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Abstract 
The Multi-unit all-pay auction can be used as an analytical tool of the contest. This paper investigates 

the competitive behavior during the contest through the symmetric multi-unit auction with the private 

information and unit demands of bidders. Allowing lags between adjacently ranked prizes, the 

equilibrium bidding strategy shows that the lag size has a negative effect and the valuation level has a 

positive effect on the equilibrium bidding strategy and the expected revenue. Additionally, the paper 

calls for the distribution of prizes by confirming that the increasing lag size might reduce the expected 

revenue more than the reduced valuations on prizes. The example results that the revenue generated 

from the single-unit auction might be higher than that of the multi-unit auction.  
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I. Introduction 

An auction is the tool for allocating resources when the seller does not have sufficient 

information of potential buyers. Regarding the information, the value of the product and the 

highest valuing buyer are included. Utilizing various types of auctions, the auctioneer can 

proceed to the transaction with the highest valuing person. As a consequence, some auction 

schemes are expected to bring higher revenue to the seller compared to the revenue from mere 

trade in the market when it is designed properly. Those well-defined auctions are also 

conducive to attaining social efficiency by inducing the Pareto Improvements between the 

auctioneer and bidders. Following those advantages, numerous practical examples exist with 

different auction styles. The most well-known case is where the government tries to grant the 

permission on natural monopoly or the exclusive right to provide public goods. Moreover, 

recent popularity in Internet auction platforms such as E-bay or Alibaba shows that auction 

has become an essential way of trade in our daily life. With the pervasiveness of auction, 

multitudinous theorems from various literatures succeeded to explain the bidding strategy in 

different auction schemes.  

Among various auction types of the auction, the studies have been divided into two types 

according to whether bids are disclosed or not before the result of the auction is announced. 

The first case is called as the open-bid auction, and latter is called the sealed-bid auction. 

Open-bid auction was clearly and thoroughly examined since the dominating strategy is 

apparent, which is sustaining bids until one’s valuation is reached. In contrast, the sealed bid 

auction cannot be analyzed intuitively due to the uncertainty. Vickery (1961), nevertheless, 

started the attempt to make a formal theory about the sealed-bid auction. In his paper, the 

Nash Equilibrium on the winner-pay auction with private information is suggested. With 

additional studies done in Clarke (1971) and Groves (1973), the general methodology of 

auction with incomplete information has become formalized over the years.  

Another important baseline theory of the auction is the revenue equivalence theorem 

suggested in Myerson (1981). According to Myerson, the expected revenue oriented by 

various auction methods should be the same when several assumptions are satisfied. The first 

assumption is about the game setting where all bidders are risk-neutral and the valuation of 

the prize should be drawn randomly from the same distribution function. Secondly, the prize 

should always go to the bidder with the highest bid. Also, revenue equivalence can be attained 

with the revelation principle, which holds the equilibrium strategy whereby each player 

follows strictly increasing bidding function according to their valuations. The last condition is 
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that any bidder of the lowest valuing type expects zero utility from the auction, therefore bids 

nothing.  

Succeeding those rudimentary frameworks, analyses of various sealed-bid auction 

schemes have been conducted. The first particular case is the single-unit auction ranging from 

the winner-pay auction to the all-pay auction. The beauty of the single-unit auction is that it is 

straightforward to formulate the bidding strategy from the schematized payoff function. On 

the other hand, diverse concerns such as different valuation of each prize or maximum units 

of attainable items are left while explaining for the multi-unit auction.  

Even with those controversies, multi-unit auction illustrates some circumstances which 

cannot be explained by single-unit auction, i.e. dividing the share, or attracting low-valued 

bidders. The Treasury auction is the most well-known example, where the size of the whole 

Treasury is excessively enormous in that no individual economic unit can bid at the 

appropriate level. Following those necessities, to explain one aspect of those complexities, 

several models of multi-unit auction have been scrutinized both theoretically and empirically. 

Harris and Raviv (1981) examines the auction under the situation in which each bidder 

follows non-uniform value distribution about multiple prizes. Maskin and Riley (1989) further 

generalizes the bidding strategy when bidders compete for multiple objects.  

On top of those findings, experimental literatures tried to validate whether theories 

predict an individual’s behavior correctly. Since theorems are clearly formulated and 

individual’s behavior is easier to be observed, the auction often invites experimental 

economists. Kagel (1995) compared different types of auctions extensively with complete 

information. Several experimental studies such as Cox et al. (1984, 1985) examines the pay-

as-bid multi-unit auction with incomplete information and checked the robustness of 

theoretical assumptions with experiments. However, above analyses focuses on the winner-

pay auction which only considers the cost incurred by winners. 

Another feature of real life which can be explained by the auction theory is the all-pay 

auction. All-pay auction assumes that the cost occurred during the competition is irreversible; 

therefore, all participants ought to pay their bids regardless of winning the prize. Even though 

participants in the all-pay auction bid more passively than bids in other auctions, all-pay 

auction is the best tool to analyze the situation when the bidding is implicit such as political 

lobbying. Another possibility of explanation from the theory of all-pay auction is an 

application to real life instances such as R&D, lobbying, and contest exhibit. In the R&D case, 

for example, several firms compete for the innovation e.g. technological advance, and the 

firm who achieves the innovation earlier relishes an advantage e.g. patent. Also, the more 
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investment they make the more possibility to arrive at the innovation earlier than its 

competitors.
1
 

Furthermore, not all players compete to get the single-unit prize. The most well-known 

case is the exhibit contest. The participants of this contest decide whether to participate or not, 

and make an effort to win the prize without knowing their competitors’ exact abilities or 

valuations of the prize. Also, each participant’s endeavor used in the contest cannot be 

reimbursed unless they win the prize. After all submissions having been finished, endeavors 

will be converted into the benefit to the contest holder in a tangible form. The contest 

designer then grants discriminative remunerations to winners from the first place. The goal of 

the contest designer is therefore to set the optimal remuneration scheme which maximizes the 

aggregate effort level of participants.  

Following this practical relevance with the all-pay auction model, several studies are 

done on the all-pay auction with different information settings. The first group of research 

about the topic is assessed by the Holt (1979) and Holt and Sherman (1982). In those papers, 

they established the theoretical groundwork explaining the all-pay auction. Following that, 

Barut and Kovenock (1998) proved the existence of equilibrium solution on multiunit all-pay 

auction with complete information. Davis and Reilly (1998) and Gneezy and Smorodinsky 

(1999) conducted an experiment on the all-pay auction with complete information about 

others and discovered that people tend to bid more aggressively than the risk neutral Nash 

Equilibrium strategy. 

Even though less attention is made due to the complexity of the model, similar results 

are found with incomplete information. Glazer and Hassin (1988) used a tool of the multi-unit 

all-pay auction to analyze the contest and showed that the design of the all-pay auction 

generally follows the aim of the contest. Amann and Leininger (1996) reaffirmed the 

participants’ overbidding tendency compared to the risk-neutral Bayesian Equilibrium under 

the asymmetric incomplete information. 

The complexity remains, however, because those studies failed to account for two 

important aspects. One is that the bidders may have a different ranking of valuation on prizes. 

