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Abstract

Risk behaviour in an experimental risk task is a key predictor of real life behaviour and
the development of a child. Existing research shows that smokers and gamblers are risk
seeking on experimental risk tasks. The present study aimed to predict risk behaviour
of children by means of the Columbia Card Task (CCT). The analysed dataset consists
of 3326 children of around nine years old. This study is embedded in the Generation
R program that investigates children’s growth, development, and health from foetal life
onwards. A finite mixture model with a censored Poisson regression is implemented to
predict the number of cards these children turn over. Additionally, with this model the
influence of the loss probability and gain and loss amount on the number of cards turned
over is analysed. The results show that children with a low socioeconomic status perform
worse on the CCT and are more risk seeking than children with a high socioeconomic
status. Additionally, a difference between boys and girls is revealed. Boys tend to be
more risk averse and score higher on the CCT than girls. Regarding the game settings,
the loss probability and loss amount have a significant negative effect on the number of
cards turned over. Besides, these factors seem to be more important to boys than to girls.

Keywords: Columbia Card Task, GenerationR, Risk Behaviour, Censored Poisson
Regression, Finite Mixture Model
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Physical Sciences Division (Exacte Wetenschappen) and SURFsara (Lisa compute cluster,
www.surfsara.nl).



Contents

Contents i

List of Figures ii

List of Tables ii

1 Introduction 1

2 Literature review 3

3 Data description 5
3.1 Columbia Card Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Data cleaning process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Data characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Data imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Methodology 11
4.1 Censored Poisson Regression . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Finite Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 EM-algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Decomposition of coefficients vector . . . . . . . . . . . . . . . . . . . . . 14

5 Results 17
5.1 Linear regression on average score . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Finite mixture model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Conclusion and Limitations 27

References 30

i



List of Figures

3.1 Screenshot of the Columbia Card Task . . . . . . . . . . . . . . . . . . . . 6
3.2 Flowchart of the data cleaning process . . . . . . . . . . . . . . . . . . . . 7
3.3 Histogram of censored trials per child . . . . . . . . . . . . . . . . . . . . 8
3.4 A density histogram of the average score of children . . . . . . . . . . . . 9

5.1 Boxplot with residuals per number of cards turned over of the model with
eight segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

List of Tables

3.1 Average number of cards turned over for the noncensored trials per game
setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Optimal number of cards to turn over when maximizing the expected value 8
3.3 Summary of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.1 Regression on individual level with average score as dependent variable . . 18
5.2 Statistics of the models with respectively 6, 7, 8, 9, 10, and 11 segments . 20
5.3 Characteristics of segment populations of the model with eight segments . 22
5.4 Intercepts α after decomposition and segment probabilities π with stan-

dard errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.5 β-coefficients with standard errors between brackets . . . . . . . . . . . . 26

ii



1. Introduction

Risk behaviour measured in an experimental environment could be an indicator for real-
world risk behaviour such as smoking, gambling, and delinquency. Lejuez et al. (2002)
argue that behavioural tasks are a useful addition to self-reported real-world risk be-
haviour. For example, Lejuez et al. (2003) prove that smokers and nonsmokers score
significantly different in the risk task BART. Likewise, Collins et al. (1987) show the
relationship between risk taking/rebelliousness and smoking at an older age. It is ad-
vantageous for prevention to correctly predict at a young age the likelihood of smoking.
Similarly, risk tasks could be useful for the prevention of gambling and delinquency.

From another angle, risk behaviour is an important indicator for entrepreneurship.
Entrepreneurs are known to be people who are willing to take risks. Chye Koh (1996)
concludes that entrepreneurially minded people score higher on risk tasks than nonen-
trepreneurially minded people. However, other authors argue that this does not mean
that entrepreneurs are high risk takers. According to Caird (1991), entrepreneurs are not
gamblers, but take calculated risks. Miner (1990) goes even further and argues that a key
entrepreneurial task is to avoid risk. Based on these statements one could hypothesize
that entrepreneurs are successful in experimental risk tasks.

Measuring the risk behaviour at a young age is highly favourable. From the medical
point of view an adequate prevention scheme can be adopted for children with a high
risk of smoking, drinking, et cetera. Also within entrepreneurship it is advantageous to
detect entrepreneurial minded children at a young age. In this way children can get the
accompaniment they need to become a successful entrepreneur.

This paper focusses on risk behaviour of children and seeks for a relationship between
risk behaviour and the IQ and socioeconomic status of children. Previous research has
shown that the socioeconomic status is associated with risky behaviour (e.g. smoking, a
sedentary lifestyle, and unhealthy eating) that may lead to chronic diseases (Lowry, Kann,
Collins, & Kolbe, 1996). It is also shown that pathological gambling appears more often
in the low socioeconomic classes (Welte, Barnes, Wieczorek, Tidwell, & Parker, 2002).
However both studies are based on adults and not on children.

For this study risk behaviour is measured with the Columbia Card Task (CCT). In
this card game money can be won or lost by turning over cards. Due to the design of
the task it is possible to measure, next to risk aversion, the sensitivity to reward and
punishment. What this research sets apart from previous literature on the CCT is that
it focusses on risk behaviour of children instead of adults. Secondly, most studies analyse
the outcome of the CCT on aggregated level (average per individual or per game setting).
With this procedure you lose a lot of detailed information, for example how individuals
react on previous gains or losses.

The design of the CCT in this study leads to censoring, therefore a censored Poisson
regression is implemented to deal with the censoring and the counted dependent variable.
To account for unobserved heterogeneity across individuals, individuals are divided into
several homogeneous segments. This procedure is called Finite Mixture Modelling. The
segment-specific constant, β-coefficients, and segment probabilities are estimated with the
EM-algorithm.

Lastly, this study is embedded in the Generation R Study, a large population based
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multi-ethnic birth cohort, investigating children’s growth, development, and health from
foetal life onwards (Tiemeier et al., 2012). For this study children and their mothers
are followed from the prenatal phase onwards. The data collection is intense by multiple
surveys and biological and observational assessments. The CCT is one of the observational
assessments that was conducted on nine-year-old children. The total cohort includes
almost ten thousand children. The current study sample consists of 4551 children who
participated in the CCT.

The remainder of this paper is structured as follows. The next chapter discusses related
risk tasks and summarizes the available literature on the CCT. Chapter 3 provides an
extensive description of the design of the CCT, explains the data cleaning process, and
gives descriptive statistics of the data. Next to tables with summary statistics, graphs are
included to show the distribution of several variables. Chapter 4 starts with a description
of a censored Poisson model, and builds up to a finite mixture model. Additionally, the
EM-algorithm and a decomposition of the model coefficients are elaborated. Chapter 5
presents the results of a linear regression on the average score on individual level and
describes the results of the censored Poisson regression with finite mixtures. Lastly,
Chapter 6 gives a conclusion and discusses the limitations.
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2. Literature review

Risk behaviour is a widely studied phenomenon. Multiple tests are introduced to mea-
sure riskiness under experimental conditions. The Balloon Analogue Risk Task (BART),
introduced by Lejuez et al. (2002) is similar to the Columbia Card Task (CCT). At every
iteration the participant has the choose to continue or to stop and collect the points. An
important difference is that in the CCT the probabilities are explicitly stated whereas in
the BART they are not.

Other risk taking tasks are based on gambling. The Cambridge Gambling Task
(Rogers et al., 1999) and the Game of Dice Task (Brand et al., 2005) are two exam-
ples where the participant has to bet on the outcome. In both tasks the riskier option
has next to a higher maximal payoff and a lower minimal payoff, also a lower expected
value compared to the less risky option. Consequently, the reason for choosing the less
risky option is hard to distinguish. It could be based on either risk avoidance or the
higher expected value. Similarly, choosing the riskier option can be driven by greater risk
seeking or by increased reward sensitivity.

