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Abstract

This paper investigates the use of decision trees to improve the perfor-
mance of a linear support vector machine. Specifically, it creates a deci-
sion tree and uses the results of an SVM prediction as a branching rule
for the tree. When tested on a suit of 8 data sets, this hybrid methodol-
ogy was seen to outperform the usual linear SVM on 3 of the data sets
tested and in the other situations the performance of the two models were
similar.
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1 Introduction

In the field of Machine Learning, Support Vector Machines (SVM) are a class of
supervised learning algorithms developed for the prediction of binary outcome
variables. In supervised learning, a m−dimensional multivariate observation x
is associated with a class label c. The objective is to ”learn” a mathematical
function f, that can be evaluated on the input x to yield a prediction of its
class, c (Hahne et al, 2010). Alongside SVM, Decision Trees (DT) are also a
class of supervised learning algorithms that are used for binary prediction. The
ultimate goal in the development of classification algorithms such as SVM and
DT is to obtain the best possible prediction. There is a growing base of support
in the literature for the use of model combining to provide improved prediction
performance (Abbott 1999).

The core idea behind the concept of model combining is to train several mod-
els from the same data set, or from samples of the same data set and combine
the output predictions, typically by the use of a majority vote (Abbott 1999).
Applications of model combining have been so successful that scholars such as
Friedman et al. (2008) have referred to boosting (a form of model combining),
as one of the most important recent developments in classification methodology.
In this paper, a novel method for improving the performance of SVM is devel-
oped. Rather than applying a model combining approach, this paper utilizes
a hybrid decision tree methodology that uses SVM to determine the optimal
binary partition of the data space at each node of the decision tree. Specifically,
in this tree, the root node is the entire data set. After running an SVM on this
data set and making in sample predictions, instances that are predicted to be
of the first class are sent along one branch of the tree while the other instances
are sent along the other branch. These two new sets of instances are thus the
children of the root node. Following this process, the new level of the tree is
created in the same manner by determining the children’s children. This process
continues until an appropriate stopping criterion is reached. The prediction of
new instances is then made depending on how a given instance i flows through
the tree.

That said, this paper attempts to answer the following research question:
”Can a decision tree that uses SVM to determine the partition of the data
space at each node, outperform a single SVM in terms of prediction accuracy?”

There are multiple ways to formulate the SVM optimization problem. Cur-
rently all formulations fall under, either the primal or dual formulations and
whether they use linear or nonlinear optimization. Generally speaking, the
primal formulation of the SVM problem is easier to grasp than the dual formu-
lation (Groenen et al, 2008) and non-linear SVMs prove to be computationally
demanding when the number of instances is large (Chang et al, 2008). For this
reason, the specific SVM classifier that is employed in this paper uses the pri-
mal formulation of the SVM problem and makes use of a linear optimization
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approach based on iterative majorization. The iterative majorization approach
to SVMs is outlined in Groenen et al. (2008) and this paper can be seen as
an attempt to improve the performance of that majorization algorithm through
the use of decision trees.

The remainder of this paper is structured as follows: Section 2 provides a
literature review of the various ways in which practitioners have attempted to
improve the performance of base models and the applications of DT to SVM;
Section 3 gives a detailed outline of the SVM model; Section 4 describes the
iterative majorization approach to SVM; Section 5 introduces and motivates a
SVM approach to partitioning the data space and creating and the DT-SVM
classifier; Section 6 shows the results of a numerical analysis of the predictive
performance of the DT-SVM in comparison to a single SVM classifier and Sec-
tion 7 brings together the major findings of the research and outlines further
paths of possible inquiry for the use of DT in an SVM context.

2 Literature Review

The two major paradigms for the purposes of improving the performance of
base models are bagging and boosting. In bagging, multiple bootstrap samples
(with replacement) of the data set are created. The model in question is then
trained on all these new samples and the results of a prediction from all the
classifiers, trained on the different samples, are then aggregated to result in a
final prediction (Brieman 1996). In boosting, each instance i in the data set is
assigned a particular weight, initially, each instance is assigned an equal weight.
Yet, on each round, the weights of incorrectly classified instances are increased
so that the classifier subsequently focuses on the hard examples in the training
set (Freund and Schapire 1999). In bagging, one needs to specify the number
of bootstrap samples that are created. There is no general methodology to do
this and Rokach (2010) has indicated that the performance of bagging is highly
dependent on this parameter. Thus, we opt for exploring this DT hybrid ap-
proach as opposed to bagging. Additionally, boosting has been applied to many
contexts with SVM. Hence, for the sake of novelty it is also set aside in favor of
the aforementioned hybrid approach.

