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Abstract

This thesis evaluates the performance of different link removal methods to minimize the
spread of infections in local and metapopulation networks. The aim is to replicate the results
of Nandi and Medal (2016) and to extend the analysis to a metapopulation network. For the
local network, we study generated scale-free networks and for the metapopulation network
we study a global airline network. We examine the link removal methods MinConnect,
MinAtRisk, MinPaths and MinWPaths proposed by Nandi and Medal (2016) and compare
these with the Random method. As these methods use indirect metrics, the spread of
infection is measured using simulation. We find that MinConnect is in general most
effective to maximize the time to infect half of the susceptible nodes in a scale-free network,
whereas MinAtRisk is the best method to minimize the number of new infections. Most
results are in line with the findings of Nandi and Medal (2016). One exception is that
MinWPaths performs worse than expected in slowing down the speed of spread. For the
global airline network, MinWPaths performs best. We conclude that the performance of
the link removal methods strongly depends on the network structure, the type of infection
and some other factors.
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1 Introduction

The spread of undesirable things such as infectious diseases, computer viruses and rumors
is a common problem but difficult to control in practice. For example, a recent report
of the World Health Organization (2016) showed the spread of the well-known infectious
disease HIV/AIDS is still not under control. Although the number of people dying due to
AIDS decreased with 45% over the last ten years, there are more people living with HIV
nowadays and there are still two million new infections per year. Another example is the
constant threat of computer viruses as we are more and more connected because of the
Internet. Finally, the recent shooting at a pizzeria in Washington as a result of fake news,
is an example that shows the dramatic consequences the spread of rumors can have (Kang
& Goldman, 2016).

This thesis addresses the problem of minimizing the spread of infections by removing a
set of links. Many studies investigate this issue in local networks. However, many local
networks are part of larger networks or metapopulations. A metapopulation is a population
consisting of multiple subpopulations with similar dynamics. This thesis evaluates the
performance of different link removal methods (1) in local networks, where every node
represents e.g. one person, computer or social media account and in (2) metapopulations,
where every node represents a local network (see Figure 16). In particular, the goal of this
thesis is to replicate the results of Nandi and Medal (2016) and to extend the analysis
to a metapopulation network. In particular, this thesis evaluates the spread of a disease
through a global airline network. In this case intervening in a local network might not be
possible (e.g. by blocking interaction between people a city), but it is possible to intervene
on a larger scale (e.g. by canceling flights to prevent the spread between cities).

Figure 1: Schematic view of metapopulation network.

The topic studied in this thesis is very important as the spread of infections can result in
large social and economical damage. It is of both scientific and societal relevance. From a
scientific point of view, this thesis contributes to the existing knowledge on the performance
of different link removal methods. Furthermore, a new simulation model to evaluate the
spread of infections in a metapopulation network is presented. Moreover, it is an interesting
issue from a policy perspective because it provides insight in how to use scarce resources
most efficiently.
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The remainder of this thesis proceeds as follows. In Section 2 the existing literature on
reducing the spread of infections in networks is discussed. The problem formulation is
presented in Section 3. Section 4 describes the link removal methods and the methodology
used to analyze this problem. The results are summarized in Section 5. Section 6 discusses
the findings and we conclude in Section 7.

2 Literature

To provide a clear overview of the existing literature, the related work is evaluated as
follows. First, the context of this research is discussed in Section 2.1. Next, two streams in
the literature minimizing the spread of infections using network theory are distinguished
in Section 2.2: node removal versus link removal methods. Finally, the latter one will be
discussed in more detail in Section 2.3.

2.1 Context

The study of the spread of infections in real life networks is a relatively new field of research.
However, the study of graphs goes back to the 18th century, when Leonhard Euler published
his work that is nowadays known as the problem of the seven bridges of Köningsberg
(Grimaldi, 2004, p. 109). For a long time graph theory focused purely on generated graphs
because not much was known about complex real life networks. First, graph theory studied
only regular graphs, where each node has the same number of neighbors. Since the 1950’s,
random graphs were also used to model large-scale networks. In a random graph as defined
by Erdös and Rényi the nodes are connected by a random set of edges (Albert & Barabási,
2002). Although random graphs are useful and interesting for theoretical purposes, it seems
unlikely that complex real life systems such as the network of chemicals in a cell or the
Internet are truly random.

The recent increase in data availability on real life networks, the rapid advancement of
computing power and the growing cooperation between different disciplines all contributed
to a fast development of complex network theory (Albert & Barabási, 2002). This research
led to three important observations. First of all, most large-scale networks are small-worlds,
which means that most nodes are only a small distance away from each other. This is in
line with the idea of six degrees of separation first mentioned by writer Frigyes Karinthy in
1929 and later shown by social psychologist Stanley Milgram in 1967. Secondly, most real
life networks are more clustered than random graphs suggest as people tend to form groups.
Last of all, empirical research shows not all nodes have the same number of links. Instead,
it is shown that in most networks a large number of nodes have a small number of links
and only a few nodes have a large number of links (Enns, Mounzer, & Brandeau, 2012).
Networks with this property are called scale-free networks and have a power law degree
distribution instead of a Poisson distribution for the node degree. In Figure 2 regular,
random, scale-free and small-world graphs are shown.

Figure 2: Examples of graphs.
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The maturation of complex network theory allowed researchers to study the spread of
infections in complex real life networks (Yang, Wu, & Wang, 2013). This resulted in a
large increase in the number of researchers studying the spread of infections using network
theory in the past decade.

Earlier research into epidemics used homogeneous-mixing compartmental models based on
the assumption that all individuals have an equal probability to be in contact with each
other (Kermack & McKendrick, 1927). Although the models were later extended to incor-
porate some heterogeneity between individuals, network-based approaches to the spread of
infections are more advanced and allow to incorporate contact behavior of people explicitly.
However, homogeneous-mixing compartmental models can sometimes be appropriate as
Bansal, Grenfell, and Meyers (2007) found that contact patterns among people are not as
diverse as expected. Nevertheless, they conclude that using the network-based approach is
more intuitive and accurate.

There are a few related problems to minimizing the spread of infections in a network. One
is the problem known as the critical node detection problem aimed at maximizing the
fragmentation of a network or similarly, minimizing the connectivity (Di Summa, Grosso,
& Locatelli, 2012; Addis, Di Summa, & Grosso, 2013; Veremyev, Prokopyev, & Pasiliao,
2014). The difference with the problem studied in this paper is the assumption that it
is unknown which nodes are infected or susceptible. The critical node detection problem
thus focuses on prevention instead of reaction, which makes it more difficult to tackle the
spread of infections (Nandi & Medal, 2016). As the methods developed for the critical
node detection problem do not use information about the state of the nodes, they will
be less effective when used as reactive approach. Network vulnerability and robustness
analysis is also a related problem as it is the opposite of the critical node detection problem.
Finally, one can also aim to maximize the spread of infections in a network instead of
minimizing the spread. This leads to the third related problem, the influence maximization
problem, where the most influential nodes are searched for initial activation (Domingos &
Richardson, 2001; Kempe, Kleinberg, & Tardos, 2003; Chen, Wang, & Yang, 2009). Such
a model can be useful for marketing purposes, for example to analyze which individuals to
target for a new product line or to find the most influential users on social media for the
spread of new ideas.

2.2 Node removal versus link removal methods

In literature, two methods to minimize the spread of infections in a network can be distin-
guished: node removal and link removal. The latter one is more subtle, as removing all
links belonging to one node is similar to removing the node, but not all links have to be
removed necessarily in this case (Nandi & Medal, 2016). The link removal method is thus
more flexible, and hence expected to be more efficient. Marcelino and Kaiser (2012) for
example found in their research that removing connections between certain cities was more
effective than closing entire airports to prevent the spread of influenza. However, there
might be situations where either node removal or link removal is not possible and the right
approach has to be chosen accordingly. For example, it is possible to vaccinate individuals
but preventing contact between individuals is not feasible. In this case node removal is
the right approach. On the other hand, it might not be possible to determine the location
of terrorists in order to eliminate the terrorist network, but it might be possible to block
communication between them. This requires a link removal method.
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Many researchers studied the node removal problem in the last decade. Callaway, Newman,
Strogatz, and Watts (2000) study the deletion of nodes in networks with different node
degree distributions and found that networks with a power law degree distribution are
robust against random removal of nodes, but vulnerable for targeted removal of the most
connected nodes. Newman, Forrest, and Balthrop (2002) examine the spread of computer
viruses and evaluate different strategies to minimize the impact of the viruses. They
found that removing nodes with the highest degree works well in undirected graphs, which
is in line with the findings of Callaway et al. (2000). Moreover, Newman et al. (2002)
conclude removing nodes in decreasing order of out-degree can be effective for the case of
a directed graph. Interesting applications include the work of Latora and Marchiori (2004)
and Brown, Carlyle, Salmerón, and Wood (2006) who study this problem in relation to
terrorist attacks, and Boginski and Commander (2009) who analyze protein interaction
models using techniques developed for the critical node detection problem. Node removal
methods, such as removing nodes in decreasing order of (out-)degree, can thus be very
useful in specific situations where link removal methods are not possible.

