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Abstract

The partial buy-out or carve-out is a new pension fund de-risking solution pro-
posed by Willis Towers Watson. In the partial buy-out only part of the pension fund
liabilities are transferred to an insurer. The pensioners are generally more risk averse
and have a shorter investment horizon than active participants. The pension fund
board is obliged to conduct the fund policy decisions in interest of all participants,
making the policy generally too risky for the pensioners and not risky enough for the
active participants. In this thesis I establish with an ALM study whether transferring
the entitlements of the pensioners to an insurer through a partial buy-out can bene-
fit all participants of the fund. The pensioners can benefit from ensured entitlements
and possibly indexations, whereas the active participants can benefit from the pension
fund policy being more aligned to their preferences.

Keywords: Buy-Out, Partial Buy-Out, Carve-Out, Penion Fund, ALM, Pension De-
Risking
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1 Introduction

In recent years the funding statuses of pension funds with defined benefit schemes have
increasingly come under pressure. Due to declining interest rates and continuous unantici-
pated improvements in the life expectancy1, the liabilities have increased in value, whereas
return on investments was not sufficient enough to compensate the increase in liabilities
(Lin et al. (2015), Biffis and Blake (2013)). Adding to that, new Dutch and European
regulations for financial institutions have been introduced. Dutch pension funds must now
comply with more stringent rules for the valuation of the liabilities and the indexation pol-
icy. Risks must be monitored more strictly and larger capital buffers are required, thereby
making the pension funds risk management more complicated and capital intense.

The resulting higher operating costs and pension funding deficits have adverse effects
for both the participants of the fund, as for the sponsoring company. For the participants
indexation is very unlikely in the upcoming years and even reductions of the entitlements
might be necessary for pension funds to ensure their obligations. The sponsoring compa-
nies of pension funds suffer higher contributions. This increase in contributions leads to
decreased investments from the sponsoring company (Rauh (2006)), potentially resulting
in decreased share value.

With this combination of market circumstances and stricter regulatory requirements,
pension funds have increasing incentives to reduce the risk of their liabilities. The three
most common pension de-risking solutions are: a pension buy-out, a pension buy-in and
longevity hedge strategies (Coughlan et al. (2013)). A new strategy in this field is the
partial buy-out, which will be named carve-out in this thesis2. An important requirement
for a carve-out to be an attractive solution is that it must be beneficial for all stakeholders
of the fund. The aim of this thesis is to examine whether a carve-out can be beneficial for
both the remaining as the transferred participants of the fund.

A buy-out transfers the pension obligations and assets to an insurer, where the trans-
ferred liabilities are no longer the fund’s obligations. The buy-out is a bulk annuity
contract for the participants of the fund, ensuring a fixed pension income with possibly
indexation included. A buy-out therefore eliminates all possible risks involved with both
the liabilities and assets for both the pension fund and the sponsoring company. A carve-
out is a buy-out where only part of the fund’s liabilities are transferred. The pension
buy-in is similar to a buy-out. A buy-in transfers the risk from the fund to an insurer
by paying a premium in exchange for a bulk annuity that matches the fund’s future obli-
gations. With a buy-in the liabilities remain on the balance sheet of the pension fund.
However, these liabilities are perfectly matched by the annuity contract on the asset side
of the balance sheet. In case of a buy-in, the risk of default of the counter-party arises for
the pension fund, whereas with a buy-out the participants bear this risk. This makes a
buy-in generally cheaper for the pension fund. Lin et al. (2016) give a clear overview of
the differences between buy-ins and buy-outs and their implications for pricing. Similar to
the carve-out, also a carve-in or partial buy-in can be considered as possible de-risking so-
lution. In this thesis the counter-party risk is assumed to be zero, the results can thus also

1See Cox et al. (2013)
2Carve-out is a term introduced by Willis Towers Watson. The term more specifically refers to a

partial buy-out where only the pensioners are transferred from the pension fund.
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be used to asses the attractiveness for the participants of a carve-in under this assumption.
A buy-out is a relatively expensive de-risking solution, however, an important advan-

tage over the other solutions is that it mitigates all risks for the fund and sponsoring
company associated with the assets and obligations (Blake et al. (2008), Bertocchi et al.
(2010)). The advantage of a pensioners carve-out compared to a buy-out is that buy-
outs become cheaper when pension funds have a lower duration. European insurers are
required to hold capital buffers for the risks on their balance sheets. This European reg-
ulatory framework is known as Solvency II. With a lower duration the amount of interest
rate risk is relatively smaller, which makes the Solvency requirement for the pensioners
obligations relatively lower. Furthermore, to buy full indexation for the pensioners a lower
funding ratio is required than the fund itself needs to be allowed to pay full indexation
following the Dutch pension regulations.

In the decision for a de-risking strategy the board of a pension fund must take the
interests of all stakeholders of the fund into account. The interests of the participants
and the sponsoring company can be different, but also the interests and risk preferences
of young and old participants are quite different. The sponsoring company mostly wants
to reduce its pension risk as cost efficient as possible. Lin et al. (2015) show that buyouts
create more value than longevity hedges in the enterprise risk management framework.
The reason being that buy-outs provide more freedom for a firm to engage in riskier
projects with high expected returns.

The participants desire an indexed pension, where the risk a participant is willing
to take to achieve this depends on his risk aversion. Generally older participants are
more risk averse than younger participants (Campbell and Viceira (2002)). A buy-out is
therefore more attractive to older participants, as this assures the pension payments for
the participants. For younger participants the combination of a longer investment horizon
and lower risk aversion can make a buy-out suboptimal. By taking more risk, a higher
indexation can be pursued. A partial buy-out or carve-out, where only the pensioner’s
assets and liabilities are transferred to an insurer, can therefore be an attractive solution
for both young and old participants. The pensioners gain by eliminating the risk of
pension reductions in the short term. Whereas the remaining participants gain by being
able to adjust the fund’s investment policy to their risk preferences and thereby increase
the probability of indexation in the future.

In this thesis I analyse whether a carve-out is interesting from the participants per-
spective and how the assets can best be distributed between the active participants and
pensioners. For this purpose, I analyse the development of the pension fund with and
without a carve-out by means of an Asset Liability Management (ALM) study, where the
participants are assumed to derive utility from their benefits. ALM models are often used
to analyse the impact of policy decisions on the dynamics of pension funds, e.g. Boen-
der (1997) and Dert (1995). ALM models provide good insights of the effects of policy
decisions on both the asset and liability side of the balance sheet. In the ALM literature
various approaches have been proposed. To analyse the impact of a carve-out I follow
Hoevenaars and E. Ponds (2007) by using a value-based approach. In this type of ALM
model the financial market is modelled under a no-arbitrage assumption consistent with
asset pricing theory. Next to the general insights that the standard ALM approach can
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offer, a value-based approach also provides insights in the market value of embedded op-
tions in the pension contract. Hoevenaars and Ponds (2008b) use this approach to gain
insights in the inter-generational value transfers caused by policy decisions of the fund
management. An important management decision that is involved in a carve-out is how
to divide the assets. The management of the fund should strive to divide the assets in a
fair manner, where all participants benefit equally. In the carve-out setting fair can be
considered as a distribution of assets that results in as small as possible value-transfers.
A value-based ALM study enables these value transfers to be analysed. I compare several
methods to split the assets based on value neutrality and the resulting utility distribution.
As more intuitive assets distribution rules I split the assets based on the nominal, real
and regulatory funding ratio and the expected indexation. To judge the intuitive methods
in value neutrality I also split the assets based on the no-arbitrage value of the entitle-
ments. And to determine whether a win-win situation is possible I split the assets based
on indifference for the pensioners.

The pension fund is assumed to have a defined benefit pension scheme with conditional
indexation. This is the most common defined benefit scheme in the Netherlands3. Defined
benefit schemes ensure the participants a certain level of benefits, where the premium can
be adjusted to finance these obligations. In this type of scheme the risks associated with
the fund are borne by the fund and the sponsoring company. Conditional on the financial
position of the fund, the management can decide to grant indexation, the compensation
for the devaluation of entitlements caused by inflation. The success of the carve-out is
determined by the utility derived by the participants from the pension payments. The
participants are assumed to have Constant Relative Risk Aversion (CRRA) preferences.
First I analyse the carve-out under a homogeneous risk aversion assumption, thereafter I
assume heterogeneity in the risk aversion of active participants and pensioners.

I find that under the assumption of homogeneous risk aversion no mutually beneficial
carve-out is possible for the stylised pension funds I define. A carve-out increases the
duration of the pension fund, which results in an increased volatility of the regulatory
funding ratio. This increased risk can not be hedged efficiently as the value of the liabilities
is determined on a fictional interest rate, namely the Ultimate Forward rate. A carve-out
is more attractive for the participants if the fund has a higher funding ratio, this leads to
higher funding benefits for the fund as the pensioners require less assets than the funding
ratio attributes to their entitlements. A carve-out is also more attractive for participants
of a fund with a relatively low duration. The value-based asset distribution generally
leads to a well-balanced distribution in terms of utility. Of the more intuitive distribution
rules the expected indexation distribution comes closest to this balance for higher funding
ratios. For lower funding ratios this leads to a too large proportion of the assets being
attributed to the pensioners. In this case the nominal asset distribution is closer to being
value and utility neutral. With heterogeneous risk aversion a mutually beneficial carve-out
is possible for funds with a relatively low funding ratio (100%) and for the combination
of a high funding ratio (130%) and short duration.

3Figure 4 in Appendix A.2 shows the distribution of the most common pension schemes in the Nether-
lands.
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2 Data

To perform a pension fund ALM study multiple types of data are required. For the
estimation of the financial market model historical equity, inflation and interest rate data
is used. All time series data is collected in a monthly frequency. To model equity returns,
the MSCI World Total Return Index is used with the corresponding dividend yield. As
bond data I use the German government bond constant maturity rates for maturities 5
years, 10 years and 30 years. Both the MSCI World Index with corresponding dividend
yield as the German bond rates are from Bloomberg. The 1-month Euribor rate will be
used to denote the risk-free rate in the model. As measure of the price inflation I use
the European HICP seasonally adjusted. Both the Euribor rate and HICP inflation are
available at the Statistical Data Warehouse of the European Central Bank4. The above
mentioned data is collected for a period ranging from January 1997 until April 2016.
Table 1 gives some summary statistics. The average inflation rate, π, in the sample period
is lower than the target inflation rate of the ECB. The kurtosis of the inflation rate is
larger than 3, indicating that the inflation rate is not normally distributed. The average
total net return on the MSCI World Index is equal to 5.4%. The MSCI index returns are
negatively skewed and have a kurtosis of roughly 5. Extreme returns are thus more likely
compared to normally distributed returns and large negative returns are more likely than
large positive returns. The average interest rates are increasing with the maturity, while
the volatility decreases for larger maturities.

Table 1: Summary Statistics of the Financial Data
Descriptive statistics of the financial data used in this study. π denotes the European HICP inflation rate, xs
denotes the returns on the MSCI World Total Net Return Index, with dy the corresponding dividend yield,

reuribor is the 1-month Euribor rate and ri denotes the i-year German interest rate.

π xs dy reuribor r5 r10 r30

Average 1.64% 5.40% 2.23% 2.27% 2.82% 3.43% 4.04%
Std. Dev. 0.58% 15.97% 0.58% 1.65% 1.64% 1.50% 1.42%
Sharpe Ratio - 0.34 - - - - -
Skewness -0.08 -0.90 0.79 -0.05 -0.47 -0.58 -0.51
Kurtosis 3.95 4.99 4.65 1.58 1.93 2.33 2.45

To analyse the development of a pension fund with and without a carve-out, data on
the initial composition and development of the fund is required. For the initial compo-
sition I make use of fictional self generated data, based on pension fund statistics in the
Netherlands and the expert opinion of Willis Towers Watson. Entrance probabilities of
new participants are provided by Willis Towers Watson. Furthermore, data on mortality
is needed to model the composition of the fund over time. For this purpose I use the
mortality rates provided by the dutch actuarial institute5 for 2016, known as the ’AG
sterftetafel 2016’. This file contains both current mortality rates as future expected mor-
tality rates split by age and gender6. The composition and development of the fund will
be discussed in more detail in Section 4.

The wages used to calculate the pension accruals for the participants is based on

4Available at: http://sdw.ecb.europa.eu/
5Het Actuarieel Genootschap (AG).
6Avalaible at: www.ag-ai.nl
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average wage data per age group in the Netherlands. This data can be collected from the
website of the dutch statistics agency, the CBS7. The raw wage data can be found in Table
16 in Appendix A. To obtain wages for all ages, I construct a smoothed curve from the
raw data. The wages are assumed to remain constant after the age of 50, because the raw
data shows some irregularities after that age. Nevertheless, this is a realistic assumption,
because productivity is also likely to remain quite constant after this age. Additionally
I assume the wages per age group to hold exactly for the average age of that particular
group. A curve is obtained by linear interpolation between those points. The resulting
curve is shown in Figure 1. In the ALM study I assume wages to grow with the inflation
rate over time plus an additional 0.5% wage inflation, thereby following the prescribed
approach of the Dutch National Bank (DNB).

Figure 1: Wages Per Age

7Centraal Bureau voor de Statistiek. The data set is available at: http://statline.cbs.nl/Statweb/
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3 Financial Market Model

This section describes the models I use to simulate the dynamics of the financial market.
For this purpose I use two separate models. For inflation, equity and dividends I use a
Markov Switching VAR model, which is further elaborated in Section 3.1. In the ALM
literature VAR models are frequently used to model the dependency in the financial mar-
kets, examples can be found in Boender et al. (2007) and Hoevenaars (2008). However,
financial time series often show excess skewnnes and kurtosis, heteroskedasticity and time
varying correlations, which is not captured by linear VAR models. Ang and Timmermann
(2012) argue that regime switching models can successfully capture these characteristics,
making these type of models better suited for this purpose. For the interest rates I use a
latent factor affine term structure model, which is elaborated in Section 3.2.

Ideally the interest rates and other financial variables would be described with one
model, but including interest rates to the regime switching VAR model results in non-
stationary interest rates. Therefore, I choose to model interest rates separately, thereby
assuming they are independent from inflation, equity and dividends. For interest rates
and excess equity returns this assumption will not have a large impact on the results. The
correlations between equity returns and interest rates are not very large. Furthermore, the
total equity return exist of the risk-free 1-month rate plus the excess return, which will
result in small correlations between interest rates and total equity returns. The assumption
that inflation and interest rates are uncorrelated is less realistic. In practice periods of
low interest rates are often accompanied by low inflation rates and vice versa.

In the simulated scenarios low (high) interests rates with high (low) inflation will be
more probable than it would be in reality. For the pension fund in the ALM model this
will mean that in times of low interest rates with high inflation, the interest rates will be
too low to compensate for inflation. This makes indexation of the entitlements in such
scenarios less likely. However, in times of high interest rates with low inflation, the fund
can more easily grant indexation. This will slightly impact the volatility of the real pension
results of the participants. The assumption will not have a large influence on the carve-out
results, as the assumption applies to both the fund with and without a carve-out. The
pensioner might benefit slightly more from a carve-out with the independence assumption,
because the indexation included in the carve-out does not depend on asset returns and
interest rates. The effect, however, will be small.

3.1 Markov Switching Model

3.1.1 Model Specification

To find the best suiting model for inflation, equity and dividends I consider multiple
specifications of reduced form Vector Auto-Regressive (VAR) models with regime switches.
In this setting the model parameters depend on the current regime, which is unobserved
and equal for each variable. Modelling the regimes to be equal across all variables strongly
reduces the dimensionality of the model, while still being able to capture the non-linear
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dynamics of the joint distribution, if the underlying regimes are strongly correlated8. The
unobserved states are assumed to follow an ergodic time-homogeneous first order Markov
process with a finite state space. This type of model was first introduced by Hamilton
(1989). A Markov Switching VAR (MSVAR) model in its most general form with M states
and p lags is given by

xt = νst + Φ1,stxt−1 + ...+ Φp,stxt−p + Σ
1
2
stut,

pij = P (st = j|st−1 = i),

M∑
j=1

pij = 1,
(1)

where ut ∼ N (0, I) with I the identity matrix and st denotes the state at time t. Fur-

thermore, Σ
1
2
st is the lower triangular Cholesky decomposition of the covariance matrix

of the innovations of xt in state st. In this formulation the intercept νst , auto-regressive

matrices Φi,st and covariance matrix Σ
1
2
st all switch states. The transition probability from

state i to state j is given by pij . In this model xt consists of the European HICP inflation
rate (πt), the MSCI World index return in excess of the 1-month Euribor (xst) and the
corresponding dividend yield (dyt).

In practice other specifications can be formulated by restricting the shifting parameters
to a part of the parameters. Following Krolzig (1997) I consider models where combina-
tions of the intercept, the auto-regressive parameters and the covariance matrix can switch
states. To distinguish the different models I use the following notation:

I Markov-switching intercept term,
A Markov-switching auto-regressive term,
H Markov-switching heteroskedasticity.

With this formulation the notation for the most general MSVAR model as in Equation
1 is given by MSIAH. Given this notation the combination of models that can be formu-
lated is shown in Table 2. The models I consider will only have switching intercepts and
heteroskedasticity. In the table these models are marked with a red box. Allowing the
auto-regressive parameters to switch will result in the loss of a closed form solution for
the affine term structure model9. The closed form solution for the yield curve allows the
model to be tractable and to be calculated much faster. With this restriction however,
the model is still much richer than a linear VAR model. Regimes in financial variables are
often determined by changes in the levels, variances and cross correlations of the series.
The models I consider are able to capture these aspects through the switching intercept
and switching covariance of the innovation terms.

Following Guidolin and Timmermann (2006) I search for the best model specification
by considering a large set of models. In this search I consider models with lags varying from

8Appendix C shows the smoothed regime probabilities of the multivariate model and the univariate
counterparts. The univariate regimes show moderate to strong correlations with each other. All univariate
regimes show a correlation of at least 0.57 with the multivariate model regimes.

9This statement will be proven in Appendix E, where the derivation of the term structure equations
is given.
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Table 2: Type of MSVAR models
Types of MSVAR model specifications for different parameter restrictions. The models highlighted in red are the

models included in this analysis.

ν varying ν invariant

Φ invariant
Σ invariant MSI-VAR linear VAR
Σ varying MSIH-VAR MSH-VAR

Φ varying Σ invariant MSIA-VAR MSA-VAR
Σ varying MSIAH-VAR MSAH-VAR

0 to 4 and the number of states varying between 1 and 4. The number of states is limited
at 4 because of the extremely large number of parameters for higher order specifications.
This leads to identification issues when estimating these models. I compare the models
based on the Akaike, Bayesian and Hannan Quinn information criteria. These criteria
offer an indication of the goodness of fit of the models, corrected for the complexity of the
models. For each criteria the models are ranked, whereafter I chose the model with lowest
the total sum of the ranks of each individual criteria. Each criterion has its own strengths
and weaknesses, by combining the information of multiple criteria the model selection is
more robust.

The models are estimated using the Expectation Maximisation algorithm. This algo-
rithm and the estimation steps involved are discussed extensively by Krolzig (1997). To
ensure realistic averages for inflation and equity returns in each regime I adjust the in-
tercepts of the model. To approximate the regime average, I calculate a weighted sample
average, where the weights are the smoothed regime probabilities for each observation.
The intercepts of the model for inflation and equity are adjusted, such that the uncondi-
tional VAR expectations of each regime match this weighted sample average. With these
adjustments the unconditional model expectations closely resemble, but do not exactly
match, the sample averages10. The model comparison results can be found in Appendix
B. The chosen model is a MSIH(2,1) model, denoting a 2 regime MSVAR model with
switching intercept and covariance matrix and 1 lag term.

3.1.2 Estimation Results

Table 3 contains the estimation results for the MSIH(2,1)-model and Figure 2 shows the in
sample estimates of the smoothed state probabilities. The model parameters are estimated
on data with a monthly frequency. For the inflation equation the lagged parameters for
equity and dividend are restricted to zero. This restriction allows equity to be priced
more accurately, without losing closed form solutions for yields. Section 3.2 shows this in
more detail. This restriction, however, does not influence the fit of the model drastically.
The linear VAR model in Appendix B.1 shows that the autoregressive parameters for
equity and dividend in the inflation equation do not differ significantly from 0 with a 1%
significance level.

The parameter estimates reveal that regime 1 is a low volatility state for all three

10Karalis (2014) and Cavicchioli (2017) provide closed from solutions for the first four moments of
MSVAR models.
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variables. Equity returns in regime 1 are about 1% higher on an annual basis compared to
regime 2, with about half the monthly volatility. Although the difference in average return
is small, combined with the lower volatility regime 1 has similar characteristics as a bull
market regime. Regime 2 is a high volatility regime with relatively lower returns on equity,
which is often characterised as bear market regime. All stock market crashes included in
the sample, such as the ruble crisis and the 2008 financial crisis, have a smoothed regime
2 probability higher than 50%. The correlation of regime 2 with the OECD Euro Area
recession indicator is equal to 0.39, suggesting that the bear market regime does coincide
with official recession periods. From the transition probabilities it becomes clear that
regime 1 is much more persistent than regime 2. The expected regime 1 duration is about
13.8 months, where for regime 2 this is only 6.5 months. In both regimes a negative
correlation between the shocks on equity and dividend is present. This, combined with a
positive lagged dividend yield parameter for equity returns, indicates that in both regimes
mean-reversion in stock returns is present, making stocks a safer asset for long term
investors (Campbell and Viceira (2002)).