Figner and Weber (2011) claim that risk behaviour is often domain specific and de-
pends on psychological processes. The authors argue that in laboratory experiments ado-
lescents show no significant difference from other age groups in risk behaviour, whereas
in real life adolescents take great risks in many domains (e.g. substance use, dangerous
driving, and unsafe sex). According to the authors this difference could be explained by
the fact that laboratory experiments make no distinction between affective and delibera-
tive decision making. The CCT distinguishes between these two psychological processes.
Moreover, Figner, Mackinlay, Wilkening, and Weber (2009), the inventors of the CCT,
show that adolescents are riskier in affective situations, while there is no difference among
age groups in deliberative situations.

The Columbia Card Task (CCT) is a relative new card game whereby participants can
win or lose money by turning over cards. Originally there are two versions of the CCT: a
hot CCT to measure affective decision making and a cold CCT for deliberative decision
making. The most important difference is the time of the feedback. During the hot CCT
the participant gets immediate feedback. After clicking on a card he or she immediately
sees whether it is a gain or loss card. With the cold CCT the participant has to select a
number of cards he or she wants to turn over before the first card is shown. At the end
of the game it is revealed whether a loss card was faced or not. Note that this research
only focusses on the outcome of a hot CCT.

A major advantage of the CCT, over other dynamic risk tasks, is that the game
settings vary across trial. The gain amount, loss amount, and number of loss cards all
can take two values, which results in eight different combinations of game settings. Since
all different game settings are played at least once per respondent, a researcher could
assess the influence of the loss probability on risk behaviour and the sensitivity to reward
and punishment per respondent separately. Previous research has shown that individuals
may react differently on these three parameters.

Penolazzi, Gremigni, and Russo (2012), for instance, investigate whether personality
traits influence risk behaviour and whether this influence depends on the context of the
decision making process (affective or deliberative decision making). A remarkable finding
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is that in the hot CCT only the loss amount and number of loss cards are significantly
associated with the number of cards turned over, whereas in the cold CCT all three game
settings seem to play a role. This finding is supported by the studies of Kluwe-Schiavon et
al. (2015) and Holper and Murphy (2014). With an adaptation of the CCT to Brazilian
Portuguese, Kluwe-Schiavon et al. (2015) find that in all CCT conditions (hot, warm,
and cold) the number of loss cards is most frequently used, followed by the loss amount
and gain amount (the latter had no significant effect in the hot CCT). In relation to the
personality traits, Penolazzi et al. (2012) conclude that high sensation seekers on average
turn over more cards than low sensation seekers in the hot CCT, however the main effect of
sensation seeking in a linear regression is not significant. Besides, they find an interaction
between BAS-reward responsiveness and both gain amount and loss amount in the hot
CCT.

Contrary, Buelow (2015) finds no significant relationship between state mood, impul-
sive sensation seeking, and BIS/BAS (includes the BAS-reward responsiveness subscale)
and the performance on the hot CCT. She finds, however, a negative correlation between
working memory (measured with the Digit Span backward) and risk taking on the hot
CCT. Additionally, Buelow shows that participants with a high score on the Digit Span
backward as compared to participants with a low score, turn over less cards when the loss
amount is 250 and the number of loss cards is three by any gain amount. Besides, she con-
cludes that participants pay more attention to the game settings in the cold CCT than in
the hot CCT. In particular, only the number of loss cards seems to be relevant in the hot
CCT, which partly contradicts the findings of Penolazzi et al. (2012) and Kluwe-Schiavon
et al. (2015).

Another interesting association was discovered by Konnikova (2013). She compares
the performance of high and low self-controllers in both a stress and non-stress condition
in the hot CCT. The stress condition was created by limiting the amount of time for
completing a trial. In both conditions on the CCT high self controllers turn over more
cards than low self-controllers. In addition, Konnikova finds that high self-controllers do
not use the information of the game settings. Low self-controllers, on the other hand,
turn over significantly less cards when facing a higher loss amount.

According to Huang, Wood, Berger, and Hanoch (2015) the information use on the
CCT is associated with age. They suggest that the lower deliberative capacities of older
adults account for the lower amount of information use. This study, however, is conducted
on young adults (mean age = 24.5) and older adults (mean age = 75.3) and provides no
information on children. To my knowledge, van Duijvenvoorde et al. (2015) is the only
study on the CCT that includes children. In this study the risk and return sensitivity
are compared among three age groups; children (8-10 years), adolescents (16-19 years),
and adults (24-34 years). Both risk aversion and return sensitivity increase with age.
Interestingly, children appear to be risk insensitive on average. However, there was a
large difference in performance on the CCT among children. In addition, the authors
argue that all age categories understood the task information, because the effects of the
game settings were significant and in the expected direction for all age categories.

Unlike the other literature on the CCT, Pripfl, Neumann, Köhler, and Lamm (2013)
do not look at personal characteristics, but compare the risk behaviour of smokers and
non-smokers. The results show that smokers significantly take more risk on the CCT than
non-smokers. In particular, smokers as compared to non-smokers take more risk in trials
with many loss cards and in trials where a high gain amount is combined with a low loss
amount. It is likely that children who have not started smoking yet but will do so at a
later age, show the same pattern and take more risk on the CCT.
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3. Data description

The current study is embedded in the Generation R Study, a large population based
multi-ethnic cohort study (Tiemeier et al., 2012). The Generation R Study was designed
to analyse early environmental and genetic determinants of growth, development, and
health from foetal life until young adulthood. All pregnant women living in Rotterdam,
The Netherlands, with a delivery date between April 2002 and January 2006 were invited
to participate. In total, 9778 pregnant women enrolled in the study. During pregnancy
several maternal, paternal, and familial characteristics were collected. At several time
points, parents filled in questionnaires about the development of their child. Addition-
ally, at the age of six and nine children were invited to participate in various tests and
assessments. One of these tests is the Columbia Card Task, which is conducted on nine-
year-old children.

The next section elaborates the design of this task. Section 3.2 summarizes the data
cleaning process. In Section 3.3 the distributions of important variables are visualized in
graphs and a table with summary statistics of most variables is presented. Lastly, Section
3.4 explains how is dealt with missing data.

3.1 Columbia Card Task

The Columbia Card Task1 (CCT) is a card game that measures riskiness. Figure 3.1
shows the layout of the game. Participants could win or lose money by turning over
cards. The hot CCT played by the children in this research is closely related to the
original one (Figner et al., 2009). There are 32 cards, divided in win and loss cards. By
turning over a win card the participant earns points and by turning over a loss card he or
she loses points and the game ends. At every step the participant has the choice between
turning over a(nother) card or hitting the stop button to (voluntarily) stop this game.
It is also possible to stop immediately without turning over any card. After a game has
ended the earned points are summed and a potential loss amount is subtracted from it.

The values of the win and loss cards can vary per trial, even as the number of loss
cards. The gain amount varies between ten and thirty, the loss amount between 250 and
750, and there are either one or three loss cards in a trial. Note that, in contrast to
Figner et al. (2009), the loss cards are randomly distributed over the 32 cards and hence
the game is not manipulated. These three parameters lead to eight different game settings
and within a block of eight trials the sequence of the game settings is random. Every
participant plays at least two blocks of eight trials2. In other words, every game setting
is played at least two times. Because of the different game settings, the CCT measures
next to riskiness also the complexity of information use and the sensitivity to reward and
punishment. With the three parameters (gain amount, loss amount, and number of loss
cards) it is possible to assess which of these three parameters affects participants’ choices.