The ranking can be validated by various criterions such as the timing of achieving the prize or 

                                                        
1 A doubt may arise as the R&D contest is sometimes analyzed with the second-highest winning bid 

auction. The doubt entails that although the highest bidder wins the advantage, the winner may not have to make 

any further endeavor after the winner being assigned. The dynamic concern rebuts this criticism since, even after 

the winner is already assigned, firms still have to compete for other possible innovations. In this regard, the 

competition resembles more to the multiple-unit all-pay auction than the single unit auction. 
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different shares among winners of the overall prize. The other failure is ignoring the 

difference between the pay-as-bid (or “discriminatory-price”) auction and the uniform-price 

auction. Researches done in the above by Glazer and Amann are about the uniform-price 

auction. The real life proxies of the uniform-price auction are Treasury auctions or the 

spectrum market auction. On the contrary, pay-as-bid auction is done in a different payment 

setting where each bidder reports only one bid throughout the auction. 

The comparison between pay-as-bid and uniform-price auction has brought many 

controversies over the years. Beck and Zender (1993) showed that revenues are higher from 

the pay-as- bid auction with particular equilibrium strategy. Also, Ausubel et al. (2014) 

generated a situation where the pay-as-bid auction is better than the uniform-price auction in 

terms of the size of the revenue and efficiency, given the symmetric valuation among bidders. 

However, the general superiority between uniform-price auctions and pay-as-bid auctions is 

not clear as shown by Ausbel and Cramton (2002). 

Following that, the major concern of the contest designer occurs on formulating the 

optimal auction scheme to maximize the revenue. To be more precise, the contest designer 

can consider various choice variables such as the auction rule, the number of prizes and 

different lags between each prize. The difficulty of the mechanism design arises because there 

is no general rule to judge among different auction schemes. Therefore, it seems futile to 

discuss superiority of either one of the pay-as-bid or the uniform-bid auction scheme in terms 

of the revenue. 

Instead, each of two different auctions has its own applications. There are numerous 

real life cases which can be only explained by each model and there is no exception for the 

pay-as-bid auction. For instance, various kinds of contests are the epitome which is only 

explained by the pay-as-bid auction. In this case, each bidder can attain one prize at 

maximum and the ranking of the prize is the same and unambiguous for each player, i.e. 

being the first is strictly better than being the second. The most familiar case is an athletic 

competition such as the 100m running race. Even though one athlete performs extraordinarily 

during the game, she or he only gains one record thus only one prize would be conferred. On 

top of that, even when records differ minimally even less than 0.01 seconds, the remuneration 

for each player such as reputations or annual income differs significantly according to the 

ranking. With this setting, the committee of the contest is interested in finding the optimal 

level of remuneration scheme to maximize each player’s performance.  

Cohen and Sela (2008) theoretically shows that the multi-unit pay-as-bid all-pay 

auction sometimes brings higher revenue than the single-unit all-pay auction under 
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asymmetric valuation of the same ranking of prizes. However, Cohen and Sela (2008) found 

that the only ambiguous rule exists due to complexities brought by the asymmetric 

information about valuations. This paper instead assumes the symmetric valuation for all 

players to untangle those complexities. Furthermore, we introduce the lag between each 

succeeding prizes to satisfy for the symmetry of valuations to hold for all prizes. Following 

that, we investigate two models. The first model is constructed to do the analysis from the 

constrained situation where the same amount of lag size. The second model lexes the 

assumption such that heterogeneous size of lags between prizes is allowed. 

Therefore, the model considers the pay-as-bid auction with N players competing for m 

units of prizes. The winner reports the bid simultaneously and each player’s valuation is the 

private information. We assume that each player bids unilaterally for the contest which is 

done only once and can attain maximum one prize. The first prize which is the most valuable 

goes to the highest bidder, and the second goes to the next highest, and so on. About each 

bidder’s behavior, we assume the risk-neutral behavior of each bidder. The game, therefore, is 

a Bayesian Game with the information of prizes and their probabilities of winning. 

The analysis starts from identifying the equilibrium bidding strategy, followed by the 

expected revenue. To show the clearest result as possible, this paper mainly focuses on the 

effect of valuation of prizes and lags on the revenue, isolating other issues such as the number 

of prizes or participation. By the same token, the equilibrium discussed here follows the 

revelation principle from which all bidders follow the same strategy profile. The result shows 

that biddings in equilibrium follow the natural conjecture that higher valuation and lower 

level of lags are linked with the higher bids. This means that players bid more fiercely when 

they expect higher gain from winning either the top prize or depreciated one. As a matter of 

the revenue, the same relationship is found with variables and the expected revenue as for the 

equilibrium strategy. The notable finding here is that the dissipation in the revenue is always 

expected to be higher than the summation of all lags. 

Another interest can be a comparison between multiunit pay-as-bid and single-unit all-

pay auction. Many emoluments for competitors such as athletics tend to follow ‘the winner 

takes it all’ structure. Though it is the outcome of the competition each other to get more 

valuable prizes, the efficiency of concentrating prizes only to one winner is not thoroughly 

analyzed. The numerical example discusses this intuition to show how the revenue would 

change between single-unit and multi-unit auctions with the same amount of total valuations. 

Section II provides the structure of the model. Given the structure, Section III 

optimizes the payoff function and provides the equilibrium bidding strategy. The first and the 



7 

third proposition in Section III show that the originally complex first order condition can be 

simplified after introducing the lag. Remaining two propositions tells about the revenue under 

the equilibrium strategy. Section IV simulates the auction between the single-unit and the 

multi-unit auction, and results that the expected revenue from the single-unit all-pay auction is 

higher than the revenue from the two-unit pay-as-bid auction. Section V concludes the paper. 

 

II. Models 

The model considers the pay-as-bid auction with N players competing for m units of prizes. 

The winner reports the bid simultaneously and each player’s valuation is the private 

information. We assume that each player bids unilaterally for the contest which is done only 

once, and in which each bidder can attain maximum one prize. The first prize which is the 

most valuable goes to the highest bidder, and the second goes to the next highest, and so on. 

Without the loss of generality, the number of prizes is smaller or the same as the number of 

bidders, 𝑚 < 𝑁2.  

To recognize differences on valuations in prizes, the lag concept is adopted to the 

model. The first model is built with the same lag size, and the second model relieves the 

assumption so that each lag can have different values. However, lags should be jointly smaller 

than the value of the first prize. This is the condition to guarantee to have a nonnegative 

valuation for any prize. We also assume the risk-neutral behavior of each bidder. Therefore, 

with the information of prizes and their probabilities of winning, the game is a Bayesian 

Game. That means the expected valuation of the contest is the linear summation of prizes 

multiplied by its probability of winning. 

Due to the symmetry of valuations, each bidder expects that the payoff of the top prize 

follows the same differentiable distribution function, that is, 𝑥𝑖  ~𝐹[𝑣, 𝑣]. The nature draws 

the exact value of 𝑥𝑖 randomly from the given distribution function. Furthermore, given the 

assumption of the private information, the valuation of each bidder is known only to the 

                                                        
2
 The maximum number of prizes is the number of participants since each bidder can maximally attain one prize. 

Also, when the number of prizes is the same with the number of bidders, no endeavor for each bidder is needed 

to win the prize. This is because even though the bidder pays nothing to the auctioneer, the prize would be 

granted, thus the valuation of the least valued product can be viewed as a minimum guarantee. Considering that 

the bidders increase their bid to increase more valued prizes, the minimum guarantee does not affect the bidding 

strategy after the participation is decided. 
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bidder herself. At the final stage, the valued product is only given to the bidder who wins the 

pertaining prize. 

Assuming that 𝑥𝑖
𝑘 denotes the valuation of the k-th most valuable prize for player i, the 

difference between 𝑥𝑖
𝑘+1 and 𝑥𝑖

𝑘 to be l, which is strictly positive. Furthermore, the valuation 

of any prize should not be negative in the first model. If it is the case, some players might not 

want to win the negatively valued prizes rather than to gain nothing. Following that, they bid 

zero amounts of bids (or negative bids if possible) and also affect others’ bidding strategy. 

