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Abstract

Modelling covariances across financial asset returns is important for financial management. This
research models the influence of financial conditions on the European and American largest banks
volatilities and correlations. Using daily stock returns of both EU and US largest banks during the
period 2001 to 2016 and proxying financial conditions by the European and American Bloomberg Fi-
nancial Conditions Indexes, I find that a block structure in the (c)DCC models is needed to separate
the influences of the EU and US FCI on the respective correlations. I also find that incorporating
EU and US financial conditions indexes has a significant affect on the respective variance processes.
Specifically, variances go up when financial conditions get worse. Another contribution is using a data
sampling technique to incorporate different frequency data in the models. The Log-Garch-Midas-X
and Spline-Garch-X are the most preferred variance processes. I forecast Value-at-Risk using different
variance and correlation processes. Various statistical tests and performance measures are considered
to obtain the statistically preferred processes.
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1 Introduction
Modelling volatilities and covariances across financial asset returns is important for portfolio
decision-making, risk management and other purposes in financial management. Volatilities
and correlations are used for risk management or for the determination of hedge ratios and
leverage factors and thus studying them are key for financial institutions. Volatilities and
covariances of the asset returns vary over time and estimating models for covariances in large
dimensions is a challenge.

In this paper I focus on both the European and American equity market and introduce
correlation models with a block structure to best describe the variances in largest European
and American banks and their correlations. These correlation models vary over time and
can be estimated in large dimensions. A lot of research has been done on volatility and
correlation models in the American market. Boudt et al. (2012) introduced a regime switching
model to characterize the dynamics in the volatilities and correlations, Connor & Suurlaht
(2012) models dynamic correlations of returns. In Karanasos et al. (2014) they model stock
volatilities using a bivariate GARCH model. Opschoor et al. (2014a) use a modification
of the Spline-GARCH model to study the relationship between order flow and volatility.
In Rangel & Engle (2012) a Factor-Spline-GARCH model is discussed. Literature tries to
link macroeconomic and financial fundamentals to volatility and correlations of asset returns,
where evidence motivates that financial conditions are an important driver of the economy2,3.
Boudt et al. (2012) found that financial conditions affect transition probabilities of volatility
and correlation states which I further investigate in this research.

The main contribution is the extension and modification of the research of Bilio et al.
(2006) by investigating the block structure in the European and American comovements
and also by adding an explanatory variable. This block structure is needed to answer the
question of how the correlations between the largest European banks are, between the largest
American banks and cross-wise. Also, it separates the affects of the FCI on the correlations
of the EU and the US. This model can be used in high dimensions and varies over time. It
uses the benefits of the (c)DCC by using a small number of parameters, where the (c)DCC
model restrict the parameters to be the same for all dimensions. In this setup, the dynamics
for Europe and America can be separated and thus be more intuitively interpreted. This
model can also be used when comparing different markets, where each market assumes the
same dynamics. In a statistical sense, the block structure is also preferred to the correlation
models without a block structure. The (c)DCCmodel is nested in the block correlation models
and a simple log-likelihood ratio tests prefers the block-structure. The forecast performances
between the two models are compared by using a Diebold-Mariano-West test which concludes
that the block structure is preferred.

Another contribution is based on the research of Engle et al. (2013), where I use the
modified Log-Garch-Midas-X model with as explanatory variable the EU and US bloomberg
financial condition indexes. Incorporating these financial conditions indexes for the Spline-
Garch-X and Log-Garch-Mias-X models has a significant affect on the respective variance
processes both statistically and economically. Specifically, on average the variances go up
when the financial conditions get worse. This confirms the findings for the Spline-Garch-X
model of Opschoor et al. (2014b) and is thus also true for Europe and for the Log-Garch-
Midas-X model in both Europe and the US. It also confirms Goodhart & Hofmann (2001)
which states that financial conditions are an important driver of the economy. The best

2see Goodhart & Hofmann (2001), Guichard & Turner (2008) and Hatzius et al. (2010)
3Other macro variables are mentioned in Bracker & Koch (1999), Murinde & Poshakwale (2004), Stavarek

(2005) and Ehrmann et al. (2013).
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Log-Midas-X model is the one using monthly observations of the FCI with a lag length of
one year. This model is also later used as a first stage for the correlation models. This model
is used to combine data that are sampled at different frequencies and is based on mixed data
sampling (MIDAS).

The third contribution is also using European banks and European financial conditions
index for the research of Opschoor et al. (2014b). Now the behavior of the volatilites of
the largest banks of Europe is known and can be compared to the American ones. For
the Spline-GARCH-X and GARCH-MIDAS-X models I include the Bloomberg EU and US
Area Financial Conditions Indexes as explanatory variables, where for the GARCH-MIDAS-
X, monthly data is considered for the explanatory variable(s). These conditions influence
economic behavior and the future state of the economy. More explanatory variables are
added in these volatility models, for example by including the VDAX and/or EuroStoxx50,
which are both components of the EU FCI, VIX and/or S&P 500, which are both components
of the US FCI.

I estimate variance and correlation models separately, which is popular since the intro-
duction of the DCC model of Engle (2002). They are modelled separately to decompose
the effect of financial conditions on the variability of asset prices and their co-movement.
Specifically, I first estimate the well known GARCH of Bollerslev (1986) and the Threshold
GARCH (GJR) model as in Glosten et al. (1993), where the second model accounts for asym-
mety from bear and bull markets in the returns, often encountered in the financial market.
Thereafter the two component variance models are estimated. Spline-Garch model of Engle
& Rangel (2008) is explored which measures volatility using two components: the spline part
which is a long run deterministic component and a short run mean reverting unit GARCH
component. Spline-GARCH-X model first introduced in Opschoor et al. (2014b) and the
modified GARCH-MIDAS-X model from Engle et al. (2013) both with financial conditions
indexes as explanatory variable to describe economic behavior. These variance models are
then used for the Dynamic Conditional Correlation of Engle (2002) and the corrected Dy-
namic Conditional Correlation models of Aelli (2012). These models are then extended to
the Block-DCC and Block-cDCC models, where the Block-DCC model is introduced in Bilio
et. al (2006). I extend this model to also capture the covariance of the US and EU FCI
as an extra explanatory variable. The models are all positive definite, which is a necessary
condition which can be achieved through constraints. The parameters for the models are esti-
mated using maximum likelihood, where the returns are assumed to be Student-t distributed
following Rangel & Engle (2012), which better captures fat-tails and is typically observed in
time series of the financial sector.

These models are then used for the Value-at-Risk measure over time. Afterwards the
models are compared with various performance measures. The variance models are com-
pared using the Akaike and Bayesian information criteria from respectively Akaike (1973)
and Schwarz (1978), log-likelihood ratio of Neyman & Pearson (1933) tests between two
component variance model and their nested counterpart and forecast performance based on
Diebold-Mario-West (DMW) test from Diebold and Mariano (1995) and West (1996). The
correlation models are compared using log-likelihood ratio tests between the block corre-
lation models and the models without a block structure and by using the DMW test. The
Value-at-Risk estimates are backtested following Christoffersen (1998) with the unconditional
coverage, independence and conditional coverage tests.

The data used in this analysis is daily returns of the largest EU and US banks over the past
16 years. I include daily observations of Bloomberg EU and US Area Financial Conditions
Indexes as proxy for the financial conditions. These daily indexes show the equally weighted
sum of the overall conditions in the EU and US money market, bond market and equity
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market. To obtain all the stock prices in euro, exchange rates from US dollar to Euro and
from pounds to Euro are also included in this research. For the sub-indexes of the EU
FCI, the effect of the VDAX and EuroStoxx50 and their individual explanatory power is
investigated. The same holds true for the US FCI, with the sub-indexes being VIX and S&
P500. Alternative Financial indexes are mentioned in Kliesen et al. (2012) and Zhen et al.
(2014).

The results show that the block structure in the correlation processes is economically
and statistically preferred to the (c)DCC model. Adding financial conditions to the variance
models affect the variances of the largest EU and US bank returns, where on average the
variances go up when the financial conditions get worse. The backtests for the Value-at-Risk
estimates show that the block correlation model leads to less violations. Further, the FCI
is preferred to the realized variances as explanatory variables, where splitting the FCI in its
components adds relevant economic information. The two component variance models are
preferred to the one component in a statistical way. In particular, the two component models
with the FCI as explanatory variable are preferred the most.

The remainder of the paper is organized as follows: section 2 illustrates the modeling
framework including the variance and correlation processes with and without financial con-
ditions, the Value-at-Risk measure and statistical tests. Section 3 describes the data. In
section 4 the results are discussed. Section 5 concludes. The analysis and implementations
of the different models are done in the R environment and by using Matlab.

2 Methodology
In this section the covariances/correlations of the stock returns of the largest European and
American banks are modeled. Starting with the basic set up of the stock return, these
stock returns are used for the volatility models. The volatility models are then used for the
correlation/covariance models. At first, define the N × 1 vector rt = (pt − pt−1)/pt−1 as the
daily returns on the stocks of the European and American banks at time t, where pt denotes
the daily stock price index. Next I follow Engle (2002) and assume that

rt − µ = εt = D
1/2
t zt, εt|=t−1 ∼ (0, Ht = D

1/2
t RtD

1/2
t ), (1)

where Ht = [hijt] and Dt = diag(Ht) = diag(h11t, h22t, ..., hNNt) with hiit the modelled vari-
ance processes which are defined in the next subsection, εt a N × 1 vector of unexpected
returns and zt a N × 1 vector of standardized residuals which are assumed to follow a con-
ditional Student-t distribution. Further, the N × N matrices Ht and Rt are respectively
the conditional covariance matrix and conditional correlation matrix of rt. Rt is also the
conditional covariance matrix of the standardized residuals zt = D

−1/2
t εt.

In order to model the covariances/correlations of the stock returns, a model for Ht is
needed. In this section I discuss the implementation of the volatility models and the correla-
tion models. To disentangle the variability of the asset returns and their co-movement, the
volatility4 models and correlation models are estimated separately. In subsections 2.1 and
2.1.1 I discuss the implementation of the univariate volatility models hiit with and without
financial conditions, respectively. The correlation models Rt are discussed in 2.2, 2.2.1 and
2.2.2. These models are used in order to get a model for Ht.

4The square root of the variance at time t represents the volatility at time t.
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2.1 Variance Processes

At first, the univariate volatility models without financial conditions hiit are estimated for the
ith stock return on the tth day. The univariate volatility models are needed in order to model
the proposed correlation models Rt and are the diagonal elements of the covariance matrix
Ht. By estimating the variances and correlations separately, the number of parameters that
need to be estimated is reduced and Ht is guaranteed to be positive definite.

The most common approach to estimate volatility in financial markets is the general-
ized autoregressive conditional heteroskedasticity model GARCH(1,1) from Bollerslev (1986).
This model is defined as

hiit = ωi + αiε
2
i,t−1 + βihii,t−1, (2)

where ωi > 0, αi > 0 and βi > 0 to guarantee hiit > 0 and αi + βi < 1 for covariance
stationarity for all i and t. Then we allow for asymmetry in the εi,t by following Glosten et
al. (1993) in the Threshold GARCH (GJR)

hiit = ωi + αiε
2
i,t−1 + γiε

2
i,t−11(εi,t−1 < 0) + βihii,t−1, (3)

where the restriction γi > 0 is added to ensure hiit > 0 and (αi+γi)/2+βi < 1 for covariance
stationarity and 1(·) is an indicator function.

At last I explore the Spline-GARCH model of Engle & Rangel (2008) which is a less
known volatility process

hiit = τiitgiit (4)

git = ωi + αi
ε2
i,t−1
τi,t−1

+ γi
ε2
i,t−1
τi,t−1

1(εi,t−1 < 0) + βigi,t−1 (5)

log(τit) = ζi + ρ0i +
Ki∑
k=1

ρki ((t− tk−1)+)2 , (6)

where (t − tk−1)+ = (t − tk−1) if t > tk−1 and 0 otherwise and t0 = 0, t1, t2, ..., tK = T
is a partition of the time horizon T in K equally spaced intervals. The GARCH term giit
captures the typical high-frequency behavior, which is also documented as the leverage effect;
the spline part captures the more slowly moving macroeconomic fluctuations. Furthermore,
the resulting volatility is always positive because of the following restrictions: ωi > 0, αi > 0,
γi > 0, βi > 0 and ζi > 0 to guarentee hiit > 0. The number of knots K are different for each
bank i and are selected via performance measures discussed in 2.1.3.

2.1.1 Variance Processes with Financial Conditions

Next, I describe how the financial conditions are added to the univariate volatility models.
The relation between stock market volatility and financial conditions is distinguished from
short run and secular movements in two component models.