Table 3: MSVAR Model Parameter Estimates
Parameter estimates for the MSIH(2,1) model for inflation, equity returns and dividends. The regime expectations

denote the unconditional VAR expectation, given the VAR parameters for each regime.

πt xst dyt

Expectation
Regime 1 (Bull) 0.140% 0.294% 0.980%
Regime 2 (Bear) 0.131% 0.200% 6.343%

Intercept
Regime 1 (Bull) 9.06E-04 2.22E-03 -6.69E-05
Regime 2 (Bear) 8.46E-04 -3.59E-02 3.75E-04

Autoregressive param.
πt−1 3.53E-01 -4.11E+00 1.03E-01
xst−1 0.00E+00 -8.29E-02 4.74E-04
dyt−1 0.00E+00 6.86E-01 9.92E-01

Correlation / Std. Dev.
Regime 1 (Bull)
πt 0.0012
xst 0.1241 0.0297
dyt -0.0314 -0.8825 0.0006
Regime 2 (Bear)
πt 0.0021
xst 0.0056 0.0644
dyt 0.0202 -0.9419 0.0018

Transition Probabilities Regime 1 Regime 2
Regime 1 (Bull) 0.928 0.072
Regime 2 (Bear) 0.154 0.846
Ergodic Prob. 0.681 0.319
Avr. Regime Duration (Months) 13.8 6.5
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Figure 2: Smoothed Regime Probabilities
The estimated smoothed regime probabilities denoted by P (st = j|IT ). These are the inferred probabilities for
specific time t to belong to state j given the full sample information IT .

3.2 Arbitrage Free Modelling

3.2.1 Interest Rate Factor Model

Due to non-stationarity in interest rates when incorporated in the MSVAR model, I model
the interest rates separately. To be able to generate arbitrage free interest rate scenarios
I make use of the Gaussian class of affine term structure models. Early examples of
these type of models can be found in Vasicek (1977), Duffie and Kan (1996) and Dai and
Singleton (2002). Following this literature, I assume that the nominal term structure can
be described by a number of Nf factors ft, whose dynamics are given by

ft+1 = ν + Φft + Σ
1
2ut, (2)

where ut ∼ N (0, INf
) and Σ

1
2 is the lower triangular Cholesky decomposition of the

covariance matrix.
In my application I assume the factors to be latent and only observable through their

implications for the observed yields, thereby following Dai and Singleton (2000) and Duffee
(2002). To achieve identification the factors are assumed to be orthogonal. Additionally I
assume the yield dynamics to be captured by a total of three factors, which is often used in
the literature (e.g. Nelson and Siegel (1987)). This allows more realistic shapes compared
to some more famous one-factor models of Vasicek (1977), Hull and White (1990) and
Cox et al. (1990). Litterman and Scheinkman (1991) show with a principal component
analysis that for a latent factor model three-factors is generally enough to describe most
of the variation in yields. They also showed that the resulting factors can be interpreted
as level, slope and curvature.

I do not incorporate macro factors into the model, as is done by for example Ang et al.
(2007) and Ang et al. (2006). Ang and Piazzesi (2003) show that macro factors primarily
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explain movements at the short end and middle of the yield curve while unobservable
factors still account for most of the movement at the long end of the yield curve. The
long end of the curve has a much greater impact on the financial position of pension
funds, due to the high duration of the liabilities and the long term bonds used to invest in.
Therefore modelling the long end of the curve accurately is of higher priority in this setting.
The interest rate factor model is estimated with the Chi Square estimation procedure as
discussed by Hamilton and Wu (2012).

3.2.2 Combined Model

The MSVAR model from Section 3.1 and the interest rate factor model of the previous
section combined compose the full factor dynamics of the financial market. The following
section will extend these factor dynamics with the no-arbitrage assumption needed to price
the assets in the market. The factors incorporated in the MSVAR model will be denoted
by xt and the interest factors by ft. The notation for the combination of all factors will
be Xt in the following sections:

ft = [f1,t f2,t f3,t]
′ , xt = [πt xst dyt]

′ ,

Xt =
[
f ′t x′t

]′
.

(3)

The combined model is then formulated as[
ft
xt

]
=

[
νf
νx,st

]
+

[
Φf 0
0 Φx

] [
ft−1

xt−1

]
+

Σ
1
2
f 0

0 Σ
1
2
x,st

ut, (4)

in terms of the individual model parameters given in the previous sections. The notation

Xt = νst + ΦXt−1 + Σ
1
2
stut, (5)

will be used as a more general notation for the total model. These notations will be
used in the derivations in the following sections, where the term structure equations are
determined under the no-arbitrage assumption.

3.2.3 Pricing Kernel and Affine Term Structure

For the model to be arbitrage free, the prices of all assets in the model must be a function
of the state variables. This includes both the state variables in the MSVAR model of
Equation 1 as the interest rate factors in Equation 2. According to asset pricing theory
(Cochrane (2009)) the price Pt of any asset at time t with pay-off Yt+1 within the model
can be calculated by means of the pricing kernel Mt+1 by

Pt = Et [Mt1Yt+1] . (6)

Following Cochrane and Piazzesi (2005) the pricing kernel can be described as a function
of the state variables by

−mt+1 = δ0 + δ′1Xt +
1

2
λ′tλt + λ′tut+1, (7)
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where −mt+1 = −log(Mt+1). In this formulation the risk free rate, Rft , is equal to

Rft =
1

Et[Mt+1]
. (8)

The log of the risk free rate or continuously compounded rate, rft , is then equal to

rft = logRft = δ0 + δ′1Xt. (9)

It follows that the short rate is an affine function of the state variables. The short rate
is a function of the interest rate factors from Equation 2 and the parameters δ0 and δ1

will follow from the estimation procedure for the affine term structure model, discussed in
Section 3.2.4. The elements in δ1 concerning the factors from the MSVAR model are all
equal to zero. The short rate rt can thus be expressed as

rt = δ0 + δ′1Xt = δ0 + δ′1,fft. (10)

In Equation 7 the vector λt contains the market prices of risk at time t for each of the

state variables. The risk premium at time t is then given by Σ
1
2
stλt. The market prices of

risk are assumed to be time varying and are an affine function of the state variables[
λf,t
λstx,t

]
=

[
λ0,f

λst0,x

]
+

[
Λ1,f 0

0 Λst1,x

]
Xt. (11)

In this formulation the market price of risk for the variables in xt differ by regime11.

Following Hoevenaars (2008) I assume that the risk premium Σ
1
2
stλt is zero for dividends,

because it is a non-tradeable asset. The risk premium on inflation is also restricted to
zero. This premium is nearly impossible to estimate without data on real yields. Ang et al.
(2008) also argue that models with non-zero inflation risk premium tend to result in lower
and more implausible real rates than with this restriction. The parameters concerning the
price of equity risk are fixed to the value that assures that the asset pricing equation in
Equation 6 holds. This equation holds if the discounted stock price under the risk-neutral
measure Q is driftless. For the model in Equation 5 the risk-neutral parameters are given
by

νQst = νst − Σ
1
2
stλ0,st ,

ΦQ = Φ− Σ
1
2
stΛ1,st .

(12)

To make the discounted stock price driftless, ΦQ
xs, the row considering the equity returns

in ΦQ, must be equal to zero. Therefore I set the same row in Σ
1
2
stΛ1,st equal to Φxs for all

st. Furthermore, νQst must be equal to the convexity adjustment resulting from the regime
switching lognormal distribution, which is different for each state. The prices of risk for
the bond factors ft will follow from the Chi Square estimation procedure.

11Ang et al. (2008) introduce a regime switching interest rate model. The way the price of risk is regime
dependent in my model, is based on their specification.
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Under the above assumptions on the short rate and pricing kernel dynamics, the price of
a n-period nominal zero coupon bond can be expressed as an exponentially affine function
of the state variables

Pnt = exp
(
An +B′nXt

)
. (13)

The parameters An and Bn are not regime dependent due to the fact that nominal bond
prices only depend on the bond factors ft. The terms An and Bn are calculated recursively
by

An = −δ0 +An−1 +B′n−1,f (νf − Σ
1
2
f λ0,f ) +

1

2
B′n−1,fΣfBn−1,f

Bn =

[
Bn,f
Bn,x

]
=

[
−δ1,f + (Φf − Σ

1
2
f Λ1,f )′Bn−1,f

0

]
(14)

The recursion can be initiated for n = 1 with the values of

A1 = −δ0,

B1 = δ1.
(15)

Following this notation the yield on a n-period bond at time t, ynt can be written as

ynt = −An
n
− B′n

n
Xt = an + b′nXt. (16)

This expression of the yield is used to derive the bond factor measurement equation in
the next section.

The real pricing kernel can be formulated as M̂t+1 = Mt+1Pt+1/Pt
12 with Pt the price

level at time t. The real pricing kernel thus equals

M̂t+1 = Mt+1 exp (πt+1) = exp

(
−δ0 − δ′1Xt −

1

2
λ′tλt − λ′tut+1 + e′πXt+1

)
, (17)

where eπ is a vector of zeros and an one on the index of the inflation rate πt+1. Applying
the real pricing kernel to a zero coupon bond with maturity n and assuming that the real
bond prices are exponentially affine in the state variables, the real bond prices are given
by

P̂nt (i) = exp
(
Ân(i) + B̂′nXt

)
. (18)

The coefficient Ân is a scalar that depends on the current regime i and B̂n is N ×1 vector
with N the total number of state variables. In this model the coefficients Ân and B̂n are
recursively given by

Ân+1(i) = −δ0 − B̂′n,fΣ
1
2
f λ0,f + log

(∑
j

pij exp

(
Ân(j) +

(
B̂′n + e′π

)
ν(j)+

1

2

(
B̂′n + e′π

)
Σ(j)

(
B̂′n + e′π

)′))
,

B̂n+1 = −δ1 + Φ′
(
B̂n + eπ

)
− e′fΛ′1,fΣ

1
2
f B̂n,f .

(19)

12See Ang et al. (2008)
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In this formulation the matrix ef transforms the 3 × 1 vector Λ′1,fΣ
1
2
f B̂n,f into a 6 × 1

vector equal to [Λ′1,fΣ
1
2
f B̂n,f 0]′. The vector eπ is a unit vectors with an one on the index

of inflation in the state variable vector Xt. The starting values for this recursion are equal
to

Â1(i) = −δ0 + log
∑
j

pij exp

(
e′πν(j) +

1

2
e′πΣ(j)eπ

)
,

B̂1 = −δ1 + Φ′eπ.

(20)

The real term structure can be constructed using the following expression for the real yield
on a n-period bond:

ŷt = −Ân(i)

n
− B̂′n

n
Xt = ân(i)− b̂′nXt. (21)

The proof of these recursive formulas can be found in Appendix E.

3.2.4 Minimum Chi Square Estimation

The bond pricing equation given in Equation 16 cannot hold exactly for every maturity.
In the latent factor case, this equation can hold exactly for at most Nf maturities (Ang
and Piazzesi (2003), Chen and Scott (1993)). If Nm is the total number of maturities that
I want to fit my model to, then only Nf maturities can be modelled without error and
the remaining Ne = Nm −Nf maturities are thus assumed to be subject to measurement
error. If Y1,t is vector containing the yields without error and Y2,t the yields with error,
for the factor model in Equation 2 the measurement specification then is13[

Y1,t

Y2,t

]
=

[
A1

A2

]
+

[
B1

B2

]
ft +

[
0

Σe

]
ue,t, (22)

where Ai and Bi contain the yield parameters an and bn from Equation 16 for the chosen
maturities. The measurement errors are assumed to be i.i.d. ue,t ∼ N (0, INe) and Σe is
taken to be diagonal. This model is essentially a form of a restricted vector auto-regression.
Mapping the variables of the affine term structure model to the reduced form variables
gives insight in the identifiability of the model. The model is unidentified if two different
parameter values for the structural parameters imply the same reduced-form parameters.

To achieve identification I follow Hamilton and Wu (2012) by applying the restrictions
Σf = INf

, δ1,f ≥ 0, νf = 0 and ΦQ
f is lower triangular14. With these normalisation

conditions applied, the reduced form of Equation 22 and the parameter mappings are

13See Hamilton and Wu (2012).
14ΦQ

f = Φf − Σ
1
2
f Λ1,f .
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given by

Y1,t = A∗1 + φ∗11Y1,t−1 + u∗1,t,

A∗1 = A1 −B1ΦfB
−1
1 A1,

φ∗11 = B1ΦfB
−1
1 ,

Y2,t = A∗2 + φ∗21Y1,t + u∗2,t,

A∗2 = A2 −B2B
−1
1 A1,

φ∗21 = B2B
−1
1 ,

u∗1,t ∼ N (0,Ω∗1),

Ω∗1 = B1B1′,

u∗2,t ∼ N (0,Ω∗2),

Ω∗2 = ΣeΣe.

(23)

The system is just identified if the number of reduced-form parameters minus the structural-
VAR parameters, (Ne − 1)(Nf + 1), is equal to 015. It follows that this is the case for
Ne = 1. In the estimation procedure I assume the yields of maturities 1-month, 10-year
and 30-year to be measured without error. The 1-month rate serves as the risk-free rate in
the financial market model. The 10-year and 30-year yield both assure a good fit on the
long end of the curve, where most of the risk of a pension fund generally lies. To assure
a better shape of the curve for lower maturities I assume the 5-year yield to be measured
with error.

The parameters of the affine term structure model are estimated by the Minimum Chi
Square Estimation (MCSE) procedure of Fisher (1924) and Neyman and Pearson (1928),
which was introduced in the affine term structure literature by Hamilton and Wu (2012).
This method allows the model parameters to be inferred directly from the estimated OLS
parameters of the reduced-form regressions via the parameter mapping. This requires a
combination of analytical and numerical calculations, where the numerical part is much
less complex than direct numerical optimisation of the likelihood function. MCSE is based
on the Chi Square Difference test. Let π be a vector consisting of the reduced-form VAR
parameters, L(π;Y ) the full sample log likelihood function and π̂ be the full-information
maximum likelihood estimate of π. Furthermore, let R̂ be a consistent estimate of the
Fisher information matrix

R = −T−1E

[
∂2L(π;Y )

∂π∂π′

]
, (24)

then the Wald statistic to test the hypothesis that π = g(θ) is calculated as

T [π̂ − g(θ)]′ R̂ [π̂ − g(θ)]
d→ χ2(q), (25)

15Even if this statement holds, still under some circumstances the parameters can be unidentified.
Hamilton and Wu (2012) give a detailed explanation of these situations.
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where q is the number of parameters in π. The MCSE estimate of the parameters θ̂ is the
value that minimises this chi-square statistic. Hamilton and Wu (2012) provide a more
detailed explanation of the MCSE procedure and a step by step pseudo-algorithm for the
specific model that I use. They also show that this estimation method is asymptotically
equivalent to standard Maximum Likelihood Estimation (MLE). In the case of exact iden-
tification, the minimum value of the Wald statistic is zero. In this case the MCSE estimate
is identical to the MLE estimate and the Global Optimum is reached with certainty. This
is a big advantage compared to direct numerical optimisation of the likelihood function,
where there is no certainty that a Global Optimum is reached, irrespectively of the number
of unique starting values used.

In the estimation procedure I set the unconditional expectation in the OLS step equal
to the sample average yields. This assures realistic long term averages of the yield curve.
The resulting parameter estimates of the MCSE procedure are reported in Table 4. Figure
3 shows the resulting factor loadings for different maturities of the curve. From this figure
it becomes clear that the factors can be interpreted as a level, slope and curvature factor.
An increase in the first factor (Level) increases the overall level of interest rates, while
maintaining the general shape. An increase in the second factor (Slope) results in higher
short term rates, while the long term rates remain practically unchanged. This factor thus
influences the difference between long term rates and short term rates. At last an increase
in the third factor (Curvature) causes medium term rates to decreases, whereas short and
long term rates remain relatively unchanged. This influences the shape of the yield curve.

Table 4: Interest Rate Factor Model Parameters
The parameter estimates of the interest rate factor model of Equation 2 under the P measure, the estimated prices

of interest rate factor risk and the short rate parameters.

f1,t f2,t f3,t

ν′
f 0 0 0

Φ′
f

f1,t−1 0.9722 -0.0374 0.0100
f2,t−1 -0.0485 0.9556 -0.3345
f3,t−1 0.0018 0.0126 0.9199

Σ′
f

f1,t 1
f2,t 0 1
f3,t 0 0 1

δ0 0.0019
δ′1 2.88E-05 3.19E-05 1.04E-04

λ′
0 -0.0431 0.2501 0.5206

Λ′
1 -0.0270 -0.0029 0.0389

-0.0485 0.0397 0.1021
0.0018 0.0126 0.0040
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Figure 3: Factor Loadings
The factor loadings for different maturities of the yield curve. This shows that the factors can be interpreted as
level, slope and curvature.

3.3 Interest Rate Curve Extrapolation

The interest rate model described in the previous sections provides a good fit of the yields
for maturities up to 30 years, which is the highest maturity used for fitting the curve.
The model does not provide realistic values of yields for maturities beyond this point. To
value liabilities of the pension fund for maturities greater than 30 years, I extrapolate the
curve with two different methods. The first method constructs a nominal yield curve by
following the method used by the DNB to extrapolate the yield curve under the FTK16.
To extrapolate the yield curve, the 1-year forward rate is assumed to remain constant
after the last observed maturity. If the last observed maturity is reasonably large, this is a
realistic assumption. The 1-year forward rate for maturity n is the market expectation of
the 1-year rate n years from now. For large maturities it is unlikely for the market to have
substantially different expectations of the future 1-year rate. The yield curve resulting
from this method will further be mentioned as the nominal yield curve.

Under the rules of the FTK pension funds are allowed to value the liabilities by using
a risk-free curve with an Ultimate Forward Rate (UFR) incorporated. The UFR can be
seen as the long term expectation of the forward rate. The DNB determines the value
of the UFR as 120-months moving average of the 20-year maturity 1-year forward rate
rounded to one decimal place. In my analysis I use annual scenarios, where I determine
the UFR as the 10-year moving average of the 20-year forward rate. The UFR yield curve
is constructed by extrapolating from the 20-year maturity point onward. For this purpose
I use the Smith Wilson method adopted by EIOPA17. The level of convergence is set to

16Financieel Toetsings Kader or financial review framework. The prescribed method is described in this
document: http://www.toezicht.dnb.nl/binaries/50-212329.pdf.

17European Insurance and Occupational Pension Authority
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assure the extrapolated forward curve has approached the UFR at a maturity of 60 years
up to one basis-point. This yield curve is further mentioned in this thesis as the DNB
yield curve.

3.4 Asset Returns

The financial market has a total of four assets available. The first is a global diversified
equity portfolio in the form of the MSCI world index. Secondly two bond funds are
available, which are assumed to be constant maturity bond funds of the 1-month and 10-
year maturity, where the 1-month bond is the risk free return. Lastly, the fund can enter
into interest rate swap contracts. The returns of all asset classes are simulated under the
real world measure P and the risk neutral measure Q. The risk neutral simulations are
used to asses the market value of the pension entitlements and to detect value-transfers.

The equity returns in excess of the 1-month rate are generated directly by the MSVAR
model of Section 3.1. Equity returns under the Q measure can be generated by simulating
with the Q parameters given in Equation 12. Bond returns follow from the affine term
structure model. For a n period bond with price Pnt the one month log return rnt under
the P measure is given by

rnt = log

(
Pn−1
t+1

Pnt

)
= (An−1 +B′n−1Xt+1)− (An +B′nXt). (26)

In terms of the affine term structure parameters this can be deduced to

rnt = δ0 + δ′1,fft︸ ︷︷ ︸
Risk Free Rate

+B′n−1,f

(
Σ

1
2
f λ0,f + Σ

1
2
f Λ1,fft

)
︸ ︷︷ ︸

Risk Premium

−1

2
B′n−1,fΣ

1
2
f Σ

1
2
f
′Bn−1,f︸ ︷︷ ︸

Convexity Adjustment

+B′n−1,fΣ
1
2
f uf,t︸ ︷︷ ︸

Stochastic Shock

.

(27)

The proof of this equation can be found in Appendix E.3. Under the risk neutral measure
the expected return for every asset is equal to the risk free rate. Now given this observation,
it becomes clear from the above equation that bond returns under the Q measure, rQ,nt ,
are given by

rQnt = δ0 + δ′1,fft −
1

2
B′n−1,fΣ

1
2
f Σ

1
2
f
′Bn−1,f +B′n−1,fΣ

1
2
f uf,t. (28)

The last asset available is an interest rate swap, which the fund can use to hedge
the interest rate risk of the liabilities. The amount of swap contracts is expressed as a
percentage of the total interest rate risk that the swap hedges. The swap is based on the
nominal yield curve and is constructed such that the value at time 0 is equal to 0. Let
L̂fwt
t be the discounted value of the projected cash flows at time t based on the 1-period

forward curve fwt. L̂fwt
t is thus the forward price of these liabilities. Subsequently let

L
spt+1

t+1 be the discounted value of the liabilities at time t + 1 based on the spot rate or
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nominal yield curve at time t+ 1. The total value change of the liabilities due to interest
rate risk is then given by

∆Lt+1 = L
spt+1

t+1 − L̂
fwt
t . (29)

If the applied hedging percentage is given by κt, then the pay-off of the swap contract
Y Swap
t is

Y Swap
t = κt ×∆Lt+1. (30)
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4 The Pension Fund

The aim of the research is to determine whether a carve-out can be an interesting de-risking
solution for pension funds, where both the pensioners as the remaining participants benefit
from the carve-out. To answer this question the expected pension benefits for both groups
of participants should be compared between a situation where a carve-out is conducted
and the situation where the fund continues as it is. Modelling both the development of
the pension funds’ assets and the liabilities over time provides insight into the expected
consequences of such a buy-out. This section describes the policy of the fund on both
the asset and liability side of the balance sheet. A carve-out is only applicable to Defined
Benefit pension schemes. Therefore the pension fund is assumed to have only one pension
scheme, which is an average wage defined benefit scheme with conditional indexation. This
is the most common defined benefit scheme in the Netherlands18.

