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Abstract

In this thesis, we use the Critical Cost Efficiency Index and the Hautman
Maks Index to evaluate the consistency of subjects in the dataset. As a result, we
show that by simply allowing subjects for one significant mistake (by removing
the worst observation with the highest wasted budget), the consistency of the
dataset increases by 6 percentage points. Furthermore, we demonstrate that by
excluding the worst observation per subject, the fraction of subjects wasting 5%
or less of their budget increases from 45% to 64%. Therefore, the larger and
more consistent dataset can be used for further study. Finally, we apply the
aforementioned findings to various socio–economic groups. The results indicate
that the highest improvement in terms of the efficiently spent budget can be seen
among retired and 65+ aged subjects.
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1 Introduction

Recently, a great deal of emphasis has been placed on understanding a consumer be-
haviour and establishing a pattern that is able to predict consumer choices or at least
to measure the extent of inconsistency of choices (van Bruggen & Heufer, 2017).12 The
classical utility maximization model has traditionally been used as a starting point for
the measure of consumer’ consistency. As a consequence, Afriat (1972) tries to measure
the level of inconsistency from the classical model. More precisely, Afriat (1972) intro-
duces an index which captures the fraction of inconsistently used budget at the level of
an individual consumer. Furthermore, Houtman & Maks (1985) contribute to this topic
with the idea to measure the maximum number of choices consistent with the classical
model. Using the CentERpanel data, this thesis puts the aforementioned techniques to-
gether and shows the application and relationship between both approaches. We argue
that by excluding the worst observation per subject, one will obtain the higher level of
consistency of the dataset accompanied with the larger fraction of subjects satisfying
this level. This implicates that one can test the theoretical models with the larger
and more consistent dataset. Therefore, this study shows that excluding the worst ob-
servation per subject may be better approach than excluding ‘inconsistent’ subjects to
achieve larger and more consistent dataset. The dataset consists of 25 budget allocation
decision choices per subject in a two–dimensional commodity space.

Our sample indicates that, on average, subjects waste around 12% of their budget.
This corresponds with almost 3 inconsistent choices in the sense of using the whole
budget efficiently. We show that by simply allowing subjects for one significant mis-
take (in terms of removing the worst observation with the highest wasted budget), the
consistency of the dataset increases by 6 percentage points (pp). The other important
advantage of excluding the worst observation per subject is that a larger number of
subjects satisfy a higher threshold of consistently used budget (the threshold depends
on the subjective opinion of the researcher).3 Using our sample, we demonstrate that
by excluding the worst observation per subject, the fraction of subjects wasting 5%
or less of their budget increases from 45% to 64%. Therefore, a larger and more con-
sistent dataset can be used for further analysis by removing only a single choice from
each data set. Furthermore, using Bronars (1987) and Beatty & Crawford (2011) ap-
proaches for measuring the demand of the theoretical restriction placed on the data, we
show that excluding the worst choice per subject yields higher optimal level of CCEI
Index (resulting in wasting less budget) with larger fraction of subjects satisfying this
optimal level of CCEI Index. Finally, we apply the aforementioned findings to various
socio–economic groups. The results indicates that the highest improvement in terms of
efficiently spent budget can be seen among retired and 65+ aged subjects.

This thesis is structured as follows. In section 2, we summarize the core literature
that is at the base of this empirical study. In section 3, we describe the dataset and
the methodological background for this analysis. In section 4, we provide the results of
this study. The conclusion can be found in section 5.

1By consistency is meant that choices do satisfy Generalized Axiom of Revealed Preferences
(GARP), described in section 3.

2For example (Sippel, 1997), (Harbaugh & Krause, 2000), (Mattei, 2000), (Andreoni & Miller,
2002), (Février & Visser, 2004), (Fisman et al., 2007), (Dickinson, 2009), (Banerjee & Murphy, 2011),
(Camille et al., 2011), (Dawes et al., 2011), (Visser & Roelofs, 2011), (Bruyneel et al., 2012), (Becker
et al., 2013), (Burghart et al., 2013), and (Ahn et al., 2014).

3Varian (1991) in his study suggest that to waste 5% or less of the budget is a reasonably close to
utility maximization.
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2 Related Literature

The literature on testing the consumer revealed preferences is rich and includes a va-
riety of classical papers and recent contributions. Since Tversky & Kahneman (1975)
demonstrated that consumer decision making is influenced by heuristics and biases,
such as anchoring, framing, representativeness, loss aversion, etc., the demand for a
more sophisticated method of measuring the consumer utility function has increased.
However, as Choi et al. (2007) state, the behaviour of subjects is very complex and
it is almost impossible to classify it in a simple taxonomy. Moreover, they point out
that most subjects behave as utility maximizers.4 Therefore, to measure the extent of
deviation from the utility maximization model, we employ Afriat’s (1967) approach,
which states that a finite number of individuals’ choices from a series of budget sets can
be described by a well–behaved (monotonic, continuous, and concave) utility function
if and only if subjects satisfy a condition he called cyclic consistency. This statement
was refined and later proved by Varian (1982), who shows that satisfying the Gener-
alized Axiom of Revealed Preferences (GARP) is a necessary and sufficient condition
for consumer choices to be consistent with the maximization of a continuous, concave,
locally nonsatiated, and weakly monotonic utility function.