Following mathematical formula prevents this situation from having the abovementioned 

problem; 

∀𝑖 ∈ {1,2, ⋯ , 𝑁}, 𝑥𝑖
𝑘 = 𝑥𝑖 − (𝑘 − 1)𝑙  𝑠. 𝑡.  𝑣 > (𝑚 − 1)𝑙  

After that, the second model lexes the assumption of the constant lag, which is represented 

into 

∀𝑖 ∈ {1, ⋯ , 𝑁}, 𝑥𝑖
1 = 𝑥𝑖 , 𝑎𝑛𝑑 𝑥𝑖

𝑘 = 𝑥𝑖 −  ∑ 𝑙𝑡

𝑘−1

𝑡=1

  𝑠. 𝑡. 𝑣  > ∑ 𝑙𝑡

𝑚−1

𝑡=1

 

 

The payoff function of each 𝑥𝑖 type of individual who adopts the type y bidder’s strategy 

is defined as the linear combination of the expected benefit of the pertaining prize and its 

probability of winning, deduced by the irreversible cost of bidding. Hence, the following 

equation is the payoff function of each bidder: 

 𝜋𝑖(𝑥𝑖 , 𝑦, 𝑏−𝑖(𝑥)) = ∑(𝑥𝑖
𝑘 ∙ 𝑃𝑟 (𝜃𝑘

𝑁−1 < 𝑦 < 𝜃𝑘−1
𝑁−1))

𝑚

𝑘=1

− 𝑏(𝑦)  𝑠. 𝑡. 𝜃0
𝑁−1 = 𝑣 

 

Terms represented by the series of the payoff function illustrate the summation of 

expected benefit of being the k-th winner. The possibility of the tie is not computed in the 

payoff function since the probability of being at a point is zero from given continuous 

probability distribution. To find the probability of being the k-th highest bidder, the 

knowledge regarding the order statistics is used, where 𝜃𝑗
𝑁−1 symbolizes the valuation of the 

j-th highest bidder among other bidders
3
. Also, the payoff function satisfies the probabilistic 

approach since each event is mutually exclusive. However, the general solution of this payoff 

                                                        
3
 The exact value of each probability is following: Given the same distribution function for every players,  

𝑥𝑖~𝐹[𝑣, 𝑣], Pr (𝜃𝑘
𝑁−1 < 𝑦 < 𝜃𝑘−1

𝑁−1) =  (
𝑁 − 1

𝑘 − 1
) (𝐹(𝑥))

𝑁−𝑘
( 1 − 𝐹(𝑥))

𝑘−1
 

 s. t F(x) is the cumulative probability distribution function to x.  
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function gives the equilibrium strategy only to multi-unit auctions since lag should not be 

accounted in the single-unit auction. 

The second model is offered if lags are not the same between succeeding prizes. The 

valuations, in this case, are slightly modified since the series adds the different value of the k-

th prize. 

𝜋𝑖(𝑥𝑖, 𝑦, 𝑏−𝑖(𝑥)) = ∑ ((𝑥𝑖 − ∑ 𝑙𝑗
𝑘−1
𝑗=0 ) ∙ Pr(𝜃𝑘

𝑁−1 < 𝑦 < 𝜃𝑘−1
𝑁−1))𝑚

𝑘=1 − 𝑏(𝑦)  

 𝑠. 𝑡. 𝑙0 = 0, 𝑎𝑛𝑑 𝜃0
𝑁−1 = 0 

 

III.  Equilibrium 

(1) The equilibrium with the same size of lags 

To predict the outcome of the model, we first need to figure out the equilibrium strategy. By 

taking a derivative of the strategic variable y, we can find a point where the payoff is 

maximized given other people’s strategies. The equilibrium strategy discussed in this paper is 

attained keeping the revelation principle. The revelation principle states that the equilibrium is 

under the condition where every player adopts the same monotonic bidding function 

according to their valuations. As the bidding function is assumed to be strictly increasing, at 

the suggested equilibrium, the highly valuing type of player has the higher possibility of 

winning the better prize and every player become a candidly reveals her true preference level 

by her bid. Afterwards, we need to check whether being truthful is the best response tipping 

upon other bidders’ strategy of revealing true preferences. Proposition 1 suggests the 

equilibrium strategy from the model (1) followed by the mathematical proof: 

 

Proposition 1 From the multi-unit all-pay auction with N players and m prizes with the 

uniform demand, the equilibrium bidding strategy is the increasing function of valuation the 

top prize, and is not monotonic function of the constant lag, each multiplied by marginal 

probability of winning the prize. The exact bidding function is stated below: 

𝑏(𝑥) = ∫ (𝑥𝑖 ∙ ∑ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=1

− 𝑙 ∙ ∑(𝑘 − 1) ∙ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=2

) 𝑑𝑥𝑖

𝑥

𝑣

 

  𝑠. 𝑡.  𝑚 ≥ 2 

 (See the Appendix A for the proof) 
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Counting on the proposition 1, the equilibrium strategy can be explained by two major 

effects denoted in each term. The first effect is from expected benefits of getting the prize for 

when the lag size is zero. This is strictly increasing function of x, meaning that the more 

bidder values the prize the higher bids would be made. The second term is about the effect of 

the lag on bidding strategy. Here, the lag is multiplied by the probability of winning that prize 

and the number of duplication of the lag. The marginal effect of the lag on the bidding is not 

straightforward since, for some higher type of bidders, the marginal effect of the lag is 

sometimes negative. 

The simplest case of the All-Pay auction is definitely a single-unit auction. In such case, 

the value of m should be 1 with all terms related to the lags should not be considered. 

Therefore, bidding function in the single-unit auction contains only the first term in the 

integral, and the model equilibrium does not conflict with the equilibrium bidding strategy in 

the standard single-unit all-pay auction. However, it is hard to compare between the single-

unit and multi-unit auctions due to complexities incurred while formulating the fair total 

prizes between two auctions. We discuss the issue in the next section by simulating with 

simple distribution and numeric values. 

The equilibrium strategy shows that the bidding strategy is monotonically increasing 

function of x but not of l. Since the marginal bidding function is always positive, the 

increment of x widens the interval of integration, thus the amount of bid is the increasing 

function of the valuation. In contrast, the coefficients multiplied by each lags are dependent 

upon the valuation of the prize. Rather, it is possible to check how the value of lag affects the 

bidding strategy by observing two types of bidders. The first group is of bidders who have 

high value in prizes. Having high value in prize implies that there is a high possibility of 

winning the prize, given the premise of the revelation principle. Thus, the highly valuing 

bidders care more about winning the specific prize they levy high value in, rather than any 

other prizes. On the other hand, bidders who have low valuations are more interested in the 

valuation of the low valued prize since it is realistic to get it. If the lag increases, the 

depreciation of the value of the least valued prize increase, so winning at the last place 

becomes less attractive. 