4.1 Participants

For the composition of the pension fund I use self generated data. This allows me to
analyse the effect of different durations of the liabilities on the attractiveness of a carve-
out. For this purpose I use three stylised funds; Young, Average and Old. To be able
to compare the utility of the participants of different ages, the entitlements need to be
traceable per age. The participants are assumed to be either active and accruing pension
entitlements or retired. A larger distinction can generally be made for the participants,
this is however unlikely to have large implications for the results.

The initial distribution of the participants over age is generated by means of a truncated
normal distribution. Participants are assumed to only enter the fund after being 20 years
old. The maximum age a participant is able to reach is equal to 120. Based on data
of pension fund demographics19 the average age and standard deviation for the pension
funds is chosen. The sample average ages used to generate the funds are for young,
average and old respectively 45, 55, and 65. All funds are generated with an age sample
standard deviation of 15. The funds are simulated with 5000 participants and with 10,000
simulations. The final participants per age is the average over these simulations.

The development of the fund is modelled similar to the Push-Pull Markov model
introduced by Boender (1997), but non-stochasticly. The participants retire at the age
67. The mortality of the participants is calculated using the mortality rates from the
’Actuarieel Genootschap’ (AG), where 56%20 of the participants is assumed to be male.
If qMx,t and qFx,t are the male and female mortality rates at time t for age x respectively,

then the fund mortality rates qfundx,t is

qfundx,t = 56%× qMx,t + 44%× qFx,t. (31)

The number of active participants is assumed to be constant over time, which ensures a
stable workforce. New entrants enter the fund according to specific entrance probabilities,

18Figure 4 in Appendix A.2 provides an overview of the pension schemes in the Netherlands.
19Available at the website of the DNB: www.dnb.nl
20Based on demographic data of Dutch pension funds of the DNB.
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which are fund specific21. These probabilities and distribution plots of the participants
can be found in Appendix A.4 and A.5. Table 5 provides an overview of the durations of
the liabilities of the pension funds as a whole and split in actives and pensioners.

Table 5: Fund Durations
Young Average Old

All 22.1 18.3 14.6
Actives 26.8 23.3 20.7
Pensioners 9.2 9.1 8.6

4.2 Liability Dynamics

The liabilities of the pension fund change due to various factors. This section describes
how the entitlements of the participants are incorporated in the model. Thereafter the
pension fund policies in the case of underfunding are discussed.

4.2.1 Entitlements

To determine the amount of liabilities involved in the buy-out, it is necessary to model the
pension entitlements of the different age groups separately. To this end the expected cash
flows are modelled per age. The expected cash flows are a function of the accumulated
pension entitlements per age group and the survival probabilities of that particular age
group. Let Cx,t be the entitlement of a x years old participants of the fund at time t. The
fund is then obliged to pay this person an amount of Cx,t for as long as this person lives.
Let px,x+n

t be the probability of a participant of age x to be alive n years from now, then
the expected cash flow CF x,x+n

t for this participant becomes

CF x,x+n
t = px,x+n

t × Cx,t. (32)

The probability for this participant to reach an age of x + n, px,x+n
t , is in terms of the

mortality rates of Equation 31 given by

px,x+n
t =

n∏
i=1

(
1− qfundx+i,t+i

)
. (33)

The value of the liabilities is then determined by the present value of these cash flows.
The accrual of new pension entitlements of the active participants increase the lia-

bilities over time. In an average wage pension fund the participants accrue entitlements
throughout their working life with as goal to assure an income including old age allowance
(AOW) after retirement equal to the average of wages throughout their career. Pension
entitlements are accrued as a fixed percentage of the pensionable income. This fixed per-
centage known as accrual rate is set to the maximum statutory value for this type of fund
of 1.875% in 2016. The pensionable income is calculated as the participants wage minus

21These probabilities are provided by Willis Towers Watson.
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an offset. This offset functions as a correction for the AOW and will be corrected for
inflation over the simulated years in the model. The offset for 2016 equals e 12,953 for
married persons. The accrued benefits further depend on the wages of the participant.
The wages per age follow the curve shown in Figure 1 and are indexed with the simulated
inflation plus an additional 0.5% of wage inflation.

4.2.2 Recovery Policies

Pension funds in the Netherlands are regulatory required to report the financial position
of the fund by means of the ratio of assets and the present value of liabilities known as
the funding ratio. This regulatory funding ratio, further denoted by DNB funding ratio,
is calculated as the 12-month average of the ratio of assets divided by the present value
of the cash flows discounted with the DNB yield curve:

FRDNBt =
At

LDNBt

, (34)

with FRDNBt the DNB funding ratio, At the assets and LDNBt the liabilities valued with
the DNB yield curve. The pension fund is required to hold a capital buffer for the amount
of risk it has on the balance sheet. The DNB prescribes a complete model to determine
the size of this buffer, named the required own capital (VEV22). In the ALM study the
level of this buffer will be kept constant at 20% additional to the value of the liabilities.

When the funding ratio of the pension fund falls below this level of 120%, the fund
is said to be in shortfall. The regulator requires funds in shortfall to compose a recovery
plan that assures the fund to recover the funding ratio minimally to the level of the VEV
over a horizon of 10 years. To assure recovery, the fund in this model has two instruments
to intervene. Either the amount of indexation can be reduced or, when that is not enough,
reductions can be applied to the entitlements. These reductions are regulatory allowed to
be spread over the course of 10 years. The recovery plan consists of a projection of the
current liabilities and assets of the fund. Based on this projection, the required intervention
can be determined to assure recovery over a horizon of 10 years. I incorporate a simplified
version of this projection. In the projection the fund is assumed to be closed, meaning no
new participants enter and no new entitlements are accrued. Asset returns and inflation
expectations are set to the regulative maximal parameter values23. Furthermore, interest
rates are assumed to be constant in the 10 year projection. The required intervention is
determined by numerical search methods.

If the funding ratio of the fund falls even further, below the value of the minimum
required capital (MVEV)24 of 104%, more severe actions are required by the regulator.
If the funding ratio is below the value of the MVEV for 5 consecutive years, the DNB
requires the fund to apply a reduction to assure that the fund immediately satisfies the
MVEV requirements. This reduction can be spread over a horizon of 10 years, but is
unconditional. Thus even if the fund recovers to the MVEV requirements in less than 10

22In Dutch: Vereist Eigen Vermogen.
23Determined by the Commissie Parameters.
24In Dutch: Minimum Vereist Eigen Vermogen.
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years, the reduction is still required. Additional deposits by the sponsoring company in
case of underfunding are disregarded.

4.2.3 Indexation Policy

The real value of accrued entitlements decreases over time due to inflation. The pension
fund strives to compensate the participants for this fact by indexing the entitlements. In
a defined benefit scheme with conditional indexation the fund assures the nominal enti-
tlements and grants indexation conditional on the financial position of the fund. Pension
funds generally follow a realised inflation measure to determine the amount of compensa-
tion, where the granted indexation is expressed as a percentage of this measure. In this
thesis the granted indexation at time t, It, is a percentage of the simulated European
HICP inflation. The Dutch pension fund regulations, the FTK25, state that the indexa-
tion policy should be future proof. This means that current indexation can not be at the
expense of potential future indexations.

More specifically these regulations prescribe a framework in which the amount of in-
dexation a fund is allowed to grant depends on the DNB funding ratio. A pension fund is
only allowed to index entitlements if this funding ratio is at least equal to 110%. Above
this level the rule applies that the current indexation must also be expected to be real-
isable in the future with currently available capital. The maximum indexation is equal
to 100% of the applicable measure excluding possible compensation for previously missed
indexation or reductions.

The pension fund can apply It = 100% indexation if the present value of all future
indexations is smaller than the current assets available for indexation. If PVi,t is the
present value of all future indexations then the required funding ratio for full indexation
FR100%,t is

FR100%,t = 110% +
PVi,t

LDNBt

, (35)

where LDNBt is the value of the liabilities before indexation discounted with the DNB
yield curve. The present value of inflation is calculated by indexing all future cash flows
with the expected indexation, where a cash flows with maturity n is indexed n times.
These cash flows are then discounted with the expected return on equity determined by
the ’Commissie Parameters’. The expected inflation used in practice for this purpose is
set to a value of 2%, also determined by the ’Commissie Parameters’. The fraction of
indexation granted, It, is approximated linearly between the zero indexation and 100%
indexation funding ratios as

It =
FRt − 110%

FR100%,t − 110%
, (36)

where FRt is the current funding ratio.
The fund is allowed to compensate participants for missing indexations or reductions in

previous years if the financial position allows to do so. This is the case if the funding ratio
is above the level of FR100% and the required own capital (VEV). The available capital

25Financieel Toetsingskader
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for recovery indexation is the amount of assets above the maximum of either FR100%,t or
the VEV. The fund is allowed to use up to 20% of this available capital to recover previous
reductions and missed indexations.

4.3 Asset Dynamics

The assets of the pension fund develop over time by return on investment, the gains
of pension premiums and the payment of pension benefits. The pension premiums are
a percentage of the accrued entitlements. I follow Hoevenaars (2008) by assuming the
premium rate to be constant over time. The premium rate is fixed at 30% of the pension
basis, defined as the wage minus the AOW offset, which is on average slightly more then the
cost covering premium26. This premium is the regulatory minimum amount of premium
income a fund must generate and consists of three elements. The first element is the
actuarial required premium to finance the newly accrued pension entitlements. Secondly
this amount is raised by an amount to cover the execution costs faced by the fund. The
third element raises the premium by an amount equivalent to the required capital of the
fund. The premiums are assumed to be payed by the employer. The operating costs are
assumed to be incorporated in the premiums and are not further included in the model.

Return on investment is determined by the asset portfolio and the market develop-
ments. The fund can invest in a 1-month and 10-year constant maturity bond fund and a
global equity portfolio. The yearly bond returns are calculated by rolling over the bonds
each month. The yearly equity returns are the cumulative monthly returns. The asset
scenarios are generated on a monthly interval, but transformed to annual scenarios to
decrease the computational burden. Furthermore, the fund can enter into interest rate
swap contracts to hedge the interest rate risks on the liability side of the balance sheet.
The swap is discussed in more detail in Section 3.4. The asset returns follow from the
simulated scenarios generated by the financial market model described in Section 3. The
model will be used to simulate scenario’s for a horizon of 15 years. This horizon is also
prescribed by the DNB for pension fund stress testing.

4.4 Evaluation Criterion and Portfolio Optimisation

To determine the benefit of the participants and to be able to derive an optimal investment
policy, the utility function of the participants must be specified. The participants benefit
from a high real pension income and low contributions from their side. The participants
thus benefit from high indexations and suffer from entitlement reductions. Furthermore,
they benefit from being in a healthy pension fund, as this assures future indexations. This
fact should be taken in consideration after the 15 year horizon of the simulation. The
premiums are assumed to be payed by the employer. The utility of the participants is
thus fully determined by the pension benefits. The participants are assumed to receive
utility over their pension benefits and to have CRRA preferences. The CRRA utility

26I also analysed the carve-out with a variable premium equal to the cost covering premium. This did
not influence the results significantly.
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function is given by

U(bt) = δt
b1−γt − 1

1− γ
, (37)

where bt denotes the benefit received t years from now divided by the fully indexed ben-
efit that the participants could have potentially had at time t. The value of bt can be
interpreted as the pension result of this particular participant at time t. The parameter
γ is the risk aversion and δ denotes the time preference of the participants. The value of
δ is set to 1 in this thesis, unless it is stated otherwise27. The pensioners already get paid
benefits during the 15 years of simulation. For the active participants this is generally not
the case. To calculate the utility derived after the 15 simulation years, I assume that the
participants no longer accrue entitlements after this time. For each year after t = 15 the
utility of a participant is equal to the utility derived from the payment that this partic-
ipant would receive, given the entitlements at time t = 15, times the probability of that
participant still being alive. Given the survival probabilities in Equation 33, the utility
after t = 15 becomes

U(bt) = px,x+n
t × δt b

1−γ
t − 1

1− γ
. (38)

To incorporate the financial situation of the fund after these 15 years, the fund applies
an one-off indexation or reduction. The fund determines this one-off mutation by ensuring
the DNB funding ratio after 15 years is equal to the required own capital (VEV)28. The
inflation after 15 years is assumed to be equal to the 2% determined by the ’Commissie
Parameters’. For the carve-out population the indexation after 15 years is also determined
by this 2% inflation and the percentage of inflation compensation purchased for the pen-
sioners. The resulting utility is used as evaluation criterion to asses whether the actives
and pensioned participants are better off with or without a carve-out.

To make a fair comparison of the carve-out scenario’s and the scenario without carve-
out, it is important that the pension fund allocates its capital optimally in terms of
the evaluation criterion to the different available assets. The pension fund carries out a
constant proportion strategy, where the strategic asset allocation is determined in terms of
the available assets and the fund rebalances to this allocation after each period. This comes
close to what pension funds implement in practice. Generally pension funds determine
a long horizon strategic asset allocation, from which they can only deviate slightly. The
pension fund can not short any of the assets and thus can also not leverage positions. The
interest rate hedge percentage κ of Equation 30 is restricted between 0% and 100%.

27The results did not change drastically when a value of δ = 0.98 was used.
28As alternative for the one-off indexation, I also considered the fund to pay the future proof indexation

level determined at time t = 15 for all years following after t = 15, in accordance with how the fund
determines the indexation each year in the simulations. This did not lead to significantly different results.
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5 Carve-Out

This section discusses the important features of a carve-out in more detail. In the buy-out
market annuity contracts with and without inflation compensation are available. For both
parts the pricing is discussed in Section 5.1. Thereafter an important carve-out specific
aspect is the distribution of the assets, which is discussed in Section 5.2.

5.1 Buy-Out Pricing

The price of a buy-out can be split in two parts; the nominal price of the pension en-
titlements and the price of additional indexation. Indexation can either be purchased
as a fixed percentage or as a percentage of an inflation benchmark. Dutch insurers use
European HICP inflation for this purpose.

To obtain useful results on the attractiveness of a carve-out, the pricing of a buy-out
must be close to prices observed in the current market. To achieve this I apply the nominal
pricing method used by Willis Towers Watson in their Buy-Out Monitor29. Figure 5 in
Appendix A.3 provides insight in the historical development of the buy-out prices in the
Netherlands. The nominal buy-out price is determined by discounting the projected cash
flows with the nominal yield curve plus a buy-out spread. This spread can be seen as a
discount on the nominal price and effectively determines the price of the buy-out. In this
analysis the buy-out spread is set at a constant level of 35 basis points.

In my model I assume the pension fund chooses to buy indexation as a percentage of
HICP. The price of this indexation is calculated by means of risk neutral simulations of
inflation. Given an amount of assets available for the buy-out, the percentage of HICP
indexation purchased is determined by numerical search, such that the present value equals
the current assets. The amount of HICP indexation bought for the pensioners is maxed at
100%. If a asset distribution rule attributes more assets to the pensioners than required for
100% HICP indexation, then the surplus of the assets will be attributed to the remaining
participants.

5.2 Capital Distribution

The most important aspect of a carve-out is the decision on how to divide the assets
between the carve-out population and the remaining participants. The fund management
should strive to divide the assets as fair as possible. In the actuarial literature fair is
often taken to be value neutral in a no-arbitrage context, examples are Cui et al. (2005)
and Hoevenaars and Ponds (2008a). As with all pension policy decisions, a carve-out
inevitably leads to inter-generational value transfers (Hoevenaars and Molenaar (2010)).
A fair distribution of the assets can be characterised as a solution where inter-generational
value transfers are kept as small as possible. However, the solution must also be explainable
to the funds participants. Therefore distribution based on a highly technical model would
not be preferred. In order to find the most fair and optimal method to distribute the

29A monthly report for clients of Willis Towers Watson providing current observed buy-out prices in
the market for some stylised pension funds.
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assets I compare a total of 6 methods. Table 6 gives the abbreviations used further in this
paper for each of the methods.

Table 6: Asset Distribution Methods
The notation used in this paper for the various methods to distribute the assets between active participants and

pensioners.

DNB FR Denotes the method where assets are split based on the DNB funding ratio.
Nominal FR Denotes the method where assets are split based on the nominal funding ratio.
Real FR Denotes the method where assets are split based on the real funding ratio.
Exp. Ind. Denotes the method where assets are split based on the expected indexation of the fund.
Indiff. Denotes the method where assets are split such that pensioners are indifferent of the carve-out.
Fair Value Denotes the method where assets are split such that the no-arbitrage value of the pension

entitlements is unchanged.

The most intuitive way for a pension fund to distribute the assets would be to divide
them in the same proportion as the liability value of the accrued pension entitlements
for each group. In practice this would mean that the assets are split based on the cur-
rent funding ratio. This way the funding ratio of the fund after the carve-out remains
unchanged. This idea can be applied to all definitions of the funding ratio of which I
distinguish between three cases; the DNB funding ratio, the nominal funding ratio and
the real funding ratio.

The DNB funding ratio is the ratio that results by valuing the liabilities based on the
regulatory UFR yield curve. Splitting the assets based on this funding ratio does not
affect the funding status of the fund in the eyes of the DNB. This way of splitting is thus
expected to a have small impact on the expected indexation of fund. To calculate the
nominal funding ratio, the liabilities are discounted with the nominal yield curve. This
curve is generally lower for longer maturities, resulting in higher present values of the
entitlements of the active participants. Under this measure the fund will likely have a
funding benefit in terms of the DNB funding ratio, which will likely increase indexation
potential. The real funding ratio is calculated by valuing the liabilities with the real term
structure. This funding ratio gives insight in the indexation potential of the fund. By
splitting according to this funding ratio the indexation potential of the fund is expected
to be distributed in a fair manner. This method is likely to give even larger funding
benefits in terms of DNB funding ratio.

Next to funding ratio based measures the assets can also be distributed in other ways.
By means of an ALM study the expected indexation of the pension fund can be determined.
This expected indexation can be used to buy the same expected amount of HICP inflation.
In this setting the pensioners are guaranteed to be better of by eliminating the risk of
reductions and maintaining the expected level of indexation. This method is very intuitive
and has as big advantage that it is easily seen that the pensioners will benefit. Additionally
I split the assets based on the no-arbitrage value of the pension contracts. This method is
of course quite technical and difficult to explain to the participants. It will however give
an indication of a fair distribution of the assets in a theoretical context. The insights can
be used to select a more intuitive method. Lastly, I determine the amount of assets needed
for the pensioners to be indifferent between a carve-out and remaining with the fund. This
option is included to provide a decisive answer to the question whether a win-win situation
is possible for both the active as the pensioned participants.
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6 Results

The results are split in two main sections. First the results with homogeneous risk aver-
sion are discussed. The carve-out results are discussed for the Average, Young and Old
pension funds to assess the effect of duration on the carve-out proposition. Furthermore, I
look at the impact of the initial funding ratio on the carve-out. Also several other param-
eter sensitivities are checked to gain insight in the robustness of the results. Thereafter,
I differentiate the risk aversion of the pensioners versus the risk aversion of the active
participants. Older people are generally more risk averse than young people (Campbell
and Viceira (2002)). The heterogeneous risk aversion in the fund can strongly influence
the success of a carve-out. The ALM model has a large variety of parameters, of which
most are fixed at a constant level. Appendix A.6 provides an overview of the parameter
settings used.

6.1 Homogeneous Risk Aversion

6.1.1 Basis Scenario

The first carve-out scenario regards an average pension fund with a funding ratio of 115%.
This is below the level of the required capital and thus the fund is in shortfall. While
the fund is in shortfall, the funding ratio is still higher than the MVEV. This means
that reductions might not yet be necessary, but full indexation is also not very likely in
the coming years. Table 7 shows the carve-out optimisation results for the pension fund.
It contains the utility of the active and pensioned participants for each of the carve-out
scenarios in the first two columns. The base utility without carve-out is coloured yellow.
Utilities that are higher than the ’No Carve-Out’ scenario are coloured green and lower
utilities are coloured red. The third and fourth column give the amount of assets that
is allocated to active participants and the pensioners under a given carve-out scenario.
The distribution of the assets is given in terms of the regulatory funding ratio. The last
columns contain the assets weights for respectively the 1-month bond fund, the 10-year
bond fund and the global equity portfolio and the percentage of interest rate risk that is
hedged by swap contracts.