First, the changed Spline-GARCH model which captures the financial conditions measure
is used. Therefore I use the Spline-GARCH-X following Opschoor et al. (2014) where the
second component now includes the financial conditions index. This model is used instead of
just a GARCH model because by including the financial condition variable as replacement of
the Spline component, the GARCH term doesn’t change compared to its usual form. Later
on, more explanatory variables are added and their explanatory power are compared to each
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other by means of performance measures and likelihood ratio tests. This is modelled as

hiit = τitgit (7)

git = ωi + αi
ε2
i,t−1
τi,t−1

+ γi
ε2
i,t−1
τi,t−1

1(εi,t−1 < 0) + βigi,t−1 (8)

log(τit) = κi,0 + κi,1Xi,t−1, (9)

where I use for the explanatory variable Xi,t−1 daily observations of the Bloomberg Area
Financial Conditions Index for the specific region5 as financial condition measure.

Last, the Log-GARCH-MIDAS-X is estimated. This is also a two component variance
process where MIDAS stands for mixed data sampling. The first component is the usual
fast moving garch component. The second component is based on the financial conditions
index computed on monthly basis using the mean of the daily FCI. This is an adaption to
the previous work of Engle et al. (2013) who uses realized volatility as explanatory variable.
The difference between this model and the Spline-Garch-X model is the frequency of the
realisations of the explanatory variable used in the second component and the weighting of
each realisation in the second component. So

hiit = τiitgiijt ,j = {1, ..., Nt} (10)

gijt = ωi + αi
ε2
i,t−1
τi,t−1

+ γi
ε2
i,t−1
τi,t−1

1(εi,t−1 < 0) + βigi,j,t−1 (11)

log(τit) = ηi + ϑi

K∑
k=1

λi,k(ρi)Xi,t−k (12)

λi,k(ρi) = (1− k/K)ρi−1∑K
j=1(1− j/K)ρi−1

, (13)

where t is fixed at a monthly, quarterly or biannual frequency on the jth day with the weights
equation summing up to one, K denotes the lag length6. The τit does not change for the fixed
time span. The number of days in month t are represented as Nt. The λk(ρ) is a beta lag
structure with the weights monotonically decreasing over the lags. By looking at information
criteria and maximizing the log likelihood, the best t and K are chosen.

2.1.2 Maximum Likelihood Estimation

The parameters of the variance processes with and without financial condition indices are
modeled using maximum likelihood, where zit is assumed to be Student-t distributed following
Rangel & Engle (2012), which better captures fat-tails and is typically observed in time series
of the financial sector. The log-likelihood function that is to be maximized7 is defined as

-log L(θ) =1
2

T∑
t=1

[
(υ + 1) log

(
1 + ε2

t

τtgt(υ − 2)

)
+ log(τtgt)

]
− T log

(
Γ((υ + 1)/2)

Γ(υ/2)
√
π(υ − 2)

)
,

where θ represents the variance process parameters, Γ is the gamma density function, υ is
denoted as the number of freedoms.

5The European countries are i = {1, 2, ...,m1} and for America i = {m1 + 1,m1 + 2, ..., N = m1 +m2}.
6monthly 1 year means K = 12. Quarterly 3 years is also K = 12, etc.
7subject to the restrictions mentioned for the variance processes.
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2.1.3 Performance Measures Variance Processes

Now that all of the volatility processes are estimated, the performances of these models are
compared using various performance measures, such as the Akaike and Bayesian information
criteria and their log-likelihood. The log-likelihood ratio tests between nested variance pro-
cesses are also considered. Next, forecast performances of the variance models are defined.
At last the economic contribution of the Financial Conditions Indexes are considered.

First I choose the best variance model according to the Akaike information criteria (AIC)
from Akaike (1973) and Bayesian information criteria (BIC) from Schwarz (1978). These two
criteria are defined as

AIC = −2 logL+ 2k, and (14)
BIC = −2 logL+ k lnT , (15)

where k denotes the number of estimated parameters, logL be the maximum value of the
log-likelihood function for the model and T denotes the sample size. The model with the
lowest AIC and BIC is chosen for each bank and each model.

Second, the log-likelihood ratio test is used following Neyman & Pearson (1933), this is
defined as

H0 : θ = θ0, (16)
H1 : θ = θ1, (17)
LR = 2 [lnL(θ1)− lnL(θ0)] , (18)

where lnL(θ1) and lnL(θ0) are respectively the log-likelihood of the alternative model and the
likelihood for the model under the null hypothesis and θ are the parameters of the variance
process. This test statistic is χ2(df) with df the number of restricted parameters. In this
research the following LR-tests are performed: H0 : γi = 0 to compare the GJR model to the
Garch model for each bank, where the Garch model is the model under the null hypothesis
and nested in the GJR model. H0 : κi,1 = 0 to compare the Spline-Garch-X model to the GJR
model. This test is justified because the Spline-Garch-X model with κi,1 = 0 is hiit = eκi,0git,
where git is equal to the variance process hiit of the GJR model, meaning that the GJR
model is nested in the Spline-Garch-X model. Notice that here κi,0 is a nuisance parameter,
meaning that the likelihood function not depend on κi,0. H0 : ϑi = 0 to compare the Log-
Garch-Midas-X to the GJR model, where ηi,λi,k(ρ) and ρi are nuisance parameters. Another
performance test is looking at the variance of the standardized returns zit. If the model is
correctly specified, this value should be equal to one.

Third, forecast performance measures are used for the variance processes of Europe and
America as the variance processes are known one-step ahead. Therefore, I compare the
estimated variance processes against a proxy for the true conditional variance for the whole
data sample. Define the mean absolute error on standard deviations of the variance processes
MAE-SD as

MAE-SD = 1
T

T∑
t=1

∣∣∣∣√σ2
t −

√
ht

∣∣∣∣ = 1
T

T∑
t=1

AE-SDt. (19)

As the true conditional variance σ2
t is not observable, I use the squared returns r2

t as a proxy8.
I take the absolute error measure combined with the square root of the variance processes

8The squared returns are a noisy proxy for the true conditional variance and an alternative is the ’realised’
variance, which is calculated using intra-day data.
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to shrink the larger values towards zero, therefore the impact of the most extreme values
is reduced. The variance processes with the least forecast errors are favored. To perform a
statistical test on the absolute errors, the Diebold-Mariano-West (DMW) test is considered
of Diebold and Mariano (1995) and West (1996). Define

H0 : E(d) = 0, (20)

DM = d̄√
V̂ (d)/T

, (21)

where dt = e1t − e2t the difference of the forecast errors, d̄ the mean value of dt and V̂ (d)
an estimate of the asymptotic variance of dt. The DM test statistic is asymptotic standard
normally distributied under the null hypothesis. Here, the loss functions are et = AE-SD_t,
with e2t being the benchmark model, to statistically compare the different variance processes
with eachother. Specifically, I compare the GJR model to the GARCH model and the second
component models to the one component models. The exponentially weighted moving average
model (EWMA) is also considered as a benchmark model and is defined as

hEWMA
t = 0.04r2

t−1 + 0.96hEWMA
t−1 with hEWMA

1 = 0. (22)

At last, the contribution of economic sources are measured. This can be done using the
variance ratio following Engle et al. (2013)

Variance Ratio = Var [log(τiit)]
Var [log(hiit)]

. (23)

This ratio explains how much of the expected volatility can be explained by the financial
conditions indexes and can be used for the two component models with Financial Conditions.

2.2 Correlation Processes

After estimating the volatility processes, the correlation model(s) Rt are estimated for the
correlations of the stock returns. These are then used to model the covariance matrix Ht.
Therefore, I start to estimate the Dynamic Conditional Correlation model (using zit of the
previously estimated variance processes). The advantage of these correlation models over
the usual multivariate GARCH models is that the number of parameters to be estimated in
the correlation process is independent of the number of series to be correlated, while still
maintaining time-varying correlations. First, define

Rt = P
−1/2
t QtP

−1/2
t , (24)

where Qt = [qijt] and Pt = diag(q11,t, q22,t, ..., qNN,t). Now for the Dynamic Conditional
Correlation model,

Qt = (1− ψ − φ)Q̄+ ψzt−1z
′
t−1 + φQt−1, (25)

where Q̄ = E(Qt) a N × N matrix. To gain consistent estimators in the DCC model, I
implement the cDCC model following Aelli (2013) where c stands for corrected, with

Qt = (1− ψ − φ)Q̄+ ψ
[
P

1/2
t−1zt−1z

′
t−1P

1/2
t−1

]
+ φQt−1. (26)

The unit diagonal matrix Q̄ = E(Qt) = E[ztz′t], such that the estimators are consistent. In
both models ψ is a positive and φ a non-negative scalar parameter, such that ψ+φ < 1. This
results in Qt to be a positive definite matrix.
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2.2.1 Block Dynamic Conditional Correlation Processes

In the (c)DCC models, it is assumed that the dynamics in the correlations are all equal to each
other. This is a strength of these models, because the numbers of parameters that need to be
estimated is low, but can also be seen as weakness when N is large, because all the correlation
processes are then restricted to follow the same dynamic structure. Therefore, both the DCC
and cDCC models are extended to enrichen the correlation processes by imposing a block-
diagonal structure which separates the EU and US dynamics. The dynamics ψ and φ are
then only equal among the group of variables and can thus be interpreted for the EU, US
and crosswise. The Block DCC model is proposed by Bilio et al. (2006), where the dynamic
correlation equation is equal to

Qt = (U −ψ − φ)� Q̄+ψ � zt−1z
′
t−1 + φ�Qt−1, (27)

where ψ and φ are symmetric square full matrices of N ×N , U is a N ×N matrix of ones
and � indicates the entrywise (Hadamard) matrix product. Here,

ψ =
[
ψ11ιm1ι

′
m1 ψ12ιm1ι

′
m2

ψ12ιm2ι
′
m1 ψ22ιm2ι

′
m2

]
and φ =

[
φ11ιm1ι

′
m1 φ12ιm1ι

′
m2

φ12ιm2ι
′
m1 φ22ιm2ι

′
m2

]

where ιm1 and ιm2 are column vectors of ones of dimension m1 and m2 (with m1 +m2 = N),
which respectively represent the number of variables in the EU and US groups.

The Block cDCC is implemented in the same way, with

Qt = (U −ψ − φ)� Q̄+ψ �
[
P

1/2
t−1zt−1z

′
t−1P

1/2
t−1

]
+ φ�Qt−1. (28)

To yield a positive definite variance-covariance matrix Ht, Qt needs to be positive definite.
This is the case when the minimum eigenvalue of each ψ and φ are greater or equal to zero
(both are positive semi definite) and when the minimum eigenvalue of (1 − ψ − φ) � Q̄ is
strictly greater than zero (positive definite), see Ding & Engle (2001) and Engle & Sheppard
(2001) .

2.2.2 Block (c)DCC Models with Explanatory Variable

To add flexibility to the correlation models, I add an exogenous variable and call this extended
model Block-cDCC-Y, with

Qt = (U −ψ − φ− ξ)� Q̄+ψ �
[
P

1/2
t−1zt−1z

′
t−1P

1/2
t−1

]
+ ξ � Yt−1 + φ�Qt−1, (29)

where

ξ =
[
ξ11ιm1ι

′
m1 ξ12ιm1ι

′
m2

ξ12ιm2ι
′
m1 ξ22ιm2ι

′
m2

]
and Yt =

[
y11,tιm1ι

′
m1 y12,tιm1ι

′
m2

y12,tιm2ι
′
m1 y22,tιm2ι

′
m2

]
.

Here y11,t and y22,t define respectively the variance of the European and United States fi-
nancial conditions indices till time t, y12,t defines the covariance between the European and
American financial conditions indices up to time t. To yield a positive definite variance-
covariance Qt, the following restriction is added: the minimum eigenvalue of ξ also needs
to be greater or equal to zero (positive semi definite) and ξ � Yt needs to be positive semi
definite for each t.9

9Another way to ensure a positive definite matrix Qt, is to consider the Cholesky decomposition of the
quasi-correlation matrix Qt, see Boudt et al. (2014).
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2.2.3 Quasi-Maximum Likelihood Estimation

All the models are estimated using quasi-maximum likelihood following Newey & McFadden
(1994) and Opschoor et al. (2014b), where a two-stage GMM estimation method is used.
For the DCC and cDCC models the composite likelihood is maximized, which is proposed by
Engle, Shephard, and Sheppard (2008), where I reduce the number of pairs used in the CL
by only considering randomly chosen contiguous pairs i, i+ 1 in the data set. This speeds up
the estimation procedure, but leads to non-efficient parameter estimates. The CL is equal to
the exact QML if all of the pairs are independent.

In the first stage, the parameters of the volatility model are estimated. Then the
standardized residuals are constructed: ẑit = ε̂it/

√
ĥiit for i = 1, ..., N . After that, I es-

timate the correlation model parameters for the conditional correlations, where Q̄ is re-
placed by ˆ̄Qn = 1

T

∑T
t=1 ẑtẑ

′
t for the DCC, Block-DCC and Block-DCC-Y models which

is the unconditional correlation matrix of ẑt and by ˆ̄Qn = 1
T

∑T
t=1 P

1/2
t,n−1ẑtẑ

′
tP

1/2
t,n−1 for the

cDCC, Block-cDCC and Block-cDCC-Y models. The P 1/2
t,n−1 estimated through Qt, by using

ˆ̄Q0 = 1
T

∑T
t=1 ẑtẑ

′
t as initial value, such that the (n− 1)th Pt is used for ˆ̄Qn, where I assume

that the (n− 1)th Pt converges to the true Pt. This estimation procedure leads to consistent
estimators, but they are no longer efficient. For all of the correlation processes, the usual
joint log likelihood is also estimated. The CL is not possible for the block correlation models
because the parameters are not assumed to be equal for the contiguous pairs between the
sectors.