The revenue is the other focus of this model. The model is concerned only with the pay-

as-bid auction. In this regard, the number of prizes, the size of lag and the total valuation of 

prizes, the number of bidders are only possible effects on the revenue. The second proposition 

illustrates the expected revenue from the equilibrium strategy defined on the proposition 1.  
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Proposition 2 The expected revenue from the equilibrium strategy with the constant lag is 

increasing function of 𝑥𝑖  but the decreasing function of lags. Also, the depreciation of the 

expected revenue due to the lags exceeds sum of all depreciations from the first prize to all 

lagged prizes: 

𝑅 =  𝑁 ∙ (∫ ∫ (𝑥𝑖 ∙ ∑ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=1

𝑑𝑥𝑖)

𝑥

𝑣

1

0

𝑑𝐹(𝑥)) − 𝑙 ∙
(𝑚 − 1) ∙ 𝑚 ∙ (𝑚 + 1)

3
 

 

Proposition 2 states two impacts: the expected revenue changes through the valuation of 

the top prize, and the size of lag. The first effect is the positive relationship between the 

valuation of the top prize and the expected revenue. This is in line with common sense that 

people would compete more fiercely if they expect for more precious prizes. The other 

tendency is the negative effect of the lag on the expected revenue. As bigger lag size reduces 

the attractiveness of prizes from the second, bidders would bid less fiercely to get prizes when 

l increases. In addition, the size of the reduced revenue is always higher than the reduced size 

of lags on the prize scheme whenever m is higher than 1/2.
4
 Considering that we are testing 

the multi-unit auction, the minimum value of m is 2, and therefore the reduction of expected 

revenue always surpasses the reduction of remunerations from the lag. From the seller’s point 

of view, equalizing prizes is revenue maximizing.  

 

(2) The model with different size of lags 

We can also formulate another general equilibrium bidding strategy from the payoff function 

in the second model using the similar methodology. With the small modification of 

mathematical derivations, the similar form of equilibrium strategy can be found as follows: 

Proposition 3 The equilibrium bidding strategy is the increasing function of the valuation 

on the top prize, and the decreasing function of each marginal lags multiplied by its marginal 

probability of containing prize. The exact bidding function is stated below: 

𝑏(𝑥) =  ∫ (𝑥𝑖 ∙ ∑ 𝑓𝑘
𝑁−1(𝑥𝑖) − ∑(∑ 𝑙𝑗

𝑘−1

𝑗=1

) ∙ 𝑓𝑘
𝑁−1

𝑚

𝑘=2

𝑚

𝑘=1

(𝑥𝑖)) 𝑑𝑥𝑖

𝑥

𝑣

 

 (See the Appendix C for the proof) 

                                                        
4
 The auctioneer will grant 

(𝑚−1)𝑚

2
∙ 𝑙 less to winners in the first model than the case when all prizes are valued 

by 𝑥𝑖. Therefore, the claim is verified by subtracting 𝑙 ∙
(𝑚−1)∙𝑚∙(𝑚+1)

3
 to 

(𝑚−1)𝑚

2
∙ 𝑙. 



12 

Even though the similar structure of the bidding function is made between two 

propositions, one of two effects in proposition 1 is different in proposition 3. The first terms 

in equilibrium strategy in both models are the same since all factors other than the lag 

remained to be the same between two models. However, the second series within the 

integration is changed since lag structure between two models is different. With the same 

probability of winning for each ranking of prize followed by the revelation principle, the 

second model instead looks for the marginal effect of the lag by each. 

The major difference in two model equilibria are that the marginal effect of the lag on 

biddings is ambiguous in the first model, but strictly negative in the second model. This 

seemingly contradictory phenomenon is attributed to that, in a risk-neutral setting, the 

marginal increase in the k-th lag only decreases the marginal benefit of achieving one step 

less valuable prize, that is, achieving the k-th prize instead of the (k+1)-th prize. In this regard, 

all bidders face the lower expected benefit from their efforts, leading the negative shock to the 

bidding function.  

In contrast, the overall increase of the lag spurs the advantage to be the one step higher 

winner of the auction for bidders who have higher valuations. Given that they conject 

relatively high probabilities of winning at least the minimal prize, their concerns are more 

likely to be the ranking of the winning prize. Therefore, they suppose the valuation of the 

least valued prize as a guaranteed value with high certainty, and lags become the marginal 

value from the competition between winners. This situation brings a new subgame of multi-

unit auction among winners, and lags are the new valuation of the competition. As a result, 

the unequal distribution of prizes brings fiercer competition among highly valued bidders. 

Nevertheless, this behavior only pertains to highly valuing bidder. In this regard the overall 

effect of the lag on the bidding strategy is ambiguous. 

Even with this controversy between equilibrium strategies in two models, the revenue in 

the second model follows the same structure as in the first model. Proposition 4 reassures that 

two effects found in proposition 2. Here, in the second model, the effect of the lag on the 

expected revenue does also surpass all differences of prizes from the most valued one. 

 

Proposition 4 The expected revenue from the equilibrium strategy with non-constant lags 

is increasing for the valuation of the first prize but is decreasing for the size of lags. Also, the 

reduced amount of the expected revenue due to the lags exceeds sum of all depreciations as in 

the proposition 2. 
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𝑅 =  𝑁 ∙ (∫ ∫ (𝑥𝑖 ∙ ∑ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=1

) 𝑑𝑥𝑖

𝑥

𝑣

1

0

𝑑𝐹(𝑥)) − ∑ ((∑ 𝑙𝑗

𝑘−1

𝑗=1

) ∙ 𝑘)

𝑚

𝑘=2

 

(See Appendix D for the proof) 

 

The second model is the generalized version of the first model. Proposition 4 assures that 

the lag affects the expected revenue, but effects of each lag are with different size. 𝑙1 affects 

the valuation of all prizes except the first one, thus alters the expected revenue mostly and 𝑙𝑚 

alters minimally from the opposite reason. Therefore, even the total lag size is assumed to be 

the same, the expected revenue can be modified by interchanging lag sizes. For this reason, in 

multi-unit pay-as-bid auction, the auction designer should care not only the valuation of the 

first prize but also the distribution of different level among them. Ideally, her revenue is 

expected to be maximized when the prize is equally distributed in this model setting. 

However, even after above propositions are adduced, the actual policy implication 

remains as a debate. This is attributed to the possibility that not all bidders’ efforts do not 

benefit the seller. For instance, in the contest exhibit case, not all ideas or suggestions 

contributes to the payoff the event holder. In such cases, since the size of the lag differently 

affects the bidding strategy to each type of bidders, expected valuations of winners affect the 

expected payoff of the contest designer. In such a case, the auctioneer also has to know the 

exact information about how much winners value when designing the optimal lag size. 

Summing up, the finding of this section is that in multi-unit all-pay auction, the lag is a 

relevant factor of bidders’ behavior. The main conclusion from the proposition 1 and 3 is that 

the valuation and the depreciation affect the bidding strategy differently, but only the 

valuation is relevant to the total expected revenue. Next section analyzes two different auction 

schemes between single-unit and multi-unit auction with simple numbers and the distribution 

in a fair environment. 

 

IV. Numerical Example 

In this section, we do the simple numeric example and discuss two remaining issues. The first 

thing is whether the revenue generated is the same between the single-unit and the multi-unit 

auction. The second aspect is whether the value of lags affects the bidding strategy or the total 

revenue when the total value of prizes is fixed. In this regard, the simple example suggested 

here tries to explain how each factor affects the outcome. Therefore, this part analyzes the 
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revenue with examples between the single-unit (m=1) and the two-unit auction (m=2) with 

the fixed number of N as well as the total value. The analysis starts with the comparison of the 

revenue between auctions with one prize and two prizes. The first model assumes that four 

bidders compete for one prize. The second model assumes the same number of bidders with 

two prizes. 