The link removal problem is also studied extensively. Many researchers proposed new link
removal methods, among who Kimura, Saito, and Motoda (2009), Enns et al. (2012) and
Tong, Prakash, Eliassi-Rad, Faloutsos, and Faloutsos (2012). They all find their algorithms
are better than several existing link removal methods. Kimura et al. (2009) even find their
method is 20 to 60 times more effective. Chung, Chew, Zhou, and Lai (2012) find it is
more cost effective to remove less busy flight connections than to remove popular flight
connections. Yang et al. (2013) analyze the spread of an epidemic using package exchanges
to provide insight in traffic dynamics and conclude that removing edges following the
out-degree method is more effective than the edge-betweenness method for a traffic-driven
epidemic. Koch, Illner, and Ma (2013) prove that random edge removal, as expected, always
lowers the basic reproduction number. The basic reproduction number is defined as the
number of infections caused by a single infected node in a susceptible population. Kuhlman,
Tuli, Swarup, Marathe, and Ravi (2013) achieve a large improvement to block simple and
complex contagions compared to existing methods. In case of a complex contagion a node
will only be infected after at least two interactions with infected nodes. Furthermore, they
discover the network structure has a huge impact; it is more difficult to prevent the spread
of infections in a network with a smaller average degree and clustering coefficient. Finally,
Nandi and Medal (2016) develop four models to minimize the spread of infections with
different interdiction metrics. They conclude it is best to choose a model based on the
specific problem setting. For low to moderate transmission probabilities, it is most effective
to reduce the total weight of the transmission paths between infected and susceptible
nodes. For moderate to high transmission probabilities, it is best to minimize the number
of susceptible nodes at risk of infection.

There is hardly any research combining node and link removal methods simultaneously. He,
Liang, and Yuan (2011) proposed a combined node and link removal method that minimizes
the sum of the expected loss caused by infection and prevention costs of removing links or
nodes.

From the literature presented in this section it is also clear that some researchers study very
general situations, whereas others apply existing techniques or develop specific techniques
for a certain application. However, this distinction is not examined further as most
techniques, albeit slightly adjusted, can be used in a more general or specific setting. As
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explained before, link removal methods are more flexible than node removal methods, hence
node removal methods are only better when link removal methods are not possible. Link
removal methods are thus preferred to minimize the spread of infections in the global airline
network studied in this thesis. The next section therefore focuses on research covering,
general and specific, link removal methods.

2.3 Link removal methods

The existing literature on link removal methods is compared based on four aspects: the
research objective, the measure for the spread of infection, the methodology and the
performance evaluation.

2.3.1 Research objectives

Although the ultimate goal of all researchers studying link removal methods in relation
to the spread of infections is to minimize the spread of infections, the research objectives
are often focused on a particular subproblem. Some of them propose new link removal
methods, whereas others investigate the spread of infections under specific circumstances
or take a step back to examine the effect of removing links on a certain infection measure.

New methods are proposed by Kimura et al. (2009), Tong et al. (2012) and Nandi and Medal
(2016) to minimize the spread of infections by removing a certain number of edges. Enns
et al. (2012) also propose a new link removal method, but have a slightly more specific goal
as their aim is to minimize the number of nodes at risk. In other words, this means their
goal is to have as many nodes as possible that are not connected to an infected node in any
way. If a susceptible node is connected to an infected node through one path, it is already
at risk. Kimura et al. (2009), Tong et al. (2012) and Nandi and Medal (2016) consider differ-
ent measures to minimize the spread of infections, but do not consider this as their final goal.

Others investigate the spread of infections under specific circumstances. Kuhlman et al.
(2013) also aim to minimize the spread of infections, but study infection spread both in
the case of simple and complex contagion spread. He et al. (2011) aim to minimize the
expected total loss by balancing the costs of infection and prevention by using node and
link removal methods simultaneously. Chung et al. (2012) and Yang et al. (2013) both
use existing link removal methods to study infection spread in a specific situation. Chung
et al. (2012) aim to make a trade-off between cost and efficiency on removing connections
in real world networks. Yang et al. (2013) investigate the impact of different link removal
methods on traffic-driven epidemic spreading. They thus examine the spread of infection
through the exchange of packages.

A good example of a study that investigates the effect of removing links on a certain
infection measure is the study by Koch et al. (2013). They investigate the effect of removing
of a number of edges on the basic reproduction number. Hence, they do not answer the
question which edges need to be removed, but instead consider the number of edges that
need to be removed to curtail an epidemic.
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2.3.2 Measuring the spread of infections

Next, there are also some differences in how the spread of an infection is measured. The
spread of infections is a stochastic process as every node is infected with a certain proba-
bility. As optimization with the use of simulation is very time demanding, most research
uses indirect measures to represent the spread of an infection.

Enns et al. (2012) for example use the number of susceptible nodes at risk of infection,
which can easily be computed by counting the number of susceptible nodes that are
connected with infected nodes through a path. Kimura et al. (2009) consider worst and
average contamination based on the influence degree of a node to capture the worst case
and average scenario in terms of the number of contaminated nodes.

The research of Tong et al. (2012) and Chung et al. (2012) uses a less intuitive metric for
infection spread. Both evaluate the effectiveness of removing an edge based on the decrease
in the eigenvalue of the network adjacency matrix. This idea is based on the finding that
the epidemic threshold of any graph depends on the eigenvalue of its adjacency matrix
(Wang, Chakrabarti, Wang, & Faloutsos, 2003). The measure used by Koch et al. (2013)
is the basic reproduction number as this is the factor of interest in their research. The
eigenvalue can be used as the basic reproduction number.

Nandi and Medal (2016) also use indirect metrics for their heuristics, but in contrast
to the others they evaluate the performance based on two direct measures of infection
spread: the expected number of new infections and the expected time to infect half of
the susceptible nodes. They compare four models with different metrics to minimize the
spread of infections. For an explanation of these methods, we refer to Section 4.1.

2.3.3 Methods

Most proposed link removal methods are heuristic algorithms. Kimura et al. (2009) propose
a greedy strategy that estimates the influence degree of a certain node in a graph using
bond percolation. The bond percolation process creates a sample of graphs for which the
influence degree of the nodes can be determined by randomly determining whether a certain
edge is used for information diffusion. Tong et al. (2012) also propose a heuristic algorithm,
but they focus on a feasible strategy to remove links based on the leading eigenvalue.

In addition to presenting a heuristic algorithm, some also provide a mathematical formu-
lation. One advantage of having a mathematical model is that many existing solution
methods can be used. Furthermore, it can help to develop better heuristic methods in
the future. Enns et al. (2012) view the problem as partitioning problem between in-
fected and susceptible nodes and propose a non-linear programming formulation based
on two-way graph partitioning. More specifically, the mathematical formulation is a
quadratically constrained quadratic program. This problem turns out to be NP-hard,
hence the formulation is used to derive a heuristic algorithm. Using exhaustive search,
they show for small problem instances that their heuristic method often results in the op-
timal partition and almost always saves the maximum number of susceptible nodes possible.

Nandi and Medal (2016) also provide a mathematical formulation for all four models.
Because they are able to formulate the problems as mixed-integer linear programs they
can also solve the models to optimality. Nevertheless, they propose heuristic algorithms
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to solve large problem instances. They find that the algorithm for the first two models
performs well as it often obtains the optimal solution. This is not the case for the algorithm
for the last two models, but the average optimality gap turns out to be small.

2.3.4 Evaluating performance

An important step of the current literature is validating the proposed method by comparing
with existing link removal methods using simulation. Commonly used link removal methods
for comparison are the random method, the degree method and the edge-betweenness method.
The random method as the name indicates, randomly selects a set of edges to remove. If
a method does not outperform the random method this indicates the method performs
poorly. The degree method has proven to work well in practice and deletes edges between
nodes with the largest number of links. Last of all, the edge-betweenness method removes
edges based on the largest reduction in the number of shortest paths.

Kimura et al. (2009) compare their proposed algorithm with the above three methods.
Enns et al. (2012) do not consider the degree method but instead they evaluate a more
specific edge-betweenness method that only counts the shortest paths between susceptible
and infected nodes. In addition, they compare their method with a measure based on the
clique size of the link and nodes it connects. Tong et al. (2012) also compare their method
with the random method and degree method. Next to this, they use two comparative
strategies based on eigen-scores and PageRank. Kuhlman et al. (2013) also compare with
the degree method and the method based on eigen-scores. It can thus be concluded that
the proposed methods are often compared with various existing methods. Unfortunately,
however, it remains usually unclear how the different proposed methods perform relative
to each other.

One exception is the work of Nandi and Medal (2016), who compare their method with the
proposed methods of Kimura et al. (2009) and Enns et al. (2012). This provides valuable
additional insights as it is most useful to know how the proposed methods perform relative
to each other. The three methods all take a reactive approach assuming the state of the
nodes is known.

