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Abstract

The lapse rate of the clients of AllSecur is predicted by three different
methodologies. The current method used by AllSecur is the Generalized
Linear Model and serves as benchmark. The two new methodologies are
survival analysis and machine learning. I select the best method by eval-
uating its predictive performance in an out-of-sample dataset. The best
survival analysis method is the Cox Proportional Hazards model with vari-
ables selected by a Lasso regression. The best machine learning method
is the Stochastic Gradient Boosting algorithm. I find that the Stochastic
Gradient Boosting algorithm outperforms the GLM and the Lasso regres-
sion, and that the GLM outperforms the Lasso regression.
Keywords: Survival Analysis; Machine Learning; Generalized Linear
Model; Prediction
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1 Introduction

Insurance companies receive premium paid by their clients and they pay out the
claims of their clients. Therefore, an insurance company must accurately assess
future risk in order to determine correct premium. The premium is determined
by many risk factors which must be modelled and for which forecasts have to
be made. One of these factors is the expected lifetime of a policy, which is
determined by the rate at which clients leave the client base, called the lapse
rate. The premium the clients have to pay consists of two parts, namely the
technical price and the commercial price. The technical price is the price of
the premium which must cover the claims of the client. The commercial price
is the price that is offered to the client. This price also covers all the other
expenses and potential profit of the company. The expected lifetime of a policy
is indirectly part of the commercial price, indirectly in the sense that a company
checks whether a change in the commercial price changes the expected lifetime
of the policies.

This research is conducted for the car insurance company AllSecur. The cur-
rent model used by AllSecur to make forecasts of the lapse rates is the Generalized
Linear Model (GLM), but it is unknown whether this method produces the best
forecasts. This research will focus on two different methodologies to forecast the
lapse rates, while the GLM method will serve as benchmark. The two other
methods in this research are: survival analysis and machine learning. For the
survival analysis two types of models are considered, namely the commonly used
Cox Proportional Hazards (CPH) model and the random effects version of the
CPH model, the so-called frailty model. The usefulness of one machine learning
concept is investigated, namely decision tree algorithms. The different decision
tree algorithms are a CART decision tree, a Random Forest (RF) and Stochastic
Gradient Boosting (SGB). The reason to use decision trees is twofold: 1) They
are relatively easy to implement 2) Fernández-Delgado et al. (2015) find that ran-
dom forests perform the best of a total of 179 classifiers. These machine learning
methods are often labelled as ‘off-the-shelf’ methods, since there is not much
data pre-processing nor manual tuning of the learning procedure needed. The
tuning that is needed is data-driven and therefore does not require a subjective
intervention of the researcher.

At the end of this research the following two questions are answered:

• What is the best method to forecast the lapse rates?

• Do ‘black-box’ methods, such as machine learning algorithms provide added
value over more interpretable econometric techniques?

I select the best method to forecast the lapse rates based on quantitative and qual-
itative measures. The first quantitative measure is the predictive performance of
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the method in an out-of-sample data set. The second quantitative measure is
the computational time of the fit of the model. If the forecast accuracy is only
slightly better for one of the machine learning algorithms, but the computation
time is significantly greater, it may desirable to choose the faster method. The
qualitative measure is the interpretability of the model and its predictions. Inter-
pretability is needed so we can determine the type of clients who are more likely
to lapse.

The contribution of this research for AllSecur is clear. AllSecur will have a
better forecasting method for the lapse rates or they know that their current
forecasting method is very hard to improve. If one of the two new methods
outperforms the old method, AllSecur has a better understanding about the
expected lifetime of a policy and a fairer price for the premium can be set. Besides
this practical contribution, this research also contributes to the academic world
in the sense that different methods are compared in terms of their forecasting
power.

Survival analysis is a tool not often used by statisticians (except for bio-
statisticians), but can provide useful insights in more financial problems. Also,
the added value of frailty models in terms of forecasting is further assessed. Ma-
chine learning may also be interesting for academics due the findings of e.g. Ish-
waran et al. (2008) who find that their machine learning algorithms outperform
the Cox regression in real and simulated data sets. Gepp and Kumar (2015)
on the other hand find that machine learning algorithms and survival models
had roughly the same predictive accuracy as discriminant analysis, but they also
find that these methods significantly outperform logistic regression for predict-
ing financial distress. Kattan (2003) finds that the Cox model produces better
or comparable predictions compared to several machine learning algorithms on
urological data sets. The literature learns us that the performance of each type
of modelling technique depends heavily on the problem at hand. This research
will provide information on the performance of the different methods for a new
problem, namely predicting lapse rates.

AllSecur makes a distinction between four different type of lapses: Afterthought,
AllSecur, Mid Term Cancellation (MTC) and Renewal lapse. I select the best
method by evaluating their performance on these type of lapses. The best meth-
ods of the two new methodologies are: the CPH model with variables selected
via the Lasso regression and the SGB algorithm. For all the different type of
lapses, the Survival Analysis model is outperformed by the benchmark model,
the GLM. The GLM on the other hand is outperformed by the SGB algorithm
for the MTC, Renewal and AllSecur lapse. For the Afterthought lapse, the results
are mixed. Since there are relatively few Afterthought lapses, I conclude that the
SGB algorithm outperforms the GLM. The SGB algorithm also outperforms the
Survival Analysis model.
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The data is described in detail in section 2. This section also defines the
different type of lapses. Section 3 explains the different methodologies: survival
analysis, machine learning and the GLM. Section 4 discusses the results and
section 5 concludes.

2 Data

This section discusses the data and how I construct different data sets from the
original data. The data is provided by AllSecur. The data consists of contracts
of clients who had a contract in 2014. In this period there are a total of 184,061
contracts and 47,539 lapses.

Survival data for survival analysis is of the form (y1, x1, δ1), . . . , (yn, xn, δn),
where yi denotes the survival time, xi is a vector of covariates and δi equals 1 if
the event of interest occurred for individual i and 0 if the event has not occurred.
In case δi = 0, the survival time is right-censored, i.e., the client has not lapsed.
The survival time is the number of days between the starting date of the contract
and the cancellation date if the person has lapsed. In the case the person did not
lapse, the censored survival time is 365 days. I refer to the data set constructed
from this set up as the overall data set.

There are 48 variables included in the analysis. The variables can be grouped
in four categories. The first group of variables are the individual characteristics.
Examples of this type of variable are age of driver, number of years without
a claim and mileage. The second type of variables are car specific variables.
This includes: age of car, listed price and motor specifications. The third set of
variables are determined based on the home address. For each contract holder,
information about the neighbourhood is present. Examples are: mode income,
average age and degree of urbanisation. The last type of variables are competition
variables. For every customer we know the premium he has to pay if he decides to
sign a contract with one of the competitors. Based on this information AllSecur
constructs several other variables, such as competitive indices and a ranking.
Appendix A shows a list of all different variables. For the regression models in
survival analysis, I covert a factor with k levels to k − 1 dummy variables. This
results in a total of 684 variables.

AllSecur makes a distinction between four different lapses.

1. Afterthought lapse: the client cancels the contract within 30 days after the
first contract is made;

2. Mid Term Cancellation (MTC) lapse: the client cancels the contract before
expiration, but after the first 30 days;
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3. Renewal lapse: the client lapses 30 days before or after the contract expires;

4. AllSecur lapse: AllSecur cancels the contract because the client defaults on
his payments.

Around the expiration date of the contract AllSecur sends a new proposal contract
to the client. This is a natural moment for client to think about changing from
insurance company. The new offered premium can be higher (due to a claim) or
lower (due to one extra claim free year) than the premium of the previous year.
In case of a Renewal lapse, there are three extra variables available, namely the
new offered premium, the absolute and relative difference between the old and
new premiums. Of these four lapses, the MTC and Renewal lapses are the most
interesting to accurately forecast since they account for approximately 64% and
19% of the lapses respectively.

I construct four other data sets corresponding to the four different type of
lapses. In each dataset, I only select the contracts which have exposure to that
particular type of lapse. The second contract of a client has for example no
exposure to the Afterthought lapse, since a lapse in the first 30 days after renewal
is defined as a Renewal lapse. I refer to these data sets as the Afterthought
(75,464), MTC (181,692), Renewal (143,674) and AllSecur (181,851) data set,
where the number in the parentheses represents the number of observations in
each data set.

3 Methodology

3.1 Survival Analysis

Survival analysis is a method to analyse the expected duration until the event
of interest happens and to describe the effects of variables on the survival time.
Here, the event of interest is the moment a customer cancels his contract with
AllSecur.