After a participant has played all trials, three trials are randomly selected and are
paid out in real money. The participant has a start value of 200 cents (i.e. 2 euro) and

1See columbiacardtask.org for an example.
2During the data collection they decided to shorten the test. Instead of three blocks and 24 trials, two

blocks and 16 trials were played.

5



Figure 3.1: Screenshot of the Columbia Card Task

the total points of the selected trials will be added or deducted from this start value. A
participant only receives money and does not have to pay any losses.

3.2 Data cleaning process

From the 9778 children who started in the Generation R Study 4551 children participated
in the CCT, see Figure 3.2 for a flowchart of the data cleaning process. From these children
only 4538 completed the task, that is, completed all 16 or 24 trials. To get a balanced data
set only the first 16 trials of every participant are analysed, hence the data set contains
72608 trials. Some children clearly did not understand the game and turned over the 32nd

card (or 30th card in case of three loss cards), which must be a loss card. The 104 children
who did this are excluded from the data set. Furthermore, only 75% of the observations
in the sample are analysed in this study (3326 children), such that in later studies the
other 25% could still be used to test the model performance.
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Participants CCT:
4551 children
75845 trials

Incomplete games:
13 children
133 trials

Complete games:
4538 children
75712 trials

Only the first 16 trials are used:
4538 children
72608 trials

Children that turned over
the 32nd (or 30th in case
of 3 loss cards) card did

not understand the game:
104 children

Children that stopped be-
fore the 32nd (or 30th) card:

4434 children
70944 trials

Training set:
3326 children
53216 trials

Test set:
1108 children
17728 trials

Figure 3.2: Flowchart of the data cleaning process

3.3 Data characteristics

When a loss card is turned over the trial is censored, because this terminates the game
and it is unknown how many more cards the participant would have turned over when
he or she did not face a loss card. More than two-third of the trials is censored, 48982
trials, and for some children every observation is censored (i.e. they faced a loss card in
every trial). Figure 3.3 gives the distribution of the number of censored trials per child.
As you can see, most children face around twelve loss cards.

Table 3.1 gives the average number of cards the participants turned over per game
setting. For these statistics only the noncensored trials are included. As expected, the
average number of cards turned over decreases by an increase in risk. It also decreases by
a higher loss amount, although with a smaller magnitude. Furthermore, an increase in
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Figure 3.3: Histogram of censored trials per child

gain amount leads to a small decrease in number of cards turned over. Table 3.2, on the
other hand, presents the number of cards that a risk neutral person would turn over (i.e.
maximizes the expected value). Except for the less profitable setting (gain amount 10,
loss amount 750, and 3 loss cards), the average of the participants is lower for all game
settings, meaning that these participants are on average risk averse.

Table 3.1: Average number of cards turned over for the noncensored trials per game
setting

1 loss card 3 loss cards

loss amount loss amount
250 750 250 750

gain
amount

10 11.6 11.2 gain
amount

10 7.1 6.7
30 10.7 10.6 30 6.9 6.7

Table 3.2: Optimal number of cards to turn over when maximizing the expected value

1 loss card 3 loss cards

loss amount loss amount
250 750 250 750

gain
amount

10 16 16 gain
amount

10 10 0
30 16 16 30 8 10

Adding the earned points and subtracting potential losses results in a score per trial.
The distribution of the average score over all trials per child is presented in Figure 3.4. The
mean of this distribution is -165, which means that most children ended with a negative
score over all trials and this game was not profitable for them (in terms of earning money).
A risk neutral strategy would on average result in a score of 92.
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Table 3.3 gives a summary of the data analysed in this paper. As mentioned earlier
4434 children completed and understood the CCT. A little bit more than half of these
children are girls (50.7%). The average age is 9.8 years (±0.26) and the average IQ is
102 (±14.7). The latter is measured with the SON-R 2.5-7 at the age of six. Information
about the mother is available in ethnicity and education. Most mothers have a Dutch
or Other Western nationality. Other common ethnicities are Surinamese, Turkish, and
Moroccan. Regarding the education level, most mothers have a degree from secondary
school or higher. Furthermore, the household income for most families is above e 2000
per month.
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Table 3.3: Summary of the data

Participants 4434
Censored trials (%) 67.5
Sex (% girl) 50.7
Age (years) 9.8 (±0.26)
IQ (N = 3830) 102 (±14.7)
Ethnicity mother (%, N = 4331)

Dutch 59.8
African 4.8
Asian, non Western 5.7
Moroccan 4.3
Dutch Antilles 2.1
Surinamese 7.1
Turkish 5.9
Other Western 10.1

Education mother (%, N = 4085)
No education or primary education 6.7
Secondary education 42.2
Higher education 51.2

Household income per month in euro’s (%, N = 3652)
<2000 20.5
2000 - 4000 43.8
>4000 35.7

3.4 Data imputation

Some observations have missing values in the individual characteristics, such as the eth-
nicity (2% missing) and education (13% missing) of the mother, household income (18%
missing), and IQ (14% missing) of the child. These values are imputed with predictive
mean matching (PMM), which is applicable when dealing with categorical variables. The
general idea of single imputation with PMM is that missing values are filled with data
from similar participants. Let x be a variable with missing values and Z be a set of
variables without missing data for the cases that are missing in x. Estimate regression
coefficients b by regressing the complete cases of x on Z. Then, randomly draw a set of
new coefficients b∗ from a multivariate normal distribution with mean b and the estimated
covariance matrix of b. Generate predicted values for all cases in x with b∗. For each
case with missing data in x, select a set from the cases with observed data in x whose
predicted values are close to the predicted value of the case with missing data. From the
cases with observed values randomly choose one case and assign its observed value to the
case with missing value. In this analysis the set Z contains the age, gender, weight at
birth, and IQ of the child, and the age at delivery, ethnicity, and education of the mother,
and the household income.
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4. Methodology

This chapter is concerned with the methods and techniques applied in this research.
Since the variable of interest, number of cards turned over, is a nonnegative integer and is
censored the data is modelled with a censored Poisson regression. Besides, the censored
Poisson regression is extended with a finite mixture model to account for the unobserved
heterogeneity across individuals. Individuals are assigned with a certain probability to a
segment such that the difference within segments is as small as possible and the difference
between segments is as large as possible. For each segment the model contains a different
intercept. Commonly, the parameters of a finite mixture model are estimated with the
EM-algorithm, a method that is often used in case of missing data. Lastly, this chapter
covers a technique to decompose the coefficients vector and obtain coefficients for all levels
of the categorical variables.

4.1 Censored Poisson Regression

The variable of interest, number of cards turned over, is a count variable from 0 to 31
(or 29 in a trial with three loss cards). Because the Poisson regression has a discrete
nonnegative distribution, this fits the data better than a classical regression. The Poisson
regression model belongs to the family of generalised linear models, which is discussed in
detail by Nelder and Wedderburn (1972).

The Poisson distribution has the following probability mass function,

Pr[Y = y] =
exp(−µ)µy

y!
, y = 0, 1, 2, ...,

where µ is the rate parameter. An important property of the Poisson distribution is
equidispersion, that is equality of the mean and variance, E[Y ] = V[Y ] = µ.

To use this distribution in a regression framework the parameter µ is expressed in
terms of the covariates and individual subscript i and trial subscript t are added.

µit = f(xit), i = 1, ..., N, t = 1, ..., T.

It is important to choose f(xit) in such way that µit is nonnegative for all values of
xit. Note that the Poisson regression is heteroskedastic, because of the equidispersion
property, V[yit | xit] = f(xit).