After testing the method in small artificial examples, most researchers also try to validate
their methods in real life large-scale networks. Networks of very different fields are evaluated.
Chung et al. (2012) study a US air transportation network, a collaboration network and
a peer-to-peer internet network. Tong et al. (2012) test their proposed method on route
graphs. Kuhlman et al. (2013) evaluate the blocking methods based on a local social
contact network. Kimura et al. (2009) use a blog network and a Wikipedia network to
evaluate the performance of their proposed method. Finally, Enns et al. (2012) investigate
a network of residential hotels where drugs are injected. This shows the proposed link
removal methods are widely applicable.
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3 Problem formulation

The problem is formulated as follows: we model the network as an undirected graph
G = (N,E) where N is a set of nodes and E is a set of edges. Then we define I ⊆ N to be
the set of infected nodes and S = N\I the set of susceptible nodes. We aim to find the set
of links L ⊆ E of size b that minimizes the spread of an infection. The budget b indicates
how many links can be removed. A network can be anything, but in the context of the
global airline network studied in this thesis the local network consists of people (i.e. nodes)
and relationships between people (i.e. edges or links). Moreover, the metapopulation
network consists of cities (i.e. nodes) and flight connections between cities (i.e. edges or
links).

4 Methods

This section describes how the performance of the different link removal methods is
evaluated. To examine this in local and metapopulation networks, we follow the approach
of Nandi and Medal (2016). In short, this method first removes a set of links in a network
using a link removal method and then evaluates the spread of an infection in the remaining
network using simulation. The details are presented in this section. First, the different link
removal methods are introduced and explained in Section 4.1. Section 4.2 and 4.3 provide
the details for the case of the local and metapopulation network respectively.

4.1 Link removal methods

In this research the four link removal methods MinConnect, MinAtRisk, MinPaths and
MinWPaths presented by Nandi and Medal (2016) are used to remove a set of links to
minimize the spread of infections. Next to the proposed link removal methods, the Random
method is used as a benchmark. In this section the link removal methods are shortly
introduced. For the mixed-integer linear programming formulation of the proposed methods
we refer to the original paper. Although the models can be solved to optimality for small
or easy problem instances, the computation time explodes for larger instances. For the
MinPaths and MinWPaths formulation this is already the case for networks larger than 20
nodes. The computation time also highly depends on the problem configuration, hence
only a fraction of all problems can be solved to optimality. In addition, it is shown that
the heuristics as presented in Nandi and Medal (2016) perform relatively well. As this
thesis focuses on larger problems with varying problem configurations, the approximate
solution algorithms are used here instead of an exact method to solve to optimality.

The general set up of the four proposed link removal methods is described in Algorithm 1.
The input of the heuristics is a network modeled as the undirected graph G = (N,E). The
graph G contains information about the status of the nodes and about the probability an
infection is transmitted over a certain edge. In every iteration of algorithm, one link is
permanently removed from the network. This link is added to the set L consisting of all
permanently removed links. To determine which link should be removed, the algorithm
temporarily removes all remaining links E\{L} one by one to estimate the potential benefit
of removing a specific link e. This benefit depends on the objective of the specific link
removal method that is used. The difference between the four proposed link removal
methods is the infection spread metric used to determine which link should be removed.
In total the number of links that can be removed depends on the available budget b. The
number of replications of the random part in each algorithm is equal to M .
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Algorithm 1 Link removal method: General structure

1: procedure General Solution Algorithm
2: input G = (N,E)
3: initialization L = ∅
4: while links removed |L| < budget b do
5: for all remaining links in network E\{L} do
6: temporarily remove one link e from network → E\{L, e}
7: compute value infection spread metric for specific link removal method
8: if best value so far then
9: remember this as best link e∗

10: end if
11: add temporarily removed link e to network → E\{L}
12: end for
13: permanently remove best link e∗ from network → L = L ∪ e∗
14: end while
15: return remaining links E\{L}
16: end procedure

The next sections explain how the value of the infection spread metric is computed for the
different methods. The complete heuristic algorithms can be found in Appendix 8.1. Before
applying one of the algorithms, all links between infected nodes are removed. Omitting
them can reduce computation time and paths between two infected nodes are irrelevant
as no second infection can take place. Paths between susceptible nodes are not removed.
Although the proposed algorithms only take the initial state of the network into account,
these paths can become relevant when one of the nodes becomes infected.

4.1.1 MinConnect

The first proposed method has the objective to minimize the number of connections between
infected and susceptible nodes. A pair of nodes has a connection if there is at least one
transmission path. A path between two nodes is a transmission path if it contains no
other infected nodes. Choose to remove the links resulting in the smallest number of
remaining connections between infected and susceptible nodes. The number of connections
is computed as described in Algorithm 2.

Algorithm 2 Link removal method: MinConnect

1: procedure Compute Number of Connections (C)
2: input G = (N,E\{L, e})
3: for j ∈ 1, ...,M do
4: randomly select R = b− |L| − 1 links ∈ E
5: temporarily remove them → E\{L, e,R}
6: determine graph components of G = (N,E\{L, e,R})
7: for all combinations of i ∈ I and s ∈ S do
8: if i and s belong to same component then
9: update C = C + 1

10: end if
11: end for
12: add temporarily removed links R to network → E\{L, e}
13: end for
14: return value C
15: end procedure
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4.1.2 MinAtRisk

The second proposed method minimizes the nodes at risk of infection. Equivalently, the
goal is to have as many nodes as possible that are not connected to an infected node in
any way. To achieve this, the method tries to isolate as many susceptible nodes as possible.
The number of nodes at risk of infection can be computed in a similar way as the number
of connections. The difference is that we do not count with how many infected nodes
a susceptible node is connected, but instead we count the number of susceptible nodes
that has a connection with an infected node. The number of nodes at risk of infection is
computed as described in Algorithm 3.

Algorithm 3 Link removal method: MinAtRisk

1: procedure Compute Number of Nodes at Risk of Infection (A)
2: input G = (N,E\{L, e})
3: for j ∈ 1, ...,M do
4: randomly select R = b− |L| − 1 links ∈ E
5: temporarily remove them → E\{L, e,R}
6: determine graph components of G = (N,E\{L, e,R})
7: for all s ∈ S do
8: if s belongs to same component as any i ∈ I then
9: update A = A+ 1

10: end if
11: end for
12: add temporarily removed links R to network → E\{L, e}
13: end for
14: return value A
15: end procedure

4.1.3 MinPaths

The third proposed method maximizes the number of transmission paths removed. Or in
other words, the goal is to find a network with a minimum number of transmission paths
between infected and susceptible nodes. Choose to remove the links resulting in the largest
reduction in the number of transmission paths.

During the initialization, this algorithm computes the initial total number of transmission
paths. For this, the algorithm first randomly generates M trees of the graph G. A tree
is a connected, acyclic graph with |N | − 1 edges connecting all nodes N . Random trees
of G can be generated by using a simple random walk as described in Algorithm 4. One
important problem to take into account is the possibility that a node n is not connected to
any other node k ∈ N\n. In this case the algorithm does not terminate, because we will
never visit node n in the random walk. Therefore, we check beforehand if all nodes have at
least one connection. If this is not the case, we omit this node and construct a tree T on
the remaining graph. This has no consequences for computing the number of transmission
paths as the node n will never be part of a transmission path.
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Algorithm 4 Link removal method: MinPaths/MinWPaths

1: procedure Generate trees
2: input G = (N,E)
3: check if all nodes have a connection
4: for j ∈ 1, ...,M do
5: random walk in graph
6: choose random starting node n
7: while not all nodes visited do
8: randomly select next node n+ 1 connected to n
9: if first visit node n+ 1 then

10: add link (n, n+ 1) to tree Tj
11: end if
12: end while
13: end for
14: return trees T
15: end procedure

For all trees constructed we compute the number of transmission paths as described in
Algorithm 5, resulting in the initial total number of transmission paths. In each step of
the algorithm, the heuristic then counts the number of transmission paths that contain the
specific link e to compute how many transmission paths would be removed if you choose
to remove that link. If the link e∗ is permanently removed, also remove the transmission
paths containing that link as these paths no longer exists.

Algorithm 5 Link removal method: MinPaths

1: procedure Compute number of paths (P)
2: input T
3: for s ∈ S do
4: for i ∈ I do
5: find shortest path between node s and i
6: if path exists & path does not contain any infected nodes then
7: update P = P + 1
8: end if
9: end for

10: for s+ 1 ∈ S do
11: find shortest path between node s and s+ 1
12: if a path exists & path does not contain any infected nodes then
13: update P = P + 1
14: end if
15: end for
16: end for
17: return value P
18: end procedure

4.1.4 MinWPaths

The last proposed method is a weighted version of the MinPaths method. The objective of
this method is to minimize the total weight of the transmission paths between infected and
susceptible nodes. The weight of each path is determined by multiplying the transmission
probabilities of the links on that path. During the initialization, this algorithm computes
the initial total weight of transmission paths by generating random trees of G as described
before (see Algorithm 4). The initial total weight of transmission paths for the constructed
trees is computed as described in Algorithm 6. In each step of the algorithm, the heuristic
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considers the total reduction in weight if you would remove link e. If the link e∗ is
permanently removed, also remove the transmission paths containing that link as these
paths no longer exists.