I start with introducing some concepts of survival analysis. The survival
function S(t) is defined as follows: let T denote the time until the event of
interest happens and let it be a continuous random variable with cumulative
distribution F (t) on interval [0,∞), then

S(t) = P ({T > t}) =

∫ ∞
t

f(u) du = 1− F (t), (1)

which is a monotonically decreasing function. The survival function captures the
probability that the event of interest has not yet happened beyond a specified
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point in time. The lapse rate at time t is thus given by 1− S(t). Closely related
to the the survival function is the hazard rate h(t) and is defined as:

h(t) = lim
∆t→0

S(t)− S(t+ ∆t)

∆t
, (2)

which is interpreted as the probability that the subject experiences the event
within a small time frame, given that this subject has survived until the beginning
of that time frame. A more intuitively interpretation is that the hazard rate
represents the negative tangent of S(t). Furthermore, the hazard function and
the survival function are related in the following way

S(t) = exp{−
∫ t

0

h(u)du} = exp{−H(t)}, (3)

where H(t) =
∫ t

0
h(u)du denotes the cumulative hazard function.

This section about survival analysis is build up in the following manner. Sec-
tion 3.1.1 introduces the Cox Proportional Hazards (CPH) model, the most com-
monly used model in survival analysis. Section 3.1.2 extends the CPH model by
considering the random effects variant of the CPH model, the so-called frailty
models.

3.1.1 Cox Proportional Hazards Model

The CPH model models the hazard rate h(t) and consists of two parts. 1) The
baseline hazard function h0(t), which is the risk of experiencing the event of
interest for a baseline level of covariates and 2) parameter effects, which describes
how the hazard is varied due to the covariates.

The CPH model, introduced by Cox (1972), is given by

h(t) = h0(t) ∗ exp{x′β}, (4)

where β is a vector of coefficients and x is a vector containing the p covariates.
Suppose that the uncensored event times are given by 0 < t1 < · · · < tm, the
coefficients of the CPH model are estimated by maximizing the partial likelihood,
which is given by

L(β) =
m∏
j=1

exp{x′i(j)β}∑
i∈Rj exp{x′iβ}

, (5)

where Ri denotes the risk set (i.e. the individuals which have not experienced
the event of interest at time ti). The partial likelihood is based only on the order
in which the events of interest occur instead of the actual times at which the
events occur (Cox (1975)). This parameter estimation method has the advantage
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that it does not require a pre-specified functional form for h0(t), since it cancels
in the numerator and denominator in the derivation of the partial likelihood of
equation (5).

The cancellation of h0(t) is a strong advantage of the CPH model. Other
survival analysis models often need to assume a distribution for h0(t), the Weibull
distribution for example. This is also the reason to choose the CPH model and
not the other very popular survival analysis model, the Accelerated Failure Time
(AFT) model. It is out of the scope of this paper to discuss this model in
detail, but an important assumption that has to be made in this model is that
an assumption has to be made about the distribution of the survival time. In
other words, the AFT model is a fully parametric model, while I prefer the
semiparametric CPH model.

Note that the partial likelihood of equation (6) is the partial likelihood when
there are no ties in the survival times, i.e. no multiple events of interest at a
specific time point. If there are tied event times, the true partial (log) likelihood
becomes very time-consuming to compute. There are tied event times present
in all the data sets considered in this research and therefore I use the Breslow
approximation (Breslow (1974)) of the partial likelihood. Suppose that there are
dj tied survival times at the jth survival time and that Dj denotes the event set
at the jth distinct survival time. The Breslow approximation is then given by

L(β) ≈
m∏
j=1

exp{
∑

l∈Dj x
′
lβ}

[
∑

l∈Rj exp{x′lβ}]dj
. (6)

There are two key assumptions that have to be satisfied in order to make a
CPH model that makes statistical sense. The first assumption is that the censor-
ing is non-informative. Non-informative censoring occurs when the distribution
of censorship times is not influenced by the distribution of survival times. The
violation of this assumptions is often a problem in medical studies which have
a long time span, as Hakulinen (1982) points out, since ageing people are more
likely to die due to other causes than the cause researched in a study. There can
be other causes for informative censoring, but there is no clear indication that
informative censoring occurs for problem researched in this paper.

The second key assumption is that the covariates meet the PH assumption.
The PH assumption means that the survival functions of different individuals are
proportional over time. This means that the hazard ratios for individual i and j
are independent with respect to time ∀i, j and for every covariate. Assume there
is only one covariate, the hazard ratio between individual i and j is then

hi(t)

hj(t)
=
h0(t)exp{x1iβ1}
h0(t)exp{x1jβ1}

= exp{(x1i − x1j)β1}, (7)
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which is independent with respect to time. Now assume that there is a second
covariate, which is a time-dependent version of the first covariate, i.e., x2i(t) =
g(t)x1i, where g(t) is some time-dependent function. The hazard ratio is now

hi(t)

hj(t)
=
h0(t)exp{x1iβ1 + x2iβ2}
h0(t)exp{x1jβ1 + x2jβ2}

= exp{(x1i − x1j)β1 + g(t)(x1i − x1j)β2}, (8)

which is not independent with respect to time due to the presence of g(t). Equa-
tion (8) can be used to test whether the PH assumption holds for a specific
covariate. The test tests whether β2 = 0. When β2 = 0 the PH assumption holds
and when β2 6= 0 the hazards are not proportional.

The inclusion of the time dependent covariate in equation (8) alters the es-
timation method slightly. The Breslow approximation of the partial likelihood
(equation (6)) is still maximized, but the values for the covariates can now change
each time the risk set Ri changes. Equation (8) is both the test and the solution
for non proportional hazards. If a certain covariate violates the PH assump-
tion, the time-dependency can be added to the model in order to ensure that
the PH assumption holds. The only remaining issue is the functional form of
g(t). To avoid numerical problems, often g(t) = ln(t) is assumed (e.g. Quantin
et al. (1996)). This is however only a technical solution and has no theoretical
foundation.

3.1.2 Frailty Model

The CPH model is based on the assumption that the survival data is independent
and that the survival times of all the individuals come from the same distribution.
This assumption can be restated as the assumption that the subjects in the data
set are homogeneous. However, this assumption may be unrealistic if we look in
the longitudinal direction. In bad economic times, people are more inclined to
search for a cheaper insurance compared to when the economic climate is good.
Therefore, one can expect more lapses during a bad state of the economy and less
during a good state of the economy. Another example is that after an effective
marketing campaign people are more inclined to remain with AllSecur. There
are many other possible explanations for heterogeneity over time, a new budget
competitor entered the market or there was really good or really bad publicity in
a particular period, etc.

Vaupel et al. (1979) suggest to use a random effects model for durations, which
they named the (univariate) frailty model, to counter the problem of heterogene-
ity in a population where the heterogeneity cannot be captured by a covariate.
The idea is that different subjects in the data set are more ‘frail’ tent to encounter
the event of interest earlier than those who are less ‘frail’. In this model the haz-
ard rate is conditional on the random effect Z, which is called the frailty. Let
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Z be an unobservable non-negative random variable which has a multiplicative
effect on the baseline hazard function h0(t), i.e.,

hi(t, Zi) = Zi ∗ h0(t), (9)

Zi is thus a scaling variable for subject i of the baseline hazard function. The CPH
model of equation (4) can be extended to a Cox frailty model in the following
manner

hi(t|Zi) = Zi ∗ h0(t) ∗ exp{x′iβ}, (10)

this model is thus a generalization of the CPH. Consequently, the conditional
survival function can be found in the same manner as in equation (3)

Si(t|Zi) = exp{−ZiHi(t)}, (11)

where Hi(t) denotes the cumulative hazard function at time t for individual i.
Note that Hi(t) =

∫ t
0
hi(u)du =

∫ t
0
h0(u)exp{x′iβ}du = exp{x′iβ}

∫ t
0
h0(u)du =

exp{x′iβ}H0(t). To make the notation clearer, denote exp{x′iβ} as κ.
The conditional survival function describes the model at the individual level,

however models at the individual level are not observable. Therefore, the model
at the population level must be considered. To find the unconditional survival
function, the frailty term must be integrated out the conditional survival function,

S(t) =

∫ ∞
0

S(t|z)g(z)dz, (12)

where g(z) denotes the frailty distribution. To find the solution of equation (12),
the Laplace transform can be used. Let L(s) denote the Laplace transform for
variable s, then the Laplace transform is given by

L(s) =

∫ ∞
0

exp{sx}f(x)dx. (13)

If one thinks of f(x) as the frailty distribution g(z) and s as the κH0(t), the
following expression is obtained

S(t) =

∫ ∞
0

exp{κH0(t)z}g(z)dz = L(κH0(t)) (14)

which is the same as plugging equation (11) into equation (12). This useful rela-
tionship was first exploited by Hougaard (1984) and Hougaard (1986). Because
of this relationship, a distribution for Z is chosen for which an explicit Laplace
transform exists.

The distribution that is most used as frailty distribution is the Gamma dis-
tribution (Clayton (1978)). The popularity of the Gamma distribution is due
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to a couple of, purely mathematical, reasons. First of all, the frailty term Z
must be non-negative, otherwise the hazard rate becomes negative (see equation
(10)) and the survival function is not a monotonically decreasing function. The
Gamma (along the Log-Normal) distribution is one of the most commonly used
distributions to model non-negative variables. Second, if we assume a Gamma
distribution with shape parameter k for the frailty term, the frailty term for the
survivors is also gamma distributed with shape parameter k, implying that the
hazard ratio is independent of time. Third, the Gamma distribution has easy
derivatives of the Laplace transform.