When a predictive model is built by integrating and combining multiple
models, as in bagging, this is referred to as an ensemble methodology. The
idea behind ensemble methodology is to weigh several classifiers and combine
them in order to obtain a classifier that outperforms each one of them (Rokach
2010). Ensemble methodology was introduced to supervised learning when
Tukey (1977) suggested combining two linear regression models. The first being
a classic regression model on the training data and the second being a regression
on the residuals of the original model. Since then, Hansen and Salamon (1990)
demonstrated that ensemble methodology outperforms other methods for im-
proving performance and training of Neural Networks. In relation to SVM, Kim
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et al. (2003) applied bagging and boosting to simulated data on handwritten
recognition and fraud detection. Their results show that the SVM ensemble
based on bagging and boosting outperforms a single SVM in terms of classifica-
tion accuracy by a great margin. Additionally, given that real world data sets
are often imbalanced, Aijun and Huang (2006) applied an integrated sampling
technique. This technique combines oversampling the minority class and under
sampling the majority class to develop an ensemble of SVMs. Their results
showed that this integrated sampling technique outperforms a single SVM and
several other state of the art classifiers.

On the question of how to select and weigh the models that will feature
in the ensemble, the literature indicates that diverse individual models make
better ensemble predictions (Kittler, Matef and Matas 1998). Diversity means
difference and models are different when their misclassified observations do not
overlap. The intuition here being that when the models make the same errors,
weighting the predictions of the individual models would add no benefit to the
prediction accuracy because all the models will make the same wrong prediction.

In addition to bagging and boosting, there are other techniques for improving
the performance of base models that focus on selecting the different explana-
tory variables to be used in the training phase. Specifically, these methods
create multiple models by using different subsets of the total number of ex-
planatory variables available. Salcedo and Whitley (1999) proposed a simple
genetic algorithm for feature selection which involves exploring the space of all
possible feature subsets and creating an ensemble based on them. Furthermore,
Oliveira, Morita and Sabourin (2006) showed that in cases where the general
error rates for the individual models are low, their feature selection method pro-
vided sizable improvements to the prediction accuracy of a single model. When
compared to bagging and boosting, both feature selection methods where shown
to perform better than these methods when classifiers have to work with very
low error rates. The majorization approach to SVM has a problem with dealing
with a large number of explanatory variable. As m grows each iteration of the
majorization algorithm gets slower (Groenen et al, 2008). This makes feature
selection methods infeasible for SVM-maj because feature selection methods
work best when there is a large number of explanatory variables from which to
construct the different classifiers.

Decision trees have also been applied to SVMs. However, they are mainly
applied for multi-class SVM classification. The original SVM was created for
the purpose of binary classification and its extension to a multi-class context
is not straight forward (Dejan and Chorbev 2008). Hence, in order to extend
it to multi-class classification researchers often opt for using an ensemble of bi-
nary classifiers. One-against-one and one against all are the two most popular
strategies for multi-class SVM (Milgram, Cheriet and Sabourin 2006). One-
against-one trains binary a SVM for each pair of classes that exist for the specific
multi-class problem and one-against-all trains an SVM for each class, against
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all the other classes (Milgram, Cheriet and Sabourin 2006). Another method
has been implemented which uses binary decision trees. Here a decision tree is
constructed by training a SVM hierarchically where each binary classification
can contain multiple classes (Milgram, Cheriet and Sabourin 2006). Addition-
ally, Chang et al. (2010) also developed a multi-class SVM based on a decision
tree. However, their tree works by a binary split based on certain values of
the explanatory variables in the feature space and was developed to improve
the training time on large scale SVM problems and not to improve prediction
accuracy. (Kumar and Gopal 2010) also developed a hybrid between SVM and
DT. However their methodology was more DT based than SVM based in the
sense that a DT is used for classifying most instances and an SVM is used only
for classifying those crucial data points lying near the decision boundary. Given
that we now have an overview of the current climate for improving the pre-
dictive performance of SVM. We now proceed by outlining the the theory that
underlies SVM.