Furthermore, Afriat (1972) introduced the Critical Cost Efficiency Index (CCEI),
which was later used to measure the fraction by which all budgets need to be shifted
to satisfy GARP. In a study by Varian (1991), authors apply the measure of the CCEI
Index for 38 subjects (the dataset was collected by Battalio et al. (1973) and consists
of 38 long–term patients operating in a token economy – they can exchange tokens
for goods such as cigarettes, etc. – at the Central Islip State Hospital) and find that
their choices are very close to optimal behaviour (maximization of utility). In a study
by Choi et al. (2014), the authors use the CCEI Index to measure the extent of irra-
tionality across different socio–economic groups. They find that, for example, retired
subjects have the highest level of wasteful budget allocation (almost 17%), whereas
young subjects are the best utility maximizers, wasting ‘only’ around 8% of their bud-
get. Another study by Harbaugh et al. (2001) shows that the level of inconsistency does
not substantially differ between children and adults, and therefore, the same modelling
of choice behaviour can be used for both groups. Another study using the CCEI Index
done by Andreoni & Miller (2002) shows that altruistic behavior can be consistent with
the GARP axiom and it can therefore be considered ‘rational’.

A different approach that measures the extent of irrationality was introduced by
Houtman & Maks (1985). In their study, they introduce the Hautman Maks (HM)
Index, which measures the maximum number of observations satisfying the Strong
Axiom of Revealed Preference (SARP) as well as an algorithm which computes the
HM Index. Based on the Houtman & Maks (1985) approach, Gross & Kaiser (1996)
construct an algorithm that computes the maximal subset consistent with the Weak
Axiom of Revealed Preferences (WARP) for any dimensional cases, while demonstrating
its application on experimental choice data. Furthermore, Heufer & Hjertstrand (2015)
apply Gross & Kaiser (1996) algorithm to find the maximal subset consistent with
the WARP, making use of Banerjee & Murphy (2006) result that shows that Weak
Generalized Axiom of Revealed Preferences (WGARP) and the GARP are equivalent
in the two-dimensional commodity space. Moreover, they use a new Mixed Integer
Linear Programming (MILP) approach for higher dimensional commodity space.

4In terms of maximizing a complete, transitive preferences ordering over some portfolios (Choi et al.,
2007).
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Another approach to analyse the choices made by individual consumers has been
used by Bronars (1987). In their study, besides the other methods, randomly generated
choices are compared to the actual choices to check the power of the data. Bronars
(1987) method has been further developed by Beatty & Crawford (2011), in which they
challenge the nature of restrictions that fundamental economic theory places on data.
When they account for a quite undemanding nature of the restrictions imposed on the
data, the performance of the fundamental model is far less impressive. They argue that
using their sample (data are from Spanish Continuous Family Expenditure Survey and
consists of 21,866 observations), the economic model outperforms randomly generated
data only by 4.5% in terms of satisfying the restrictions of the model, while taking into
account the power of the restrictions.
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3 Data and Methodology

The thesis uses the CentERpanel dataset with a sample of over 2,000 households and
5,000 participants from the Netherlands (Choi et al., 2014). Respondents answered an
online survey, where, besides providing answers about the experiment, they indicated
individual demographic and economic information. The design of the experimental
questions was made by Choi et al. (2014) and is as follows. Subjects made 25 decision
choices in total, in a two–dimensional budget space. Each choice represents the allo-
cation between accounts x (horizontal line) and y (vertical line). The actual payoffs
were determined according to the subject’s choice; the subject received the points al-
located to one of the accounts x or y, which were chosen at random and equally likely
(Choi et al., 2014). In total, the sample consists of 1,372 respondents, however, only
1,182 subjects fully completed the survey. Table 1 shows a descriptive summary of the
dataset.

