr>
<tr>
<td>19</td>
<td>Jan 19</td>
<td>Monte Carlo 2</td>
<td>Monte-Carlo Rolex Masters</td>
<td>CL</td>
<td>32</td>
<td>$1,272,775</td>
<td>$1,427,742</td>
</tr>
<tr>
<td>20</td>
<td>Jan 20</td>
<td>Barcelona</td>
<td>Barcelona Open</td>
<td>H</td>
<td>32</td>
<td>$2,704,314</td>
<td>$3,069,000</td>
</tr>
<tr>
<td>21</td>
<td>Jan 21</td>
<td>Istanbul 1</td>
<td>Turkish Airlines Open</td>
<td>CL</td>
<td>32</td>
<td>$1,419,101</td>
<td>$1,583,490</td>
</tr>
<tr>
<td>22</td>
<td>Jan 22</td>
<td>Dubai 4</td>
<td>Dubai Duty Free Tennis Championships</td>
<td>H</td>
<td>32</td>
<td>$2,491,150</td>
<td>$2,586,530</td>
</tr>
<tr>
<td>23</td>
<td>Jan 23</td>
<td>Acapulco 1</td>
<td>Acapulco International</td>
<td>H</td>
<td>32</td>
<td>$1,481,460</td>
<td>$1,605,940</td>
</tr>
<tr>
<td>24</td>
<td>Jan 24</td>
<td>Acapulco 2</td>
<td>Acapulco International</td>
<td>H</td>
<td>32</td>
<td>$1,481,460</td>
<td>$1,605,940</td>
</tr>
<tr>
<td>25</td>
<td>Feb 1</td>
<td>Rotterdam 1</td>
<td>ABN AMRO World Tennis Tournament</td>
<td>H</td>
<td>32</td>
<td>$2,082,165</td>
<td>$2,269,325</td>
</tr>
<tr>
<td>26</td>
<td>Feb 2</td>
<td>Doha 4</td>
<td>Qatar ExxonMobil Open presented by Sony</td>
<td>H</td>
<td>32</td>
<td>$1,257,190</td>
<td>$1,334,070</td>
</tr>
<tr>
<td>27</td>
<td>Feb 3</td>
<td>Indian Wells 2</td>
<td>BNP Paribas Open</td>
<td>H</td>
<td>96</td>
<td>$6,993,450</td>
<td>$7,913,450</td>
</tr>
<tr>
<td>28</td>
<td>Feb 4</td>
<td>Indian Wells 3</td>
<td>BNP Paribas Open</td>
<td>H</td>
<td>96</td>
<td>$6,993,450</td>
<td>$7,913,450</td>
</tr>
<tr>
<td>29</td>
<td>Feb 5</td>
<td>Houston 2</td>
<td>Fever-Tree Championships</td>
<td>H</td>
<td>32</td>
<td>$336,625</td>
<td>$400,345</td>
</tr>
<tr>
<td>30</td>
<td>Feb 6</td>
<td>Memphis 3</td>
<td>Commonwealth Open Presented by State Farm</td>
<td>H</td>
<td>32</td>
<td>$640,750</td>
<td>$706,410</td>
</tr>
<tr>
<td>31</td>
<td>Feb 7</td>
<td>Indian Wells 4</td>
<td>BNP Paribas Open</td>
<td>H</td>
<td>96</td>
<td>$6,993,450</td>
<td>$7,913,450</td>
</tr>
<tr>
<td>32</td>
<td>Feb 8</td>
<td>Indian Wells 5</td>
<td>BNP Paribas Open</td>
<td>H</td>
<td>96</td>
<td>$6,993,450</td>
<td>$7,913,450</td>
</tr>
<tr>
<td>33</td>
<td>Feb 9</td>
<td>Houston 3</td>
<td>Fever-Tree Championships</td>
<td>H</td>
<td>32</td>
<td>$336,625</td>
<td>$400,345</td>
</tr>
<tr>
<td>34</td>
<td>Feb 10</td>
<td>Memphis 4</td>
<td>Commonwealth Open Presented by State Farm</td>
<td>H</td>
<td>32</td>
<td>$640,750</td>
<td>$706,410</td>
</tr>
<tr>
<td>35</td>
<td>Feb 11</td>
<td>Indian Wells 6</td>
<td>BNP Paribas Open</td>
<td>H</td>
<td>96</td>
<td>$6,993,450</td>
<td>$7,913,450</td>
</tr>
<tr>
<td>36</td>
<td>Feb 12</td>
<td>Indian Wells 7</td>
<td>BNP Paribas Open</td>
<td>H</td>
<td>96</td>
<td>$6,993,450</td>
<td>$7,913,450</td>
</tr>
<tr>
<td>37</td>
<td>Feb 13</td>
<td>St. Petersburg</td>
<td>St. Petersburg Open</td>
<td>H</td>
<td>32</td>
<td>$1,053,450</td>
<td>$1,125,025</td>
</tr>
<tr>
<td>38</td>
<td>Feb 14</td>
<td>Monte Carlo 3</td>
<td>Monte-Carlo Rolex Masters</td>
<td>CL</td>
<td>32</td>
<td>$1,272,775</td>
<td>$1,427,742</td>
</tr>
<tr>
<td>39</td>
<td>Feb 15</td>
<td>Barcelona</td>
<td>Barcelona Open</td>
<td>H</td>
<td>32</td>
<td>$2,704,314</td>
<td>$3,069,000</td>
</tr>
<tr>
<td>40</td>
<td>Feb 16</td>
<td>Istanbul 2</td>
<td>Turkish Airlines Open</td>
<td>CL</td>
<td>32</td>
<td>$1,419,101</td>
<td>$1,583,490</td>
</tr>
<tr>
<td>41</td>
<td>Feb 17</td>
<td>Montpellier</td>
<td>Open Sud de France</td>
<td>H</td>
<td>32</td>
<td>$482,040</td>
<td>$540,310</td>
</tr>
<tr>
<td>42</td>
<td>Feb 18</td>
<td>Sofia 2</td>
<td>Bulgarian Open</td>
<td>H</td>
<td>32</td>
<td>$482,040</td>
<td>$540,310</td>
</tr>
<tr>
<td>43</td>
<td>Feb 19</td>
<td>Doha 5</td>
<td>Qatar ExxonMobil Open presented by Sony</td>
<td>H</td>
<td>32</td>
<td>$1,257,190</td>
<td>$1,334,070</td>
</tr>
<tr>
<td>44</td>
<td>Mar 1</td>
<td>Indian Wells 8</td>
<td>BNP Paribas Open</td>
<td>H</td>
<td>96</td>
<td>$6,993,450</td>
<td>$7,913,450</td>
</tr>
<tr>
<td>45</td>
<td>Mar 2</td>
<td>Indian Wells 9</td>
<td>BNP Paribas Open</td>
<td>H</td>
<td>96</td>
<td>$6,993,450</td>
<td>$7,913,450</td>
</tr>
</tbody>
</table>