The Gamma distribution has two parameters, the shape parameter k and
the scale parameter θ. For identification issues, it makes sense to restrict the
parameters as follows k = θ, so Z∼Ga( 1

k
, 1
k
). It then follows that E[Z] = 1, which

makes sense since this way there is no bias in the hazard function due to the
frailty. For this distribution, the Laplace transform to find the unconditional
survival function is given by

S(t) = L(κH0(t)) = (1 + kκH0(t))−
1
k . (15)

There are other distributions that can be used as frailty distribution with
easy derivatives of the Laplace transform. I will give an overview of distributions
which are used the most in the literature. One of them is the Log-normal distribu-
tion, but this distribution is mostly used in modelling multivariate frailty models
(McGilchrist and Aisbett (1991)). The compound Poisson distribution can also
be used. The reason to not use this distribution is that it yields a subgroup which
will never experience the event of interest (Aalen (1992)). There are three other
type of distributions that are often used as frailty distribution and can be useful
to consider: the inverse Gaussian, a positive stable or a power variance function
distributions. However, the Gamma distribution is used because it is the most
commonly used frailty distribution in the literature.

3.2 Variable Selection

To apply the survival analysis methods of section 3.1 a number of covariates from
the data set must be chosen to include in the survival models. I use two variable
selection procedures. In section 3.2.1 I describe the commonly used stepwise
regression and in section 3.2.2 I describe how penalized models can be used for
variable selection.

3.2.1 Forward Selection

A common used method for variable selection is stepwise regression based on a
statistical metric such as an information criteria or on the R2. To estimate the
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survival analysis models I use a forward stepwise regression procedure based on
the Bayesian Information Criterion (BIC) of Schwarz (1978).

The BIC is defined as

BIC = −2ln(L̂) + pln(n), (16)

where L̂ denotes the estimated likelihood, p the number of parameters and n the
number of observations in the model. Adding parameters to a model increases
the likelihood of the model, but also increases the chances of overfitting resulting
in poor predictive performance. To reduce the chance of overfitting, the BIC
adds a penalty factor which penalizes the number of parameters included in the
model.

The forward stepwise regression procedure is an iterative procedure. To ini-
tialize the procedure, one starts with an empty base model (p = 0). In each
iteration one of the p variables is added to the base model and the BIC is com-
puted. The variable is then deleted from the model and another variable is added.
For this model the BIC is again computed. The deletion and addition of variables
in the model is repeated until all p variables are included once in the model. The
model with the lowest BIC is chosen as base model for the next iteration. In
the next iteration, repeat the addition and deletion of the remaining p− 1 vari-
ables to the base model (p = 1). This procedure is repeated until all p variables
are included in the model or until an extra variable does not provide any added
value. Sometimes the procedure must be stopped earlier, namely if p exceeds n.
However, this is not a problem in this research, see section 2.

This approach to select the variables to include in the model is intuitive
and relatively easy to implement. However, there is ample evidence that forward
selection methods leads to biased parameter estimates and problems with multiple
hypothesis testing (see for example Wilkinson (1979), McIntyre et al. (1983) and
Huberty (1989)). Another disadvantage of this variable selection method is that
this simple method leads to an over simplified model of the real model of the
data.

3.2.2 Penalized Models

The forward variable selection procedure of the previous subsection is commonly
applied due to its simplicity, but also has some serious drawbacks as already
mentioned. Luckily, there are alternatives such as penalized regression models.

Penalized regression models add a penalty term to a cost function. Suppose
that C(β|x) denotes the cost function (e.g. residual sum of squares) for estimated
parameters β. The objective function then becomes

min{C(β|x) + λP (β)}, (17)

10



where P (β) is the penalizing function and λ determines the size of the trade-
off between the cost function and the penalizing function. If P (β) = 2 ‖β‖1 =
2
∑p

j=1 |βj| is chosen, we end up with the Lasso regression (see Tibshirani (1996)
for linear regressions and Tibshirani (1997) for time-to-event data). If P (β) =
‖β‖2

2 =
∑p

j=1 β
2
j is chosen, we end up with the Ridge regression. These two re-

gressions can be combined, i.e. include both penalizing functions in the objective
function, to form the Elastic Net regression (Zou and Hastie (2005)). The Elastic
Net is characterized by the minimization of the following objective function

min{C(β|x) + λ[
1− α

2
‖β‖2

2 + α ‖β‖1]}, (18)

where α is a mixing parameter determining to what extend the regression is a
Lasso or a Ridge regression. For α equal to 1, the regression is the Lasso regression
and as α approaches 0, the regression becomes the Ridge regression.

I use the Lasso regression as a method for variable selection. To see how the
Lasso regression applies variable selection, consider the follow example. Suppose
we have the cost function of the linear model, i.e., C(β|x) = (y − βx)T (y − βx)
and the Lasso penalizing function P (β) = 2 ‖β‖1. Equation (17) then becomes:

min{yTy − 2yT β̂x + xT β̂β̂x + 2λ|β̂|}. If we assume β̂ > 0, the solution to this

minimization function is β̂ = yT x−λ
xT x

. If we apply a relatively small value for λ,

i.e. 0 ≤ λ < yTx, β̂, is set to a non zero value. However, if we increase λ to
yTx it is clear that β̂ goes to zero. Setting λ to a value greater than yTx does
not make β̂ negative, because the solution to the minimazation function now

changes to β̂ = yT x+λ
xT x

. The flip in sign before λ is due to the absolute value in
the Lasso penalizing function. So if we set λ to a value greater than yTx, there
is an increase in both P (β̂) and C(β̂|x), which can not be the optimal solution
for the minimization function. Therefore, β̂ will not become negative, but equal
to 0. The same line of reasoning holds when we assume β̂ < 0.

The ridge regression is unable to set the coefficients equal to zero due to the
penalizing function P (β) = ‖β‖2

2. If we use this penalizing function together
with the cost function of the linear model in equation (17), we end up with:
min{yTy − 2yTxβ̂ + β̂TxTxβ̂ + ‖β̂‖2

2. The solution this minimization function is

β̂ = yT x
xT x+λ

. From this follows that adjusting λ is not able to set β̂ equal to zero.

However, it is only able to shrink β̂ to zero as λ increases.
The cost function for the CPH of section 3.1.1 is the negative partial likelihood

divided by the number of observations. The purpose of the penalized models in
this research is only variable selection. Since the Ridge regression is unable to
set the coefficients to zero, this regression is not suitable as a variable selection
procedure. On the other hand, Lasso automatically applies parameter shrinkage
and variable selection. Therefore, α is set 1 in equation (18).
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Although the Lasso regression is a powerful method for variable selection, it
also has its drawbacks. If there are more covariates (p) than samples (n), the
Lasso regression is only able to set at most n covariates equal to a non-zero
value. However, in this paper this is not an issue. Another disadvantage is that
the Lasso regression does not utilize any correlation between the covariates and
is in general inconsistent for variable selection.

To see why the Lasso regression is in general inconsistent, suppose we have p
covariates of which p0 are relevant. Furthermore, define a positive definite matrix
M as 1

n
XTX, where n is the number of observations in the design matrix X. We

can break M down to:

M =

[
Q11 Q12

Q21 Q22

]
,

where Q11 consists of the p0 relevant predictors. The necessary condition for
the Lasso regression to be consistent is: There must be a sign vector s =
(s1, . . . , sp0)

Tx, sj = 1 or −1, such that |Q21Q
−1
11 s| ≤ 1. (See Zou (2006) for

more details.)
If the variable selection is inconsistent, it is then advisable to use the adaptive

Lasso of Zou (2006). He suggests to adjust the penalizing function to counter
this inconsistency problem. The penalizing function P (β) =

∑p
j=1 |βj| is changed

to P (β) =
∑p

j=1 ŵj|βj|, where ŵj is defined as 1

|β̂j |γ
, with γ > 0 and β̂j is a

√
n

consistent estimator, such as the estimators resulting from a Ridge regression.
It is also shown that the adaptive Lasso enjoys the oracle properties, i.e., it is
consistent in variable selection and satisfies asymptotic normality. To estimate
the adaptive Lasso, I use two steps. First I estimate a Ridge regression, i.e., I set
α equal to 0 in equation (18). The resulting estimated parameter β̂j is then used
to determine the weight ŵj = 1

|β̂j |
. I set γ equal to one since this value is often

chosen in the literature (e.g. Ivanoff et al. (2016)). In the final step, I estimate a
Lasso regression with the altered penalizing function as described above.

The prediction error of the penalized models are estimated using k-fold cross-
validation. The prediction error is then used to determine the correct value for
the tuning parameter (λ for penalizing regressions). Cross-validation is a method
to counter problem such as overfitting and is mostly used when forecasting is the
goal of the researcher.

The procedure for k cross-validation for penalized models is as follows:

1. Create k random equal sized subsets of the data.

2. Pick one of the k subsets as test set and the remaining k − 1 subsets as
training set.
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3. Calculate the deviance.