Table 1: Descriptive Statistics

Completed the Survey
No -

Dropouts
Yes Total

Col % Col % Col %

Gender
Male 62.1 54.6 55.6
Female 37.9 45.4 44.4

Age
16-34 3.2 18.5 16.4
35-49 12.1 26.1 24.2
50-64 38.4 35.6 36.0
65+ 46.3 19.7 23.4

Education
High 34.7 36.5 36.3
Low 42.6 33.7 34.9
Medium 22.6 29.8 28.8

Income
0-2,5k 40.0 22.8 25.1
2,5k-3,49k 22.1 25.5 25.1
3,5k-4,99k 15.8 29.2 27.3
5k+ 22.1 22.5 22.4

Occupation
House 7.9 11.6 11.1
Others 10.0 14.4 13.8
Paid 39.5 53.1 51.2
Retired 42.6 20.9 23.9

Partner
No 32.1 19.1 20.9
Yes 67.9 80.9 79.1

N 190 1,182 1,372

Source: CentERpanel Data
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Let us define terms used in the thesis. The commodity space is RL
+ and the price

comes from the RL
++ space, where L ≥ 2 means the number of commodities (Heufer

& Hjertstrand, 2015). However, in our case, subjects choose from a two–dimensional
budget space, therefore, L = 2. The subject’s budget set is defined as follows: B =
B(p) = {x ∈ R2

+ : px ≤ 1}, where p = (p1, p2)
′ ∈ R2

++ is the price vector and income
is normalised to 1 (Heufer & Hjertstrand, 2015). Therefore, we observe N budgets,
in our case 25 per subject, and the decision choices made by the particular subject.
Moreover, observations are written with a subscript such that bundle xi is the observed
choice for budget B(pi), assuming that xipi = 1. Thanks to the fact that price vectors
characterise budgets we can write the entire set of N observation as {xi, pi}Ni=1 (Heufer
& Hjertstrand, 2015).

As was mentioned in section 2, Varian (1982) proved that satisfying the Generalized
Axiom of Revealed Preference (GARP):

Definition 1. Let define xiR0x if pixi ≥ pix and xiP 0x if pixi > pix. Let R be
a transitive closure R0, meaning, that there exists a sequence xj, ..., xk, such that
xiR0xjR0...xkR0x. Let define xiPx if xiRxjP 0xkRx (Heufer & Hjertstrand, 2015).

Varian (1982): Set of observations {xi, pi}Ni=1 satisfies the GARP if for all i, j =
1, ..., N it holds that not xiP 0xj whenever xjRxi.

is a necessary and sufficient condition to maximize continuous, locally nonsatiated,
concave, and weakly monotonic utility function. Varian (1982) thoughts are based on
the following Afriat’s theorem (Afriat, 1967) pp. 946:

Theorem 1. (Afriat, 1967) The following conditions are equivalent:

1. There exists a nonsatiated utility function that rationalizes the data.

2. The data satisfies “cyclical consistency”; that is, prxr = prxs, psxs = psxt,
. . . , pqxq = pqxr implies prxr = prxs, psxs = psxt, . . . , pqxq = pqxr.

3. There exist numbers Ui, λ
i > 0, i = 1, . . . , n, such that

U i 5 U j + λjpj(xi − xj) for i, j = 1, . . . , n.

4. There exists a nonsatiated, continous, concave, monotonic function that rational-
izes the data.

In the study by Varian (1982), Varian shows that ‘cyclical consistency’ is equal to
GARP. As a consequence of Varian’s findings, if revealed preferences satisfy the GARP,
standard economic models can be applied to analyse a subject’s behavior (Harbaugh
et al., 2001).

Figure 1 shows the intuition behind the violation of the GARP axiom. If the subject
choose x1 on the budget B1 , then x1 is revealed preferred to x2

′
. Assuming monotonic

utility function, the utility of bundle x2
′

is higher than the utility of bundle x2 (it
has more of at least one good). Therefore, the subject revealed prefers x1 to x2. A
similar argument would also imply that x2 is revealed preferred to x1. In conclusion,
this contradiction yields that choices x1 and x2 cannot be the result of a rational choice,
and, as a consequence, choices x1 and x2 do violate GARP. Put differently, the GARP
requires that if a subject chooses x1 in the first round with budget B1 then a subject
cannot choose x2 in the second round with budget B2, when any alternative choice with
at least as much good as in x1, and more of at least one, is available – e.g. x1

′
.
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Figure 1: Ilustration of GARP Violation
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Nevertheless, GARP provides only two outcomes: either the data satisfies or does
not satisfy the conditions for GARP. Therefore, Afriat (1972) came with a Critical Cost
Efficiency Index (CCEI), which measures the fraction by which all the budgets have to
be shifted to satisfy GARP. In other words, Afriat (1972) developed a tool to measure
the extent of violation of GARP. Put precisely, let for any e ∈ [0, 1]

xiR0(e)xj ⇔ epixi ≥ pixj,

and let R(e) be the transitive closure of R0(e). Moreover, let e
′

be the largest value for
which the relation R(e

′
) satisfies GARP. The number e

′
is defined as the CCEI Index

associated with a particular subject (Choi et al., 2014). Let GARP(e) be the relaxed
version of GARP:

Definition 2. Varian (1991) A set of observation {xi, pi}Ni=1 satisfies GARP(e) for some
e ∈ [0, 1]N if for all i, j = 1, ..., N, it holds that not xiP 0(ei)xj whenever xjR(ej)xi.