Algorithm 6 Link removal method: MinWPaths

1: procedure Compute number of weighted paths (W)
2: input T
3: for s ∈ S do
4: for i ∈ I do
5: find shortest path between node s and i
6: if path exists & path does not contain any infected nodes then
7: compute weight w of path: multiply transmission probabilities of links
8: update W = W + w
9: end if

10: end for
11: for s+ 1 ∈ S do
12: find shortest path between node s and s+ 1
13: if a path exists & path does not contain any infected nodes then
14: compute weight w of path: multiply transmission probabilities of links
15: update W = W + w
16: end if
17: end for
18: end for
19: return value W
20: end procedure

4.1.5 Random

In addition, we compare the proposed methods with the random link removal method.
The random method randomly removes a set of links of size b from the network and is
performed M times for each generated network to get reliable performance measures.

4.2 Local network

This section describes how the local network is obtained and how the performance of the
link removal methods is evaluated in the local network.

4.2.1 Generating scale-free networks

For the case of a local network the four methods will be compared on generated scale-free
networks. Random networks are not considered here as the interest is in real life networks,
which are often scale-free but seldom random.

The random scale-free networks are generated using the method of Barabási and Albert
(1999). This method starts with a small number of nodes m0

1. These nodes are linked
with |m0| − 1 links, hence the starting point is a connected graph (Barabási, 2016). Then
one node is added at a time until the desired network size is obtained. Connect each node
with m (< m0) already existing nodes when you add it. The probability a new node is
connected to a certain existing node i depends on the connectivity ki of that node. The
connectivity ki is defined as the degree of node i and the probability as π(ki) = ki∑

j kj
,

where the sum is over all existing nodes j. This is called preferential attachment, as a new

1This thesis uses m0 = 2, 5 and 10 for networks of size 30, 100 and 150 respectively.
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node is more likely to connect to higher degree nodes. The result is a scale-free network
with t+m0 vertices, mt+m0 edges and a power law degree distribution with an exponent
γ ≈ 2.9. Links are added until the desired number of links is obtained, which is 2|N | for a
network with average node degree of 4.

4.2.2 Simulation

A simulation model is used to evaluate the performance of the link removal methods. This
is necessary because the methods are not able to minimize the spread of infections directly.
Instead all methods use indirect objectives targeting the connectivity of the graph.

We use two types of simulations: a susceptible-infectious and a susceptible-infectious-
recovered simulation. The SI simulation is used to calculate the expected time to infect half
of the susceptible nodes. The SIR simulation is used to calculate the expected number of
new infections. In the SIR simulation nodes have the possibility to recover from infection,
which is more realistic in most situations. Nevertheless, we use the SI simulation to analyze
the speed of the infection spread because it is possible in the SIR simulation that the
infection spread stops before half of the nodes is infected.

Both simulations are built up as follows: in each iteration, we draw a random number
for every link between an infected and susceptible node. Then, for each of these links we
compare the random number to the probability of transmission. If the random number
is smaller than the probability of transmission, the infected node infects its susceptible
neighbor node. In addition, we draw a random number for each infected node in the SIR
simulation, if the random number is smaller than the probability of recovery, the infected
node recovers and is immune for the infection. In each iteration we assume the infection is
first able to spread through the network, before the node will recover. The SI simulation is
stopped when half of the susceptible nodes is infected and the SIR simulation terminates
automatically when all nodes are either recovered or susceptible. It is possible, however,
that the SI simulation will not terminate. For example, when there are no links left between
infected and susceptible nodes. This would happen if the algorithm is performing really
well. Therefore, we also stop the SI simulation if there are no links connecting infected and
susceptible nodes. If this happens, we take the maximum value of the time to infect half of
the susceptible nodes for this generated network as replacement value. Both simulations
are performed M times for each generated network and link removal method to get reliable
results.

4.2.3 Comparison methods

The four methods will be compared for different values of the transmission probability τI ,
the recovery probability ρ, the initial fraction of infected nodes i and the fraction of links
removed r. To limit computation times we investigate scale-free networks of size s = 30.
More specifically, to evaluate the performance of the different methods in a local network
the following steps are performed:

1. Randomly generate a scale-free network

2. Find a set of links to remove from the network using one of the link removal methods

3. Remove the links from the network
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4. Examine the infection spread on the remaining network in terms of the expected
number of new infections and the expected time to infect half of the susceptible nodes
using simulation

All steps will be replicated 50 times for each link removal method and combination of
parameters to get reliable results. Furthermore, the number of replications M of the
simulation and random parts of the link removal methods equals 100.

We investigate the performance of the link removal methods in several scenarios (see Table
1). For each scenario, we let the transmission probability τI vary over the values 0.05, 0.15,
0.30 and 0.9, while all other parameters remain constant. Set i = 0.2, r = 0.2 and ρ = 0.15
in the base case. Next, we consider several changes in parameters. First, we investigate the
case of a higher initial fraction of infected nodes. Second, we examine a change the fraction
of removed links. Last of all, we investigate the effect of a change in the probability of
recovery. Let all other parameters stay the same as in the base case.

Table 1: Different combinations of parameter values investigated in local network

Scenario
Initial fraction of
infected nodes i

Fraction of
removed links r

Recovery
probability ρ

1. Base case 0.2 0.2 0.15
2. Higher infected 0.3 0.2 0.15
3. Lower removed 0.2 0.1 0.15
4. Higher infected & lower removed 0.3 0.1 0.15
5. Higher removed 0.2 0.3 0.15
6. Higher recovery 0.2 0.2 0.3

4.3 Metapopulation network

This section describes how the metapopulation network is obtained and how the performance
of the link removal methods is evaluated in the metapopulation network.

4.3.1 Global airline network

For the case of a metapopulation network the four methods will be compared on one specific
type of network, the global airline network obtained from the paper of Marcelino and
Kaiser (2012). The network consists of the 500 most frequently used airports that together
represent more than 95% of global flight traffic. It is constructed using information about
all flights in the period from July 1, 2007 to July 30, 2008.

For this study, we select a subset of 30 airports with the highest yearly number of passengers
(Airports Council International, 2013). The resulting network needs several adjustments
before it can be used for this study. First of all, the adjacency matrix corresponding to
the resulting network is not symmetric. This means there are flights included that only
go in one direction. However, this analysis requires an undirected graph and hence the
adjacency matrix should be symmetric. Therefore, return flights are added for flights that
only go in one direction. Secondly, not all nodes are connected. There is one airport
(HND) that has no connection with any other airport in the network. This is probably
because the data used to create the network is outdated. To adjust this, links between that
airport and the other airports are added based on recent flight information. Last of all, it
is important to observe that the resulting network is not a scale-free network. Instead, it
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is a highly connected graph as most airports have a large number of links. To limit the
number of links, connections with a flight distance larger than 12, 000 km are removed.
Flights longer than this distance are most likely no direct flights and the computation
time of the methods is drastically increasing in the number of links. For details about the
obtained global airline network we refer to Appendix 8.2.

Next, we want to determine the traffic intensity between each of these airports to account
for a difference in transmission probability between pairs of cities. Ideally, the yearly
number of passengers between two airports is used as the traffic intensity between them.
However, as this information is not publicly available we generate traffic flow using the
method presented by Capar and Kuby (2012). Hence, the traffic intensity fod between city
o and d is defined as:

fod =
po ∗ pd
d2od

(1)

where po and pd are the yearly number of passengers of the airport in city o and d respec-
tively. Furthermore, dod is the flight distance between city o and d. The traffic intensity thus
increases with the number of passengers of both airports, but decreases more the further
the airports are located from each other. Note that the traffic intensity is symmetric, which
means that the traffic from city o to d is assumed to be similar to the traffic from city d to o.

The traffic intensity will be scaled and represented as a number between 0 and 1, e.g.
between city o and d it is defined as traffic intensity f∗od = fod

maxi,j(fij)
. The result is a

network with N = 30 nodes and a number of edges E, where each edge e has a weight
equal to the traffic intensity f∗od. This weight is used for MinWPaths in the metapopulation
network. However, the spread of an infection between cities does not only depend on the
traffic intensity, but also on the stage of infection of the cities. This is explained in the
next section.