The cumulative mass function of the Poisson distibution is added to the model, to
accommodate the situation of censored observations. The rationale is that the probability
of all outcomes above the censoring value is equal to one minus the probability of all
outcomes below and including the censoring value. The likelihood function of a censored
Poisson regression is then given by

L(µ) =
N∏
i=1

T∏
t=1

[(
µyitit exp(−µit)

yit!

)dit(
1−

Cit∑
k=0

µkit exp(−µit)
k!

)1−dit
]
,

where dit is zero if trial t of individual i is censored and one otherwise, and Cit is the
number of cards turned over including the loss card in that trial.
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4.2 Finite Mixture Model

To take account of the heterogeneity across individuals the censored Poisson regression
is extended to a finite mixture model (Aitkin & Rubin, 1985). The idea behind this
model is that the population consists of a finite number of homogeneous subpopulations.
A finite mixture model is more parsimonious than a model with fixed effects, because it
has only K, the number of subpopulations, additional free parameters instead of N , the
number of individuals. Furthermore, a finite mixture model relies on fewer distributional
assumptions than a model with random effects. It is assumed that the subpopulations
follow the same distribution, but have different parameters. All individuals are assigned
to the subpopulations with a certain probability π. Inserting this segment probability
into the likelihood function results in

L(µ) =

N∏
i=1

K∑
s=1

πsfs(yi | µis,xi), (4.1)

where fs(yi | µis,xi) is the likelihood contribution of individual i belonging to segment
s, given by

fs(yi | µis,xit) =
T∏
t=1

[(
µyitits exp(−µits)

yit!

)dit(
1−

Cit∑
k=0

µkits exp(−µits)
k!

)1−dit
]
.

Commonly, µits is defined with multiplications of predictor variables. However, in this
research we choose to model the mean µits by a linear combination of predictor variables
as

µits = max(αs + x′itβ, ε),

with ε sufficiently close to zero, for i = 1, ..., N , t = 1, ..., T , and s = 1, ...,K. The
maximum of αs+x′itβ and ε is taken to avoid the possibility of a negative µits. Moreover,
a major advantage of this definition compared to the more common one is that this model
is linear instead of multiplicative. The interpretation of coefficients in a linear model is
more straight forward. Note that the intercept αs is segment specific and takes K different
values. Furthermore, the segment probabilities sum up to one,

∑K
s=1 πs = 1.

4.3 EM-algorithm

Maximizing the likelihood function in (4.1) to estimate the parameters is complicated
when maximizing across the entire parameter space. Augmenting the observed data with
additional information about the segment memberships would greatly simplify this maxi-
mization, because it enables us to compute estimates of the parameters on segment-level.
However, the segment membership of an observation is unobserved. The EM-algorithm
(Dempster, Laird, & Rubin, 1977) is applicable for computing maximum likelihood esti-
mates from incomplete data.

Assume that the segment memberships are known, then the log complete data likeli-
hood function is given by

`c(µ) =

N∑
i=1

K∑
s=1

I[Si = s](log(πs) + log(fs(yi | µis,xi))), (4.2)

where I[Si = s] is an indicator function equal to 1 if observation i belongs to segment s.
The EM-algorithm iteratively maximizes this log complete data likelihood function.
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In the first step of the EM-algorithm, the E-step, the expectation of the log complete
data likelihood function in (4.2) is calculated with respect to the unobserved S, given
the observed y and the preliminary estimate µ. The only stochastic components are the
segment memberships denoted by Si, hence an expression for E[I(Si = s) | yi] is needed.
The posterior segment probabilities, are defined as

pis := E[I(Si = s) | yi] =
fs(yi | µis,xi)πs∑K
j=1 fj(yi | µij ,xi)πj

,

for i = 1, ..., N and s = 1, ...,K. Subsequently, the expected log complete data likelihood
function can be written as

E[`c(µ) | y] =

N∑
i=1

K∑
s=1

pis(log(πs) + log(fs(yi | µis,xi))). (4.3)

In the second step, the M-step, (4.3) is maximized with respect to α, β, and π. Setting
the first order derivative with respect to πs equal to zero results in an update for πs given
by

πs =
1

N

N∑
i=1

pis ∀ s = 1, ...,K.

In words, the estimates of the prior probabilities πs are equal to the average posterior
probabilities in each segment.

The maximization with respect to αs and β is a bit more complicated and hard
to solve analytically. Numerical optimization with for example the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm can be used to find estimates for αs and β. The
BFGS algorithm is an iterative gradient method. In general the procedure of iterative
gradient methods is to update the current estimate by a factor based on the gradient,

β̂m+1 = β̂m +Amgm,

where gm is the gradient vector evaluated at β̂m and Am is a q × q matrix depending
on β̂m. In the Newton-Raphson algorithm Am is minus the inverse Hessian, whereas the
BFGS algorithm uses an estimate for the Hessian. In each step of the BFGS algorithm the
change in the gradient is used to obtain a better approximate of the Hessian. Extensive
literature on the BFGS algorithm is written by Møller (1993) and Watrous (1988) among
others. Since the only criteria in the M-step is an increase in the log likelihood function,
only a few maximization steps of the BFGS algorithm are performed. This will presumably
fasten the optimization process.

The gradients with respect to αs and β for the BFGS algorithm can be derived an-
alytically. Let φ(µits) be the probability mass function of the Poisson distribution, then
the gradient vector of αs is given by

∂E[`c(µ)]

∂αs
=

[
N∑
i=1

pis

T∑
t=1

dit

(
yit
µits
− 1

)
− (1− dit)

∑Cit
k=0 φ(µits)(

k
µits
− 1)

1−
∑Cit

k=0 φ(µits)

]
+

for all segments s = 1, ...,K and the gradient vector of β is given by

∂E[`c(µ)]

∂β
=

 K∑
s=1

N∑
i=1

pis

T∑
t=1

dit( yit
µits
− 1

)
− (1− dit)

∑Cit
k=0 φ(µits)

(
k
µits
− 1
)

1−
∑Cit

k=0 φ(µits)

x′it

+

.
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The brackets [...]+ denote that this is the gradient if αs+x′itβ > ε, otherwise the gradient
is equal to zero.

The parameter estimates found in the M-step are used to compute the posterior prob-
abilities pis in the E-step. The E- and M-step are alternated until the likelihood function
does not further improve.

The standard errors of α, β, and π can be easily derived from the diagonal elements
of the inverse Hessian matrix of the likelihood function in (4.1). However, take into
account the restrictions

∑K
s=1 πs = 1 and 0 ≤ πs ≤ 1. Due to the first restriction one can

only compute the Hessian for K − 1 elements of π. The second restriction could cause
problems, because the Hessian is approximated with the R package NumDeriv (Gilbert
& Varadhan, 2012). To find the numerical Hessian, the function is evaluated at many
different values for α, β, and π. All these values should be valid, thus all elements of π
should lie between zero and one.

These restrictions can be met with a simple trick. Define

πs =
exp(τs)

1 +
∑K−1

m=1 exp(τm)
∀ s = 1, ...,K − 1

and πK = 1−
∑K−1

s=1 πs. Without loss of generality, we can choose πK to be the smallest
value of all elements in π. This definition leads to K − 1 parameters τ that can take all
real values. Rewrite the likelihood function such that it depends on τ instead of π. Then
the Hessian can be approximated for α, β, and τ . Subsequently, the standard errors for
α and β are the square roots of the diagonal elements of the inverse negative Hessian
matrix evaluated at the maximum likelihood estimates. The standard errors for π can
be obtained by simulating from the multivariate normal distribution with mean τ and
covariance matrix Στ , the inverse negative Hessian of τ , and computing the covariance
matrix of all corresponding values of π. The standard errors are the square roots of the
diagonal elements of the covariance matrix of π.