2.2.4 Statistical Performance Tests Correlation Processes

Here, the different dynamics of the correlation processes are compared by means of likelihood
ratio tests. Specifically, I perform two tests following the idea of Bilio et al. (2006). First, the
null hypothesis of a block structure in the correlation processes is tested, which thus means
that I test the DCC(1,1) against the Block-DCC (or cDCC against Block-cDCC). Therefore
I define the following null hypothesis H0 : ψ11 = ψ12, ψ12 = ψ22 and ψ22 = ψ and φ11 = φ12,
φ12 = φ22 and φ22 = φ. This implies that the DCC model is nested in the Block-DCC
model. Now the log-likelihood ratio test has a chi-square distribution with six degrees of
freedom given the normal asymptotic distribution of the QMLE. Second, the same regime is
followed for comparing the Block-DCC-Y with the Block-DCC model. The null hypothesis
is H0 : ξ11 = ξ12, ξ12 = ξ22 and ξ22 = 0. This implies that the Block-DCC-Y model reduces
to the Block-DCC model under the null hypothesis. In this case the asymptotic distribution
is chi-square with three degrees of freedom.

Next, the forecast performance measures are used for the correlation processes, which
is analog to the univariate approach of section 2.1.3. Specifically, I compare the estimated
covariance processes against a proxy for the true conditional covariance for the whole data
sample. Define the mean absolute error of the covariance processes MAE as

MAE = 1
T

T∑
t=1

∑
i,j

|Ωt −Ht| =
1
T

T∑
t=1

AEt. (30)

As the true conditional covariance Ωt is not observable, I use the outer product of the returns
rtr
′
t as a proxy10. I again take the absolute error measure to shrink the larger values towards

zero, reducing the impact of the most extreme values. The covariance processes with the
10The proxy for the true conditional covariance can be improved by using the ’realised’ covariance, which

is calculated by using intra-day data.
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least forecast errors are favored. To perform a statistical test on the absolute errors, the
Diebold-Mariano-West (DMW) test is again considered. In this setup, the loss functions are
et = AE_t. I test the correlation models against a multivariate EWMA model and against
Ht = Dt, with Dt the univariate GJR model with on the diagonal the observations for each
bank over time and zero on the off-diagonals. Also, the block-correlation models are compared
to the DCC and cDCC models. The EWMA in the multivariate case is defined as

HEWMA
t = 0.04rt−1r

′
t−1 + 0.96HEWMA

t−1 with HEWMA
1 = 0. (31)

2.3 Value at Risk

After selecting the statistically best volatility and correlation models, I investigate the Value-
at-Risk portfolio based on an equally weighted portfolio. This is interesting because it makes
it possible to compare the different variance processes and correlation models, it is useful in
risk management. Express the portfolio 100(1− α)% Value-at-Risk (VaR) at time t as

V aR1−α,t = µPt + zα

√
w′tHtwt, (32)

with µPt = µ′wt the conditional mean return of the portfolio, where µ is the mean return of
the banks defined in (1). Next, wt = w = [1/N, 1/N, ..., 1/N ]′ is the N × 1 equally portfolio
weight and Ht is the portfolio covariance matrix based on the correlation models, such that
σPt =

√
w′tHtwt is the portfolio standard deviation. Also, Dt = Ht is used which makes is

possible to estimate the VaR by only considering the variance processes. N can also be m1 or
m2, then µPt is the mean of the respective bank returns. Lastly, zα defines the estimated αth
empirical quantile of the in-sample standardized portfolio returns zPt = (rPt − µPt )/σPt where
the portfolio returns are defined as rPt = r′twt. The advantage is that a parametric judgment
about the appropriate distribution is avoided. The VaR are estimated for the α = 1% and
5% significance levels for the whole sample period.

After estimating the VaR’s, they are backtested following Christoffersen (1998) where they
proposed the unconditional coverage test, the independence test and the conditional coverage
test. Define the indicator function 1(rPt < −V aR1−α,t). The unconditional coverage (uc)
test tests if the coverage is on average correct and assumes the indicator to be independent
over time. This test is defined as

H0,uc : π = α

LRuc = 2 [logL(1, π̂)− logL(1, α)] ,

where ML estimate of π is π̂ = T1/T defined as the percentage of that the portfolio returns
are smaller than −V aR1−α, where T1 is the number of ones in the sample and T the sample
size. The log-likelihood function logL(1, α) = T1 logα + (T − T1) log(1 − α) is iid Bernoulli
with the unknown probability parameter α, the logL(1, π̂) is the same function with α being
replaced by π̂. This test statistic is asymptotically distributed as χ2(1).

To test if the indicator function is indeed independent over time and not clustered, the
independence test is used and defined as

H0,ind : π01 = π11

LRind = 2 [logL(1, π̂01, π̂11)− logL(1, π̂)]

where π̂01 = T01/(T00 + T01) and π̂11 = T11/(T10 + T11) are the ML estimates of π01 and π11
and where logL(1, π̂01, π̂11) = T00 log(1 − π̂01) + T01 log π̂01 + T10 log(1 − π̂11) + T11 log π̂11.
The Tij denotes the number of observations i in time t and j in time t+ 1. This is true when

10
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we consider the indicator function to follow a first order markov switching process11. This
test statistic is also asymptotically distributed as χ2(1).

The conditional coverage test is a combination of the two tests and defined as

H0,cc : π01 = π11

LRcc = LRuc + LRind = 2 [logL(1, π̂01, π̂11)− logL(1, α)] ,

with the test statistic being asymptotically distributed as χ2(2).

3 Data
I investigate how European and American Financial conditions affect volatilities and corre-
lations in the European and American financial markets. Therefore, the models discussed in
the previous sections are applied on stock returns of the largest EU and US financial compa-
nies. Consider daily stock prices of the fifteen largest European and American banks ranked
by assets12 in 2015 during the period December 14, 2001 to March 29, 2016, where the time
series are adjusted for dividends and stock splits. This provides a total of 3710 observations.

I look at the fifteen largest banks, because these banks have the most influential power in
the European and American financial sector. Both the European and American stock prices
are downloaded from Yahoo Finance. Only eleven of the fifteen largest European banks have
all the data available.
Table 1: The table shows the largest banks of Europe and America, where the banks are ranked by asset in 2015.
The ticker of the banks that are used in this research are given.

Europe America
Name Ticker Name Ticker

HSBC Holdings HSBC J.P.Morgan Chase & Co. JPM
BNP Paribas BNP.PA Bank of America BAC
Credit Agricole Group ACA.PA Wells Fargo & Co. WFC
Deutsche Bank DBK.DE Citigroup Inc. C
Barclays PLC BCS Goldman Sachs Group GS
Societe Generale GLE.PA Morgan Stanley MS
Royal Bank of Scotland Group RBS.L U.S. Bancorp USB
Banco Santander SAN Bank of New York Mellon BK
(Groupe BCPE) - PNC Financial Services PNC
(Lloyds Banking Group) - Capital One Financial COF
(UBS AG) - (HSBC North America Holdings) -
UniCredit S.p.A UCGMI TD Group US Holding TD
ING Group ING State Street Corporation STT
Credit Suisse Group CS Charles Schwab Corp. SCHW
(Banco Bilbao Vizcaya Argentaria) - Suntrust Banks STI

The eleven European banks with full data availability sorted by the number of assets in
descending order are given in the table above. For America fourteen of the fifteen largest
banks have all the data available and are also given in the table. The names in brackets (and
without a ticker) don’t have enough data available and are not included in my investigation.

The stock prices are in Euros, US dollars and pounds. I obtain the specific exchange
rates from the European Central Bank to convert all the prices to euros. These exchange
rates are also in the same time range and thus are converted on a daily basis. The returns
are also used to compute the monthly realized volatility, which is defined as the sum of the
daily squared returns for each month.

11If T11 = 0, logL(1, π̂01, π̂11) is equal to (T00 − T01) log(1− π̂01) + T01 log π̂01.
12see: http://www.relbanks.com/top-european-banks/assets and www.relbanks.com/top-us-banks/assets
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Sample Correlation EU & US returns

Fig. 1: Sample correlations of the EU and US largest bank returns over the period 14 december 2001 to 29 March
2016. Each column shows the sample correlation with that bank against the remaining banks. Triangles correspond to
EU banks, squares to US banks and stars show cross correlations. On the x-axis the banks in consecutive order are
first for the EU: HSBC Holdings, BNP Paribas, Credit Agricole Group, Deutsche Bank, Barclays PLC, Banco
Santander, Societe Generale, Royal Bank of Scotland Group, UniCredit S.p.A, ING Group and Credit Suisse Group.
Then the US banks follow: J.P.Morgan Chase & Co., Bank of America, Wells Fargo & Co., Citigroup Inc., Goldman
Sachs Group, Morgan Stanley, U.S. Bancorp, Bank of New York Mellon, PNC Financial Services, Capital One
Financial, TD Group US Holding, State Street Corporation, Charles Schwab Corp. and Suntrust Banks.

Figure 1 shows the correlations between the bank stock returns over the complete sample
period13. The horizontal axis in the graph shows the 25 banks, where the first 11 are the
European and the last 14 are the American banks. For each bank the 24 sample correlations
with the other banks are shown. The triangles are the European co-movements and vary
between 0.36 and 0.81 with a mean of 60%. The correlations for the American largest bank
returns are depicted in squares and are on average higher than the European correlations.
They vary between 0.54 and 0.82 with a mean of 68%. Lastly, the cross correlations between
the US and EU bank returns are shown as stars, they vary between 0.22 and 0.66 with an
average of 46.5%. This shows that the cross correlations behave differently between EU and
US than within each sector, this raise the idea for a block structure in the correlation models.

13Figure 5 in the Appendix plots the correlations separately.
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Bloomberg EU & US Financial Conditions Indexes

Fig. 2: Here the plots of the daily EU and US Bloomberg FCI are shown for the period 14 december 2001 to 29
March 2016. The blue and green line depicts respectively the EU and US FCI with corresponding sample mean of
black and red. Positive values correspond on average to better financial conditions of the economy for the respective
economy, while negative values mean the opposite. The y-axis are the number of standard deviations above or below
its average over the index.

In this research the Bloomberg EU and US Area Financial Conditions Indexes are used as
the daily financial conditions index. The FCI and the underlying indicators are Z-scores that
indicate the number of standard deviations by which current financial conditions deviate from
normal levels. Figure 2 shows a graph of the two indexes for the same time range as the stock
prices14. The blue and green line depict respectively the EU and US FCI with corresponding
mean of black and red. A noticeable difference between the two sectors is the period of 2012
where Europe shows a crisis with a low FCI below -4.

Table 2: This table shows Bloomberg’s EU and US FCI sub-indexes, their indicators and weights for both Europe
and America.

Europe weights America weights

Money market Euro TED Spread 16.7% US TED Spread 11.1%
Euribor/OIS Spread 16.7% Libor/OIS Spread 11.1%

Commerical Paper/T-Bill Spread 11.1%
33.3% 33.3%

Bond Market EU 10Y Swap Spread 16.7% Baa/10Y Treasury Spread 6.7%
JP Morgan High Yield Europe Index 16.7% US High-Yield/10Y Treasury Spread 6.7%

US 10Y Swap/Treasury Spread 6.7%
US Muni/10Y Treasury Spread 6.7%
Swaption Volatility Index 6.7%

33.3% 33.3%
Equity Market EuroStoxx Index 16.7% S&P 500 16.7%

VDAX Index 16.7% VIX Index of S&P 500 Volatility 16.7%
33.3% 33.3%

Total 100% 100%

The EU and US Bloomberg FCIs track the overall level of financial stress in Euro and
American area money, bond, and equity markets. The FCI is an equal-weighted sum of three
sub-indexes for each of these markets. The sub-indexes for the EU equity market are the
EuroStoxx50 Index and the VDAX Index, and S&P 500 Index and VIX Index for the US
equity market. The specific indicators that form each sub-index are also equally weighted.
Table 2 shows the composition of the specific indicators and their sub-indexes for Europe and
America. These two indexes for the EU and US are also included in my investigation and

14In the appendix figure 6 plots them separately.
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are daily available for the same data frame. I follow the approach of Opschoor et al. (2014b)
for the decomposition of the equity market components together with the FCI without the
effects of these components. These equity components together with the cleaned EU and US
FCI are later used for the Spline-Garch-X and Log-Garch-Midas-X models.

At last I test if the data has the skewness and kurtosis matching a normal distribution.
Define H0 : the data follows a normal distribution with the test statistic JB of the Jarque-
Bera test as

JB = T

6

(
S2 + (K − 3)2

4

)
, under H0: JB

a∼ χ2
(2), (33)

where S is the skewness and K the kurtosis. As financial data is investigated, I expect that
the data doesn’t follow a normal distribution.