3 The SVM Loss Function

For the SVM classification problem, the data points are a set of instance-label
pairs (xi, yi) where i = 1...n, yi ∈ {1,−1} and Xi ∈ Rm. The matrix X holds
the predictor variables and the vector y contains the class labels. The aim
is to find a hyperplane w and an intercept c that separates the positive and
negative instances with maximum margin, whilst penalizing the points inside
the margin linearly (Pontil et al, 1998). Given an intercept c and hyperplane
w, the prediction for an instance i is given by:

qi = c+ x
′

iw (1)

where x
′

i is a row of the matrix X. To illustrate the idea of finding the maximal
separating hyperplane, consider Figure 1 below where there are two predictor
variables. The x-axis represents the first of our predictor variables while the
y-axis represents the second. The pluses (+) in the figure denote positive in-
stances while the circles (o) denote negative instances. Given certain values for
w1 and w2, the points in the scatter plot can be projected onto a line, with
the exact values of w1 and w2 determining the direction of that line. In the
Figure 1a below, the dashed line is the projection line. The separating line is
orthogonal to the projection line and the intercept c determines exactly where
along the projection line that this separating line will be (Groenen et al, 2008).
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Figure 1: Projections of the positive and negative instances onto the line given
by w1 and w2.

Hence, the vector w determines the projection line and the constant c deter-
mines the separation point of the projection line. The core of SVM is to choose
these two values in such a way that the positive instances are well separated
from the negative instances. The two lines that are parallel to the separation
line are called the margin lines. They indicate all points that are projected onto
the line at qi = 1 and qi = −1. All the points inside the margin are incorrectly
predicted and are the data points that contribute to our total loss. The length
between the margin lines is 2/‖w‖.

From this, we see that the central tenet of SVM lies in the way the loss func-
tion is constructed. Instances that are correctly predicted do not contribute to
the total error whilst those that are incorrectly predicted contribute according
to the magnitude of the error. So if i is a positive instance and qi ≥ 1, this yields
a zero error. However, if qi < 1 then the error is linear with 1 − qi. Similarly,
when instance i corresponds to a negative class and qi ≤ −1, this also yields a
zero error. Yet, if qi > −1 then this instance contributes linearly to the total
error with 1 + q1. Figure 2 shows the error functions for the two classes, given
that the contribution of each error to the total loss is the magnitude of the error,
this error function is called the absolute hinge error.
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Figure 2: the absolute hinge error for positive (dashed) and negative (solid)
instances

As w controls how close the margin lines are to each other, and instances
within the margin lines are the incorrectly predicted instances, there is a bias
in to model toward making ‖w‖ as small as possible. To account for this, a
penalty term dependent on ‖w‖ is added to the loss function.

Let G1 and G−1 denote the set of class 1 and -1 instances. Then the SVM
loss function is given by:

LSVM =
∑
i∈G1

max(0, 1− qi) +
∑

i∈G−1

max(0, 1 + qi) + λw
′
w (2)

where λ > 0 determines the strength of the penalty term. Note, equation (2)
can also be expressed in the following form:

LSVM =

n∑
i=1

max(0, 1− yiqi) + λw
′
w. (3)

The minimum of LSVM is a global solution due to the function being convex in c
and w, being coercive and being bounded below by zero (Groenen et al, 2008).
The instances i that contribute to the total loss are those that project on, or
onto the wrong side of the margin. Such instances are called support vectors
as they form the fundamental components of the SVM solution. Note, that the
support vectors are not known in advance and all n instances need to be present
when analysis is conducted.