Selecting the number of segments is one of the challenges in a finite mixture model.
A widely used selection technique is comparing information criteria such as the Bayesian
Information Criterium (BIC). A finite mixture model is estimated for different numbers
of segments and the values of the BIC are compared. The model with the lowest value for
the BIC determines the number of segments. Nevertheless, interpretability and segment
sizes are important criteria as well and are included in the segment selection.

4.4 Decomposition of coefficients vector

Many predictors in this study are categorical variables. A disadvantage of categorical
variables is that there is always a reference group in a model with an intercept. There are
no separate coefficients for these reference groups and in a model with multiple categorical
variables the intercept describes all the reference groups of the categorical variables. For
instance, if female, Dutch ethnicity, low education, and low income are the reference
groups, the intercept is interpreted as the effect of Dutch females who have a low education
and low income.

To accommodate every level of the categorical variables with a coefficient, the original
coefficients vector b ∈ IRk can be transformed into b∗ ∈ IRm, where IRk is the original space
and IRm additionally includes all reference groups as single variables. In the extended
coefficient vector, the coefficients of the levels belonging to the same categorical variable
have to sum to zero for all categorical variables. For the interaction terms the coefficients
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must sum to zero per level. For example, for the interaction term between sex (boy/girl)
and ethnicity (Dutch/other) the coefficients for boy-Dutch and boy-other must sum to
zero even as boy-Dutch and girl-Dutch.

The extended coefficients vector can be obtained with the following procedure. Let
X0 be an n ×m matrix with all levels of the categorical predictors (including intercept
and interaction terms). For the example with two categorical variables sex (B/G) and
ethnicity (D/O) and their interactions, X0 looks like

X0 =

Intercept B G D O B.D G.D B.O G.O


1 1 0 1 0 1 0 0 0
1 0 1 1 0 0 1 0 0
...

...
...

...
...

...
...

...
...

1 0 1 0 1 0 0 0 1

.

A finite mixture model with segment specific intercepts contains multiple intercepts. In
this case the posterior probabilities are included in X0 instead of an intercept equal to
one.

Matrix X0 contains linear dependent columns, because the levels of the categorical
variables are linearly dependent. In addition, the interaction terms are linear dependent,
because of the linear dependence in the levels of the categorical variables. Let X1 be X0

but with dummy coding with a single level as reference group per categorical variable,

X1 =

Intercept B G D O B.D G.D B.O G.O


1 1 0 1 0 1 0 0 0
1 0 0 1 0 0 0 0 0
...

...
...

...
...

...
...

...
...

1 0 0 0 0 0 0 0 0

.

Note that X1 without the zero columns is equal to the predictor matrix used in the
regression.

Lastly, define J as a block diagonal matrix with centering matrices with the size equal
to the number of levels per variable in X0. For the interaction terms, J contains the
kronecker product, denoted by ⊗, of the two corresponding centering matrices

J =




IK 0 0 0
0 C1 0 0
0 0 C2 0
0 0 0 C2 ⊗C1

.

Here, IK is the identity matrix with size equal to the number of intercept coefficients, and
C1 and C2 are both a two dimensional centering matrix corresponding to the categorical
variables sex and ethnicity, respectively.

The fitted values are equal to X1b, where b is the original coefficients vector with
added zero’s for the reference groups. Logically, the fitted values may not change after
decomposition. That is, the following equation must hold

X1b = Ab∗,

where b∗ is the transformed vector including all levels of categorical variables. It appears
that A = X0J . To solve this equation for b∗, premultiply X1b with the Moore-Penrose

15



inverse ofX0J . To compute the standard errors of b∗, recall that b∗ = (X0J)+X1b = Gb,
where (X0J)+ is the Moore-Penrose inverse ofX0J . Hence b∗ is distributed as b∗ = Gb ∼
N (Gµ,GΣG′), where µ and Σ are respectively the expectation and covariance matrix
of b, both added with zeros for the reference groups. The standard errors are the square
roots of the diagonal elements of GΣG′.
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5. Results

This chapter presents the findings of this research. The first analysis investigates which
variables influence the performance on the CCT. A linear regression is implemented and
the average score obtained by the children is regressed on predictors such as IQ and
variables measuring the socio-economic status. Secondly, the number of cards turned over
can be predicted with a finite mixture model with a censored Poisson regression. Besides,
this model examines the influence of the game settings on the number of cards turned
over. First, the process of selecting the number of segments is discussed. Subsequently,
the segment populations are presented to try to identify the differences between segments.
Finally, the parameter estimates are interpreted and interesting conclusions are drawn.

5.1 Linear regression on average score

The overall success in the CCT is measured with the average score per participant. To
determine what characteristics influence the overall success in the CCT a linear regression
on the average score per individual is performed. Table 5.1 gives the coefficients and their
standard errors between parentheses. The continuous variables, age and IQ are standard-
ised and the decomposition described in Section 4.4 is applied to provide all levels of
the categorical variables with a coefficient. The relatively large negative intercept is in
accordance with the mean of the average scores (see Figure 3.4). Without regarding any
characteristics the average score is around -174. A higher age and IQ will increase this
base score with respectively 3.6 and 9.1 points per standard deviation increase. Similarly,
boys score on average 16 points higher than girls. Besides, children with a high-educated
mother score significantly higher on the CCT. Likewise, children from a Dutch mother
perform significantly better than the base average. The coefficients for the other ethnic-
ities do not significantly differ from the base average, however Dutch children seem to
score substantially better than Surinamese and Turkish children. The same holds for the
monthly household income. Although no category scores significantly different than the
base average, children from a family with a low income seem to score worse than children
from a family with a high income. Note that instead of ‘higher’ one could also say ‘less
worse’, because most children still have a negative score on the CCT.
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Table 5.1: Regression on individual level with average score as dependent variable

Variables Coefficients (st error)

Intercept -174.04 (2.89)
Age 3.57 (1.50)
Girl -8.17 (1.50)
Boy 8.17 (1.50)
IQ 9.10 (1.60)
Ethnicity mother

Dutch 8.47 (3.15)
African 0.39 (6.41)
Asian, non western 5.55 (6.01)
Morrocan 0.97 (6.57)
Dutch Antilles -2.26 (9.38)
Surinamese -9.64 (5.36)
Turkish -8.44 (5.87)
Other western 4.95 (4.78)

Education mother
No education or primary education -5.66 (4.72)
Secondary education -3.39 (2.84)
Higher education 9.06 (3.10)

Household income per month in euro’s
<2000 -5.45 (2.74)
2000-4000 2.23 (2.08)
>4000 3.22 (2.48)

The R-squared of this regression is 0.05

5.2 Finite mixture model

Next to the performance of the CCT, we can also predict the number of cards turned over
by a child. Additionally, the influence of the game settings on the number of cards turned
over can be analysed. For this analysis a finite mixture model with a censored Poisson
regression is implemented. As discussed in Chapter 4 the mean of the Poisson regression
is chosen as µits = max(αs + x′itβ, ε), where ε = 10−16. Furthermore, in this analysis the
EM-algorithm has converged if the relative difference between the likelihood value and
updated likelihood value is smaller than 10−14. This strong criteria is necessary to ensure
the gradients of αs and β are equal to zero up to three decimals.