4. Repeat step 2 and 3 k times where each time another subset is the test set.

5. Repeat step 2, 3 and 4 with a different value for the tuning parameter λ.

The deviance that is calculated in step 3 is equal to minus two times the log
partial likelihood ratio for the survival analysis models (Cox and Snell (1989)).

By using different values for λ the optimal value for λ and number of nonzero
coefficients can be determined. One way to do this is to chose the model with
the lowest deviance. However, this can result in a model with many covariates
which is prone to overfitting. Therefore, I use the one standard error rule. This
means that the chosen model is the most parsimonious model whose deviance
is no more than one standard deviation larger than the overall lowest deviance.
The intuition behind this rule is that this model is not significantly worse than
the model with the lowest deviance. Also, in general people prefer parsimonious
models, because these models are easier to interpret. This rule is recommended
by Breiman et al. (1984) and they show that it is a successful rule in screening
out noise variables.

3.3 Machine Learning

Decision tree learning uses a decision tree to model the data and ultimately
predict the value of a target variable based on prediction variables. A decision
tree is a tree in which each leaf node (i.e. final node on the tree) contains the value
of the target variable. All the internal nodes (i.e. non-leaf nodes) are labelled
with one of the predictors. At each node, the path to the node one layer lower
in the tree is determined based on the value of the predictor. This procedure
is repeated from the top of the tree until the leaf node is reached. The target
variable is a Boolean variable indicating whether the client has or has not lapsed.
This means that the mean score at each leaf node is the percentage of clients that
did lapse.

Section 3.3.1 discusses the CART algorithm. This algorithm constructs a
single tree, while the ensemble methods of sections 3.3.2 and 3.3.3 construct
multiple decision trees. The ensemble methods are Random Forest (RF) and
Stochastic Gradient Boosting (SGB) respectively.

3.3.1 CART

This section discusses the decision tree technique CART (Classification And Re-
gression Tree), introduced by Breiman et al. (1984). CART uses the Gini impurity
measure to determine how the splits are made. Gini impurity measures how often
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a randomly chosen observation would be incorrectly labelled if it was randomly
labelled following the distribution of the labels in the training set. Denote p(j|t)
as the probability that an observation in node t belongs to class j, j ∈ {0,m},
the Gini impurity is then given by i(t) = 1−

∑m
j=0 p

2(j|t). Denote pL and pR as
the fraction of observations in the left and right node respectively. CART selects
the splits that maximizes the decrease in impurity i(t)− pLi(tl)− pRi(tR) at each
node, this is an example of a greedy algorithm, i.e., it makes the locally optimal
decision. The procedure is stopped when there are less than the minimum num-
ber of observations required in a node. Another strategy is to construct every
potential tree possible based on the set of covariates available and then choose
the tree that minimizes the cost function. This tree would find the absolute
minimum of the cost function, while a greedy algorithm can get stuck in a local
minimum. However, if the set of covariates is large, a greedy algorithm is a lot
faster. For this reason, I choose to use the greedy CART algorithm.

The resulting tree is possibly quite large and not really interpretable. Fur-
thermore, a large tree is prone to overfitting and leads to inaccurate predictions.
To counter these problems, I use pruning to decrease the size of the tree and the
probability of overfitting. Pruning only removes the sections of the decision tree
that hardly provide additional information. This reduces the chance of overfitting
and also makes the tree more interpretable. Denote C(T ) as the cost of tree T ,
the cost for complexity parameter α is then given by

Cα(T ) = C(T ) + α|T |, (19)

where |T | denotes the number of leaf nodes. The complexity parameter α is
estimated using k-fold cross validation.

3.3.2 Random Forest

To understand the RF (Breiman (2001)) algorithm, two other techniques must be
understood. The first one is the bootstrap method. The bootstrap is a method
to estimate a quantity (e.g. the mean) of a data sample. The bootstrap method
randomly selects different sub-samples with replacement, i.e., each observation
in the data set can be present in multiple sub-samples. The quantity of interest
is then estimated for each sub-sample. Suppose that we use B sub-samples, we
can then estimate the quantity of interest B times. These B estimates represent
the empirical distribution of the quantity of interest and estimates for e.g. the
standard errors can be made.

The second technique is bagging. Bagging is the application of the bootstrap
method applied to high-variance machine learning algorithms. Bagging uses mul-
tiple machine learning algorithms in order to improve the accuracy and stability

14



of the individual algorithms. Furthermore, it reduces variance and the proba-
bility of overfitting. The CART algorithm for example has a high variance due
to the fact that it depends heavily on the training set that is used. A couple
of extra outliers in the training sample can change the whole tree. The bagging
procedure applied to the CART algorithm is as follows:

1. Create B sub-samples;

2. Fit a CART tree on each different sub-sample to obtain the ensemble of
trees {CARTb}B1 ;

3. Use each individual tree to make a prediction;

4. The final prediction is obtained by taking the average prediction (for regres-
sion trees) or to take the value that is predicted the most (for classification
trees).

By using many different trees, the effects of outliers will be averaged out and
hence, the predictions are less volatile than the predictions of a single CART
tree.

Now we can turn to the RF algorithm. RF is a modification of the bagging
technique applied to decision trees. In this research I will use the CART de-
cision tree in the RF algorithm. The difference between RF and bagging lies
in the amount of different models that are fitted. Bagging uses the same model
throughout for each bootstrap sample, but random forests constructs many differ-
ent models. In fact, a random forest constructs another model for each bootstrap
sample. The difference between the models is which covariates are included in
the model. Suppose there are in total p covariates, RF randomly selects m co-
variates and grows the decision tree. It then repeats this for all B bootstrap
samples to obtain the ensemble of trees {CARTb}B1 . The value for m is esti-
mated using k-fold cross validation]. The prediction for the target variable, say
x, is obtained in the same manner as with bagging. That is, for regression the
prediction based in the B trees is f̂B(x) = 1

B

∑B
b=1 CARTb(x), and for classifi-

cation ĈB(x) = mode{Ĉb(x)}B1 , where Ĉb(x) denotes the estimated classification
according to tree b.

3.3.3 Stochastic Gradient Boosting

SGB is a method proposed by Friedman (2002) to enhance the gradient boosting
technique. Gradient boosting produces a prediction model based on multiple
weak prediction models. It then builds the final model in a stage wise manner
just as other boosting methods do, such as the popular AdaBoost algorithm of
Freund and Schapire (1997).
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The goal of (stochastic) gradient boosting is to find a function y = F ∗(x) that
maps the covariates x to the response variable y in such a way that the expected
value of a cost function C(y, F (x)) is minimized, i.e.

F ∗(x) = arg min
F (x)

Ey,x[C(y, F (x))]. (20)

Boosting methods approximate F ∗(x) by an additive expansion which is given
by

F (x) =
M∑
m=0

βmh(x; am), (21)

where h(x; am) are the ‘base learner’ functions, with parameters am. Given an
initial guess for F0(x), the coefficients and parameters can be estimated in the
following manner stage wise manner

(βm, am) = arg min
β,a

n∑
i=1

C(yi, Fm−1(xi) + βh(xi; a)) (22)

Fm(x) = Fm−1(x) + βmh(x; am). (23)

Gradient boosting approximates equation (22) in the following way. First,
the base learner h(x; a) is fitted by the CART decision tree of section 3.3.1 to the
pseudo-residuals, which are defined as

ȳim = −
[∂C(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

. (24)

Given these pseudo-residuals, the optimal value of βm is found by

βm = arg min
β

n∑
i=1

C(yi, Fm−1(xi) + βh(xi; am)). (25)

The following step is to compute the multiplier γ by solving the following equation

γm = arg min
γ

n∑
i=1

C(yi, Fm−1(xi) + γhm(xi)) (26)

and then update the model according to

Fm(x) = Fm−1(x) + γmhm(x). (27)

To obtain the SGB method, one small modification must be made. The
base learner in gradient boosting, which was fitted by a CART decision tree
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to the pseudo-residuals of equation (24) is estimated using the whole sample.
SGB on the other hand, selects a subsample of the data, which are drawn at
random without replacement. Friedman (2002) finds that the accuracy of gradient
boosting is substantially improved by this small modification. He also finds that
the fraction of observations to be used in the subsample is in the range of [0.5; 0.8]
to obtain good result. Therefore, the size of the subsample is commonly set to
half the size of the whole data set.

SGB requires a couple of parameters to be set or to be estimated by cross
validation. The parameters to be estimated by k-fold cross validation are the
number of boosting iterations (the number of constructed trees) and the depth
of the trees (the number of layers in the tree). The learning rate can also be
estimated by cross validation, however I set the learning rate equal to 0.01. I
choose this value because low values makes the final model more robust. On
the other hand, a low learning rate requires more boosting iterations and this
increases the computational time.

3.4 Generalized Linear Model

The classical linear model can be written as

Y = E[Y |X] + ε,E[Y |X] = Xβ, (28)

where Y is the response variable, X consists of p covariates, β consist of the
estimated coefficients and the ε is a random shock. The linear model has some
underlying assumptions. McCullagh and Nelder (1989) define these assumptions
as follows:

1. Random Component Linear Model: Each component of Y is independent
and is normally distributed. The mean of the normal distribution may vary
for each component, but the variance must be the same.