If e = 1 we have standard version of GARP and if e = 0 all observations satisfy a
GARP test. Therefore, the convenient form of measurement is to see how close e is to
1, while still satisfying GARP(e) (Varian, 1991). We employ the bisectional method to
determine the CCEI Index.5

Figure 2 illustrates the shifting budgets from figure 1 B1, B2 in order to satisfy
GARP(e). As a result, the choices x1, x2 on the new budget lines B

′
2 and B

′
1 do not

violate GARP(e). In other words, to remove all violation of GARP one would have to
lower the budget B1 by C/5 or the budget B2 by D/5 (CCEI Index in this case is either
C/5 or D/5, whatever is the higher value).

5 The intuition behind the bisectional method is as follows: we set e0 = 1/2 and see whether
GARP(e) is satisfied, if not, we set e1 = 1/2e0 and so on. Similarly, if GARP(e) satisfies e0 = 1/2, we
go the other direction and set e1 = 1− 1/2e0 and check whether GARP(e) is satisfied. We repeat this
process 10 times. See Burden & Faires (1985) for details about the algorithm.
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Figure 2: Illustration of Intuition behind CCEI Index
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Houtman & Maks (1985) introduce another feasible method to measure the violation
of GARP – the Hautman Maks Index (HM Index). The HM Index is the maximum
number of observations that satisfy GARP. More specifically, let v = (v1, ..., vN) be a
vector that takes values equal to 1 or 0 for all i = 1, ..., N . Let define the relation R0(v)
as xiR0(vi)xj if vipixi ≥ pixj, let R(v) be the transitive closure of R0(v), and let P 0(vi)
if vipixi > pixj (Heufer & Hjertstrand, 2015). Furthermore, as Heufer & Hjertstrand
(2015) pp.88 states:

Definition 3. (Heufer & Hjertstrand, 2015) A set of observations {xi, pi}Ni=1 satisfies
GARP(v) for some v ∈ {0, 1}N if for all i, j = 1, ..., N, it holds that not xiP 0(vi)xj

whenever xjR(vj)xi.

Therefore, the solution to the following maximization problem such that GARP(v)
holds and v ∈ {0, 1}N is the HM Index (Heufer & Hjertstrand, 2015) :

HM = max︸︷︷︸
v

N∑
i=1

vi

N

However, the optimal threshold of the CCEI Index or the HM Index remains un-
clear.6 To shed more light on this issue Beatty & Crawford (2011) provide a way, which
could determine the optimal threshold for the CCEI and HM indices. The Beatty
& Crawford (2011) approach consists of two main parts. The first one computes the
pass rate of observations, denoted by r ∈ [0, 1] (r is equal to one if the data satis-
fies the revealed preference restrictions, and zero if it misses by the maximum possible
amount (Beatty & Crawford, 2011)). The second one determines how demanding the
theoretical restrictions posed on the subject’s choices are, denoted by a ∈ [0, 1] (in

6For example, in Choi et al. (2007) study, the authors used the CCEI threshold of 0.80, which is
based mainly on author’s subjective opinion.
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the sense of the fraction of all possible choice combination that satisfies the restric-
tions). As a result, Beatty & Crawford (2011) combine these two parts into function
m(r, a), which satisfies monotonicity – m(0, 1) > m(1, 0) – (the model satisfying more
demanding restrictions is better than the one satisfying less demanding restrictions),
equivalence – m(0, 0) = m(1, 1) – (a situation when no restriction are placed on
the data is equal to the situation when no data is ruled out), and aggregability –
m(λr1 +(1−λ)r2, λa1 +(1−λ)a2) = λm(r1, a1)+(1−λ)m(r2, a2) – (the measure is ad-
ditive over heterogeneous subjects, therefore, sample average results can be calculated).
Given the aforementioned axioms and using the following Selten’s theorem:

Theorem 2. (Selten, 1991) The function m = r−a satisfies monotonicity, equivalence,
and aggregability. If the function m̃(r, a) also satisfies these axioms, then there exist
real numbers β, γ > 0 such that m̃(r, a) = β + γm.

Beatty & Crawford (2011) explain that not only does the simple difference measure
(r−a) satisfy these axioms, but any measures satisfying these axioms are positive linear
transformations of this difference. Furthermore, the resulting m ∈ [−1, 1] can be inter-
preted as a pass/fail rate indicator taking into account the ability to find the rejections
(Beatty & Crawford, 2011). Therefore, as m approaches minus one, the restrictions are
so flexible that anyone can pass them. As a result, the data has no inference value. As m
approaches one, we have extremely demanding restrictions accompanied with the data
satisfying them, which is the sign of quantitatively successful model (Beatty & Craw-
ford, 2011). As m approach zero, the data simply mirrors the probability of passing the
restrictions given a uniform distribution over all possible choices. Another explanation
of m ≈ 0, so that the data perform as well as a uniformly generated data, is provided in
a Bronars (1987) study. In his study, Bronars (1987) conducted a statistical power test
by measuring Pr(Rejecting H0 | H0 is false), where the H0 hypothesis is ‘optimizing
behavior’ and the alternative hypothesis is ‘uniform random choices over the outcome
space’ (Beatty & Crawford, 2011). Putting the aforementioned facts together, we es-
tablish the measure of the power of the data, m̂CCEI = r̂ − â, where m̂CCEI indicates
a particular value of the power on the certain CCEI Index level. As such, â stands for
the fraction of subjects with randomly generated observations satisfying GARP, and r̂
stands for fraction of subjects with actual observations satisfying GARP. Therefore, we
identify the CCEI Index that maximizes the m̂CCEI(r̂, â).7 The implication is that we
find the optimum fraction of the subjects satisfying the optimal CCEI level given our
data.