Europe America Total
Min Average Max Min Average Max Min Average Max

S -0.46 0.23 0.88 -1.35 0.84 4.69 -1.35 0.57 4.69
K 9.12 13.85 20.19 8.26 35.41 128.40 8.26 25.93 128.40
JB 5,850 20,056 46,361 4,453 310,793 2,454,369 4,453 182,869 2,454,369
p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

The table above shows clearly a rejection of the null hypothesis. All of the bank returns have
a high kurtosis ranging from 8 to 128. The corresponding Jarque-Bera statistics range from
4 to 2 million, all with a p-value lower than 0.001. Therefore I assume the innovations to
follow a student-t distribution. The skewness shows small values for Europe ranging from
-0.46 to 0.88. In America, the max skewness is 4.69, so a skewed t-distribution can also be
used here. A downside to that approach is that more parameters need to be estimated.

4 Results
In this section the results are interpreted. At first, the parameter estimations for the volatility
models for the HSBC and JPM banks are discussed which respectively represent the European
and American sector. The volatility results of the other banks are in the appendix, but
the minimum, average and maximum volatility parameters are discussed for each volatility
model. The parameters for the DCC and cDCC correlation models are divided in European,
American and a combination of both, where the conditional likelihood is estimated using
contiguous pairs by only considering the respective banks. Then I interpret the parameters
for the block correlation models, which I compare to the DCC and cDCC model. Next, the
Value-at-Risk is backtested with the unconditional coverage, independence and conditional
coverage tests. At last, the monthly realized variance and the cleaned FCI are considered as
explanatory variables for the variance processes.

14



CONTENTS

4.1 European Variance Models Parameter Estimates

Table 3: The table shows the parameters of the different variance processes for the HSBC bank. The fields that are
blank correspond to parameters that are not used for the variance process. For the explanatory variable X, the EU
Bloomberg FCI is used. Further, the log-likelihood, Akaike and Schwarz information criteria, variance of standardized
returns and the mean absolute errors between square root of the variance process and true variance proxy are shown.
AIC and BIC are divided by T, to get a better comparison with the Log-Garch-Midas-X model. The mean absolute
errors are multiplied by 100. Next the LR tests for the variance processes are shown.

HSBC Garch GJR Spline-Garch Spline-Garch-X Log-Garch-Midas-X

α 0.073 0.045 0.039 0.05 0.045
(0.009) (0.009) (0.013) (0.014) (0.013)

γ 0.054 0.069 0.049 0.073
(0.010) (0.023) (0.022) (0.023)

β 0.921 0.92 0.889 0.895 0.891
(0.009) (0.015) (0.028) (0.032) (0.025)

ζ -7.749
(0.017)

K 13
κ0 -8.701

(0.130)
κ1 -0.325

(0.034)
η -8.659

(0.059)
ϑ -0.279

(0.521)
ρ 2.327

(1.513)
ν 5.615 5.754 6.145 6.014 5.699

(0.561) (0.582) (0.624) (0.559) (0.160)

LogL 10,921 10,929 10,945 10,945 10,225
AIC -5.862 -5.865 -5.866 -5.875 -5.918
BIC -5.857 -5.859 -5.835 -5.865 -5.906
Var(zt) 0.985 0.987 0.992 0.986 0.986
MAE-SD 0.856 0.852 0.838 0.845 0.839

LR-test
H0 γ = 0 κ1 = 0 ϑ = 0
LR 14.488 37.192 12.021
p 0.000 0.000 0.001

Table 3 shows the estimated parameters for the variance processes belonging to the HSBC
bank, which is the largest European bank in terms of assets in 201515. The standard errors are
in brackets. The ARCH effects α and GARCH effects β show the typical pattern for financial
data. The mean of the estimated α show little variation between the variance processes and is
between 0.021 and 0.030 for all the variance processes except for the GARCH process where
it is 0.079, this value is larger because it also incorporates the leverage effect. They take
values between 0.008 and 0.107. For HSBC bank, this value is around 0.045 for the variance
processes (except for GARCH), suggesting that the volatility shock today feeds through into
next period’s volatility on average more for the HSBC bank than for the others. The estimated
β has a mean above 0.900 for all the variance processes and takes on values between 0.838
and 0.948. For the HSBC bank, the two component variance processes have a lower β than
the one component models, suggesting that the two component models are less persistence
than the one component models. The leverage effects γ exhibit only positive values between
0.033 and 0.159 for all the banks and all the variance processes. This is consistent with the

15Table 13 in the appendix shows the summary of the variance models parameter estimates for the European
banks.
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leverage theory of Black (1976) and Christie (1982). The HSBC bank fits with leverage effects
of 0.049 for the Spline-Garch-X model to 0.073 for the Log-Garch-Midas-X model.

The constant ζ in the Spline-Garch model takes values between -8.590 and -7.110. The
number of knots for the Spline-Garch model have a mean integer value of 816 and takes on
the value 13 for the HSBC bank. This suggests that the largest banks in EU show a lot
of changes in the curvature of the long-term trend of the variance processes, especially for
the HSBC bank. Considering κ0 and κ1 corresponding to the Spline-Garch-X model, it is
observed that the mean of κ0 is -7.811. This value can be compared to the constant belonging
to the Spline-Garch model. For the HSBC bank, a value of -8.701 is observed, which is lower
than the ζ estimate. The κ1 estimate ranges from -0.440 to -0.220 with HSBC having a value
of -0.325. The coefficient is negative for all of the EU banks, meaning that worse financial
conditions in the EU cause the variance of the bank of this sector to increase. Looking at
the second component parameter estimates for the Log-Garch-Midas-X model, the constant
η has a mean value of -7.651, which can be compared to the constant ζ and κ0 for the second
component for both of the Spline-Garch models. The constants of the second component
models should be interpreted by raising e to the power of that value first. These exponential
values are then all positive resulting in a positive variance process. For the HSBC bank this
value is -8.659. So the HSBC bank has for all the two component models a lower constant
than the average value.

The scaling parameter ϑ estimates vary between -0.523 and 0.136. It is interesting to
note that it has positive and negative values. For the HSBC bank, this estimate has a
negative value of -0.279 meaning that that an increase in the EU FCI is associated with a
decrease in HSBC’s long-term variance. The interpretation of this variable can be compared
to κ1. The weighting parameter ρ varies between 1.776 and 91 and can be interpreted as
how fast the weights λk(ρ) decay to zero. For the HSBC bank this value is 2.327 suggesting
that observations in the distant past still have an important influence. Next the degrees of
freedom ν of the univariate Student-t distributions are interpreted. They range from 4.680
to 9.751, with a mean value of roughly 6.700, which is again evidence for non-normality and
excess kurtosis in the equity returns.

The log-likelihoods range from 8878 to 10945. For the HSBC bank, both Spline-Garch
models have the same largest log-likelihoods at 10945, which is 16 and 24 larger than the
GJR model and Garch model, respectively. To be more specific, the loglikelihood of the
Spline-Garch model is 0.287 lower than that the LogL for Spline-Garch-X for the HSBC
bank17. For the HSBC bank, both the Akaike and Schwarz information criteria suggest
that the Log-Garch-Midas-X model is preferred having the lowest value at -5.918 and -5.906,
respectively. AIC and BIC also indicate that the two component models are preferred to the
one component models, except for the Spline-Garch, where the BIC is higher than the one
component models. The same hold true for the average AIC and BIC values of the other
banks. In the appendix table 14 the ranking for each variance model for the AIC and BIC is
considered. That table shows that both the Log-Garch-Midas-X and Spline-Garch-X are the
most preferred models for each of the largest European bank. Another performance measure
is looking at the variance of the standardized returns Var(zit). The results indicate that the
mean of the variances corresponding to the Log-Garch-Midas-X are the closest to one with
1.001. For the HSBC bank, the Spline-Garch has the closest value to one, with 0.992. The
forecast performance measure MAE-SD multiplied by 100 is smallest for the two component

16The maximum number of knots considered is equal to 15.
17When re-estimating the Spline-Garch-X model using the same time frame as the Log-Garch-Midas-X,

the log-likelihood is 10236, which is still 11 values larger than for the Log-Garch-Midas-X, meaning that the
AIC and BIC are both in favor of the Spline-Garch-X model.
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models. Table 15 in the appendix ranks the mean absulute variance and forecast error for each
variance model. The table indicates that the Log-Garch-Midas-X has the smallest forecast
errors for most European banks.

The values of the log-likelihoods of the different variance processes are already briefly
discussed. To statistically compare the improved performance of the different variance pro-
cesses, different log-likelihood ratio tests are performed. For the HSBC bank, the GJR model
is preferred to the Garch model, with a p-value of 0.000. Further, the two component mod-
els are preferred to the one component models for the 1% significance level for both the
Spline-Garch-X against GJR and Log-Garch-Midas-X against GJR model.

Table 4: This table shows the t-statistics of the Diebold-Mariano-West tests with H0 of equal forecast accuracy over
the whole sample. The variance models on the horizontal axis are statistically compared to the benchmark models on
the vertical axis.

DM Garch GJR Spline-Garch Spline-Garch-X Log-Garch-Midas-X

EWMA 2.996 1.424 -2.085 -0.353 -0.015
Garch -1.946
GJR -6.023 -1.842 -3.521
Spline-Garch-X -0.185

The DMW test shows the results for statistically comparing the AE-SD of the different
variance models. An absolute t-statistic greater than 1.96 indicates a rejection of the null
hypothesis of equal forecast accuracy at the 0.05 significance level. A negative sign implies
that the variance model produced smaller average losses than the benchmark model and is
thus preferred. When comparing the variance processes to the EWMA model, the two com-
ponent models are preferred. The Spline-Garch model significantly outperforms the EWMA
model. The GJR statistically outperforms the GARCH model and the Spline-Garch and
Log-Midas-X model statistically outperform the GJR model. The Spline-Garch-X model is
favored over the GJR model, but not on a 5% significance level. The Log-Garch-Midas-X is
preferred to the Spline-Garch-X model, but the difference is not statistically different from 0.

For the Spline-Garch-X model and Log-Midas-X model the contribution of economic
sources are measured using the Variance Ratio defined in section 2.1. For the HSBC bank
54% of the expected volatility can be explained by the European financial conditions index.
The contribution of the EU FCI for the European banks ranges from 17% to 64%, indicating
that this variable captures a quite significant fraction of variation in expected volatility. For
the Log-Midas-X model these values range from almost 0% for the Credit Agricole Group
bank to 70%. What is interesting is that the economic contribution is 51% for the Credit
Agricole Group bank for the Spline-Garch-X model meaning that the filter in the Midas
model absorbs most of the economic contribution.

All in all the performance measures suggest that the two component models are preferred
to the one component models, with the Spline-Garch-X being the most preferred variance
process. Especially for the Spline-Garch-X and Log-Garch-Midas-X model the Bloomberg
FCI has a significant impact on the variances of the bank returns and capture a quite signif-
icant fraction of variation in expected volatility. The Log-Garch-Midas-X model is ideal to
be used for lower frequency data as it performs almost as good as the Spline-Garch-X model,
but using monthly data.
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The four plots in the figure above depict the in-sample volatilities
√
hit for the HSBC bank

returns for the different variance processes. The first plot shows the Garch process in blue
line against the GJR with green line. For the other plots, the green line refers to the second
component. All of the processes look very much alike. What is interesting is that the Spline
component for the Spline-Garch model captures the cycles very well, with the exception for
the big peak end 2008, it shows the same pattern as the second component of the Log-Midas-
X model. The same period gives also a substantially higher estimate when including the
FCI for the Spline-Garch-X. The second component of the Log-Midas-X model captures the
second peak around 2012 much better than for the Spline-Garch model.

4.2 American Variance Models Parameter Estimates

Table 5: The table shows the parameters of the different variance processes for the JPM bank. The fields that are
blank correspond to parameters that are not used for the variance process. For the explanatory variable X, the US
Bloomberg FCI is used. Further, the log-likelihood, Akaike and Schwarz information criteria, variance of standardized
returns and the mean absolute errors between square root of the variance process and true variance proxy are shown.
AIC and BIC are divided by T, to get a better comparison with the Log-Garch-Midas-X model. The mean absolute
errors are multiplied by 100. Next the LR tests for the variance processes are shown.