Table 7: Carve-Out Optimisation Results
Carve-out optimisation results for an average pension fund with an initial regulatory funding ratio of 115%. The
first two columns contain the utility derived by the participants, split in active and pensioned participants. The

columns under ’Distribution in FR’ show the amount of assets that is allocated to each group in terms of
regulatory funding ratio. The last four columns show the optimised portfolio for the pension fund. Here B1M and
B10Y denote the 1-month and 10-year constant maturity bond funds and xs denotes the global diversified equity

fund. Lastly Swap is the amount of liability interest rate risk that is hedged with swap contracts.

Utility Distribution in FR Asset Weights
Carve-Out Type Actives Pensioners Actives Pensioners B1M B10Y xs Swap

No Carve-Out -30580 -4172 115.0% 115.0% 0.0% 61.5% 38.5% 80.6%
Nominal FR -33290 -3592 117.2% 109.9% 0.0% 61.6% 38.4% 79.8%
Real FR -28805 -7543 125.1% 91.7% 0.0% 61.8% 38.2% 80.6%
DNB FR -34673 -3080 115.0% 115.0% 0.0% 61.6% 38.4% 82.1%
Exp. Index. -33207 -3628 117.3% 109.6% 0.0% 61.8% 38.2% 80.6%
Fair Value -31578 -4564 120.1% 103.3% 0.0% 61.8% 38.2% 80.9%
Indiff. -32179 -4172 119.1% 105.6% 0.0% 61.9% 38.1% 80.8%
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Table 7 shows that for this pension fund none of the carve-out scenarios lead to a
win-win situation, where both active participants and pensioners gain utility. Even when
the pensioners are indifferent between a carve-out or no carve-out by allocating a funding
ratio 105.6% to the pensioners, still the active participants are worse off. An interesting
result is that the portfolio changes only marginally after a carve-out. Campbell and Viceira
(2002) show that optimal portfolios for longer horizons should be allocated more to equity.
This also holds true in this ALM model. Appendix D.1 shows how the optimal portfolio
changes per age, duration of the fund and initial funding ratio. Portfolios are increasingly
allocated to equity for lower ages and longer durations. However, in the homogeneous
risk aversion setting the differences are small. The relative small portfolio changes after a
carve-out are the result of the larger marginal utilities of the active participants compared
to the pensioners. Due to the increasing life expectancy and longer horizon, an increase in
the benefits of younger participants will have a larger impact on the total utility than an
equal increase for a pensioner. This, combined with the fact that the largest part of the
fund is not retired yet and the fact that the difference in preferences are already small,
results in portfolios that are shifted more towards the preferences of the active participants
than to the pensioners.

All the intuitive asset distribution policies lead to value transfers from the active
participants to the pensioners. In the value neutral asset distribution case, the pensioners
get 103.3% in terms of funding ratio. All other measures result in more assets being
allocated to the pensioners. Distribution based on the nominal funding ratio and expected
indexation lead to the smallest value transfers. The value-based asset distribution leads to
the most well-balanced distribution in terms of utility. Of the more intuitive distribution
rules, the expected indexation is closest to a well-balanced utility distribution.

Despite the value transfers, almost all of carve-out scenarios lead to an increased reg-
ulatory funding ratio for the remaining participants. As the pension fund policy decisions
are all based on this funding ratio, one would expect the participants of the fund to ben-
efit from the higher regulatory funding ratio through higher indexations. Table 8 shows
various risk measures for the pension fund with and without carve-out. The risk mea-
sures give insight in the distributions of the funding ratio, indexation and reductions.
The distribution of the funding ratio is summarised by the median, to indicate the level
split in short and long term, and various downside risk measures. P (FRt < 100%) and
Pw(FR < 100%) give the probabilities that the funding ratio falls below 100% in a specific
year and at least once within the 15-year horizon respectively.

The median funding ratios and probabilities of underfunding show that the pension
fund benefits in the short term from a carve-out. The median funding ratio increases and
the probability of underfunding decreases for the 1-year horizon for all except the ’DNB
FR’ carve-out scenario. For the 15-year horizon the opposite is true, the median funding
ratio is lower and probability of underfunding higher for all carve-out scenarios. Only for
the ’Real FR’ carve-out the median funding ratio after 15 years is higher.

FaR2.5%
t→t+15 gives the 2.5% probability funding ratio at risk and conditional funding

for a horizon of 15 years and CFaR2.5%
t→t+15 is the corresponding conditional funding ratio

at risk. CFaR2.5%
t→t+15 is the expected percentage loss in funding ratio given that a 2.5%

tail probability loss occurs. Both the FaR2.5%
t→t+15 and the CFaR2.5%

t→t+15 increase quite
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Table 8: ALM Risk Measures
Simulated risk measures based on the regulatory funding ratio, the indexation and the reduction results. FRt+i,

It+i and Rt+i denote the funding ratio, indexation fraction and reduction in the i-th simulation year.
P (FRt+i < 100%), P (It+i < 80%) and P (Rt+i > 0) are the simulated probabilities that in year i the funding

ratio is lower than 100%, the indexation fraction is lower than 80% and the reduction is greater than 0.
Pw(FRt→t+15 < 100%) and Pw(Rt→t+15 > 0) are the probabilities that the funding ratio is lower than 100%

and the reduction is greater than 0 at least once within the next 15 years. FaR2.5%
t→t+15 denotes the 2.5%

probability funding ratio at risk for the horizon of 15 years. CFaR2.5%
t→t+15 is the corresponding conditional funding

ratio at risk also known as expected shortfall. It is the expected loss given the fact that a 2.5% probability loss
occurs. P (I = 100%) is the probability of having a 100% indexation result at any moment in the coming 15 years.
P (It→t+15 < 80%) is the probability that the cumulative indexations and reductions over 15 years is smaller than

80% HICP inflation over the same period. Finally E[R | R > 0] gives the expected reduction given that a
reduction is required at any moment in the coming 15 years.

No Carve-Out Nominal Real DNB Exp. Index. Fair Value Indiff.

Regulatory Funding Ratio
Median FRt+1 116.8% 118.1% 125.2% 116.1% 118.2% 120.8% 119.9%
Median FRt+15 139.8% 138.0% 141.6% 137.1% 138.0% 138.8% 138.5%
P (FRt+1 < 100%) 4.4% 3.0% 0.4% 5.2% 2.9% 1.4% 1.6%
P (FRt+15 < 100%) 3.2% 3.9% 3.3% 4.2% 3.9% 3.5% 3.5%
Pw(FRt→t+15 < 100%) 31.6% 32.6% 21.6% 36.4% 32.3% 27.8% 29.0%

FaR2.5%
t→t+15 17.8% 20.5% 25.7% 19.2% 20.6% 22.3% 21.6%

CFaR2.5%
t→t+15 28.0% 31.2% 36.6% 29.9% 31.3% 33.2% 32.5%

Indexation
Median It+1 31.1% 31.3% 59.5% 23.3% 31.8% 41.7% 38.0%
Median It+15 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
P (It+1 < 80%) 93.5% 96.2% 75.2% 98.3% 96.0% 91.7% 93.9%
P (It+15 < 80%) 33.1% 37.8% 32.6% 39.5% 37.8% 35.5% 36.4%
P (I = 100%) 30.5% 24.8% 33.8% 23.0% 24.9% 27.4% 26.3%
P (It→t+15 < 80%) 47.1% 53.4% 41.8% 57.1% 53.3% 48.7% 50.2%

Reductions
P (Rt+1 > 0) 0.10% 0.12% 0.03% 0.18% 0.11% 0.08% 0.09%
P (Rt+15 > 0) 0.19% 0.21% 0.18% 0.21% 0.21% 0.21% 0.21%
Pw(Rt→t+15 > 0) 26.0% 27.8% 18.5% 31.3% 27.4% 23.9% 25.3%
E[R | R > 0] 1.09% 1.05% 1.10% 1.03% 1.06% 1.05% 1.05%

significantly in each of the carve-out scenarios, indicating an increase in the downside
risk. This increased downside risk can not be the result of increased portfolio risk as the
portfolios changed only marginally after a carve-out. The main driver of the increased
volatility of the funding ratio is the increased duration of the liabilities combined with
the hedging mismatch of the swap. The increased duration make the liabilities more
vulnerable for interest rate shocks. This increased risk can normally be hedged by means
of swap overlays, but the swap can only be used to hedge this risk in terms of the nominal
curve. The UFR results in a dampening of the shocks on the liability side, but no assets
are available to mimic this on the asset side of the balance sheet. This mismatch adds to
the volatility of the funding ratio (Duyvesteyn et al. (2013)). This increased funding ratio
volatility will impact the indexations and reductions of the entitlements.

The indexation results are summarised by the median indexation and the probability
of indexation below 80% HICP inflation in the short and long term. The indexation
results in the short term do indicate an improvement in all except the ’DNB FR’ carve-
out. The median indexation results are higher and the downward risk following from
P (It+1 < 80%) is generally lower. The probability of indexation lower than 80% HICP
in year 15, P (It+15 < 80%), and the overall proportion of full indexations, P (I = 100%),
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show that the indexation quality in the long term is worse after a carve-out. Especially
the long term is important for active participants. The long term indexation result and
the real value of the entitlements are best summarised by the cumulative indexations
and reductions combined over 15 years. P (It→t+15 < 80%) gives the probability of all
indexations, including recovery indexations, and reductions to be lower than 80% of the
HICP inflation over this same period. For all carve-out scenarios, except the ’Real FR’
carve-out, this probability increases, indicating that the active participants are worse off
in terms of real value of the entitlements after 15 years. These worse indexation results are
mainly caused by the increased downside risk of the funding ratio. However, indexation
also becomes more expensive as the duration of the fund increases. For the pension
fund the price of the indexations is incorporated through the future proof indexation
level, discussed in Section 4.2.3. With higher durations the funding ratio required for
100% indexation also becomes higher. With the same funding level this means that the
participants in a fund with lower duration receive higher indexation than a fund with
a higher duration. This effect becomes evident by comparing the ’DNB FR’ carve-out
scenario results to the ’No Carve-Out’ results. With a median funding ratio of 116.8%
the median indexation result is 31.1%, whereas with a DNB Funding Ratio carve-out this
is only 23.3.% with a similar funding ratio of 116.1%. Additionally, the more expensive
indexations cause the funding ratio to decline more at the moment the indexation is
incorporated in the entitlements. These higher costs of indexation thereby lead to a
declined growth potential of the funding ratio. For the carve-out to be beneficial for the
remaining participants, a significant funding benefit is required to compensate the more
expensive indexations.

The reduction results are summarised by the probability of a reduction in the first and
last year, P (Rt+1 > 0) and P (Rt+15 > 0), the probability of a reduction within the next 15
years, Pw(Rt→t+15 > 0), and the expected value of the reduction at any moment in time
given a reduction is necessary, E[R | R > 0]. The probability of reductions in the first year
after a carve-out is strongly dependent on the funding benefit of the fund. The Indifference
carve-out scenario has the lowest funding ratio where the probability of a reduction in the
first year is lower compared to no carve-out. The long term probability of reductions
increases for all except the Real carve-out. The probability of a reduction within the next
15 years gives mixed results. For the Nominal, DNB and Expected Indexation carve-out
the probability increases. For the other scenarios the funding benefit is high enough to
result in a lower probability of a reduction in the next 15 years.

The overall conclusion of the results remains that a carve-out where the pensioners
benefit, may also benefit the active participants in the short term. In the long term
however, the active participants will be worse off. The increased duration after a carve-
out makes indexations more expensive for the fund. This makes a significant funding
benefit required for the carve-out to be attractive for the remaining participants. The
results also indicate an increased funding ratio volatility, which can not be successfully
hedged by a nominal swap due to the UFR. This increases the probability of reductions
in the long term. With a carve-out the fund can no longer reduce the payments made to
the pensioners in negative scenarios to ensure recovery. In these negative scenarios the
amount of assets distributed to the pensioners is ’too large’, compared to what they would
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receive in the fund. This causes the negative scenarios to hurt more for the remaining
participants, as the risks can no longer be shared with the pensioners. In the setting
discussed in this section a scenario where the remaining participants benefit from a carve-
out, the pensioners are worse off and vice versa, making a win-win situation impossible
in this setting and model assumptions. To determine whether a longer simulation horizon
would lead to different results of I performed the same analysis with a 60 year horizon
and 2000 simulations. This did not lead to different conclusions.

6.1.2 Sensitivity to the Initial Funding Ratio

The initial funding ratio of the pension fund has a large influence on the indexation and
reduction probabilities of the pension fund. This section explores how this initial funding
ratio also influences the pension results of the participants with and without a carve-out.
For this purpose the Average pension fund is used, which has an average age of 55 years.
The carve-out results of a pension fund with an initial funding ratio of 100% are compared
with the results with a 130% initial funding ratio. The participants have homogeneous
risk aversion, which is set to a value of γ = 5.

Table 9 shows the carve-out optimisation results for both the pension funds with an
initial funding ratio of 100% and 130%. The total utilities in this table show that in
both cases no win-win situation arises. With a funding ratio of 130% the pensioners get
a maximum of 115.1% funding ratio for their entitlements. At this level 100% HICP
indexation can be bought. This causes the funding ratios after a ’DNB FR’ carve-out to
be different for both groups. Also for the ’Nominal’ carve-out this maximum 100% HICP
indexation for the pensioners is reached.

The portfolios after carve-out change only marginally in both situations. With a higher
funding ratio the optimal portfolio has more swap contracts. The fund thereby protects
the strong financial position, whereas with a lower funding ratio less interest rate risk is
covered to pursue recovery. With a funding ratio of 130% the funding benefits for the
remaining participants are much larger. This would make a carve-out more likely to be
beneficial with a higher funding ratio. This also follows from the resulting utilities. With
a funding ratio of 100% both the active as the pensioned participants are worse off in most
of the carve-out scenarios. With a funding ratio of 130% the pensioners still can benefit
in some scenarios and loss in utility for the active participants seems less severe.

Table 10 contains the ALM risk measures for the carve-out scenarios with a funding
ratio of 100% and 130%. For both levels of funding ratio a carve-out is generally not
beneficial for the remaining participants. The median funding ratio after 15 years is lower
in all cases and the conditional funding ratio at risk, CFaR2.5%

t+1→t+15, shows an increased
downward risk after a carve-out. For the case of a pension fund with a funding ratio of
130%, the probability of the first year indexation result to be lower than 80% indicates
a benefit for the remaining participants in terms of indexation. In the long term this
indexation benefit vanishes for both the low and high funding ratio. With a funding
ratio of 100% the probability of reductions in the first year increases, despite the funding
benefits of the fund. This is caused by the increased volatility of the funding ratio, making
reductions in the short term more likely. In the 130% funding ratio case the likelihood of
reductions in the long and short term does not change significantly. The probability of
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a reduction in the next 15 years does decrease for all carve-out scenarios, whereas these
increase in the case of a funding ratio of 100%.

A carve-out seems to have a higher probability of success with a higher funding ratio.
The higher funding ratio and funding benefits cause the fund to be more resistant to the
increased downward risk that come with a carve-out. Also, with a higher funding ratio the
fund is able to cope with the more expensive indexations for the remaining participants.
As mentioned previously, the increased downside risk is mainly the result of the hedging
mismatch caused by the UFR and the decreased ability to share the funding risk over
multiple generations. In a negative scenario the pensioners would normally share the pain
of reductions, whereas with a carve-out this is no longer the case.

Table 9: Carve-Out Optimisation Results With a Funding Ratio of 100% and 130%
The carve-out optimisation results for an average pension fund with an initial regulatory funding ratio of 115%
and 130%. The first two columns contain the utility derived by the participants, split in active and pensioned
participants, in the various carve-out scenarios. The columns under ’Distribution in FR’ show the amount of
assets that is allocated to each group in terms of regulatory funding ratio. The last four columns show the

optimised portfolio for the pension fund. Here B1M and B10Y denote the 1-month and 10-year constant maturity
bond funds and xs denotes the global diversified equity fund. Lastly Swap is the amount of liability interest rate

risk that is hedged with swap contracts.

Utility Distribution in FR Asset Weights
Carve-Out Type Actives Pensioners Actives Pensioners B1M B10Y xs Swap

No Carve-out -44193 -5241 100.0% 100.0% 0.0% 60.7% 39.3% 77.4%
Nominal -44913 -6396 101.9% 95.6% 0.0% 60.9% 39.1% 78.6%
Real -39066 -13193 108.8% 79.8% 0.0% 61.4% 38.6% 78.9%
DNB -46771 -5249 100.0% 100.0% 0.0% 60.8% 39.2% 78.4%
Exp. Index. -48751 -4352 98.0% 104.5% 0.0% 60.7% 39.3% 78.2%
Value Based -45986 -5705 100.8% 98.2% 0.0% 60.8% 39.2% 78.4%
Indiff. -46786 -5241 100.0% 100.0% 0.0% 60.8% 39.2% 78.4%

(a) Funding Ratio of 100%

Utility Distribution in FR Asset Weights
Carve-Out Type Actives Pensioners Actives Pensioners B1M B10Y xs Swap

No Carve-Out -21764 -3531 130.0% 130.0% 0.00% 60.87% 39.13% 87.61%
Nominal -23551 -3073 136.5% 115.1% 0.00% 61.12% 38.88% 86.34%
Real -21619 -4493 141.4% 103.7% 0.00% 61.07% 38.93% 88.02%
DNB -23551 -3073 136.5% 115.1% 0.00% 61.12% 38.88% 86.34%
Exp. Index. -23131 -3292 137.5% 112.7% 0.00% 61.10% 38.90% 86.81%
Value Based -22383 -3787 139.4% 108.4% 0.00% 61.07% 38.93% 87.24%
Indiff. -22740 -3531 138.5% 110.5% 0.00% 61.06% 38.94% 87.00%

(b) Funding Ratio of 130%
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Table 10: ALM Risk Measures with a Funding Ratio of 100% and 130%
Simulated risk measures based on the regulatory funding ratio, the indexation and the reduction results. FRt+i,

It+i and Rt+i denote the funding ratio, indexation fraction and reduction in the i-th simulation year.
P (It+i < 80%) and P (Rt+i > 0) are the simulated probabilities that in year i the indexation fraction is lower than
80% and the reduction is greater than 0. Pw(FRt→t+15 < 100%) and Pw(Rt→t+15 > 0) are the probabilities that

the funding ratio is lower than 100% and the reduction is greater than 0 at least once within the next 15 years.
CFaR2.5%

t→t+15 is the conditional funding ratio at risk also known as expected shortfall. P (It→t+15 < 80%) is the
probability that the cumulative indexations and reductions over 15 years are smaller than 80% HICP inflation over

the same period.

No Carve-Out Nominal Real DNB Exp. Index. Value Based Indiff.

Regulatory Funding Ratio
median FRt+15 133.3% 133.2% 135.2% 132.6% 131.9% 132.9% 132.6%
Pw(FRt+1→t+15 < 100) 75.4% 72.6% 50.7% 78.7% 84.1% 76.6% 78.8%

CFaR2.5%
t+1→t+15 17.4% 20.2% 25.3% 18.8% 17.2% 19.3% 18.8%

Indexation
P (It+1 < 80%) 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
P (It+15 < 80%) 45.0% 46.7% 42.9% 47.8% 49.1% 47.2% 47.8%
P (It+1→t+15 < 80%) 74.9% 77.9% 67.4% 80.7% 83.1% 79.8% 80.8%

Reductions
P (Rt+1 > 0) 0.87% 0.99% 0.37% 1.28% 1.58% 1.16% 1.28%
P (Rt+15 > 0) 0.35% 0.37% 0.28% 0.39% 0.40% 0.39% 0.39%
Pw(Rt+1→t+15 > 0) 58.3% 60.1% 41.3% 65.8% 70.1% 63.8% 65.8%

(a) Funding Ratio of 100%

No Carve-out Nominal Real DNB Exp. Index. Value Based Indiff.

Regulatory Funding Ratio
median FRt+15 149.9% 147.1% 151.0% 147.1% 147.9% 149.5% 148.7%
Pw(FRt+1→t+15 < 100) 13.1% 12.0% 9.6% 12.0% 11.5% 10.5% 10.8%

CFaR2.5%
t+1→t+15 36.1% 43.0% 45.2% 43.0% 43.4% 44.3% 43.9%

Indexation
P (It+1 < 80%) 35.6% 29.7% 16.7% 29.7% 27.0% 22.3% 24.1%
P (It+15 < 80%) 21.5% 25.6% 22.4% 25.6% 24.9% 23.7% 24.7%
P (It+1→t+15 < 80%) 20.0% 25.2% 18.8% 25.2% 24.1% 21.5% 22.5%

Reductions
P (Rt+1 > 0) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
P (Rt+15 > 0) 0.14% 0.14% 0.14% 0.14% 0.14% 0.14% 0.14%
Pw(Rt+1→t+15 > 0) 12.7% 10.8% 9.3% 10.8% 10.5% 9.8% 10.0%

(b) Funding Ratio of 130%

6.1.3 Sensitivity to Duration

The duration of the liabilities of a pension fund heavily depend on the age distribution of
the participants. This section explores how the duration affects the pension fund dynamics
after a carve-out. Table 11 shows the Carve-Out optimisation results for both the Young
and the Old fund. The Young fund is generated with an average age of 45 and the old
fund with an average age of 65, which result in initial durations of 22.1 and 14.6 years.
The pension funds start with a regulatory funding ratio of 115% and the participants have
a risk aversion of γ = 5.