For the fair comparison, the total value of prizes in two auctions is assumed to be the 

same. The valuation for the highest prize is defined as 𝑥𝑖 in the single-unit auction model and 

𝑥𝑗
1  in the two-unit auction model, where 𝑥𝑗

1 =
1

2
(𝑥𝑖 + 𝑙 ) and 𝑥𝑗

2 = 𝑥𝑗
1 − 𝑙  𝑠. 𝑡. 𝑙 < 𝑥𝑗

1 . We 

hereby assume the valuation in the single-unit model to be uniformly distributed from 1 to 2. 

The beauty of this uniform distribution is that the cumulative distribution function is equal to 

the independent variable subtracted by 1, and the density function is constant for 1 within the 

support.  

The model solution showed that the total expected value from the single unit auction is 
8

5
 

and 
7

5
.from the multiunit auction (See the Appendix F for the whole arithmetic). Therefore, the 

result shows that the single-unit auction generates higher revenue than the multi-unit auction. 

The explanation can be articulated by comparing two classes of the bidders. The first group is 

with the bidders who have a valuation of 𝑥𝑖 more than
3

2
. Since only one winner can attain the 

prize in the single-unit auction, they have to be more aggressive to get the prize in that case. 

In contrast, remaining types of bidders do not have sufficient incentives to bid fiercely in the 

single-unit auction since they have the smaller possibility of winning even though they 

become more aggressive. From aggregation, the result of example shows that the single-unit 

all-pay auction generates the higher revenue than some multi-unit auctions. Therefore, the 

result shows that the revenue is not always equivalent when the number of prizes is different.  

The size of the lags completely averages out while summing the expected revenue in this 

example. However, it does not mean that the lag size does not affect the revenue at all. From 

the model solution, the expected revenue should decrease by -2l from mere existence from the 

lag. However, the increment of the valuation on the top prize by 
1

2
𝑙 in the model offsets the 

decrement of expected revenue mentioned above. Therefore, two effects found in the former 

section persist in the example, but the effect of lags on the revenue is averaged out when the 

total valuation on all prizes are fixed in this example. 
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V.  Conclusion 

The study of the multi-unit auction is involved with multiple considerations and therefore 

numerous impacts are related each other to the outcome. Accordingly, it is hard to define the 

general rule and even comparative statics of changing one variable concludes ambiguously 

since most effects are related to the size of other fixed variables. Nevertheless, proper 

idealization of the model into the simple form allows explaining tendencies caused by each 

choice variable. Among them, we investigated effects of the valuation and the lag on the 

revenue under pay-as-bid multi-unit auction under symmetric private information. 

Following that, the main purposes of this paper are twofold; one is to check the 

relevance between the distribution of the valuation on the prize and the revenue, and the other 

is the equilibrium strategy and the expected revenue while lags are present. Firstly, the paper 

reaffirms previous findings that the effect of valuation on bidding strategy is unambiguous as 

higher reward incentivizes bidders to be more aggressive. Unlike other previous literatures, 

this paper added distributional issues and concludes that the effect of the lag on biddings is 

not straightforward. Proposition 1 shows that, when the value of the low ranked prize is 

depreciated by the same size of the lag, the size of lag affected bidding behaviors differently 

according to the type, whereas the causality of different size of the lags on the equilibrium 

bidding strategy is unambiguously positive according to the proposition 3. In connection with 

the revenue and the lag size, both proposition 2 and 4 show that the lag size negatively affects 

the revenue, even more than the overall sum of depreciations of remunerations. 

Another possible variation of the model can be the number of prizes itself, as done in 

Cohen and Sela (2008), which compares the expected revenue between the multiunit pay-as-

bid auction and the single-unit all-pay auction with asymmetric information. We do the 

similar analysis with the symmetric information which finds that single-unit auction generated 

higher revenue when bidders have a uniform distribution of valuation. However, our example 

shows the opposite dominance, thus more detailed analysis considering the valuation 

distribution function needs to be attained.  

The remaining concern is about the revenue when all costs incurred from bidders do 

not benefit the seller. In this case, suggested propositions cannot be used to design the optimal 

auction scheme since totally different mechanism might be needed. To solve the question, it 

requires the information with respect to the expected valuation of only a few minded numbers 

of highest bidders and we keep this issue for the future research.  
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Appendix 

Appendix A  The proof of proposition 1 

Proof 

Since the equilibrium bids always follow the strategy of revealing her true valuation, the 

first derivative should be zero where 𝑦 = 𝑥𝑖  . From the profit function suggested by the first 

model, the first order condition shows a candidate of the equilibrium strategy. 

𝑏𝑦 𝐹. 𝑂. 𝐶. ,
∂𝜋𝑖(𝑥𝑖, 𝑦, 𝑏−𝑖(𝑥))

𝜕𝑦
= 𝑥𝑖 ∙ ∑

𝜕𝐹𝑘
𝑁−1(𝑦)

𝜕𝑦

𝑚

𝑘=1

− 𝑙 ∙ ∑(𝑘 − 1) ∙
𝜕𝐹𝑘

𝑁−1(𝑦)

𝜕𝑦

𝑚

𝑘=2

− 𝑏′
(𝑦) 

     = 𝑥𝑖 ∙ ∑ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=1

− 𝑙 ∙ ∑(𝑘 − 1) ∙ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=2

− 𝑏′(𝑥𝑖) = 0 

𝐹𝑘
𝑁−1(𝑦) denotes the probability that type y player has the k-th highest valuation among 

N players. Additionally, 𝑓𝑘
𝑁−1(𝑦)is assumed to be the differentiated value of 𝐹𝑘

𝑁−1(𝑦) in 

terms of y. By isolating the differentiated bidding function, above equation can be simplified. 

Firstly, by moving all other terms except b′(𝑥𝑖), it becomes 

b′(xi) =  𝑥𝑖 ∙ ∑ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=1

− 𝑙 ∙ ∑(𝑘 − 1) ∙ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=2

 

The equilibrium strategy can be attained as suggested in proposition 1 by integrating both 

sides from the lowest support to the realized value x, and proving that the bids at the lowest 

support are 0 as described in the model part. 

To check whether the bidding function is indeed an equilibrium strategy, the expected 

payoff from revealing its true valuation through the bidding function should be higher than 

feigning as having any other valuations. By comparing the payoff from choosing b(x) and the 

payoff from choosing b(y) where y is an arbitrary number other than x within the support, the 

revelation principle can be confirmed. The test can be done by first finding the expected 

payoff for each strategy. 

𝑏(𝑦) =  ∫ ∑ 𝑧 ∙ 𝑓𝑘
𝑁−1(𝑧) − 𝑙 ∙ ∑ (𝑘 − 1)𝑓𝑘

𝑁−1

𝑚−2

𝑘=2

𝑚

𝑘=1

𝑦

𝑣

(𝑧)𝑑𝑧 

 

Then, the expected profit of feigning as y type is  

𝜋(𝑥, 𝑦) = ∫ ∑(𝑥𝑖 − (𝑘 − 1)𝑙) ∙ 𝑓𝑘
𝑁−1(𝑧)

𝑚

𝑘=1

𝑑𝑧

𝑦

𝑣

− 𝑏(𝑦) 
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           =  ∫ ∑(𝑥𝑖 − (𝑘 − 1)𝑙) ∙ 𝑓𝑘
𝑁−1(𝑧)

𝑚

𝑘=1

− 𝑧 ∙ ∑ 𝑓𝑘
𝑁−1(𝑧) +

𝑚

𝑘=1

𝑙 ∙ ∑(𝑘 − 1)𝑓𝑘
𝑁−1

𝑚

𝑘=2

(𝑧)𝑑𝑧 

𝑦

𝑣

 

           =  ∫(𝑥𝑖 − 𝑧) ∑ 𝑓𝑘
𝑁−1(𝑧)

𝑚

𝑘=1

𝑑𝑧 

𝑦

𝑣

 

After that, the dominance of bidding strategy from revealing her true type can be confirmed as 

suggested in the following equation. 