JPM Garch GJR Spline-Garch Spline-Garch-X Log-Garch-Midas-X

α 0.071 0.017 0.021 0.015 0.024
(0.009) (0.007) (0.010) (0.014) (0.016)

γ 0.083 0.091 0.056 0.099
(0.007) (0.020) (0.020) (0.029)

β 0.923 0.939 0.915 0.950 0.900
(0.009) (0.012) (0.021) (0.033) (0.045)

ζ -6.473
(0.032)

K 14
κ0 -7.889

(0.442)
κ1 -0.329

(0.110)
η -8.078

(0.063)
ϑ -0.469

(0.740)
ρ 3.565

(1.471)
ν 5.835 6.656 7.055 6.83 6.588

(0.573) (0.699) (0.742) (0.752) (0.204)

LogL 9,743 9,767 9,773 9,779 9,229
AIC -5.229 -5.241 -5.237 -5.249 -5.341
BIC -5.225 -5.235 -5.203 -5.239 -5.329
Var(zt) 0.968 0.997 1.009 0.990 0.986
MAE-SD 1.246 1.209 1.191 1.225 1.155

LR-test
H0 γ = 0 κ1 = 0 ϑ = 0
LR 47.662 28.264 9.061
p 0.000 0.000 0.003
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Now that the results for the European variance processes are discussed, I compare them
to the American results. Table 5 shows the estimation results for the JPM bank18. For
the JPM bank, the ARCH and GARCH effects show again the same typical pattern with a
small α ranging from 1.5% for the Spline-Garch-X model to 7.1% for the Garch model and
a β estimate ranging from 0.900 for the Log-Midas-X model to 0.950 for the Spline-Garch-X
model. The leverage effect for the JPM bank is positive for every model. Here the same
scenario as for the HSBC bank occurs: lowest value of 0.056 for the Spline-Garch-X model to
0.099 for the Log-Garch-Midas-X model. The sum of α+β+0.5γ is noticeably smaller than 1
for the two component models. The constants for the second component of the models range
from -6.473 for the Spline-Garch to -8.078 for the Log-Garch-Midas-X model. The number
of knots K for the Spline-Garch model is 14 for the JPM bank.

Comparing this to the HSBC bank, I notice that the largest banks of EU and US have
many cycles. The κ1 estimate for the JPM bank is -0.329, which is the same value as for
HSBC. The scaling parameter ϑ has a negative value of -0.469. Both coefficients are negative,
meaning that both the Spline-Garch-X and the Log-Garch-Midas-X model suggest that worse
US financial conditions cause the variance of the J.P.Morgan bank returns to increase on
average. The Spline-Garch-X model even suggests that this impact is the same effect that
the EU FCI cause the HSBC bank variance to increase. The weighting parameter ρ takes
on the value 3.565, suggesting that observations in the distant past still have an important
influence which is less severe than for the HSBC bank. The degrees of freedom ν ranges from
5.835 for the Garch model to 7.055 for the Spline-Garch model which implies non-normality
and excess kurtosis in the equity returns for the JPM bank returns.

The log likelihood for the JPM variance processes is smaller than for the HSBC bank,
ranging from 9743 for Garch to 9779 for the Spline-Garch-X model19. The AIC and BIC again
indicate that the Log-Midas-X model is preferred to the other variance processes for the JPM
bank. However, for the JPM only the Spline-Garch-X is preferred over the one component
models. Table 17 in the appendix ranks the AIC and BIC for each US bank and shows the
same as in Euope, namely that both the Log-Garch-Midas-X and Spline-Garch-X are the
most preferred models. The variances of the standardized returns indicate that the best two
component model is the Spline-Garch-X model with a value of 0.990 for JPM. The MAE-
SD takes on the smallest values for the Spline-Garch and Log-Garch-Midas-X model. Table
18 in the appendix ranks the mean absulute variance and forecast error for each variance
model and indicates the same as in Europe, namely that the Log-Garch-Midas-X has the
smallest forecast errors for most American banks. The log likelihood ratio tests give the
same conclusions as for the HSBC, namely that the two component models are preferred to
the one component models for the 1% significance level with asymmetry in the unexpected
returns.

Table 6: This table shows the t-statistics of the DMW tests with H0 of equal forecast accuracy over the whole sample.
The variance models on the horizontal axis are statistically compared to the benchmark models on the vertical axis.

DM Garch GJR Spline-Garch Spline-Garch-X Log-Garch-Midas-X

EWMA 3.022 -4.202 -5.664 -0.616 -2.247
Garch -8.540
GJR -6.132 1.493 2.147
Spline-Garch-X -1.277

The DMW test shows that the two component models outperform the EWMA model, that
18Table 16 in the appendix shows the summary of the variance models parameter estimates for the American

banks.
199236 when using same time frame as Log-Garch-Midas-X
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the GJR is preferred to the EWMA and GARCH models and that the Spline-Garch model
outperforms the GJR model. What is shocking that GJR is preferred over Spline-Garch-X and
Log-Garch-Midas-X, with the second model being even statistically outperformed. The table
also shows that the Log-Garch-Midas-X is preferred to the Spline-Garch-X. The variance ratio
using US FCI indicates the same as for the EU case. Here TD Group US Holding shows the
same phenomena for the US as Credit Agricole Group for the EU, namely a small economic
contribution of almost 0% for the Log-Midas-X model compared to a significant fraction of
66.3% for the Spline-Garch-X model. The Spline-Garch-X is again the most preferred model.
The Log-Garch-Midas-X performs very well, despite only using monthly observations.
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The four plots in the figure above show the volatilities for the JPM bank returns for the
different variance models. The interpretations are the same as for Europe, with the exception
for the Spline-Garch-X model where the peak in the crisis period 2009 is much higher than
for the other models.

4.3 Correlation Results Composite Likelihood EU, US and All

In the two previous subsections the results of the European and American variance processes
are discussed and the different variance models are depicted. This subsections interprets the
parameters of the DCC and cDCC model using the banks of the EU, US and all of them
using all of the two component variance processes as first stage20. The composite likelihood
is obtained by estimating the parameters with contiguous pairs.

Table 7: This table shows the parameters for the different correlation models using the three two component variance
processes as first stage. The estimation procedure is composite likelihood with contiguous pairs, where CL is short for
composite likelihood. The parameter estimates are based using the whole sample, where for EU all the bank returns in
the EU are used. In US, only the US banks are included. Finally ALL uses all of the bank returns.

Vola. Spline-Garch Spline-Garch-X Log-Garch-Midas-X
Corr. DCC cDCC DCC cDCC DCC cDCC

EU

ψ 0.033 0.035 0.032 0.035 0.036 0.036
(0.008) (0.008) (0.007) (0.009) (0.009) (0.008)

φ 0.933 0.942 0.932 0.943 0.910 0.927
(0.021) (0.015) (0.022) (0.021) (0.033) (0.024)

CL 19,185 19,184 19,191 19,188 17,919 17,919

US

ψ 0.013 0.012 0.015 0.020 0.014 0.015
(0.004) (0.003) (0.004) (0.02) (0.004) (0.005)

φ 0.982 0.988 0.976 0.973 0.979 0.981
(0.006) (0.004) (0.007) (0.022) (0.006) (0.006)

CL 19,185 20,504 20,521 20,520 19,218 19,217

ALL

ψ 0.018 0.014 0.019 0.024 0.017 0.019
(0.007) (0.012) (0.004) (0.008) (0.007) (0.012)

φ 0.971 0.984 0.966 0.965 0.970 0.973
(0.011) (0.008) (0.008) (0.013) (0.015) (0.019)

CL 19,925 19,919 19,935 19,933 18,650 18,649

20The correlation models using Garch and GJR as first stage are here omitted to preserve space and because
we already saw that the two component models are preferred to the one component models.
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Table 7 shows the estimated parameters for the correlation models and the corresponding
composite likelihood. The estimation for the parameter ψ ranges in the EU from 0.033 for the
DCC-Spline-Garch to 0.036 for the DCC & cDCC-Log-Garch-Midas-X. The lowest values for
ψ are observed in the US, where they range from 0.012 for the cDCC-Spline-Garch to 0.020
for the cDCC-Spline-Garch-X. Inbetween ψ values are obtained when using all of the bank
returns. They range from 0.014 to 0.024, meaning that they are always lower than when only
including European bank returns. The parameter ψ follows the same interpretation idea as
the α from the Garch model, namely that the correlation shock today feeds through into next
period’s correlation on average less for the American banks than for the European.

The parameter φ ranges in EU from 0.910 for the DCC-Log-Midas-X to 0.943 for the
cDCC-Spline-Garch-X and is lowest for Log-Garch-Midas-X for both the DCC and cDCC
model. The parameters φ are higher for the US than for the EU with values ranging from
0.973 for the cDCC-Spline-Garch-X to 0.988 for the cDCC-Spline-Garch. Again, inbetween
values are obtained when using all of the bank returns. They range from 0.965 for cDCC-
Spline-Garch-X to 0.984, meaning that they are always higher than when only including
European bank returns. The interpretation of the high values of φ can be compared to that
of β in the variance models, namely that the US correlations are more persistence than that
of Europe. This table indicates that EU has different comovements than US, indicating that
a block structure is needed.

The composite likelihood indicates that when comparing the different variance processes
for the different correlation models, the Spline-Garch-X as variance process for the first stage
leads to the highest likelihood. For Europe, the CL is 6 larger than DCC-Spline-Garch and
4 larger than for the cDCC-Spline-Garch.21 For US, the CL for the DCC is much larger
than using Spline-Garch or Log-Midas-X as first stage. It is again 4 larger than for the
cDCC-Spline-Garch and much larger than cDCC-Log-Midas-X. When using all of the bank
returns, the difference is 10 for the DCC and 14 for the cDCC Spline-Garch. A reason that
the CL for the US is larger in some cases, could be that the randomly chosen contiguous
pairs are not independent. Another reason could be that combining EU and US correlations
with randomly chosen pairs can lead to a low CL.

4.4 Results Block Structure in Correlations with Standard QMLE

In this subsection the parameters of the block correlation models are interpreted and com-
pared to the DCC and cDCC model. The estimation procedure is the standard QMLE
approach.

21The correlation models using Log-Garch-Midas-X as first stage perform worse because a shorter time
period is considered. Therefore I use LR tests to get a better indication which model is preferred with QMLE
as estimation procedure in the next subsection.
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Table 8: This table shows the parameters for the different correlation models using the three two component variance
processes as first stage. The parameter estimates are based using the whole sample with all the bank returns included.

Vola. Spline-Garch Spline-Garch-X Log-Garch-Midas-X
Corr. DCC cDCC Block-DCC Block-cDCC DCC cDCC Block-DCC Block-cDCC DCC cDCC Block-DCC Block-cDCC

ψ 0.005 0.005 0.005 0.006 0.005 0.005
(0.002) (0.002) (0.001) (0.002) (0.001) (0.001)

ψ11 0.007 0.007 0.007 0.008 0.007 0.007
(0.003) (0.015) (0.003) (0.003) (0.004) (0.004)

ψ12 0.004 0.004 0.004 0.004 0.004 0.004
(0.006) (0.002) (0.003) (0.002) (0.003) (0.003)

ψ22 0.006 0.006 0.006 0.007 0.005 0.006
(0.002) (0.002) (0.001) (0.002) (0.001) (0.001)

φ 0.983 0.993 0.980 0.987 0.983 0.990
(0.004) (0.002) (0.003) (0.001) (0.001) (0.002)

φ11 0.978 0.978 0.974 0.973 0.974 0.973
(0.008) (0.048) (0.012) (0.014) (0.018) (0.021)

φ12 0.981 0.980 0.977 0.976 0.979 0.978
(0.006) (0.03) (0.008) (0.007) (0.011) (0.014)

φ22 0.983 0.983 0.981 0.980 0.984 0.982
(0.001) (0.011) (0.004) (0.005) (0.003) (0.004)

LogL 277,486 276,409 277,555 277,555 277,614 276,959 277,699 277,717 259,676 258,991 259,748 259,756
MAE 0.333 0.332 0.332 0.332 0.352 0.349 0.351 0.351 0.331 0.331 0.330 0.330

Table 8 shows the estimated parameters for the correlation models. The low values of 0.005
to 0.006 for the estimated ψ for the DCC and cDCC models can be compared to the values
of ψ11, ψ12 = ψ21 and ψ22 ranging from 0.004 to 0.008 of the block correlation models. The
values look like weighted averages, where all of the values are different from eachother. The
ψ11 parameter is larger or equal to ψ22, which is in turn larger or equal to ψ12 = ψ21. This
suggests that the EU and US have different correlation regimes and that the block structure
was a good extension for the correlation models. The φ parameter is lower than when using
contiguous pairs.

The φ values range from 0.980 to 0.993 for the DCC and cDCC model and can also be
compared to the φ11, φ12 = φ21 and φ22 values ranging from 0.973 to 0.984 for the block
correlation models. Thes values again look like weighted averages, where all of the values are
different from eachother. Now φ22 is larger or equal to φ12 = φ21, which is in turn larger or
equal to φ11. This again strengthens the suggestion of having different comovements between
Europe and America. The ψ parameter is higher than when using contiguous pairs. The ψ
and φ parameters are different than the ones using contiguous pairs, because the parameters
are not efficient. Next subsection performs log-likelihood ratio tests to statistically compare
these models.

When comparing the log likelihoods, the Block-cDCC-Spline-Garch-X is preferred the
most with a LogL of 277,717. The Block-cDCC performs better than the Block-DCC for all
of the variance processes. The block correlation models are all preferred to the usual DCC
and cDCC correlation models. What is interesting is that the block correlation models with
the covariance of the EU and US FCI as explanatory variable perform poorer than without
the explanatory variable22. This suggests taking another explanatory variable or not using
that model to best describe the covariances of the returns of the largest banks.

Table 9: This table shows the LR test statistic together with the p−value for testing if the block structure in the
correlation models is necessary.