The utility values in Table 11 show that no win-win situation is achieved for both
funds. For the Old fund the funding benefit in terms of the regulatory funding ratio is
generally larger compared to the Young fund. This should have a positive impact on the
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indexation possibilities of the Old fund after a carve-out compared to the Young fund.

Table 11: Carve-Out Optimisation Results For a Young and an Old Fund
The carve-out optimisation results for a young and old aged pension fund with an initial regulatory funding ratio

of 115%. The first two columns contain the utility derived by the participants, split in active and pensioned
participants, in the various carve-out scenarios. The columns under ’Distribution in FR’ show the amount of
assets that is allocated to each group in terms of regulatory funding ratio. The last four columns show the

optimised portfolio for the pension fund. Here B1M and B10Y denote the 1-month and 10-year constant maturity
bond funds and xs denotes the global diversified equity fund. Lastly Swap is the amount of liability interest rate

risk that is hedged with swap contracts.

Utility Distribution in FR Asset Weights
Carve-Out Type Actives Pensioners Actives Pensioners B1M B10Y xs Swap

No Carve-Out -31504 -1819 115.0% 115.0% 0.0% 63.4% 36.6% 80.5%
Nominal -32801 -1714 117.1% 106.3% 0.0% 63.4% 36.6% 80.6%
Real -30165 -4892 123.0% 82.3% 0.0% 63.5% 36.5% 81.0%
DNB -33813 -1295 115.0% 115.0% 0.0% 63.2% 36.8% 80.3%
Exp. Index. -33096 -1572 116.5% 108.7% 0.0% 63.4% 36.6% 80.6%
Value Based -32449 -1921 117.9% 103.3% 0.0% 63.4% 36.6% 80.6%
Indiff. -32613 -1819 117.5% 104.7% 0.0% 63.4% 36.6% 80.6%

(a) Young Fund

Utility Distribution in FR Asset Weights
Carve-Out Type Actives Pensioners Actives Pensioners B1M B10Y xs Swap

No Carve-Out -21866 -7260 115.0% 115.0% 0.0% 61.1% 38.9% 79.0%
Nominal -26177 -5967 117.3% 112.4% 0.0% 61.3% 38.7% 79.7%
Real -20867 -9500 128.3% 99.8% 0.0% 61.0% 39.0% 83.4%
DNB -27076 -5650 115.7% 114.2% 0.0% 61.3% 38.7% 78.7%
Exp. Index. -25234 -6345 119.0% 110.4% 0.0% 61.2% 38.8% 80.2%
Value Based -22726 -7768 124.1% 104.6% 0.0% 61.1% 38.9% 81.4%
Indiff. -23480 -7260 122.5% 106.5% 0.0% 61.1% 38.9% 81.1%

(b) Old Fund

The pension risk measures for the Young and Old fund are shown in Table 12. The
conditional funding ratio at risk over the course of 15 years, CFaR2.5%

t+1→t+15, increases for
both funds and every carve-out scenario. However, for the Young fund this increase is
much more severe. The Young fund has a longer duration, which causes the UFR hedging
mismatch effect for this fund to be larger. The larger probability of underfunding within
15 years, Pw(FRt+1→t+15 < 100), for the Young fund endorses this statement. The
probability of the indexation in the first year to be below 80% increases for the Young
fund for all except the Real carve-out. This indicates that the remaining participants do
not benefit in the short term from a carve-out in a Young fund. The probability of a
reduction in the first year after a carve-out shows the same pattern.

For the Old fund the short term benefits for the remaining participants in terms
of indexation and reduction probabilities show mixed results for the various carve-out
scenarios. For example in the Indifference scenario the probability of receiving indexation
below 80% and the probability of a reduction both decrease. These short term benefits
vanish in the long term, where the risk of receiving lower indexation and even reductions
increase. The probability of the total indexations and reduction combined over 15 years to
be lower than 80% of the HICP inflation, P (It+1→t+15 < 80%), increases for all scenarios.
This shows that the particpants are more likely to be worse off in terms of real pension
entitlements. The probability of receiving any reductions in the next 15 years increases
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for all except the Real carve-out for the Young fund. For the Old fund this probability
also decreases for the Value Based and the Indifference carve-out. Overal the results show
that a carve-out with homogeneous risk aversion is not beneficial for both the remaining
participants as the pensioners. The results for the Old fund do look a bit more promising,
due to the higher funding benefits and lower indexation price. The risk measures also show
that for the Old fund the remaining participants can benefit in the short term, whereas
this is generally not the case for the Young fund.

Table 12: ALM Risk Measures for a Young and Old Fund
Simulated risk measures based on the regulatory funding ratio, the indexation and the reduction results. FRt+i, It+i

and Rt+i denote the funding ratio, indexation fraction and reduction in the i-th simulation year. P (It+i < 80%)
and P (Rt+i > 0) are the simulated probabilities that in year i the indexation fraction is lower than 80% and the
reduction is greater than 0. Pw(FRt→t+15 < 100%) and Pw(Rt→t+15 > 0) are the probabilities that the funding

ratio is lower than 100% and the reduction is greater than 0 at least once within the next 15 years. CFaR2.5%
t→t+15

is the conditional funding ratio at risk also known as expected shortfall. P (It→t+15 < 80%) is the probability that
the cumulative indexations and reductions over 15 years are smaller than 80% HICP inflation over the same period.

No Carve-Out Nominal Real DNB Exp. Index. Value Based Indiff.

Regulatory Funding Ratio
medianFRt+15 141.7% 141.3% 143.0% 140.7% 141.2% 141.5% 141.4%
Pw(FRt+1→t+15 < 100) 34.5% 33.8% 23.9% 37.3% 34.7% 32.4% 33.2%

CFaR2.5%
t+1→t+15 32.1% 34.7% 38.9% 32.9% 34.3% 35.3% 35.1%

Indexation
P (It+1 < 80%) 97.9% 98.2% 91.6% 99.1% 98.6% 97.9% 98.1%
P (It+15 < 80%) 36.4% 37.6% 35.3% 38.5% 37.9% 37.4% 37.6%
P (It+1→t+15 < 80%) 55.3% 57.6% 49.4% 61.5% 58.7% 56.9% 57.3%

Reductions
P (Rt+1 > 0) 0.20% 0.22% 0.09% 0.28% 0.23% 0.20% 0.20%
P (Rt+15 > 0) 0.21% 0.25% 0.20% 0.26% 0.25% 0.24% 0.24%
Pw(Rt+1→t+15 > 0) 29.1% 29.8% 21.6% 33.3% 30.7% 29.1% 29.4%

(a) Young Fund

No Carve-Out Nominal Real DNB Exp. Index. Value Based Indiff.

Regulatory Funding Ratio
medianFRt+15 142.3% 137.6% 143.7% 136.8% 138.2% 141.0% 140.1%
Pw(FRt+1→t+15 < 100) 27.6% 30.2% 16.7% 33.5% 28.2% 21.3% 23.5%

CFaR2.5%
t+1→t+15 24.4% 29.7% 36.0% 28.5% 30.8% 33.7% 32.9%

Indexation
P (It+1 < 80%) 82.2% 93.1% 50.5% 95.9% 88.9% 70.0% 75.8%
P (It+15 < 80%) 26.6% 35.5% 27.4% 36.6% 33.3% 29.9% 31.4%
P (It+1→t+15 < 80%) 34.4% 48.9% 30.6% 51.3% 46.0% 37.7% 40.0%

Reductions
P (Rt+1 > 0) 0.06% 0.07% 0.00% 0.09% 0.06% 0.02% 0.03%
P (Rt+15 > 0) 0.17% 0.23% 0.17% 0.23% 0.21% 0.17% 0.19%
Pw(Rt+1→t+15 > 0) 22.7% 26.2% 15.4% 27.6% 23.7% 18.6% 20.1%

(b) Old Fund

38



6.2 Heterogeneous Risk Aversion

Various studies have shown that the level of risk aversion of an individual generally in-
creases with age, e.g. Albert and Duffy (2012). This difference in risk aversion of younger
and older participants of a pension fund influences the optimal asset allocation of the
fund. While a portfolio might be optimal for the complete pension fund, on the individual
level this portfolio is likely to be suboptimal. In the case of homogeneous risk aversions
these optimal portfolio preferences already are variant per age, but with heterogeneous
risk aversion this effect will be even larger.

To incorporate heterogeneous risk aversion per age, the active participants are assumed
to have different risk preferences than the pensioners. Within these groups the risk pref-
erences remain homogeneous. Riley and Chow (1992) study the risk aversion for several
demographic and socioeconomic categories in an asset allocation setting. They reveal that
risk aversion over age can be divided in a group younger than 65 and a group older than
65, which resembles the age of retirement. Both the active participants and the pensioners
have CRRA utility preferences in this setting, but with heterogeneous risk aversion.

Due to the heterogeneity in the risk aversion the total utility of both groups can no
longer be optimised in one step, because one unit utility does not resemble equal amounts
for both groups anymore. Therefore, the fund portfolio without a carve-out is optimised
for both groups separately. The final pension fund asset allocation is the weighted average
of the individual group portfolios. The weights are chosen such that the portfolios for both
groups, optimised with the same risk aversion level(γ = 5), are as close as possible to the
actual homogeneous optimal portfolio. This is best achieved by determining the weights
by the amount of pension payments that each age is expected to receive. This expected
amount is equal to the sum of the probabilities of reaching age x for x greater or equal
to 67. This way the weights resemble the marginal utility per cash flow the participants
receive in an accurate way30. The final weights differ per average age of the fund and can
be found in Appendix D.2.

The carve-out results with heterogeneous risk aversion strongly depend on the levels
of risk aversion assumed and especially the dispersion of the risk aversion. Therefore, I
analyse the results for multiple combinations of the risk aversion parameters. For the
actives the risk aversion parameter, γ67− , is set to a level 5. For the pensioners I vary the
risk aversion parameter, γ67+ , 9 and 11. These values are chosen based on the optimal
asset allocations for active and pensioned participants shown in Appendix D.2. These risk
aversion levels result in realistic portfolios for the individual groups. In this section I show
the results with γ67− = 5 and γ67+ = 11. The results with γ67+ = 9 did not lead to any
win-win situation. The utility tables for this setting can be found in Appendix D.3.

Table 13 shows the expected utilities before and after carve-out for the participants
of a Young, Average and Old pension fund with initial funding ratios of 100%, 115%
and 130%. The table shows that with an initial funding ratio of 115% in none of the
carve-out scenarios a win-win situation arises. However, with the initial funding ratios
of 100% and 130% these situations do occur. With a funding ratio of 100% a win-win

30Additionally I considered weights based on the number of participants and the present value of the
liabilities, however these resulted in less accurate portfolios when compared to the homogeneous optimal
portfolios.
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Table 13: Carve-Out Utilities with γ67− = 5 and γ67+ = 11
The utilities of the active and pensioned participants before and after a carve-out. The results are ordered by the
initial funding ratio, which are from top to bottom 100%, 115% and 130%. Each table section shows the results

for a Young, Average and Old fund. Utility gains are marked in green and utility losses are marked in red.

FR0 = 100% Young Average Old
Carve-Out Type Actives Pensioners Actives Pensioners Actives Pensioners

No Carve-Out -41101 -7441 -44235 -11845 -35469 -16234
Nominal -41337 -5140 -44913 -8648 -36853 -11920
Real -38220 -66172 -39066 -52838 -29610 -40001
DNB -42597 -2065 -46771 -4872 -38710 -8542
Exp. Index. -43308 -1252 -48538 -2981 -42289 -5154
Value Based -42413 -2396 -45986 -6285 -37569 -10390
Indiff. -40842 -7441 -43709 -11845 -34839 -16234

FR0 = 115% Young Average Old
Carve-Out Type Actives Pensioners Actives Pensioners Actives Pensioners

No Carve-Out -31506 -3552 -30593 -4948 -21892 -6119
Nominal -32801 -1006 -33290 -1699 -26177 -2450
Real -30165 -16357 -28805 -13061 -20867 -8751
DNB -33813 -497 -34673 -1171 -27076 -2153
Exp. Index. -33070 -815 -33132 -1784 -25111 -2910
Value Based -32444 -1385 -31551 -3255 -22696 -4900
Indiff. -31662 -3552 -30727 -4948 -21917 -6119

FR0 = 130% Young Average Old
Carve-Out Type Actives Pensioners Actives Pensioners Actives Pensioners

No Carve-Out -24615 -1904 -21773 -2589 -14294 -3340
Nominal -26038 -484 -23551 -1164 -15506 -2153
Real -24160 -4800 -21619 -3096 -15177 -2366
DNB -26038 -484 -23551 -1164 -15506 -2153
Exp. Index. -25751 -624 -23119 -1376 -15192 -2355
Value Based -25380 -892 -22378 -1950 -14604 -2859
Indiff. -24790 -1904 -21889 -2589 -14199 -3340

situation is possible for all three types of pension funds, whereas with a funding ratio of
130% this only occurs for the Old pension fund. This result stands in contrast to the
results obtained with homogeneous risk aversion, where a carve-out seemed less attractive
for lower funding ratios. Unfortunately, the win-win situation is not achieved by any of
the carve-out scenarios, but becomes evident from the Indifference carve-out.

Due to the higher risk aversion of the pensioners, the amount of assets needed for
the pensioners to be indifferent is lower compared to the homogeneous case. The gain
in utility from the optimal portfolio together with the larger amount of assets that can
be allocated to the fund make a carve-out more attractive. To gain insight into why the
carve-out seems to be more successful for an older fund, I first compare the results of the
Old and the Young fund with an initial funding ratio of 130%. Thereafter I will compare
the results of the Young fund with an initial funding ratio of 130% to the same fund
with an initial funding ratio of 100%. This gives more insight to why a carve-out can be
beneficial with the lower funding ratio, whereas this is not the case for the higher funding
ratio. Table 14 contains the optimisation results for the aforementioned funds. Table 15
shows the pension fund risk measures.
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6.2.1 Young Versus Old Fund

Table 14 shows that the funding benefits for the Old pension fund are much larger in
terms of the regulatory funding ratio compared to the Young fund. This larger funding
benefit causes full indexations to be more likely and lowers the probability of reductions
in the short term. The lower probabilities of achieving indexations below 80% in Table
15 endorse this. For the old fund the probability of receiving less then 80% indexation,
P (It+1 < 80%), declines from 22.6% to a value in the range of 9.4%-5.5%. For the Young
fund this probability changes from 56.6% to a range of 56.7%-42.8%. The long term
probability of indexation below 80% suggests that this indexation benefit disappears in
the long run.

The conditional value at risk in Table 15 shows that the Young fund has much more
downside risk compared to the Old pension fund. As already mentioned for the homoge-
neous case, this is caused by a combination of the increased duration, which increase the
volatility of the liabilities, and the UFR hedging mismatch, which restrains the ability of
the fund to hedge this increased risk.

In the heterogeneous risk aversion setting the optimal asset allocation in an Old fund is
more shifted towards the preferences of the pensioners when compared to the Young fund.
In the Old pension fund the loss in utility due to the sub-optimality of the fund portfolio for
their preferences is thus larger. In reality this gain in optimal portfolio compared to Young
funds might be smaller. It would be for example more realistic if risk aversion increases
gradually over time instead of assuming only two values. The further implications of this
fact are beyond the scope of this research.

6.2.2 High Versus Low Funding Ratio

For the Young pension fund with an initial funding ratio of 130% there is no win-win
situation possible from a carve-out. For the same fund with a funding ratio of 100% this
situation is possible.

For the fund with a 130% initial funding ratio the probability of underfunding decreases
slightly after a carve-out. However, the conditional funding ratio at risk increases quite
significantly, indicating that the lower probability of underfunding is mainly the result of
the funding benefit. For the fund with a funding ratio of 130% the active participants
gain from an Indifference carve-out in terms of short term indexation results. In the long
term the participants are expected to receive approximately the same indexations. In
terms of the total indexation after 15 years this thus results in a benefit. The probability
of receiving reductions in the short term was already near zero, but the probability of
reductions in the long run remains about the same. The unconditional expected level
of the reduction required does increase however. As the losses in terms of reductions
hurt more than gains from increased indexations, the participants can not benefit from a
carve-out in the Young fund with an intitial funding ratio of 130%.

For the fund with an initial funding ratio of 100% the probability of underfunding in
the next 15 years decreases more significantly for the Indifference carve-out compared to
the 130% funding ratio case. The probability of receiving indexations below 80% in the
first year remain 100%, but after 15 years this probability is slightly lower. Together with
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the smaller probability of the total indexations and reduction after 15 year to be lower
than 80% the indexation results indicate a benefit for the remaining participants. The
largest benefit results from the decreased probability of reductions in the short run. This
also results in a lower probability of receiving any reduction at all in the next 15 year.
The average value of reduction, given that a reduction occurs is also lower. A win-win
situation is thus possible with a funding ratio of 100% due to the decrease in loss in terms
of reductions, which lead to larger benefits than only higher indexation. This effect is
caused by the concavity of the CRRA utility function.
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Table 14: Carve-Out Optimisation Results with Heterogeneous Risk Aversion
The carve-out optimisation results for a young and old aged pension fund with an initial regulatory funding ratio
of 130% and for a young fund with an initial funding of 100%. The columns under ’Distribution in FR’ show the
amount of assets that is allocated to each group in terms of regulatory funding ratio. The last four columns show

the optimised portfolio for the pension fund. Here B1M and B10Y denote the 1-month and 10-year constant
maturity bond funds and xs denotes the global diversified equity fund. Lastly Swap is the amount of liability

interest rate risk that is hedged with swap contracts. The first two rows labelled ’Actives’ and ’Pensioners’ give
the group specific optimal portfolio in the no carve-out case. The final optimal portfolio without a carve-out is a

weighted average of the above portfolios.

Old Fund FR0 = 130% Distribution in FR Asset Weights
Carve-Out Type Actives Pensioners B1M B10Y xs Swap

Actives - - 0.00% 61.10% 38.90% 90.93%
Pensioners - - 0.00% 76.46% 23.53% 69.44%

No Carve-Out 130.0% - 0.00% 63.88% 36.12% 87.04%

Nominal 143.8% 114.2% 0.00% 60.73% 39.27% 90.73%
Real 145.0% 112.8% 0.00% 60.76% 39.24% 91.22%
DNB 143.8% 114.2% 0.00% 60.73% 39.27% 90.73%
Exp. Index. 145.0% 112.9% 0.00% 60.77% 39.23% 91.21%
Value Based 147.2% 110.3% 0.00% 60.87% 39.13% 92.23%
Indiff. 148.9% 108.5% 0.00% 60.90% 39.10% 93.18%

(a) Old Pension Fund with an Initial Funding Ratio of 130%

Young Fund FR0 = 130% Distribution in FR Asset Weights
Carve-Out Type Actives Pensioners B1M B10Y xs Swap

Actives - - 0.00% 63.46% 36.54% 83.25%
Pensioners - - 0.00% 79.11% 20.89% 80.11%

No Carve-Out 130.0% - 0.00% 64.04% 35.96% 83.13%

Nominal 133.6% 115.4% 0.00% 63.68% 36.32% 80.81%
Real 139.0% 93.0% 0.00% 63.36% 36.64% 83.23%
DNB 133.6% 115.4% 0.00% 63.68% 36.32% 80.81%
Exp. Index. 134.5% 111.8% 0.00% 63.60% 36.40% 82.03%
Value Based 135.5% 107.5% 0.00% 63.58% 36.42% 82.24%
Indiff. 137.2% 100.6% 0.00% 63.44% 36.56% 82.84%

(b) Young Pension Fund with an Initial Funding Ratio of 130%

Young Fund FR0 = 100% Distribution in FR Asset Weights
Carve-Out Type Actives Pensioners B1M B10Y xs Swap

Actives - - 0.00% 62.86% 37.14% 79.39%
Pensioners - - 0.00% 79.23% 20.77% 75.20%

No Carve-Out 100.0% - 0.00% 63.47% 36.53% 79.23%

Nominal 101.9% 92.4% 0.00% 62.51% 37.49% 79.16%
Real 106.9% 71.6% 0.00% 62.91% 37.09% 79.49%
DNB 100.0% 100.0% 0.00% 62.43% 37.57% 79.41%
Exp. Index. 99.0% 104.2% 0.00% 62.38% 37.62% 79.29%
Value Based 100.3% 98.9% 0.00% 62.46% 37.54% 79.41%
Indiff. 102.7% 89.1% 0.00% 62.64% 37.36% 79.37%

(c) Young Pension Fund with an Initial Funding Ratio of 100%
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Table 15: ALM Risk Measures with Heterogeneous Risk Aversion
Simulated risk measures based on the regulatory funding ratio, the indexation and the reduction results. The

results shown are for an Old and a Young fund with FR0 = 130% and a Young fund with FR0 = 100%. FRt+i,
It+i and Rt+i denote the funding ratio, indexation fraction and reduction in the i-th simulation year.

P (It+i < 80%) and P (Rt+i > 0) are the simulated probabilities that in year i the indexation fraction is lower than
80% and the reduction is greater than 0. Pw(FRt→t+15 < 100%) and Pw(Rt→t+15 > 0) are the probabilities that

the funding ratio is lower than 100% and the reduction is greater than 0 at least once within the next 15 years.
CFaR2.5%

t→t+15 is the conditional funding ratio at risk also known as expected shortfall. P (It→t+15 < 80%) is the
probability that the cumulative indexations and reductions over 15 years are smaller than 80% HICP inflation over

the same period.