In addition, using the CentERpanel data, we establish the relationship between
CCEI and HM indices to shed more light on the issue of the data efficiency. We use the
Gross & Kaiser (1996) algorithm to calculate the HM Index.8 We apply the algorithm
to a two–dimensional case, which allows us to use the Weak Generalized Axiom of
Revealed Preferences (WGARP):

Definition 4. (Banerjee & Murphy, 2006) A set of observation {xi, pi}Ni=1 satisfies
WGARP if for all i, j = 1, ..., N, it holds that not xiP 0xj whenever xjR0xi.

Thanks to Banerjee & Murphy (2006) proof that in two–dimensional case the GARP
and WGARP are equivalent, we use the WGARP in the algorithm, which remarkably
simplifies it.

7In next section 4, figures 7, 8, and 9 show the value of m̂CCEI as a maximum distance between
the line indicating randomly generated observations and the line indicating actual observations.

8The link for the Matlab code is provided in the Appendix.
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As Heufer & Hjertstrand (2015) states, Houtman & Maks (1985) and Gross & Kaiser
(1996) use a graph–theoretic approach. Therefore, each observation can be interpreted
as the node of a graph. When observations i and j violate WGARP, then these two
observations are adjacent (Heufer & Hjertstrand, 2015). Consequently, the number of
adjacent nodes is defined as the degree of a node, degr(i). Let Ai be the set of nodes
adjacent to node i, and let 1Ai be the set of nodes adjacent to node i with degree 1.
The algorithm works as follows Heufer & Hjertstrand (2015) pp.88:

The algorithm consists of two parts. First, whenever degr(i)= maxj∈1,...,N degr(j) and
degr(k)<degr(i) for all k ∈ Ai, remove i. Repeat this step until no index is removed
anymore. Second, whenever degr(i) = degr(h) = maxj∈1,...,N degr(j) and h ∈ Ai, then
(1) if 1Ai 6= ∅, remove i, (2) if 1Ah 6= ∅, remove h, (3) if 1Ai = 1Ah = ∅, remove
either i or h. Again, repeat this step until no index is removed anymore. All nodes not
removed in this process belong to the set of indices consistent with Warp. Gross & Kaiser
(1996) point out that there is a special case in which the algorithm will fail to provide a
maximal subset. However, they argue that this case is extremely rare, and in any case,
the algorithm provides a lower bound.

The main contribution of this study is to show how to increase data efficiency, and
therefore, the power of inference made by the data. Rather than excluding inconsistent
subjects from the dataset, we show that removing the worst observation per subject
leads to the fact that a larger fraction of subjects satisfy a higher threshold of the CCEI
Index. We proceed as follows: we combine the Gross & Kaiser (1996) and Houtman
& Maks (1985) algorithm with computations of the CCEI Index to determine the two
worst observations per subject. The worst observation receives the minimum CCEI
Index, while, the second worst observation obtains the second minimum CCEI Index.
This allows us to determine the highest CCEI Index per subject in both scenarios,
when we remove only the worst observation and when we exclude the two worst ob-
servations. We apply the aforementioned approach to various socio–economic groups
to demonstrate the positive effect of removing the worst observation per subject (see
section 4, figure 6 for details). Moreover, using the Bronars (1987) and the Beatty &
Crawford (2011) approach, we conduct a power calculation by constructing uniformly
distributed observations among the budget lines given by the CentERpanel dataset
for both scenarios – taking into account the full set of observations and when we ex-
clude the worst observation (we do not construct uniformly distributed observations for
the scenario when the two worst observations are excluded because of computational
intensity). Consequently, we compare uniformly generated observations with actual
observations. As a result, we show the optimal (in terms of Beatty & Crawford (2011)
approach described earlier) fraction of subjects that satisfies the optimal threshold of
the CCEI Index for both scenarios – taking into account the full set of observations
and when the worst observation is excluded (see section 4 figures 7, 8, and 9 for the
results).
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4 Combining the Critical Cost Efficiency and Haut-

man Maks Indices

In this section, we provide various results indicating the positive impact of removing the
worst observation per subject on the efficiency of the data set. Furthermore, we provide
figures showing the relationship between the CCEI and HM indices. Figure 3 displays
the relationship between the mean of the CCEI Index of subjects with respective HM
Index. The solid line shows the mean when the full set of observations is present. The
vertical dashed line indicates the average HM Index of the sample when the full set of
observations is included in the analysis.