In addition to the Absolute hinge error given here, Groenen et al. (2008)
also proposed two alternative error functions that can be applied in the context
of SVMs. These are the quadratic and huber hinge errors. The quadratic hinge
error simply squares the absolute hinge error, yielding the loss function:

LSVM-Q =
∑
i∈G1

max(0, 1− qi)2 +
∑

i∈G−1

max(0, 1 + qi)
2 + λw

′
w. (4)
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The Huber hinge on the other hand is characterized by a linearly increasing
error if the error is large, a smooth quadratic error for errors between zero and
the linear part and a zero error for objects that are correctly predicted. The
smoothness is governed by a value k ≥ −1 and as K approaches -1, the huber
hinge behaves like the absolute hinge error whilst, when k approaches 1 the
huber hinge behaves like the quadratic hinge error. Thus, the huber hinge can
be seen as a compromise between the absolute and quadratic hinges (Groenen
et al, 2008). The huber hinge loss function is given by:

LSVM-H =
∑
i∈G1

h1(qi) +
∑

i∈G−1

h−1(qi) + λw
′
w (5)

where

h−1(qi) =

{
(1/2)(k + 1)−1 max(0, qi + 1)2 if qi ≤ k
qi + 1− (k + 1)/2 if qi ≥ k

h1(qi) =

{
1− qi − (k + 1)/2 if qi ≤ −k
(1/2)(k + 1)−1 max(0, 1− qi)2 if qi ≥ k

.

Now that the idea underlying SVM has been presented, we proceed by outlining
the SVM-maj algorithm developed to find the minimum of the SVM loss function
through an iterative majorization framework.

4 Iterative Majorization

The principle behind majorization is to iteratively minimize a complex function
f(q) via a simpler majorization function g(q, q̄) that is dependent on q and the
previously known estimate q̄. The majorization function has to satisfy three
essential requirements. First, at the supporting point q̄, f(q̄) = g(q̄, q̄). Second,
the majorizing function g should never be below f , that is f(q̄) ≤ g(q̄, q̄). Fi-
nally, g(q, q̄) should be simple, preferably linear or quadratic in q.

In majorization, we start with a supporting point q̄ and then construct a
majorizing function g(q, q̄) for the function f at the point q̄ and then minimize
the majorizing function to find the new supporting point q∗. The new point
q∗ is the minimum of g(q, q̄) and serves as the new supporting point for a
new majorization function g(q, q̄) where q̄ = q∗. This intuition is captured in
equation (6) below:

f(q∗) ≤ g(q∗, q̄) ≤ g(q̄, q̄) = f(q̄). (6)

This shows that iteratively, the majorization function never increases f and
usually decreases it. By repeating these iterations, we obtain a monotonically
non-increasing sequence of function values. For convex f, after a sufficient num-
ber of iterations, the IM algorithm stops at a global minimum (Groenen et al,

9



2008).

For the problem of minimizing our respective SVM loss functions, the ma-
jorizing function necessary to minimize the absolute, quadratic and huber hinges
have been derived in Groenen et al. (2008) and are given below for the two
classes.

g−1(qi) = a−1i − 2b−1i + c−1i

g1(qi) = a1i − 2b1i + c1i
(7)

The variables are defined as follows:

ai =

{
max(δ, a−1i) for i ∈ G−1
max(δ, a1i) for i ∈ G1

, bi =

{
b−1i for i ∈ G−1
b1i for i ∈ G1

, ci =

{
c−1i for i ∈ G−1
c1i for i ∈ G1

where δ is a small positive constant that is smaller than the convergence criterion
ε. It replaces a−1i or a1i for the cases where q̄ = −1 or q̄ = 1 respectively. When
we combine the two classes, this leads to the following majorization inequality:

LSVM(c,w) ≤
n∑

i=1

aiq
2
i − 2

n∑
i=1

biqi + λ

m∑
i=1

w2
j . (8)

Recall that, qi = c+x
′

iw. We can deal with the optimization using one variable
by adding an extra column of ones to the matrix X. Let v = [c,w] so that
q = Xv. Now (2) can be majorized as:

LSVM(c,w) ≤
n∑

i=1

(x
′

iv)2 − 2

n∑
i=1

bix
′

iv + λ

m∑
j=2

v2j

= v
′
X
′
AXv− 2vX

′
b + cm + λv

′
Pv

= v
′
(X
′
AX + λP)v− 2v

′
X
′
b + cm

(9)

where A is a diagonal matrix with the elements ai on the diagonal, b is a vector
with elements bi, cm =

∑n
i=1 ci and P is the identity matrix except for p11 = 0.