Old Fund FR0 = 130% No Carve-Out Nominal Real DNB Exp. Index. Value Based Indiff.

Regulatory Funding Ratio
medianFRt+1 131.6% 143.0% 144.1% 143.0% 144.1% 146.3% 147.8%
Pw(FRt+1→t+15 < 100) 7.4% 6.4% 5.7% 6.4% 5.7% 5.1% 4.8%

CFaR2.5%
t+1→t+15 28.4% 43.0% 43.5% 43.0% 43.4% 44.4% 44.9%

Indexation
P (It+1 < 80%) 22.6% 9.4% 8.0% 9.4% 8.0% 6.0% 5.5%
P (It+15 < 80%) 13.8% 17.2% 16.8% 17.2% 16.8% 15.5% 14.8%
P (It+1→t+15 < 80%) 11.3% 11.8% 11.4% 11.8% 11.4% 10.1% 9.3%

Reductions
P (Rt+1 > 0) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
P (Rt+15 > 0) 0.08% 0.13% 0.12% 0.13% 0.12% 0.10% 0.09%
Pw(Rt+1→t+15 > 0) 9.5% 8.3% 7.5% 8.3% 7.5% 7.1% 6.6%
E[R|R > 0] 1.15% 1.16% 1.17% 1.16% 1.17% 1.12% 1.14%

(a) Old Pension Fund with an Initial Funding Ratio of 130%

Young Fund FR0 = 130% No Carve-Out Nominal Real DNB Exp. Index. Value Based Indiff.

Regulatory Funding Ratio
medianFRt+1 130.1% 132.6% 137.6% 132.6% 133.5% 134.4% 135.9%
Pw(FRt+1→t+15 < 100) 14.6% 14.5% 12.2% 14.5% 14.2% 13.6% 13.2%

CFaR2.5%
t+1→t+15 41.6% 45.5% 48.9% 45.5% 46.3% 47.0% 47.9%

Indexation
P (It+1 < 80n%) 56.6% 56.7% 37.6% 56.7% 53.1% 49.5% 42.8%
P (It+15 < 80%) 29.3% 31.5% 28.5% 31.5% 31.1% 30.0% 29.2%
P (It+1→t+15 < 80%) 32.7% 36.5% 29.5% 36.5% 34.6% 33.3% 31.2%

Reductions
P (Rt+1 > 0) 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
P (Rt+15 > 0) 0.15% 0.15% 0.15% 0.15% 0.15% 0.15% 0.15%
Pw(Rt+1→t+15 > 0) 12.0% 11.4% 9.7% 11.4% 11.1% 10.6% 10.3%
E[R|R > 0] 1.14% 1.17% 1.18% 1.17% 1.16% 1.19% 1.20%

(b) Young Pension Fund with an Initial Funding Ratio of 130%

Young Fund FR0 = 100% No Carve-Out Nominal Real DNB Exp. Index. Value Based Indiff.

Regulatory Funding Ratio
medianFRt+1 101.9% 103.5% 108.5% 101.7% 100.7% 101.9% 104.3%
Pw(FRt+1→t+15 < 100) 78.2% 74.4% 57.3% 80.0% 83.1% 79.4% 72.0%

CFaR2.5%
t+1→t+15 20.2% 22.9% 27.0% 21.4% 20.6% 21.6% 23.6%

Indexation
P (It+1 < 80n%) 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
P (It+15 < 80%) 44.9% 44.2% 42.0% 45.3% 45.6% 45.2% 44.2%
P (It+1→t+15 < 80%) 80.0% 77.5% 71.2% 79.8% 81.0% 79.6% 76.2%

Reductions
P (Rt+1 > 0) 1.62% 1.57% 0.83% 1.93% 2.12% 1.91% 1.47%
P (Rt+15 > 0) 0.31% 0.33% 0.31% 0.34% 0.35% 0.34% 0.33%
Pw(Rt+1→t+15 > 0) 66.5% 65.7% 52.4% 71.6% 74.0% 70.8% 63.8%
E[R|R > 0] 1.06% 1.01% 0.98% 1.04% 1.05% 1.04% 1.01%

(c) Young Pension Fund with an Initial Funding Ratio of 100%
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7 Conclusions

The increase in regulatory requirements and low interest rates have caused the financial
statuses of pension funds to be under pressure. To help pension funds overcome this,
Willis Towers Watson proposes a new de-risking solution: the carve-out. The carve-out is
a partial buy-out, where instead of all entitlements only the entitlements of the pensioners
are transferred to an insurer. The pension fund can then adjust its policy to be more in line
with the preferences of the younger participants. The more risk averse pensioners benefit
from insured benefits, which eliminates the possibility of reductions. For the sponsoring
company a carve-out can decrease the pension obligations and risk buffers on the balance
sheet. This releases capital that can be used for investments, which contributes to the
profitability of the company.

I asses whether the carve-out can be beneficial for both the active as the retired partici-
pants by means of a value-based ALM study. To simulate equity returns and inflation I use
a two-state Markov-Switching VAR model with switching intercepts and (co-)variances.
The interest rates are modelled by a latent three factor affine term structure model. All
pay-offs in the model can be priced by means of the pricing kernel. For the carve-out
various asset distribution rules are compared in the search for the most even-minded dis-
tribution rule. For this purpose I define seven carve-out scenarios, where the assets are
split based on the nominal, real and regulatory funding ratio, on the expected indexation
in the fund, on the arbitrage free value of the entitlements per age and based on indiffer-
ence for the pensioners. The success of the carve-out is determined by the utility of the
participants, who are assumed to have CRRA preferences. First I perform my analysis in
a homogeneous and thereafter in a heterogeneous risk aversion setting, where the active
participants differ in preferences from the pensioners.

With homogeneous risk aversion the carve-out does not lead to a win-win situation,
where both the remaining participants as the pensioners gain in utility. This holds for a
pension fund with a low (100%), average (115%) and high (130%) funding ratio and for
a Young, Average and Old pension fund. For these pension funds I show that a win-win
situation is not possible, independent of the asset distribution. The pensioners can benefit
from the insured entitlements after a carve-out in multiple carve-out scenarios. However,
the amount of assets remaining in the fund in these cases is too low to compensate for the
increased risk on the balance sheet of the pension fund.

In the short term the remaining participants do benefit from increased indexation
probabilities caused by the increase in regulatory funding ratio. In the long term the
increased funding ratio risk causes the remaining participants to be worse off with a carve-
out. This increased risk is the result of the increased duration of the liabilities, which leads
to higher sensitivity to changes in the interest rates and the absence of inter-generational
risk sharing with the pensioners after a carve-out. The increased balance sheet risks can
not be hedged away with the swap contracts available, because the long term liabilities
are valued with regulatory interest rate which converges to the UFR.

The carve-out is more promising for pension funds with a higher funding ratio. In
this case funding benefits for the remaining participants are higher in terms of the reg-
ulatory funding ratio, thereby increasing the likelihood of full indexations and lowering
the probability of a reduction in the short term. The carve-out is also more promising
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for pension funds with a relatively low duration. With a relatively high percentage of the
entitlements being transferred to an insurer, the funding benefits become larger for the
remaining participants. This is of course only the case if the pensioners get less assets
than the regulatory funding ratio attributes to them.

Distributing the assets based on the no arbitrage value of the entitlements can be
considered as a fair way of distributing the assets, but also leads to a well-balanced re-
distribution in utility terms. For higher funding ratios distributing the assets based on
the expected indexation comes closest to a value neutral approach and also results in rel-
atively balanced distribution in terms of utility. With a lower funding ratio the expected
indexation grants a too large proportion of the assets to the pensioners. The increased
risk of reductions is not incorporated enough in the asset distribution in this case. After
the expected indexation carve-out, the nominal carve-out is closest to being value neutral.
This neutrality is also less sensitive to the initial funding for the nominal carve-out.

When the pensioners are assumed to be more risk averse than the active participants,
a mutually beneficial carve-out is possible. The dispersion in the risk aversion strongly
influences whether a win-win situation is possible. A higher dispersion in risk aversion
causes a larger potential utility benefit from adjusting the policy to the preferences of the
active participants. Furthermore, lower risk aversion of the pensioners lowers the required
assets to attain the same level of utility after a carve-out. I show that with a risk aversion
of 5 for the active participants and 11 for the pensioners, win-win scenarios are possible.

Again a relatively high funding ratio leads to higher funding benefits, making a carve-
out more attractive at a funding ratio of 130% compared to 115%. With heterogeneous
risk aversion a win-win situation also occurs with a funding ratio of 100%. A carve-out can
decrease the likelihood of reductions in this case, leading to a utility benefit for all three
stylised pension funds. When the pensioners are assumed to be more risk averse, splitting
the assets based on the expected indexation generally grants the pensioners a too large
proportion of the assets. Due to the increased risk aversion, the pensioners are satisfied
with less already. With heterogeneous risk aversion the value-based asset distribution
leads to a well-balanced distribution in terms of utility. With a funding ratio of 100% the
nominal split leads to the best balance in utility.

Overall, the results indicate that a carve-out might not be an interesting de-risking
solution. The carve-out is more attractive for older funds and with higher funding ratios.
However, for older pension funds a carve-out might cause the pension fund to become too
small, increasing the execution costs for the remaining participants. Whereas with higher
funding ratios a de-risking solution might not be necessary. The results with heterogeneous
risk aversion do look more promising for pension funds with lower funding ratios. To be
able to determine whether a carve-out is an attractive de-risking method, further research
is required.

In this model the financial market is quite limited. More asset classes can lead to
gains from diversification of the portfolio. This can also influence the benefits of the
remaining participants by having more benefit of the pension fund policy being in line
with their preferences. Additionally, I assume the required capital to be constant. The
required capital is greatly depended on the portfolio and the liability duration. After
a carve-out, the required capital is likely to increase, which can have a negative result
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on the indexations after a carve-out. The main bottleneck for the carve-out seems to
be the increased risk in terms of the regulatory funding ratio. This is caused by the
increased duration in combination with a hedging mismatch. Introducing a complex swap
contract that incorporates the UFR in a value neutral way, may overcome these difficulties
encountered with a carve-out.

In the heterogeneous analysis I assume weights for the utility of the active and pen-
sioned participants in the portfolio optimisation. These weights however do not guarantee
optimality of the portfolio in terms of total utility derived by the participants. A more
sophisticated approach can be found in the theory of asset pricing with heterogeneous be-
liefs. For example Basak (2005) make use of a central planner whose utility is a weighted
average of the individual utility functions, where the weights are stochastic. Another ap-
proach is that of deriving a representative agent from the heterogeneous preferences as in
Xiouros and Zapatero (2010). With these theories the heterogeneity in risk aversion can
also be more conveniently modelled to gradually increase by age.

47



References

Albert, S. M. and J. Duffy (2012). Differences in risk aversion between young and older
adults., Volume 2012.1. Neuroscience and neuroeconomics.

Ang, A., G. Bekaert, and M. Wei (2008). The Term Structure of Real Rates and Expected
Inflation., Volume 63.2: 797-849. The Journal of Finance.

Ang, A., S. Dong, and M. Piazzesi (2007). No-arbitrage Taylor rules. National Bureau of
Economic Research, No. w13448.

Ang, A. and M. Piazzesi (2003). A no-arbitrage vector autoregression of term structure
dynamics with macroeconomic and latent variables., Volume 50.4: 745-787. Journal of
Monetary Economics.

Ang, A., M. Piazzesi, and M. Wei (2006). What does the yield curve tell us about GDP
growth?, Volume 131.1: 359-403. Journal of Econometrics.

Ang, A. and A. Timmermann (2012). Regime changes and financial markets., Volume 4.1:
313-337. Annual Review of Financial Economics.

Basak, S. (2005). Asset pricing with heterogeneous beliefs., Volume 29.11: 2849-2881.
Journal of Banking Finance.

Bertocchi, M., S. Schwartz, and W. Ziemba (2010). MortalityLinked Securities and Deriva-
tives. Optimizing the Aging, Retirement, and Pensions Dilemma. 275-298.

Biffis, E. and D. Blake (2013). Informed Intermediation of Longevity Exposures, Volume
80.3. Journal of Risk and Insurance.

Blake, D., A. Cairns, and K. Dowd (2008). The Birth of the Life Market., Volume 3.1.
Asia-Pacific Journal of Risk and Insurance.

Boender, G. (1997). A Hybrid Simulation/Optimisation Scenario Model for Asset/Liability
Management, Volume 99.1: p. 126-135. European Journal of Operational Research.

Boender, G., C. Dert, F. Heemskerk, and H. Hoek (2007). “A Scenario Approach to ALM”,
Handbook of Asset and Liability Management, Volume 2. Elsevier B.V. 829–860.

Campbell, J. and L. Viceira (2002). Strategic Asset Allocation: Portfolio Choice for Long-
Term Investors. Oxford University Press, USA.

Cavicchioli, M. (2017). Third and fourth moments of vector autoregressions with regime
switching., Volume 46.9: 4181-4194. Communications in Statistics - Theory and Meth-
ods. DOI: 10.1080/03610926.2015.1080840.

Chen, R.-R. and L. Scott (1993). Maximum likelihood estimation for a multifactor equi-
librium model of the term structure of interest rates., Volume 3.3: 14-31. The Journal
of Fixed Income.

48

10.1080/03610926.2015.1080840


Cochrane, J. H. (2009). Asset Pricing:(Revised Edition). Princeton University Press.

Cochrane, J. H. and M. Piazzesi (2005). Bond Risk Premia., Volume 95.1: 138-160. The
American Economic Review.

Coughlan, G., D. Blake, R. MacMinn, A. Cairns, and K. Dowd (2013). “Longevity Risk
and Hedging Solutions”, Handbook of Insurance, Chapter 34. New York: Springer Sci-
ence+Business Media.

Cox, J. C., J. E. Ingersoll, and S. A. Ross (1990). A theory of the term structure of interest
rates. Econometrica: Journal of the Econometric Society. 385-407.

Cox, S., Y. Lin, R. Tian, and L. Zuluaga (2013). Mortality Portfolio Risk Management,
Volume 80(4). Journal of Risk and Insurance.

Cui, J., F. de Jong, and E. Ponds (2005). The value of intergenerational transfers within
funded pension schemes. Rotman International Centre for Pension Management, Pen-
sion Plan Design, Risk and Sustainability Workshop Discussion Paper.

Dai, Q. and K. J. Singleton (2000). Specification analysis of affine term structure models.,
Volume 55.5: 1943-1978. The Journal of Finance.

Dai, Q. and K. J. Singleton (2002). Expectation puzzles, time-varying risk premia, and
affine models of the term structure., Volume 63.3: 415-441. Journal of Financial Eco-
nomics.

Dert, C. (1995). Asset Liability Management for Pension Funds: A Multistage Chance
Constrained Programming Approach. Erasmus Universeit Rotterdam, Available at:
http://repub.eur.nl/pub/51150/.

Duffee, G. R. (2002). Term premia and interest rate forecasts in affine models., Volume
57.1: 405-443. The Journal of Finance.

Duffie, D. and R. Kan (1996). A YieldFactor Model of Interest Rates, Volume 6.4: 379-406.
Mathematical Finance.

Duyvesteyn, J., M. Martens, R. Molenaar, and T. Steenkamp (2013). De schijnveiligheid
van de Ultimate Forward Rate. Robeco Rock Note, Available at: https://www.robeco.
com/images/ultimate-forward-rate-2013-02-25.pdf.

Fisher, R. A. (1924). The conditions under which χ2 measures the discrepancey between
observation and hypothesis. Journal of the Royal Statistical Society. 442-450.

Guidolin, M. and A. Timmermann (2006). An Econometric Model of Nonlinear Dynamics
in the Joint Distribution of Stock and Bond Returns, Volume 21.1: 1-22. Journal of
Applied Econometrics.

Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time
series and the business cycle., Volume 357-384. Econometrica: Journal of the Econo-
metric Society.

49

http://repub.eur.nl/pub/51150/
https://www.robeco.com/images/ultimate-forward-rate-2013-02-25.pdf
https://www.robeco.com/images/ultimate-forward-rate-2013-02-25.pdf


Hamilton, J. D. and J. C. Wu (2012). Identification and estimation of Gaussian affine
term structure models., Volume 168.2: 315-331. Journal of Econometrics.

Hoevenaars, R. (2008). Strategic Asset Allocation Asset Liability Management. Univer-
siteit Maastricht, Available at: http://assets.kennislink.nl/upload/185652_391_
1201003453228-RoyHoevenaars_Proefschrift_Ned_samenvatting.pdf.

Hoevenaars, R. and E. Ponds (2008a). Valuation of Intergenerational Transfers in Funded
Collective Pension Schemes, Volume 42. Insurance: Mathematics and Economics. 578-
593.

Hoevenaars, R. P. and R. D. Molenaar (2010). Public Investment Funds and Value-Based
Generational Accounting. Central Bank Reserves and Sovereign Wealth Management
p. 328-348, Palgrave Macmillan UK.

Hoevenaars, R. P. and E. H. Ponds (2008b). Valuation of intergenerational transfers in
funded collective pension schemes., Volume 42.2: 578-593. Insurance: Mathematics and
Economics.

Hoevenaars, R. P. M. M. and H. M. E. Ponds (2007). Intergenerational value transfers
within an industry-wide pension fund—a value-based ALM analysis. Costs and Benefits
of Collective Pension Systems. Springer Berlin Heidelberg. p. 95-117.

Hull, J. and A. White (1990). Pricing interest-rate-derivative securities., Volume 3.4:
573-592. Review of financial studies.

Karalis, I. A. (2014). Higher moments of MSVARs and the business cycle. Birkbeck Centre
for Applied Macroeconomics. No. 1405.

Krolzig, H.-M. (1997). Markov-Switching Vector Autoregressions: Modelling, Statistical
Inference, and Application to Business Cycle Analysis. Springer-Verlag.

Lin, Y., R. MacMinn, and R. Tian (2015). De-risking Defined Benefit Plans, Volume 63.
Insurance: Mathematics and Economics.

Lin, Y., R. D. MacMinn, R. Tian, and J. Y. . (2015). Pension Risk Management in
the Enterprise Risk Management Framework. Working Paper, University of Nebraska,
Illinois State University and North Dakota State University.

Lin, Y., T. Shi, and A. Arik (2016). Pricing Buy-Ins and Buy-Outs. Working Paper,
Available at SSRN: http://ssrn.com/abstract=2745368.

Litterman, R. B. and J. Scheinkman (1991). Common factors affecting bond returns.,
Volume 1.1: 54-61. The Journal of Fixed Income.

Nelson, C. R. and A. F. Siegel (1987). Parsimonious modeling of yield curves. Journal of
business. 473-489.

Neyman, J. and E. S. Pearson (1928). On the use and interpretation of certain test criteria
for purposes of statistical inference: Part II, Volume 20A: 263-294. Biometrika.

50

http://assets.kennislink.nl/upload/185652_391_1201003453228-RoyHoevenaars_Proefschrift_Ned_samenvatting.pdf
http://assets.kennislink.nl/upload/185652_391_1201003453228-RoyHoevenaars_Proefschrift_Ned_samenvatting.pdf
http://ssrn.com/abstract=2745368


Rauh, J. D. (2006). Investment and financing constraints: Evidence from the funding of
corporate pension plans., Volume 61.1: 33-71. The Journal of Finance.

Riley, W. B. J. and K. Chow (1992). Asset Allocation and Individual Risk Aversion.,
Volume 48(6), 32-37. Financial Analysts Journal. Retrieved from http://www.jstor.

org/stable/4479593.

Vasicek, O. (1977). An equilibrium characterization of the term structure., Volume 5.2:
177-188. Journal of Financial Economics.

Xiouros, C. and F. Zapatero (2010). The representative agent of an economy with external
habit formation and heterogeneous risk aversion., Volume 23.8: 3017-3047. Review of
Financial Studies.

51

http://www.jstor.org/stable/4479593
http://www.jstor.org/stable/4479593


Appendices

A Data Overview

A.1 Wage Data

The following table provides the raw data used to construct a wage curve. The curve is
constructed by assuming that the wages stays constant for 50+ years. This smooths the
curve and is a reasonable assumption as productivity is likely to stagnate after reaching
an age of 50. The wages in the table are then assumed to hold exactly for the average
wage of that particular group, e.g. wage at 22.5 years of age is assumed to be e20,900. A
curve with wages for each age is then obtained by linear interpolation.

Table 16: Raw Wage Data
Age Income
15 - 20 e4,500
20 - 25 e20,900
25 - 30 e29,700
30 - 35 e36,000
35 - 40 e39,800
40 - 45 e43,100
45 - 50 e44,400
50 - 55 e43,600
55 - 60 e44,000
60 - 65 e43,300
65 - 70 e51,000
70 - 75 e44,800

A.2 Dutch Pension System

Figure 4: Pension Scheme in the Netherlands
This figure shows the percentage of participants for different pension schemes in the Netherlands. The three
categories are a defined benefit final wage schemes, a defined benefit average wage schemes and other. Other

consists of all remaining schemes.
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A.3 Nominal Buy-Out Prices

The figure below shows the historical nominal buy-out prices in the Netherlands. The
prices are taken from the Buy-Out Monitor provided by Willis Towers Watson. The
prices are based on three stylised pension funds with different durations and a stylised
population of pensioners for the carve-out price. In the figure these are denoted by Old,
Average, Young and Carve-Out. The prices are given as percentage of the liability values,
where these values are determined based on the nominal curve plus UFR provided by
the DNB. The figure shows that Buy-Outs are generally cheaper for funds with lower
durations.