The number of segments is unknown on forehand, therefore the model is computed
for several numbers of segments and the final model is selected based on the BIC and
interpretability. Table 5.2 presents statistics of five models with different numbers of
segments. The segment specific intercepts α are the ones obtained after the decomposition
as described in Section 4.4. If the models are compared based on only the BIC the
model with nine segments would have been selected. However, segments one to four have
similar segment specific intercepts in this model. In other words, the expected average
number of cards turned over is almost the same in these segments. Therefore, it is
questionable whether these four segments are indeed four distinct segments or that they
can be summarized in fewer segments. The model with eight segments seems to comprise
the first four segments from the nine-segments model into three segments, namely the
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first three. The differences of the segment specific intercepts in the eight-segments model
is larger, although, one could still argue that segments one and two and segments five
and six are close. Furthermore, the last segment is relatively small and describes only
one percent of the population. This could also indicate that a model with fewer segments
is better. However, the last segment is discriminative from the other segments based on
the segment characteristics presented in Table 5.3. Thus, further analysis is based on the
model with eight segments, because the interpretablility of the eight-segments model is
better than the nine-segments model, and the difference in BIC is rather small between
these two models. The seven-segments model is not considered, because the BIC of this
model is much higher than that of the eight- and nine-segments model.
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Table 5.3 presents characteristics of the segment populations of the eight segments in
the model and the average population over all segments. For instance, the average score
obtained in the sixth segment is lowest, whereas it is highest in the last segment. As
said previously segment eight is distinctive from the other segments. Besides the high
score achieved in the last segment, the number of cards turned over and the number
of censored trials are lowest in this segment. Moreover, segment eight mainly represents
boys with a mother with an Asian (non Western), Surinamese, or Other Western ethnicity.
Girls and children with a mother with a Dutch, African, or Dutch Antilles ethnicity are
underrepresented in segment eight. In addition, the IQ of the child is relatively low in
segment eight. Regarding the maternal education, the lowest category is well represented,
whereas the middle category is not.

The children assigned to segment seven also perform relatively good on the CCT.
These children are mainly boys with a mother from African or Dutch Antilles descent.
In particular, the Moroccan ethnicity is uncommon in segment seven. Moreover, children
assigned to this segment are primarily part of a household with a monthly income above
4000 euro’s. Especially, households with a monthly income between 2000 and 4000 are
rare in segment seven.

Segment six, the segment with the lowest average score, describes mainly girls with a
Surinamese or Turkish background and relatively less children with a Dutch background.
Additionally, most mothers in this segment have a secondary education and mothers with
a higher education are mostly assigned to other segments. Likewise, most households in
this segment belong to the lowest category of monthly household income and in particular
do not belong to the highest category of household income.

Another segment where children with a low average score are assigned to is segment
four. Similar as in segment six, children with a Turkish mother are described by this
segment. The difference with segment six is that in segment four the IQ is closer to the
average IQ over all segments. Likewise, segment four does not discriminate on sex.

Noteworthy, the segments describing children who preform worse on the CCT, seg-
ments four and six, also represent the children who turn over many cards and face many
loss cards. On the other hand, children represented by segment seven and eight perform
best on the CCT and turn over less cards and consequently, face less loss cards. Being
risk averse seems to be the best strategy in this game. Another interesting fact is that the
two segments with the lowest IQ, segment six and eight, are the segments that perform
respectively worst and best on the CCT. Furthermore, the segments where children per-
form well on the CCT, segment seven and eight, have a high population of boys, whereas
segment six, the least performing segment, has the highest population of girls. This is in
accordance with the results from the first analysis, see Table 5.1, that showed that boys
on average score higher on the CCT than girls do.

Segment one has a large Dutch and Moroccan population and contains a bit more
girls than the average population. On the other characteristics the segment population
in segment one is similar to the average population over all segments. The same holds for
segment two, which only discriminates on the characteristic IQ. This segments represents
children with a high IQ, although the difference with the average IQ is small.

The population of segment five contains a large sample of children with an African
mother compared to the average population. Contrary, children with a Turkish mother
are uncommon in this segment. In addition, the average score obtained by the children
represented by segment five is above average. Segment three can be seen as the seg-
ment representing an ordinary child. This segment does not discriminate on any of the
characteristics.

21



T
ab

le
5.

3:
C

h
ar

ac
te

ri
st

ic
s

of
se

gm
en

t
p

op
u

la
ti

on
s

of
th

e
m

o
d

el
w

it
h

ei
gh

t
se

gm
en

ts

S
eg

m
en

t
1

2
3

4
5

6
7

8
T

o
ta

l

A
ge

9.
76

9.
78

9.
78

9.
77

9.
76

9.
76

9
.7

4
9
.7

7
9
.7

7
S

ex
(%

gi
rl

)
52

.1
51

.6
49

.1
50

.0
49

.3
53

.7
4
6
.5

4
7
.3

5
0
.6

IQ
10

2.
7

10
3.

1
10

2.
2

10
1.

6
10

2.
6

99
.2

1
0
1
.2

9
8
.2

1
0
2
.1

E
th

n
ic

it
y

M
ot

h
er

(%
)

D
u

tc
h

63
.4

60
.8

58
.0

59
.6

60
.0

54
.9

5
7
.3

4
3
.0

5
9
.5

A
fr

ic
an

4.
3

4.
8

5.
0

3.
6

6.
5

5.
7

6
.4

2
.8

4
.9

A
si

an
,

n
on

W
es

te
rn

4.
3

6.
2

5.
5

6.
3

5.
4

4.
7

6
.2

1
2
.0

5
.6

M
or

o
cc

an
5.

5
4.

6
5.

3
3.

9
4.

3
3.

7
2
.2

4
.5

4
.6

D
u

tc
h

A
n
ti

ll
es

1.
6

1.
7

2.
4

2.
3

1.
9

3.
5

4
.0

0
.4

2
.2

S
u

ri
n

am
es

e
7.

1
6.

9
6.

6
7.

3
5.

1
9.

8
6
.8

1
4
.2

7
.1

T
u

rk
is

h
4.

5
6.

3
6.

5
7.

4
4.

0
8.

3
4
.5

5
.4

6
.0

O
th

er
W

es
te

rn
9.

2
8.

7
10

.7
9.

6
12

.9
9.

5
1
2
.4

1
7
.6

1
0
.1

E
d

u
ca

ti
on

m
ot

h
er

(%
)

N
o

ed
u

ca
ti

on
or

p
ri

m
ar

y
ed

u
ca

ti
on

5.
1

5.
1

4.
3

4.
1

4.
9

5.
9

4
.8

1
1
.3

4
.9

S
ec

on
d

ar
y

ed
u

ca
ti

on
36

.1
37

.6
38

.5
39

.1
37

.5
46

.9
3
7
.7

3
0
.2

3
8
.4

H
ig

h
er

ed
u

ca
ti

on
58

.8
57

.3
57

.2
56

.8
57

.6
47

.2
5
7
.5

5
8
.4

5
6
.6

H
ou

se
h

ol
d

in
co

m
e

p
er

m
on

th
in

eu
ro

’s
(%

)
<

20
00

21
.2

21
.6

22
.8

21
.8

22
.7

29
.9

2
7
.7

2
9
.7

2
3
.0

20
00

-
40

00
43

.8
44

.8
43

.7
44

.8
41

.9
44

.3
3
3
.6

4
0
.6

4
3
.4

>
40

00
35

.0
33

.6
33

.5
33

.4
35

.5
25

.8
3
8
.7

2
9
.7

3
3
.6

A
ve

ra
ge

sc
or

e
-1

61
.3

-1
84

.9
-1

31
.0

-2
14

.9
-1

02
.0

-2
61

.2
-7

5
.9

-5
5
.4

-1
6
5
.1

#
ca

rd
s

tu
rn

ed
ov

er
9.