* ATP World Tour Masters 1000
 - Indian Wells 1
 - Indian Wells 2
 - Indian Wells 3
 - Indian Wells 4
 - Indian Wells 5
 - Indian Wells 6
 - Indian Wells 7
 - Indian Wells 8
 - Indian Wells 9

** ATP World Tour 250
 - Miami 1
 - Miami 2

* ATP World Tour 250
 - Miami 1
 - Miami 2

* ATP World Tour 500
 - Miami 1
 - Miami 2

* ATP World Tour 250
 - Miami 1
 - Miami 2
Appendix B: Probit model using random sampling

Table B1 presents the results for the full probit model estimated with random sampling instead of clusters to correct for the correlation of observations within a match. Instead of clustering the winner and loser observations in a match, Stata randomly picked one of the two observations for each match. This process was repeated several times to ensure consistency in the results. The individual insignificance for the explanatory variables approximately mirrors the previous results. The dummy indicating whether a player's opponent is playing a home tournament is not significant, opposed to the results with clustering. In this estimation, the coefficients and significance levels for the two dummy variables are not equal because not all observations are included. Either the winner or the loser is collected into the sample. The four independent variables are jointly significant and the pseudo R-squared is roughly equal to the results for the clustering method as well.

The Likelihood Ratio (LR) test is used to test the overall statistical significance of the model. The unrestricted model is equal to the complete model including the four independent variables representing a player's relative popularity, the relative bookmaker probability of that player winning the match and home tournaments. The restricted model is equal to the model without these variables, having only an intercept.

Table B1. Probit regression results random sampling

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Marginal effect</th>
<th>T-statistic</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG_{i}</td>
<td>0.003</td>
<td>0.001</td>
<td>1.20</td>
<td>0.232</td>
</tr>
<tr>
<td>$prob_{i}$</td>
<td>1.73</td>
<td>0.69</td>
<td>43.21***</td>
<td>0.000</td>
</tr>
<tr>
<td>$home_{i}$</td>
<td>0.117</td>
<td>0.047</td>
<td>1.83*</td>
<td>0.067</td>
</tr>
<tr>
<td>$hopp_{i}$</td>
<td>-0.033</td>
<td>-0.013</td>
<td>-0.49</td>
<td>0.623</td>
</tr>
</tbody>
</table>

Number of observations 6156
Pseudo - R2 0.3094
Log-Likelihood 2639.67

Notes: The dependent variable is equal to the outcome of bet i. * = significant at 10% level, *** = significant at 1% level.
Appendix C: The Average Partial Effects (APE)