LR
Spline-Garch Spline-Garch-X Log-Garch-Midas-X

Block-DCC Block-cDCC Block-DCC Block-cDCC Block-DCC Block-cDCC

H0: No Block structure LR 136.067 2292.362 170.067 1516.369 144.170 1531.180
p 0.000 0.000 0.000 0.000 0.000 0.000

22The results for the block correlation models using explanatory variable can be found in the appendix,
table 20 where the elements of ξ are first multiplied by 1000.
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The table above shows the results for the log likelihood ratio test to statistically compare the
different correlation models. The first test is: H0 : ψ11 = ψ12, ψ12 = ψ22 and ψ22 = ψ and
φ11 = φ12 = φ22 = φ with LR a∼ χ2(6). This test gives p-values of 0.000 for each variance
process separately when comparing the Block-DCC against the DCC, meaning that for 1%
significance level the block correlation model is preferred. The LR statistic ranges from 136
when using the Spline-Garch variance process at the first stage to 170 for the Spline-Garch-X
for the Block-DCC models. The results for comparing the Block-cDCC against the cDCC
are more extreme, with p-values again 0.000 for all variance processes, but here the LR
statistics range from 1516 for the Spline-Garch-X to 2292 for the Spline-Garch model. The
log-likelihood for the Block-DCC-Y is smaller than the Block-DCC, meaning that a LR-test
cannot be performed, the same holds true in the cDCC case.

The forecast performance measure of the mean absolute error is smallest when using
the Log-Garch-Midas-X model in the first stage and largest when using the Spline-Garch-X
model. A Diebold-Mariano-West test is needed to distinguish the results of the absolute
errors.

Table 10: This table shows the t-statistics of the Diebold-Mariano-West tests with H0 of equal forecast accuracy over
the whole sample. The covariance models on the horizontal axis, with the respective variance models as first stage are
statistically compared to the benchmark models on the vertical axis, where No Block structure indicates a test of the
block-correlation model against the correlation models without a block strucure.

DM
Spline-Garch Spline-Garch-X Log-Garch-Midas-X

DCC cDCC Block-DCC Block-cDCC DCC cDCC Block-DCC Block-cDCC DCC cDCC Block-DCC Block-cDCC

EWMA -9.511 -10.112 -9.651 -9.632 0.292 -0.060 0.146 0.167 -7.475 -7.659 -7.935 -8.004
GJR -5.488 -5.215 -5.438 -5.451 -5.234 -4.956 -5.201 -5.212 -5.613 -5.486 -5.530 -5.528
No Block structure -6.096 -1.283 -6.145 -9.922 -7.324 -3.028

The DMW test shows the results for statistically comparing the absolute errors over time of
the different covariance models with the different first stage variance models. An absolute
t-statistic greater than 1.96 indicates a rejection of the null hypothesis of equal forecast
accuracy at the 0.05 significance level. A negative sign implies that the covariance model
produced smaller average losses than the benchmark model and is thus preferred. When
comparing the covariance processes to the multivariate EWMA model, both the DCC and
cDCC with and without block structure outperform the EWMA model on a 5% level, with
the exception when using the Spline-Garch-X as first stage. The DCC and cDCC models
with and without a block structure also statistically outperform the diagonal model with
GJR processes on the diagonal for each bank on a 5% significance level. The most interesting
result of this table is that the block structure in the correlation models is necessary because
all of the block correlation models outperform their counterpart without a block structure on
a 5% significance level, with the exception of Block-cDCC-Spline-Garch.
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Fig. 3: The plots depict the correlation processes over the whole sample period for the HSBC bank returns against
the JPM returns. Blue line uses the Block-CDCC-Spline-Garch-X, the green line the Block-CDCC-Spline-Garch and
in black the Block-DCC-Log-Garch-Midas-X.

The plots in the figure above show the daily in-sample correlations between the HSBC returns
and JPM using the Block-CDCC model with all of the two component volatility models as
first step separately. The blue line refers to the Block-CDCC-Spline-Garch-X model, green
is Spline-Garch and in black the Log-Garch-Midas-X. Two things are observed: the Block-
CDCC all follow a very similar path. The second observation is that they only differ a lot in
the period of 2009, where the Block-CDCC-Spline-Garch-X shows a large spike. The other
two models show also spikes in that period, but less substantial.

4.5 Value-at-Risk Backtesting

Table 11: The table shows the results for the unconditional coverage, independence and conditional coverage
backtests for the VaR95%. The European, American bank returns are shown separately and combined. The second
column shows the correlation models using the variance processes shown on the vertical. A minus indicates univariate
results. The π̂ indicates empirical percentage of violations, π̂01 = T01/(T00 + T01) and π̂11 = T11/(T10 + T11) are the
ML estimates of π01 and π11, while puc, pind and pcc show the p-values for respectively the LRuc, LRind and LRcc

tests which are respectively asymptotically chi-distributed with one, one and 2 degrees of freedom.

Model
Spline-Garch Spline-Garch-X Log-Garch-Midas-X

π̂ π̂01 π̂11 puc pind pcc π̂ π̂01 π̂11 puc pind pcc π̂ π̂01 π̂11 puc pind pcc

EU
- 0.050 0.043 0.050 0.925 0.673 0.911 0.049 0.033 0.049 0.809 0.266 0.524 0.049 0.036 0.049 0.775 0.384 0.658
DCC 0.049 0.038 0.049 0.806 0.469 0.747 0.049 0.038 0.049 0.868 0.448 0.740 0.049 0.036 0.049 0.775 0.384 0.658
cDCC 0.048 0.039 0.048 0.532 0.576 0.706 0.049 0.038 0.049 0.751 0.489 0.749 0.049 0.041 0.049 0.836 0.609 0.859

US
- 0.046 0.052 0.046 0.314 0.726 0.568 0.045 0.054 0.045 0.142 0.575 0.292 0.046 0.044 0.046 0.280 0.900 0.556
DCC 0.044 0.061 0.044 0.104 0.322 0.164 0.045 0.059 0.045 0.189 0.398 0.297 0.045 0.045 0.045 0.161 0.987 0.377
cDCC 0.044 0.061 0.044 0.074 0.288 0.116 0.046 0.064 0.046 0.247 0.265 0.276 0.045 0.045 0.045 0.138 0.959 0.335

ALL

- 0.048 0.045 0.048 0.532 0.854 0.811 0.048 0.051 0.048 0.486 0.834 0.769 0.048 0.048 0.048 0.657 0.977 0.908
DCC 0.046 0.035 0.046 0.314 0.432 0.444 0.048 0.034 0.048 0.486 0.359 0.516 0.047 0.043 0.047 0.358 0.844 0.645
cDCC 0.046 0.035 0.046 0.314 0.432 0.444 0.046 0.035 0.046 0.247 0.471 0.396 0.047 0.043 0.048 0.496 0.762 0.760
Block-DCC 0.047 0.045 0.047 0.437 0.907 0.736 0.047 0.051 0.047 0.395 0.780 0.672 0.047 0.043 0.047 0.447 0.789 0.725
Block-cDCC 0.047 0.045 0.047 0.437 0.907 0.736 0.047 0.051 0.047 0.395 0.780 0.672 0.047 0.043 0.047 0.447 0.789 0.725
Block-DCC-Y 0.048 0.045 0.048 0.532 0.854 0.811 0.047 0.045 0.047 0.439 0.907 0.738 0.047 0.043 0.048 0.496 0.762 0.760
Block-cDCC-Y 0.048 0.045 0.048 0.483 0.880 0.775 0.047 0.045 0.047 0.439 0.907 0.738 0.047 0.043 0.048 0.496 0.762 0.760

Table 11 shows the backtest results for the VaR95% using all of the variance and correlation
processes for separately EU, US and using both combined (ALL)23. For the unconditional
coverage test the empirical percentage of violations π̂, varies between 4.4% to 5%, which
comes close to the 5% which they are compared to. The VaR uc backtests have the lowest

23In the appendix table 21 shows the same table for VaR99%
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π̂ for the US with values of 4.4% to 4.6% and fails the unconditional coverage for the cDCC
model at 10% significance level using the Spline-Garch model at first stage. The DCC and
cDCC are too conservative and lead to more violations than expected especially for the US
and ALL. The univariate approach using only the EU returns give percentage violations of
4.9% to 5%. Now these results are compared to the backtest results of VaR99%. The p-values
range between 24.8% and 96.7% which is significantly larger than the significance levels. In
the EU, the empirical percentage of violations come closest to the 1%, whereas using all of
the banks, these values come as low as 0.8%. The block models have the lowest violation
percentages, indicating that these models are again preferred. For the independence test, the
results show that the difference between π̂01 and π̂11 vary between 0.000 and 0.017, indicating
that the hit sequences are independent in some cases, when the difference is almost 0. On a
5% significance level, non of the differences are significantly different from 0. This means that
the null hypothesis of independence cannot no rejected, meaning that there is no volatility
clustering. When using the 1% level, the p-values for the independence test are substantially
lower, rejecting the the null for all of the variance processes for EU and US and for the block
correlation models when using Spline-Garch-X or Log-Garch-Midas-X as first stage. Due to
the lack of observations at a 1% violation level, the results can be biased or obtained through
luck. Finally for the conditional coverage test, the results show that p-values range from
0.116 to 0.911, which is larger than the 5% level, indicating that the correlation models do
not violate the independence property and supply the just coverage rate. For the 1% level,
the p-values are again much smaller, rejecting the null when the Log-Garch-Midas-X model
is used as first stage. In Europe, the p-values for all of the tests are much larger than for the
US, indicating that the VaR estimates are preferred for Europe.

The previous results showed that the Block-cDCC-Spline-X is the most preferred model.
Therefore I depict the -VaR estimates over the whole sample using the Block-cDCC-Spline-X
for the correlation process against the portfolio returns rPt using all of the EU & US bank
returns24.

2001 2003 2005 2007 2009 2011 2013 2015 2016
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0.1

0.2
Portfolio Returns, -VaR95 and -VaR99

Fig. 4: This figure shows the portfolio returns using equally weights over all the banks over the full data sample using
the Block-cDCC-Spline-X as correlation model. The blue line represents the portfolio returns, the green line the
-VaR95% estimates and the red line represents the -VaR99% estimates.

Looking at the figure, the VaR value for the crisis end 2008 show a large outlier, indicating
overestimation. Overall the VaR seems to give accurate results of the number of violations.

24The VaR plots for the other models are very similar and therefore are left out.
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It is not possible to judge whether this model is very good because the true correlations are
not observable.

4.6 Realized Variance and FCI Components

In the previous results the Log-Garch-Midas-X model performed almost as good as the Spline-
Garch-X model when using the EU/US FCI as explanatory variable. In this section two
things are done: at first monthly realized variance as explanatory variable is compared to
the monthly FCI for the Log-Garch-Midas-X model. Second, the components of the equity
market for the EU and US FCI are used as explanatory variables together with the FCI
without the effects of these components. Table 12 shows the parameter estimates for these
models for the HSBC and JPM banks representing both EU and US25.

Table 12: This table shows the parameters for the different correlation models using the variance processes:
Log-Garch-Midas-RV, Log-Garch-Midas-BigX and Spline-Garch-BigX as first stage for both the HSBC bank and JPM
bank. RV stands for monthly Realized Variance and BigX stands for using the bloomberg components separately.

HSBC JPM
Log-Midas-RV Log-Midas-BigX Spline-BigX Log-Midas-RV Log-Midas-BigX Spline-BigX

α 0.048 0.042 0.050 0.023 0.033 0.017
(0.013) (0.024) (0.034) (0.01) (0.014) (0.008)

γ 0.054 0.081 0.023 0.081 0.111 0.037
(0.018) (0.045) (0.119) (0.016) (0.026) (0.016)

β 0.916 0.875 0.901 0.935 0.859 0.962
(0.018) (0.027) (0.056) (0.012) (0.041) (0.013)

η -8.200 -8.506 -6.602 -8.235
(5.07) (0.13) (1.354) (0.12)

ϑ1 -4.720 -0.254 -2.957 -0.507
(0.482) (0.072) (0.662) (0.045)

ρ1 83.991 1.793 97.348 3.270
(27.36) (1.229) (15.396) (0.733)

ϑ2 0.063 -0.216
(0.083) (0.039)

ρ2 2.437 33.619
(1.18) (5.689)

ϑ3 0.072 -0.222
(0.291) (0.069)

ρ3 21.944 56.624
(14.78) (7.133)

κ0 -8.674 -7.182
(0.121) (0.316)

κ1 -0.151 -0.250
(0.119) (0.074)

κ2 -0.140 -0.495
(0.078) (0.22)

κ3 0.326 -0.028
(0.175) (0.024)

ν 5.582 5.804 6.286 6.414 6.954 5.954
(0.33) (0.544) (0.628) (0.656) (0.859) (0.488)

LogL 10219 10228 10964 9225 9228 9780
AIC -5.915 -5.918 -5.884 -5.327 -5.338 -5.248
BIC -5.902 -5.898 -5.870 -5.327 -5.319 -5.235
Var(zt) 0.990 0.990 0.990 0.998 0.998 0.980

Comparing the two Log-Garch-Midas-X models with respectively monthly RV and monthly
FCI as explanatory variable, the same pattern is observed for Europe and America. The lever-
age effect γ declines, while the β increases, implying that the RV absorbs some of this impact.