2
10

.6
7.

8
11

.8
6.

4
12

.3
5
.0

3
.4

9
.3

#
ce

n
so

re
d

tr
ia

ls
10

.6
12

.2
8.

9
13

.9
7.

1
15

.6
5
.5

4
.0

1
0
.8

22



The parameter estimates of the finite mixture model are reported in Table 5.4 and
Table 5.5. The variables previous score and second previous score denote the scores
obtained in respectively the trial before the current trail and two trials before the current
trial. The continuous variables previous score, second previous score, age, and IQ are
standardised for this analysis.

Because of the coefficients decomposition as described in Section 4.4, the intercepts in
Table 5.4 represent the expected average number of cards to turn over per segment without
correcting for any of the observed variables. Segment one is the most risk seeking segment
and segment eight is the most risk averse segment. However, due to the differences in
segment population the actual average number of cards turned over is different, see Table
5.3.

Furthermore, the segment probabilities π show that the prior probability to be as-
signed to segment one is highest and the prior probability to be assigned to segment
eight is lowest. Hence segment one has the largest population and segment eight has the
smallest population.

Table 5.4: Intercepts α after decomposition and segment probabilities π with standard
errors

Segments
1 2 3 4 5 6 7 8

α 22.57 21.89 19.59 15.16 8.97 9.78 6.64 4.55
st. error 0.240 0.233 0.208 0.161 0.147 0.104 0.107 0.124

π 0.211 0.204 0.183 0.141 0.099 0.091 0.057 0.013
st. error 0.011 0.011 0.009 0.010 0.009 0.006 0.005 0.002

Table 5.5 reports the β-coefficients after decomposition. Note that the model is a
linear model, so the estimates should be interpreted linearly. For example, according
to the model a girl will turn over 0.534 (= 0.267 + |−0.267|) cards more than a boy.
Moreover, older children seem to be more risk averse than younger children. If the age
increases with one standard deviation (0.26 years) the expected number of cards turned
over decreases with almost 0.3 cards. So, someone who is one year older will turn over
1.1 cards less. Likewise, a higher IQ leads to a lower expected number of cards turned
over. However, the latter effect is rather small. The IQ should increase with 14.7 points
(one standard deviation) before the expected number of cards turned over decreases with
half a card. Recall that Table 5.3 shows that a risk averse strategy is more profitable in
this game.

Furthermore, children with a Dutch or Moroccan mother are likely to be risk averse,
whereas children with an African, Dutch Antilles, or Other Western background are risk
seeking. Although, the coefficient of the Turkish ethnicity is not significant, Turkish
children are likely to be more risk averse than children with an African, Dutch Antilles,
and Other Western descent. Moreover, a low maternal education positively effects the
number of cards turned over, whereas a high maternal education negatively effects the
number of cards turned over. Similarly, a monthly household income below 2000 euro’s
has a positive effect on the number of cards turned over, whereas a monthly household
income between 2000 and 4000 has a negative effect.

Due to the different game settings we can investigate the influence of the loss proba-
bility and the sensitivity to reward and punishment. According to the model, in a trial
with one loss card on average two and a half cards more are turned over than there are
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in a trial with three loss cards. The game setting loss amount also shows the expected
sign. In a trial with a high loss amount the expected number of cards turned over is
lower. Against all odds, the expected number of cards turned over is lower in a trial with
a high gain amount than it is in a trail with a low gain amount. Recall that Table 3.1,
which presents the average number of cards turned over per game setting shows the same
pattern.

The scores obtained in previous rounds have a significant effect on the risk behaviour
in the current round. If someone scores high in the previous round he or she is more likely
to turn over more cards in the current round. As expected, the effect of the score in the
previous round is stronger than the effect of the score in the second previous round. The
effect of the previously obtained scores on the current risk behaviour could indicate the
presence of a learning effect.

In addition, this model includes interaction terms between the game settings and sex.
According to the model, the sex boy together with a loss amount of 250 accounts for an
additional 0.161 (= 0.302 − 0.267 + 0.126) cards to be turned over. In a trial with loss
amount 750, a boy is expected to turn over 0.695 (= |−0.302− 0.267− 0.126|) cards less
than the base average (i.e. the segment specific intercepts). Hence, the effect the loss
amount has on the number of cards turned over by a boy is 0.856 (= 0.161+|−0.695|). This
effect is smaller for girls, namely 0.624 (= (0.302+0.267−0.126)+(−0.302+0.267+0.216)).
To conclude, boys seem to be more sensitive to punishment in the CCT than girls are.

The same pattern can be seen when looking at the number of loss cards in a trial.
The effect of the number of loss cards is larger for boys than for girls, namely 2.81 versus
2.298. This effect is for both boys and girls larger than the effect of the loss amount.
Hence, both boys and girls seem to be more influenced by the probability of loss than by
the height of a possible punishment.

For the game setting gain amount the pattern is different. Girls seem to be more
sensitive to reward than boys, 0.892 versus 0.534. However, according to the model, girls
turn over an additional 0.713 cards when the gain amount is ten and turn over 0.179
cards less than the base average when the gain amount is thirty. For boys both values
are negative, in other words regardless the gain amount, boys turn over less cards than
the base average.
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Figure 5.1: Boxplot with residuals per number of cards turned over of the model with
eight segments

Figure 5.1 displays the distribution of the residuals per number of cards turned over.
This plot is based on only the noncensored cases, because the model predicts how many
cards someone wants to turn over, not how many cards someone actually turns over. The
model would have fitted perfectly if the boxes were small and would have lied around
the red horizontal line. As you can see, the model, on average, overestimates the number
of cards turned over if the actual number of cards turned over is below twelve. If the
actual number of cards turned over is above twenty, the model mainly underestimates
the number of cards turned over. The size of the boxes describes the variation in the
residuals. If a box is small, 75% of the residuals have similar values. For example, the
box for 13 cards is smaller than the box for 14 cards. Because both boxes lie around the
red horizontal line, we can conclude that the model, in 75% of the cases, better predicts
if the actual number is 13 than it does if the actual number is 14. Overall, the boxes
for a low number of cards are smaller than the boxes for a high number of cards. This
means that the model more accurately predicts when the actual number of cards turned
over is low. However, for the low actual number of cards turned over the residuals have
more outliers, meaning that the predictions are not as accurately as can be expected from
the box sizes. Besides, note that the increasing size of the boxes is largely due to the
heteroskedasticity of the Poisson model. Contrary, the graph shows that the model also
has difficulties predicting the correct value if the actual value is zero.
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Table 5.5: β-coefficients with standard errors between brackets

β - coefficients
(st error)

Age -0.287 (0.048)
Girl 0.267 (0.054)
Boy -0.267 (0.054)
IQ -0.547 (0.045)
Ethnicity Mother

Dutch -0.863 (0.120)
African 0.469 (0.235)
Asian, non Western -0.230 (0.226)
Moroccan -0.585 (0.241)
Dutch Antilles 0.944 (0.324)
Surinamese 0.175 (0.186)
Turkish -0.606 (0.366)
Other Western 0.697 (0.180)

Education mother
No education or primary education 0.554 (0.174)
Secondary education 0.008 (0.120)
Higher education -0.561 (0.105)

Householdincome per month in euro’s
<2000 0.606 (0.116)
2000 - 4000 -0.587 (0.077)
>4000 -0.020 (0.082)

Gain amount (10) 0.284 (0.021)
Gain amount (30) -0.284 (0.021)
Loss amount (250) 0.302 (0.021)
Loss amount (750) -0.302 (0.021)
# loss cards (1) 1.277 (0.022)
# loss cards (3) -1.277 (0.022)
Previous score 0.894 (0.022)
Second previous score 0.583 (0.022)
Interaction terms

Gain amount (10) : girl 0.162 (0.021)
Gain amount (30) : girl -0.162 (0.021)
Gain amount (10) : boy -0.162 (0.021)
Gain amount (30) : boy 0.162 (0.021)
Loss amount (250) : girl -0.126 (0.021)
Loss amount (750) : girl 0.126 (0.021)
Loss amount (250) : boy 0.126 (0.021)
Loss amount (750) : boy -0.126 (0.021)
# loss cards (1) : girl -0.128 (0.021)
# loss cards (3) : girl 0.128 (0.021)
# loss cards (1) : boy 0.128 (0.021)
# loss cards (3) : boy -0.128 (0.021)
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6. Conclusion and Limitations

This research focusses on risk behaviour of children measured with the Columbia Card
Task (CCT). Besides, it investigates whether risk behaviour can be predicted from the
IQ and socio-economic status of a child. The design of the CCT additionally allows us to
analyse different factors that may influence the decision process.