Table C1. The Average Partial Effect (APE)

<table>
<thead>
<tr>
<th></th>
<th>Marginal effect</th>
<th>T-statistic</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGT_i</td>
<td>0.001</td>
<td>1.20</td>
<td>0.230</td>
</tr>
<tr>
<td>$prob_i$</td>
<td>0.462</td>
<td>105.53***</td>
<td>0.000</td>
</tr>
<tr>
<td>$home_i$</td>
<td>0.021</td>
<td>1.69*</td>
<td>0.092</td>
</tr>
<tr>
<td>$hopp_i$</td>
<td>-0.021</td>
<td>-1.69*</td>
<td>0.092</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is equal to the outcome of bet i. * = significant at 10% level, *** = significant at 1% level.
Appendix D: Analysis of the favorite-longshot bias

The estimation of the probit model for the full sample in section 7.2.1 showed a positive and significant effect of the relative implied probability for a player on the probability of winning a bet on that player. However, the marginal effect of this estimation does not tell anything about whether the bookmaker shifts the odds for extreme favorites or underdogs. The favorite-longshot bias is defined as wagers over betting long shots and under betting favorites. This means that bookmakers underestimate the probability that the favorite wins. Someone is considered as the favorite anytime the probability of that player winning the match is higher than 0.5.

This analysis follows the methodology of Berkowitz et al. (2016). All the favorites in the sample (probabilities higher than 0.50) are divided into ten subsections. The average objective winning probability for each subsection, π_i, is calculated as the number of wins divided by the total number of observations. The subjective winning probability for each subsection, ρ_i, is calculated as the average implied bookmaker probability for all observations. The following Z-test calculates whether the two are significantly different from each other:

$$Z_i = \frac{\pi_i - \rho_i}{\sqrt{\frac{\rho_i(1-\rho_i)}{n_i}}}$$

Table D1 presents the test statistics for each subsection and the entire sample. The market for tennis betting is inefficient, as the difference between the objective and the subjective probabilities is significantly different at the 1% level for all games combined. Additionally, the null hypothesis of market efficiency is rejected in the five subsections with the most extreme favorites. The rejection is in favor of the favorite-longshot bias. Bookmakers underestimate the winning probability for extreme favorites (implied bookmaker probability > 0.75). This confirms that bettors under bet (extreme) favorites and over bet long shots, which is the definition of the favorite-longshot bias.
<table>
<thead>
<tr>
<th>Interval</th>
<th>(n_i)</th>
<th>(\pi_i)</th>
<th>(\rho_i)</th>
<th>(Z_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All games</td>
<td>6075</td>
<td>0.775</td>
<td>0.750</td>
<td>4.500***</td>
</tr>
<tr>
<td>(0.50 < \rho_i \leq 0.55)</td>
<td>325</td>
<td>0.529</td>
<td>0.531</td>
<td>0.072</td>
</tr>
<tr>
<td>(0.55 < \rho_i \leq 0.60)</td>
<td>671</td>
<td>0.601</td>
<td>0.575</td>
<td>1.362</td>
</tr>
<tr>
<td>(0.60 < \rho_i \leq 0.65)</td>
<td>707</td>
<td>0.639</td>
<td>0.626</td>
<td>0.714</td>
</tr>
<tr>
<td>(0.65 < \rho_i \leq 0.70)</td>
<td>619</td>
<td>0.690</td>
<td>0.676</td>
<td>0.744</td>
</tr>
<tr>
<td>(0.70 < \rho_i \leq 0.75)</td>
<td>754</td>
<td>0.752</td>
<td>0.729</td>
<td>1.421</td>
</tr>
<tr>
<td>(0.75 < \rho_i \leq 0.80)</td>
<td>645</td>
<td>0.809</td>
<td>0.780</td>
<td>1.778**</td>
</tr>
<tr>
<td>(0.80 < \rho_i \leq 0.85)</td>
<td>640</td>
<td>0.863</td>
<td>0.827</td>
<td>2.408**</td>
</tr>
<tr>
<td>(0.85 < \rho_i \leq 0.90)</td>
<td>803</td>
<td>0.910</td>
<td>0.875</td>
<td>2.999***</td>
</tr>
<tr>
<td>(0.90 < \rho_i \leq 0.95)</td>
<td>675</td>
<td>0.964</td>
<td>0.925</td>
<td>3.847***</td>
</tr>
<tr>
<td>(0.95 < \rho_i \leq 1.00)</td>
<td>236</td>
<td>0.987</td>
<td>0.963</td>
<td>1.953*</td>
</tr>
</tbody>
</table>

Notes: * = significant at 10% level, ** = significant at 5% level, *** = significant at 1% level.