2. Systematic Component Linear Model: The combination of the p covariates
(x1, . . . xp) give the linear predictor η: η = Xβ.

3. Link Function Linear Model: The random and the systematic component
are linked by a link function. The link function for the linear model is the
identity function so that: E[Y |X] ≡ µ = η

These assumptions are not easily satisfied in many different problems. Nor-
mality for the response variable Y can not always be guaranteed or the additivity
effects implied by the second and third assumption may not be realistic. The ef-
fect could also be multiplicative for example and another link function may be
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more realistic. Nonetheless, an assumption about the type of linearity must be
made.

Generalized Linear Models (GLMs) have the following set of assumptions:

1. Random Component Generalized Linear Model: Each component of Y is
independent and follows a distribution of the family of exponential distri-
butions.

2. Systematic Component Generalized Linear Model: The combination of the
p covariates (x1, . . . xp) give the linear predictor η: η = Xβ.

3. Link Function Generalized Linear Model: The random and the systematic
component are linked by a link function g. The link function is a differen-
tiable and monotonic function such that: E[Y ] ≡ µ = g−1(η)

From this set of assumptions and the set of assumptions for the linear model,
it follows that the linear model is a special case of the GLM. More specifically,
if we choose a normal distribution for the random component and the identity
function for the link function, GLM boils down to the linear model of equation
(28).

At the moment AllSecur uses a GLM with a logit link function and assumes
that the random component follows a binomial distribution. The binomial dis-
tribution supports binary dependent variables, such as individuals that have not
lapsed versus individuals that did lapse. The logit link function is chosen be-
cause this link function has the characteristic that the effects of the covariates
are multiplicative related to the dependent variable. Furthermore, the logit link
function in combination with a binomial distribution predicts a probability and
is thus the appropriate choice for predicting the lapse probability. This method
is the benchmark for the other methods.

The parameters in the GLM can be found by using maximum likelihood (ML).
To find ML estimates for β we need to use an iterative procedure.

1. Make an initial guess for β̂

2. Use a polynomial approximation of the likelihood

3. Calculate the difference, D, between step 1 and 2

4. Update the initial guess with the approximation of step 2 and repeat until
D < τ , where τ is the convergence criterion
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4 Results

This section discusses the results. All the models are fitted on an estimation
sample which corresponds to 70% of the data. Predictions are made for the hold-
out sample, which consists of the remaining 30%. Section 4.1 discusses the results
for the survival analysis techniques and section 4.2 does this for the machine
learning techniques. Section 4.3 compares the results of these two methodologies
and the GLM.

4.1 Survival Analysis

This section presents the results for the survival techniques and discusses them.
I start with comparing the three different methods for selecting variables. The
variables chosen by the best method are then included in a frailty model and
I compare this model with the best CPH model. Lastly, I investigate the PH
assumption for the best method.

The goodness of fit of the survival analysis models is determined by two
metrics. The first metric is an in-sample metric called concordance index (Harrell
et al. (1982)). The concordance is the proportion of pairs of individuals of which
the individual with the highest hazard, experienced the event of interest the
earliest. This metric measures the ability of the model to predict which individual
of a pair dies earlier. The higher the concordant index, the better the in-sample
fit.

The concordance index for the survival analysis models is given in table 1 with
the standard deviation in parentheses. In the following, I use a significance level
of 5%. For the MTC lapse the Lasso and the adaptive Lasso significantly out-
perform the forward selection method. There is no significant difference between
these two methods. The adaptive Lasso performs rather poorly for the Renewal
lapse. This method is significantly outperformed by both the Lasso and the for-
ward selection method. The Lasso method preforms the best for the Renewal
lapse. For the Afterthought lapse the adaptive Lasso significantly outperforms
the forward selection method, but is unable to significantly outperform Lasso
method. In contrast with the MTC and Renewal lapse, the Lasso is now unable
to significantly outperform the forward selection method. Lastly, the Lasso and
adaptive Lasso are not significantly different for the AllSecur lapse, but both
significantly outperform the forward selection method. Overall, I conclude that
the Lasso method is the best method based on the concordant index.

The second metric assesses the predictive performance of the models and is
the Brier score (Brier (1982)). The Brier score is a scoring rule that can be used
to asses the performance of any model that makes probabilistic predictions and
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Table 1: Concordant Index for the Cox Proportional Hazards Models
This table shows the concordant index for the variable selection methods for each different

type of lapse. The standard deviation is given in parentheses.

Lasso Adaptive Lasso Forward Selection

MTC 0.672 0.671 0.639
(0.002) (0.002) (0.002)

Renewal 0.694 0.513 0.630
(0.004) (0.001) (0.004)

Afterthought 0.697 0.733 0.645
(0.024) (0.022) (0.021)

AllSecur 0.824 0.821 0.769
(0.005) (0.005) (0.005)

is defined as

BS =
1

n

n∑
i=1

(Yi − Pi)2, (29)

where Yi is a 0/1 variable indicating whether individual i has lapsed, Pi is the
predicted lapse probability. The lower the Brier score, the better the forecasting
power of the model. To calculate the Brier score, the lapse probability must be
determined. Since the lapse probability is defined as 1− S(t), where S(t) is the
survival curve, I must choose a suitable t. I set t equal to the average survival
time of the estimation sample.

Table 2 shows the Brier scores of the different variable selection methods
and for each type of lapse. For the MTC lapse, the Lasso method produces the
lowest Brier score. The differences with adaptive Lasso and forward selection
are small. The differences for the Renewal lapse are even smaller, the Lasso has
the lowest Brier score, then the forward selection and lastly the adaptive Lasso.
For the Afterthought lapse the differences are only visible at four decimals, the
Brier score for only the forward selection differs, but not that much. This is
somewhat expected due to the results of table 1, where the three methods were
not significantly (at a 5% significance level) different from each other. Lastly, for
the AllSecur lapse the Lasso and the adaptive Lasso produce the same Brier score.
Both the Lasso and adaptive Lasso outperform the forward selection method.
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Table 2: Brier Score for the Cox Proportional Hazards Models
This table shows the Brier for the variable selection methods for each different lapse.

Lasso Adaptive Lasso Forward Selection

MTC 0.1396 0.1400 0.1432
Renewal 0.0544 0.0559 0.0548
Afterthought 0.0459 0.0459 0.0461
AllSecur 0.0242 0.0242 0.0255

It is clear that Lasso method outperforms the forward selection method. The
adaptive Lasso performs almost the same as the Lasso, except for the Renewal
lapse where the adaptive Lasso method performs poorly. Therefore, I select the
Lasso method as best CPH model. An additional reason to prefer the Lasso
method over the adaptive Lasso is computational time. The adaptive Lasso
requires two estimation steps. One ridge regression to estimate the weights in the
second Lasso regression, while the Lasso method only needs the Lasso regression.
The computation time for the adaptive Lasso is therefore approximately twice as
long compared to the Lasso method.

Since the Lasso method outperforms the other methods, I compare the frailty
model only with the Lasso method. The variables included in the frailty model
are the same as in the Lasso method. I add the random effect to the renewal
number of the contract for the MTC, Renewal and AllSecur lapse, since loyal
clients tend to behave the same with respect to lapse. For the Afterthought lapse,
the renewal number is always zero and thus the random effect must be added to
another variable. The variable with the random effect for the Afterthought lapse
is the age of the driver. Table 3 shows the concordant index for the frailty model
along with the Lasso method. In this table, we observe that the Lasso method
outperforms the frailty model for all different type of lapses, except the renewal
lapse.

21



Table 3: Concordant Index for the Frailty Model
This table shows the concordant index for the CPH model with variables selected according

to the Lasso method and for the frailty model. The concordance index is given for each
different type of lapse. The standard deviation is given in parentheses.

Lasso Frailty

MTC 0.672 0.668
(0.002) (0.002)

Renewal 0.694 0.701
(0.004) (0.004)

Afterthought 0.697 0.683
(0.024) (0.006)

AllSecur 0.824 0.812
(0.005) (0.005)

Table 4 compares the Brier score for the Lasso method and the frailty model.
The Lasso method outperforms the frailty model for all the different type of
lapses. The Lasso method is especially better at forecasting the afterthought
lapse. Based on table 3, I conclude that the in-sample performance is not signif-
icantly different for the two methods and based on table 4, I conclude that the
Lasso method outperforms the frailty model in terms of predictive power. Overall
I conclude that the Lasso method is the best survival analysis method.

Table 4: Brier Score for Frailty Model
This table shows the Brier for the CPH model with variables selected according to the Lasso

method and for the frailty model. The Brier score is given for each different type of lapse.