4.3.2 Homogeneous-mixing compartmental model

This thesis assumes for the metapopulation network that the population within a node is
homogeneous. In other words, we do not incorporate contact patterns between people in a
city but only between cities. Under the assumption that contact patterns are homogeneous
we can use a homogeneous-mixing compartmental model to estimate the spread of an
infection in the local network. The number of infected I, susceptible S or recovered R
individuals can be described by the following set of differential equations as presented by
Bansal et al. (2007):

dS(t)

dt
= −φS(t) (2)

dI(t)

dt
= φS(t)− ρI(t) (3)

dR(t)

dt
= ρI(t) (4)

where φ is the force of infection and ρ the probability of recovery. The force of infection φ is
the rate at which new individuals are infected, it is defined as follows: φ = α ∗ I(t)|N | ∗ τI . The
force of infection thus depends on the amount of contact α, the current fraction of infected
individuals I(t)

|N | and the transmission probability τI . Let α = 4, the average number of
links of a node in the case of a local network. The system of differential equations allows
us to make a prediction of the evolution of an infection in a city over time as can be seen
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in Figure 3. This is derived by making small steps t in time, calculating the change in each
step starting from the initial situation S(0) = 149, I(0) = 1, R(0) = 0.

(a) Scenario I: transmission probability
τI = 0.15, recovery probability ρ = 0.10.

(b) Scenario II: transmission probability
τI = 0.9, recovery probability ρ = 0.15.

Figure 3: Development of infection within city over time for two different scenarios.

This thesis assumes every city goes through the same stages of infection 1, ..., Q, but each
city o can be in a different stage of infection at a certain point in time. Let the degree of
infection qo,i of city o in stage of infection i be defined as:

qo,i = τI
I(i)

max I(i)
∀i = 1, ..., Q. (5)

Furthermore, it is assumed that every city can only be infected once. Hence, every city
that is infected through the global airline network starts in the first stage of infection with
degree of infection qo,1. The degree of infection for the different stages is determined at
the start of the simulation based on the outcome of equations (2)-(4) and will be a number
between 0 and τI . More specifically, in the stage where the number of infected individuals
is at the maximum, the degree of infection is equal to the transmission probability between
individuals. For the rest of the stages the degree of infection decreases proportionally with
the number of infected individuals. The number of stages Q depends on the duration of
the infection and also follows from equations (2)-(4).

4.3.3 Simulation

The simulation model to evaluate the performance of the link removal methods for the
metapopulation network is build up as follows. In each iteration, draw a random number
for every link between an infected and non-infected city. Then, for each link compare the
random number to the probability of transmission τod between city o and d. If the random
number is smaller than the probability of transmission, the infected city infects the other
city. The probability of transmission τod is defined as:

τod = f∗od ∗ qo,i (6)

where f∗od is the traffic intensity between city o and d and qo,i is current degree of infection
of the infected city o in stage of infection i. The traffic intensity and the degree of infection
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are two important factors that positively influence the probability an infection spreads
between two cities. The newly infected city d starts in the first stage of infection with
degree of infection qd,1. At the end of each iteration cities continue to the next stage of
infection with probability π. The transition between stages of infections is thus a simple
Markov chain, as can be seen in Figure 4.

Figure 4: Transition between stages of infection

Let each iteration in the simulation represent a day. In this context, the transmission
probability τI and the recovery probability ρ have more meaning than before. If the
recovery probability is ρ, an individual will recover in approximately 1

ρ days. Similarly, a
city going through Q stages of infection is infected for at least Q days.

The simulation stops when all nodes in the metapopulation network are either recovered
or susceptible. First, we examine how often there is an outbreak. Then, we investigate
the spread of the infection in case of an outbreak. An outbreak occurs if there is at least
one newly infected city. We evaluate the spread in case of an outbreak in terms of the
expected number of new infected cities and the expected time to infect a quarter of the
cities. In addition, we investigate the expected fraction of times a specific city is infected to
determine the risk of infection for each city. For the remainder of this thesis, we define the
fraction of times an event occurs as the number of times the event occurs for a fixed number
of replications, expressed as a fraction of the number of replications. The simulation is
performed M times for each link removal method to get reliable results.

4.3.4 Comparison methods

The four methods will be compared for two different scenarios (see Table 2). Scenario I
represents a low contagious infection with a low transmission probability and a recovery
probability of ρ = 0.1 (≈ 10 days). Scenario II represents a high contagious infection with
a high transmission probability and a recovery probability of ρ = 0.15 (≈ 7 days).

Table 2: Two scenarios investigated in metapopulation network

Scenario
Transmission
probability τI

Recovery
probability ρ

I. Low contagious infection 0.15 0.1
II. High contagious infection 0.9 0.15

Let the transition probability between stages of infection be π = 0.8. For both scenarios,
we investigate the performance of the methods for varying fraction of links removed r and
consider two origins of infection. More specifically, let r = 0.1, 0.2 and 0.3. We select
a very highly connected airport (AMS) and a less connected airport (MAD) as initial
starting points of infection. Also, we evaluate the spread of an infection without canceling
flights r = 0.

20



To evaluate the performance of the different methods in a metapopulation network the
following steps are performed:

1. Construct global airline network with a specific origin of infection

2. Find a set of links to remove from the global airline network using one of the link
removal methods

3. Remove the links from the global airline network

4. Examine the infection spread on the remaining network in terms of the expected
fraction of times an outbreak occurs, the expected number of new infected cities in
case of an outbreak, the expected time to infect a quarter of the cities in case of an
outbreak and the expected fraction of times a specific city is infected in case of an
outbreak using simulation

To get reliable results from the simulation, repeat these steps 5 times for each link removal
method and combination of parameters. Note, we do not have to replicate all steps as
many times as in the local network as we do not generate random networks here. Instead,
it is more important that the simulation is replicated more often. Therefore, the number
of replications M of the simulation equals 1, 000. For the random parts of the link removal
methods M still equals 100 as before.

5 Results

The results are presented in this section. In Section 5.1 we show the computation times of
the link removal methods. Next, the results of the relative performance of the methods are
presented in Section 5.2 for local networks and in Section 5.3 for metapopulation networks.

5.1 Computation time

First, we compare the computation time of the various link removal methods. All compu-
tation times are determined on a computer with an Intel core i5 1.7 GHz processor and
4GB RAM. As can be seen in Figure 5, the computation time of all methods increases
significantly with the network size. Moreover, the relative computation time of the different
link removal methods changes with the fraction of links removed. The higher the fraction
of removed links, the faster MinPaths and MinWPaths are compared to the MinConnect
and MinAtRisk. This can be explained because MinPaths and MinWPaths take most time
during the initialization, whereas MinConnect and MinAtRisk have a computationally
intensive while loop. When the problem size increases this loop takes relatively more and
more time. MinWPaths still takes significantly more time than MinPaths because it needs
to calculate the weight of each path as well.
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(a) Fraction of links removed r = 0.05. (b) Fraction of links removed r = 0.1.

Figure 5: Average computation times of the heuristics with respect to network size. The
average computation times are computed over 5 problem instances with initial fraction of
infected nodes i = 0.2 and transmission probability τI = 0.15.

5.2 Local network

In this section the relative effectiveness of the link removal methods in a local network is
evaluated. As described in Section 4.2.3, the performance of the link removal methods is
investigated for six combinations of parameter values. The plots show the performance
of the methods for different transmission probabilities in terms of the expected time to
infect half of the susceptible nodes E(T ) and the expected number of new infections E(Inew).

The base case is presented in Figure 6. It is clear that under these circumstances MinConnect
is most effective in maximizing the time to infect half of the susceptible nodes. For all values
of the transmission probability it outperforms the other methods by far. Furthermore, it is
remarkable that Random is the second best performer as you expect that targeted link
removal is at least more effective than random link removal. The results are completely
different, however, when considering the number of new infections. Here, Random performs
worst and MinAtRisk is most effective in minimizing the number of new infections for
moderate to high values of transmission probability. When the transmission probability
is low, MinConnect performs best again. The fact that the effectiveness of MinAtRisk is
increasing with the transmission probability can be explained because this method tries to
isolate as many susceptible nodes as possible. This is most helpful when the total spread of
infection is large and this is more likely to be the case for higher transmission probabilities.
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(a) Time to infect half of the susceptible nodes. (b) Number of new infections.

Figure 6: Performance link removal methods for varying transmission probability τI . Initial
fraction of infected nodes i = 0.2, fraction of links removed r = 0.2, recovery probability
ρ = 0.15.

The result for the second combination of parameters, with a higher initial fraction of
infected nodes (i = 0.3), is shown in Figure 7. Again, MinConnect is best in slowing down
the spread. However, MinAtRisk performs relatively better than before. This shows that
complete isolation of susceptible nodes can be effective to slow down the speed of spread,
but only when many nodes are infected and there are limited resources to remove links.
The relative performance of MinAtRisk in terms of the number of new infections improved
even more and again increases with transmission probability. All other methods perform
roughly similar for varying transmission variables.

(a) Time to infect half of the susceptible nodes. (b) Number of new infections.

Figure 7: Performance link removal methods for varying transmission probability τI . Initial
fraction of infected nodes i = 0.3, fraction of links removed r = 0.2, recovery probability
ρ = 0.15.

The next combination of parameters has a lower fraction of removed links (r = 0.1) than
the base case. This result is shown in Figure 8. In this case there is less deviation in the
performance between link removal methods, but the order of effectiveness is still the same
as before. The variation in performance is largest for high transmission probabilities.
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(a) Time to infect half of the susceptible nodes. (b) Number of new infections.