Figure 5: Nominal Buy-Out Prices

A.4 Participants Distribution

Figure 6: Distribution of Particpants
The age distributions of the fund participants for the three different funds.
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A.5 Accession Probabilities

This section provides the accession probabilities for the three types of funds; Young,
Average and Old.

Table 17: Accession Probabilities
Age Young Average Old Age Young Average Old

20 0.15 0.01 0.01 44 0.015 0.03 0.04
21 0.05 0.01 0.01 45 0.01 0.03 0.03
22 0.05 0.01 0.01 46 0.01 0.03 0.03
23 0.05 0.01 0.01 47 0.01 0.03 0.03
24 0.05 0.01 0.01 48 0.01 0.03 0.03
25 0.05 0.02 0.01 49 0.01 0.03 0.03
26 0.05 0.02 0.01 50 0.005 0.02 0.03
27 0.04 0.02 0.01 51 0.005 0.02 0.03
28 0.04 0.02 0.01 52 0.005 0.02 0.03
29 0.04 0.02 0.01 53 0.005 0.02 0.03
30 0.04 0.03 0.02 54 0.005 0.02 0.03
31 0.04 0.03 0.02 55 0 0.01 0.02
32 0.03 0.03 0.02 56 0 0.01 0.02
33 0.03 0.03 0.02 57 0 0.01 0.02
34 0.03 0.03 0.02 58 0 0.01 0.02
35 0.03 0.04 0.03 59 0 0.01 0.02
36 0.02 0.04 0.03 60 0 0.01 0.01
37 0.02 0.04 0.03 61 0 0.01 0.01
38 0.02 0.04 0.03 62 0 0.01 0.01
39 0.02 0.04 0.03 63 0 0.01 0.01
40 0.015 0.03 0.04 64 0 0.01 0.01
41 0.015 0.03 0.04 65 0 0 0
42 0.015 0.03 0.04 66 0 0 0
43 0.015 0.03 0.04 67 0 0 0
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A.6 ALM Model Parameters

The fixed parameters used in the ALM study. Most of the parameter names are self
explanatory, the others will be explained here. FRI=0 is the lower bound funding ratio
from which level indexation can be granted by the fund. Recovery % is the percentage
of the available capital that is regulatory allowed to be allocated to recovery indexations.
The unconditional MSVAR model expectations for inflation and excess stock returns are
denoted by E[π] and E[xs] respectively. E[rB1M

] and E[rB10Y
] are the unconditional

expected annual returns of the 1-month and 10-year bond. Lastly δ denotes the utility
discount rate, which is set to 1 unless stated otherwise.

Table 18: Fixed ALM Parameters
Regulatory parameters Model

MVEV 104% E[π] 1.64%
VEV 120% E[xs] 3.17%
FRI=0 110% E[rB1M

] 2.24%
Accrual Rate 1.875% E[rB10Y

] 4.01%
AOW Offset e 12,953 # Simulations 10,000
Pension Age 67 Horizon 15 years
Max Age 120 Buy-Out Spread 35 bps
Min Age 20 δ 1

Male % 55% Pension fund

Exp. Inflation 2.00% # Participants 5000
Wage Inflation 0.50% Avr. Age Young 45
Bond Return 2.50% Avr. Age Average 55
Equity Return 7.00% Avr. Age Old 65
Recovery % 20.00% Std. Dev. Age 15
Recovery Horizon 10 years Premium % 30.00%
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A.7 Financial Scenarios

The figures in this appendix section show the percentiles of the simulated financial sce-
narios. The figures give insight in the distribution of the simulated returns, rates and
inflation.

Figure 7: Simulated Annual 1-Month Bond Return Percentiles

Figure 8: Simulated Annual 10-year Bond Return Percentiles
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Figure 9: Simulated 10 Year Yield Percentiles

Figure 10: Simulated Total Equity Return Percentiles
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Figure 11: Simulated Inflation Percentiles

Figure 12: Initial Yield Curves
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B MSVAR Model Estimation Results

B.1 Linear VAR Model

Figure 13: Linear VAR Estimates
Model parameters and statistics for the linear VAR model of inflation, equity and dividend.
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B.2 Model Selection Results

Table 19: MSVAR Model Selection Results
Model estimation results for MSVAR model with the number of lags p ranging from 0 to 4 and the number of
regimes M ranging from 1 to 4. In the table AIC denotes the Akaike Information Criterion, BIC the Bayesian

Information Criterion and HQC the Hannan-Quin Information Criterion. The models in the table are ranked based
on these individual criteria, whereby the last column ranks the models based on the sum of the individual ranks.

Model Number of
AIC BIC HQC

AIC BIC HQC Total
Type parameters Rank Rank Rank Score
VAR(0) 9 -20.695 -20.559 -20.640 50 50 50 50
VAR(1) 18 -25.771 -25.499 -25.661 40 19 34 33
VAR(2) 27 -25.815 -25.408 -25.651 38 25 36 34
VAR(3) 36 -25.779 -25.235 -25.559 39 34 40 40
VAR(4) 45 -25.856 -25.177 -25.582 37 37 38 39
MSI(2,0) 14 -21.573 -21.362 -21.488 47 46 46 46.5
MSI(2,1) 23 -25.926 -25.579 -25.786 34 15 31 28.5
MSI(2,2) 32 -25.914 -25.431 -25.719 35 24 32 32
MSI(2,3) 41 -25.901 -25.282 -25.651 36 33 35 36
MSI(2,4) 50 -25.973 -25.218 -25.668 32 36 33 35
MSH(2,0) 17 -21.261 -21.004 -21.157 49 49 49 49
MSH(2,1) 26 -26.261 -25.869 -26.103 21 2 8 8
MSH(2,2) 35 -26.254 -25.726 -26.041 22 7 12 12
MSH(2,3) 44 -26.238 -25.574 -25.970 23 16 21 20
MSH(2,4) 53 -26.205 -25.405 -25.882 28 26 30 31
MSIH(2,0) 20 -21.679 -21.377 -21.557 46 45 45 45
MSIH(2,1) 29 -26.391 -25.954 -26.215 8 1 1 1
MSIH(2,2) 38 -26.376 -25.803 -26.145 11 4 3 3
MSIH(2,3) 47 -26.345 -25.636 -26.059 16 12 10 11
MSIH(2,4) 56 -26.314 -25.469 -25.973 20 23 20 21.5
MSI(3,0) 21 -21.989 -21.672 -21.861 44 44 44 44
MSI(3,1) 30 -26.216 -25.764 -26.034 26 6 13 13
MSI(3,2) 39 -26.211 -25.623 -25.973 27 13 19 19
MSI(3,3) 48 -26.196 -25.472 -25.904 29 21 27 27
MSI(3,4) 57 -25.966 -25.106 -25.619 33 39 37 37
MSH(3,0) 27 -21.432 -21.025 -21.268 48 48 48 48
MSH(3,1) 36 -26.351 -25.808 -26.132 15 3 4 6
MSH(3,2) 45 -26.343 -25.664 -26.069 17 9 9 10
MSH(3,3) 54 -26.340 -25.525 -26.011 18 17 14 15
MSH(3,4) 63 -26.315 -25.365 -25.932 19 29 24 25
MSIH(3,0) 33 -22.358 -21.860 -22.157 43 43 43 43
MSIH(3,1) 42 -26.430 -25.796 -26.174 4 5 2 2
MSIH(3,2) 51 -26.418 -25.648 -26.107 6 10 6 6
MSIH(3,3) 60 -26.422 -25.517 -26.057 5 18 11 9
MSIH(3,4) 69 -26.388 -25.347 -25.968 10 31 22 21.5
MSI(4,0) 30 -22.807 -22.354 -22.624 42 41 42 42
MSI(4,1) 39 -26.227 -25.638 -25.989 25 11 17 17
MSI(4,2) 48 -26.196 -25.472 -25.904 30 22 28 28.5
MSI(4,3) 57 -26.232 -25.372 -25.885 24 28 29 30
MSI(4,4) 66 -25.977 -24.981 -25.575 31 40 39 38
MSH(4,0) 39 -21.690 -21.102 -21.453 45 47 47 46.5
MSH(4,1) 48 -26.397 -25.673 -26.105 7 8 7 6
MSH(4,2) 57 -26.357 -25.497 -26.010 14 20 16 16
MSH(4,3) 66 -26.358 -25.363 -25.957 13 30 23 23.5
MSH(4,4) 75 -26.366 -25.234 -25.909 12 35 26 26
MSIH(4,0) 48 -23.055 -22.331 -22.763 41 42 41 41
MSIH(4,1) 57 -26.457 -25.596 -26.109 2 14 5 4
MSIH(4,2) 66 -26.388 -25.393 -25.987 9 27 18 18
MSIH(4,3) 75 -26.467 -25.336 -26.011 1 32 15 14
MSIH(4,4) 84 -26.433 -25.165 -25.921 3 38 25 23.5
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C Model Regimes

C.1 Multivariate Model Regimes

Figure 14: Full Model Smoothed Regime Probabilities
Estimated smoothed regime probabilities of the multivariate MSIH(2,1) model for inflation, equity returns and

dividend yields.

C.2 Univariate Model Regimes

Figure 15: Inflation Smoothed Regime Probabilities
Estimated smoothed regime probabilities of the univariate MSIH(2,1) model for inflation.

61



Figure 16: Equity Smoothed Regime Probabilities
Estimated smoothed regime probabilities of the univariate MSIH(2,1) model for equity returns.

Figure 17: Dividend Yield Smoothed Regime Probabilities
Estimated smoothed regime probabilities of the univariate MSIH(2,1) model for dividend yields.
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C.3 Regime Correlations

Table 21 shows the correlations between the estimated smoothed regime probabilities of the
multivariate and univariate MSIH(2,1) models for inflation, equity returns and dividend
yields. The estimated regimes for equity and dividend yields are strongly correlated. From
Figures 16 and 17 this strong correlation is clearly seen. This strong regime correlation
also holds between dividend yields and inflation. The correlation is less strong for inflation
and equity returns. However, Figures 15 and 16 do show very similar patterns in the
smoothed regimes probabilities. The strong correlations and similar patterns indicate that
a multivariate regime switching model with the same underlying regimes for all variables,
might be appropriate.

In the case that the underlying regimes do coincide for all variables, combining the
information in all variables in the regime estimation makes the estimated regime prob-
abilities more accurate. The full model smoothed regime probabilities indicate that the
regimes of the multivariate model represent a combination of the univariate regimes. The
full model regimes are strongly correlated with the estimated univariate regimes, with a
correlation of at least 0.57. The full model regimes thus capture most of the information of
the individual regimes. It follows that modelling the inflation, equity returns and dividend
yields with the same underlying regimes does not lead to large information losses. It does
reduce the dimensionality of the model immensely, as the number of regimes by modelling
independent regimes would be 23.

Table 21: Regime Correlations
Correlations between the multivariate and univariate MSIH(2,1) model smoothed regime probabilities. Inflation is

denoted by π, equity returns by xs and dividend yields by dy.

π xs dy

Multivariate Model 0.575 0.578 0.766

π 1
xs 0.221 1
dy 0.524 0.593 1
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D ALM Results

D.1 Optimal Portfolios

This appendix shows the results of various portfolio optimisations to provide insight in
the sensitivity of the optimal portfolio to various parameters. Table 22 shows the optimal
portfolios per age for participants with a risk aversion of 5 in a pension fund with an
initial funding ratio of 130%. Older participants gradually invest less in equity and more
in bonds, which is in line with the findings of Campbell and Viceira (2002).

Table 23 shows optimal portfolios for various settings of the average age in the partic-
ipant simulation of the fund. For longer durations the optimal portfolio is generally more
allocated to equity. For durations longer than 22.4 years there is a slight shift, where
portfolio become less allocated to equity. Also the percentage of interest rate risk hedged
with swaps becomes lower. This might be due to the fact that the pension fund policy
is based on an interest rate curve with UFR, while swaps are priced with the nominal
curve. For durations longer 20 years there is a hedging mismatch, which makes swaps less
effective in lowering balance sheet risks. This is compensated by allocating more to bonds,
which are less risky, and by lowering the amount of swap contracts.

Table 24 shows optimal portfolios for various initial funding ratios. The fund has an
average age of 55 and the participants have a risk aversion of 5. With lower funding ratios
the portfolio is more allocated to equity and the amount of swap contracts is lower relative
to higher funding ratios. For lower funding ratios the participants pursue recovery of the
funding ratio, whereas for higher funding ratios the solvency position is protected more.

Table 22: Optimal Portfolios Per Age
The optimal portfolios per age for a pension fund with an initial funding ratio of 130% and participants with a

risk aversion of 5. The fund is simulated with an average age of 55.

Age B1M B10Y xs Swap

20 0.0% 59.1% 40.9% 85.7%
30 0.0% 60.1% 39.9% 86.6%
40 0.0% 60.8% 39.2% 87.0%
50 0.0% 61.1% 38.9% 87.1%
60 0.0% 62.4% 37.6% 86.0%
70 0.0% 64.5% 35.5% 81.2%
80 0.0% 76.4% 23.6% 65.3%
90 0.0% 90.2% 9.7% 47.4%

100 0.0% 94.9% 5.1% 40.5%
110 2.5% 93.5% 4.0% 39.6%
119 42.9% 46.5% 10.6% 56.6%
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Table 23: Optimal Portfolios Per Duration
The optimal portfolios for various average ages of the participants. The funds are generated with a truncated

normal distribution with the average age as specified in the first column. The initial funding ratio is equal to 130%
and the risk aversion parameter is 5.

Avr. Age Duration B1M B10Y xs Swap

30 29.3 0.0% 63.1% 36.9% 77.9%
35 27.0 0.0% 62.5% 37.5% 79.7%
40 24.7 0.0% 62.0% 38.0% 80.8%
45 22.4 0.0% 61.1% 38.9% 83.1%
50 20.2 0.0% 61.1% 38.9% 83.0%
55 18.2 0.0% 61.5% 38.4% 82.0%
60 16.3 0.0% 62.4% 37.6% 80.8%
65 14.6 0.0% 63.6% 36.4% 78.3%
70 13.1 0.0% 65.3% 34.7% 74.5%
75 11.7 0.0% 67.5% 32.5% 68.3%
80 10.4 0.0% 70.3% 29.7% 59.4%

Table 24: Optimal Portfolios Per Initial Funding Ratio
The optimal portfolios for different initial funding ratios ranging from 60% to 160%. The fund is generated with

an average age of the participants of 55. The risk aversion is set to 5.

FR0 B1M B10Y xs Swap

60% 0.0% 57.9% 42.1% 66.4%
70% 0.0% 58.1% 41.9% 69.6%
80% 0.0% 59.3% 40.7% 69.4%
90% 0.0% 60.1% 39.9% 73.5%

100% 0.0% 60.9% 39.1% 75.1%
110% 0.0% 61.2% 38.8% 77.4%
120% 0.0% 61.2% 38.8% 80.5%
130% 0.0% 60.9% 39.1% 86.4%
140% 0.0% 61.5% 38.5% 92.7%
150% 0.0% 61.8% 38.2% 99.1%
160% 0.0% 62.1% 37.9% 100.0%
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D.2 Heterogeneous Risk Aversion Portfolio Choice

Heterogeneous Risk Aversion Group Weights

The table below contains the weights used to calculate the optimal portfolio in the het-
erogeneous risk aversion setting. The weights are specified per stylised fund; the Young,
Average and Old fund.

Table 25: Heterogeneous Risk Aversion Group Weights
Actives Pensioners

Young 96.3% 3.7%
Average 91.4% 8.6%
Old 81.9% 18.1%

Optimal Portfolios Per Group

The following table contains optimised portfolios for both the active participants and the
pensioners in an Average fund with a funding ratio of 130%. These optimal portfolios give
an indication of realistic risk aversion parameter values for both groups.

Table 26: Optimal Portfolios Per Group

B1M B10Y xs Swap

γ = 2 0.0% 19.7% 80.3% 85.8%
3 0.0% 39.8% 60.2% 88.4%
4 0.0% 52.2% 47.8% 88.0%
5 0.0% 60.8% 39.2% 86.6%
6 0.0% 67.1% 32.9% 84.2%
7 0.0% 71.8% 28.2% 82.5%

(a) Active Participants

B1M B10Y xs Swap

γ = 5 0.0% 65.4% 34.6% 79.8%
6 0.0% 70.2% 29.8% 78.3%
7 0.0% 73.8% 26.2% 77.3%
8 0.0% 76.6% 23.4% 76.7%
9 0.0% 78.8% 21.2% 76.3%

10 0.0% 80.7% 19.3% 75.8%
11 0.0% 82.5% 17.5% 74.7%
12 0.0% 83.9% 16.1% 74.3%

(b) Pensioners
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D.3 Heterogeneous Risk Aversion Additional Results

This section shows the utility results for the active participants and the pensioners with
and without carve-out for the three stylised pension funds, where the risk aversion is:
γ67−=5 and γ67+=9.

Table 27: Carve-Out Utilities with γ67− = 5 and γ67+ = 9
Utilities of the active and pensioned participants before and after a carve-out. The results are ordered by the

initial funding ratio, which are from top to bottom 100%, 115% and 130%. Each table section shows the results
for a Young, Average and Old fund. Utility gains are marked in green and utility losses are marked in red.

FR0 = 100% Young Average Old
Carve-Out Type Actives Pensioners Actives Pensioners Actives Pensioners

No Carve-Out -41099 -3230 -44195 -6556 -35408 -10589
Nominal -41337 -3892 -44913 -7023 -36853 -10271
Real -38220 -30058 -39066 -29879 -29610 -26938
DNB -42597 -1913 -46771 -4527 -38710 -7997
Exp. Index. -43319 -1298 -48610 -3070 -42560 -5312
Value Based -42414 -2140 -45988 -5484 -37574 -9260
Indiff. -41694 -3230 -45256 -6556 -36650 -10589

FR0 = 115% Young Average Old
Carve-Out Type Actives Pensioners Actives Pensioners Actives Pensioners

No Carve-Out -31503 -1946 -30579 -3625 -21870 -5418
Nominal -32801 -1101 -33290 -2003 -26177 -3029
Real -30165 -9826 -28805 -9768 -20867 -8143
DNB -33813 -628 -34673 -1484 -27076 -2728
Exp. Index. -33078 -929 -33158 -2069 -25154 -3456
Value Based -32446 -1410 -31569 -3323 -22707 -5221
Indiff. -32050 -1946 -31322 -3625 -22528 -5418

FR0 = 130% Young Average Old
Carve-Out Type Actives Pensioners Actives Pensioners Actives Pensioners

No Carve-Out -24613 -1282 -21768 -2362 -14281 -3644
Nominal -26038 -614 -23551 -1477 -15506 -2728
Real -24160 -3685 -21619 -3202 -15177 -2945
DNB -26038 -614 -23551 -1477 -15506 -2728
Exp. Index. -25754 -754 -23123 -1690 -15193 -2934
Value Based -25381 -1002 -22380 -2233 -14604 -3430
Indiff. -25109 -1282 -22248 -2362 -14399 -3644
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E Affine Term Structure

This section provides the derivations for the affine term structure model. First, the equa-
tions for the nominal bond prices are derived, followed by derivations for the real bond
prices. The notation in this section will follow the same notation as in the main text.

E.1 Nominal Term Structure

Proposition E.1. Let Xt be the state variables of the economy as defined in Equation
3 and let ν(j), Φ and Σ

1
2 (j) be the model parameters defined in Equations 4 and 5 for

regime j. The regimes follow a Markov chain with transition probability matrix Π with on
row i and column j the probability of switching from regime i to regime j noted by pij.
With the pricing kernel defined as in Equation 7 and the prices of risk as in Equation 11,
the zero coupon bond price for maturity n and given regime st = i, Pnt (st = i) equals

Pnt = exp
(
An +B′nXt

)
. (39)

An is a scalar that is independent of current regime and Bn is N × 1 vector with N the
total number of state variables. In this model the coefficients An and Bn are recursively
given by

An = −δ0 +An−1 +B′n−1,f (νf − Σ
1
2
f λ0,f ) +

1

2
B′n−1,fΣfBn−1,f

Bn =

[
Bn,f
Bn,x

]
=

[
−δ1,f + (Φf − Σ

1
2
f Λ1,f )′Bn−1,f

0

]
(40)

The starting vales for An and Bn are

A1 = −δ0,

B1 = −δ1.
(41)

Proof.
In order to derive closed form solutions I need to assume that the auto-regressive coeffi-
cients and Bn are constant across regimes. To show this, I start my proof with switching
notation for these coefficients. It then follows later in the proof that these coefficients need
to be restricted to derive a closed form solution. From this derivation it will also follow
that Φx must be restricted to non-switching.
The proof starts by deriving the initial values of An(i) and Bn(i). The price of a zero
coupon bond with maturity n can according to asset pricing theory be written as

Pnt = Et
[
Mt+1P

n−1
t+1

]
. (42)

When generalised to the Markov switching case, the price of a one period bond with pay
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off one is equal to

P 1
t (i) =

∑
j

pij Et [Mt+1|St+1 = j] ,

=
∑
j

pij Et

[
exp

(
−δ0 − δ′1Xt −

1

2
λ′t(j)λt(j)− λ′t(j)ut+1

)]
,

=
∑
j

pij exp

(
−δ0 − δ′1Xt −

1

2
λ′t(j)λt(j) +

1

2
λ′t(j)λt(j)

)
,

=
∑
j

pij exp
(
−δ0 − δ′1Xt

)
,

= exp
(
−δ0 − δ′1Xt

)
.