Figure 3: CCEI Index Depending on Number of Removed Choices
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Source: Author’s computation based on CentERpanel dataset.

In our case, on average, subjects indicate almost 3 inconsistent choices with respect
to GARP. Furthermore, the average CCEI Index (horizontal dashed line) of the sample
is 0.88. Put differently, on average, subjects would have to lower their budget by around
12% to be fully consistent with GARP. Moreover, figure 3 shows the mean of the CCEI
Index when the worst observation per each subject is removed (dashed line). The shape
of the dashed line indicates that we could increase the average CCEI index by almost
6 pp by simply allowing the subject to make one significant mistake. In other words,
to achieve the higher threshold of the CCEI Index (in our case, 0.94, represented by
the horizontal dashed line), we can exclude the worst observation per subject instead of
excluding ‘inconsistent subjects’ from the sample. Therefore, further study could use
observations from more subjects, which are more powerful in terms of the CCEI Index.9

9Figure 7 shows fraction of subjects depending on the CCEI Index level, however, we describe the
figure 7 in more details further down.
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Finally, the dotted line indicates the relationship between the mean of the CCEI Index
with respective HM Index when the two worst observations per subject are excluded. In
this case, the increase in the CCEI Index is even higher than excluding only the worst
observation. Nevertheless, the figure shows that the distance between the dashed line
and the dotted line is lower than the distance between the solid line and the dashed line.
This indicates that removing the worst observation per subject is a suitable approach
to achieve an ‘efficient’ dataset.

The next figure (figure 4) shows the actual increase in the CCEI Index per subject
when the worst observation per subject is excluded. The 45◦ degree line indicates
equality between the CCEI indices when no observation and the worst observation are
removed. Naturally, by excluding the worst observation, the CCEI Index can only be
equal or higher to the CCEI Index when leaving the full set of observations. Therefore,
all observations appear above the 45◦ line.

Figure 4: Scatter Plot Using Fraction Polynomials Fitted Values
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Source: Author’s computation based on CentERpanel dataset.

The dotted line indicates the fitted values using the fraction polynomials regres-
sion method (with degree 2) and its 95% confidence interval. Figure 4 unambiguously
displays the remarkable increase in the CCEI Index when the worst observation per
subject is excluded. Moreover, the dotted line shows that the marginal increase in the
CCEI Index (when the worst observation is removed) is decreasing with a higher value
of the CCEI Index (when no observation is removed).10

The further relationship between HM Index and CCEI Index is illustrated in figure
5. The figure displays an intuitive relationship between the HM Index and the CCEI
Index – to obtain a higher CCEI index, one must exclude more choices violating GARP.

10The decreasing manner is captured in figure 10 in Appendix.
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Put differently, given the current dataset, on average, subjects would have to ‘throw
away’ almost 3 observations in order to use their whole budget efficiently. Furthermore,
figure 5 suggests that, on average, to use all 25 observations and satisfy GARP, one
would have to lower the budget by almost 50 percent. Therefore, the figure shows the
exact HM Index when one would like to achieve the minimum CCEI Index level stated
on the horizontal line.

Figure 5: Relationship between HM Index and CCEI Index
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Source: Author’s computation based on CentERpanel dataset.

As a next step, we apply the aforementioned findings on the socio–economic groups
in the dataset. Figure 6 demonstrates the average increase in the CCEI Index among
the socio–economic groups when the worst observation is excluded (x symbols) in com-
parison with the CCEI Index of the full set of observation (black dots – the results for
the full set of observations are replication of the study done by Choi et al. (2014)). Tak-
ing the full set into account (black dots), on average, high–income and high–educated
subjects perform better than lower–educated and lower–income subjects. For example,
subjects with an income (in Euro currency) of over 5k+ ‘waste’ about 10% of their bud-
get compared to almost 14% for those with an income of 0–2.5k. Furthermore, younger
subjects display a higher consistency than older subjects, and men tend to maximize
their utility more than women. Retired subjects indicate the lowest consistency with
respect to GARP. Finally, subjects living with a partner display a lower consistency
then those living without a partner.11 When we exclude the worst observation per
each subject, a similar pattern per each group holds (except in the ‘Occupation’ block,
where the group ‘Others’ obtains the highest value; and in the ‘Income’ block, where
subjects with income of 3.5k–4.99k are now in the second position regarding the CCEI

11Figure 11 in Appendix shows the HM Index across socio–economic groups. The pattern is very
similar to the CCEI Index.
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Index). However, the distance between the highest and the lowest CCEI Index in each
block decreases, and, on average, the CCEI Index is higher by 6 pp. As a consequence,
the variance of observations decreases and the results have smaller confidence intervals.
However, the distance between the observations in groups decreases, and therefore, the
statistical significance is almost the same.