∀𝑦 ∈ [𝑣, 𝑣], 𝜋(𝑥, 𝑥) − 𝜋(𝑥, 𝑦) =  ∫(𝑥𝑖 − 𝑧)

𝑥

𝑦

∑ 𝑓𝑘
𝑁−1(𝑧)

𝑚

𝑘=1

𝑑𝑧 ≥ 0 

The strict positivity of the equation can be verified by assuming two possible cases. If 𝑥 ≥ 𝑦, 

the integration is done for positive values on the positive interval. Contrarily, if 𝑥 ≤ 𝑦, the 

integration adds negative value for negative interval if x≤y. Therefore, the equation is always 

positive leading to the conclusion that being truthful is the best strategy one can take. 

The next step is to check whether the bidding function is strictly increasing function of x. 

This can be proved by the fact that the marginal bidding function is always positive within the 

support. By changing the structure of the equilibrium bidding strategy, the property can be 

easily attained. The following property is used to reconstruct the equation into the following 

testable form.  

𝑙 ∙ ∑(𝑘 − 1) ∙ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=2

= 𝑙 ∙ (𝑁 − 1) ({𝐹(𝑥𝑖)}𝑁−2 + (𝑚 − 1) ∙ (
𝑁 − 2

𝑚 − 2
) ∙ {𝐹(𝑥𝑖)}𝑁−𝑚{1 − 𝐹(𝑥𝑖)}𝑚−2 − ∑ (𝐹𝑘

𝑁−2(𝑥𝑖))

𝑚−2

𝑘=2

)  

= 𝑙 ∙ (∑ 𝑓𝑘
𝑁−1(𝑥𝑖) − (𝑁 − 1) ∙ ∑ (𝐹𝑘

𝑁−2(𝑥𝑖))

𝑚−2

𝑘=2

𝑚

𝑘=1

) 

Therefore, the equilibrium bidding strategy can be modified as the summation of two positive 

terms as in the following equation as shown below. The first term is positive since the lag is 

assumed to be smaller than the valuation of the first winning prize and the summation of all 

marginal possibility is also higher than zero, as proven by Appendix E. For the second term, 

every component is by structure positive, including the series of summing all probabilities of 

winning. Thus, the monotonic positivity of bidding function is verified. 

𝑏′(𝑥) = (𝑥𝑖 − 𝑙) ∙ ∑ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=1

+ 𝑙(𝑁 − 1) ∙ ∑ 𝐹𝑘
𝑁−2(𝑥𝑖)

𝑚−2

𝑘=2
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Appendix B  The expected revenue of the first model 

Proof  

The revenue is calculated from integrating the bidding function from the lowest value of x 

to the highest value multiplied by the probability of having the specific value x. The 

symmetric valuation structure for all N players requires multiplying N to the expected 

revenue of one individual. To look at the effect of valuation of the first prize and the lag on 

the revenue separately, we divide the equilibrium bidding function into two different terms, 

each by the valuation and the lag. 

𝑁 ∙ 𝐸[𝑏(𝑥)] = 𝑁 ∙ ∫ 𝑓(𝑥) ∙ 𝑏(𝑥)𝑑𝑥

𝑣

𝑣

 

= 𝑁 ∙ ∫ 𝑓(𝑥) ∙ ∫ (𝑥𝑖 ∙ ∑ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=1

− 𝑙 ∙ ∑(𝑘 − 1) ∙ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=1

𝑑𝑥𝑖)

𝑥

𝑣

𝑣

𝑣

𝑑𝑥 

= 𝑁 ∙ ∫ ∫ (𝑥𝑖 ∙ ∑ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=1

− 𝑙 ∙ ∑(𝑘 − 1) ∙ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=1

𝑑𝑥𝑖)

𝑥

𝑣

1

0

𝑑𝐹(𝑥) 

= 𝑁 ∙ (∫ ∫ (𝑥𝑖 ∙ ∑ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=1

𝑑𝑥𝑖)

𝑥

𝑣

1

0

𝑑𝐹(𝑥) − ∫ ∫ 𝑙 ∙ ∑(𝑘 − 1) ∙ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=1

𝑑𝑥𝑖

𝑥

𝑣

𝑑𝐹(𝑥)

1

0

)

= 𝑁 ∙ (∫ ∫ (𝑥𝑖 ∙ ∑ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=1

𝑑𝑥𝑖)

𝑥

𝑣

1

0

𝑑𝐹(𝑥) − 𝑙 ∙ ∑(𝑘 − 1) ∙

𝑚

𝑘=1

∫ ∫ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑥

𝑣

𝑑𝑥𝑖𝑑𝐹(𝑥)

1

0

) 

=  𝑁 ∙ (∫ ∫ (𝑥𝑖 ∙ ∑ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=1

𝑑𝑥𝑖)

𝑥

𝑣

1

0

𝑑𝐹(𝑥) − 𝑙 ∙ ∑(𝑘 − 1) ∙

𝑚

𝑘=1

∫ 𝐹𝑘
𝑁−1(𝑥)𝑑𝐹(𝑥)

1

0

) 

 

After that, the each effect is reduced through the integration procedure. Especially, the 

integration of 𝐹𝑘
𝑁−1(𝑥) in term of F(x) from 0 to 1 can be calculated using the integration by 

parts
5
. Repeating the integration by parts reduces the integration into the arithmetic sum of m 

as in the proposition 2. 

=  𝑁 ∙ (∫ ∫ (𝑥𝑖 ∙ ∑ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=1

𝑑𝑥𝑖)

𝑥

𝑣

1

0

𝑑𝐹(𝑥) − 𝑙 ∙ ∑(𝑘 − 1) ∙ (
𝑁 − 1

𝑘 − 1
) ∙

𝑘! (𝑁 − 𝑘)!

(𝑁)!

𝑚

𝑘=1

) 

                                                        
5
 The formulae for the method of integration by parts is the following; 

∫ 𝐹𝑘
𝑁−1(𝑥)𝑑𝐹(𝑥) = (𝑁−1

𝑘−1
) ∫(𝐹(𝑥))

𝑁−𝑘
(1 − 𝐹(𝑥))

𝑘−1
𝑑𝐹(𝑥) = (𝑁−1

𝑘−1
)

(𝑁−𝑘)

𝑘
∫(𝐹(𝑥))

𝑁−𝑘
(1 − 𝐹(𝑥))

𝑘−1
𝑑𝐹(𝑥)  
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=  𝑁 ∙ (∫ ∫ (𝑥𝑖 ∙ ∑ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=1

𝑑𝑥𝑖)

𝑥

𝑣

1

0

𝑑𝐹(𝑥) − 𝑙 ∙ ∑
𝑘(𝑘 − 1)

𝑁

𝑚

𝑘=1

) 

=  𝑁 ∙ (∫ ∫ (𝑥𝑖 ∙ ∑ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=1

𝑑𝑥𝑖)

𝑥

𝑣

1

0

𝑑𝐹(𝑥)) − 𝑙 ∙ ∑ 𝑘(𝑘 − 1)

𝑚

𝑘=1

 

By calculating the arithmetic sum of the equation, the expected revenue in proposition 2 can 

be attained.  