Lasso Frailty

MTC 0.1396 0.1503
Renewal 0.0544 0.0546
Afterthought 0.0459 0.0657
AllSecur 0.0242 0.0259

So far, no attention is given to possible violations of the PH assumption of the
CPH model. To investigate the PH assumption, I fit a CPH model with variables
chosen with the Lasso method on the overall data set. The null hypothesis for
testing the PH assumption is that the PH assumption is valid. In table 5 we
observe that the majority of variables included for the overall data set do not
meet the PH assumption, namely 73.33%. In figures 1 and 2 we see two examples
of variables that do not meet the PH assumption in the overall data set.
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Figure 1: Time-varying Coefficient of Call Center
This figure shows the coefficient over time for the variable Call Center. The black line is the coefficient over
time and the two black dotted lines show the confidence interval. The red dotted line represents the time-fixed
effect as is included in the model.

In figure 1 we observe that there are three periods where the coefficent acts
differently. In the first four months, it appears that the coefficient is declining.
The following five months the coefficient increases and declines again in the re-
maining three months. The coefficient of the variable Renewal Number in figure
2 acts differently in two periods. In this first seven months the coefficient is in-
creasing and in the remaining five months the coefficient decreases over time. For
the remaining variables that do not meet the PH assumption, their behaviour is
also different in two or three periods.
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Figure 2: Time-varying Coefficient of Renewal Number
This figure shows the coefficient over time for the variable Renewal Number. The black line is the coefficient over
time and the two black dotted lines show the confidence interval. The red dotted line represents the time-fixed
effect as is included in the model.

This is an indication that a distinction between different type of lapses, such
as the type of lapses as defined by AllSecur, makes statistical sense. When I check
the PH assumption over different type of lapses, which can occur in distinct time
periods, the PH assumption is violated for only a relatively few variables. The
Afterthought lapse has relatively the most violations, namely 33.33%, but this
is already a large reduction compared to 73.33%. Note that the AllSecur lapse
is almost the same as the overall lapse since almost all contracts can be ended
by AllSecur due to a defaulting client. Only contracts that have lapsed in the
afterthought period, do not appear in the AllSecur data set.

Due to the large reduction in variables that do not meet the PH assumption, I
choose to not add a time-varying coefficient as in equation (8). There will still be
a bias in the estimated coefficients that do not meet the PH assumption, however
introducing time varying coefficients is mostly not enough to completely satisfy
the PH assumption due to the complex shapes the coefficients over time have
(see figure 1). Furthermore, adding time varying coefficients also leads to a loss
of interpretability.
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Table 5: Proportional Hazards Assumption
This table shows the number of variables that violates the Proportional Hazards assumption for the different

type of lapses.

# variables included # violated # non violated proportion violated

Overall 15 11 4 73.33%

MTC 62 18 44 29.03%

Renewal 586 27 559 4.6%

Afterthought 9 3 6 33.33%

AllSecur 15 11 4 73.33%

4.2 Machine Learning

This section discusses the results for the machine learning techniques. There are
three machine learning techniques: a CART decision tree, RF and SGB.

Figure 3 shows the pruned decision tree built via the CART algorithm for
the AllSecur lapse. In this tree, we observe that if a contract holder has a Bonus
Malus discount larger than 45%, there is a 2% chance that the contract holder
will lapse. If the Bonus Malus discount is smaller than 45% and the renewal
number is larger or equal to one, the probability of an AllSecur lapse is 2%. On
the other hand, if the renewal number is equal to zero, the probability of an
AllSecur lapse is 77%.

Figure 3: CART Decision Tree for the AllSecur Lapse
This figure shows the tree build by the CART algorithm. The upper number in each node denotes which class
is the most dominant class in that node. The two middle number denote the proportion non-lapser and lapser
respectively. The lower percentage denotes the fraction of total observations in that node.
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This example shows the basic workings of a decision tree. I only show the
tree for the AllSecur lapse, since this tree is the smallest and most interpretable
compared to the trees which model the other type of lapses. The reason that tree
for the AllSecur lapse is this small is due to the definition of the AllSecur lapse,
namely default of payments. If we take a look at the node 3, we conclude that
the new clients (renewal number of 0) are more likely to default on the payments
than people who renewed their contract (renewal number larger than 0). This
makes sense, since existing customers have proven that they pay their premium,
otherwise they would not be a client anymore. New customers on the other hand
have not and are therefore more likely to default on their payments. The split at
node 1 is less clear, but an explanation could be that young people have less claim
free years and thus a lower Bonus Malus discount. Young people in general have
less money than older people and therefore are more likely to default on their
payments. Another explanation could be that a smaller Bonus Malus discount
makes the premium higher and thus harder to pay, resulting in more AllSecur
lapses. The first mentioned possible explanation is probably not the right one,
otherwise age would be the variable included in the tree. However, it is also
possible that the split is made due to a combination of the two explanations. This
shows that the interpretation of the tree is not always straightforward, however
the data tells us that these two variables are the most important variables to
describe and explain the AllSecur lapse.

Because the RF and SGB construct many different trees, there is not a nice
visualization compared to a single decision tree. However, there are other meth-
ods to see which variables are used in the models and which of those variables
are deemed as most important for determining the target value. One of these
methods is the use of relative influence plots ((Friedman, 2001)). In the last part
of this section I show that the SGB algorithm outperforms the RF, therefore I
only show the relative influence plots of the SGB.

Figure 4 shows the relative influence plots of the MTC and Renewal lapse
for the ten most important variables. This figure shows that for the MTC lapse
that the vehicle age contributes the most to the SGB model. The first three
variables, vehicle age, the precense of an accessory coverage and renewal number
contribute about 50% to the SGB model. This plot unfortunately does not tell
us why these variables contribute so much to the model. An explanation for
vehicle age can be that old cars are mostly insured by the minimum required by
law, while new cars probably have additional insurances such as an ‘All Risk’
insurance. Furthermore, the people who have the minimum car insurance are
probably also the most price sensitive segment, while the people with an All
Risk insurance are not. Therefore, people with old cars will probably check more
often whether they can buy a cheaper insurance, resulting in more MTC lapses
for AllSecur. The opposite, i.e. less lapses, holds for the people with the younger
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cars.
For the Renewal lapse the first three variables contribute even more than

50%. The explanation for their high contribution is intuitive. When the contract
is renewed, a new premium is offered to the client. If this premium is higher
than the old premium (due to a claim or a change in tariff), the client will
probably search for a new insurance company. On the other hand, if the new
premium is lower than the old premium, the client has not much incentive to
take action. This is most probably the reason that the first two variables, the
difference in absolute and relative premium, contribute so much. It is a natural
moment for clients to check whether their insurance can be bought more cheap
at a competitor at the moment they receive their new offered premium. This
causes the hgih contribution of the third variable, the price rank of AllSecur in
the market. The decision of the client to go to another insurance company is
most often based on the premium the client has to pay. If the ranking is good
for AllSecur, the chances are low that the client will leave.

Figure 4: Relative Influence Plots MTC and Renewal Lapse
This figure shows relative importance plots for both the MTC and the Renewal lapse. Only the first ten variables
are shown.

Figure 5 shows the relative influence plots for the Afterthought and AllSecur
lapse. For the Afterthought lapse we observe that we need 8 variables to reach
a total contribution of 50%. This is an indication that the Afterthought lapse
is rather hard to explain, as there is no variable that is clearly explaining why
people leave within the first two weeks. For the AllSecur lapse it is exactly the
opposite. The variable that contributes the most, renewal number, contributes
alone almost 50%. Together with the Bonus Malus discount, the contribution
total 65%. It should be of no surprise that these two variables are the most
important variables for the AllSecur lapse, as the basic pruned CART tree in
figure 3 only included these two variables.
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Figure 5: Relative Influence Plots Afterthought and AllSecur Lapse
This figure shows relative importance plots for both the Afterthought and the AllSecur lapse. Only the first ten
variables are shown.

To assess the predictive performance of the machine learning techniques, I also
use the Brier score. Table 6 shows the Brier score for the different techniques
and for the different type of lapses. The CART decision tree is outperformed by
the RF and SGB algorithms for each type of lapse. It is clear that the two more
advanced techniques provide added value over the simple CART tree. The Brier
score for the RF and SGB algorithm are quite close to each other, however the
SGB algorithm slightly outperforms the RF algorithm for almost all the lapses.
Since the SGB ties with the RF for the Afterthought lapse, but outperforms the
RF for all other type of lapses. Overall, I conclude that the SGB method is the
best performing machine learning technique.

Table 6: Brier Score for the Decision Tree Trechniques
This table shows the Brier for the CART, Random Forest (RF) and the Stochastic Gradient

Boosting (SGB) technique.

CART RF SGB

MTC 0.1490 0.1390 0.1383
Renewal 0.0560 0.0535 0.0532
Afterthought 0.0455 0.0470 0.0470
AllSecur 0.0233 0.0230 0.0225

4.3 Comparison of Methodologies

This section compares the results obtained from the best survival analysis and
machine learning techniques with the benchmark. The best survival analysis is
the CPH model with the parameters estimated by the Lasso method. For the
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machine learning, the best method is the SGB algorithm. The benchmark model
is the GLM and is provided by AllSecur. The first two subsections discuss the
MTC and Renewal lapse respectively. The last subsection gives a short overview
of the most important results for the Afterthought and AllSecur lapse. The full
analysis for the Afterthought and AllSecur lapse is given in Appendix B, since
they only account for 15% of the total lapses.