Figure 6: CCEI Index across Socio-economic Groups with 95% Confidence Intervals
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Table 2 summarizes figure 1 by showing the growth of the CCEI Index among the
various socio–economic groups when we exclude the worst choice per subject. Retired
subjects indicate the highest growth in CCEI Index, namely 8 pp. This group is followed
by the older subjects, aged 65+, with the second highest growth in CCEI Index, namely
7.9 pp. On the other hand, younger subjects, age 16-34, display the lowest increase in
CCEI Index, only 4.1 pp. This suggests that, on average, the worst choices made by
older subjects are worse than the worst choices made by younger subjects. Other groups
indicate similar growth in CCEI Index, around 6 pp.
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Table 2: CCEI Index Growth among Various Socio–economic Groups

Percentage Point Increase

Gender
Female 5.8
Male 6.5

Age
16-34 4.1
35-49 5.1
50-64 7.0
65+ 7.9

Education
High 5.4
Medium 6.2
Low 6.9

Income
5k+ 4.8
2,5k-3,49k 6.0
3,5k-4,99k 6.3
0-2,5k 7.4

Occupation
Paid 5.3
Others 6.3
House 6.3
Retired 8.0

Partner
No 5.5
Yes 6.3

Source: Author’s computation based on CentERpanel dataset.

Following the Bronars (1987) and Beatty & Crawford (2011) approach, we conduct
a power calculation by constructing uniformly distributed choices using the budget
lines given by the CentERpanel dataset. Figures 7, 8, and 9 show the fraction of
subjects with respective CCEI Index for the full set of observations, the CCEI Index
when we remove the worst observation per subject, and the HM Index, respectively.
Starting with figure 7, the solid line shows randomly generated choices among the given
budget lines. For instance, almost 10% of random choice sets achieve a CCEI Index
of 0.87 (optimal value of CCEI Index based on Beatty & Crawford (2011) approach).
The curved dashed line indicates the actual choices from the dataset, almost 64% of
subjects achieve the optimal CCEI Index of 0.87. The power of the data (denoted as
m̂CCEI in section 3) is illustrated by ‘Max Distance’ dashed line and it equals to 0.54.
Put differently, the actual data outperforms the randomly generated data by 54 pp in
terms of fraction of subjects satisfying the optimal CCEI Index. Moreover, the curved
dashed line appears above the solid line for each level of CCEI Index. Therefore, the
actual choices outperform the randomly generated data by a not–so negligible fraction.
Figure 8 shows the same calculation as figure 7, although in this case we exclude the
worst observation per subject. In general, the graph in figure 8 ‘shifts to the right’ in
comparison to the graph in figure 7. This suggests an overall increase in the efficiency
of the data. For instance, taking the randomly generated data into account (solid line),
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almost 12% of random choice sets achieve a CCEI Index of 0.936 (remarking the optimal
level of CCEI Index based on the Beatty & Crawford (2011) approach) compared to
68% (horizontal dashed line) of the actual choices indicated by curved dashed line. In
this case, the power of the data (illustrated by ‘Max Distance’ dashed line) equals to
0.56 (actual choices outperform the randomly generated data by 56 pp regarding the
optimal CCEI Index level). Therefore, by excluding the worst observation per subject
we achieve higher ‘optimum’ CCEI Index with larger fraction of subjects having higher
power (m̂CCEI) than leaving the full set of observations.

Figure 9 illustrates a similar approach as the one used in figure 7 (using the full set
of observations), but with the HM Index on the x axis. Using the Beatty & Crawford
(2011) approach, we calculate the ‘optimum’ HM Index with respective fraction of
subjects. As a result, almost 10% of randomly generated choices (solid line) achieve
the ‘optimum’ HM Index equal to 22. On the other hand, 64% of subjects with actual
choices (horizontal dashed line) achieve an HM Index of 22. The power of the data
(indicated by the ‘Max Distance’ dashed line) is equal to 0.54 (meaning that the actual
data outperforms the randomly generated data by 54 pp regarding the optimal level of
HM Index). Therefore, the result suggests that the actual choices strongly outperform
randomly generated data.

Figure 7: CCEI Index of Randomly Uniformly Distributed Data vs Actual Data
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Source: Author’s computation based on CentERpanel dataset.
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Figure 8: CCEI Index of Randomly Uniformly Distributed Data vs Actual Data –
Removing the Worst Observation
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Figure 9: HM Index of Randomly Uniformly Distributed Data vs Actual Data
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Finally, table 3 summarizes the fraction of subjects satisfying a certain level of CCEI
Index when both scenarios are present; the full set of observations and when we exclude
the worst observation per subject. The results indicate that the fraction of subjects
increase by 19 pp on the CCEI Index level of 0.95, 0.90, 0.85. Moreover, CCEI Index
levels of 1.00 and 0.80 indicate a slightly lower, but notable increase in the fraction of
subjects (+16 pp).