Differentiating the last line of the above equation with respect to v yields a
system of equations linear in v:

(X
′
AX + λP)v = X

′
b. (10)

The update v+ solves this set of linear inequalities. Extra computational ef-
ficiency can be obtained for the quadratic and huber hinge errors for which
a−1i = a1i = a for all i and this a does not depend on q̄. In these cases the
update simplifies to:

v+ = (aX
′
X + λP)−1X

′
b. (11)

Thus, the m×n matrix S = (aX
′
X+λP)−1X can be computed once and stored

in memory so that the update simply amounts to: v+ = Sb.
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5 SVM Partitioning

DT are a means to express a classification rule for a given instance i using the
values of the predictor variables for that instance (Quinlan 1986). The instance
i contains the vector x

′

i of predictor variables and what the decision tree does
is show how to classify this instance based on rules that need to be successively
applied to the predictor variables of this instance. As an example, consider a
simple case with only two predictor variables and two decision rules. A decision
tree corresponding to this situation is given in Figure 3 below.

Instance i

x1 ≤ 100

x2 ≤ 0.5 x2 > 0.5

x1 > 100

−1 1

1

Figure 3: Illustration of how a given test instance flows through a normal deci-
sion tree

What this tree says, is that for a new instance i, we first ask if the variable
x1 is less than or equal to 100. If that is not the case we label i as a class 1
instance. If it is less than or equal to 100 then we ask whether the variable x2 is
less than or equal to 0.5. If it is, then i is assigned to class -1 and otherwise it is
assigned to class 1. This is how the decision tree provides us with a classification
rule. In this situation, the data space is partitioned as shown in Figure 4 below.
In Figure 4, the horizontal axis corresponds to the variable x1 and the vertical
axis corresponds to the variable x2.
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Figure 4: An illustration of how the data space is partitioned using a normal
decision tree

In Figure 4 above, a circle represents an instance and every circle to the
right of the vertical line is assigned a class 1 label. For those instances to the
left of the vertical line, those that are below the horizontal line are also assigned
a class -1 label whilst those that are above it are assigned a label of class 1.
Thus, in a normal decision tree application, each node represents an attribute
(predictor variable) based test. So in general, the partitioning procedure for
the tree is based on the the values of one predictor variable at a time. This
results in a data space that can only be partitioned according to block forma-
tions. Which is rather restrictive in the sense that there could be more complex
relationships that could be used to discriminate between classes at a given node.

The SVM partitioning procedure works in a slightly different way. As op-
posed to the partitioning rule being based on an attribute based test, the par-
titioning rule is based on an SVM based test. Each node will contain different
values for the parameter vector v. At a given node N a prediction q is made at
that node, which determines whether the instance i should be of class 1 or class
-1. The instance i then moves along the branch for which it was predicted, onto
the successive node that corresponds to that branch. This node will then have a
different set of parameter estimates v that allow us to make another prediction
for the instance i. Given the results of this second prediction, the instance i
then follows along the branch for which it was predicted. Onto yet another
node with its own set of parameter estimates. This process continues until a
leaf node is reached and no more predictions can be made. The corresponding
class for i is then the class to which it was allocated at the node before the leaf.
This procedure is illustrated in Figure 5 below which has the same structure as
Figure 5 with the only difference lying in the branching rule.
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Instance i

qi,node1 ≤ 0

qi,node2 ≤ 0 qi,node2 > 0

qi,node1 > 0

−1 1

1

Figure 5: Illustration of how a given test instance flows through an SVM parti-
tion based decision tree

In Figure 5 above, the estimates q are denoted with the subscript indicat-
ing which node the prediction belongs to as a means to emphasize that each
node contains a different set of parameter estimates v which lead to different
predictions. This has the effect of removing the restriction that the data space
has to be partitioned according to blocks and essentially frees the shape of the
partitioned data points, allowing this shape to be anything. The resulting shape
is determined by the values of the parameter estimates v for each node. Figure
6 below provides an illustration of this. Recall from Figure 1a that the values
of w1 and w2 determined the direction of the projection line and the intercept c
which is orthogonal to it, shows us how to partition the data space. Here, each
estimate v can be seen to do just that. They each provide their own partition-
ing line of the data space, which we can see in Figure 6. Notice here, that the
shape of these partitions is not limited to block formations. This allows us to
capture more complex relationships between the predictor variables and class
labels, allowing us to better discriminate between classes at each node.