Figure 8: Performance link removal methods for varying transmission probability τI . Initial
fraction of infected nodes i = 0.2, fraction of links removed r = 0.1, recovery probability
ρ = 0.15.

The result for the fourth combination of parameters, with a higher initial fraction of
infected nodes (i = 0.3) and a lower fraction of links removed (r = 0.1), is similar to the
findings in Figure 7 and 8. Therefore, this figure can be found in Appendix 8.3.

The fifth combination of parameters has a higher fraction of links removed (r = 0.3)
compared to the base case. This result is shown in Figure 9. The expectation is that the
higher the fraction of links removed, the better the link removal methods should work
compared to the random method. This is indeed the case when we consider the number of
new infections. We see Random is the least effective method and the other methods are all
better. The relative performance of the methods improved compared to Random. Most
notably, the performance of MinConnect increased significantly. Apparently, if the fraction
of links that can be removed is large enough, the method can effectively decrease the
connections between infected and susceptible nodes. For a high fraction of removed links,
it is thus an effective way of minimizing the number of new infections. When we consider
the time to infect half of the susceptible nodes, however, MinPaths and MinWPaths still
perform badly compared to Random.

(a) Time to infect half of the susceptible nodes. (b) Number of new infections.

Figure 9: Performance link removal methods for varying transmission probability τI . Initial
fraction of infected nodes i = 0.2, fraction of links removed r = 0.3, recovery probability
ρ = 0.15.
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The result for the final combination of parameters, with a higher recovery probability
(ρ = 0.3), is shown in Figure 10. As in the base case, MinConnect is most effective in
maximizing the time to infect half of the susceptible nodes. But, MinConnect is now
more effective than MinAtRisk for moderate transmission probabilities compared to before.
Hence, when nodes are likely to recover faster it is less efficient to spend all resources to
isolate susceptible nodes.

(a) Time to infect half of the susceptible nodes. (b) Number of new infections.

Figure 10: Performance link removal methods for varying transmission probability τI .
Initial fraction of infected nodes i = 0.2, fraction of links removed r = 0.2, recovery
probability ρ = 0.3.

5.3 Metapopulation network

In this section the relative effectiveness of the link removal methods in a metapopulation
network is evaluated. As described in Section 4.3.4, the performance of the link removal
method is investigated for two scenarios. The plots show the performance of the methods
for a varying fraction of removed links in terms of the fraction of times an outbreak occurs,
the expected time to infect a quarter of the cities in case of an outbreak E(T ), the expected
number of new infected cities in case of an outbreak E(Inew) and the fraction of times a
specific city is infected in case of an outbreak.

First, we evaluate the performance of the link removal methods in terms of the fraction of
times an outbreak occurs. This is presented in Figure 11 with Amsterdam as the origin
of infection. It can be seen that the number of outbreaks decreases the more links are
removed. When considering an outbreak of a low contagious infection in Amsterdam, it is
transmitted to other cities approximately 80% of the times without intervention. For a
high contagious infection this is nearly 100%. Hence, there is a higher number of outbreaks
in the case of a very contagious infection. These findings are as expected. As can be seen
MinWPaths is most effective of the proposed link removal methods to limit the number of
outbreaks. It is able to decrease the number of outbreaks in both scenarios by about 80%
when 30% of the flight connections is removed.
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(a) Scenario I: transmission probability
τI = 0.15, recovery probability ρ = 0.1.

(b) Scenario II: transmission probability
τI = 0.9, recovery probability ρ = 0.15.

Figure 11: Performance link removal methods in terms of the average number of outbreaks
for varying fraction of removed links r. Initially infected city: Amsterdam.

In a similar way, the fraction of times an outbreak occurs in Madrid is presented in Figure
12. The difference is that Amsterdam is connected to about twice the number of cities
compared to Madrid. This becomes clear immediately, as there are much fewer outbreaks
when Madrid is the initially infected city. Although the number of outbreaks reduces
slightly if the fraction of removed links is higher, the impact of removing links is small.
Furthermore, it can be seen that the link removal methods are not able to outperform
Random, at least not to reduce the number of outbreaks. However, they might still be able
to affect the size or the speed of the infection spread in case of an outbreak.

(a) Scenario I: transmission probability
τI = 0.15, recovery probability ρ = 0.1.

(b) Scenario II: transmission probability
τI = 0.9, recovery probability ρ = 0.15.

Figure 12: Performance link removal methods in terms of the average number of outbreaks
for varying fraction of removed links r. Initially infected city: Madrid.

Next, we investigate the performance of the link removal methods in terms of the expected
time before a quarter of the cities is infected E(T ) and the expected number of new infected
cities E(Inew) given that an outbreak occurs is shown in Figure 13 and 14 with Amsterdam
as initially infected city. As the results for Madrid are very similar, these figures can be
found in Appendix 8.3.

From Figure 13, it is clear that MinWPaths is most effective to maximize the time to
infect a quarter of the cities when a substantial fraction of links is removed. For very small
values of removed links, MinConnect and MinAtRisk perform slightly better. The results
are very similar for both scenarios.
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(a) Scenario I: transmission probability
τI = 0.15, recovery probability ρ = 0.1.

(b) Scenario II: transmission probability
τI = 0.9, recovery probability ρ = 0.15.

Figure 13: Performance link removal methods in terms of time to infect a quarter of the
susceptible nodes for varying fraction of removed links r. Initial infected city: Amsterdam.

Moreover, MinWPaths is also the best method to minimize the number of new infected
cities. Again this method is followed in performance by MinConnect and MinAtRisk. The
results are shown in Figure 14. The reason why MinWPaths performs so well for this
particular network is probably because this is the only link removal method that takes the
likelihood of transmission over each path into account. This is very effective as the traffic
intensity for each link in the global airline network varies a lot.

(a) Scenario I: transmission probability
τI = 0.15, recovery probability ρ = 0.1.

(b) Scenario II: transmission probability
τI = 0.9, recovery probability ρ = 0.15.

Figure 14: Performance link removal methods in terms of number of new infections for
varying fraction of removed links r. Initial infected city: Amsterdam.

In other words, for a low contagious infection starting in Amsterdam, MinWPaths is able
to reduce the expected number of new infected cities from about 7 to 5 when 10% of the
connections is removed and from about 7 to 2.5 when 30% of the connections is removed.
For a high contagious infection, a reduction from 12 to 10 and from 12 to 4.5 can be
achieved respectively. This is a reduction in the expected number of new infected cites
of roughly 60% when 30% of the connections is removed. In addition, it can slow down
the spread of infection by postponing the expected time when a quarter of the cities are
infected with at least 10 days. For Madrid these numbers are very similar. This suggests
that although less outbreaks occur because the starting city is less connected, the spread
of an infection in case of an outbreak is similar. The corresponding figures can be found in
Appendix 8.3.
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Finally, we examine the performance of the link removal methods in terms of the expected
fraction of times a specific city is infected in case of an outbreak. This is shown in Figure
15 for a high contagious infection starting in Amsterdam (1). It can be seen that many
cities are rarely infected whereas a few other cities are infected very often. Intuitively, this
is understandable as cities closer to Amsterdam have a higher probability to be infected.
Indeed, among the cities with most risk to be infected are Paris (5), London (21) and
Munich (24). When 30% of the links is removed with MinWPaths, the risk to be infected
in many of the cities that were first likely to be infected decreases significantly. However,
this decrease in risk is not equally spread over the cities. For example, Madrid (22) and
Munich (24) are still infected quite often after 30% of the links is removed with MinWPaths
whereas Paris (5) and Frankfurt (11) are much less likely to be infected. Similar figures for
a low contagious infection and Madrid as initially infected city are presented in Appendix
8.3.

(a) Fraction of removed links r = 0.1.

(b) Fraction of removed links r = 0.3.

Figure 15: Performance link removal methods in terms of fraction of times a certain city
is infected for different fractions of removed links r. Scenario II: transmission probability
τI = 0.9, recovery probability ρ = 0.15. Initial infected city: Amsterdam.
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6 Discussion

In this section the results presented in the previous section will be discussed. In particular,
we discuss the similarities and differences with the results of Nandi and Medal (2016). In
addition, the aim is to give insight in the possible causes of these differences.

First of all, there is a substantial difference in computation time of the link removal
methods. The running times obtained in this thesis are longer. Most remarkable is that
MinPaths and MinWPaths solve in a few seconds for Nandi and Medal (2016), whereas
these algorithms take longest in our case. However, as they presented hardly any details
needed to replicate the generated random trees, there is probably a big difference in imple-
mentation. Furthermore, the computation time highly depends on the specific problem
configuration. As the generated scale-free networks are probably not the same this might
have influenced the computation time as well. Finally, they used a computer with a faster
processor and more memory. To be able to get results in limited time, this thesis examines
scale-free networks of a smaller size.