4.3.1 MTC Lapse

The best survival analysis method found in section 4.1 is the CPH model with
variables chosen by the Lasso method, in the remainder of this section I refer to
this model as the Survival Analysis model. In this section I compare this model
to the GLM model provided by AllSecur and the SGB algorithm. The following
three graphs compare the models for the MTC lapse. The horizontal axis shows
the relative difference between the two prediction methods. The graph only shows
the differences if the exposure is larger than 100. The left vertical axis shows the
lapse rate and the right vertical axis the exposure.

Figure 6 shows that the MTC lapse forecasts of the Survival Analysis model
and the GLM has highest exposure for the forecasts that do not differ. For
the forecasts that do differ, most of the differences are less than 40%. Most
predictions differ less than 5 percentage points in absolute terms. For the negative
differences, the GLM outperforms the Survival Analysis model as the predictions
of the GLM lie closer to the actual than the Survival Analysis predictions. For the
positive differences, the actual lies between the GLM and the Survival Analysis
model. Based on these two observations, I conclude that the GLM model slightly
outperforms the Survival Analysis model.
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Figure 6: Comparison of Survival Analysis and GLM for the MTC lapse
This figure shows the performance of the Survival Analysis model and the GLM. The left axis shows the lapse
rate and the right axis shows the exposure. The horizontal axis represents the relative differences between the
two forecasting methods.

Figure 7 shows the performance of the SGB algorithm and the GLM. In
this graph we observe that most forecasts of the two methods do not differ a
lot. Most of the forecasts differ less than 30%. For the forecasts that differ, we
observe that the SGB method overall performs better than the GLM. Especially
for the positive differences, the SGB predictions are more in line with the actual
compared to the GLM predictions. This also the case for the negative differences,
however the SGB predictions exhibit some degree of underestimation. Based on
this, I conclude that the SGB method outperforms the GLM model for the MTC
lapse.
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Figure 7: Comparison of Machine Learning and GLM for the MTC lapse
This figure shows the performance of the SGB algorithm and the GLM. The left axis shows the lapse rate
and the right axis shows the exposure. The horizontal axis represents the relative differences between the two
forecasting methods.

The last figure of this subsection, figure 8, shows the comparison between the
MTC lapse predictions of the SGB algorithm and the Survival Analysis model.
The SGB algorithm makes almost perfect forecasts and clearly outperforms the
Survival Analysis model. The Survival Analysis model only makes accurate pre-
dictions when the relative difference is equal to zero. Based on the conclusions
drawn from figures 6 and 7, it is expected that the SGB algorithm outperforms
the Survival Analysis model, since the SGB outperforms the GLM, while the
GLM (slightly) outperforms the Survival Analysis model.
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Figure 8: Comparison of Machine Learning and Survival Analysis for
the MTC lapse
This figure shows the performance of the SGB algorithm and the Survival Analysis model. The left axis shows
the lapse rate and the right axis shows the exposure. The horizontal axis represents the relative differences
between the two forecasting methods.

The overall conclusion based on the three graphs above is that the SGB algo-
rithm performs the best, then the GLM and lastly the Survival Analysis model.
This conclusion is for the larger part supported by the Brier Score for the three
different methods, see table 7. The Brier Score is the lowest for the SGB algo-
rithm, but is unable to differentiate between the GLM and the Survival Analysis
model. However, in figure 6 we saw that the GLM only slightly outperformed
the Survival Analysis and therefore it is expected that the Brier Scores would be
close to each other.

Table 7: Brier Scores for the MTC lapse
This table shows the Brier for the three methods for the MTC lapse.

MTC lapse

Survival Analysis 0.1396
SGB 0.1383
GLM 0.1396

4.3.2 Renewal Lapse

This section repeats the analysis of the previous section, but now for the Renewal
lapse.

The relative differences for the Survival Analysis model and GLM are shown
in figure 9. The differences are in general larger than for the MTC lapse. There
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are Survival Analysis model predictions, with a decent exposure, which are three
times larger than the GLM predictions. In absolute terms the differences are not
that large, since the Renewal lapse rate is in the 4% to 8% range while the MTC
lapse is the 15% to 20% range. The Survival Analysis model predicts for most
individuals a lapse rate of approximately 6%, while the GLM model predictions
show more variability. The actual lapse rates also show more variability and
the shape of the actual lapse rate and the GLM predictions are approximately
the same. The GLM model seems to underestimate the lapse rate by roughly
1 percentage point for the positive differences and the Survival Analysis model
seems to overestimate the lapse rate by roughly 2 percentage points for the same
contracts. Due to the smaller underestimation of the GLM and the presence of
variability in the predictions, I conclude that the GLM model also outperforms
the Survival Analysis model for the Renewal lapse.

Figure 9: Comparison of Survival Analysis and GLM for the Renewal
lapse
This figure shows the performance of the Survival Analysis model and the GLM. The left axis shows the lapse
rate and the right axis shows the exposure. The horizontal axis represents the relative differences between the
two forecasting methods.

The comparison between the SGB algorithm and the GLM is given in figure
10. In this figure we observe that the SGB algorithm produces better forecasts
than the GLM model. When we observe negative differences, the seriousness
of the overestimation of the GLM is approximately of the same size as the un-
derestimation of the SGB. For the positive differences, the SGB predictions are
clearly better than the GLM predicitons. Only when we observe a relatively low
exposure to the relative differences, the GLM sometimes seem to outperform the
SGB. However, overall I conclude that the SGB algorithm outperforms the GLM.
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Figure 10: Comparison of Machine Learning and GLM for the Renewal
lapse
This figure shows the performance of the SGB algorithm and the GLM. The left axis shows the lapse rate
and the right axis shows the exposure. The horizontal axis represents the relative differences between the two
forecasting methods.

The results for the Renewal lapse in figure 11 are the same as for the MTC
lapse. The SGB algorithm almost perfectly predicts the Renewal lapse, while this
is very hard for the Survival Analysis model. This is also expected based on the
two previous figures where the GLM outperforms the Survival Analysis model,
while the SGB algorithm outperforms the GLM.

Figure 11: Comparison of Machine Learning and Survival Analysis for
the Renewal lapse
This figure shows the performance of the SGB algorithm and the Survival Analysis model. The left axis shows
the lapse rate and the right axis shows the exposure. The horizontal axis represents the relative differences
between the two forecasting methods.
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Based on the three graphs above, I conclude that the SGB algorithm out-
performs both the Survival Analysis model the GLM, similar to the MTC lapse.
Contrary to the MTC lapse, the GLM now clearly outperforms the Survival Anal-
ysis model. The above conclusion is fully supported by the Brier scores of table 8.
The Brier score is the lowest for the SGB, then the GLM and lastly the Survival
Analysis model.

Table 8: Brier Score for the MTC and Renewal Lapse
This table shows the Brier for the three methods for the MTC and Renewal lapse.

MTC Renewal

Survival Analysis 0.1396 0.0544
SGB 0.1383 0.0532
GLM 0.1396 0.0539

4.3.3 Afterthought and AllSecur Lapse

This section gives a summary of the results for the Afterthought and AllSecur
lapse. The full analysis is given in Appendix B.

For the Afterthought lapse the results are mixed. Based on the figures, the
GLM clearly outperforms the Survival Analysis model and is outperformed by
the SGB. However the Survival Analysis model seems to outperform the SGB. If
we use the Brier score as metric, table 9, the GLM performs the best, then the
Survival analys model and lastly the SGB. In section 4.2 I showed that the SGB
found it difficult to explain the Afterthought lapse, which may be the cause of
the highest Brier score.

The results for the AllSecur lapse are comparable to the results of the MTC
and Renewal lapse. The SGB outperforms both the Survival Analysis model and
the GLM. The GLM outperforms the Survival Analysis model. The cause of the
bad performance of the Survival Analysis model is due to the many variables
which do not meet the PH assumption (see section 4.1).
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Table 9: Brier Score for all the Lapses
This table shows the Brier for the three methods for the MTC, Renewal, Afterthought and

AllSecur lapse.

MTC Renewal Afterthought AllSecur

Survival Analysis 0.1396 0.0544 0.0459 0.0242
SGB 0.1383 0.0532 0.0470 0.0225
GLM 0.1396 0.0539 0.0455 0.0238

5 Conclusion

Lapse rates are one of the risk factors that determine the premium clients have
to pay to their insurance company. AllSecur makes a distinction between four
different type of lapses the reason to lapse changes over time. This is especially
true for the lapses around the renewal date. The lapse rates are currently mod-
elled by the GLM, one of the most commonly used models used in the insurance
business. I focus on two different methodologies in order to make forecasts for the
lapse rate. The two methodologies are survival analysis and machine learning.