An analysis on the performance of children on the CCT shows that age and sex
are important predictors. The performance on the CCT increases with an increase in
age, and boys score on average higher than girls. Furthermore, Dutch children score
significantly higher on the CCT than the average and Surinamese and Turkish children
score substantially lower than Dutch children.

Besides the performance on the CCT, one could also measure the risk behaviour with
the CCT. The more cards a child turns over, the more risk seeking he or she is. A
finite mixture model with eight segments shows that boys are more risk averse than girls.
Besides, older children and children with a higher IQ turn over less cards. From the
segment populations we can conclude that a risk averse strategy is more profitable than a
risk seeking strategy. Furthermore, children with a Dutch or Moroccan mother are more
risk averse than the average. Contrary, children with an African, Dutch Antilles, or Other
Western background turn over more cards than the average. In addition, there seems to
be a difference between children with a Turkish descent and children with an African,
Dutch Antilles, or Other Western descent, where the first group is more risk averse than
the latter. Regarding the maternal education and monthly household income, the lower
these two variables the more risk seeking a child is on average.

An advantage of the CCT is that it allows researchers to measure several underlying
factors of risk behaviour. Due to the different game settings a researcher could distinguish
between the effect of the loss probability and the sensitivity to reward and punishment
on risk behaviour. Both the loss amount and loss probability show the expected sign,
however, according to the model, a higher gain amount results in a lower expected number
of cards turned over. Furthermore, the effect of the number of loss cards is greater than
the effect of the loss amount. This result is in accordance with previous findings (Kluwe-
Schiavon et al., 2015). Besides, boys are, according to the model, more influenced by the
loss probability and are more sensitive to punishment than girls are. In addition, previous
results on the CCT have a significant effect on the current game. This could indicate the
presence of a learning effect.

It is hard to label the eight segments based on their characteristics, however the
segment populations can be used to compare segments that perform well on the CCT with
segments that perform worse. Segment seven and eight perform best on the CCT and
describe mainly boys. Note that the linear regression on the average score also indicates
that boys score better than girls. Segment eight, in addition, has a low population of
Dutch children, which does not corresponds to the results of the linear regression model.
On the other hand, segment six, the segment that performs worst on the CCT, also
contains few Dutch children. Besides, both segment six and segment eight have a low
average IQ score. Moreover, segment six and seven show that children from a household
with a low income perform worse on the CCT than children from a household with a high
income. This result is in accordance with the findings from the linear regression on the
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average score.
A major limitation in this study is the censoring of the data. More than two-third

of the trials are censored, making it more difficult to come to accurate estimates. This
could have been solved by manipulating the game such that the loss card is at the last
possible card, as Figner et al. (2009) did. However, if the game is manipulated in this
way participants have to complete more trials to ensure that they do not discover the
manipulation of the game, making the research more expensive. Besides, relatively many
children continued turning over cards in all trials until they faced a loss card. Hence, it is
questionable whether manipulating the game like this will lead to more accurate results.

The CCT may be considered as an advanced risk task, since participants have to
consider three different game settings during the decision making process. According to
van Duijvenvoorde et al. (2015) children in the age category 8-10 years understand the
CCT. However, their argumentation is based on the significant result that the effects of
all game settings were in the expected direction. However, we found a significant effect
of the gain amount in the opposite direction. In this research we excluded 104 children
that turned over the last card, which is definitely a loss card, because they clearly did not
understand the task. In addition the data set contains 309 children who faced a loss card
in all 16 trials. These children are not excluded from the analysis, because these children
could just be extremely risk seeking. On the other hand, one could argue that these
children did not understand the function of the stop button, with which they could stop
the trial and collect the earned points. However, after the first three trials the children
were reminded of the stop button, therefore we found the risk seeking argument more
plausible in this case.

The finite mixture model used to analyse the risk behaviour has some limitations as
well. The parameters are estimated with the EM-algorithm, which is known to be a
slowly converging algorithm. However, even after considering the slow convergence of the
EM-algorithm this model is extremely time consuming. We first considered a model with
multiplicative effects (i.e. defining the mean as µ = exp(x′β)), which is more common in
a Poisson regression model, but a linear model appeared to converge faster, presumably
because it suffers from less numerical instability.

It is important that the mean is specified such that it cannot have negative values,
because a Poisson regression model is not defined if the mean is negative. Besides, in this
case a negative mean does not make any sense, because it is impossible to turn over less
than zero cards. In this research the nonnegativity is guaranteed by taking the maximum
of αs + x′itβ and a value sufficiently close to zero, but one could also choose to set a
penalty on negative values of αs + x′itβ to ensure nonnegativity. For further research
different specifications for the mean could be considered.

Another improvement that could be considered is a different link function and/or
distribution for a smoother likelihood function and faster convergence. For instance, a
negative binomial distribution could be applied. The advantage of this distribution is that
it has a finite upper bound, whereas the Poisson distribution has no upper bound (i.e. the
upper bound is infinite). In the CCT participants can turn over a maximum of 31 cards,
so a distribution with a upper bound at 31 might better fit the data. Additionally, the
negative binomial distribution does not assume equidispersion. However, this distribution
is not examined for this research.

An assumption of the Poisson distribution is equidispersion, equal mean and variance.
However, in practice this assumption is often violated. Tests to check the validity of this
assumption are designed for noncensored data, but not for censored data. When the data
is censored the true mean and true variance can not be computed easily. Therefore, the
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best way to check for equidispersion when the data is censored is to compare a censored
Poisson regression model, which assumes equidispersion, with a model that does not
assume equidispersion. Examples of models that do not assume equidispersion are a
censored generalized Poisson regression model (Famoye & Wang, 2004) and a model with
a negative binomial distribution. However this is out of the scope of this research.

Finally, the analysis could be improved by limiting the randomness in the analysis,
leading to more robust results. In particular, the EM-algorithm, which is used to find the
maximum likelihood estimates of the parameters in the finite mixture model, is sensitive
to local maxima. It is advisable to use random starts to reduce the problem of local
maxima. However, due to the time constraint using random start values was not possible
in this analysis. Moreover, single imputation is performed to fill missing data values.
Again, multiple imputations will reduce the randomness and give more robust estimates
of the missing values. Selecting the number of segments is now largely based on the
Bayesian Information Criterion (BIC), while other criteria could have led to a different
number of segments. A better approach might be to use cross validation to determine the
number of segments (Grimm, Mazza, & Davoudzadeh, 2017). However, again due to the
time constraint this was not possible in this analysis.
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