Despite the fact that our computation time obtained for networks of size 30 was much
lower than their computation time for networks of size 150, we could not perform as
many replications for each combination of parameters as Nandi and Medal (2016). To
get reliable results they accepted extremely long computation times (≈ 4.6 days for
one combination of parameters), which was impossible within the scope of this thesis
due to time constraints. This has to be taken into account when analyzing the results
presented in this thesis. This analysis can, however, easily be extended to more replications.

In addition, there is some ambiguity in the implementation details of Nandi and Medal
(2016). For example, it is unclear what the order of the spread of new infections and the
recovery of nodes is in the susceptible-infectious-recovered simulation. Furthermore, it is
not stated how they deal with exceptional cases, such as a node that is not connected to the
graph. This can happen after a network is generated, but also after a link removal method
is applied. Moreover, the value used for the recovery probability of nodes is not specified
and thus unknown. Last of all, they could have been more precise how they generated the
scale-free networks. Although the general method was mentioned, there are many details
that were unclear. Therefore, the generated scale-free networks are probably not the same.

All these small choices lead to differences in implementation, which may cause different
outcomes. Nevertheless, many results obtained for the local network in this thesis are
similar to the ones seen in Nandi and Medal (2016). Indeed, they also find MinAtRisk is
most effective to minimize the spread of infections. Moreover, they show its effectiveness
increases with the transmission probability. Furthermore, when the fraction of initially
infected nodes increases compared to the base case, this thesis finds the effectiveness of
MinAtRisk to maximize the time to infect half of the susceptible nodes increases a lot.
This is also shown by Nandi and Medal (2016). Finally, the link removal methods overall
perform badly to slow down spread and they also find Random is often better than the
proposed link removal methods.

Therefore, many dynamics found by Nandi and Medal (2016) are confirmed by the results
presented in this thesis. There is only one major difference, MinWPaths performs much
worse than expected for a scale-free network. Whereas MinWPaths is found to be most
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effective to maximize the time to infect half of the susceptible nodes by Nandi and Medal
(2016), in this thesis we find that MinConnect performs best. This can be due to a slightly
different implementation of the algorithm or a difference in the generated scale-free network
which makes the method less efficient.

Next to replicating the results of Nandi and Medal (2016), this thesis examined several
other effects in a local network such as a change in recovery probability and a higher
fraction of links removed. Furthermore, this thesis investigated a new type of network, a
metapopulation network. For the two scenarios investigated in the global airline network
we do find MinWPaths performs best to maximize the time to infect a quarter of the
cities. It is also best to minimize the spread of infections and the number of outbreaks.
This method is very effective for this type of network, because this link removal method
is the only one that takes the differences in traffic intensity into account. Unfortunately,
MinWPaths fails to decrease the risk of infection evenly for all cities.

7 Conclusion

This thesis investigated the problem to minimize the spread of infections in local and
metapopulation networks by removing a set of links. For that purpose, we first evaluated
the performance of the link removal methods MinConnect, MinAtRisk, MinPaths, Min-
WPaths and Random on generated scale-free networks to replicate the results of Nandi
and Medal (2016). Then, we investigated the performance of the link removal methods
in a metapopulation network consisting of multiple local networks. To be specific, we
examined a global airline network consisting of the 30 airports with the highest yearly
number of passengers. The performance of the link removal methods is evaluated by means
of simulation after removing a set of links with one of the heuristics.

For the local network we found that MinAtRisk is most effective to minimize the number
of new infections for moderate to high values of transmission probability. The relative
performance of this method increases with the transmission probability and when many
nodes are infected compared to the number of links that can be removed. For low values
of transmission probability, MinConnect performs better to reduce the number of new
infections. MinConnect also performs well when a large number of links can be removed.
Furthermore, we found it is best to remove links based on MinConnect to slow down the
spread of an infection. Slowing down the speed of the infection is desirable as it gives more
time for prevention and other interventions. Most results are in line with the findings of
Nandi and Medal (2016). One exception is that MinWPaths performs worse than expected
to maximize the time to infect half of the susceptible nodes. In addition, the running times
obtained in this thesis are longer.

For the global airline network studied in this thesis, MinWPaths is the most effective
link removal method to minimize the number of new infected cities and to maximize
the time before a quarter of the cities is infected. When 30% of links is removed, this
method is able to decrease the average number of new infected cities by approximately
60% and can postpone the time before a quarter of the cities is infected with at least 10
days. However, the decrease in risk to be infected is not equally spread over the cities. In
addition, MinWPaths can decrease the number of outbreaks depending on the initially
infected city.
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To conclude, based on the results presented in this thesis it is clear that the performance
of the link removal methods is strongly affected by the network structure and the type of
infection (e.g. value of transmission probability and recovery probability). Other important
factors are the available budget and the size of the infection at the time of intervention.
The direct application of the results in this thesis is limited as we only investigated a
small number of parameter combinations with a low number of replications. Besides, we
might not have perfect knowledge about the origin of infection, transmission probability
or network topology in reality. It would also be recommended to further examine the
differences between the results of this thesis and the paper of Nandi and Medal (2016).

For future work, the presented metapopulation simulation should be extended to relax
some unrealistic assumptions such as for example the assumption that a city can only be
infected once. Besides, as it is very harmful for a city to be infected, the link removal
methods need to be adapted to incorporate a certain equality between nodes as it is unfair
that all available budget is spend on one or a few nodes. Other interesting directions for
further research are the combination of node and link removal methods, taking the uncer-
tainty of the transmission probability into account and investigating other types of networks.

Despite the fact that the practical applicability of the results in this thesis might be limited,
it showed that substantial improvements are possible. Furthermore, the methods and
analysis presented in this thesis can be used to investigate which link removal method is
most effective for other real life networks. The final trade-off that remains is then how
much one is willing to pay to reduce the spread of infections.
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8 Appendix

8.1 Heuristic algorithms

Algorithm 7 Link removal method: MinConnect

1: procedure Complete Algorithm
2: input G = (N,E)
3: initialization N = N0, E = E0

4: set of links to remove L = ∅
5: budget b
6: set of infected nodes I
7: set of susceptible nodes N\I
8: number of replications random process M
9: while |L| < b do

10: Cbest =∞
11: ebest =∞
12: for e ∈ E do
13: E = E\e
14: Ce = 0
15: for j ∈ 1, ...,M do
16: randomly select R = b− |L| − 1 links ∈ E
17: E = E\R
18: c = 0
19: determine graph components of G = (N,E)
20: for i ∈ I do
21: for s ∈ S do
22: if i and s belong to same component then
23: c = c+ 1
24: end if
25: end for
26: end for
27: Ce = Ce + c
28: E = E ∪R
29: end for
30: E = E ∪ e
31: if Ce < Cbest then
32: ebest = e
33: end if
34: end for
35: E = E\ebest
36: L = L ∪ ebest
37: end while
38: return E
39: end procedure
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Algorithm 8 Link removal method: MinAtRisk

1: procedure Complete Algorithm
2: input G = (N,E)
3: initialization N = N0, E = E0

4: set of links to remove L = ∅
5: budget b
6: set of infected nodes I
7: set of susceptible nodes N\I
8: number of replications random process M
9: while |L| < b do

10: Abest =∞
11: ebest =∞
12: for e ∈ E do
13: E = E\e
14: Ae = 0
15: for j ∈ 1, ...,M do
16: randomly select R = b− |L| − 1 links ∈ E
17: E = E\R
18: a = 0
19: determine graph components of G = (N,E)
20: for s ∈ S do
21: q = 0
22: for i ∈ I do
23: if i and s belong to same component then
24: q = 1
25: end if
26: end for
27: a = a+ q
28: end for
29: Ae = Ae + a
30: E = E ∪R
31: end for
32: E = E ∪ e
33: if Ae < Abest then
34: ebest = e
35: end if
36: end for
37: E = E\ebest
38: L = L ∪ ebest
39: end while
40: return E
41: end procedure
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Algorithm 9 Link removal method: MinPaths

1: procedure Complete Algorithm
2: input G = (N,E)
3: initialization N = N0, E = E0

4: set of links to remove L = ∅
5: budget b
6: set of infected nodes I
7: set of susceptible nodes N\I
8: number of replications random process M
9: check if all nodes have a connection

10: TP = 0
11: for j ∈ 1, ...,M do
12: choose random starting node n
13: while not all nodes visited do
14: randomly select next node n+ 1 connected to n
15: if first visit node n+ 1 then
16: add link (n, n+ 1) to tree Tj
17: end if
18: end while
19: for s ∈ S do
20: for i ∈ I do
21: find shortest path between node s and i
22: if path exists & path does not contain any infected nodes then
23: TP = TP + 1
24: end if
25: end for
26: for s+ 1 ∈ S do
27: find shortest path between node s and s+ 1
28: if a path exists & path does not contain any infected nodes then
29: TP = TP + 1
30: end if
31: end for
32: end for
33: end for
34: while |L| < b do
35: Pbest = 0
36: ebest =∞
37: for e ∈ E do
38: E = E\e
39: count the number of paths removed Pe by counting the total
40: number of paths TP containing link e
41: E = E ∪ e
42: if Pe > Pbest then
43: ebest = e
44: end if
45: end for
46: E = E\ebest
47: L = L ∪ ebest
48: end while
49: return E
50: end procedure
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Algorithm 10 Link removal method: MinWPaths