I compare different variable selection procedures for the survival analysis
models. I consider, forward regression and two penalized regression approaches,
namely Lasso and adaptive Lasso. I find that the penalized regression approaches
outperform the forward regression approach. Furthermore, the Lasso method is
preferred over the adaptive Lasso due to a significantly lower computational time
and near equal performance. For the machine learning I compare the predictive
performance of a CART decision tree, a RF and the SGB algorithm. I find that
the SGB algorithm outperforms the other two machine learning methods.

The different best methods of each methodology are then selected and I com-
pare the performance between the methods to find the best prediction method.
For all the different type of lapses, the Survival Analysis model is outperformed
by the GLM. The GLM is outperformed by the GBM algorithm for the MTC,
Renewal and AllSecur lapse. For the Afterthought lapse, the results are mixed.
However, the Afterthought data set is the smallest of all the data sets and the Af-
terthought lapses account for only a small portion of the total lapses. Therefore, I
conclude that the SGB algorithm outperforms the GLM. I also compare the SGB
algorithm with the Survival Analysis model and find that the SGB algorithm also
outperforms the Survival Analysis model.

The main reason of the strong performance of the SGB algorithm is that it
in the procedure all the covariates are analyzed. In the two other methodolo-
gies, a subset of variables are selected and the selection procedures can contain
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drawbacks. For the Survival Analysis model, the variables are chosen by the
Lasso regression on a training set. Suppose that in the training set there are two
highly correlated variables, xi and xj, but the correlation is less strong in the
test set. Furthermore, assume that xi is the covariate with real predictive power.
The Lasso regression can choose to use xj and set the coefficient for xi equal to
zero. The performance of the survival analysis model is then lessened due to the
selection of xj instead of xi. This also holds for the GLM. The GLM is provided
by AllSecur and the variables included in the model may not be best variables to
include.

I have a few recommendations for further research. Some of the variables
violate the PH assumption. To counter this problem, I repeat the analysis for
different lapses over time and find that then only a relatively few variables violate
the PH assumption. This number can be decreased even further, if one finds the
optimal time periods to define the lapses. Also, time-varying coefficients can
be included to achieve this, but then the function over time must be accurately
determined.
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Appendices

A Variables

Table 10: Individual Variables Summary
Description Type

channel type sales description How the contract is established factor (3 levels)
renewal number Number of times client renewed numeric
annual net premium Annual premium the client has to pay numeric
bm discount description Discount percentage due to BM numeric
annual kilometers description Kilometers the client drives yearly factor (3 levels)
bm step Step in the BM system numeric
no claim free years description Number of claim free years numeric
coverage description Type of main cover factor (3 levels)
age dr Age of the driver numeric
premium dev rel Relative difference old and new premium numeric
premium dev abs Absolute difference old and new premium numeric
Roadside Assistance Extra subcover dummy
Foreign countries Extra subcover dummy
Legal aid Extra subcover dummy
Passenger accident Extra subcover dummy
Replacement as new Extra subcover dummy
Bonus saver Extra subcover dummy
Accessory coverage Extra subcover dummy
Free choice repairer Extra subcover dummy
Purchase Arrangement Extra subcover dummy
TotalSubcov Number of extra subcovers numeric
m instal Frequency of payments factor (3 levels)
m premium offered New offered premium factor (183 levels)
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Table 11: Car-specific Variables Summary
Description Type

weight Weight of the car numeric
capacity Capacity of the car numeric
fuel type description Type of fuel of the car factor (4 levels)
list prices Price of the car numeric
drive description Type of drive of the car factor (5 levels)
gear description Type of gear of car factor (3 levels)
turbo description Turbo in car dummy
vehicle age Age of vehicle numeric
m Acceleration gr Acceleration of the car factor (28 levels)
m Bodywork Bodywork of the car factor (12 levels)
m Top speed gr Top speed of the car factor (31 levels)
m num doors Number of doors of the car factor (6 levels)
m automatic transmission Autmatic transmission dummy
m Make Brand of car factor (56 levels)
m int kw gr KiloWatt of the car factor (25 levels)

Table 12: Adress Variables Summary
Description Type

URB Degree of urbanisation factor (8 levels)
HH House Holds numeric
INKOMEN Average income factor (7 levels)
MODUS LFT Mode of age factor (6 levels)
K KREDPEN2 Creditworthiness factor (6 levels)
m PROVINCIE Province factor (12 levels)

Table 13: Competition Variables Summary
Description Type

rank Price ranking with competitiors numeric
CI 3 b Competitive Index based on 3 cheapest profiles factor (92 levels)
CI 5 b Competitive Index based on 5 cheapest profiles factor (89 levels)
CI 10 b Competitive Index based on 10 cheapest profiles factor (89 levels)
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B Comparison Afterthought and AllSecur lapse

B.1 Afterthought Lapse

This section compares the three methodologies for the Afterthought lapse.
Figure 12 compares the predictions of the Survival and GLM model for the

Afterthought lapse. The GLM clearly outperforms the Survival Analysis model.
The GLM has near perfect predictions for the lapse rate. The bulk of the Survival
Analysis model predictions deviate less than 30%, which is in absolute terms,
less than 1 percentage point. Compared to the Renewal and AllSecur lapse, the
relative difference is small for the Afterthought lapse.

Figure 12: Comparison of Survival Analysis and GLM for the Af-
terthought lapse
This figure shows the performance of the Survival Analysis model and the GLM. The left axis shows the lapse
rate and the right axis shows the exposure. The horizontal axis represents the relative differences between the
two forecasting methods.

Figure 13 repeats the above analysis, but now for the SGB algorithm and
the GLM. In this figure, we observe that the SGB algorithm provides better
forecasts than the GLM. It seems that the GLM has the tendency to overpredict
the Afterthought lapse, since most the group with the largest exposure is on
the left side of the zero difference in the figure. There is less exposure on the
right side of the zero difference and when the differences are positive and large,
the performance of the GLM is a little bit better. However, overall the SGB
algorithm outperforms the GLM.
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Figure 13: Comparison of Machine Learning and GLM for the Af-
terthought lapse
This figure shows the performance of the SGB algorithm and the GLM. The left axis shows the lapse rate
and the right axis shows the exposure. The horizontal axis represents the relative differences between the two
forecasting methods.

The last figure of this section, figure 14, compares the predictions of the
SGB algorithm and the Survival Analysis model. In this graph we observe that
both method overpredict the lapse rate when the differences are postive and
that the overprediction is more serious for the SGB algorithm. However, note
that the exposure is rather small for these overpredictions and that the absolute
differences are also rather small. When the relative differences in the predictions
are negative, it seems that the Survival Analysis model is a little bit better at
predicting the Afterthought lapse. Overall, I conclude that the Survival Analysis
model is better at predicting the Afterthought lapse.
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Figure 14: Comparison of Machine Learning and Survival Analysis for
the Afterthought lapse
This figure shows the performance of the SGB algorithm and the Survival Analysis model. The left axis shows
the lapse rate and the right axis shows the exposure. The horizontal axis represents the relative differences
between the two forecasting methods.

B.2 AllSecur Lapse

This section compares the three methodologies for the AllSecur lapse.
The GLM does a better job than the Survival Analysis model for the AllSecur

lapse. In figure 15 we observe that the GLM has an almost perfect fit to the
actual lapse rate. The Survival Analysis model underestimates the lapse rate
when the differences are negative and seriously overestimates the lapse rate when
the differences are positive. It is no surprise that the Survival Analysis model
does not perform well for the AllSecur lapse. In table 5 of section 4.1 I show
that 73.33% of the included variables does not meet the PH assumption. This
introduces a bias in estimating the parameters and results in the poor predictive
performance.
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Figure 15: Comparison of Survival Analysis and GLM for the AllSecur
lapse
This figure shows the performance of the Survival Analysis model and the GLM. The left axis shows the lapse
rate and the right axis shows the exposure. The horizontal axis represents the relative differences between the
two forecasting methods.

The predictions between the SGB algorithm and the GLM for the AllSecur
lapse are more dispersed than the Afterthought lapse, see figure 16. There is still
a reasonable exposure in cases where the differences are more than 200%. The
largest exposures in differences are in the -0.3 to -0.1 range and in the groups in
this range the GLM outperforms the SGB algorithm. However, for all the other
predictions, the SGB algorithm outperforms the GLM. Overall, I conclude that
the SGB algorithm outperforms the GLM.
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Figure 16: Comparison of Survival Analysis and GLM for the AllSecur
lapse
This figure shows the performance of the SGB algorithm and the GLM. The left axis shows the lapse rate
and the right axis shows the exposure. The horizontal axis represents the relative differences between the two
forecasting methods.

In figure 17 we observe that the SGB algorithm almost perfectly predicts the
AllSecur lapse. The Survival Analysis model on the other hand, does not. I show
in section 4.1 that most of the variables in the Survival Analysis model do not the
PH assumption. This is most probably the cause for the rather bad performance
of the Survival Analysis model for the AllSecur lapse.

Figure 17: Comparison of Machine Learning and Survival Analysis GLM
for the AllSecur lapse
This figure shows the performance of the SGB algorithm and the Survival Analysis model. The left axis shows
the lapse rate and the right axis shows the exposure. The horizontal axis represents the relative differences
between the two forecasting methods.
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