What is now left is to give an account of how to develop this tree. The
resulting tree will simply hold the parameter estimates v at each node allowing
us to classify new instances. Using the training data, the tree is developed in
a top down manner. It allows two child nodes to grow from each node that is
not a leaf. Each node N contains a set of instances I, if N is not a leaf then
two child nodes are grown from N that contain a binary split of the instances
I in N. Thus, the two child nodes contain their own set of instances IleftChild

and IrightChild such that I = IleftChild ∪ IrightChild. The root node contains the
full training data set. The vector of parameter estimates v for this node is the
result of training an SVM on this full training data set. The class -1 predictions
go the the left child and the class 1 predictions go to the right child. A SVM is
then trained on the instances IleftChild and IrightChild resulting in the parameter
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Figure 6: An illustration of how the data space is partitioned using a SVM
partitioning rule

estimates vleftChild and vrightChild. A further prediction is then made for all the
instances in the left and right child nodes. The binary split for the left and right
child nodes then make up the instances that flow to the grandchildren of the
root node. This process continues until no more nodes can be further divided,
that is, an appropriate stopping criterion is reached. Here, it is important to
note that for each training of the SVM at a given node, 5-fold cross-validation is
used to determine the optimal λ for the specific set of data which corresponds to
that node. This ensures that we obtain better parameter estimates for the node
an thus allows us to make better splits. To perform the cross validation, we run
the SVM model on a grid of λ values (λ = 2p for p = −15,−14.5,−14, ...., 7.5, 8
where 2−15 = 0.0030518 and 28 = 15) and choose the λ that results in the
highest prediction accuracy.

We stop splitting a node N when one of the following criteria is reached:
(1) the number of instances i that flow to the node is equal to the number of
explanatory variables, (2) all the instances i that are present in the node are
assigned the same class label. This means all instances in the node are predicted
to be either of class 1 or class -1 with no instance assigned to a different class
label from the rest. Thus we have a situation of homogeneous predictions.

The first stopping criterion is motivated by the fact that, at a node where
the number of instances is less than the number of explanatory variables, pa-
rameter estimates v will still need to be determined for that node. If the number
of instances n is less than the number of explanatory variables m this means we
are using a smaller number of data points to determine a larger number of esti-
mates. Generally speaking, this often leads to poor estimates, especially when
dealing with new cases. Thus, to ensure that each SVM partition in the tree is
useful and informative this stopping criterion is developed. The second stopping
criterion is motivated by the fact that, when a node contains observations of a
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single class, then all subsequent predictions of the majorization algorithm will
correspond to that class. This implies that we cannot have a binary split but
more importantly, it shows those instances in the node most likely belong to
the given class and hence no performance gains can be made by assigning any
of the instances i in the given node N to a different class.

Thus, all in all, this DT-SVM partitioning procedure has two phases. First,
it has to grow the decision tree. This tree is grown from the training data and
the resulting nodes of this tree will each contain a vector of parameter estimates
v that determine how a given test instance i flows through the tree. Secondly,
there is the process of taking test instances and making predictions for them.
This is done by an algorithm that determines how a given instance will flow
through the tree from root to leaf, where the leaf determines the corresponding
predicted class label. The pseudo code for such an algorithm is given in Algo-
rithm 1 below.