1: procedure Complete Algorithm
2: input G = (N,E)
3: initialization N = N0, E = E0

4: set of links to remove L = ∅
5: budget b
6: set of infected nodes I
7: set of susceptible nodes N\I
8: number of replications random process M
9: check if all nodes have a connection

10: TW = 0
11: for j ∈ 1, ...,M do
12: choose random starting node n
13: while not all nodes visited do
14: randomly select next node n+ 1 connected to n
15: if first visit node n+ 1 then
16: add link (n, n+ 1) to tree Tj
17: end if
18: end while
19: for s ∈ S do
20: for i ∈ I do
21: find shortest path between node s and i
22: if path exists & path does not contain any infected nodes then
23: compute weight w of path: multiply transmission probabilities of links
24: TW = TW + w
25: end if
26: end for
27: for s+ 1 ∈ S do
28: find shortest path between node s and s+ 1
29: if a path exists & path does not contain any infected nodes then
30: compute weight w of path: multiply transmission probabilities of links
31: TW = TW + w
32: end if
33: end for
34: end for
35: end for
36: while |L| < b do
37: Wbest = 0
38: ebest =∞
39: for e ∈ E do
40: E = E\e
41: compute the weight of paths removed We by computing the total
42: weight of paths TW containing link e
43: E = E ∪ e
44: if We > Wbest then
45: ebest = e
46: end if
47: end for
48: E = E\ebest
49: L = L ∪ ebest
50: end while
51: return E
52: end procedure
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8.2 Global airport network

Table 3: Selected subset of airports

Airport (code) Number of passengers (yearly) Number of connections

1. AMS 52,569,200 26
2. ATL 94,431,224 17
3. BKK 51,363,451 17
4. CAN 52,450,262 15
5. CDG 62,052,917 25
6. CGK 60,137,347 11
7. CLT 43,457,471 14
8. DEN 52,556,359 15
9. DFW 60,470,507 17

10. DXB 66,431,533 18
11. FRA 58,036,948 29
12. HKG 59,588,081 18
13. HND 68,906,509 17
14. IAH 39,799,414 17
15. ICN 41,679,758 24
16. IST 51,304,654 16
17. JFK 50,423,765 23
18. KUL 47,498,127 15
19. LAS 40,933,037 15
20. LAX 66,667,619 23
21. LHR 72,368,061 24
22. MAD 39,717,850 15
23. MIA 40,562,948 17
24. MUC 38,672,644 21
25. ORD 66,777,161 23
26. PEK 83,712,355 23
27. PHX 40,341,614 13
28. PVG 47,189,849 21
29. SFO 44,945,760 22
30. SIN 53,726,087 15
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Figure 16: Selected subset of airports
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8.3 Results - extra figures

Local Network

(a) Time to infect half of the susceptible nodes. (b) Number of new infections.

Figure 17: Performance link removal methods for varying transmission probability τI .
Initial fraction of infected nodes i = 0.3, fraction of links removed r = 0.1, recovery
probability ρ = 0.15.

Metapopulation Network

(a) Scenario I: transmission probability
τI = 0.15, recovery probability ρ = 0.1.

(b) Scenario II: transmission probability
τI = 0.9, recovery probability ρ = 0.15.

Figure 18: Performance link removal methods in terms of time to infect a quarter of the
susceptible nodes for varying fraction of removed links r. Initial infected city: Amsterdam.
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(a) Scenario I: transmission probability
τI = 0.15, recovery probability ρ = 0.1.

(b) Scenario II: transmission probability
τI = 0.9, recovery probability ρ = 0.15.

Figure 19: Performance link removal methods in terms of number of new infections for
varying fraction of removed links r. Initial infected city: Amsterdam.

(a) Scenario I: transmission probability
τI = 0.15, recovery probability ρ = 0.1.

(b) Scenario II: transmission probability
τI = 0.9, recovery probability ρ = 0.15.

Figure 20: Performance link removal methods in terms of time to infect a quarter of the
susceptible nodes for varying fraction of removed links r. Initial infected city: Madrid.

(a) Scenario I: transmission probability
τI = 0.15, recovery probability ρ = 0.1.

(b) Scenario II: transmission probability
τI = 0.9, recovery probability ρ = 0.15.

Figure 21: Performance link removal methods in terms of number of new infections for
varying fraction of removed links r. Initial infected city: Madrid.
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(a) Scenario I: transmission probability
τI = 0.15, recovery probability ρ = 0.1.

(b) Scenario II: transmission probability
τI = 0.9, recovery probability ρ = 0.15.

Figure 22: Performance link removal methods in terms of time to infect a quarter of the
susceptible nodes for varying fraction of removed links r. Initial infected city: Madrid.

(a) Scenario I: transmission probability
τI = 0.15, recovery probability ρ = 0.1.

(b) Scenario II: transmission probability
τI = 0.9, recovery probability ρ = 0.15.

Figure 23: Performance link removal methods in terms of number of new infections for
varying fraction of removed links r. Initial infected city: Madrid.
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(a) Fraction of removed links r = 0.1.

(b) Fraction of removed links r = 0.3.

Figure 24: Performance link removal methods in terms of fraction of times a certain city
is infected for different fractions of removed links r. Scenario I: transmission probability
τI = 0.15, recovery probability ρ = 0.10. Initial infected city: Amsterdam.
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(a) Fraction of removed links r = 0.1.

(b) Fraction of removed links r = 0.3.

Figure 25: Performance link removal methods in terms of fraction of times a certain city
is infected for different fractions of removed links r. Scenario I: transmission probability
τI = 0.15, recovery probability ρ = 0.10. Initial infected city: Madrid.
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(a) Fraction of removed links r = 0.1.

(b) Fraction of removed links r = 0.3.

Figure 26: Performance link removal methods in terms of fraction of times a certain city
is infected for different fractions of removed links r. Scenario II: transmission probability
τI = 0.9, recovery probability ρ = 0.15. Initial infected city: Madrid.
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Kempe, D., Kleinberg, J., & Tardos, É. (2003). Maximizing the spread of influence through
a social network. In Proceedings of the 9th ACM SIGKDD international conference
on knowledge discovery and data mining (pp. 137–146). ACM.

44



Kermack, W. O. & McKendrick, A. G. (1927). A contribution to the mathematical theory
of epidemics. In Proceedings of the Royal Society of London A: mathematical, physical
and engineering sciences (Vol. 115, 772, pp. 700–721). The Royal Society.

Kimura, M., Saito, K., & Motoda, H. (2009). Blocking links to minimize contamination
spread in a social network. Transactions on Knowledge Discovery from Data (TKDD),
3 (2), 1–22.

Koch, D., Illner, R., & Ma, J. (2013). Edge removal in random contact networks and the
basic reproduction number. Journal of Mathematical Biology, 1–22.

Kuhlman, C. J., Tuli, G., Swarup, S., Marathe, M. V., & Ravi, S. (2013). Blocking simple
and complex contagion by edge removal. In Proceedings of the 13th international
conference on data mining (ICDM) (pp. 399–408). IEEE.

Latora, V. & Marchiori, M. (2004). How the science of complex networks can help developing
strategies against terrorism. Chaos, Solitons & Fractals, 20 (1), 69–75.

Marcelino, J. & Kaiser, M. (2012). Critical paths in a metapopulation model of H1N1:
efficiently delaying influenza spreading through flight cancellation.

Nandi, A. K. & Medal, H. R. (2016). Methods for removing links in a network to minimize
the spread of infections. Computers & Operations Research, 69, 10–24.

Newman, M. E., Forrest, S., & Balthrop, J. (2002). Email networks and the spread of
computer viruses. Physical Review E, 66 (3), 1–4.

Tong, H., Prakash, B. A., Eliassi-Rad, T., Faloutsos, M., & Faloutsos, C. (2012). Gelling,
and melting, large graphs by edge manipulation. In Proceedings of the 21st ACM
international conference on information and knowledge management (pp. 245–254).
ACM.

Veremyev, A., Prokopyev, O. A., & Pasiliao, E. L. (2014). An integer programming frame-
work for critical elements detection in graphs. Journal of Combinatorial Optimization,
28 (1), 233–273.

Wang, Y., Chakrabarti, D., Wang, C., & Faloutsos, C. (2003). Epidemic spreading in
real networks: an eigenvalue viewpoint. In Proceedings of the 22nd international
symposium on reliable distributed systems (pp. 25–34). IEEE.

World Health Organization. (2016). Progress report 2016: prevent HIV, test and treat all.
World Health Organization.

Yang, H.-X., Wu, Z.-X., & Wang, B.-H. (2013). Suppressing traffic-driven epidemic spreading
by edge-removal strategies. Physical Review E, 87 (6), 1–5.

45