25The other banks are available upon request and are left out due to insufficient space while adding little
extra information
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The scaling parameter ϑ estimates show negative values for both HSBC and JPM for both
models. The value declines from FCI to RV, indicating that an increase in the RV is asso-
ciated with a bigger decrease in the long-term variance than the same size increase in FCI.
The value of the log-likelihood decreases in the model with the monthly RV as explanatory
variable.

For the Log-Midas-BigX model with as explanatory variables: cleaned European FCI,
standardized Eurostoxx50 and standardized VDAX, the scaling parameter ϑ belonging to the
FCI increases, while the parameters for the other components are both positive (parameter for
Eurostoxx50 is not significantly different from zero). For the Spline-Garch-BigX model, the
same phenomena holds true where the κ1 increases from using EU FCI as explanatory variable
to using the three variables. The parameter for the standardized Eurostoxx50 is negative
while the parameter for the standardized VDAX is positive, indicating that information is
lost when using only the FCI instead of splitting them. For America with cleaned US FCI,
standardized S&P500 and standardized VIX, the scaling parameter for cleaned FCI decreases
while the parameters for the other two components are both negative. So here the VIX has
the opposite effect on the variance as the VDAX for Europe. The κ1 increases from using US
FCI as explanatory variable. The parameter for the standardized S&P500 is again negative
as in Europe, while the parameter for the standardized VIX is negative for the US as in the
Log-Garch-Midas-BigX model for JPM.

5 Conclusion
This research studies volatilities and correlation models in the financial sector. The one
component models Garch and GJR are compared to the two component models: Spline-
Garch, Spline-Garch-X and Log-Garch-Midas-X, where the last two include the EU & US
financial condition indexes as explanatory variable. A block structure in the correlation
matrices is considered and statistically compared. The data that I use is daily stock prices
of the EU & US largest banks during the period 2001 to 2016, where the different currencies
are all converted to Euros, by considering the corresponding exchange rates. The financial
conditions are proxied by the Bloomberg EU and US FCI.

The results show that a block structure in the correlations is needed in order to capture
the EU, US and cross-wise correlations better in both an economic and statistical way. Next,
incorporating financial conditions indexes has a significant affect on the variance processes
both statistically and economically. Specifically, variances go up when financial conditions
get worse. The two component models are preferred to the one component in a statistical
way. The second component of the Spline-Garch model which captures the long-term effects,
captures the cycles nicely for both EU & US. The second component of the two component
models with explanatory variables is also able to capture the effects through the FCI variable.
Using the financial conditions is preferred to using realized variances as explanatory variable.
Lastly, splitting the components of the FCI adds economic information.
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A Sample Correlation of EU & US returns
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Fig. 5: Here the sample correlations are plotted sepearately.

B Bloomberg FCI of EU & US

2001 2003 2005 2007 2009 2011 2013 2015 2016
-14

-12

-10

-8

-6

-4

-2

0

2

Z
-S

c
o

re

Bloomberg Euro Area Financial Conditions Index

2001 2003 2005 2007 2009 2011 2013 2015 2016
-14

-12

-10

-8

-6

-4

-2

0

2

Z
-S

c
o

re

Bloomberg U.S. Financial Conditions Index

Fig. 6: The EU and US FCI seperately.
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C European Variance Processes

Table 13: This table shows the summary of parameter estimates and performance measures for the different variance
processes using all of the European banks. There are 3 numbers for each parameter/measure which denote from above
to below the minimum, average and maximum.

Garch GJR Spline-Garch Spline-Garch-X Log-Garch-Midas-X

α 0.057 0.008 0.009 0.011 0.006
0.079 0.023 0.021 0.030 0.022
0.107 0.045 0.040 0.066 0.045

γ 0.054 0.069 0.033 0.066
0.090 0.103 0.076 0.101
0.132 0.149 0.112 0.159

β 0.893 0.917 0.874 0.838 0.859
0.919 0.930 0.911 0.909 0.906
0.939 0.945 0.941 0.947 0.948

ζ -8.590
-7.638
-7.110

K 2
8
14

κ0 -8.701
-7.811
-6.983

κ1 -0.440
-0.344
-0.220

η -8.659
-7.651
-6.579

ϑ -0.523
-0.292
0.136

ρ 1.776
16.854
90.952

ν 5.114 5.284 4.680 5.516 5.252
6.937 6.606 6.593 6.898 6.643
9.751 9.140 9.597 9.607 9.224

LogL 8,878 8,895 8,900 8,912 8,286
9,351 9,380 9,392 9,391 8,774
10,921 10,929 10,945 10,945 10,225

AIC -5.862 -5.865 -5.866 -5.875 -5.918
-5.019 -5.033 -5.035 -5.040 -5.078
-4.764 -4.773 -4.771 -4.783 -4.795

BIC -5.857 -5.859 -5.835 -5.865 -5.906
-5.014 -5.027 -5.011 -5.030 -5.065
-4.760 -4.767 -4.748 -4.773 -4.783

Var(zt) 0.959 0.985 0.936 0.986 0.986
1.003 0.997 0.982 1.005 1.001
1.078 1.008 1.018 1.019 1.043
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Table 14: This table ranks the variance models for each of the largest European bank based on the Akaike and
Schwarz information criteria, with 1 being the best model with the lowest AIC or BIC.

AIC BIC
Garch GJR Spline-Garch Spline-Garch-X Log-Garch-Midas-X Garch GJR Spline-Garch Spline-Garch-X Log-Garch-Midas-X

HSBC 5 4 3 2 1 4 3 5 2 1
BNP.PA 5 4 3 2 1 5 3 4 2 1
ACA.PA 5 4 2 3 1 5 3 4 2 1
DBK.DE 5 3 4 2 1 4 3 5 2 1
BCS 5 3 4 2 1 5 3 4 2 1
GLE.PA 5 4 2 3 1 5 3 4 2 1
RBS.L 5 3 4 2 1 4 3 5 2 1
SAN 5 4 3 2 1 5 3 4 2 1
UCGMI 5 3 4 2 1 4 3 5 2 1
ING 5 4 3 2 1 5 3 4 2 1
CS 5 4 3 2 1 4 3 5 2 1

Table 15: This table ranks the variance models for each of the largest European bank based on the absolute distance
between the variance of the standardized returns and 1 and based on the MAE-SD. The number 1 indicates the most
preferred model, with the lowest absolute distance and/or lowest MAE-SD.

|Var(zt)-1| MAE-SD
Garch GJR Spline-Garch Spline-Garch-X Log-Garch-Midas-X Garch GJR Spline-Garch Spline-Garch-X Log-Garch-Midas-X

HSBC 5 2 1 3 4 5 4 1 3 2
BNP.PA 3 2 5 4 1 5 4 2 3 1
ACA.PA 4 1 3 2 5 5 4 1 3 2
DBK.DE 2 1 5 3 4 5 3 4 2 1
BCS 4 3 5 1 2 3 1 4 5 2
GLE.PA 1 2 3 4 5 5 4 3 2 1
RBS.L 4 1 5 2 3 5 2 4 3 1
SAN 2 3 1 4 5 5 4 2 3 1
UCGMI 5 1 4 3 2 1 4 5 2 3
ING 5 1 4 2 3 5 4 2 3 1
CS 4 3 2 1 5 5 4 2 3 1
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D American Variance Processes

Table 16: This table shows the summary of parameter estimates and performance measures for the different variance
processes using all of the American banks. There are 3 numbers for each parameter/measure which denote from above
to below the minimum, average and maximum.

Garch GJR Spline-Garch Spline-Garch-X Log-Garch-Midas-X

α 0.039 0.009 0.004 0.000 0.006
0.077 0.025 0.023 0.019 0.027
0.144 0.052 0.048 0.050 0.054

γ 0.039 0.052 0.022 0.054
0.077 0.092 0.051 0.092
0.113 0.126 0.099 0.165

β 0.832 0.912 0.809 0.873 0.840
0.918 0.932 0.907 0.938 0.898
0.957 0.955 0.948 0.982 0.959

ζ -9.191
-7.166
-6.208

K 5
10
15

κ0 -8.799
-7.890
-6.751

κ1 -0.451
-0.370
-0.295

η -8.485
-7.916
-6.683

ϑ -0.556
-0.362
0.063

ρ 1.260
20.880
84.498

ν 4.459 4.560 4.717 4.650 4.560
5.919 6.167 6.052 6.521 6.062
10.000 7.353 7.500 7.760 7.290

LogL 8,954 8,974 8,981 8,991 8,476
9,749 9,770 9,783 9,789 9,176
10,998 11,017 11,035 11,039 10,314

AIC -5.903 -5.912 -5.917 -5.926 -5.970
-5.232 -5.243 -5.244 -5.254 -5.310
-4.805 -4.815 -4.812 -4.826 -4.905

BIC -5.898 -5.906 -5.892 -5.915 -5.957
-5.228 -5.237 -5.217 -5.244 -5.298
-4.801 -4.809 -4.782 -4.816 -4.893

Var(zt) 0.931 0.977 0.920 0.967 0.955
0.992 0.998 0.987 1.001 0.994
1.042 1.043 1.045 1.029 1.036
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Table 17: This table ranks the variance models for each of the largest American bank based on the Akaike and
Schwarz information criteria, with 1 being the best model with the lowest AIC or BIC.

AIC BIC
Garch GJR Spline-Garch Spline-Garch-X Log-Midas-X Garch GJR Spline-Garch Spline-Garch-X Log-Midas-X

JPM 5 3 4 2 1 4 3 5 2 1
BAC 5 4 3 2 1 4 3 5 2 1
WFC 5 4 3 2 1 5 3 4 2 1
C 5 4 3 2 1 4 3 5 2 1
GS 5 4 3 2 1 5 3 4 2 1
MS 5 3 4 2 1 4 3 5 2 1
USB 5 3 4 2 1 4 3 5 2 1
BK 5 3 4 2 1 4 3 5 2 1
PNC 5 4 3 2 1 4 3 5 2 1
COF 5 4 3 2 1 4 3 5 2 1
TD 5 4 3 2 1 4 3 5 2 1
STT 5 4 3 2 1 4 3 5 2 1
SCHW 5 3 4 2 1 4 3 5 2 1
STI 5 3 4 1 2 4 3 5 1 2

Table 18: This table ranks the variance models for each of the largest American bank based on the absolute distance
between the variance of the standardized returns and 1 and based on the MAE-SD. The number 1 indicates the most
preferred model, with the lowest absolute distance and/or lowest MAE-SD.

|Var($z_t$)-1| MAE-SD
Garch GJR Spline-Garch Spline-Garch-X Log-Midas-X Garch GJR Spline-Garch Spline-Garch-X Log-Midas-X

JPM 5 1 2 3 4 5 3 2 4 1
BAC 2 1 3 4 5 5 4 1 3 2
WFC 5 2 4 3 1 5 2 4 1 3
C 4 3 5 1 2 5 4 1 3 2
GS 5 4 3 2 1 5 3 2 4 1
MS 2 1 5 4 3 5 2 3 4 1
USB 3 2 5 4 1 4 2 5 3 1
BK 4 2 5 1 3 4 2 3 5 1
PNC 1 3 2 4 5 5 4 2 3 1
COF 3 4 5 2 1 4 3 2 5 1
TD 3 5 4 1 2 5 4 2 3 1
STT 2 1 5 4 3 5 4 1 3 2
SCHW 1 2 3 4 5 4 3 2 5 1
STI 3 2 5 4 1 4 2 5 1 3
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E Combined Variance Processes

Table 19: This table shows the summary of parameter estimates and performance measures for the different variance
processes using all of the banks. There are 3 numbers for each parameter/measure which denote from above to below
the minimum, average and maximum.

Garch GJR Spline-Garch Spline-Garch-X Log-Garch-Midas-X

α 0.039 0.008 0.004 0.000 0.006
0.078 0.024 0.022 0.024 0.025
0.144 0.052 0.048 0.066 0.054

γ 0.039 0.052 0.022 0.054
0.083 0.097 0.063 0.096
0.132 0.149 0.112 0.165

β 0.832 0.912 0.809 0.838 0.840
0.918 0.931 0.909 0.924 0.902
0.957 0.955 0.948 0.982 0.959

ζ -9.191
-7.347
-6.208

K 2
9
15

κ0 -8.799
-7.850
-6.751

κ1 -0.451
-0.360
-0.220

η -8.659
-7.795
-6.579

ϑ -0.556
-0.330
0.136

ρ 1.260
19.034
90.952

ν 4.459 4.560 4.650 4.560
6.367 6.360 6.642 6.328
10.000 9.140 9.607 9.224

LogL 8,878 8,895 8,900 8,912 8,286
9,574 9,598 9,611 9,610 8,991
10,998 11,017 11,035 11,039 10,314

AIC -5.903 -5.912 -5.917 -5.926 -5.970
-5.138 -5.151 -5.152 -5.158 -5.204
-4.764 -4.773 -4.771 -4.783 -4.795

BIC -5.898 -5.906 -5.892 -5.915 -5.957
-5.134 -5.145 -5.126 -5.148 -5.191
-4.760 -4.767 -4.748 -4.773 -4.783

Var(zt) 0.931 0.977 0.920 0.967 0.955
0.997 0.997 0.985 1.002 0.997
1.078 1.043 1.045 1.029 1.043
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F Correlation Processes Parameter Estimates

Table 20: This table shows the parameters for the different correlation models using the three two component
variance processes as first stage. The parameter estimates are based using the whole sample with all the bank returns
included.