Algorithm 1: Pseudo code for classifying new instances using the con-
structed decision tree

Data: the vector x
′

i of predictor variables for a test instance i
Result: the last value of prediction
initialization:
prediction = 0;
currentNode = root;
canSplit = 1;
while canSplit equals 1 do

CurrentP = make prediction using parameter estimates of this node;
prediction = currentP;
go to left or right child node depending on prediction;
if we can branch at this node then

return to top of while loop;
else

canSplit = 0;
end

end
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6 Numerical Analysis

To investigate the performance of this DT-SVM partitioning methodology, the
prediction accuracy of the tree classifier is analyzed in comparison to a single
SVM classification. The data is analyzed using data gathered from the UCI
repository and the homepage of the LIBSVM software. The data sets are cho-
sen according to: the number of observations in the data sets; the ratio of class
labels; the degree of sparsity of the data and the ratio of instances to attributes.
The precise information about each data set is found in Table 1 below.

Dataset Source n n1 n-1 m Sparsity

Australian UCI 690 307 383 14 20.04
Heart stalog UCI 270 120 150 13 0.00
Hepatitis UCI 155 123 31 19 39.68
Sonar UCI 208 97 111 60 0.07
Voting UCI 434 167 267 16 45.32
Diabetes LIBSVM 768 500 268 8 0.15
Breat cancer w UCI 699 458 383 14 20.04

Table 1: characteristics of the data sets used for the numerical analysis

The experiments were applied using an absolute and quadratic hinge. The
Huber hinge is disregarded because according to Groenen et al. (2008), the Hu-
ber hinge is a compromise between the absolute and quadratic hinge in terms of
the way the loss function is constructed, hence we expect that the performance
of the tree created using the Huber hinge will not be drastically different from
one created using either the absolute or quadratic hinge. Consequently, it was
excluded from the analysis. All experiments were implemented using MATLAB
2016a, on a 3.4GHz AMD processor with 4GB of RAM under windows 7.

In these experiments, the performance indicator of interest is the prediction
accuracy of the tree in comparison to the single SVM. To do this, half of the
data set is used to train the SVM and the other half is used for testing. Specifi-
cally, the odd numbered instances are used for training while the even numbered
instances are used for testing. Run times are not of interest because its is ob-
vious that by creating the tree and running more than one SVM, the run time
of the tree classifier will be longer than the single SVM classifier. Furthermore,
because this is a tree, the loss of the tree cannot be compared to the loss of
a single SVM because the tree contains multiple SVM models This would be
akin to comparing a vector of losses to a single loss. Finally, the major goal of
all classification models is to predict accurately, thus it makes sense that only
prediction accuracy is considered in this analysis. Table 2 below provides the
percentage of correctly predicted instances for each data set when the tree is
applied using a quadratic hinge, whilst Table 3 provides the same results for the

16



absolute hinge error.

Dataset Tree Single SVM Number of nodes
Australia 85.8 84.6 4
Heart stalog 82.9 80.0 7
Hepatitis 59.7 67.5 6
Sonar 71.1 71.1 3
Voting 89.9 89.9 4
Diabetes 72.4 78.4 26
Breast cancer w 84.5 85.7 9

Table 2: Prediction accuracies for the quadratic hinge on out of sample forecasts

Dataset Tree Single SVM Number of nodes
Australia 82.3 85.8 7
Heart stalog 82.3 82.3 3
Hepatitis 85.3 85.3 3
Sonar 76.9 76.9 3
Voting 94.4 94.4 3
Diabetes 69.3 77.4 7
Breast cancer w 94.5 94.5 3