 

Appendix C The proof of proposition 3 

Proof  

Deriving the equilibrium in the second model follows the same procedure as in the 

Appendix A. Firstly, the revelation principle holds when the first derivative of the payoff 

function is zero at 𝑦 = 𝑥𝑖. Therefore, the first order condition can be suggested as following:  

𝑏𝑦 𝐹. 𝑂. 𝐶. ,
∂𝜋𝑖(𝑥𝑖 , 𝑦, 𝑏−𝑖(𝑥))

𝜕𝑦

= 𝑥𝑖 ∙ ∑
𝜕𝐹𝑘

𝑁−1(𝑦)

𝜕𝑦

𝑚

𝑘=1

− ∑ ((∑ 𝑙𝑗)

𝑘−1

𝑗=1

∙
𝜕𝐹𝑘

𝑁−1(𝑦)

𝜕𝑦
)

𝑚

𝑘=2

− 𝑏′(𝑦)     

= 𝑥𝑖 ∙ ∑ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=1

− ∑ ((∑ 𝑙𝑗) ∙

𝑘−1

𝑗=1

𝑓𝑘
𝑁−1(𝑥𝑖))

𝑚

𝑘=2

− 𝑏′(𝑥𝑖) = 0 

∴ b′(𝑥𝑖) = 𝑥𝑖 ∙ ∑ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=1

− ∑ ((∑ 𝑙𝑗) ∙

𝑘−1

𝑗=1

𝑓𝑘
𝑁−1(𝑥𝑖))

𝑚

𝑘=2

 

 

Therefore, the equilibrium strategy as in Proposition 2 can be attained by integrating both 

sides from the lowest bound to x. 



20 

Secondly, we need to check whether the suggested strategy is essentially equilibrium. To 

do so, the equilibrium strategy needs to be modified into 

𝑏(𝑦) =  ∫ ∑ 𝑧 ∙ 𝑓𝑘
𝑁−1(𝑧) − ∑(∑ 𝑙𝑗

𝑘−1

𝑗=1

) ∙ 𝑓𝑘
𝑁−1

𝑚

𝑘=2

𝑚

𝑘=1

𝑦

𝑣

(𝑧)𝑑𝑧 

6
  

Then, the expected profit of feigning as y type is  

𝜋(𝑥, 𝑦) = ∫ ∑ (𝑥𝑖 − ∑ 𝑙𝑗

𝑘−1

𝑗=1

) ∙ 𝑓𝑘
𝑁−1(𝑧)

𝑚

𝑘=1

𝑑𝑧

𝑦

𝑣

− 𝑏(𝑦) 

        =  ∫ ∑ (𝑥𝑖 − ∑ 𝑙𝑗

𝑘−1

𝑗=1

) ∙ 𝑓𝑘
𝑁−1(𝑧)

𝑚

𝑘=1

− 𝑧 ∙ ∑ 𝑓𝑘
𝑁−1(𝑧) +

𝑚

𝑘=1

∑(∑ 𝑙𝑗

𝑘−1

𝑗=1

) ∙ 𝑓𝑘
𝑁−1

𝑚

𝑘=2

(𝑧)𝑑𝑧 

𝑦

𝑣

 

     =  ∫(𝑥𝑖 − 𝑧) ∙ 𝑓1
𝑁−1 + ∑ ((𝑥𝑖 − ∑ 𝑙𝑗

𝑘−1

𝑗=1

− 𝑧) ∙ 𝑓𝑘
𝑁−1(𝑧))

𝑚

𝑘=2

+ ∑ ((∑ 𝑙𝑗

𝑘−1

𝑗=1

)𝑓𝑘
𝑁−1(𝑧))

𝑚

𝑘=2

𝑑𝑧 

𝑦

𝑣

 

        = ∫ (∑(𝑥𝑖 − 𝑧) ∙ 𝑓𝑘
𝑁−1(𝑧)

𝑚

𝑘=1

) 𝑑𝑧 

𝑦

𝑣

 

 

Therefore, the expected marginal profit from deviating from equilibrium strategy becomes 

∀𝑦 ∈ [𝑣, 𝑣], 𝜋(𝑥, 𝑥) − 𝜋(𝑥, 𝑦) =  ∫(𝑥𝑖 − 𝑧)

𝑥

𝑦

∑ 𝑓𝑘
𝑁−1(𝑧)

𝑚

𝑘=1

𝑑𝑧 ≥ 0 

As a result, being truthful is also the best strategy one can take. 

To show that the equation is the monotonically increasing function of 𝑥, the original 

payoff function starts from the modified version. Instead of letting all different lags be on the 

payoff function, let the i-th player’s valuation on k-th prize to be 𝑥𝑖
𝑘 . Then the modified 

payoff function becomes 

𝜕𝜋𝑖

𝜕𝑦
(𝑥𝑖, 𝑥𝑖 , 𝑏−𝑖(𝑥−𝑖)) = ∑ 𝑥𝑖

𝑘 ∙ 𝑓𝑘
𝑁−1(𝑦)

𝑚

𝑘=1

− b′(𝑦) = 0 

Note that, 𝑓𝑜𝑟 𝑘 ≥ 2,  𝑓𝑘
𝑁−1(𝑦) = (𝑁 − 1) ∙ (𝐹𝑘

𝑁−2(𝑦) − 𝐹𝑘−1
𝑁−2(𝑦)). 

                                                        
6
 From the initial condition (1),  the first order condition becomes 

∑ 𝑥𝑖𝑓𝑘
𝑁−1(𝑦) − 𝑙 ∑(𝑘 − 1)𝑓𝑘

𝑁−1(𝑦) − 𝑏′(𝑦) = 0

𝑚

𝑘=2

𝑚

𝑘=1

 

where 𝑓𝑖
𝑁(𝑦) denotes the differentiated order function. 
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∑ 𝑥𝑖
𝑘 ∙ 𝑓𝑘

𝑁−1(𝑥𝑖)

𝑚

𝑘=1

= (𝑁 − 1) (𝑥𝑖
1(𝐹1

𝑁−2(𝑥𝑖)) + 𝑥𝑖
2(𝐹2

𝑁−2(𝑥𝑖) − 𝐹1
𝑁−2(𝑥𝑖)) + ⋯ + 𝑥𝑖

𝑚(𝐹𝑚
𝑁−2(𝑥𝑖) − 𝐹𝑚−1

𝑁−2(𝑥𝑖)))

= (𝑁 − 1) (𝐹1
𝑁−2(𝑥𝑖)(𝑥𝑖

1 − 𝑥𝑖
2) + ⋯ + 𝐹𝑚−1

𝑁−2(𝑥𝑖)(𝑥𝑖
𝑚−1 − 𝑥𝑖

𝑚) + 𝑥𝑖
𝑚 ∙ 𝐹𝑚

𝑁−2(𝑥𝑖))

= (𝑁 − 1) ( ∑ 𝐹𝑘
𝑁−2(𝑥𝑖) ∙ 𝑙𝑘 + 𝑥𝑖

𝑚 ∙ 𝐹𝑚
𝑁−2(𝑥𝑖)

𝑚−1

𝑘=1

) 

∴ b′(𝑥𝑖) = (𝑁 − 1) ∙ ( ∑ 𝑙𝑘 ∙ 𝐹𝑘
𝑁−2(𝑥𝑖)

𝑚−1

𝑘=1

+ (𝑥𝑖
𝑘) ∙ 𝐹𝑚

𝑁−2(𝑥𝑖)) 

 

Since b′(𝑥𝑗) is positive for any value of 𝑥𝑗 within the interval, the bidding function is strictly 

increasing.  

 

Appendix D  The expected revenue of the second model 

Proof  

The calculations to find the revenue in the second model follow the same procedure as in 

the first model with a slight difference in notations. Therefore, following equations show 

steps to find the expected revenue using the equilibrium strategy in proposition 3. 