Vola. Spline-Garch Spline-Garch-X Log-Garch-Midas-X
Corr. Block-DCC Block-cDCC Block-DCC-Y Block-cDCC-Y Block-DCC Block-cDCC Block-DCC-Y Block-cDCC-Y Block-DCC Block-cDCC Block-DCC-Y Block-cDCC-Y

ψ11 0.007 0.007 0.005 0.005 0.007 0.008 0.005 0.005 0.007 0.007 0.005 0.005
(0.003) (0.015) (0.002) (0.005) (0.003) (0.003) (0.003) (0.001) (0.004) (0.004) (0.003) (0.003)

ψ12 0.004 0.004 0.005 0.005 0.004 0.004 0.005 0.005 0.004 0.004 0.005 0.005
(0.006) (0.002) (0.002) (0.005) (0.003) (0.002) (0.002) (0.002) (0.003) (0.003) (0.002) (0.003)

ψ22 0.006 0.006 0.005 0.005 0.006 0.007 0.005 0.005 0.005 0.006 0.005 0.005
(0.002) (0.002) (0.004) (0.001) (0.001) (0.002) (0.001) (0.003) (0.001) (0.001) (0.002) (0.002)

φ11 0.978 0.978 0.984 0.984 0.974 0.973 0.980 0.981 0.974 0.973 0.983 0.983
(0.008) (0.048) (0.009) (0.03) (0.012) (0.014) (0.011) (0.004) (0.018) (0.021) (0.010) (0.011)

φ12 0.981 0.980 0.984 0.984 0.977 0.976 0.980 0.981 0.979 0.978 0.983 0.983
(0.006) (0.03) (0.017) (0.004) (0.008) (0.007) (0.006) (0.007) (0.011) (0.014) (0.006) (0.009)

φ22 0.983 0.983 0.984 0.984 0.981 0.980 0.980 0.981 0.984 0.982 0.983 0.983
(0.001) (0.011) (0.040) (0.028) (0.004) (0.005) (0.007) (0.01) (0.003) (0.004) (0.010) (0.008)

ξ11 0.210 0.214 0.001 0.001 0.026 0.050
(0.594) (0.652) (0.268) (0.257) (0.364) (0.354)

ξ12 0.209 0.214 0.001 0.001 0.026 0.050
(0.475) (0.306) (0.313) (0.325) (0.200) (0.207)

ξ22 0.208 0.214 0.001 0.001 0.026 0.050
(0.768) (0.536) (0.348) (0.35) (0.337) (0.345)

LogL 277,555 277,555 277,513 277,524 277,699 277,717 277,615 277,633 259,748 259,756 259,677 259,688

G Backtesting VaR 99%

Table 21: The table shows the results for the unconditional coverage, independence and conditional coverage
backtests for the VaR99%. The European, American bank returns are shown separately and combined. The second
column shows the correlation models using the variance processes shown on the vertical. A minus indicates univariate
results. The π̂ indicates empirical percentage of violations, π̂01 = T01/(T00 + T01) and π̂11 = T11/(T10 + T11) are the
ML estimates of π01 and π11, while puc, pind and pcc show the p-values for respectively the LRuc, LRind and LRcc

tests which are respectively asymptotically chi-distributed with one, one and 2 degrees of freedom.

Model
Spline-Garch Spline-Garch-X Log-Garch-Midas-X

π̂ π̂01 π̂11 puc pind pcc π̂ π̂01 π̂11 puc pind pcc π̂ π̂01 π̂11 puc pind pcc

EU
- 0.010 0.000 0.010 0.967 0.389 0.689 0.010 0.028 0.010 0.837 0.362 0.647 0.010 0.000 0.010 0.928 0.411 0.710
DCC 0.010 0.000 0.010 0.967 0.389 0.689 0.010 0.027 0.010 0.968 0.384 0.684 0.010 0.000 0.010 0.928 0.411 0.710
cDCC 0.010 0.000 0.010 0.967 0.389 0.689 0.009 0.000 0.009 0.709 0.415 0.670 0.010 0.000 0.010 0.928 0.411 0.710

US
- 0.010 0.056 0.010 0.836 0.050 0.143 0.010 0.056 0.010 0.837 0.050 0.143 0.009 0.067 0.009 0.428 0.027 0.064
DCC 0.009 0.029 0.009 0.587 0.320 0.527 0.009 0.059 0.009 0.588 0.039 0.103 0.009 0.065 0.009 0.539 0.031 0.081
cDCC 0.009 0.000 0.009 0.587 0.429 0.631 0.009 0.057 0.009 0.709 0.044 0.124 0.009 0.065 0.009 0.539 0.031 0.081

ALL

- 0.009 0.059 0.009 0.587 0.039 0.103 0.009 0.057 0.009 0.709 0.044 0.124 0.009 0.063 0.009 0.661 0.036 0.100
DCC 0.009 0.030 0.009 0.475 0.300 0.453 0.009 0.029 0.009 0.588 0.320 0.527 0.010 0.061 0.010 0.792 0.041 0.119
cDCC 0.009 0.030 0.009 0.475 0.300 0.453 0.009 0.030 0.009 0.476 0.300 0.454 0.009 0.063 0.009 0.661 0.036 0.100
Block-DCC 0.008 0.032 0.008 0.289 0.261 0.304 0.009 0.057 0.009 0.709 0.044 0.124 0.008 0.071 0.008 0.248 0.020 0.035
Block-cDCC 0.008 0.032 0.008 0.289 0.261 0.304 0.009 0.057 0.009 0.709 0.044 0.124 0.008 0.071 0.008 0.248 0.020 0.035
Block-DCC-Y 0.008 0.032 0.008 0.289 0.261 0.304 0.009 0.057 0.009 0.709 0.044 0.124 0.009 0.067 0.009 0.428 0.027 0.064
Block-cDCC-Y 0.008 0.032 0.008 0.289 0.261 0.304 0.009 0.057 0.009 0.709 0.044 0.124 0.009 0.067 0.009 0.428 0.027 0.064
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H Proxy of Covariance HSBC and JPM
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Fig. 7: The squared returns for respectively HSBC and JPM bank. The third figure represents a proxy for the
covariance between the returns of HSBC and JPM.

I Optimization Method Variance Processes
In this section of the appendix, I derive the optimization method used for the Variance
processes: Spline-Garch, Spline-Garch-X and Garch-Midas-X.

Maximum log-likelihood estimation is used where the bank returns are assumed to follow
a student-t distribution with the number of freedoms being the number of parameters minus
one, this negative log likelihood function is defined as:

-log L(θ) = 1
2

T∑
t=1

[
(υ + 1) log

(
1 + ε2t

τtgt(υ − 2)

)
+ log(τtgt)

]
−T log

(
Γ((υ + 1)/2)

Γ(υ/2)
√
π(υ − 2)

)
(34)

where θ represents the variance process parameters, Γ is the gamma density function, υ is
denoted as the number of freedoms.

Now Newton’s Method is used as an optimization approximation method on θ:

θk+1 = θk − J−1(θk)∇L(θk) (35)
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with gradient ∇L = ∂L
∂θ and Fisher Information matrix J = E

(
∂2L
∂θ∂θT

)
.

Now guess inital starting values for the Garch-Midas-X model: θ0 = [ω0, α0, γ0, β0,m0, ϑ0, w0].
Next calculate ∂τt/∂θ and ∂gt/∂θ for every parameter separately. These are then used to
calculate the gradient. Specifically:

∂τt
∂α

= 0, ∂τt
∂γ

= 0, ∂τt
∂β

= 0 (36)

∂τt
∂ϑ

= τt

K∑
k=1

λk(ω1ω2)Xt−k (37)

∂τt
∂m

= τt (38)

∂gt
∂α

= −1 +
ε2t−1
τt−1

+ β
∂gt−1
∂α

(39)

∂gt
∂γ

= −1
2 +

ε2t−1
τt−1

1(εt−1 < 0) + β
∂gt−1
∂γ

(40)

∂gt
∂β

= −1 + gt−1 + β
∂gt−1
∂β

(41)

∂gt
∂ϑ

=
−αε2t−1 − γ1(εt−1 < 0)ε2t−1

τ2
t−1

∂τt−1
∂ϑ

+ β
∂gt−1
∂ϑ

(42)

∂gt
∂m

=
−αε2t−1 − γ1(εt−1 < 0)ε2t−1

τ2
t−1

∂τt−1
∂m

+ β
∂gt−1
∂m

(43)

∂gt
∂w

=
−αε2t−1 − γ1(εt−1 < 0)ε2t−1

τ2
t−1

∂τt−1
∂w

+ β
∂gt−1
∂w

(44)

where 1 is an indicator function.

∂L

∂α
= 1

2

T∑
t=1

∂gt
∂α

/gt + υ + 1
2

T∑
t=1

−ε2t /(τtg2
t ) ·

∂gt

∂α

1 + ε2t /[τtgt(υ − 2)]
(45)

∂L

∂γ
= 1

2

T∑
t=1

∂gt
∂γ

/gt + υ + 1
2

T∑
t=1

−ε2t /(τtg2
t ) ·

∂gt

∂γ

1 + ε2t /[τtgt(υ − 2)]
(46)

∂L

∂β
= 1

2

T∑
t=1

∂gt
∂β

/gt + υ + 1
2

T∑
t=1

−ε2t /(τtg2
t ) ·

∂gt

∂β

1 + ε2t /[τtgt(υ − 2)]
(47)

∂L

∂ϑ
= 1

2

T∑
t=1

∂τt
∂ϑ gt + τt

∂gt

∂ϑ

τtgt
+ υ + 1

2

T∑
t=1

−ε2t /(τ2
t g

2
t ) · (∂τt

∂ϑ gt + τt
∂gt

∂ϑ )
1 + ε2t /[(τtgt(υ − 2)]

(48)

∂L

∂m
= 1

2

T∑
t=1

∂τt
∂mgt + τt

∂gt

∂m

τtgt
+ υ + 1

2

T∑
t=1

−ε2t /(τ2
t g

2
t ) · ( ∂τt

∂mgt + τt
∂gt

∂m)
1 + ε2t /[(τtgt(υ − 2)]

(49)

∂L

∂w
= 1

2

T∑
t=1

∂τt
∂w gt + τt

∂gt

∂w

τtgt
+ υ + 1

2

T∑
t=1

−ε2t /(τ2
t g

2
t ) · (∂τt

∂w gt + τt
∂gt

∂w )
1 + ε2t /[(τtgt(υ − 2)]

. (50)

Then the negative likelihood gradient is [∂L∂α ,
∂L
∂γ ,

∂L
∂β ,

∂L
∂ϑ ,

∂L
∂m ,

∂L
∂w ].

∂lt(θk)
∂θ .
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The Spline-Garch and Spline-Garch-X are analogous with the difference for the Spline-
Garch-X being the change of ∂τt

∂ϑ ,
∂τt
∂m and ∂τt

∂w equations for ∂τt
∂κ0

= τt and ∂τt
∂κ1

= τt ·Xt. The
∂gt

∂ϑ ,
∂gt

∂m and ∂gt

∂w are replaced for ∂gt

∂κ0
and ∂gt

∂κ1
. Lastly, ∂L

∂ϑ ,
∂L
∂m and ∂L

∂w are replaced for ∂L
∂κ0

and ∂L
∂κ1

such that the negative gradient is equal to [∂L∂α ,
∂L
∂γ ,

∂L
∂β ,

∂L
∂κ0

, ∂L∂κ1
].

For the Spline-Garch, change the ∂τt
∂ϑ ,

∂τt
∂m and ∂τt

∂w equations for
∂τt
∂ζ = ew0i+

∑K

k=1 wki((t−tk−1)+)2
, ∂τt
∂w0

= t · τt and ∂τt
∂wk

= ((t− tk−1)+)2 · τt for k =
{1, 2, ...,K}. The ∂gt

∂ϑ ,
∂gt

∂m and ∂gt

∂w are replaced for ∂gt

∂ζ ,
∂gt

∂w0
and ∂gt

∂wk
for k = {1, 2, ...,K}.

Lastly, ∂L
∂ϑ ,

∂L
∂m and ∂L

∂w are replaced for ∂L
∂ζ ,

∂L
∂w0

and ∂L
∂wk

for k = {1, 2, ...,K}. Now the
negative gradient is equal to [∂L∂α ,

∂L
∂γ ,

∂L
∂β ,

∂L
∂ζ ,

∂L
∂w0

, ∂L
∂w1

, ..., ∂L
∂wK

].
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