Table 3: Prediction accuracies for the absolute hinge on out of sample forecasts

Tables 2 and 3 above provide some interesting findings. First of all, we notice
that the tree implemented using the absolute hinge error never outperforms the
single SVM. Yet, the tree created using the quadratic hinge error outperforms
the single SVM on some occasions. Additionally, we also observe that the num-
ber of active nodes in the quadratic tree are often more than those of the tree
created using the absolute hinge error. As a matter of fact, it is often the case
that the tree created using the absolute hinge error has exactly 3 nodes. This
means, only one split was made from the root node resulting in only 3 active
nodes in the tree. This also explains why the results for this tree is often the
exact same as those from a single SVM, this is because only one prediction is
made in the tree and this prediction corresponds to the one that will be made if
the entire data set is used. Upon investigation, it was observed that the reason
why this often happens is because, when an additional SVM is run on all the
instances that were predicted to be of a certain class in the previous node, the
predictions for these instances doesn’t change, prompting the tree then, to stop
at that point. For the results of the tree constructed using the quadratic hinge.
The results show that this tree outperforms the single SVM on two occasions,
it under performs on 3 occasions and there is a tie in 2 situations. As in the
absolute hinge, the reason for the draws is due to the fact that the trees con-
structed using this data set end up with 3 active nodes. This means only one
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prediction is made in such trees and this prediction corresponds to that which
would be made if the entire data set was used. Voting is the only data set where
the performance is the same but the tree had more than 3 active nodes. In the
other situations, we observe that the tree can outperform the single SVM, yet
it does not do this consistently. Table 2 also shows that, in the situations where
the tree does under perform, the margin of this difference is larger than in the
situations where the tree outperforms. This means, when the tree performs
bad, it performs really bad, but when it performs well it performs moderately
well. This indicates that there might be certain types of data sets that are not
properly suited for this type of methodology.

Another possible reason for the results observed might have to do with the
number of instances in each data set. All the data sets used in the experiments
so far have less than 800 instances. This leaves less than 400 instances to be
used to build the tree. As the tree also partitions the data set even more and
runs multiple SVMs on these reduced data sets we can see how this will affect
the parameter estimates further down the tree. To investigate this, a larger
data set is experimented on. The results of this experiment are given in Table
4 below where the tree is constructed using the quadratic hinge error.

Dataset Source n n1 n-1 m Tree Single SVM
Occupancy UCI 8143 1688 6455 6 98.9 98.6

Table 4: Comparison on large data set

For this data set the results show that the tree outperforms the single SVM
yet, once again, the margin of difference is low. Specifically, the tree predicted
4024 out of 4071 instances correctly while the single SVM made 4015 correct
predictions. However, in this case it is not so surprising that the margin of
difference is small. This is because here, the general hit rate is already very
close to 100%. Although, the fact that the tree performs better even when
there is barely any room for improvement is a good finding, highlighting great
room for potential with this methodology.

7 Conclusion

The research conducted had one goal. Namely, to determine whether a hybrid
DT-SVM methodology, which uses a SVM based partitioning rule, could outper-
form a single SVM in terms of prediction accuracy. When evaluated on the basis
of that goal, the findings were mixed. Firstly, it was observed that in general,
this decision tree methodology works best for the quadratic hinge error. This
is because, the absolute hinge error suffers from the problem of making homo-
geneous class predictions very quickly. So from the first prediction, running an
SVM again on the instances in one branch does not change the class predictions
already made in the previous node. Hence, the trees that are created usually
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only have one level and in situations where there is more than one level, the per-
formance of the tree is poor. For the quadratic hinge error the results are more
hopeful. Out of all the 8 data sets that were tested on, the tree outperforms
the single SVM on 3 of them, ties on 2 of them and under performs on 3 data sets.

In sum, these results are interesting because they indicate that this DT-
SVM partitioning methodology can be used to provide performance gains over
the standard SVM. The main issue however is that it does not consistently do
so. More research will have to be conducted as to which situations it is that
this DT-SVM methodology performs better. Specifically, one may investigate
the issue of large data sets and imbalances in the class distribution to assess
how these may affect the performance of this methodology. Another possible
area of further inquiry may be the issue of over fitting. The Hepatitis and
Diabetes data sets have a relatively large number of active nodes in comparison
to the number of instances in the data set and to other data sets with the same
number of instances. So, although the Australia data set has close to the same
number of instances as that of Diabetes, the number of active nodes it has is 4
whilst Diabetes has 26. The tree methodology also outperforms in the Australia
data set but under performs in the Diabetes. This indicates that the tree in
the Diabetes probably over fitted the data in the training phase and hence
performed worse in the testing, which was done out of sample. In general, over
fitting is a danger with all decision trees and it seems to happen here. Hence,
for further research, one may consider developing trees that have a relatively
moderate amount of active nodes in comparison to the the number of instances.
So for example, consider that the Diabetes data set has more active nodes than
the Occupancy data set which has only 6 active nodes yet far more instances. I
look forward to seeing the results of such exploratory research.
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