𝑁 ∙ 𝐸[𝑏(𝑥)] = 𝑁 ∙ ∫ 𝑓(𝑥) ∙ 𝑏(𝑥)𝑑𝑥

𝑣

𝑣

 

= 𝑁 ∙ ∫ 𝑓(𝑥) ∙ (∫ ∑ 𝑥𝑖
𝑘 ∙ 𝑓𝑘

𝑁−1(𝑥𝑖)

𝑚

𝑘=1

𝑑𝑥𝑖

𝑥

𝑣

)

𝑣

𝑣

𝑑𝑥 

= 𝑁 ∙ ∫ ∫ (𝑥𝑖 ∙ ∑ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=1

− ∑(∑ 𝑙𝑗

𝑘−1

𝑗=1

) ∙ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=2

𝑑𝑥𝑖)

𝑥

𝑣

1

0

𝑑𝐹(𝑥) 

= 𝑁 ∙ (∫ ∫ (𝑥𝑖 ∙ ∑ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=1

𝑑𝑥𝑖)

𝑥

𝑣

1

0

𝑑𝐹(𝑥) − ∫ ∫ (∑ (∑ 𝑙𝑗

𝑘−1

𝑗=1

) ∙ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=2

𝑑𝑥𝑖)

𝑥

𝑣

𝑑𝐹(𝑥)

1

0

) 

=  𝑁 ∙ (∫ ∫ (𝑥𝑖 ∙ ∑ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=1

𝑑𝑥𝑖)

𝑥

𝑣

1

0

𝑑𝐹(𝑥) − ∑(∑ 𝑙𝑗

𝑘−1

𝑗=1

) ∙ ∫ 𝐹𝑘
𝑁−1(𝑥)𝑑𝐹(𝑥)

1

0

𝑚

𝑘=2

) 
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=  𝑁 ∙ (∫ ∫[𝑥𝑖

𝑥

𝑣

∙ ∑ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=1

𝑑𝑥𝑖

1

0

𝑑𝐹(𝑥) − ∑(∑ 𝑙𝑗

𝑘−1

𝑗=1

) ∙
𝑘

𝑁

𝑚

𝑘=2

) 

=  𝑁 ∙ (∫ ∫[𝑥𝑖

𝑥

𝑣

∙ ∑ 𝑓𝑘
𝑁−1(𝑥𝑖)

𝑚

𝑘=1

𝑑𝑥𝑖

1

0

𝑑𝐹(𝑥)) − ∑(∑ 𝑙𝑗

𝑘−1

𝑗=1

) ∙ 𝑘

𝑚

𝑘=2

 

 

Appendix  E The positivity of ∑ 𝑓𝑘
𝑁−1(𝑧)𝑚

𝑘=1  

Proof 

∑ 𝑓𝑘
𝑁−1(𝑧)

𝑚

𝑘=1

= 𝑓(𝑧)7 ((𝑁 − 1)(𝐹(𝑧))
𝑁−2

+ ((𝑁 − 1)(𝑁 − 2)(𝐹(𝑧))
𝑁−3

(1 − 𝐹(𝑧)) − (𝑁 − 1){𝐹(𝑧)}𝑁−2) + ⋯

+ (
(𝑁 − 1) ⋯ (𝑁 − 𝑘)

(𝑘 − 1)!
(𝑁 − 𝑘 − 1)(𝐹(𝑧))

𝑁−𝑘−1
(1 − 𝐹(𝑧))

𝑘−1
 

−
(𝑁 − 1) ⋯ (𝑁 − 𝑘)

(𝑘 − 2)!
(𝐹(𝑧))

𝑁−𝑘
(1 − 𝐹(𝑧))

𝑘−2
)) 

                      = 𝑓(𝑧) ((𝑁 − 1){𝐹(𝑧)}𝑁−2

+
(𝑁 − 1) ⋯ (𝑁 − 𝑘)

(𝑘 − 1)!
(𝑁 − 𝑘 − 1){𝐹(𝑧)}𝑁−𝑘−1(1 − 𝐹(𝑧))

𝑘−1
)  ≥ 0 

 

Appendix F  The solution of the numerical Example 

1. Single Unit Auction 

𝜋𝑖 = 𝑥𝑖(𝐹(𝑦))
3

− 𝑏(𝑦) = 𝑥𝑖(𝑦 − 1)3 − 𝑏(𝑦) 

Due to the revelation principle, the optimization of y should be at 𝑥𝑖 

𝑏𝑦 𝐹. 𝑂. 𝐶. ,
𝜕𝜋𝑖

𝜕𝑦
=  3𝑥𝑖(𝑥𝑖 − 1)2 − 𝑏′(𝑥𝑖) = 0  

∴ 3𝑥𝑖(𝑥𝑖 − 1)2 − 𝑏′(𝑥𝑖) = 0 

𝑏(𝑥) =  ∫ 3𝑥𝑖(𝑥𝑖 − 1)2𝑑𝑥𝑖

𝑥

1

=
3

4
𝑥4 − 2𝑥3 +

3

2
𝑥2 −

1

4
 

                                                        
7
 F(z) denotes the cumulative probability distribution function until z Also, f(z) denotes the differentiated 

function of F(z). 
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Therefore, the expected revenue is 

𝑅 = 𝑁𝐸[𝑏(𝑥)] = 4 ∙ ∫ 𝑏(𝑥)𝑑𝑥

2

1

= 4 ∫ (
3

4
𝑥4 − 2x3 +

3

2
𝑥2 −

1

4
) 𝑑𝑥

2

1

=
8

5
 

 

2. Two-Unit Auction 

𝜋𝑖 =
1

2
𝑥𝑖(𝐹1

3(𝑦) + 𝐹2
3(𝑦)) +

1

2
𝑙(𝐹1

3(𝑦) − 𝐹2
3(𝑦)) − 𝑏(𝑦) 

Due to the revelation principle, the first order condition is satisfied where 𝑦 = 𝑥𝑖 

𝑏𝑦 𝐹. 𝑂. 𝐶. ,
𝜕𝜋𝑖

𝜕𝑦
=

1

2
𝑥𝑖(𝑓1

3(𝑥𝑖) + 𝑓2
3(𝑥𝑖)) +

1

2
𝑙(𝑓1

3(𝑥𝑖) − 𝑓2
3(𝑥𝑖)) − 𝑏′(𝑥𝑖) = 0 

∴ b′(𝑥𝑖) = 3𝑥𝑖(𝑥𝑖 − 1)(2 − 𝑥𝑖) + 3𝑙(𝑥𝑖 − 1)(2𝑥𝑖 − 3) 

𝑏(𝑥) =  3 ∫ 𝑥𝑖(𝑥𝑖 − 1)(2 − 𝑥𝑖) + 𝑙(𝑥𝑖 − 1)(2𝑥𝑖 − 3)𝑑𝑥𝑖

𝑥

1

= −
3

4
𝑥4 + 3𝑥3 − 3𝑥2 +

3

4
+ 𝑙(2𝑥3 −

15

2
𝑥2 + 9𝑥 −

7

2
) 

Therefore, the expected revenue is  

𝑅 = 𝑁 ∙ 𝐸[𝑏(𝑥)] = 4 ∫ 𝑏(𝑥)𝑑𝑥

2

1

  

= 4 ∫ (−
3

4
𝑥4 + 3𝑥3 − 3𝑥2 +

3

4
+ 𝑙 (2𝑥3 −

15

2
𝑥2 + 9𝑥 −

7

2
)) 𝑑𝑥

2

1

 

=
7

5
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