Table 3: Fraction of Subjects per CCEI Index

CCEI Index
Full set of

observations
The worst

observation excluded

1.00 0.20 0.36
0.95 0.45 0.64
0.90 0.58 0.77
0.85 0.68 0.87
0.80 0.76 0.92

Source: Author’s computation based on CentERpanel dataset.

Therefore, taking into account the evidence from figures 3, 4, 6, 7, 8 and 9, excluding
the worst observation per subject in the dataset indicates an efficient way to increase
the fraction of subjects that satisfy a certain CCEI Index threshold.
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5 Conclusion

In this thesis, we use the CentREpanel dataset to examine the relationship between
CCEI and HM indices. Using the algorithm developed by Gross & Kaiser (1996) and
Houtman & Maks (1985), we calculate the CCEI and HM indices among various socio–
economic groups. Furthermore, we identify the worst observation per subject and we
demonstrate the effect of excluding the worst observation per subject on the level of
CCEI Index.

Our analysis shows that to obtain a CCEI Index equal to one (meaning that each
subject would use his/her budget efficiently), on average, subjects would have to ‘throw
away’ almost 3 observations. Moreover, this study demonstrates an average increase
of the CCEI Index of 6 pp when we exclude the worst observation per subject in
our sample. Additionally, we determine the effect of removing the worst observation
among various socio economic groups. The most notable increase in the CCEI Index is
among the 65+ aged, and retired subjects. On the other hand, the youngest subjects
indicate the lowest increase of the CCEI Index. In addition, we employ Bronars (1987)
and Beatty & Crawford (2011) approaches to calculate the optimal CCEI Index level
with respective fraction of subjects satisfying the optimal level of CCEI Index. We
demonstrate that by excluding the worst choice per subject not only does the optimal
CCEI Index level increase, but a larger fraction of subjects satisfies this optimal CCEI
Index level. Furthermore, we present a remarkable increase in the fraction of subjects
satisfying various levels of CCEI Index (we choose levels of 1.00, 0.95, 0.90, 0.85, and
0.80). In all cases, the increase is between 16 pp to 19 pp. This suggests that by
excluding the worst observation per subject one would increase the ‘efficient’ fraction
of the dataset by an important amount. Therefore, one could test the theory with a
more consistent dataset. Additionally, more subjects would pass the threshold of CCEI
Index and, as a result, one would have to ‘throw away’ less data.

Overall, this study shows that combining CCEI and HM indices, and as a con-
sequence, excluding the worst observation per subject, indicates an efficient way to
increase the consistency of the data. However, the aforementioned findings are based
on one dataset. Therefore, further study needs to be done to fully address the efficiency
of data in general.

18



References

Afriat, S. N. (1967): “The construction of utility functions from expenditure data.” International
economic review 8(1): pp. 67–77.

Afriat, S. N. (1972): “Efficiency estimation of production functions.” International Economic Review
pp. 568–598.

Ahn, D., S. Choi, D. Gale, & S. Kariv (2014): “Estimating ambiguity aversion in a portfolio choice
experiment.” Quantitative Economics 5(2): pp. 195–223.

Andreoni, J. & J. Miller (2002): “Giving according to garp: An experimental test of the consistency
of preferences for altruism.” Econometrica 70(2): pp. 737–753.

Banerjee, S. & J. H. Murphy (2006): “A simplified test for preference rationality of two-commodity
choice.” Experimental Economics 9(1): pp. 67–75.

Banerjee, S. & J. H. Murphy (2011): “Do rational demand functions differ from irrational ones?
evidence from an induced budget experiment.” Applied Economics 43(26): pp. 3863–3882.

Battalio, R. C., J. H. Kagel, R. C. Winkler, E. B. Fisher, R. L. Basmann, & L. Krasner
(1973): “A test of consumer demand theory using observations of individual consumer purchases.”
Economic Inquiry 11(4): p. 411.

Beatty, T. K. & I. A. Crawford (2011): “How demanding is the revealed preference approach to
demand?” The American Economic Review 101(6): pp. 2782–2795.
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Appendix

Figure 10: Marginal Increase in CCEI Index when Removing One or Two Choices
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The figure indicates that the marginal increase in CCEI Index decreases with higher level of HM Index.

Source: Author’s computation based on CentERpanel dataset.
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Figure 11: HM Index across Socio-economic Groups
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The Matlab codes, Stata codes for graphs, and dataset can be found on:

https://drive.google.com/open?id=0BxOyI0hgC0n2OXI4ZlFWSlFXcDA

ii

https://drive.google.com/open?id=0BxOyI0hgC0n2OXI4ZlFWSlFXcDA
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