From Equations E.1 it follows that the bond price in Equation 39 holds for the one-period
bond, where the starting values are

A1(i) = −δ0,

B1(i) = −δ1.
(43)

The proof of the recursion of Equation 40 follows by induction. If I assume that Equation
39 holds for maturity n, then the price of a n+ 1 period bond, Pn+1

t (i), is given by

Pn+1
t (i) =

∑
j

pij Et
[
Mt+1P

n
t+1(j)|St+1 = j

]
,

=
∑
j

pij Et

[
exp

(
−δ0 − δ′1Xt −

1

2
λ′t(j)λt(j)− λ′t(j)ut+1 +An(j) +B′n(j)Xt+1

)]
,

=
∑
j

pij Et

[
exp

(
− δ0 − δ′1Xt −

1

2
λ′t(j)λt(j)− λ′t(j)ut+1 +An(j)+

B′n(j)
(
ν(j) + Φ(j)Xt + Σ

1
2 (j)ut+1

))]
,

=
∑
j

pij Et

[
exp

(
− δ0 − δ′1Xt −

1

2
λ′t(j)λt(j) +An(j) +B′n(j)ν(j)+

B′n(j)Φ(j)Xt +
(
B′n(j)Σ

1
2 (j)− λ′t(j)

)
ut+1

)]
,

=
∑
j

pij exp

(
− δ0 − δ′1Xt −

1

2
λ′t(j)λt(j) +An(j) +B′n(j)ν(j)+

B′n(j)Φ(j)Xt +
1

2

(
B′n(j)Σ(j)− λ′t(j)

) (
B′n(j)Σ

1
2 (j)− λ′t(j)

)′)
,

=
∑
j

pij exp

(
− δ0 − δ′1Xt +An(j) +B′n(j)ν(j) +B′n(j)Φ(j)Xt+

1

2
B′n(j)Σ(j)Bn(j)−B′n(j)Σ

1
2 (j)λt(j)

)
,
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=
∑
j

pij exp

(
− δ0 − δ′1Xt +An(j) +B′n(j)ν(j) +B′n(j)Φ(j)Xt+

1

2
B′n(j)Σ(j)Bn(j)−B′n(j)Σ

1
2 (j) (λ0(j) + Λ1(j)Xt)

)
,

=
∑
j

pij exp

(
− δ0 − δ′1Xt +An(j) +B′n(j)ν(j) +B′n(j)Φ(j)Xt+

1

2
B′n(j)Σ(j)Bn(j)−B′n(j)Σ

1
2 (j)λ0(j)−B′n(j)Σ

1
2 (j)Λ1(j)Xt

)
,

The nominal interest rates are independent of the state variables xt, which also means
that Bn,x = 0 ∀ n. For Equation 39 to hold, the expression derived above should be

written in the form exp
(
An+1(j) + Bn+1(j)Xt

)
. In the above expression therefore all

terms without Xt will determine An+1 and all terms with Xt determine Bn+1. To show
that Bn,x = 0 ∀ n, I will split all terms concerning Bn+1 into a part corresponding to
ft and a part corresponding to xt. It will then become evident that if B1,x = 0, this will
be the case for all n.
From the model specification it is clear that

−δ′1Xt = −
[
δ1,f

0

]
Xt.

Thus from this term Bn+1,x can never achieve any other value than 0. Moreover, the term
B′n(j)Φ(j)Xt can be written as

B′n(j)Φ(j)Xt =

[
Bn,f
Bn,x

]′ [
Φf 0
0 Φx

] [
ft
xt

]
,

=

[
B′n,fΦf

B′n,xΦx

] [
ft
xt

]
.

If B1,x = 0, then of course B′n,xΦx = 0, which makes it clear that from this term Bn+1,x

again can never achieve any other value than 0.
For the final term containing Xt

B′n(j)Σ
1
2 (j)Λ1(j)Xt =

[
Bn,f
Bn,x

]′ Σ
1
2
f 0

0 Σ
1
2
x (j)

[Λ1,f 0
0 Λ1,x(j)

] [
ft
xt

]
,

=

 B′n,fΣ
1
2
f Λ1,f

B′n,xΣ
1
2
x (j)Λ1,x(j)

[ft
xt

]
,

it again holds that Bn+1,x = 0 for all n. This greatly simplifies the last expression in the
previous derivation to

Pn+1
t (i) =

∑
j

pij exp

(
− δ0 − δ′1,fft +An(j) +B′n,fνf +B′n,fΦfft+

1

2
B′n,fΣfBn,f −B′n,fΣ

1
2
f λ0,f −B′n,fΣ

1
2
f Λ1,fft

)
.
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To attain expressions for An+1 and Bn+1, the above expression must be split in an intercept
part without ft terms and a part with ft.

Pn+1
t (i) = exp

(
− δ0 − δ′1,fft +B′n,fνf +B′n,fΦfft +

1

2
B′n,fΣfBn,f

−B′n,fΣ
1
2
f λ0,f −B′n,fΣ

1
2
f Λ1,fft

)∑
j

pij exp (An(j)) .

With the above expression and knowing that A1 = −δ0 is not regime dependent, we now
know that An+1 is also not dependent on the regime. This leaves us with the recursive
expressions

An = −δ0 +An−1 +B′n−1,f (νf − Σ
1
2
f λ0,f ) +

1

2
B′n−1,fΣfBn−1,f ,

Bn =

[
Bn,f
Bn,x

]
=

[
−δ1,f + (Φf − Σ

1
2
f Λ1,f )′Bn−1,f

0

]
.

E.2 Real Term Structure

Proposition E.2. Let Xt be the state variables of the economy as defined in Equation 3
and let ν(j), Φ and Σ

1
2 (j) be the model parameters defined in Equations 4 and 5 for regime

j. The regimes follow a Markov chain with transition probability matrix Π with on row i
and column j the probability of switching from regime i to regime j, noted by pij. With
the real pricing kernel defined as in Equation 17 and the prices of risk as in Equation 11,
the price of a zero coupon inflation linked bond for maturity n and given regime st = i,
Pnt (st = i) equals

P̂nt (i) = exp
(
Ân(i) + B̂′nXt

)
. (44)

Ân is a scalar that depends on the current regime and B̂n is N × 1 vector with N the total
number of state variables. In this model the coefficients Ân and B̂n are recursively given
by

Ân+1(i) = −δ0 − B̂′n,fΣ
1
2
f λ0,f + log

(∑
j

pij exp

(
Ân(j) +

(
B̂′n + e′π

)
ν(j)+

1

2

(
B̂′n + e′π

)
Σ(j)

(
B̂′n + e′π

)′))
,

B̂n+1 = −δ1 + Φ′
(
B̂n + eπ

)
− e′fΛ′1,fΣ

1
2
f B̂n,f .

(45)

In this formulation the matrix ef transforms the 3 × 1 vector Λ′1,fΣ
1
2
f B̂n,f into a 6 × 1

vector equal to [Λ′1,fΣ
1
2
f B̂n,f 0]′. The vectors eπ and eπ,x are unit vectors with a one on
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the index of inflation in respectively the full state variable vector Xt and the MSVAR state
variables xt. The starting values for this recursion are equal to

Â1(i) = −δ0 + log
∑
j

pij exp

(
e′πν(j) +

1

2
e′πΣ(j)eπ

)
,

B̂1 = −δ1 + Φ′eπ.

(46)

Proof.
The proof starts by deriving the initial values of Ân(i) and B̂n(i). The price of a zero
coupon inflation linked bond with maturity n, P̂nt , can according to asset pricing theory
be written as

P̂nt = Et

[
Mt+1P̂

n−1
t+1

]
.

When generalised to the Markov switching case, the price of a one period inflation linked
bond with pay off exp(πt+1) is equal to

P̂ 1
t (i) =

∑
j

pij Et [Mt+1 exp(πt+1)|St+1 = j] ,

=
∑
j

pij Et [exp (mt+1 + πt+1) |St+1 = j] ,

=
∑
j

pij Et

[
exp

(
−δ0 − δ′1Xt −

1

2
λ′t(j)λt(j)− λ′t(j)ut+1 + e′πXt+1

)]
,

=
∑
j

pij Et

[
exp

(
−δ0 − δ′1Xt −

1

2
λ′t(j)λt(j)− λ′t(j)ut+1 + e′π

(
ν(j) + ΦXt + Σ

1
2 (j)ut+1

))]
,

=
∑
j

pij Et

[
exp

(
− δ0 − δ′1Xt −

1

2
λ′t(j)λt(j) + e′πν(j) + e′πΦXt +

(
e′πΣ

1
2 (j)− λ′t(j)

)
ut+1

)]
,

=
∑
j

pij Et

[
exp

(
− δ0 − δ′1Xt −

1

2
λ′t(j)λt(j) + e′πν(j) + e′πΦXt+

1

2

(
e′πΣ

1
2 (j)− λ′t(j)

)(
e′πΣ

1
2 (j)− λ′t(j)

)′)]
,

= exp
(
−δ0 − δ′1Xt + e′πΦXt

)∑
j

pij exp

(
e′πν(j) +

1

2
e′πΣ(j)eπ − e′πΣ

1
2 (j)λt(j)

)
.

The price of risk for inflation is assumed to be equal to zero in the model:

e′πΣ
1
2 (j)λt(j) = 0.

Leaving us with the expression

P̂ 1
t (i) = exp

(
−δ0 − δ′1Xt + e′πΦXt

)∑
j

pij exp

(
e′πν(j) +

1

2
e′πΣ(j)eπ

)
.
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It then follows that the bond price in Equation 44 holds for the one period bond, where
the starting values are

Â1(i) = −δ0 + log
∑
j

pij exp

(
e′πν(j) +

1

2
e′πΣ(j)eπ

)
,

B̂1 = −δ1 + Φ′eπ.

The proof of the recursion of Equation 19 follows by induction. If we assume that Equation
44 holds for maturity n than the price of a n+ 1 period bond, P̂n+1

t (i), is given by

P̂n+1
t (i) =

∑
j

pij Et

[
Mt+1P̂

n
t+1(j)|St+1 = j

]
. (47)

In an arbitrage free economy the price of an inflation linked bond issued at time t with
maturity n − 1 is equal to the price of an inflation linked bond issued next period with
the same maturity plus the inflation of the bond price over that period:31

P̂nt+1|t = exp(πt+1)P̂nt+1|t+1,

= exp(πt+1)exp
(
Ân(j) + B̂′nXt+1

)
,

= exp
(
e′πXt+1 + Ân(j) + B̂′nXt+1

)
.

(48)

Combining Equations 47 and 48 it follows that

P̂n+1
t (i) =

∑
j

pij Et

[
exp

(
−δ0 − δ′1Xt −

1

2
λ′t(j)λt(j)− λ′t(j)ut+1 + e′πXt+1 + Ân(j) + B̂′nXt+1

)]
,

=
∑
j

pij Et

[
exp

(
− δ0 − δ′1Xt −

1

2
λ′t(j)λt(j)− λ′t(j)ut+1 + Ân(j)+

(
B̂′n + e′π

)(
ν(j) + ΦXt + Σ

1
2 (j)ut+1

))]
,

=
∑
j

pij Et

[
exp

(
− δ0 − δ′1Xt −

1

2
λ′t(j)λt(j) + Ân(j) +

(
B̂′n + e′π

)
ν(j)+

(
B̂′n + e′π

)
ΦXt +

((
B̂′n + e′π

)
Σ

1
2 (j)− λ′t(j)

)
ut+1

)]
,

=
∑
j

pij exp

(
− δ0 − δ′1Xt −

1

2
λ′t(j)λt(j) + Ân(j) +

(
B̂′n + e′π

)
ν(j) +

(
B̂′n + e′π

)
ΦXt+

1

2

((
B̂′n + e′π

)
Σ

1
2 (j)− λ′t(j)

)((
B̂′n + e′π

)
Σ

1
2 (j)− λ′t(j)

)′)
,

=
∑
j

pij exp

(
− δ0 − δ′1Xt + Ân(j) +

(
B̂′n + e′π

)
ν(j) +

(
B̂′n + e′π

)
ΦXt+

1

2

(
B̂′n + e′π

)
Σ(j)

(
B̂n + eπ

)
−
(
B̂′n + e′π

)
Σ

1
2 (j)λt(j)

)
,

31See Hoevenaars (2008).
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=
∑
j

pij exp

(
− δ0 − δ′1Xt + Ân(j) +

(
B̂′n + e′π

)
ν(j) +

(
B̂′n + e′π

)
ΦXt+

1

2

(
B̂′n + e′π

)
Σ(j)

(
B̂n + eπ

)
−
(
B̂′n + e′π

)
Σ

1
2 (j)λ0(j)−

(
B̂′n + e′π

)
Σ

1
2 (j)Λ1(j)Xt

)
.

As the price of inflation risk is zero, the terms e′πΣ
1
2 (j)λ0(j) and e′πΣ

1
2 (j)Λ1(j) disappear.

P̂n+1
t (i) =

∑
j

pij exp

(
− δ0 − δ′1Xt + Ân(j) +

(
B̂′n + e′π

)
ν(j) +

(
B̂′n + e′π

)
ΦXt+

1

2

(
B̂′n + e′π

)
Σ(j)

(
B̂n + eπ

)
− B̂′nΣ

1
2 (j)λ0(j)− B̂′nΣ

1
2 (j)Λ1(j)Xt

)
.

By restricting the parameter in Φ corresponding to the lagged equity return and div-
idend yield to zero, B̂n will also be zero on the indices of equity and dividend. This
restriction allow the equity price of risk term in Λ1 to be different across regimes, while
maintaining closed form solutions for the real term structure. This restriction allows the
pricing Equation 6 to hold for all Xt for equity returns. This restriction already holds for
B̂1 = −δ1 + Φ′eπ. Whether it also holds for B̂n+1 is determined by the terms containing
a Xt term in the above expression. The first is −δ1, which does not change this fact. For

the second term
(
B̂′n + e′π

)
ΦXt it is less obvious:

(
B̂′n + e′π

)
ΦXt =


B̂n,f

B̂n,π + 1
0
0


′ 

Φf 0 0 0
0 φπ,π 0 0
0 φxs,π φxs,xs φxs,dy
0 φdy,π φdy,xs φdy,dy

Xt

=


Φf B̂n,f

(B̂n,π + 1)φπ,π
0
0


′

Xt.

The last term containing Xt is B̂′nΣ
1
2 (j)Λ1(j)Xt, which can be written as:

B̂′nΣ
1
2 (j)Λ1(j)Xt =

[
B̂n,f
B̂n,x

]′ Σ
1
2
f 0

0 Σ
1
2
x (j)

[Λ1,f 0
0 Λ1,x(j)

]
Xt.

If Bn,x is only non-zero on the index of inflation, then it follows by the fact that the

inflation risk premium is zero that B̂′n,xΣ
1
2
x (j)Λ1,x(j) = 0 ∀ j.

The restriction of the auto-regressive parameters of the inflation equation, φπ,xs = 0 and
φπ,dy = 0, ensure that the price of inflation linked bonds is independent of the price of
equity risk. This allows equity risk to be regime switching without loss of closed form
solutions, making the price of equity risk much more accurate.
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Using this information the inflation linked bond price can be expressed as:

P̂n+1
t (i) =

∑
j

pij exp

(
− δ0 − δ′1Xt + Ân(j) +

(
B̂′n + e′π

)
ν(j) +

(
B̂′n + e′π

)
ΦXt+

1

2

(
B̂′n + e′π

)
Σ(j)

(
B̂n + eπ

)
− B̂′n,fΣ

1
2
f λ0,f − B̂′n,fΣ

1
2
f Λ1,f efXt

)
= exp

(
− δ0 − δ′1Xt +

(
B̂′n + e′π

)
ΦXt − B̂′n,fΣ

1
2
f λ0,f − B̂′n,fΣ

1
2
f Λ1,f efXt

)
∑
j

pij exp

(
Ân(j) +

(
B̂′n + e′π

)
ν(j) +

1

2

(
B̂′n + e′π

)
Σ(j)

(
B̂n + eπ

))
.

In these equations ef is a matrix which transforms the vector Xt into ft. From this last
expression the recursive expression for the model parameters can be formulated:

Ân+1(i) = −δ0 − B̂′n,fΣ
1
2
f λ0,f + log

(∑
j

pij exp

(
Ân(j) +

(
B̂′n + e′π

)
ν(j)+

1

2

(
B̂′n + e′π

)
Σ(j)

(
B̂′n + e′π

)′))
,

B̂n+1 = −δ1 + Φ′
(
B̂n + eπ

)
− e′fΛ′1,fΣ

1
2
f B̂n,f .
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E.3 Bond Returns

Proposition E.3. Given the model parameters defined in Section 3 and the insights from
the proofs of the term structure equations, then the one period log return rnt on a n period
bond with price Pnt under the P measure is given by

rnt = δ0 + δ′1,fft︸ ︷︷ ︸
Risk Free Rate

+B′n−1,f

(
Σ

1
2
f λ0,f + Σ

1
2
f Λ1,fft

)
︸ ︷︷ ︸

Risk Premium

−1

2
B′n−1,fΣ

1
2
f Σ

1
2
f
′Bn−1,f︸ ︷︷ ︸

Convexity Adjustment

+B′n−1,fΣ
1
2
f uf,t︸ ︷︷ ︸

Stochastic Shock

.

(49)

Moreover, the one period return under the Q measure of this same bond, rQ,nt , is given by

rQnt = δ0 + δ′1,fft −
1

2
B′n−1,fΣ

1
2
f Σ

1
2
f
′Bn−1,f +B′n−1,fΣ

1
2
f uf,t. (50)

Proof.
For a n-period bond with price Pnt the one month log return rnt under the P measure is
given by

rnt = log

(
Pn−1
t+1

Pnt

)
= (An−1 +B′n−1Xt+1)− (An +B′nXt)

From the proofs of the affine term structure recursions in the previous appendix section,
we know that bond price only depends on the parameters of the interest rate factors ft
and not on the other state variables in xt.

rnt = (An−1 +B′n−1,fft+1)− (An +B′n,fft)

=

(
An−1 +B′n−1,f

(
νf + Φfft + Σ

1
2
f uf,t+1

))
−
(
An +B′n,fft

)
=

(
An−1 +B′n−1,f

(
νf + Φfft + Σ

1
2
f uf,t+1

))
−(

An−1 +B′n−1,f

(
νf − Σ

1
2
f λ1,f

)
+

1

2
B′n−1,fΣfΣ′fBn−1,f − δ0

)
−
(
B′n−1,f (Φf − Σ

1
2
f Λ1,f )− δ′1,f

)
ft

= δ0 + δ′1,fft +B′n−1,fνf +B′n−1,fΦfft +B′n−1,fΣ
1
2
f uf,t+1 −B′n−1,fνf

+B′n−1,fΣ
1
2
f λ0,f −

1

2
B′n−1,fΣ

1
2
f Σ

1
2
f
′Bn−1,f −B′n−1,fΦfft +B′n−1,fΣ

1
2
f Λ1,fft

= δ0 + δ′1,fft +B′n−1,f

(
Σ

1
2
f λ0,f + Σ

1
2
f Λ1,fft

)
− 1

2
B′n−1,fΣ

1
2
f Σ

1
2
f
′Bn−1,f +B′n−1,fΣ

1
2
f uf,t.
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By using the expectation of the lognormal distribution the expected bond return E[exp(rnt )]
is equal to

E[exp(rnt )] = E

[
exp

(
δ0 + δ′1,fft +B′n−1,f

(
Σ

1
2
f λ0,f + Σ

1
2
f Λ1,fft

)

− 1

2
B′n−1,fΣ

1
2
f Σ

1
2
f
′Bn−1,f +B′n−1,fΣ

1
2
f uf,t

)

= exp

(
δ0 + δ′1,fft +B′n−1,f

(
Σ

1
2
f λ0,f + Σ

1
2
f Λ1,fft

)

− 1

2
B′n−1,fΣ

1
2
f Σ

1
2
f
′Bn−1,f +

1

2
B′n−1,fΣ

1
2
f Σ

1
2
f
′Bn−1,f

)

= exp

(
δ0 + δ′1,fft +B′n−1,f

(
Σ

1
2
f λ0,f + Σ

1
2
f Λ1,fft

))

The expected return under the risk neutral measure Q is equal to

E[exp(rQ,nt )] = exp
(
δ0 + δ′1,fft

)
The risk neutral bond return can thus be calculated as

rQ,nt = rnt −B′n−1,f

(
Σ

1
2
f λ0,f + Σ

1
2
f Λ1,fft

)
= δ0 + δ′1,fft −

1

2
B′n−1,fΣ

1
2
f Σ

1
2
f
′Bn−1,f +B′n−1,fΣ

1
2
f uf,t
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